1 /* $NetBSD: ip6_output.c,v 1.22 2000/06/03 14:36:37 itojun Exp $ */ 2 /* $KAME: ip6_output.c,v 1.109 2000/05/31 05:03:09 jinmei Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 66 */ 67 68 #include "opt_inet.h" 69 #include "opt_ipsec.h" 70 #include "opt_pfil_hooks.h" 71 72 #include <sys/param.h> 73 #include <sys/malloc.h> 74 #include <sys/mbuf.h> 75 #include <sys/errno.h> 76 #include <sys/protosw.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/systm.h> 80 #include <sys/proc.h> 81 82 #include <net/if.h> 83 #include <net/route.h> 84 #ifdef PFIL_HOOKS 85 #include <net/pfil.h> 86 #endif 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/ip6.h> 91 #include <netinet/icmp6.h> 92 #include <netinet6/ip6_var.h> 93 #include <netinet6/in6_pcb.h> 94 #include <netinet6/nd6.h> 95 96 #ifdef IPSEC 97 #include <netinet6/ipsec.h> 98 #include <netkey/key.h> 99 #include <netkey/key_debug.h> 100 #endif /* IPSEC */ 101 102 #include "loop.h" 103 104 #include <net/net_osdep.h> 105 106 #ifdef IPV6FIREWALL 107 #include <netinet6/ip6_fw.h> 108 #endif 109 110 struct ip6_exthdrs { 111 struct mbuf *ip6e_ip6; 112 struct mbuf *ip6e_hbh; 113 struct mbuf *ip6e_dest1; 114 struct mbuf *ip6e_rthdr; 115 struct mbuf *ip6e_dest2; 116 }; 117 118 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 119 struct socket *)); 120 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 121 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 122 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 123 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 124 struct ip6_frag **)); 125 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 126 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 127 128 extern struct ifnet loif[NLOOP]; 129 130 /* 131 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 132 * header (with pri, len, nxt, hlim, src, dst). 133 * This function may modify ver and hlim only. 134 * The mbuf chain containing the packet will be freed. 135 * The mbuf opt, if present, will not be freed. 136 */ 137 int 138 ip6_output(m0, opt, ro, flags, im6o, ifpp) 139 struct mbuf *m0; 140 struct ip6_pktopts *opt; 141 struct route_in6 *ro; 142 int flags; 143 struct ip6_moptions *im6o; 144 struct ifnet **ifpp; /* XXX: just for statistics */ 145 { 146 struct ip6_hdr *ip6, *mhip6; 147 struct ifnet *ifp, *origifp; 148 struct mbuf *m = m0; 149 int hlen, tlen, len, off; 150 struct route_in6 ip6route; 151 struct sockaddr_in6 *dst; 152 int error = 0; 153 struct in6_ifaddr *ia; 154 u_long mtu; 155 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 156 struct ip6_exthdrs exthdrs; 157 struct in6_addr finaldst; 158 struct route_in6 *ro_pmtu = NULL; 159 int hdrsplit = 0; 160 int needipsec = 0; 161 #ifdef PFIL_HOOKS 162 struct packet_filter_hook *pfh; 163 struct mbuf *m1; 164 int rv; 165 #endif /* PFIL_HOOKS */ 166 #ifdef IPSEC 167 int needipsectun = 0; 168 struct socket *so; 169 struct secpolicy *sp = NULL; 170 171 /* for AH processing. stupid to have "socket" variable in IP layer... */ 172 so = ipsec_getsocket(m); 173 ipsec_setsocket(m, NULL); 174 ip6 = mtod(m, struct ip6_hdr *); 175 #endif /* IPSEC */ 176 177 #define MAKE_EXTHDR(hp, mp) \ 178 do { \ 179 if (hp) { \ 180 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 181 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 182 ((eh)->ip6e_len + 1) << 3); \ 183 if (error) \ 184 goto freehdrs; \ 185 } \ 186 } while (0) 187 188 bzero(&exthdrs, sizeof(exthdrs)); 189 if (opt) { 190 /* Hop-by-Hop options header */ 191 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 192 /* Destination options header(1st part) */ 193 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 194 /* Routing header */ 195 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 196 /* Destination options header(2nd part) */ 197 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 198 } 199 200 #ifdef IPSEC 201 /* get a security policy for this packet */ 202 if (so == NULL) 203 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 204 else 205 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 206 207 if (sp == NULL) { 208 ipsec6stat.out_inval++; 209 goto bad; 210 } 211 212 error = 0; 213 214 /* check policy */ 215 switch (sp->policy) { 216 case IPSEC_POLICY_DISCARD: 217 /* 218 * This packet is just discarded. 219 */ 220 ipsec6stat.out_polvio++; 221 goto bad; 222 223 case IPSEC_POLICY_BYPASS: 224 case IPSEC_POLICY_NONE: 225 /* no need to do IPsec. */ 226 needipsec = 0; 227 break; 228 229 case IPSEC_POLICY_IPSEC: 230 if (sp->req == NULL) { 231 /* XXX should be panic ? */ 232 printf("ip6_output: No IPsec request specified.\n"); 233 error = EINVAL; 234 goto bad; 235 } 236 needipsec = 1; 237 break; 238 239 case IPSEC_POLICY_ENTRUST: 240 default: 241 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 242 } 243 #endif /* IPSEC */ 244 245 /* 246 * Calculate the total length of the extension header chain. 247 * Keep the length of the unfragmentable part for fragmentation. 248 */ 249 optlen = 0; 250 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 251 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 252 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 253 unfragpartlen = optlen + sizeof(struct ip6_hdr); 254 /* NOTE: we don't add AH/ESP length here. do that later. */ 255 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 256 257 /* 258 * If we need IPsec, or there is at least one extension header, 259 * separate IP6 header from the payload. 260 */ 261 if ((needipsec || optlen) && !hdrsplit) { 262 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 263 m = NULL; 264 goto freehdrs; 265 } 266 m = exthdrs.ip6e_ip6; 267 hdrsplit++; 268 } 269 270 /* adjust pointer */ 271 ip6 = mtod(m, struct ip6_hdr *); 272 273 /* adjust mbuf packet header length */ 274 m->m_pkthdr.len += optlen; 275 plen = m->m_pkthdr.len - sizeof(*ip6); 276 277 /* If this is a jumbo payload, insert a jumbo payload option. */ 278 if (plen > IPV6_MAXPACKET) { 279 if (!hdrsplit) { 280 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 281 m = NULL; 282 goto freehdrs; 283 } 284 m = exthdrs.ip6e_ip6; 285 hdrsplit++; 286 } 287 /* adjust pointer */ 288 ip6 = mtod(m, struct ip6_hdr *); 289 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 290 goto freehdrs; 291 ip6->ip6_plen = 0; 292 } else 293 ip6->ip6_plen = htons(plen); 294 295 /* 296 * Concatenate headers and fill in next header fields. 297 * Here we have, on "m" 298 * IPv6 payload 299 * and we insert headers accordingly. Finally, we should be getting: 300 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 301 * 302 * during the header composing process, "m" points to IPv6 header. 303 * "mprev" points to an extension header prior to esp. 304 */ 305 { 306 u_char *nexthdrp = &ip6->ip6_nxt; 307 struct mbuf *mprev = m; 308 309 /* 310 * we treat dest2 specially. this makes IPsec processing 311 * much easier. 312 * 313 * result: IPv6 dest2 payload 314 * m and mprev will point to IPv6 header. 