xref: /netbsd-src/sys/netinet6/ip6_output.c (revision 46f5119e40af2e51998f686b2fdcc76b5488f7f3)
1 /*	$NetBSD: ip6_output.c,v 1.140 2011/04/25 22:20:59 yamt Exp $	*/
2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.140 2011/04/25 22:20:59 yamt Exp $");
66 
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70 #include "opt_pfil_hooks.h"
71 
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/errno.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/kauth.h>
82 
83 #include <net/if.h>
84 #include <net/route.h>
85 #ifdef PFIL_HOOKS
86 #include <net/pfil.h>
87 #endif
88 
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet/ip6.h>
92 #include <netinet/icmp6.h>
93 #include <netinet/in_offload.h>
94 #include <netinet6/in6_offload.h>
95 #include <netinet6/ip6_var.h>
96 #include <netinet6/ip6_private.h>
97 #include <netinet6/in6_pcb.h>
98 #include <netinet6/nd6.h>
99 #include <netinet6/ip6protosw.h>
100 #include <netinet6/scope6_var.h>
101 
102 #ifdef IPSEC
103 #include <netinet6/ipsec.h>
104 #include <netinet6/ipsec_private.h>
105 #include <netkey/key.h>
106 #endif /* IPSEC */
107 
108 #ifdef FAST_IPSEC
109 #include <netipsec/ipsec.h>
110 #include <netipsec/ipsec6.h>
111 #include <netipsec/key.h>
112 #include <netipsec/xform.h>
113 #endif
114 
115 
116 #include <net/net_osdep.h>
117 
118 #ifdef PFIL_HOOKS
119 extern struct pfil_head inet6_pfil_hook;	/* XXX */
120 #endif
121 
122 struct ip6_exthdrs {
123 	struct mbuf *ip6e_ip6;
124 	struct mbuf *ip6e_hbh;
125 	struct mbuf *ip6e_dest1;
126 	struct mbuf *ip6e_rthdr;
127 	struct mbuf *ip6e_dest2;
128 };
129 
130 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
131 	kauth_cred_t, int);
132 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
133 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
134 	int, int, int);
135 static int ip6_setmoptions(const struct sockopt *, struct ip6_moptions **);
136 static int ip6_getmoptions(struct sockopt *, struct ip6_moptions *);
137 static int ip6_copyexthdr(struct mbuf **, void *, int);
138 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
139 	struct ip6_frag **);
140 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
141 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
142 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *,
143     const struct in6_addr *, u_long *, int *);
144 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
145 
146 #ifdef RFC2292
147 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
148 #endif
149 
150 /*
151  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
152  * header (with pri, len, nxt, hlim, src, dst).
153  * This function may modify ver and hlim only.
154  * The mbuf chain containing the packet will be freed.
155  * The mbuf opt, if present, will not be freed.
156  *
157  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
158  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
159  * which is rt_rmx.rmx_mtu.
160  */
161 int
162 ip6_output(
163     struct mbuf *m0,
164     struct ip6_pktopts *opt,
165     struct route *ro,
166     int flags,
167     struct ip6_moptions *im6o,
168     struct socket *so,
169     struct ifnet **ifpp		/* XXX: just for statistics */
170 )
171 {
172 	struct ip6_hdr *ip6, *mhip6;
173 	struct ifnet *ifp, *origifp;
174 	struct mbuf *m = m0;
175 	int hlen, tlen, len, off;
176 	bool tso;
177 	struct route ip6route;
178 	struct rtentry *rt = NULL;
179 	const struct sockaddr_in6 *dst = NULL;
180 	struct sockaddr_in6 src_sa, dst_sa;
181 	int error = 0;
182 	struct in6_ifaddr *ia = NULL;
183 	u_long mtu;
184 	int alwaysfrag, dontfrag;
185 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
186 	struct ip6_exthdrs exthdrs;
187 	struct in6_addr finaldst, src0, dst0;
188 	u_int32_t zone;
189 	struct route *ro_pmtu = NULL;
190 	int hdrsplit = 0;
191 	int needipsec = 0;
192 #ifdef IPSEC
193 	int needipsectun = 0;
194 	struct secpolicy *sp = NULL;
195 
196 	ip6 = mtod(m, struct ip6_hdr *);
197 #endif /* IPSEC */
198 #ifdef FAST_IPSEC
199 	struct secpolicy *sp = NULL;
200 	int s;
201 #endif
202 
203 	memset(&ip6route, 0, sizeof(ip6route));
204 
205 #ifdef  DIAGNOSTIC
206 	if ((m->m_flags & M_PKTHDR) == 0)
207 		panic("ip6_output: no HDR");
208 
209 	if ((m->m_pkthdr.csum_flags &
210 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
211 		panic("ip6_output: IPv4 checksum offload flags: %d",
212 		    m->m_pkthdr.csum_flags);
213 	}
214 
215 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
216 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
217 		panic("ip6_output: conflicting checksum offload flags: %d",
218 		    m->m_pkthdr.csum_flags);
219 	}
220 #endif
221 
222 	M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
223 
224 #define MAKE_EXTHDR(hp, mp)						\
225     do {								\
226 	if (hp) {							\
227 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
228 		error = ip6_copyexthdr((mp), (void *)(hp), 		\
229 		    ((eh)->ip6e_len + 1) << 3);				\
230 		if (error)						\
231 			goto freehdrs;					\
232 	}								\
233     } while (/*CONSTCOND*/ 0)
234 
235 	memset(&exthdrs, 0, sizeof(exthdrs));
236 	if (opt) {
237 		/* Hop-by-Hop options header */
238 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
239 		/* Destination options header(1st part) */
240 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
241 		/* Routing header */
242 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
243 		/* Destination options header(2nd part) */
244 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
245 	}
246 
247 #ifdef IPSEC
248 	if ((flags & IPV6_FORWARDING) != 0) {
249 		needipsec = 0;
250 		goto skippolicycheck;
251 	}
252 
253 	/* get a security policy for this packet */
254 	if (so == NULL)
255 		sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
256 	else {
257 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
258 					 IPSEC_DIR_OUTBOUND)) {
259 			needipsec = 0;
260 			goto skippolicycheck;
261 		}
262 		sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
263 	}
264 
265 	if (sp == NULL) {
266 		IPSEC6_STATINC(IPSEC_STAT_OUT_INVAL);
267 		goto freehdrs;
268 	}
269 
270 	error = 0;
271 
272 	/* check policy */
273 	switch (sp->policy) {
274 	case IPSEC_POLICY_DISCARD:
275 		/*
276 		 * This packet is just discarded.
277 		 */
278 		IPSEC6_STATINC(IPSEC_STAT_OUT_POLVIO);
279 		goto freehdrs;
280 
281 	case IPSEC_POLICY_BYPASS:
282 	case IPSEC_POLICY_NONE:
283 		/* no need to do IPsec. */
284 		needipsec = 0;
285 		break;
286 
287 	case IPSEC_POLICY_IPSEC:
288 		if (sp->req == NULL) {
289 			/* XXX should be panic ? */
290 			printf("ip6_output: No IPsec request specified.\n");
291 			error = EINVAL;
292 			goto freehdrs;
293 		}
294 		needipsec = 1;
295 		break;
296 
297 	case IPSEC_POLICY_ENTRUST:
298 	default:
299 		printf("ip6_output: Invalid policy found. %d\n", sp->policy);
300 	}
301 
302   skippolicycheck:;
303 #endif /* IPSEC */
304 
305 	/*
306 	 * Calculate the total length of the extension header chain.
307 	 * Keep the length of the unfragmentable part for fragmentation.
308 	 */
309 	optlen = 0;
310 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
311 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
312 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
313 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
314 	/* NOTE: we don't add AH/ESP length here. do that later. */
315 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
316 
317 #ifdef FAST_IPSEC
318 	/* Check the security policy (SP) for the packet */
319 
320 	/* XXX For moment, we doesn't support packet with extented action */
321 	if (optlen !=0)
322 		goto freehdrs;
323 
324 	sp = ipsec6_check_policy(m,so,flags,&needipsec,&error);
325 	if (error != 0) {
326 		/*
327 		 * Hack: -EINVAL is used to signal that a packet
328 		 * should be silently discarded.  This is typically
329 		 * because we asked key management for an SA and
330 		 * it was delayed (e.g. kicked up to IKE).
331 		 */
332 	if (error == -EINVAL)
333 		error = 0;
334 	goto freehdrs;
335     }
336 #endif /* FAST_IPSEC */
337 
338 
339 	if (needipsec &&
340 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
341 		in6_delayed_cksum(m);
342 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
343 	}
344 
345 
346 	/*
347 	 * If we need IPsec, or there is at least one extension header,
348 	 * separate IP6 header from the payload.
349 	 */
350 	if ((needipsec || optlen) && !hdrsplit) {
351 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
352 			m = NULL;
353 			goto freehdrs;
354 		}
355 		m = exthdrs.ip6e_ip6;
356 		hdrsplit++;
357 	}
358 
359 	/* adjust pointer */
360 	ip6 = mtod(m, struct ip6_hdr *);
361 
362 	/* adjust mbuf packet header length */
363 	m->m_pkthdr.len += optlen;
364 	plen = m->m_pkthdr.len - sizeof(*ip6);
365 
366 	/* If this is a jumbo payload, insert a jumbo payload option. */
367 	if (plen > IPV6_MAXPACKET) {
368 		if (!hdrsplit) {
369 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
370 				m = NULL;
371 				goto freehdrs;
372 			}
373 			m = exthdrs.ip6e_ip6;
374 			hdrsplit++;
375 		}
376 		/* adjust pointer */
377 		ip6 = mtod(m, struct ip6_hdr *);
378 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
379 			goto freehdrs;
380 		optlen += 8; /* XXX JUMBOOPTLEN */
381 		ip6->ip6_plen = 0;
382 	} else
383 		ip6->ip6_plen = htons(plen);
384 
385 	/*
386 	 * Concatenate headers and fill in next header fields.
387 	 * Here we have, on "m"
388 	 *	IPv6 payload
389 	 * and we insert headers accordingly.  Finally, we should be getting:
390 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
391 	 *
392 	 * during the header composing process, "m" points to IPv6 header.
393 	 * "mprev" points to an extension header prior to esp.
394 	 */
395 	{
396 		u_char *nexthdrp = &ip6->ip6_nxt;
397 		struct mbuf *mprev = m;
398 
399 		/*
400 		 * we treat dest2 specially.  this makes IPsec processing
401 		 * much easier.  the goal here is to make mprev point the
402 		 * mbuf prior to dest2.
403 		 *
404 		 * result: IPv6 dest2 payload
405 		 * m and mprev will point to IPv6 header.
406 		 */
407 		if (exthdrs.ip6e_dest2) {
408 			if (!hdrsplit)
409 				panic("assumption failed: hdr not split");
410 			exthdrs.ip6e_dest2->m_next = m->m_next;
411 			m->m_next = exthdrs.ip6e_dest2;
412 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
413 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
414 		}
415 
416 #define MAKE_CHAIN(m, mp, p, i)\
417     do {\
418 	if (m) {\
419 		if (!hdrsplit) \
420 			panic("assumption failed: hdr not split"); \
421 		*mtod((m), u_char *) = *(p);\
422 		*(p) = (i);\
423 		p = mtod((m), u_char *);\
424 		(m)->m_next = (mp)->m_next;\
425 		(mp)->m_next = (m);\
426 		(mp) = (m);\
427 	}\
428     } while (/*CONSTCOND*/ 0)
429 		/*
430 		 * result: IPv6 hbh dest1 rthdr dest2 payload
431 		 * m will point to IPv6 header.  mprev will point to the
432 		 * extension header prior to dest2 (rthdr in the above case).
433 		 */
434 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
435 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
436 		    IPPROTO_DSTOPTS);
437 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
438 		    IPPROTO_ROUTING);
439 
440 		M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
441 		    sizeof(struct ip6_hdr) + optlen);
442 
443 #ifdef IPSEC
444 		if (!needipsec)
445 			goto skip_ipsec2;
446 
447 		/*
448 		 * pointers after IPsec headers are not valid any more.
449 		 * other pointers need a great care too.
450 		 * (IPsec routines should not mangle mbufs prior to AH/ESP)
451 		 */
452 		exthdrs.ip6e_dest2 = NULL;
453 
454 	    {
455 		struct ip6_rthdr *rh = NULL;
456 		int segleft_org = 0;
457 		struct ipsec_output_state state;
458 
459 		if (exthdrs.ip6e_rthdr) {
460 			rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
461 			segleft_org = rh->ip6r_segleft;
462 			rh->ip6r_segleft = 0;
463 		}
464 
465 		memset(&state, 0, sizeof(state));
466 		state.m = m;
467 		error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
468 		    &needipsectun);
469 		m = state.m;
470 		if (error) {
471 			rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
472 			/* mbuf is already reclaimed in ipsec6_output_trans. */
473 			m = NULL;
474 			switch (error) {
475 			case EHOSTUNREACH:
476 			case ENETUNREACH:
477 			case EMSGSIZE:
478 			case ENOBUFS:
479 			case ENOMEM:
480 				break;
481 			default:
482 				printf("ip6_output (ipsec): error code %d\n", error);
483 				/* FALLTHROUGH */
484 			case ENOENT:
485 				/* don't show these error codes to the user */
486 				error = 0;
487 				break;
488 			}
489 			goto bad;
490 		}
491 		if (exthdrs.ip6e_rthdr) {
492 			/* ah6_output doesn't modify mbuf chain */
493 			rh->ip6r_segleft = segleft_org;
494 		}
495 	    }
496 skip_ipsec2:;
497 #endif
498 	}
499 
500 	/*
501 	 * If there is a routing header, replace destination address field
502 	 * with the first hop of the routing header.