315 */ 316 if (exthdrs.ip6e_dest2) { 317 if (!hdrsplit) 318 panic("assumption failed: hdr not split"); 319 exthdrs.ip6e_dest2->m_next = m->m_next; 320 m->m_next = exthdrs.ip6e_dest2; 321 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 322 ip6->ip6_nxt = IPPROTO_DSTOPTS; 323 } 324 325 #define MAKE_CHAIN(m, mp, p, i)\ 326 do {\ 327 if (m) {\ 328 if (!hdrsplit) \ 329 panic("assumption failed: hdr not split"); \ 330 *mtod((m), u_char *) = *(p);\ 331 *(p) = (i);\ 332 p = mtod((m), u_char *);\ 333 (m)->m_next = (mp)->m_next;\ 334 (mp)->m_next = (m);\ 335 (mp) = (m);\ 336 }\ 337 } while (0) 338 /* 339 * result: IPv6 hbh dest1 rthdr dest2 payload 340 * m will point to IPv6 header. mprev will point to the 341 * extension header prior to dest2 (rthdr in the above case). 342 */ 343 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, 344 nexthdrp, IPPROTO_HOPOPTS); 345 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, 346 nexthdrp, IPPROTO_DSTOPTS); 347 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, 348 nexthdrp, IPPROTO_ROUTING); 349 350 #ifdef IPSEC 351 if (!needipsec) 352 goto skip_ipsec2; 353 354 /* 355 * pointers after IPsec headers are not valid any more. 356 * other pointers need a great care too. 357 * (IPsec routines should not mangle mbufs prior to AH/ESP) 358 */ 359 exthdrs.ip6e_dest2 = NULL; 360 361 { 362 struct ip6_rthdr *rh = NULL; 363 int segleft_org = 0; 364 struct ipsec_output_state state; 365 366 if (exthdrs.ip6e_rthdr) { 367 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 368 segleft_org = rh->ip6r_segleft; 369 rh->ip6r_segleft = 0; 370 } 371 372 bzero(&state, sizeof(state)); 373 state.m = m; 374 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 375 &needipsectun); 376 m = state.m; 377 if (error) { 378 /* mbuf is already reclaimed in ipsec6_output_trans. */ 379 m = NULL; 380 switch (error) { 381 case EHOSTUNREACH: 382 case ENETUNREACH: 383 case EMSGSIZE: 384 case ENOBUFS: 385 case ENOMEM: 386 break; 387 default: 388 printf("ip6_output (ipsec): error code %d\n", error); 389 /*fall through*/ 390 case ENOENT: 391 /* don't show these error codes to the user */ 392 error = 0; 393 break; 394 } 395 goto bad; 396 } 397 if (exthdrs.ip6e_rthdr) { 398 /* ah6_output doesn't modify mbuf chain */ 399 rh->ip6r_segleft = segleft_org; 400 } 401 } 402 skip_ipsec2:; 403 #endif 404 } 405 406 /* 407 * If there is a routing header, replace destination address field 408 * with the first hop of the routing header. 409 */ 410 if (exthdrs.ip6e_rthdr) { 411 struct ip6_rthdr *rh = 412 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 413 struct ip6_rthdr *)); 414 struct ip6_rthdr0 *rh0; 415 416 finaldst = ip6->ip6_dst; 417 switch(rh->ip6r_type) { 418 case IPV6_RTHDR_TYPE_0: 419 rh0 = (struct ip6_rthdr0 *)rh; 420 ip6->ip6_dst = rh0->ip6r0_addr[0]; 421 bcopy((caddr_t)&rh0->ip6r0_addr[1], 422 (caddr_t)&rh0->ip6r0_addr[0], 423 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1) 424 ); 425 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst; 426 break; 427 default: /* is it possible? */ 428 error = EINVAL; 429 goto bad; 430 } 431 } 432 433 /* Source address validation */ 434 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 435 (flags & IPV6_DADOUTPUT) == 0) { 436 error = EOPNOTSUPP; 437 ip6stat.ip6s_badscope++; 438 goto bad; 439 } 440 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 441 error = EOPNOTSUPP; 442 ip6stat.ip6s_badscope++; 443 goto bad; 444 } 445 446 ip6stat.ip6s_localout++; 447 448 /* 449 * Route packet. 450 */ 451 if (ro == 0) { 452 ro = &ip6route; 453 bzero((caddr_t)ro, sizeof(*ro)); 454 } 455 ro_pmtu = ro; 456 if (opt && opt->ip6po_rthdr) 457 ro = &opt->ip6po_route; 458 dst = (struct sockaddr_in6 *)&ro->ro_dst; 459 /* 460 * If there is a cached route, 461 * check that it is to the same destination 462 * and is still up. If not, free it and try again. 463 */ 464 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 465 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 466 RTFREE(ro->ro_rt); 467 ro->ro_rt = (struct rtentry *)0; 468 } 469 if (ro->ro_rt == 0) { 470 bzero(dst, sizeof(*dst)); 471 dst->sin6_family = AF_INET6; 472 dst->sin6_len = sizeof(struct sockaddr_in6); 473 dst->sin6_addr = ip6->ip6_dst; 474 } 475 #ifdef IPSEC 476 if (needipsec && needipsectun) { 477 struct ipsec_output_state state; 478 479 /* 480 * All the extension headers will become inaccessible 481 * (since they can be encrypted). 482 * Don't panic, we need no more updates to extension headers 483 * on inner IPv6 packet (since they are now encapsulated). 484 * 485 * IPv6 [ESP|AH] IPv6 [extension headers] payload 486 */ 487 bzero(&exthdrs, sizeof(exthdrs)); 488 exthdrs.ip6e_ip6 = m; 489 490 bzero(&state, sizeof(state)); 491 state.m = m; 492 state.ro = (struct route *)ro; 493 state.dst = (struct sockaddr *)dst; 494 495 error = ipsec6_output_tunnel(&state, sp, flags); 496 497 m = state.m; 498 ro = (struct route_in6 *)state.ro; 499 dst = (struct sockaddr_in6 *)state.dst; 500 if (error) { 501 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 502 m0 = m = NULL; 503 m = NULL; 504 switch (error) { 505 case EHOSTUNREACH: 506 case ENETUNREACH: 507 case EMSGSIZE: 508 case ENOBUFS: 509 case ENOMEM: 510 break; 511 default: 512 printf("ip6_output (ipsec): error code %d\n", error); 513 /*fall through*/ 514 case ENOENT: 515 /* don't show these error codes to the user */ 516 error = 0; 517 break; 518 } 519 goto bad; 520 } 521 522 exthdrs.ip6e_ip6 = m; 523 } 524 #endif /*IPSEC*/ 525 526 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 527 /* Unicast */ 528 529 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 530 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 531 /* xxx 532 * interface selection comes here 533 * if an interface is specified from an upper layer, 534 * ifp must point it. 535 */ 536 if (ro->ro_rt == 0) { 537 /* 538 * non-bsdi always clone routes, if parent is 539 * PRF_CLONING. 540 */ 541 rtalloc((struct route *)ro); 542 } 543 if (ro->ro_rt == 0) { 544 ip6stat.ip6s_noroute++; 545 error = EHOSTUNREACH; 546 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 547 goto bad; 548 } 549 ia = ifatoia6(ro->ro_rt->rt_ifa); 550 ifp = ro->ro_rt->rt_ifp; 551 ro->ro_rt->rt_use++; 552 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 553 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 554 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 555 556 in6_ifstat_inc(ifp, ifs6_out_request); 557 558 /* 559 * Check if the outgoing interface conflicts with 560 * the interface specified by ifi6_ifindex (if specified). 561 * Note that loopback interface is always okay. 562 * (this may happen when we are sending a packet to one of 563 * our own addresses.) 564 */ 565 if (opt && opt->ip6po_pktinfo 566 && opt->ip6po_pktinfo->ipi6_ifindex) { 567 if (!