503 	 */
504 	if (exthdrs.ip6e_rthdr) {
505 		struct ip6_rthdr *rh;
506 		struct ip6_rthdr0 *rh0;
507 		struct in6_addr *addr;
508 		struct sockaddr_in6 sa;
509 
510 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
511 		    struct ip6_rthdr *));
512 		finaldst = ip6->ip6_dst;
513 		switch (rh->ip6r_type) {
514 		case IPV6_RTHDR_TYPE_0:
515 			 rh0 = (struct ip6_rthdr0 *)rh;
516 			 addr = (struct in6_addr *)(rh0 + 1);
517 
518 			 /*
519 			  * construct a sockaddr_in6 form of
520 			  * the first hop.
521 			  *
522 			  * XXX: we may not have enough
523 			  * information about its scope zone;
524 			  * there is no standard API to pass
525 			  * the information from the
526 			  * application.
527 			  */
528 			 sockaddr_in6_init(&sa, addr, 0, 0, 0);
529 			 if ((error = sa6_embedscope(&sa,
530 			     ip6_use_defzone)) != 0) {
531 				 goto bad;
532 			 }
533 			 ip6->ip6_dst = sa.sin6_addr;
534 			 (void)memmove(&addr[0], &addr[1],
535 			     sizeof(struct in6_addr) *
536 			     (rh0->ip6r0_segleft - 1));
537 			 addr[rh0->ip6r0_segleft - 1] = finaldst;
538 			 /* XXX */
539 			 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
540 			 break;
541 		default:	/* is it possible? */
542 			 error = EINVAL;
543 			 goto bad;
544 		}
545 	}
546 
547 	/* Source address validation */
548 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
549 	    (flags & IPV6_UNSPECSRC) == 0) {
550 		error = EOPNOTSUPP;
551 		IP6_STATINC(IP6_STAT_BADSCOPE);
552 		goto bad;
553 	}
554 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
555 		error = EOPNOTSUPP;
556 		IP6_STATINC(IP6_STAT_BADSCOPE);
557 		goto bad;
558 	}
559 
560 	IP6_STATINC(IP6_STAT_LOCALOUT);
561 
562 	/*
563 	 * Route packet.
564 	 */
565 	/* initialize cached route */
566 	if (ro == NULL) {
567 		ro = &ip6route;
568 	}
569 	ro_pmtu = ro;
570 	if (opt && opt->ip6po_rthdr)
571 		ro = &opt->ip6po_route;
572 
573  	/*
574 	 * if specified, try to fill in the traffic class field.
575 	 * do not override if a non-zero value is already set.
576 	 * we check the diffserv field and the ecn field separately.
577 	 */
578 	if (opt && opt->ip6po_tclass >= 0) {
579 		int mask = 0;
580 
581 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
582 			mask |= 0xfc;
583 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
584 			mask |= 0x03;
585 		if (mask != 0)
586 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
587 	}
588 
589 	/* fill in or override the hop limit field, if necessary. */
590 	if (opt && opt->ip6po_hlim != -1)
591 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
592 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
593 		if (im6o != NULL)
594 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
595 		else
596 			ip6->ip6_hlim = ip6_defmcasthlim;
597 	}
598 
599 #ifdef IPSEC
600 	if (needipsec && needipsectun) {
601 		struct ipsec_output_state state;
602 
603 		/*
604 		 * All the extension headers will become inaccessible
605 		 * (since they can be encrypted).
606 		 * Don't panic, we need no more updates to extension headers
607 		 * on inner IPv6 packet (since they are now encapsulated).
608 		 *
609 		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
610 		 */
611 		memset(&exthdrs, 0, sizeof(exthdrs));
612 		exthdrs.ip6e_ip6 = m;
613 
614 		memset(&state, 0, sizeof(state));
615 		state.m = m;
616 		state.ro = ro;
617 		state.dst = rtcache_getdst(ro);
618 
619 		error = ipsec6_output_tunnel(&state, sp, flags);
620 
621 		m = state.m;
622 		ro_pmtu = ro = state.ro;
623 		dst = satocsin6(state.dst);
624 		if (error) {
625 			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
626 			m0 = m = NULL;
627 			m = NULL;
628 			switch (error) {
629 			case EHOSTUNREACH:
630 			case ENETUNREACH:
631 			case EMSGSIZE:
632 			case ENOBUFS:
633 			case ENOMEM:
634 				break;
635 			default:
636 				printf("ip6_output (ipsec): error code %d\n", error);
637 				/* FALLTHROUGH */
638 			case ENOENT:
639 				/* don't show these error codes to the user */
640 				error = 0;
641 				break;
642 			}
643 			goto bad;
644 		}
645 
646 		exthdrs.ip6e_ip6 = m;
647 	}
648 #endif /* IPSEC */
649 #ifdef FAST_IPSEC
650 	if (needipsec) {
651 		s = splsoftnet();
652 		error = ipsec6_process_packet(m,sp->req);
653 
654 		/*
655 		 * Preserve KAME behaviour: ENOENT can be returned
656 		 * when an SA acquire is in progress.  Don't propagate
657 		 * this to user-level; it confuses applications.
658 		 * XXX this will go away when the SADB is redone.
659 		 */
660 		if (error == ENOENT)
661 			error = 0;
662 		splx(s);
663 		goto done;
664 	}
665 #endif /* FAST_IPSEC */
666 
667 
668 
669 	/* adjust pointer */
670 	ip6 = mtod(m, struct ip6_hdr *);
671 
672 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
673 	if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
674 	    &ifp, &rt, 0)) != 0) {
675 		if (ifp != NULL)
676 			in6_ifstat_inc(ifp, ifs6_out_discard);
677 		goto bad;
678 	}
679 	if (rt == NULL) {
680 		/*
681 		 * If in6_selectroute() does not return a route entry,
682 		 * dst may not have been updated.
683 		 */
684 		rtcache_setdst(ro, sin6tosa(&dst_sa));
685 	}
686 
687 	/*
688 	 * then rt (for unicast) and ifp must be non-NULL valid values.
689 	 */
690 	if ((flags & IPV6_FORWARDING) == 0) {
691 		/* XXX: the FORWARDING flag can be set for mrouting. */
692 		in6_ifstat_inc(ifp, ifs6_out_request);
693 	}
694 	if (rt != NULL) {
695 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
696 		rt->rt_use++;
697 	}
698 
699 	/*
700 	 * The outgoing interface must be in the zone of source and
701 	 * destination addresses.  We should use ia_ifp to support the
702 	 * case of sending packets to an address of our own.
703 	 */
704 	if (ia != NULL && ia->ia_ifp)
705 		origifp = ia->ia_ifp;
706 	else
707 		origifp = ifp;
708 
709 	src0 = ip6->ip6_src;
710 	if (in6_setscope(&src0, origifp, &zone))
711 		goto badscope;
712 	sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
713 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
714 		goto badscope;
715 
716 	dst0 = ip6->ip6_dst;
717 	if (in6_setscope(&dst0, origifp, &zone))
718 		goto badscope;
719 	/* re-initialize to be sure */
720 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
721 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
722 		goto badscope;
723 
724 	/* scope check is done. */
725 
726 	if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
727 		if (dst == NULL)
728 			dst = satocsin6(rtcache_getdst(ro));
729 		KASSERT(dst != NULL);
730 	} else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) {
731 		/*
732 		 * The nexthop is explicitly specified by the
733 		 * application.  We assume the next hop is an IPv6
734 		 * address.
735 		 */
736 		dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
737 	} else if ((rt->rt_flags & RTF_GATEWAY))
738 		dst = (struct sockaddr_in6 *)rt->rt_gateway;
739 	else if (dst == NULL)
740 		dst = satocsin6(rtcache_getdst(ro));
741 
742 	/*
743 	 * XXXXXX: original code follows:
744 	 */
745 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
746 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
747 	else {
748 		struct	in6_multi *in6m;
749 
750 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
751 
752 		in6_ifstat_inc(ifp, ifs6_out_mcast);
753 
754 		/*
755 		 * Confirm that the outgoing interface supports multicast.
756 		 */
757 		if (!(ifp->if_flags & IFF_MULTICAST)) {
758 			IP6_STATINC(IP6_STAT_NOROUTE);
759 			in6_ifstat_inc(ifp, ifs6_out_discard);
760 			error = ENETUNREACH;
761 			goto bad;
762 		}
763 
764 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
765 		if (in6m != NULL &&
766 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
767 			/*
768 			 * If we belong to the destination multicast group
769 			 * on the outgoing interface, and the caller did not
770 			 * forbid loopback, loop back a copy.
771 			 */
772 			KASSERT(dst != NULL);
773 			ip6_mloopback(ifp, m, dst);
774 		} else {
775 			/*
776 			 * If we are acting as a multicast router, perform
777 			 * multicast forwarding as if the packet had just
778 			 * arrived on the interface to which we are about
779 			 * to send.  The multicast forwarding function
780 			 * recursively calls this function, using the
781 			 * IPV6_FORWARDING flag to prevent infinite recursion.
782 			 *
783 			 * Multicasts that are looped back by ip6_mloopback(),
784 			 * above, will be forwarded by the ip6_input() routine,
785 			 * if necessary.
786 			 */
787 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
788 				if (ip6_mforward(ip6, ifp, m) != 0) {
789 					m_freem(m);
790 					goto done;
791 				}
792 			}
793 		}
794 		/*
795 		 * Multicasts with a hoplimit of zero may be looped back,
796 		 * above, but must not be transmitted on a network.
797 		 * Also, multicasts addressed to the loopback interface
798 		 * are not sent -- the above call to ip6_mloopback() will
799 		 * loop back a copy if this host actually belongs to the
800 		 * destination group on the loopback interface.
801 		 */
802 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
803 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
804 			m_freem(m);
805 			goto done;
806 		}
807 	}
808 
809 	/*
810 	 * Fill the outgoing inteface to tell the upper layer
811 	 * to increment per-interface statistics.
812 	 */
813 	if (ifpp)
814 		*ifpp = ifp;
815 
816 	/* Determine path MTU. */
817 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
818 	    &alwaysfrag)) != 0)
819 		goto bad;
820 #ifdef IPSEC
821 	if (needipsectun)
822 		mtu = IPV6_MMTU;
823 #endif
824 
825 	/*
826 	 * The caller of this function may specify to use the minimum MTU
827 	 * in some cases.
828 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
829 	 * setting.  The logic is a bit complicated; by default, unicast
830 	 * packets will follow path MTU while multicast packets will be sent at
831 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
832 	 * including unicast ones will be sent at the minimum MTU.  Multicast
833 	 * packets will always be sent at the minimum MTU unless
834 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
835 	 * See RFC 3542 for more details.
836 	 */
837 	if (mtu > IPV6_MMTU) {
838 		if ((flags & IPV6_MINMTU))
839 			mtu = IPV6_MMTU;
840 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
841 			mtu = IPV6_MMTU;
842 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
843 			 (opt == NULL ||
844 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
845 			mtu = IPV6_MMTU;
846 		}
847 	}
848 
849 	/*
850 	 * clear embedded scope identifiers if necessary.
851 	 * in6_clearscope will touch the addresses only when necessary.
852 	 */
853 	in6_clearscope(&ip6->ip6_src);
854 	in6_clearscope(&ip6->ip6_dst);
855 
856 	/*
857 	 * If the outgoing packet contains a hop-by-hop options header,
858 	 * it must be examined and processed even by the source node.
859 	 * (RFC 2460, section 4.)
860 	 */
861 	if (exthdrs.ip6e_hbh) {
862 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
863 		u_int32_t dummy1; /* XXX unused */
864 		u_int32_t dummy2; /* XXX unused */
865 
866 		/*
867 		 *  XXX: if we have to send an ICMPv6 error to the sender,
868 		 *       we need the M_LOOP flag since icmp6_error() expects
869 		 *       the IPv6 and the hop-by-hop options header are
870 		 *       continuous unless the flag is set.
871 		 */
872 		m->m_flags |= M_LOOP;
873 		m->m_pkthdr.rcvif = ifp;
874 		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
875 		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
876 		    &dummy1, &dummy2) < 0) {
877 			/* m was already freed at this point */
878 			error = EINVAL;/* better error? */
879 			goto done;
880 		}
881 		m->m_flags &= ~M_LOOP; /* XXX */
882 		m->m_pkthdr.rcvif = NULL;
883 	}
884 
885 #ifdef PFIL_HOOKS
886 	/*
887 	 * Run through list of hooks for output packets.
888 	 */
889 	if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
890 		goto done;
891 	if (m == NULL)
892 		goto done;
893 	ip6 = mtod(m, struct ip6_hdr *);
894 #endif /* PFIL_HOOKS */
895 	/*
896 	 * Send the packet to the outgoing interface.
897 	 * If necessary, do IPv6 fragmentation before sending.
898 	 *
899 	 * the logic here is rather complex:
900 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
901 	 * 1-a:	send as is if tlen <= path mtu
902 	 * 1-b:	fragment if tlen > path mtu
903 	 *
904 	 * 2: if user asks us not to fragment (dontfrag == 1)
905 	 * 2-a:	send as is if tlen <= interface mtu
906 	 * 2-b:	error if tlen > interface mtu
907 	 *
908 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
909 	 *	always fragment
910 	 *
911 	 * 4: if dontfrag == 1 && alwaysfrag == 1
912 	 *	error, as we cannot handle this conflicting request
913 	 */
914 	tlen = m->m_pkthdr.len;
915 	tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
916 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
917 		dontfrag = 1;
918 	else
919 		dontfrag = 0;
920 
921 	if (dontfrag && alwaysfrag) {	/* case 4 */
922 		/* conflicting request - can't transmit */
923 		error = EMSGSIZE;
924 		goto bad;
925 	}
926 	if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) {	/* case 2-b */
927 		/*
928 		 * Even if the DONTFRAG option is specified, we cannot send the
929 		 * packet when the data length is larger than the MTU of the
930 		 * outgoing interface.
931 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
932 		 * well as returning an error code (the latter is not described
933 		 * in the API spec.)
934 		 */
935 		u_int32_t mtu32;
936 		struct ip6ctlparam ip6cp;
937 
938 		mtu32 = (u_int32_t)mtu;
939 		memset(&ip6cp, 0, sizeof(ip6cp));
940 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
941 		pfctlinput2(PRC_MSGSIZE,
942 		    rtcache_getdst(ro_pmtu), &ip6cp);
943 
944 		error = EMSGSIZE;
945 		goto bad;
946 	}
947 
948 	/*
949 	 * transmit packet without fragmentation
950 	 */
951 	if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
952 		/* case 1-a and 2-a */
953 		struct in6_ifaddr *ia6;
954 		int sw_csum;
955 
956 		ip6 = mtod(m, struct ip6_hdr *);
957 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
958 		if (ia6) {
959 			/* Record statistics for this interface address. */
960 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
961 		}
962 #ifdef IPSEC
963 		/* clean ipsec history once it goes out of the node */
964 		ipsec_delaux(m);
965 #endif
966 
967 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
968 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
969 			if (IN6_NEED_CHECKSUM(ifp,
970 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
971 				in6_delayed_cksum(m);
972 			}
973 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
974 		}
975 
976 		KASSERT(dst != NULL);
977 		if (__predict_true(!tso ||
978 		    (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
979 			error = nd6_output(ifp, origifp, m, dst, rt);
980 		} else {
981 			error = ip6_tso_output(ifp, origifp, m, dst, rt);
982 		}
983 		goto done;
984 	}
985 
986 	if (tso) {
987 		error = EINVAL; /* XXX */
988 		goto bad;
989 	}
990 
991 	/*
992 	 * try to fragment the packet.  case 1-b and 3
993 	 */
994 	if (mtu < IPV6_MMTU) {
995 		/* path MTU cannot be less than IPV6_MMTU */
996 		error = EMSGSIZE;
997 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
998 		goto bad;
999 	} else if (ip6->ip6_plen == 0) {
1000 		/* jumbo payload cannot be fragmented */
1001 		error = EMSGSIZE;
1002 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
1003 		goto bad;
1004 	} else {
1005 		struct mbuf **mnext, *m_frgpart;
1006 		struct ip6_frag *ip6f;
1007 		u_int32_t id = htonl(ip6_randomid());
1008 		u_char nextproto;
1009 #if 0				/* see below */
1010 		struct ip6ctlparam ip6cp;
1011 		u_int32_t mtu32;
1012 #endif
1013 
1014 		/*
1015 		 * Too large for the destination or interface;
1016 		 * fragment if possible.
1017 		 * Must be able to put at least 8 bytes per fragment.
1018 		 */
1019 		hlen = unfragpartlen;
1020 		if (mtu > IPV6_MAXPACKET)
1021 			mtu = IPV6_MAXPACKET;
1022 
1023 #if 0
1024 		/*
1025 		 * It is believed this code is a leftover from the
1026 		 * development of the IPV6_RECVPATHMTU sockopt and
1027 		 * associated work to implement RFC3542.
1028 		 * It's not entirely clear what the intent of the API
1029 		 * is at this point, so disable this code for now.
1030 		 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
1031 		 * will send notifications if the application requests.
1032 		 */
1033 
1034 		/* Notify a proper path MTU to applications. */
1035 		mtu32 = (u_int32_t)mtu;
1036 		memset(&ip6cp, 0, sizeof(ip6cp));
1037 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
1038 		pfctlinput2(PRC_MSGSIZE,
1039 		    rtcache_getdst(ro_pmtu), &ip6cp);
1040 #endif
1041 
1042 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
1043 		if (len < 8) {
1044 			error = EMSGSIZE;
1045 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
1046 			goto bad;
1047 		}
1048 
1049 		mnext = &m->m_nextpkt;
1050 
1051 		/*
1052 		 * Change the next header field of the last header in the
1053 		 * unfragmentable part.
1054 		 */
1055 		if (exthdrs.ip6e_rthdr) {
1056 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
1057 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
1058 		} else if (exthdrs.ip6e_dest1) {
1059 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1060 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1061 		} else if (exthdrs.ip6e_hbh) {
1062 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1063 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1064 		} else {
1065 			nextproto = ip6->ip6_nxt;
1066 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
1067 		}
1068 
1069 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
1070 		    != 0) {
1071 			if (IN6_NEED_CHECKSUM(ifp,
1072 			    m->m_pkthdr.csum_flags &
1073 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
1074 				in6_delayed_cksum(m);
1075 			}
1076 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
1077 		}
1078 
1079 		/*
1080 		 * Loop through length of segment after first fragment,
1081 		 * make new header and copy data of each part and link onto
1082 		 * chain.
1083 		 */
1084 		m0 = m;
1085 		for (off = hlen; off < tlen; off += len) {
1086 			struct mbuf *mlast;
1087 
1088 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
1089 			if (!m) {
1090 				error = ENOBUFS;
1091 				IP6_STATINC(IP6_STAT_ODROPPED);
1092 				goto sendorfree;
1093 			}
1094 			m->m_pkthdr.rcvif = NULL;
1095 			m->m_flags = m0->m_flags & M_COPYFLAGS;
1096 			*mnext = m;
1097 			mnext = &m->m_nextpkt;
1098 			m->m_data += max_linkhdr;
1099 			mhip6 = mtod(m, struct ip6_hdr *);
1100 			*mhip6 = *ip6;
1101 			m->m_len = sizeof(*mhip6);
1102 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1103 			if (error) {
1104 				IP6_STATINC(IP6_STAT_ODROPPED);
1105 				goto sendorfree;
1106 			}
1107 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
1108 			if (off + len >= tlen)
1109 				len = tlen - off;
1110 			else
1111 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1112 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
1113 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1114 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1115 				error = ENOBUFS;
1116 				IP6_STATINC(IP6_STAT_ODROPPED);
1117 				goto sendorfree;
1118 			}
1119 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
1120 				;
1121 			mlast->m_next = m_frgpart;
1122 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1123 			m->m_pkthdr.rcvif = (struct ifnet *)0;
1124 			ip6f->ip6f_reserved = 0;
1125 			ip6f->ip6f_ident = id;
1126 			ip6f->ip6f_nxt = nextproto;
1127 			IP6_STATINC(IP6_STAT_OFRAGMENTS);
1128 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1129 		}
1130 
1131 		in6_ifstat_inc(ifp, ifs6_out_fragok);
1132 	}
1133 
1134 	/*
1135 	 * Remove leading garbages.
1136 	 */
1137 sendorfree:
1138 	m = m0->m_nextpkt;
1139 	m0->m_nextpkt = 0;
1140 	m_freem(m0);
1141 	for (m0 = m; m; m = m0) {
1142 		m0 = m->m_nextpkt;
1143 		m->m_nextpkt = 0;
1144 		if (error == 0) {
1145 			struct in6_ifaddr *ia6;
1146 			ip6 = mtod(m, struct ip6_hdr *);
1147 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1148 			if (ia6) {
1149 				/*
1150 				 * Record statistics for this interface
1151 				 * address.
1152 				 */
1153 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
1154 				    m->m_pkthdr.len;
1155 			}
1156 #ifdef IPSEC
1157 			/* clean ipsec history once it goes out of the node */
1158 			ipsec_delaux(m);
1159 #endif
1160 			KASSERT(dst != NULL);
1161 			error = nd6_output(ifp, origifp, m, dst, rt);
1162 		} else
1163 			m_freem(m);
1164 	}
1165 
1166 	if (error == 0)
1167 		IP6_STATINC(IP6_STAT_FRAGMENTED);
1168 
1169 done:
1170 	rtcache_free(&ip6route);
1171 
1172 #ifdef IPSEC
1173 	if (sp != NULL)
1174 		key_freesp(sp);
1175 #endif /* IPSEC */
1176 #ifdef FAST_IPSEC
1177 	if (sp != NULL)
1178 		KEY_FREESP(&sp);
1179 #endif /* FAST_IPSEC */
1180 
1181 
1182 	return (error);
1183 
1184 freehdrs:
1185 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
1186 	m_freem(exthdrs.ip6e_dest1);
1187 	m_freem(exthdrs.ip6e_rthdr);
1188 	m_freem(exthdrs.ip6e_dest2);
1189 	/* FALLTHROUGH */
1190 bad:
1191 	m_freem(m);
1192 	goto done;
1193 badscope:
1194 	IP6_STATINC(IP6_STAT_BADSCOPE);
1195 	in6_ifstat_inc(origifp, ifs6_out_discard);
1196 	if (error == 0)
1197 		error = EHOSTUNREACH; /* XXX */
1198 	goto bad;
1199 }
1200 
1201 static int
1202 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
1203 {
1204 	struct mbuf *m;
1205 
1206 	if (hlen > MCLBYTES)
1207 		return (ENOBUFS); /* XXX */
1208 
1209 	MGET(m, M_DONTWAIT, MT_DATA);
1210 	if (!m)
1211 		return (ENOBUFS);
1212 
1213 	if (hlen > MLEN) {
1214 		MCLGET(m, M_DONTWAIT);
1215 		if ((m->m_flags & M_EXT) == 0) {
1216 			m_free(m);
1217 			return (ENOBUFS);
1218 		}
1219 	}
1220 	m->m_len = hlen;
1221 	if (hdr)
1222 		bcopy(hdr, mtod(m, void *), hlen);
1223 
1224 	*mp = m;
1225 	return (0);
1226 }
1227 
1228 /*
1229  * Process a delayed payload checksum calculation.
1230  */
1231 void
1232 in6_delayed_cksum(struct mbuf *m)
1233 {
1234 	uint16_t csum, offset;
1235 
1236 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1237 	KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1238 	KASSERT((m->m_pkthdr.csum_flags
1239 	    & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1240 
1241 	offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1242 	csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1243 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1244 		csum = 0xffff;
1245 	}
1246 
1247 	offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1248 	if ((offset + sizeof(csum)) > m->m_len) {
1249 		m_copyback(m, offset, sizeof(csum), &csum);
1250 	} else {
1251 		*(uint16_t *)(mtod(m, char *) + offset) = csum;
1252 	}
1253 }
1254 
1255 /*
1256  * Insert jumbo payload option.
1257  */
1258 static int
1259 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1260 {
1261 	struct mbuf *mopt;
1262 	u_int8_t *optbuf;
1263 	u_int32_t v;
1264 
1265 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1266 
1267 	/*
1268 	 * If there is no hop-by-hop options header, allocate new one.
1269 	 * If there is one but it doesn't have enough space to store the
1270 	 * jumbo payload option, allocate a cluster to store the whole options.
1271 	 * Otherwise, use it to store the options.
1272 	 */
1273 	if (exthdrs->ip6e_hbh == 0) {
1274 		MGET(mopt, M_DONTWAIT, MT_DATA);
1275 		if (mopt == 0)
1276 			return (ENOBUFS);
1277 		mopt->m_len = JUMBOOPTLEN;
1278 		optbuf = mtod(mopt, u_int8_t *);
1279 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1280 		exthdrs->ip6e_hbh = mopt;
1281 	} else {
1282 		struct ip6_hbh *hbh;
1283 
1284 		mopt = exthdrs->ip6e_hbh;
1285 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1286 			/*
1287 			 * XXX assumption:
1288 			 * - exthdrs->ip6e_hbh is not referenced from places
1289 			 *   other than exthdrs.
1290 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1291 			 */
1292 			int oldoptlen = mopt->m_len;
1293 			struct mbuf *n;
1294 
1295 			/*
1296 			 * XXX: give up if the whole (new) hbh header does
1297 			 * not fit even in an mbuf cluster.
1298 			 */
1299 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1300 				return (ENOBUFS);
1301 
1302 			/*
1303 			 * As a consequence, we must always prepare a cluster
1304 			 * at this point.
1305 			 */
1306 			MGET(n, M_DONTWAIT, MT_DATA);
1307 			if (n) {
1308 				MCLGET(n, M_DONTWAIT);
1309 				if ((n->m_flags & M_EXT) == 0) {
1310 					m_freem(n);
1311 					n = NULL;
1312 				}
1313 			}
1314 			if (!n)
1315 				return (ENOBUFS);
1316 			n->m_len = oldoptlen + JUMBOOPTLEN;
1317 			bcopy(mtod(mopt, void *), mtod(n, void *),
1318 			    oldoptlen);
1319 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
1320 			m_freem(mopt);
1321 			mopt = exthdrs->ip6e_hbh = n;
1322 		} else {
1323 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1324 			mopt->m_len += JUMBOOPTLEN;
1325 		}
1326 		optbuf[0] = IP6OPT_PADN;
1327 		optbuf[1] = 0;
1328 
1329 		/*
1330 		 * Adjust the header length according to the pad and
1331 		 * the jumbo payload option.