(ifp->if_flags & IFF_LOOPBACK) 568 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 569 ip6stat.ip6s_noroute++; 570 in6_ifstat_inc(ifp, ifs6_out_discard); 571 error = EHOSTUNREACH; 572 goto bad; 573 } 574 } 575 576 if (opt && opt->ip6po_hlim != -1) 577 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 578 } else { 579 /* Multicast */ 580 struct in6_multi *in6m; 581 582 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 583 584 /* 585 * See if the caller provided any multicast options 586 */ 587 ifp = NULL; 588 if (im6o != NULL) { 589 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 590 if (im6o->im6o_multicast_ifp != NULL) 591 ifp = im6o->im6o_multicast_ifp; 592 } else 593 ip6->ip6_hlim = ip6_defmcasthlim; 594 595 /* 596 * See if the caller provided the outgoing interface 597 * as an ancillary data. 598 * Boundary check for ifindex is assumed to be already done. 599 */ 600 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 601 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]; 602 603 /* 604 * If the destination is a node-local scope multicast, 605 * the packet should be loop-backed only. 606 */ 607 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 608 /* 609 * If the outgoing interface is already specified, 610 * it should be a loopback interface. 611 */ 612 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 613 ip6stat.ip6s_badscope++; 614 error = ENETUNREACH; /* XXX: better error? */ 615 /* XXX correct ifp? */ 616 in6_ifstat_inc(ifp, ifs6_out_discard); 617 goto bad; 618 } else { 619 ifp = &loif[0]; 620 } 621 } 622 623 if (opt && opt->ip6po_hlim != -1) 624 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 625 626 /* 627 * If caller did not provide an interface lookup a 628 * default in the routing table. This is either a 629 * default for the speicfied group (i.e. a host 630 * route), or a multicast default (a route for the 631 * ``net'' ff00::/8). 632 */ 633 if (ifp == NULL) { 634 if (ro->ro_rt == 0) { 635 ro->ro_rt = rtalloc1((struct sockaddr *) 636 &ro->ro_dst, 0 637 ); 638 } 639 if (ro->ro_rt == 0) { 640 ip6stat.ip6s_noroute++; 641 error = EHOSTUNREACH; 642 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 643 goto bad; 644 } 645 ia = ifatoia6(ro->ro_rt->rt_ifa); 646 ifp = ro->ro_rt->rt_ifp; 647 ro->ro_rt->rt_use++; 648 } 649 650 if ((flags & IPV6_FORWARDING) == 0) 651 in6_ifstat_inc(ifp, ifs6_out_request); 652 in6_ifstat_inc(ifp, ifs6_out_mcast); 653 654 /* 655 * Confirm that the outgoing interface supports multicast. 656 */ 657 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 658 ip6stat.ip6s_noroute++; 659 in6_ifstat_inc(ifp, ifs6_out_discard); 660 error = ENETUNREACH; 661 goto bad; 662 } 663 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 664 if (in6m != NULL && 665 (im6o == NULL || im6o->im6o_multicast_loop)) { 666 /* 667 * If we belong to the destination multicast group 668 * on the outgoing interface, and the caller did not 669 * forbid loopback, loop back a copy. 670 */ 671 ip6_mloopback(ifp, m, dst); 672 } else { 673 /* 674 * If we are acting as a multicast router, perform 675 * multicast forwarding as if the packet had just 676 * arrived on the interface to which we are about 677 * to send. The multicast forwarding function 678 * recursively calls this function, using the 679 * IPV6_FORWARDING flag to prevent infinite recursion. 680 * 681 * Multicasts that are looped back by ip6_mloopback(), 682 * above, will be forwarded by the ip6_input() routine, 683 * if necessary. 684 */ 685 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 686 if (ip6_mforward(ip6, ifp, m) != 0) { 687 m_freem(m); 688 goto done; 689 } 690 } 691 } 692 /* 693 * Multicasts with a hoplimit of zero may be looped back, 694 * above, but must not be transmitted on a network. 695 * Also, multicasts addressed to the loopback interface 696 * are not sent -- the above call to ip6_mloopback() will 697 * loop back a copy if this host actually belongs to the 698 * destination group on the loopback interface. 699 */ 700 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 701 m_freem(m); 702 goto done; 703 } 704 } 705 706 /* 707 * Fill the outgoing inteface to tell the upper layer 708 * to increment per-interface statistics. 709 */ 710 if (ifpp) 711 *ifpp = ifp; 712 713 /* 714 * Determine path MTU. 715 */ 716 if (ro_pmtu != ro) { 717 /* The first hop and the final destination may differ. */ 718 struct sockaddr_in6 *sin6_fin = 719 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 720 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 721 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, 722 &finaldst))) { 723 RTFREE(ro_pmtu->ro_rt); 724 ro_pmtu->ro_rt = (struct rtentry *)0; 725 } 726 if (ro_pmtu->ro_rt == 0) { 727 bzero(sin6_fin, sizeof(*sin6_fin)); 728 sin6_fin->sin6_family = AF_INET6; 729 sin6_fin->sin6_len = sizeof(struct sockaddr_in6); 730 sin6_fin->sin6_addr = finaldst; 731 732 rtalloc((struct route *)ro_pmtu); 733 } 734 } 735 if (ro_pmtu->ro_rt != NULL) { 736 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu; 737 738 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 739 if (mtu > ifmtu) { 740 /* 741 * The MTU on the route is larger than the MTU on 742 * the interface! This shouldn't happen, unless the 743 * MTU of the interface has been changed after the 744 * interface was brought up. Change the MTU in the 745 * route to match the interface MTU (as long as the 746 * field isn't locked). 747 */ 748 mtu = ifmtu; 749 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 750 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */ 751 } 752 } else { 753 mtu = nd_ifinfo[ifp->if_index].linkmtu; 754 } 755 756 /* Fake scoped addresses */ 757 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 758 /* 759 * If source or destination address is a scoped address, and 760 * the packet is going to be sent to a loopback interface, 761 * we should keep the original interface. 762 */ 763 764 /* 765 * XXX: this is a very experimental and temporary solution. 766 * We eventually have sockaddr_in6 and use the sin6_scope_id 767 * field of the structure here. 768 * We rely on the consistency between two scope zone ids 769 * of source add destination, which should already be assured 770 * Larger scopes than link will be supported in the near 771 * future. 772 */ 773 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 774 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])]; 775 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 776 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])]; 777 else 778 origifp = ifp; 779 } 780 else 781 origifp = ifp; 782 #ifndef FAKE_LOOPBACK_IF 783 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 784 #else 785 if (1) 786 #endif 787 { 788 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 789 ip6->ip6_src.s6_addr16[1] = 0; 790 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 791 ip6->ip6_dst.s6_addr16[1] = 0; 792 } 793 794 /* 795 * If the outgoing packet contains a hop-by-hop options header, 796 * it must be examined and processed even by the source node. 797 * (RFC 2460, section 4.) 