1332 		 */
1333 		hbh = mtod(mopt, struct ip6_hbh *);
1334 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1335 	}
1336 
1337 	/* fill in the option. */
1338 	optbuf[2] = IP6OPT_JUMBO;
1339 	optbuf[3] = 4;
1340 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1341 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1342 
1343 	/* finally, adjust the packet header length */
1344 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1345 
1346 	return (0);
1347 #undef JUMBOOPTLEN
1348 }
1349 
1350 /*
1351  * Insert fragment header and copy unfragmentable header portions.
1352  */
1353 static int
1354 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1355 	struct ip6_frag **frghdrp)
1356 {
1357 	struct mbuf *n, *mlast;
1358 
1359 	if (hlen > sizeof(struct ip6_hdr)) {
1360 		n = m_copym(m0, sizeof(struct ip6_hdr),
1361 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1362 		if (n == 0)
1363 			return (ENOBUFS);
1364 		m->m_next = n;
1365 	} else
1366 		n = m;
1367 
1368 	/* Search for the last mbuf of unfragmentable part. */
1369 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1370 		;
1371 
1372 	if ((mlast->m_flags & M_EXT) == 0 &&
1373 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1374 		/* use the trailing space of the last mbuf for the fragment hdr */
1375 		*frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1376 		    mlast->m_len);
1377 		mlast->m_len += sizeof(struct ip6_frag);
1378 		m->m_pkthdr.len += sizeof(struct ip6_frag);
1379 	} else {
1380 		/* allocate a new mbuf for the fragment header */
1381 		struct mbuf *mfrg;
1382 
1383 		MGET(mfrg, M_DONTWAIT, MT_DATA);
1384 		if (mfrg == 0)
1385 			return (ENOBUFS);
1386 		mfrg->m_len = sizeof(struct ip6_frag);
1387 		*frghdrp = mtod(mfrg, struct ip6_frag *);
1388 		mlast->m_next = mfrg;
1389 	}
1390 
1391 	return (0);
1392 }
1393 
1394 static int
1395 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp,
1396     const struct in6_addr *dst, u_long *mtup, int *alwaysfragp)
1397 {
1398 	struct rtentry *rt;
1399 	u_int32_t mtu = 0;
1400 	int alwaysfrag = 0;
1401 	int error = 0;
1402 
1403 	if (ro_pmtu != ro) {
1404 		union {
1405 			struct sockaddr		dst;
1406 			struct sockaddr_in6	dst6;
1407 		} u;
1408 
1409 		/* The first hop and the final destination may differ. */
1410 		sockaddr_in6_init(&u.dst6, dst, 0, 0, 0);
1411 		rt = rtcache_lookup(ro_pmtu, &u.dst);
1412 	} else
1413 		rt = rtcache_validate(ro_pmtu);
1414 	if (rt != NULL) {
1415 		u_int32_t ifmtu;
1416 
1417 		if (ifp == NULL)
1418 			ifp = rt->rt_ifp;
1419 		ifmtu = IN6_LINKMTU(ifp);
1420 		mtu = rt->rt_rmx.rmx_mtu;
1421 		if (mtu == 0)
1422 			mtu = ifmtu;
1423 		else if (mtu < IPV6_MMTU) {
1424 			/*
1425 			 * RFC2460 section 5, last paragraph:
1426 			 * if we record ICMPv6 too big message with
1427 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1428 			 * or smaller, with fragment header attached.
1429 			 * (fragment header is needed regardless from the
1430 			 * packet size, for translators to identify packets)
1431 			 */
1432 			alwaysfrag = 1;
1433 			mtu = IPV6_MMTU;
1434 		} else if (mtu > ifmtu) {
1435 			/*
1436 			 * The MTU on the route is larger than the MTU on
1437 			 * the interface!  This shouldn't happen, unless the
1438 			 * MTU of the interface has been changed after the
1439 			 * interface was brought up.  Change the MTU in the
1440 			 * route to match the interface MTU (as long as the
1441 			 * field isn't locked).
1442 			 */
1443 			mtu = ifmtu;
1444 			if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1445 				rt->rt_rmx.rmx_mtu = mtu;
1446 		}
1447 	} else if (ifp) {
1448 		mtu = IN6_LINKMTU(ifp);
1449 	} else
1450 		error = EHOSTUNREACH; /* XXX */
1451 
1452 	*mtup = mtu;
1453 	if (alwaysfragp)
1454 		*alwaysfragp = alwaysfrag;
1455 	return (error);
1456 }
1457 
1458 /*
1459  * IP6 socket option processing.
1460  */
1461 int
1462 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1463 {
1464 	int optdatalen, uproto;
1465 	void *optdata;
1466 	struct in6pcb *in6p = sotoin6pcb(so);
1467 	int error, optval;
1468 	int level, optname;
1469 
1470 	KASSERT(sopt != NULL);
1471 
1472 	level = sopt->sopt_level;
1473 	optname = sopt->sopt_name;
1474 
1475 	error = optval = 0;
1476 	uproto = (int)so->so_proto->pr_protocol;
1477 
1478 	if (level != IPPROTO_IPV6) {
1479 		return ENOPROTOOPT;
1480 	}
1481 	switch (op) {
1482 	case PRCO_SETOPT:
1483 		switch (optname) {
1484 #ifdef RFC2292
1485 		case IPV6_2292PKTOPTIONS:
1486 			error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
1487 			break;
1488 #endif
1489 
1490 		/*
1491 		 * Use of some Hop-by-Hop options or some
1492 		 * Destination options, might require special
1493 		 * privilege.  That is, normal applications
1494 		 * (without special privilege) might be forbidden
1495 		 * from setting certain options in outgoing packets,
1496 		 * and might never see certain options in received
1497 		 * packets. [RFC 2292 Section 6]
1498 		 * KAME specific note:
1499 		 *  KAME prevents non-privileged users from sending or
1500 		 *  receiving ANY hbh/dst options in order to avoid
1501 		 *  overhead of parsing options in the kernel.
1502 		 */
1503 		case IPV6_RECVHOPOPTS:
1504 		case IPV6_RECVDSTOPTS:
1505 		case IPV6_RECVRTHDRDSTOPTS:
1506 			error = kauth_authorize_generic(kauth_cred_get(),
1507 			    KAUTH_GENERIC_ISSUSER, NULL);
1508 			if (error)
1509 				break;
1510 			/* FALLTHROUGH */
1511 		case IPV6_UNICAST_HOPS:
1512 		case IPV6_HOPLIMIT:
1513 		case IPV6_FAITH:
1514 
1515 		case IPV6_RECVPKTINFO:
1516 		case IPV6_RECVHOPLIMIT:
1517 		case IPV6_RECVRTHDR:
1518 		case IPV6_RECVPATHMTU:
1519 		case IPV6_RECVTCLASS:
1520 		case IPV6_V6ONLY:
1521 			error = sockopt_getint(sopt, &optval);
1522 			if (error)
1523 				break;
1524 			switch (optname) {
1525 			case IPV6_UNICAST_HOPS:
1526 				if (optval < -1 || optval >= 256)
1527 					error = EINVAL;
1528 				else {
1529 					/* -1 = kernel default */
1530 					in6p->in6p_hops = optval;
1531 				}
1532 				break;
1533 #define OPTSET(bit) \
1534 do { \
1535 if (optval) \
1536 	in6p->in6p_flags |= (bit); \
1537 else \
1538 	in6p->in6p_flags &= ~(bit); \
1539 } while (/*CONSTCOND*/ 0)
1540 
1541 #ifdef RFC2292
1542 #define OPTSET2292(bit) 			\
1543 do { 						\
1544 in6p->in6p_flags |= IN6P_RFC2292; 	\
1545 if (optval) 				\
1546 	in6p->in6p_flags |= (bit); 	\
1547 else 					\
1548 	in6p->in6p_flags &= ~(bit); 	\
1549 } while (/*CONSTCOND*/ 0)
1550 #endif
1551 
1552 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1553 
1554 			case IPV6_RECVPKTINFO:
1555 #ifdef RFC2292
1556 				/* cannot mix with RFC2292 */
1557 				if (OPTBIT(IN6P_RFC2292)) {
1558 					error = EINVAL;
1559 					break;
1560 				}
1561 #endif
1562 				OPTSET(IN6P_PKTINFO);
1563 				break;
1564 
1565 			case IPV6_HOPLIMIT:
1566 			{
1567 				struct ip6_pktopts **optp;
1568 
1569 #ifdef RFC2292
1570 				/* cannot mix with RFC2292 */
1571 				if (OPTBIT(IN6P_RFC2292)) {
1572 					error = EINVAL;
1573 					break;
1574 				}
1575 #endif
1576 				optp = &in6p->in6p_outputopts;
1577 				error = ip6_pcbopt(IPV6_HOPLIMIT,
1578 						   (u_char *)&optval,
1579 						   sizeof(optval),
1580 						   optp,
1581 						   kauth_cred_get(), uproto);
1582 				break;
1583 			}
1584 
1585 			case IPV6_RECVHOPLIMIT:
1586 #ifdef RFC2292
1587 				/* cannot mix with RFC2292 */
1588 				if (OPTBIT(IN6P_RFC2292)) {
1589 					error = EINVAL;
1590 					break;
1591 				}
1592 #endif
1593 				OPTSET(IN6P_HOPLIMIT);
1594 				break;
1595 
1596 			case IPV6_RECVHOPOPTS:
1597 #ifdef RFC2292
1598 				/* cannot mix with RFC2292 */
1599 				if (OPTBIT(IN6P_RFC2292)) {
1600 					error = EINVAL;
1601 					break;
1602 				}
1603 #endif
1604 				OPTSET(IN6P_HOPOPTS);
1605 				break;
1606 
1607 			case IPV6_RECVDSTOPTS:
1608 #ifdef RFC2292
1609 				/* cannot mix with RFC2292 */
1610 				if (OPTBIT(IN6P_RFC2292)) {
1611 					error = EINVAL;
1612 					break;
1613 				}
1614 #endif
1615 				OPTSET(IN6P_DSTOPTS);
1616 				break;
1617 
1618 			case IPV6_RECVRTHDRDSTOPTS:
1619 #ifdef RFC2292
1620 				/* cannot mix with RFC2292 */
1621 				if (OPTBIT(IN6P_RFC2292)) {
1622 					error = EINVAL;
1623 					break;
1624 				}
1625 #endif
1626 				OPTSET(IN6P_RTHDRDSTOPTS);
1627 				break;
1628 
1629 			case IPV6_RECVRTHDR:
1630 #ifdef RFC2292
1631 				/* cannot mix with RFC2292 */
1632 				if (OPTBIT(IN6P_RFC2292)) {
1633 					error = EINVAL;
1634 					break;
1635 				}
1636 #endif
1637 				OPTSET(IN6P_RTHDR);
1638 				break;
1639 
1640 			case IPV6_FAITH:
1641 				OPTSET(IN6P_FAITH);
1642 				break;
1643 
1644 			case IPV6_RECVPATHMTU:
1645 				/*
1646 				 * We ignore this option for TCP
1647 				 * sockets.
1648 				 * (RFC3542 leaves this case
1649 				 * unspecified.)
1650 				 */
1651 				if (uproto != IPPROTO_TCP)
1652 					OPTSET(IN6P_MTU);
1653 				break;
1654 
1655 			case IPV6_V6ONLY:
1656 				/*
1657 				 * make setsockopt(IPV6_V6ONLY)
1658 				 * available only prior to bind(2).
1659 				 * see ipng mailing list, Jun 22 2001.
1660 				 */
1661 				if (in6p->in6p_lport ||
1662 				    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1663 					error = EINVAL;
1664 					break;
1665 				}
1666 #ifdef INET6_BINDV6ONLY
1667 				if (!optval)
1668 					error = EINVAL;
1669 #else
1670 				OPTSET(IN6P_IPV6_V6ONLY);
1671 #endif
1672 				break;
1673 			case IPV6_RECVTCLASS:
1674 #ifdef RFC2292
1675 				/* cannot mix with RFC2292 XXX */
1676 				if (OPTBIT(IN6P_RFC2292)) {
1677 					error = EINVAL;
1678 					break;
1679 				}
1680 #endif
1681 				OPTSET(IN6P_TCLASS);
1682 				break;
1683 
1684 			}
1685 			break;
1686 
1687 		case IPV6_OTCLASS:
1688 		{
1689 			struct ip6_pktopts **optp;
1690 			u_int8_t tclass;
1691 
1692 			error = sockopt_get(sopt, &tclass, sizeof(tclass));
1693 			if (error)
1694 				break;
1695 			optp = &in6p->in6p_outputopts;
1696 			error = ip6_pcbopt(optname,
1697 					   (u_char *)&tclass,
1698 					   sizeof(tclass),
1699 					   optp,
1700 					   kauth_cred_get(), uproto);
1701 			break;
1702 		}
1703 
1704 		case IPV6_TCLASS:
1705 		case IPV6_DONTFRAG:
1706 		case IPV6_USE_MIN_MTU:
1707 			error = sockopt_getint(sopt, &optval);
1708 			if (error)
1709 				break;
1710 			{
1711 				struct ip6_pktopts **optp;
1712 				optp = &in6p->in6p_outputopts;
1713 				error = ip6_pcbopt(optname,
1714 						   (u_char *)&optval,
1715 						   sizeof(optval),
1716 						   optp,
1717 						   kauth_cred_get(), uproto);
1718 				break;
1719 			}
1720 
1721 #ifdef RFC2292
1722 		case IPV6_2292PKTINFO:
1723 		case IPV6_2292HOPLIMIT:
1724 		case IPV6_2292HOPOPTS:
1725 		case IPV6_2292DSTOPTS:
1726 		case IPV6_2292RTHDR:
1727 			/* RFC 2292 */
1728 			error = sockopt_getint(sopt, &optval);
1729 			if (error)
1730 				break;
1731 
1732 			switch (optname) {
1733 			case IPV6_2292PKTINFO:
1734 				OPTSET2292(IN6P_PKTINFO);
1735 				break;
1736 			case IPV6_2292HOPLIMIT:
1737 				OPTSET2292(IN6P_HOPLIMIT);
1738 				break;
1739 			case IPV6_2292HOPOPTS:
1740 				/*
1741 				 * Check super-user privilege.