798 */ 799 if (exthdrs.ip6e_hbh) { 800 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, 801 struct ip6_hbh *); 802 u_int32_t dummy1; /* XXX unused */ 803 u_int32_t dummy2; /* XXX unused */ 804 805 /* 806 * XXX: if we have to send an ICMPv6 error to the sender, 807 * we need the M_LOOP flag since icmp6_error() expects 808 * the IPv6 and the hop-by-hop options header are 809 * continuous unless the flag is set. 810 */ 811 m->m_flags |= M_LOOP; 812 m->m_pkthdr.rcvif = ifp; 813 if (ip6_process_hopopts(m, 814 (u_int8_t *)(hbh + 1), 815 ((hbh->ip6h_len + 1) << 3) - 816 sizeof(struct ip6_hbh), 817 &dummy1, &dummy2) < 0) { 818 /* m was already freed at this point */ 819 error = EINVAL;/* better error? */ 820 goto done; 821 } 822 m->m_flags &= ~M_LOOP; /* XXX */ 823 m->m_pkthdr.rcvif = NULL; 824 } 825 826 #ifdef PFIL_HOOKS 827 /* 828 * Run through list of hooks for output packets. 829 */ 830 m1 = m; 831 pfh = pfil_hook_get(PFIL_OUT, &inetsw[ip_protox[IPPROTO_IPV6]].pr_pfh); 832 for (; pfh; pfh = pfh->pfil_link.tqe_next) 833 if (pfh->pfil_func) { 834 rv = pfh->pfil_func(ip6, sizeof(*ip6), ifp, 1, &m1); 835 if (rv) { 836 error = EHOSTUNREACH; 837 goto done; 838 } 839 m = m1; 840 if (m == NULL) 841 goto done; 842 ip6 = mtod(m, struct ip6_hdr *); 843 } 844 #endif /* PFIL_HOOKS */ 845 /* 846 * Send the packet to the outgoing interface. 847 * If necessary, do IPv6 fragmentation before sending. 848 */ 849 tlen = m->m_pkthdr.len; 850 if (tlen <= mtu 851 #ifdef notyet 852 /* 853 * On any link that cannot convey a 1280-octet packet in one piece, 854 * link-specific fragmentation and reassembly must be provided at 855 * a layer below IPv6. [RFC 2460, sec.5] 856 * Thus if the interface has ability of link-level fragmentation, 857 * we can just send the packet even if the packet size is 858 * larger than the link's MTU. 859 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet... 860 */ 861 862 || ifp->if_flags & IFF_FRAGMENTABLE 863 #endif 864 ) 865 { 866 #ifdef IFA_STATS 867 if (IFA_STATS) { 868 struct in6_ifaddr *ia6; 869 ip6 = mtod(m, struct ip6_hdr *); 870 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 871 if (ia6) { 872 ia->ia_ifa.ifa_data.ifad_outbytes += 873 m->m_pkthdr.len; 874 } 875 } 876 #endif 877 #ifdef OLDIP6OUTPUT 878 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, 879 ro->ro_rt); 880 #else 881 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 882 #endif 883 goto done; 884 } else if (mtu < IPV6_MMTU) { 885 /* 886 * note that path MTU is never less than IPV6_MMTU 887 * (see icmp6_input). 888 */ 889 error = EMSGSIZE; 890 in6_ifstat_inc(ifp, ifs6_out_fragfail); 891 goto bad; 892 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 893 error = EMSGSIZE; 894 in6_ifstat_inc(ifp, ifs6_out_fragfail); 895 goto bad; 896 } else { 897 struct mbuf **mnext, *m_frgpart; 898 struct ip6_frag *ip6f; 899 u_int32_t id = htonl(ip6_id++); 900 u_char nextproto; 901 902 /* 903 * Too large for the destination or interface; 904 * fragment if possible. 905 * Must be able to put at least 8 bytes per fragment. 906 */ 907 hlen = unfragpartlen; 908 if (mtu > IPV6_MAXPACKET) 909 mtu = IPV6_MAXPACKET; 910 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 911 if (len < 8) { 912 error = EMSGSIZE; 913 in6_ifstat_inc(ifp, ifs6_out_fragfail); 914 goto bad; 915 } 916 917 mnext = &m->m_nextpkt; 918 919 /* 920 * Change the next header field of the last header in the 921 * unfragmentable part. 922 */ 923 if (exthdrs.ip6e_rthdr) { 924 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 925 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 926 } else if (exthdrs.ip6e_dest1) { 927 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 928 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 929 } else if (exthdrs.ip6e_hbh) { 930 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 931 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 932 } else { 933 nextproto = ip6->ip6_nxt; 934 ip6->ip6_nxt = IPPROTO_FRAGMENT; 935 } 936 937 /* 938 * Loop through length of segment after first fragment, 939 * make new header and copy data of each part and link onto chain. 940 */ 941 m0 = m; 942 for (off = hlen; off < tlen; off += len) { 943 MGETHDR(m, M_DONTWAIT, MT_HEADER); 944 if (!m) { 945 error = ENOBUFS; 946 ip6stat.ip6s_odropped++; 947 goto sendorfree; 948 } 949 m->m_flags = m0->m_flags & M_COPYFLAGS; 950 *mnext = m; 951 mnext = &m->m_nextpkt; 952 m->m_data += max_linkhdr; 953 mhip6 = mtod(m, struct ip6_hdr *); 954 *mhip6 = *ip6; 955 m->m_len = sizeof(*mhip6); 956 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 957 if (error) { 958 ip6stat.ip6s_odropped++; 959 goto sendorfree; 960 } 961 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 962 if (off + len >= tlen) 963 len = tlen - off; 964 else 965 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 966 mhip6->ip6_plen = htons((u_short)(len + hlen + 967 sizeof(*ip6f) - 968 sizeof(struct ip6_hdr))); 969 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 970 error = ENOBUFS; 971 ip6stat.ip6s_odropped++; 972 goto sendorfree; 973 } 974 m_cat(m, m_frgpart); 975 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 976 m->m_pkthdr.rcvif = (struct ifnet *)0; 977 ip6f->ip6f_reserved = 0; 978 ip6f->ip6f_ident = id; 979 ip6f->ip6f_nxt = nextproto; 980 ip6stat.ip6s_ofragments++; 981 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 982 } 983 984 in6_ifstat_inc(ifp, ifs6_out_fragok); 985 } 986 987 /* 988 * Remove leading garbages. 989 */ 990 sendorfree: 991 m = m0->m_nextpkt; 992 m0->m_nextpkt = 0; 993 m_freem(m0); 994 for (m0 = m; m; m = m0) { 995 m0 = m->m_nextpkt; 996 m->m_nextpkt = 0; 997 if (error == 0) { 998 #ifdef IFA_STATS 999 if (IFA_STATS) { 1000 struct in6_ifaddr *ia6; 1001 ip6 = mtod(m, struct ip6_hdr *); 1002 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1003 if (ia6) { 1004 ia->ia_ifa.ifa_data.ifad_outbytes += 1005 m->m_pkthdr.len; 1006 } 1007 } 1008 #endif 1009 #ifdef OLDIP6OUTPUT 1010 error = (*ifp->if_output)(ifp, m, 1011 (struct sockaddr *)dst, 1012 ro->ro_rt); 1013 #else 1014 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1015 #endif 1016 } else 1017 m_freem(m); 1018 } 1019 1020 if (error == 0) 1021 ip6stat.ip6s_fragmented++; 1022 1023 done: 1024 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1025 RTFREE(ro->ro_rt); 1026 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1027 RTFREE(ro_pmtu->ro_rt); 1028 } 1029 1030 #ifdef IPSEC 1031 if (sp != NULL) 1032 key_freesp(sp); 1033 #endif /* IPSEC */ 1034 1035 return(error); 1036 1037 freehdrs: 1038 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1039 m_freem(exthdrs.ip6e_dest1); 1040 m_freem(exthdrs.ip6e_rthdr); 1041 m_freem(exthdrs.ip6e_dest2); 1042 /* fall through */ 1043 bad: 1044 m_freem(m); 1045 goto done; 1046 } 1047 1048 static int 1049 ip6_copyexthdr(mp, hdr, hlen) 1050 struct mbuf **mp; 1051 caddr_t hdr; 1052 int hlen; 1053 { 1054 struct mbuf *m; 1055 1056 if (hlen > MCLBYTES) 1057 return(ENOBUFS); /* XXX */ 1058 1059 MGET(m, M_DONTWAIT, MT_DATA); 1060 if (!m) 1061 return(ENOBUFS); 1062 1063 if (hlen > MLEN) { 1064 MCLGET(m, M_DONTWAIT); 1065 if ((m->m_flags & M_EXT) == 0) { 1066 m_free(m); 1067 return(ENOBUFS); 1068 } 1069 } 1070 m->m_len = hlen; 1071 if (hdr) 1072 bcopy(hdr, mtod(m, caddr_t), hlen); 1073 1074 *mp = m; 1075 return(0); 1076 } 1077 1078 /* 1079 * Insert jumbo payload option. 