1742 				 * See comments for IPV6_RECVHOPOPTS.
1743 				 */
1744 				error =
1745 				    kauth_authorize_generic(kauth_cred_get(),
1746 				    KAUTH_GENERIC_ISSUSER, NULL);
1747 				if (error)
1748 					return (error);
1749 				OPTSET2292(IN6P_HOPOPTS);
1750 				break;
1751 			case IPV6_2292DSTOPTS:
1752 				error =
1753 				    kauth_authorize_generic(kauth_cred_get(),
1754 				    KAUTH_GENERIC_ISSUSER, NULL);
1755 				if (error)
1756 					return (error);
1757 				OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1758 				break;
1759 			case IPV6_2292RTHDR:
1760 				OPTSET2292(IN6P_RTHDR);
1761 				break;
1762 			}
1763 			break;
1764 #endif
1765 		case IPV6_PKTINFO:
1766 		case IPV6_HOPOPTS:
1767 		case IPV6_RTHDR:
1768 		case IPV6_DSTOPTS:
1769 		case IPV6_RTHDRDSTOPTS:
1770 		case IPV6_NEXTHOP: {
1771 			/* new advanced API (RFC3542) */
1772 			void *optbuf;
1773 			int optbuflen;
1774 			struct ip6_pktopts **optp;
1775 
1776 #ifdef RFC2292
1777 			/* cannot mix with RFC2292 */
1778 			if (OPTBIT(IN6P_RFC2292)) {
1779 				error = EINVAL;
1780 				break;
1781 			}
1782 #endif
1783 
1784 			optbuflen = sopt->sopt_size;
1785 			optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
1786 			if (optbuf == NULL) {
1787 				error = ENOBUFS;
1788 				break;
1789 			}
1790 
1791 			sockopt_get(sopt, optbuf, optbuflen);
1792 			optp = &in6p->in6p_outputopts;
1793 			error = ip6_pcbopt(optname, optbuf, optbuflen,
1794 			    optp, kauth_cred_get(), uproto);
1795 			break;
1796 			}
1797 #undef OPTSET
1798 
1799 		case IPV6_MULTICAST_IF:
1800 		case IPV6_MULTICAST_HOPS:
1801 		case IPV6_MULTICAST_LOOP:
1802 		case IPV6_JOIN_GROUP:
1803 		case IPV6_LEAVE_GROUP:
1804 			error = ip6_setmoptions(sopt, &in6p->in6p_moptions);
1805 			break;
1806 
1807 		case IPV6_PORTRANGE:
1808 			error = sockopt_getint(sopt, &optval);
1809 			if (error)
1810 				break;
1811 
1812 			switch (optval) {
1813 			case IPV6_PORTRANGE_DEFAULT:
1814 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
1815 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1816 				break;
1817 
1818 			case IPV6_PORTRANGE_HIGH:
1819 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
1820 				in6p->in6p_flags |= IN6P_HIGHPORT;
1821 				break;
1822 
1823 			case IPV6_PORTRANGE_LOW:
1824 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1825 				in6p->in6p_flags |= IN6P_LOWPORT;
1826 				break;
1827 
1828 			default:
1829 				error = EINVAL;
1830 				break;
1831 			}
1832 			break;
1833 
1834 
1835 #if defined(IPSEC) || defined(FAST_IPSEC)
1836 		case IPV6_IPSEC_POLICY:
1837 			error = ipsec6_set_policy(in6p, optname,
1838 			    sopt->sopt_data, sopt->sopt_size, kauth_cred_get());
1839 			break;
1840 #endif /* IPSEC */
1841 
1842 		default:
1843 			error = ENOPROTOOPT;
1844 			break;
1845 		}
1846 		break;
1847 
1848 	case PRCO_GETOPT:
1849 		switch (optname) {
1850 #ifdef RFC2292
1851 		case IPV6_2292PKTOPTIONS:
1852 			/*
1853 			 * RFC3542 (effectively) deprecated the
1854 			 * semantics of the 2292-style pktoptions.
1855 			 * Since it was not reliable in nature (i.e.,
1856 			 * applications had to expect the lack of some
1857 			 * information after all), it would make sense
1858 			 * to simplify this part by always returning
1859 			 * empty data.
1860 			 */
1861 			break;
1862 #endif
1863 
1864 		case IPV6_RECVHOPOPTS:
1865 		case IPV6_RECVDSTOPTS:
1866 		case IPV6_RECVRTHDRDSTOPTS:
1867 		case IPV6_UNICAST_HOPS:
1868 		case IPV6_RECVPKTINFO:
1869 		case IPV6_RECVHOPLIMIT:
1870 		case IPV6_RECVRTHDR:
1871 		case IPV6_RECVPATHMTU:
1872 
1873 		case IPV6_FAITH:
1874 		case IPV6_V6ONLY:
1875 		case IPV6_PORTRANGE:
1876 		case IPV6_RECVTCLASS:
1877 			switch (optname) {
1878 
1879 			case IPV6_RECVHOPOPTS:
1880 				optval = OPTBIT(IN6P_HOPOPTS);
1881 				break;
1882 
1883 			case IPV6_RECVDSTOPTS:
1884 				optval = OPTBIT(IN6P_DSTOPTS);
1885 				break;
1886 
1887 			case IPV6_RECVRTHDRDSTOPTS:
1888 				optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1889 				break;
1890 
1891 			case IPV6_UNICAST_HOPS:
1892 				optval = in6p->in6p_hops;
1893 				break;
1894 
1895 			case IPV6_RECVPKTINFO:
1896 				optval = OPTBIT(IN6P_PKTINFO);
1897 				break;
1898 
1899 			case IPV6_RECVHOPLIMIT:
1900 				optval = OPTBIT(IN6P_HOPLIMIT);
1901 				break;
1902 
1903 			case IPV6_RECVRTHDR:
1904 				optval = OPTBIT(IN6P_RTHDR);
1905 				break;
1906 
1907 			case IPV6_RECVPATHMTU:
1908 				optval = OPTBIT(IN6P_MTU);
1909 				break;
1910 
1911 			case IPV6_FAITH:
1912 				optval = OPTBIT(IN6P_FAITH);
1913 				break;
1914 
1915 			case IPV6_V6ONLY:
1916 				optval = OPTBIT(IN6P_IPV6_V6ONLY);
1917 				break;
1918 
1919 			case IPV6_PORTRANGE:
1920 			    {
1921 				int flags;
1922 				flags = in6p->in6p_flags;
1923 				if (flags & IN6P_HIGHPORT)
1924 					optval = IPV6_PORTRANGE_HIGH;
1925 				else if (flags & IN6P_LOWPORT)
1926 					optval = IPV6_PORTRANGE_LOW;
1927 				else
1928 					optval = 0;
1929 				break;
1930 			    }
1931 			case IPV6_RECVTCLASS:
1932 				optval = OPTBIT(IN6P_TCLASS);
1933 				break;
1934 
1935 			}
1936 			if (error)
1937 				break;
1938 			error = sockopt_setint(sopt, optval);
1939 			break;
1940 
1941 		case IPV6_PATHMTU:
1942 		    {
1943 			u_long pmtu = 0;
1944 			struct ip6_mtuinfo mtuinfo;
1945 			struct route *ro = &in6p->in6p_route;
1946 
1947 			if (!(so->so_state & SS_ISCONNECTED))
1948 				return (ENOTCONN);
1949 			/*
1950 			 * XXX: we dot not consider the case of source
1951 			 * routing, or optional information to specify
1952 			 * the outgoing interface.
1953 			 */
1954 			error = ip6_getpmtu(ro, NULL, NULL,
1955 			    &in6p->in6p_faddr, &pmtu, NULL);
1956 			if (error)
1957 				break;
1958 			if (pmtu > IPV6_MAXPACKET)
1959 				pmtu = IPV6_MAXPACKET;
1960 
1961 			memset(&mtuinfo, 0, sizeof(mtuinfo));
1962 			mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1963 			optdata = (void *)&mtuinfo;
1964 			optdatalen = sizeof(mtuinfo);
1965 			if (optdatalen > MCLBYTES)
1966 				return (EMSGSIZE); /* XXX */
1967 			error = sockopt_set(sopt, optdata, optdatalen);
1968 			break;
1969 		    }
1970 
1971 #ifdef RFC2292
1972 		case IPV6_2292PKTINFO:
1973 		case IPV6_2292HOPLIMIT:
1974 		case IPV6_2292HOPOPTS:
1975 		case IPV6_2292RTHDR:
1976 		case IPV6_2292DSTOPTS:
1977 			switch (optname) {
1978 			case IPV6_2292PKTINFO:
1979 				optval = OPTBIT(IN6P_PKTINFO);
1980 				break;
1981 			case IPV6_2292HOPLIMIT:
1982 				optval = OPTBIT(IN6P_HOPLIMIT);
1983 				break;
1984 			case IPV6_2292HOPOPTS:
1985 				optval = OPTBIT(IN6P_HOPOPTS);
1986 				break;
1987 			case IPV6_2292RTHDR:
1988 				optval = OPTBIT(IN6P_RTHDR);
1989 				break;
1990 			case IPV6_2292DSTOPTS:
1991 				optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1992 				break;
1993 			}
1994 			error = sockopt_setint(sopt, optval);
1995 			break;
1996 #endif
1997 		case IPV6_PKTINFO:
1998 		case IPV6_HOPOPTS:
1999 		case IPV6_RTHDR:
2000 		case IPV6_DSTOPTS:
2001 		case IPV6_RTHDRDSTOPTS:
2002 		case IPV6_NEXTHOP:
2003 		case IPV6_OTCLASS:
2004 		case IPV6_TCLASS:
2005 		case IPV6_DONTFRAG:
2006 		case IPV6_USE_MIN_MTU:
2007 			error = ip6_getpcbopt(in6p->in6p_outputopts,
2008 			    optname, sopt);
2009 			break;
2010 
2011 		case IPV6_MULTICAST_IF:
2012 		case IPV6_MULTICAST_HOPS:
2013 		case IPV6_MULTICAST_LOOP:
2014 		case IPV6_JOIN_GROUP:
2015 		case IPV6_LEAVE_GROUP:
2016 			error = ip6_getmoptions(sopt, in6p->in6p_moptions);
2017 			break;
2018 
2019 #if defined(IPSEC) || defined(FAST_IPSEC)
2020 		case IPV6_IPSEC_POLICY:
2021 		    {
2022 			struct mbuf *m = NULL;
2023 
2024 			/* XXX this will return EINVAL as sopt is empty */
2025 			error = ipsec6_get_policy(in6p, sopt->sopt_data,
2026 			    sopt->sopt_size, &m);
2027 			if (!error)
2028 				error = sockopt_setmbuf(sopt, m);
2029 
2030 			break;
2031 		    }
2032 #endif /* IPSEC */
2033 
2034 		default:
2035 			error = ENOPROTOOPT;
2036 			break;
2037 		}
2038 		break;
2039 	}
2040 	return (error);
2041 }
2042 
2043 int
2044 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
2045 {
2046 	int error = 0, optval;
2047 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2048 	struct in6pcb *in6p = sotoin6pcb(so);
2049 	int level, optname;
2050 
2051 	KASSERT(sopt != NULL);
2052 
2053 	level = sopt->sopt_level;
2054 	optname = sopt->sopt_name;
2055 
2056 	if (level != IPPROTO_IPV6) {
2057 		return ENOPROTOOPT;
2058 	}
2059 
2060 	switch (optname) {
2061 	case IPV6_CHECKSUM:
2062 		/*
2063 		 * For ICMPv6 sockets, no modification allowed for checksum
2064 		 * offset, permit "no change" values to help existing apps.
2065 		 *
2066 		 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
2067 		 * for an ICMPv6 socket will fail."  The current
2068 		 * behavior does not meet RFC3542.