1080 */ 1081 static int 1082 ip6_insert_jumboopt(exthdrs, plen) 1083 struct ip6_exthdrs *exthdrs; 1084 u_int32_t plen; 1085 { 1086 struct mbuf *mopt; 1087 u_char *optbuf; 1088 1089 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1090 1091 /* 1092 * If there is no hop-by-hop options header, allocate new one. 1093 * If there is one but it doesn't have enough space to store the 1094 * jumbo payload option, allocate a cluster to store the whole options. 1095 * Otherwise, use it to store the options. 1096 */ 1097 if (exthdrs->ip6e_hbh == 0) { 1098 MGET(mopt, M_DONTWAIT, MT_DATA); 1099 if (mopt == 0) 1100 return(ENOBUFS); 1101 mopt->m_len = JUMBOOPTLEN; 1102 optbuf = mtod(mopt, u_char *); 1103 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1104 exthdrs->ip6e_hbh = mopt; 1105 } else { 1106 struct ip6_hbh *hbh; 1107 1108 mopt = exthdrs->ip6e_hbh; 1109 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1110 caddr_t oldoptp = mtod(mopt, caddr_t); 1111 int oldoptlen = mopt->m_len; 1112 1113 if (mopt->m_flags & M_EXT) 1114 return(ENOBUFS); /* XXX */ 1115 MCLGET(mopt, M_DONTWAIT); 1116 if ((mopt->m_flags & M_EXT) == 0) 1117 return(ENOBUFS); 1118 1119 bcopy(oldoptp, mtod(mopt, caddr_t), oldoptlen); 1120 optbuf = mtod(mopt, caddr_t) + oldoptlen; 1121 mopt->m_len = oldoptlen + JUMBOOPTLEN; 1122 } else { 1123 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1124 mopt->m_len += JUMBOOPTLEN; 1125 } 1126 optbuf[0] = IP6OPT_PADN; 1127 optbuf[1] = 1; 1128 1129 /* 1130 * Adjust the header length according to the pad and 1131 * the jumbo payload option. 1132 */ 1133 hbh = mtod(mopt, struct ip6_hbh *); 1134 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1135 } 1136 1137 /* fill in the option. */ 1138 optbuf[2] = IP6OPT_JUMBO; 1139 optbuf[3] = 4; 1140 *(u_int32_t *)&optbuf[4] = htonl(plen + JUMBOOPTLEN); 1141 1142 /* finally, adjust the packet header length */ 1143 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1144 1145 return(0); 1146 #undef JUMBOOPTLEN 1147 } 1148 1149 /* 1150 * Insert fragment header and copy unfragmentable header portions. 1151 */ 1152 static int 1153 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1154 struct mbuf *m0, *m; 1155 int hlen; 1156 struct ip6_frag **frghdrp; 1157 { 1158 struct mbuf *n, *mlast; 1159 1160 if (hlen > sizeof(struct ip6_hdr)) { 1161 n = m_copym(m0, sizeof(struct ip6_hdr), 1162 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1163 if (n == 0) 1164 return(ENOBUFS); 1165 m->m_next = n; 1166 } else 1167 n = m; 1168 1169 /* Search for the last mbuf of unfragmentable part. */ 1170 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1171 ; 1172 1173 if ((mlast->m_flags & M_EXT) == 0 && 1174 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1175 /* use the trailing space of the last mbuf for the fragment hdr */ 1176 *frghdrp = 1177 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1178 mlast->m_len += sizeof(struct ip6_frag); 1179 m->m_pkthdr.len += sizeof(struct ip6_frag); 1180 } else { 1181 /* allocate a new mbuf for the fragment header */ 1182 struct mbuf *mfrg; 1183 1184 MGET(mfrg, M_DONTWAIT, MT_DATA); 1185 if (mfrg == 0) 1186 return(ENOBUFS); 1187 mfrg->m_len = sizeof(struct ip6_frag); 1188 *frghdrp = mtod(mfrg, struct ip6_frag *); 1189 mlast->m_next = mfrg; 1190 } 1191 1192 return(0); 1193 } 1194 1195 /* 1196 * IP6 socket option processing. 1197 */ 1198 int 1199 ip6_ctloutput(op, so, level, optname, mp) 1200 int op; 1201 struct socket *so; 1202 int level, optname; 1203 struct mbuf **mp; 1204 { 1205 register struct in6pcb *in6p = sotoin6pcb(so); 1206 register struct mbuf *m = *mp; 1207 register int optval = 0; 1208 int error = 0; 1209 struct proc *p = curproc; /* XXX */ 1210 1211 if (level == IPPROTO_IPV6) { 1212 switch (op) { 1213 1214 case PRCO_SETOPT: 1215 switch (optname) { 1216 case IPV6_PKTOPTIONS: 1217 /* m is freed in ip6_pcbopts */ 1218 return(ip6_pcbopts(&in6p->in6p_outputopts, 1219 m, so)); 1220 case IPV6_HOPOPTS: 1221 case IPV6_DSTOPTS: 1222 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1223 error = EPERM; 1224 break; 1225 } 1226 /* fall through */ 1227 case IPV6_UNICAST_HOPS: 1228 case IPV6_RECVOPTS: 1229 case IPV6_RECVRETOPTS: 1230 case IPV6_RECVDSTADDR: 1231 case IPV6_PKTINFO: 1232 case IPV6_HOPLIMIT: 1233 case IPV6_RTHDR: 1234 case IPV6_CHECKSUM: 1235 case IPV6_FAITH: 1236 #ifndef INET6_BINDV6ONLY 1237 case IPV6_BINDV6ONLY: 1238 #endif 1239 if (!m || m->m_len != sizeof(int)) 1240 error = EINVAL; 1241 else { 1242 optval = *mtod(m, int *); 1243 switch (optname) { 1244 1245 case IPV6_UNICAST_HOPS: 1246 if (optval < -1 || optval >= 256) 1247 error = EINVAL; 1248 else { 1249 /* -1 = kernel default */ 1250 in6p->in6p_hops = optval; 1251 } 1252 break; 1253 #define OPTSET(bit) \ 1254 if (optval) \ 1255 in6p->in6p_flags |= bit; \ 1256 else \ 1257 in6p->in6p_flags &= ~bit; 1258 1259 case IPV6_RECVOPTS: 1260 OPTSET(IN6P_RECVOPTS); 1261 break; 1262 1263 case IPV6_RECVRETOPTS: 1264 OPTSET(IN6P_RECVRETOPTS); 1265 break; 1266 1267 case IPV6_RECVDSTADDR: 1268 OPTSET(IN6P_RECVDSTADDR); 1269 break; 1270 1271 case IPV6_PKTINFO: 1272 OPTSET(IN6P_PKTINFO); 1273 break; 1274 1275 case IPV6_HOPLIMIT: 1276 OPTSET(IN6P_HOPLIMIT); 1277 break; 1278 1279 case IPV6_HOPOPTS: 1280 OPTSET(IN6P_HOPOPTS); 1281 break; 1282 1283 case IPV6_DSTOPTS: 1284 OPTSET(IN6P_DSTOPTS); 1285 break; 1286 1287 case IPV6_RTHDR: 1288 OPTSET(IN6P_RTHDR); 1289 break; 1290 1291 case IPV6_CHECKSUM: 1292 in6p->in6p_cksum = optval; 1293 break; 1294 1295 case IPV6_FAITH: 1296 OPTSET(IN6P_FAITH); 1297 break; 1298 1299 #ifndef INET6_BINDV6ONLY 1300 case IPV6_BINDV6ONLY: 1301 OPTSET(IN6P_BINDV6ONLY); 1302 break; 1303 #endif 1304 } 1305 } 1306 break; 1307 #undef OPTSET 1308 1309 case IPV6_MULTICAST_IF: 1310 case IPV6_MULTICAST_HOPS: 1311 case IPV6_MULTICAST_LOOP: 1312 case IPV6_JOIN_GROUP: 1313 case IPV6_LEAVE_GROUP: 1314 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m); 1315 break; 1316 1317 case IPV6_PORTRANGE: 1318 optval = *mtod(m, int *); 1319 1320 switch (optval) { 1321 case IPV6_PORTRANGE_DEFAULT: 1322 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1323 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1324 break; 1325 1326 case IPV6_PORTRANGE_HIGH: 1327 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1328 in6p->in6p_flags |= IN6P_HIGHPORT; 1329 break; 1330 1331 case IPV6_PORTRANGE_LOW: 1332 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1333 in6p->in6p_flags |= IN6P_LOWPORT; 1334 break; 1335 1336 default: 1337 error = EINVAL; 1338 break; 1339 } 1340 break; 1341 1342 #ifdef IPSEC 1343 case IPV6_IPSEC_POLICY: 1344 { 1345 caddr_t req = NULL; 1346 size_t len = 0; 1347 1348 int priv = 0; 1349 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) 1350 priv = 0; 1351 else 1352 priv = 1; 1353 if (m) { 1354 req = mtod(m, caddr_t); 1355 len = m->m_len; 1356 } 1357 error = ipsec6_set_policy(in6p, 1358 optname, req, len, priv); 1359 } 1360 break; 1361 #endif /* IPSEC */ 1362 1363 default: 1364 error = ENOPROTOOPT; 1365 break; 1366 } 1367 if (m) 1368 (void)m_free(m); 1369 break; 1370 1371 case PRCO_GETOPT: 1372 switch (optname) { 1373 1374 case IPV6_OPTIONS: 1375 case IPV6_RETOPTS: 1376 #if 0 1377 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1378 if (in6p->in6p_options) { 1379 m->m_len = in6p->in6p_options->m_len; 1380 bcopy(mtod(in6p->in6p_options, caddr_t), 1381 mtod(m, caddr_t), 1382 (unsigned)m->m_len); 1383 } else 1384 m->m_len = 0; 1385 break; 1386 #else 1387 error = ENOPROTOOPT; 1388 break; 1389 #endif 1390 1391 case IPV6_PKTOPTIONS: 1392 if (in6p->in6p_options) { 1393 *mp = m_copym(in6p->in6p_options, 0, 1394 M_COPYALL, M_WAIT); 1395 } else { 1396 *mp = m_get(M_WAIT, MT_SOOPTS); 1397 (*mp)->m_len = 0; 1398 } 1399 break; 1400 1401 case IPV6_HOPOPTS: 1402 case IPV6_DSTOPTS: 1403 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1404 error = EPERM; 1405 break; 1406 } 1407 /* fall through */ 1408 case IPV6_UNICAST_HOPS: 1409 case IPV6_RECVOPTS: 1410 case IPV6_RECVRETOPTS: 1411 case IPV6_RECVDSTADDR: 1412 case IPV6_PORTRANGE: 1413 case IPV6_PKTINFO: 1414 case IPV6_HOPLIMIT: 1415 case IPV6_RTHDR: 1416 case IPV6_CHECKSUM: 1417 case IPV6_FAITH: 1418 #ifndef INET6_BINDV6ONLY 1419 case IPV6_BINDV6ONLY: 1420 #endif 1421 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1422 m->m_len = sizeof(int); 1423 switch (optname) { 1424 1425 case IPV6_UNICAST_HOPS: 1426 optval = in6p->in6p_hops; 1427 break; 1428 1429 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0) 1430 1431 case IPV6_RECVOPTS: 1432 optval = OPTBIT(IN6P_RECVOPTS); 1433 break; 1434 1435 case IPV6_RECVRETOPTS: 1436 optval = OPTBIT(IN6P_RECVRETOPTS); 1437 break; 1438 1439 case IPV6_RECVDSTADDR: 1440 optval = OPTBIT(IN6P_RECVDSTADDR); 1441 break; 1442 1443 case IPV6_PORTRANGE: 1444 { 1445 int flags; 1446 flags = in6p->in6p_flags; 1447 if (flags & IN6P_HIGHPORT) 1448 optval = IPV6_PORTRANGE_HIGH; 1449 else if (flags & IN6P_LOWPORT) 1450 optval = IPV6_PORTRANGE_LOW; 1451 else 1452 optval = 0; 1453 break; 1454 } 1455 1456 case IPV6_PKTINFO: 1457 optval = OPTBIT(IN6P_PKTINFO); 1458 break; 1459 1460 case IPV6_HOPLIMIT: 1461 optval = OPTBIT(IN6P_HOPLIMIT); 1462 break; 1463 1464 case IPV6_HOPOPTS: 1465 optval = OPTBIT(IN6P_HOPOPTS); 1466 break; 1467 1468 case IPV6_DSTOPTS: 1469 optval = OPTBIT(IN6P_DSTOPTS); 1470 break; 1471 1472 case IPV6_RTHDR: 1473 optval = OPTBIT(IN6P_RTHDR); 1474 break; 1475 1476 case IPV6_CHECKSUM: 1477 optval = in6p->in6p_cksum; 1478 break; 1479 1480 case IPV6_FAITH: 1481 optval = OPTBIT(IN6P_FAITH); 1482 break; 1483 1484 #ifndef INET6_BINDV6ONLY 1485 case IPV6_BINDV6ONLY: 1486 optval = OPTBIT(IN6P_BINDV6ONLY); 1487 break; 1488 #endif 1489 } 1490 *mtod(m, int *) = optval; 1491 break; 1492 1493 case IPV6_MULTICAST_IF: 1494 case IPV6_MULTICAST_HOPS: 1495 case IPV6_MULTICAST_LOOP: 1496 case IPV6_JOIN_GROUP: 1497 case IPV6_LEAVE_GROUP: 1498 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp); 1499 break; 1500 1501 #ifdef IPSEC 1502 case IPV6_IPSEC_POLICY: 1503 { 1504 caddr_t req = NULL; 1505 size_t len = 0; 1506 1507 if (m) { 1508 req = mtod(m, caddr_t); 1509 len = m->m_len; 1510 } 1511 error = ipsec6_get_policy(in6p, req, len, mp); 1512 break; 1513 } 1514 #endif /* IPSEC */ 1515 1516 default: 1517 error = ENOPROTOOPT; 1518 break; 1519 } 1520 break; 1521 } 1522 } else { 1523 error = EINVAL; 1524 if (op == PRCO_SETOPT && *mp) 1525 (void)m_free(*mp); 1526 } 1527 return(error); 1528 } 1529 1530 /* 1531 * Set up IP6 options in pcb for insertion in output packets. 1532 * Store in mbuf with pointer in pcbopt, adding pseudo-option 1533 * with destination address if source routed. 1534 */ 1535 static int 1536 ip6_pcbopts(pktopt, m, so) 1537 struct ip6_pktopts **pktopt; 1538 register struct mbuf *m; 1539 struct socket *so; 1540 { 1541 register struct ip6_pktopts *opt = *pktopt; 1542 int error = 0; 1543 struct proc *p = curproc; /* XXX */ 1544 int priv = 0; 1545 1546 /* turn off any old options. */ 1547 if (opt) { 1548 if (opt->ip6po_m) 1549 (void)m_free(opt->ip6po_m); 1550 } else 1551 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 1552 *pktopt = 0; 1553 1554 if (!m || m->m_len == 0) { 1555 /* 1556 * Only turning off any previous options. 1557 */ 1558 if (opt) 1559 free(opt, M_IP6OPT); 1560 if (m) 1561 (void)m_free(m); 1562 return(0); 1563 } 1564 1565 /* set options specified by user. */ 1566 if (p && !suser(p->p_ucred, &p->p_acflag)) 1567 priv = 1; 1568 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) { 1569 (void)m_free(m); 1570 return(error); 1571 } 1572 *pktopt = opt; 1573 return(0); 1574 } 1575 1576 /* 1577 * Set the IP6 multicast options in response to user setsockopt(). 1578 */ 1579 static int 1580 ip6_setmoptions(optname, im6op, m) 1581 int optname; 1582 struct ip6_moptions **im6op; 1583 struct mbuf *m; 1584 { 1585 int error = 0; 1586 u_int loop, ifindex; 1587 struct ipv6_mreq *mreq; 1588 struct ifnet *ifp; 1589 struct ip6_moptions *im6o = *im6op; 1590 struct route_in6 ro; 1591 struct sockaddr_in6 *dst; 1592 struct in6_multi_mship *imm; 1593 struct proc *p = curproc; /* XXX */ 1594 1595 if (im6o == NULL) { 1596 /* 1597 * No multicast option buffer attached to the pcb; 1598 * allocate one and initialize to default values. 1599 */ 1600 im6o = (struct ip6_moptions *) 1601 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1602 1603 if (im6o == NULL) 1604 return(ENOBUFS); 1605 *im6op = im6o; 1606 im6o->im6o_multicast_ifp = NULL; 1607 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1608 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1609 LIST_INIT(&im6o->im6o_memberships); 1610 } 1611 1612 switch (optname) { 1613 1614 case IPV6_MULTICAST_IF: 1615 /* 1616 * Select the interface for outgoing multicast packets. 1617 */ 1618 if (m == NULL || m->m_len != sizeof(u_int)) { 1619 error = EINVAL; 1620 break; 1621 } 1622 ifindex = *(mtod(m, u_int *)); 1623 if (ifindex < 0 || if_index < ifindex) { 1624 error = ENXIO; /* XXX EINVAL? */ 1625 break; 1626 } 1627 ifp = ifindex2ifnet[ifindex]; 1628 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1629 error = EADDRNOTAVAIL; 1630 break; 1631 } 1632 im6o->im6o_multicast_ifp = ifp; 1633 break; 1634 1635 case IPV6_MULTICAST_HOPS: 1636 { 1637 /* 1638 * Set the IP6 hoplimit for outgoing multicast packets. 1639 */ 1640 int optval; 1641 if (m == NULL || m->m_len != sizeof(int)) { 1642 error = EINVAL; 1643 break; 1644 } 1645 optval = *(mtod(m, u_int *)); 1646 if (optval < -1 || optval >= 256) 1647 error = EINVAL; 1648 else if (optval == -1) 1649 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1650 else 1651 im6o->im6o_multicast_hlim = optval; 1652 break; 1653 } 1654 1655 case IPV6_MULTICAST_LOOP: 1656 /* 1657 * Set the loopback flag for outgoing multicast packets. 1658 * Must be zero or one. 1659 */ 1660 if (m == NULL || m->m_len != sizeof(u_int) || 1661 (loop = *(mtod(m, u_int *))) > 1) { 1662 error = EINVAL; 1663 break; 1664 } 1665 im6o->im6o_multicast_loop = loop; 1666 break; 1667 1668 case IPV6_JOIN_GROUP: 1669 /* 1670 * Add a multicast group membership. 1671 * Group must be a valid IP6 multicast address. 