2069 		 */
2070 		switch (op) {
2071 		case PRCO_SETOPT:
2072 			error = sockopt_getint(sopt, &optval);
2073 			if (error)
2074 				break;
2075 			if ((optval % 2) != 0) {
2076 				/* the API assumes even offset values */
2077 				error = EINVAL;
2078 			} else if (so->so_proto->pr_protocol ==
2079 			    IPPROTO_ICMPV6) {
2080 				if (optval != icmp6off)
2081 					error = EINVAL;
2082 			} else
2083 				in6p->in6p_cksum = optval;
2084 			break;
2085 
2086 		case PRCO_GETOPT:
2087 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2088 				optval = icmp6off;
2089 			else
2090 				optval = in6p->in6p_cksum;
2091 
2092 			error = sockopt_setint(sopt, optval);
2093 			break;
2094 
2095 		default:
2096 			error = EINVAL;
2097 			break;
2098 		}
2099 		break;
2100 
2101 	default:
2102 		error = ENOPROTOOPT;
2103 		break;
2104 	}
2105 
2106 	return (error);
2107 }
2108 
2109 #ifdef RFC2292
2110 /*
2111  * Set up IP6 options in pcb for insertion in output packets or
2112  * specifying behavior of outgoing packets.
2113  */
2114 static int
2115 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
2116     struct sockopt *sopt)
2117 {
2118 	struct ip6_pktopts *opt = *pktopt;
2119 	struct mbuf *m;
2120 	int error = 0;
2121 
2122 	/* turn off any old options. */
2123 	if (opt) {
2124 #ifdef DIAGNOSTIC
2125 	    if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2126 		opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2127 		opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2128 		    printf("ip6_pcbopts: all specified options are cleared.\n");
2129 #endif
2130 		ip6_clearpktopts(opt, -1);
2131 	} else {
2132 		opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
2133 		if (opt == NULL)
2134 			return (ENOBUFS);
2135 	}
2136 	*pktopt = NULL;
2137 
2138 	if (sopt == NULL || sopt->sopt_size == 0) {
2139 		/*
2140 		 * Only turning off any previous options, regardless of
2141 		 * whether the opt is just created or given.
2142 		 */
2143 		free(opt, M_IP6OPT);
2144 		return (0);
2145 	}
2146 
2147 	/*  set options specified by user. */
2148 	m = sockopt_getmbuf(sopt);
2149 	if (m == NULL) {
2150 		free(opt, M_IP6OPT);
2151 		return (ENOBUFS);
2152 	}
2153 
2154 	error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
2155 	    so->so_proto->pr_protocol);
2156 	m_freem(m);
2157 	if (error != 0) {
2158 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2159 		free(opt, M_IP6OPT);
2160 		return (error);
2161 	}
2162 	*pktopt = opt;
2163 	return (0);
2164 }
2165 #endif
2166 
2167 /*
2168  * initialize ip6_pktopts.  beware that there are non-zero default values in
2169  * the struct.
2170  */
2171 void
2172 ip6_initpktopts(struct ip6_pktopts *opt)
2173 {
2174 
2175 	memset(opt, 0, sizeof(*opt));
2176 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2177 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2178 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2179 }
2180 
2181 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
2182 static int
2183 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2184     kauth_cred_t cred, int uproto)
2185 {
2186 	struct ip6_pktopts *opt;
2187 
2188 	if (*pktopt == NULL) {
2189 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2190 		    M_NOWAIT);
2191 		if (*pktopt == NULL)
2192 			return (ENOBUFS);
2193 
2194 		ip6_initpktopts(*pktopt);
2195 	}
2196 	opt = *pktopt;
2197 
2198 	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2199 }
2200 
2201 static int
2202 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2203 {
2204 	void *optdata = NULL;
2205 	int optdatalen = 0;
2206 	struct ip6_ext *ip6e;
2207 	int error = 0;
2208 	struct in6_pktinfo null_pktinfo;
2209 	int deftclass = 0, on;
2210 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
2211 
2212 	switch (optname) {
2213 	case IPV6_PKTINFO:
2214 		if (pktopt && pktopt->ip6po_pktinfo)
2215 			optdata = (void *)pktopt->ip6po_pktinfo;
2216 		else {
2217 			/* XXX: we don't have to do this every time... */
2218 			memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2219 			optdata = (void *)&null_pktinfo;
2220 		}
2221 		optdatalen = sizeof(struct in6_pktinfo);
2222 		break;
2223 	case IPV6_OTCLASS:
2224 		/* XXX */
2225 		return (EINVAL);
2226 	case IPV6_TCLASS:
2227 		if (pktopt && pktopt->ip6po_tclass >= 0)
2228 			optdata = (void *)&pktopt->ip6po_tclass;
2229 		else
2230 			optdata = (void *)&deftclass;
2231 		optdatalen = sizeof(int);
2232 		break;
2233 	case IPV6_HOPOPTS:
2234 		if (pktopt && pktopt->ip6po_hbh) {
2235 			optdata = (void *)pktopt->ip6po_hbh;
2236 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2237 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2238 		}
2239 		break;
2240 	case IPV6_RTHDR:
2241 		if (pktopt && pktopt->ip6po_rthdr) {
2242 			optdata = (void *)pktopt->ip6po_rthdr;
2243 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2244 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2245 		}
2246 		break;
2247 	case IPV6_RTHDRDSTOPTS:
2248 		if (pktopt && pktopt->ip6po_dest1) {
2249 			optdata = (void *)pktopt->ip6po_dest1;
2250 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2251 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2252 		}
2253 		break;
2254 	case IPV6_DSTOPTS:
2255 		if (pktopt && pktopt->ip6po_dest2) {
2256 			optdata = (void *)pktopt->ip6po_dest2;
2257 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2258 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2259 		}
2260 		break;
2261 	case IPV6_NEXTHOP:
2262 		if (pktopt && pktopt->ip6po_nexthop) {
2263 			optdata = (void *)pktopt->ip6po_nexthop;
2264 			optdatalen = pktopt->ip6po_nexthop->sa_len;
2265 		}
2266 		break;
2267 	case IPV6_USE_MIN_MTU:
2268 		if (pktopt)
2269 			optdata = (void *)&pktopt->ip6po_minmtu;
2270 		else
2271 			optdata = (void *)&defminmtu;
2272 		optdatalen = sizeof(int);
2273 		break;
2274 	case IPV6_DONTFRAG:
2275 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2276 			on = 1;
2277 		else
2278 			on = 0;
2279 		optdata = (void *)&on;
2280 		optdatalen = sizeof(on);
2281 		break;
2282 	default:		/* should not happen */
2283 #ifdef DIAGNOSTIC
2284 		panic("ip6_getpcbopt: unexpected option\n");
2285 #endif
2286 		return (ENOPROTOOPT);
2287 	}
2288 
2289 	error = sockopt_set(sopt, optdata, optdatalen);
2290 
2291 	return (error);
2292 }
2293 
2294 void
2295 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2296 {
2297 	if (optname == -1 || optname == IPV6_PKTINFO) {
2298 		if (pktopt->ip6po_pktinfo)
2299 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
2300 		pktopt->ip6po_pktinfo = NULL;
2301 	}
2302 	if (optname == -1 || optname == IPV6_HOPLIMIT)
2303 		pktopt->ip6po_hlim = -1;
2304 	if (optname == -1 || optname == IPV6_TCLASS)
2305 		pktopt->ip6po_tclass = -1;
2306 	if (optname == -1 || optname == IPV6_NEXTHOP) {
2307 		rtcache_free(&pktopt->ip6po_nextroute);
2308 		if (pktopt->ip6po_nexthop)
2309 			free(pktopt->ip6po_nexthop, M_IP6OPT);
2310 		pktopt->ip6po_nexthop = NULL;
2311 	}
2312 	if (optname == -1 || optname == IPV6_HOPOPTS) {
2313 		if (pktopt->ip6po_hbh)
2314 			free(pktopt->ip6po_hbh, M_IP6OPT);
2315 		pktopt->ip6po_hbh = NULL;
2316 	}
2317 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2318 		if (pktopt->ip6po_dest1)
2319 			free(pktopt->ip6po_dest1, M_IP6OPT);
2320 		pktopt->ip6po_dest1 = NULL;
2321 	}
2322 	if (optname == -1 || optname == IPV6_RTHDR) {
2323 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2324 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2325 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2326 		rtcache_free(&pktopt->ip6po_route);
2327 	}
2328 	if (optname == -1 || optname == IPV6_DSTOPTS) {
2329 		if (pktopt->ip6po_dest2)
2330 			free(pktopt->ip6po_dest2, M_IP6OPT);
2331 		pktopt->ip6po_dest2 = NULL;
2332 	}
2333 }
2334 
2335 #define PKTOPT_EXTHDRCPY(type) 					\
2336 do {								\
2337 	if (src->type) {					\
2338 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2339 		dst->type = malloc(hlen, M_IP6OPT, canwait);	\
2340 		if (dst->type == NULL && canwait == M_NOWAIT)	\
2341 			goto bad;				\
2342 		memcpy(dst->type, src->type, hlen);		\
2343 	}							\
2344 } while (/*CONSTCOND*/ 0)
2345 
2346 static int
2347 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2348 {
2349 	dst->ip6po_hlim = src->ip6po_hlim;
2350 	dst->ip6po_tclass = src->ip6po_tclass;
2351 	dst->ip6po_flags = src->ip6po_flags;
2352 	if (src->ip6po_pktinfo) {
2353 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2354 		    M_IP6OPT, canwait);
2355 		if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT)
2356 			goto bad;
2357 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2358 	}
2359 	if (src->ip6po_nexthop) {
2360 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2361 		    M_IP6OPT, canwait);
2362 		if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT)
2363 			goto bad;
2364 		memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2365 		    src->ip6po_nexthop->sa_len);
2366 	}
2367 	PKTOPT_EXTHDRCPY(ip6po_hbh);
2368 	PKTOPT_EXTHDRCPY(ip6po_dest1);
2369 	PKTOPT_EXTHDRCPY(ip6po_dest2);
2370 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2371 	return (0);
2372 
2373   bad:
2374 	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2375 	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2376 	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2377 	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2378 	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2379 	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2380 
2381 	return (ENOBUFS);
2382 }
2383 #undef PKTOPT_EXTHDRCPY
2384 
2385 struct ip6_pktopts *
2386 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2387 {
2388 	int error;
2389 	struct ip6_pktopts *dst;
2390 
2391 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2392 	if (dst == NULL && canwait == M_NOWAIT)
2393 		return (NULL);
2394 	ip6_initpktopts(dst);
2395 
2396 	if ((error = copypktopts(dst, src, canwait)) != 0) {
2397 		free(dst, M_IP6OPT);
2398 		return (NULL);
2399 	}
2400 
2401 	return (dst);
2402 }
2403 
2404 void
2405 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2406 {
2407 	if (pktopt == NULL)
2408 		return;
2409 
2410 	ip6_clearpktopts(pktopt, -1);
2411 
2412 	free(pktopt, M_IP6OPT);
2413 }
2414 
2415 /*
2416  * Set the IP6 multicast options in response to user setsockopt().
2417  */
2418 static int
2419 ip6_setmoptions(const struct sockopt *sopt, struct ip6_moptions **im6op)
2420 {
2421 	int error = 0;
2422 	u_int loop, ifindex;
2423 	struct ipv6_mreq mreq;
2424 	struct ifnet *ifp;
2425 	struct ip6_moptions *im6o = *im6op;
2426 	struct route ro;
2427 	struct in6_multi_mship *imm;
2428 	struct lwp *l = curlwp;	/* XXX */
2429 
2430 	if (im6o == NULL) {
2431 		/*
2432 		 * No multicast option buffer attached to the pcb;
2433 		 * allocate one and initialize to default values.
2434 		 */
2435 		im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
2436 		if (im6o == NULL)
2437 			return (ENOBUFS);
2438 
2439 		*im6op = im6o;
2440 		im6o->im6o_multicast_ifp = NULL;
2441 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2442 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2443 		LIST_INIT(&im6o->im6o_memberships);
2444 	}
2445 
2446 	switch (sopt->sopt_name) {
2447 
2448 	case IPV6_MULTICAST_IF:
2449 		/*
2450 		 * Select the interface for outgoing multicast packets.
2451 		 */
2452 		error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
2453 		if (error != 0)
2454 			break;
2455 
2456 		if (ifindex != 0) {
2457 			if (if_indexlim <= ifindex || !ifindex2ifnet[ifindex]) {
2458 				error = ENXIO;	/* XXX EINVAL? */
2459 				break;
2460 			}
2461 			ifp = ifindex2ifnet[ifindex];
2462 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2463 				error = EADDRNOTAVAIL;
2464 				break;
2465 			}
2466 		} else
2467 			ifp = NULL;
2468 		im6o->im6o_multicast_ifp = ifp;
2469 		break;
2470 
2471 	case IPV6_MULTICAST_HOPS:
2472 	    {
2473 		/*
2474 		 * Set the IP6 hoplimit for outgoing multicast packets.
2475 		 */
2476 		int optval;
2477 
2478 		error = sockopt_getint(sopt, &optval);
2479 		if (error != 0)
2480 			break;
2481 
2482 		if (optval < -1 || optval >= 256)
2483 			error = EINVAL;
2484 		else if (optval == -1)
2485 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2486 		else
2487 			im6o->im6o_multicast_hlim = optval;
2488 		break;
2489 	    }
2490 
2491 	case IPV6_MULTICAST_LOOP:
2492 		/*
2493 		 * Set the loopback flag for outgoing multicast packets.
2494 		 * Must be zero or one.
2495 		 */
2496 		error = sockopt_get(sopt, &loop, sizeof(loop));
2497 		if (error != 0)
2498 			break;
2499 		if (loop > 1) {
2500 			error = EINVAL;
2501 			break;
2502 		}
2503 		im6o->im6o_multicast_loop = loop;
2504 		break;
2505 
2506 	case IPV6_JOIN_GROUP:
2507 		/*
2508 		 * Add a multicast group membership.
2509 		 * Group must be a valid IP6 multicast address.
2510 		 */
2511 		error = sockopt_get(sopt, &mreq, sizeof(mreq));
2512 		if (error != 0)
2513 			break;
2514 
2515 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq.ipv6mr_multiaddr)) {
2516 			/*
2517 			 * We use the unspecified address to specify to accept
2518 			 * all multicast addresses. Only super user is allowed
2519 			 * to do this.
2520 			 */
2521 			if (kauth_authorize_generic(l->l_cred,
2522 			    KAUTH_GENERIC_ISSUSER, NULL))
2523 			{
2524 				error = EACCES;
2525 				break;
2526 			}
2527 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq.ipv6mr_multiaddr)) {
2528 			error = EINVAL;
2529 			break;
2530 		}
2531 
2532 		/*
2533 		 * If no interface was explicitly specified, choose an
2534 		 * appropriate one according to the given multicast address.
2535 		 */
2536 		if (mreq.ipv6mr_interface == 0) {
2537 			struct rtentry *rt;
2538 			union {
2539 				struct sockaddr		dst;
2540 				struct sockaddr_in6	dst6;
2541 			} u;
2542 
2543 			/*
2544 			 * Look up the routing table for the
2545 			 * address, and choose the outgoing interface.
2546 			 *   XXX: is it a good approach?
2547 			 */
2548 			memset(&ro, 0, sizeof(ro));
2549 			sockaddr_in6_init(&u.dst6, &mreq.ipv6mr_multiaddr, 0,
2550 			    0, 0);
2551 			rtcache_setdst(&ro, &u.dst);
2552 			ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
2553 			                                        : NULL;
2554 			rtcache_free(&ro);
2555 		} else {
2556 			/*
2557 			 * If the interface is specified, validate it.
2558 			 */
2559 			if (if_indexlim <= mreq.ipv6mr_interface ||
2560 			    !ifindex2ifnet[mreq.ipv6mr_interface]) {
2561 				error = ENXIO;	/* XXX EINVAL? */
2562 				break;
2563 			}
2564 			ifp = ifindex2ifnet[mreq.ipv6mr_interface];
2565 		}
2566 
2567 		/*
2568 		 * See if we found an interface, and confirm that it
2569 		 * supports multicast
2570 		 */
2571 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2572 			error = EADDRNOTAVAIL;
2573 			break;
2574 		}
2575 
2576 		if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2577 			error = EADDRNOTAVAIL; /* XXX: should not happen */
2578 			break;
2579 		}
2580 
2581 		/*
2582 		 * See if the membership already exists.
2583 		 */
2584 		for (imm = im6o->im6o_memberships.lh_first;
2585 		     imm != NULL; imm = imm->i6mm_chain.le_next)
2586 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
2587 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2588 			    &mreq.ipv6mr_multiaddr))
2589 				break;
2590 		if (imm != NULL) {
2591 			error = EADDRINUSE;
2592 			break;
2593 		}
2594 		/*
2595 		 * Everything looks good; add a new record to the multicast
2596 		 * address list for the given interface.
2597 		 */
2598 		imm = in6_joingroup(ifp, &mreq.ipv6mr_multiaddr, &error, 0);
2599 		if (imm == NULL)
2600 			break;
2601 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2602 		break;
2603 
2604 	case IPV6_LEAVE_GROUP:
2605 		/*
2606 		 * Drop a multicast group membership.
2607 		 * Group must be a valid IP6 multicast address.
2608 		 */
2609 		error = sockopt_get(sopt, &mreq, sizeof(mreq));
2610 		if (error != 0)
2611 			break;
2612 
2613 		/*
2614 		 * If an interface address was specified, get a pointer
2615 		 * to its ifnet structure.
2616 		 */
2617 		if (mreq.ipv6mr_interface != 0) {
2618 			if (if_indexlim <= mreq.ipv6mr_interface ||
2619 			    !ifindex2ifnet[mreq.ipv6mr_interface]) {
2620 				error = ENXIO;	/* XXX EINVAL? */
2621 				break;
2622 			}
2623 			ifp = ifindex2ifnet[mreq.ipv6mr_interface];
2624 		} else
2625 			ifp = NULL;
2626 
2627 		/* Fill in the scope zone ID */
2628 		if (ifp) {
2629 			if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2630 				/* XXX: should not happen */
2631 				error = EADDRNOTAVAIL;
2632 				break;
2633 			}
2634 		} else if (mreq.ipv6mr_interface != 0) {
2635 			/*
2636 			 * XXX: This case would happens when the (positive)
2637 			 * index is in the valid range, but the corresponding
2638 			 * interface has been detached dynamically.  The above
2639 			 * check probably avoids such case to happen here, but
2640 			 * we check it explicitly for safety.
2641 			 */
2642 			error = EADDRNOTAVAIL;
2643 			break;
2644 		} else {	/* ipv6mr_interface == 0 */
2645 			struct sockaddr_in6 sa6_mc;
2646 
2647 			/*
2648 			 * The API spec says as follows:
2649 			 *  If the interface index is specified as 0, the
2650 			 *  system may choose a multicast group membership to
2651 			 *  drop by matching the multicast address only.
2652 			 * On the other hand, we cannot disambiguate the scope
2653 			 * zone unless an interface is provided.  Thus, we
2654 			 * check if there's ambiguity with the default scope
2655 			 * zone as the last resort.
2656 			 */
2657 			sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
2658 			    0, 0, 0);
2659 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2660 			if (error != 0)
2661 				break;
2662 			mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
2663 		}
2664 
2665 		/*
2666 		 * Find the membership in the membership list.
2667 		 */
2668 		for (imm = im6o->im6o_memberships.lh_first;
2669 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
2670 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2671 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2672 			    &mreq.ipv6mr_multiaddr))
2673 				break;
2674 		}
2675 		if (imm == NULL) {
2676 			/* Unable to resolve interface */
2677 			error = EADDRNOTAVAIL;
2678 			break;
2679 		}
2680 		/*
2681 		 * Give up the multicast address record to which the
2682 		 * membership points.
2683 		 */
2684 		LIST_REMOVE(imm, i6mm_chain);
2685 		in6_leavegroup(imm);
2686 		break;
2687 
2688 	default:
2689 		error = EOPNOTSUPP;
2690 		break;
2691 	}
2692 
2693 	/*
2694 	 * If all options have default values, no need to keep the mbuf.
2695 	 */
2696 	if (im6o->im6o_multicast_ifp == NULL &&
2697 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2698 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2699 	    im6o->im6o_memberships.lh_first == NULL) {
2700 		free(*im6op, M_IPMOPTS);
2701 		*im6op = NULL;
2702 	}
2703 
2704 	return (error);
2705 }
2706 
2707 /*
2708  * Return the IP6 multicast options in response to user getsockopt().
2709  */
2710 static int
2711 ip6_getmoptions(struct sockopt *sopt, struct ip6_moptions *im6o)
2712 {
2713 	u_int optval;
2714 	int error;
2715 
2716 	switch (sopt->sopt_name) {
2717 	case IPV6_MULTICAST_IF:
2718 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2719 			optval = 0;
2720 		else
2721 			optval = im6o->im6o_multicast_ifp->if_index;
2722 
2723 		error = sockopt_set(sopt, &optval, sizeof(optval));
2724 		break;
2725 
2726 	case IPV6_MULTICAST_HOPS:
2727 		if (im6o == NULL)
2728 			optval = ip6_defmcasthlim;
2729 		else
2730 			optval = im6o->im6o_multicast_hlim;
2731 
2732 		error = sockopt_set(sopt, &optval, sizeof(optval));
2733 		break;
2734 
2735 	case IPV6_MULTICAST_LOOP:
2736 		if (im6o == NULL)
2737 			optval = ip6_defmcasthlim;
2738 		else
2739 			optval = im6o->im6o_multicast_loop;
2740 
2741 		error = sockopt_set(sopt, &optval, sizeof(optval));
2742 		break;
2743 
2744 	default:
2745 		error = EOPNOTSUPP;
2746 	}
2747 
2748 	return (error);
2749 }
2750 
2751 /*
2752  * Discard the IP6 multicast options.
2753  */
2754 void
2755 ip6_freemoptions(struct ip6_moptions *im6o)
2756 {
2757 	struct in6_multi_mship *imm;
2758 
2759 	if (im6o == NULL)
2760 		return;
2761 
2762 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2763 		LIST_REMOVE(imm, i6mm_chain);
2764 		in6_leavegroup(imm);
2765 	}
2766 	free(im6o, M_IPMOPTS);
2767 }
2768 
2769 /*
2770  * Set IPv6 outgoing packet options based on advanced API.
2771  */
2772 int
2773 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2774 	struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
2775 {
2776 	struct cmsghdr *cm = 0;
2777 
2778 	if (control == NULL || opt == NULL)
2779 		return (EINVAL);
2780 
2781 	ip6_initpktopts(opt);
2782 	if (stickyopt) {
2783 		int error;
2784 
2785 		/*
2786 		 * If stickyopt is provided, make a local copy of the options
2787 		 * for this particular packet, then override them by ancillary
2788 		 * objects.
2789 		 * XXX: copypktopts() does not copy the cached route to a next
2790 		 * hop (if any).  This is not very good in terms of efficiency,
2791 		 * but we can allow this since this option should be rarely
2792 		 * used.
2793 		 */
2794 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2795 			return (error);
2796 	}
2797 
2798 	/*
2799 	 * XXX: Currently, we assume all the optional information is stored
2800 	 * in a single mbuf.
2801 	 */
2802 	if (control->m_next)
2803 		return (EINVAL);
2804 
2805 	/* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
2806 	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2807 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2808 		int error;
2809 
2810 		if (control->m_len < CMSG_LEN(0))
2811 			return (EINVAL);
2812 
2813 		cm = mtod(control, struct cmsghdr *);
2814 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2815 			return (EINVAL);
2816 		if (cm->cmsg_level != IPPROTO_IPV6)
2817 			continue;
2818 
2819 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2820 		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2821 		if (error)
2822 			return (error);
2823 	}
2824 
2825 	return (0);
2826 }
2827 
2828 /*
2829  * Set a particular packet option, as a sticky option or an ancillary data
2830  * item.  "len" can be 0 only when it's a sticky option.
2831  * We have 4 cases of combination of "sticky" and "cmsg":
2832  * "sticky=0, cmsg=0": impossible
2833  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2834  * "sticky=1, cmsg=0": RFC3542 socket option
2835  * "sticky=1, cmsg=1": RFC2292 socket option
2836  */
2837 static int
2838 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2839     kauth_cred_t cred, int sticky, int cmsg, int uproto)
2840 {
2841 	int minmtupolicy;
2842 	int error;
2843 
2844 	if (!sticky && !cmsg) {
2845 #ifdef DIAGNOSTIC
2846 		printf("ip6_setpktopt: impossible case\n");
2847 #endif
2848 		return (EINVAL);
2849 	}
2850 
2851 	/*
2852 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2853 	 * not be specified in the context of RFC3542.  Conversely,
2854 	 * RFC3542 types should not be specified in the context of RFC2292.
2855 	 */
2856 	if (!cmsg) {
2857 		switch (optname) {
2858 		case IPV6_2292PKTINFO:
2859 		case IPV6_2292HOPLIMIT:
2860 		case IPV6_2292NEXTHOP:
2861 		case IPV6_2292HOPOPTS:
2862 		case IPV6_2292DSTOPTS:
2863 		case IPV6_2292RTHDR:
2864 		case IPV6_2292PKTOPTIONS:
2865 			return (ENOPROTOOPT);
2866 		}
2867 	}
2868 	if (sticky && cmsg) {
2869 		switch (optname) {
2870 		case IPV6_PKTINFO:
2871 		case IPV6_HOPLIMIT:
2872 		case IPV6_NEXTHOP:
2873 		case IPV6_HOPOPTS:
2874 		case IPV6_DSTOPTS:
2875 		case IPV6_RTHDRDSTOPTS:
2876 		case IPV6_RTHDR:
2877 		case IPV6_USE_MIN_MTU:
2878 		case IPV6_DONTFRAG:
2879 		case IPV6_OTCLASS:
2880 		case IPV6_TCLASS:
2881 			return (ENOPROTOOPT);
2882 		}
2883 	}
2884 
2885 	switch (optname) {
2886 #ifdef RFC2292
2887 	case IPV6_2292PKTINFO:
2888 #endif
2889 	case IPV6_PKTINFO:
2890 	{
2891 		struct ifnet *ifp = NULL;
2892 		struct in6_pktinfo *pktinfo;
2893 
2894 		if (len != sizeof(struct in6_pktinfo))
2895 			return (EINVAL);
2896 
2897 		pktinfo = (struct in6_pktinfo *)buf;
2898 
2899 		/*
2900 		 * An application can clear any sticky IPV6_PKTINFO option by
2901 		 * doing a "regular" setsockopt with ipi6_addr being
2902 		 * in6addr_any and ipi6_ifindex being zero.