1672 */ 1673 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1674 error = EINVAL; 1675 break; 1676 } 1677 mreq = mtod(m, struct ipv6_mreq *); 1678 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1679 /* 1680 * We use the unspecified address to specify to accept 1681 * all multicast addresses. Only super user is allowed 1682 * to do this. 1683 */ 1684 if (suser(p->p_ucred, &p->p_acflag)) { 1685 error = EACCES; 1686 break; 1687 } 1688 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1689 error = EINVAL; 1690 break; 1691 } 1692 1693 /* 1694 * If the interface is specified, validate it. 1695 */ 1696 if (mreq->ipv6mr_interface < 0 1697 || if_index < mreq->ipv6mr_interface) { 1698 error = ENXIO; /* XXX EINVAL? */ 1699 break; 1700 } 1701 /* 1702 * If no interface was explicitly specified, choose an 1703 * appropriate one according to the given multicast address. 1704 */ 1705 if (mreq->ipv6mr_interface == 0) { 1706 /* 1707 * If the multicast address is in node-local scope, 1708 * the interface should be a loopback interface. 1709 * Otherwise, look up the routing table for the 1710 * address, and choose the outgoing interface. 1711 * XXX: is it a good approach? 1712 */ 1713 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 1714 ifp = &loif[0]; 1715 } else { 1716 ro.ro_rt = NULL; 1717 dst = (struct sockaddr_in6 *)&ro.ro_dst; 1718 bzero(dst, sizeof(*dst)); 1719 dst->sin6_len = sizeof(struct sockaddr_in6); 1720 dst->sin6_family = AF_INET6; 1721 dst->sin6_addr = mreq->ipv6mr_multiaddr; 1722 rtalloc((struct route *)&ro); 1723 if (ro.ro_rt == NULL) { 1724 error = EADDRNOTAVAIL; 1725 break; 1726 } 1727 ifp = ro.ro_rt->rt_ifp; 1728 rtfree(ro.ro_rt); 1729 } 1730 } else 1731 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1732 1733 /* 1734 * See if we found an interface, and confirm that it 1735 * supports multicast 1736 */ 1737 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1738 error = EADDRNOTAVAIL; 1739 break; 1740 } 1741 /* 1742 * Put interface index into the multicast address, 1743 * if the address has link-local scope. 1744 */ 1745 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1746 mreq->ipv6mr_multiaddr.s6_addr16[1] 1747 = htons(mreq->ipv6mr_interface); 1748 } 1749 /* 1750 * See if the membership already exists. 1751 */ 1752 for (imm = im6o->im6o_memberships.lh_first; 1753 imm != NULL; imm = imm->i6mm_chain.le_next) 1754 if (imm->i6mm_maddr->in6m_ifp == ifp && 1755 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1756 &mreq->ipv6mr_multiaddr)) 1757 break; 1758 if (imm != NULL) { 1759 error = EADDRINUSE; 1760 break; 1761 } 1762 /* 1763 * Everything looks good; add a new record to the multicast 1764 * address list for the given interface. 1765 */ 1766 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 1767 if (imm == NULL) { 1768 error = ENOBUFS; 1769 break; 1770 } 1771 if ((imm->i6mm_maddr = 1772 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 1773 free(imm, M_IPMADDR); 1774 break; 1775 } 1776 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 1777 break; 1778 1779 case IPV6_LEAVE_GROUP: 1780 /* 1781 * Drop a multicast group membership. 1782 * Group must be a valid IP6 multicast address. 1783 */ 1784 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1785 error = EINVAL; 1786 break; 1787 } 1788 mreq = mtod(m, struct ipv6_mreq *); 1789 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1790 if (suser(p->p_ucred, &p->p_acflag)) { 1791 error = EACCES; 1792 break; 1793 } 1794 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1795 error = EINVAL; 1796 break; 1797 } 1798 /* 1799 * If an interface address was specified, get a pointer 1800 * to its ifnet structure. 1801 */ 1802 if (mreq->ipv6mr_interface < 0 1803 || if_index < mreq->ipv6mr_interface) { 1804 error = ENXIO; /* XXX EINVAL? */ 1805 break; 1806 } 1807 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1808 /* 1809 * Put interface index into the multicast address, 1810 * if the address has link-local scope. 1811 */ 1812 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1813 mreq->ipv6mr_multiaddr.s6_addr16[1] 1814 = htons(mreq->ipv6mr_interface); 1815 } 1816 /* 1817 * Find the membership in the membership list. 1818 */ 1819 for (imm = im6o->im6o_memberships.lh_first; 1820 imm != NULL; imm = imm->i6mm_chain.le_next) { 1821 if ((ifp == NULL || 1822 imm->i6mm_maddr->in6m_ifp == ifp) && 1823 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1824 &mreq->ipv6mr_multiaddr)) 1825 break; 1826 } 1827 if (imm == NULL) { 1828 /* Unable to resolve interface */ 1829 error = EADDRNOTAVAIL; 1830 break; 1831 } 1832 /* 1833 * Give up the multicast address record to which the 1834 * membership points. 1835 */ 1836 LIST_REMOVE(imm, i6mm_chain); 1837 in6_delmulti(imm->i6mm_maddr); 1838 free(imm, M_IPMADDR); 1839 break; 1840 1841 default: 1842 error = EOPNOTSUPP; 1843 break; 1844 } 1845 1846 /* 1847 * If all options have default values, no need to keep the mbuf. 1848 */ 1849 if (im6o->im6o_multicast_ifp == NULL && 1850 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 1851 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 1852 im6o->im6o_memberships.lh_first == NULL) { 1853 free(*im6op, M_IPMOPTS); 1854 *im6op = NULL; 1855 } 1856 1857 return(error); 1858 } 1859 1860 /* 1861 * Return the IP6 multicast options in response to user getsockopt(). 1862 */ 1863 static int 1864 ip6_getmoptions(optname, im6o, mp) 1865 int optname; 1866 register struct ip6_moptions *im6o; 1867 register struct mbuf **mp; 1868 { 1869 u_int *hlim, *loop, *ifindex; 1870 1871 *mp = m_get(M_WAIT, MT_SOOPTS); 1872 1873 switch (optname) { 1874 1875 case IPV6_MULTICAST_IF: 1876 ifindex = mtod(*mp, u_int *); 1877 (*mp)->m_len = sizeof(u_int); 1878 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 1879 *ifindex = 0; 1880 else 1881 *ifindex = im6o->im6o_multicast_ifp->if_index; 1882 return(0); 1883 1884 case IPV6_MULTICAST_HOPS: 1885 hlim = mtod(*mp, u_int *); 1886 (*mp)->m_len = sizeof(u_int); 1887 if (im6o == NULL) 1888 *hlim = ip6_defmcasthlim; 1889 else 1890 *hlim = im6o->im6o_multicast_hlim; 1891 return(0); 1892 1893 case IPV6_MULTICAST_LOOP: 1894 loop = mtod(*mp, u_int *); 1895 (*mp)->m_len = sizeof(u_int); 1896 if (im6o == NULL) 1897 *loop = ip6_defmcasthlim; 1898 else 1899 *loop = im6o->im6o_multicast_loop; 1900 return(0); 1901 1902 default: 1903 return(EOPNOTSUPP); 1904 } 1905 } 1906 1907 /* 1908 * Discard the IP6 multicast options. 1909 */ 1910 void 1911 ip6_freemoptions(im6o) 1912 register struct ip6_moptions *im6o; 1913 { 1914 struct in6_multi_mship *imm; 1915 1916 if (im6o == NULL) 1917 return; 1918 1919 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 1920 LIST_REMOVE(imm, i6mm_chain); 1921 if (imm->i6mm_maddr) 1922 in6_delmulti(imm->i6mm_maddr); 1923 free(imm, M_IPMADDR); 1924 } 1925 free(im6o, M_IPMOPTS); 1926 } 1927 1928 /* 1929 * Set IPv6 outgoing packet options based on advanced API. 1930 */ 1931 int 1932 ip6_setpktoptions(control, opt, priv) 1933 struct mbuf *control; 1934 struct ip6_pktopts *opt; 1935 int priv; 1936 { 1937 register struct cmsghdr *cm = 0; 1938 1939 if (control == 0 || opt == 0) 1940 return(EINVAL); 1941 1942 bzero(opt, sizeof(*opt)); 1943 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */ 1944 1945 /* 1946 * XXX: Currently, we assume all the optional information is stored 1947 * in a single mbuf. 1948 */ 1949 if (control->m_next) 1950 return(EINVAL); 1951 1952 opt->ip6po_m = control; 1953 1954 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 1955 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1956 cm = mtod(control, struct cmsghdr *); 1957 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 1958 return(EINVAL); 1959 if (cm->cmsg_level != IPPROTO_IPV6) 1960 continue; 1961 1962 switch(cm->cmsg_type) { 1963 case IPV6_PKTINFO: 1964 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 1965 return(EINVAL); 1966 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 1967 if (opt->ip6po_pktinfo->ipi6_ifindex && 1968 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr)) 1969 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] = 1970 htons(opt->ip6po_pktinfo->ipi6_ifindex); 1971 1972 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index 1973 || opt->ip6po_pktinfo->ipi6_ifindex < 0) { 1974 return(ENXIO); 1975 } 1976 1977 /* 1978 * Check if the requested source address is indeed a 1979 * unicast address assigned to the node. 1980 */ 1981 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 1982 struct ifaddr *ia; 1983 struct sockaddr_in6 sin6; 1984 1985 bzero(&sin6, sizeof(sin6)); 1986 sin6.sin6_len = sizeof(sin6); 1987 sin6.sin6_family = AF_INET6; 1988 sin6.sin6_addr = 1989 opt->ip6po_pktinfo->ipi6_addr; 1990 ia = ifa_ifwithaddr(sin6tosa(&sin6)); 1991 if (ia == NULL || 1992 (opt->ip6po_pktinfo->ipi6_ifindex && 1993 (ia->ifa_ifp->if_index != 1994 opt->ip6po_pktinfo->ipi6_ifindex))) { 1995 return(EADDRNOTAVAIL); 1996 } 1997 /* 1998 * Check if the requested source address is 1999 * indeed a unicast address assigned to the 2000 * node. 2001 */ 2002 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr)) 2003 return(EADDRNOTAVAIL); 2004 } 2005 break; 2006 2007 case IPV6_HOPLIMIT: 2008 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 2009 return(EINVAL); 2010 2011 opt->ip6po_hlim = *(int *)CMSG_DATA(cm); 2012 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255) 2013 return(EINVAL); 2014 break; 2015 2016 case IPV6_NEXTHOP: 2017 if (!priv) 2018 return(EPERM); 2019 2020 if (cm->cmsg_len < sizeof(u_char) || 2021 /* check if cmsg_len is large enough for sa_len */ 2022 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 2023 return(EINVAL); 2024 2025 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm); 2026 2027 break; 2028 2029 case IPV6_HOPOPTS: 2030 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2031 return(EINVAL); 2032 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm); 2033 if (cm->cmsg_len != 2034 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3)) 2035 return(EINVAL); 2036 break; 2037 2038 case IPV6_DSTOPTS: 2039 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2040 return(EINVAL); 2041 2042 /* 2043 * If there is no routing header yet, the destination 2044 * options header should be put on the 1st part. 2045 * Otherwise, the header should be on the 2nd part. 2046 * (See RFC 2460, section 4.1) 2047 */ 2048 if (opt->ip6po_rthdr == NULL) { 2049 opt->ip6po_dest1 = 2050 (struct ip6_dest *)CMSG_DATA(cm); 2051 if (cm->cmsg_len != 2052 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1) 2053 << 3)) 2054 return(EINVAL); 2055 } 2056 else { 2057 opt->ip6po_dest2 = 2058 (struct ip6_dest *)CMSG_DATA(cm); 2059 if (cm->cmsg_len != 2060 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) 2061 << 3)) 2062 return(EINVAL); 2063 } 2064 break; 2065 2066 case IPV6_RTHDR: 2067 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2068 return(EINVAL); 2069 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm); 2070 if (cm->cmsg_len != 2071 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3)) 2072 return(EINVAL); 2073 switch(opt->ip6po_rthdr->ip6r_type) { 2074 case IPV6_RTHDR_TYPE_0: 2075 if (opt->ip6po_rthdr->ip6r_segleft == 0) 2076 return(EINVAL); 2077 break; 2078 default: 2079 return(EINVAL); 2080 } 2081 break; 2082 2083 default: 2084 return(ENOPROTOOPT); 2085 } 2086 } 2087 2088 return(0); 2089 } 2090 2091 /* 2092 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2093 * packet to the input queue of a specified interface. Note that this 2094 * calls the output routine of the loopback "driver", but with an interface 2095 * pointer that might NOT be &loif -- easier than replicating that code here. 2096 */ 2097 void 2098 ip6_mloopback(ifp, m, dst) 2099 struct ifnet *ifp; 2100 register struct mbuf *m; 2101 register struct sockaddr_in6 *dst; 2102 { 2103 struct mbuf *copym; 2104 struct ip6_hdr *ip6; 2105 2106 copym = m_copy(m, 0, M_COPYALL); 2107 if (copym == NULL) 2108 return; 2109 2110 /* 2111 * Make sure to deep-copy IPv6 header portion in case the data 2112 * is in an mbuf cluster, so that we can safely override the IPv6 2113 * header portion later. 2114 */ 2115 if ((copym->m_flags & M_EXT) != 0 || 2116 copym->m_len < sizeof(struct ip6_hdr)) { 2117 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2118 if (copym == NULL) 2119 return; 2120 } 2121 2122 #ifdef DIAGNOSTIC 2123 if (copym->m_len < sizeof(*ip6)) { 2124 m_freem(copym); 2125 return; 2126 } 2127 #endif 2128 2129 #ifndef FAKE_LOOPBACK_IF 2130 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2131 #else 2132 if (1) 2133 #endif 2134 { 2135 ip6 = mtod(copym, struct ip6_hdr *); 2136 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 2137 ip6->ip6_src.s6_addr16[1] = 0; 2138 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 2139 ip6->ip6_dst.s6_addr16[1] = 0; 2140 } 2141 2142 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL); 2143 } 2144 2145 /* 2146 * Chop IPv6 header off from the payload. 2147 */ 2148 static int 2149 ip6_splithdr(m, exthdrs) 2150 struct mbuf *m; 2151 struct ip6_exthdrs *exthdrs; 2152 { 2153 struct mbuf *mh; 2154 struct ip6_hdr *ip6; 2155 2156 ip6 = mtod(m, struct ip6_hdr *); 2157 if (m->m_len > sizeof(*ip6)) { 2158 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2159 if (mh == 0) { 2160 m_freem(m); 2161 return ENOBUFS; 2162 } 2163 M_COPY_PKTHDR(mh, m); 2164 MH_ALIGN(mh, sizeof(*ip6)); 2165 m->m_flags &= ~M_PKTHDR; 2166 m->m_len -= sizeof(*ip6); 2167 m->m_data += sizeof(*ip6); 2168 mh->m_next = m; 2169 m = mh; 2170 m->m_len = sizeof(*ip6); 2171 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2172 } 2173 exthdrs->ip6e_ip6 = m; 2174 return 0; 2175 } 2176 2177 /* 2178 * Compute IPv6 extension header length. 2179 */ 2180 int 2181 ip6_optlen(in6p) 2182 struct in6pcb *in6p; 2183 { 2184 int len; 2185 2186 if (!in6p->in6p_outputopts) 2187 return 0; 2188 2189 len = 0; 2190 #define elen(x) \ 2191 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2192 2193 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2194 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2195 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2196 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2197 return len; 2198 #undef elen 2199 } 2200