2903 		 * [RFC 3542, Section 6]
2904 		 */
2905 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2906 		    pktinfo->ipi6_ifindex == 0 &&
2907 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2908 			ip6_clearpktopts(opt, optname);
2909 			break;
2910 		}
2911 
2912 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2913 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2914 			return (EINVAL);
2915 		}
2916 
2917 		/* validate the interface index if specified. */
2918 		if (pktinfo->ipi6_ifindex >= if_indexlim) {
2919 			 return (ENXIO);
2920 		}
2921 		if (pktinfo->ipi6_ifindex) {
2922 			ifp = ifindex2ifnet[pktinfo->ipi6_ifindex];
2923 			if (ifp == NULL)
2924 				return (ENXIO);
2925 		}
2926 
2927 		/*
2928 		 * We store the address anyway, and let in6_selectsrc()
2929 		 * validate the specified address.  This is because ipi6_addr
2930 		 * may not have enough information about its scope zone, and
2931 		 * we may need additional information (such as outgoing
2932 		 * interface or the scope zone of a destination address) to
2933 		 * disambiguate the scope.
2934 		 * XXX: the delay of the validation may confuse the
2935 		 * application when it is used as a sticky option.
2936 		 */
2937 		if (opt->ip6po_pktinfo == NULL) {
2938 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2939 			    M_IP6OPT, M_NOWAIT);
2940 			if (opt->ip6po_pktinfo == NULL)
2941 				return (ENOBUFS);
2942 		}
2943 		memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2944 		break;
2945 	}
2946 
2947 #ifdef RFC2292
2948 	case IPV6_2292HOPLIMIT:
2949 #endif
2950 	case IPV6_HOPLIMIT:
2951 	{
2952 		int *hlimp;
2953 
2954 		/*
2955 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2956 		 * to simplify the ordering among hoplimit options.
2957 		 */
2958 		if (optname == IPV6_HOPLIMIT && sticky)
2959 			return (ENOPROTOOPT);
2960 
2961 		if (len != sizeof(int))
2962 			return (EINVAL);
2963 		hlimp = (int *)buf;
2964 		if (*hlimp < -1 || *hlimp > 255)
2965 			return (EINVAL);
2966 
2967 		opt->ip6po_hlim = *hlimp;
2968 		break;
2969 	}
2970 
2971 	case IPV6_OTCLASS:
2972 		if (len != sizeof(u_int8_t))
2973 			return (EINVAL);
2974 
2975 		opt->ip6po_tclass = *(u_int8_t *)buf;
2976 		break;
2977 
2978 	case IPV6_TCLASS:
2979 	{
2980 		int tclass;
2981 
2982 		if (len != sizeof(int))
2983 			return (EINVAL);
2984 		tclass = *(int *)buf;
2985 		if (tclass < -1 || tclass > 255)
2986 			return (EINVAL);
2987 
2988 		opt->ip6po_tclass = tclass;
2989 		break;
2990 	}
2991 
2992 #ifdef RFC2292
2993 	case IPV6_2292NEXTHOP:
2994 #endif
2995 	case IPV6_NEXTHOP:
2996 		error = kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER,
2997 		    NULL);
2998 		if (error)
2999 			return (error);
3000 
3001 		if (len == 0) {	/* just remove the option */
3002 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
3003 			break;
3004 		}
3005 
3006 		/* check if cmsg_len is large enough for sa_len */
3007 		if (len < sizeof(struct sockaddr) || len < *buf)
3008 			return (EINVAL);
3009 
3010 		switch (((struct sockaddr *)buf)->sa_family) {
3011 		case AF_INET6:
3012 		{
3013 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3014 
3015 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3016 				return (EINVAL);
3017 
3018 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3019 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3020 				return (EINVAL);
3021 			}
3022 			if ((error = sa6_embedscope(sa6, ip6_use_defzone))
3023 			    != 0) {
3024 				return (error);
3025 			}
3026 			break;
3027 		}
3028 		case AF_LINK:	/* eventually be supported? */
3029 		default:
3030 			return (EAFNOSUPPORT);
3031 		}
3032 
3033 		/* turn off the previous option, then set the new option. */
3034 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
3035 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3036 		if (opt->ip6po_nexthop == NULL)
3037 			return (ENOBUFS);
3038 		memcpy(opt->ip6po_nexthop, buf, *buf);
3039 		break;
3040 
3041 #ifdef RFC2292
3042 	case IPV6_2292HOPOPTS:
3043 #endif
3044 	case IPV6_HOPOPTS:
3045 	{
3046 		struct ip6_hbh *hbh;
3047 		int hbhlen;
3048 
3049 		/*
3050 		 * XXX: We don't allow a non-privileged user to set ANY HbH
3051 		 * options, since per-option restriction has too much
3052 		 * overhead.
3053 		 */
3054 		error = kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER,
3055 		    NULL);
3056 		if (error)
3057 			return (error);
3058 
3059 		if (len == 0) {
3060 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
3061 			break;	/* just remove the option */
3062 		}
3063 
3064 		/* message length validation */
3065 		if (len < sizeof(struct ip6_hbh))
3066 			return (EINVAL);
3067 		hbh = (struct ip6_hbh *)buf;
3068 		hbhlen = (hbh->ip6h_len + 1) << 3;
3069 		if (len != hbhlen)
3070 			return (EINVAL);
3071 
3072 		/* turn off the previous option, then set the new option. */
3073 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
3074 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3075 		if (opt->ip6po_hbh == NULL)
3076 			return (ENOBUFS);
3077 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
3078 
3079 		break;
3080 	}
3081 
3082 #ifdef RFC2292
3083 	case IPV6_2292DSTOPTS:
3084 #endif
3085 	case IPV6_DSTOPTS:
3086 	case IPV6_RTHDRDSTOPTS:
3087 	{
3088 		struct ip6_dest *dest, **newdest = NULL;
3089 		int destlen;
3090 
3091 		/* XXX: see the comment for IPV6_HOPOPTS */
3092 		error = kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER,
3093 		    NULL);
3094 		if (error)
3095 			return (error);
3096 
3097 		if (len == 0) {
3098 			ip6_clearpktopts(opt, optname);
3099 			break;	/* just remove the option */
3100 		}
3101 
3102 		/* message length validation */
3103 		if (len < sizeof(struct ip6_dest))
3104 			return (EINVAL);
3105 		dest = (struct ip6_dest *)buf;
3106 		destlen = (dest->ip6d_len + 1) << 3;
3107 		if (len != destlen)
3108 			return (EINVAL);
3109 		/*
3110 		 * Determine the position that the destination options header
3111 		 * should be inserted; before or after the routing header.
3112 		 */
3113 		switch (optname) {
3114 		case IPV6_2292DSTOPTS:
3115 			/*
3116 			 * The old advanced API is ambiguous on this point.
3117 			 * Our approach is to determine the position based
3118 			 * according to the existence of a routing header.
3119 			 * Note, however, that this depends on the order of the
3120 			 * extension headers in the ancillary data; the 1st
3121 			 * part of the destination options header must appear
3122 			 * before the routing header in the ancillary data,
3123 			 * too.
3124 			 * RFC3542 solved the ambiguity by introducing
3125 			 * separate ancillary data or option types.
3126 			 */
3127 			if (opt->ip6po_rthdr == NULL)
3128 				newdest = &opt->ip6po_dest1;
3129 			else
3130 				newdest = &opt->ip6po_dest2;
3131 			break;
3132 		case IPV6_RTHDRDSTOPTS:
3133 			newdest = &opt->ip6po_dest1;
3134 			break;
3135 		case IPV6_DSTOPTS:
3136 			newdest = &opt->ip6po_dest2;
3137 			break;
3138 		}
3139 
3140 		/* turn off the previous option, then set the new option. */
3141 		ip6_clearpktopts(opt, optname);
3142 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3143 		if (*newdest == NULL)
3144 			return (ENOBUFS);
3145 		memcpy(*newdest, dest, destlen);
3146 
3147 		break;
3148 	}
3149 
3150 #ifdef RFC2292
3151 	case IPV6_2292RTHDR:
3152 #endif
3153 	case IPV6_RTHDR:
3154 	{
3155 		struct ip6_rthdr *rth;
3156 		int rthlen;
3157 
3158 		if (len == 0) {
3159 			ip6_clearpktopts(opt, IPV6_RTHDR);
3160 			break;	/* just remove the option */
3161 		}
3162 
3163 		/* message length validation */
3164 		if (len < sizeof(struct ip6_rthdr))
3165 			return (EINVAL);
3166 		rth = (struct ip6_rthdr *)buf;
3167 		rthlen = (rth->ip6r_len + 1) << 3;
3168 		if (len != rthlen)
3169 			return (EINVAL);
3170 		switch (rth->ip6r_type) {
3171 		case IPV6_RTHDR_TYPE_0:
3172 			if (rth->ip6r_len == 0)	/* must contain one addr */
3173 				return (EINVAL);
3174 			if (rth->ip6r_len % 2) /* length must be even */
3175 				return (EINVAL);
3176 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3177 				return (EINVAL);
3178 			break;
3179 		default:
3180 			return (EINVAL);	/* not supported */
3181 		}
3182 		/* turn off the previous option */
3183 		ip6_clearpktopts(opt, IPV6_RTHDR);
3184 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3185 		if (opt->ip6po_rthdr == NULL)
3186 			return (ENOBUFS);
3187 		memcpy(opt->ip6po_rthdr, rth, rthlen);
3188 		break;
3189 	}
3190 
3191 	case IPV6_USE_MIN_MTU:
3192 		if (len != sizeof(int))
3193 			return (EINVAL);
3194 		minmtupolicy = *(int *)buf;
3195 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3196 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
3197 		    minmtupolicy != IP6PO_MINMTU_ALL) {
3198 			return (EINVAL);
3199 		}
3200 		opt->ip6po_minmtu = minmtupolicy;
3201 		break;
3202 
3203 	case IPV6_DONTFRAG:
3204 		if (len != sizeof(int))
3205 			return (EINVAL);
3206 
3207 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3208 			/*
3209 			 * we ignore this option for TCP sockets.
3210 			 * (RFC3542 leaves this case unspecified.)
3211 			 */
3212 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3213 		} else
3214 			opt->ip6po_flags |= IP6PO_DONTFRAG;
3215 		break;
3216 
3217 	default:
3218 		return (ENOPROTOOPT);
3219 	} /* end of switch */
3220 
3221 	return (0);
3222 }
3223 
3224 /*
3225  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3226  * packet to the input queue of a specified interface.  Note that this
3227  * calls the output routine of the loopback "driver", but with an interface
3228  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3229  */
3230 void
3231 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3232 	const struct sockaddr_in6 *dst)
3233 {
3234 	struct mbuf *copym;
3235 	struct ip6_hdr *ip6;
3236 
3237 	copym = m_copy(m, 0, M_COPYALL);
3238 	if (copym == NULL)
3239 		return;
3240 
3241 	/*
3242 	 * Make sure to deep-copy IPv6 header portion in case the data
3243 	 * is in an mbuf cluster, so that we can safely override the IPv6
3244 	 * header portion later.
3245 	 */
3246 	if ((copym->m_flags & M_EXT) != 0 ||
3247 	    copym->m_len < sizeof(struct ip6_hdr)) {
3248 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
3249 		if (copym == NULL)
3250 			return;
3251 	}
3252 
3253 #ifdef DIAGNOSTIC
3254 	if (copym->m_len < sizeof(*ip6)) {
3255 		m_freem(copym);
3256 		return;
3257 	}
3258 #endif
3259 
3260 	ip6 = mtod(copym, struct ip6_hdr *);
3261 	/*
3262 	 * clear embedded scope identifiers if necessary.
3263 	 * in6_clearscope will touch the addresses only when necessary.
3264 	 */
3265 	in6_clearscope(&ip6->ip6_src);
3266 	in6_clearscope(&ip6->ip6_dst);
3267 
3268 	(void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3269 }
3270 
3271 /*
3272  * Chop IPv6 header off from the payload.
3273  */
3274 static int
3275 ip6_splithdr(struct mbuf *m,  struct ip6_exthdrs *exthdrs)
3276 {
3277 	struct mbuf *mh;
3278 	struct ip6_hdr *ip6;
3279 
3280 	ip6 = mtod(m, struct ip6_hdr *);
3281 	if (m->m_len > sizeof(*ip6)) {
3282 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3283 		if (mh == 0) {
3284 			m_freem(m);
3285 			return ENOBUFS;
3286 		}
3287 		M_MOVE_PKTHDR(mh, m);
3288 		MH_ALIGN(mh, sizeof(*ip6));
3289 		m->m_len -= sizeof(*ip6);
3290 		m->m_data += sizeof(*ip6);
3291 		mh->m_next = m;
3292 		m = mh;
3293 		m->m_len = sizeof(*ip6);
3294 		bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
3295 	}
3296 	exthdrs->ip6e_ip6 = m;
3297 	return 0;
3298 }
3299 
3300 /*
3301  * Compute IPv6 extension header length.
3302  */
3303 int
3304 ip6_optlen(struct in6pcb *in6p)
3305 {
3306 	int len;
3307 
3308 	if (!in6p->in6p_outputopts)
3309 		return 0;
3310 
3311 	len = 0;
3312 #define elen(x) \
3313     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3314 
3315 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
3316 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
3317 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3318 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
3319 	return len;
3320 #undef elen
3321 }
3322