1 /* $NetBSD: ip6_output.c,v 1.31 2001/02/10 04:14:28 itojun Exp $ */ 2 /* $KAME: ip6_output.c,v 1.152 2001/02/02 15:36:33 jinmei Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 66 */ 67 68 #include "opt_inet.h" 69 #include "opt_ipsec.h" 70 #include "opt_pfil_hooks.h" 71 72 #include <sys/param.h> 73 #include <sys/malloc.h> 74 #include <sys/mbuf.h> 75 #include <sys/errno.h> 76 #include <sys/protosw.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/systm.h> 80 #include <sys/proc.h> 81 82 #include <net/if.h> 83 #include <net/route.h> 84 #ifdef PFIL_HOOKS 85 #include <net/pfil.h> 86 #endif 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/ip6.h> 91 #include <netinet/icmp6.h> 92 #include <netinet6/ip6_var.h> 93 #include <netinet6/in6_pcb.h> 94 #include <netinet6/nd6.h> 95 96 #ifdef IPSEC 97 #include <netinet6/ipsec.h> 98 #include <netkey/key.h> 99 #endif /* IPSEC */ 100 101 #include "loop.h" 102 103 #include <net/net_osdep.h> 104 105 #ifdef IPV6FIREWALL 106 #include <netinet6/ip6_fw.h> 107 #endif 108 109 #ifdef PFIL_HOOKS 110 extern struct pfil_head inet6_pfil_hook; /* XXX */ 111 #endif 112 113 struct ip6_exthdrs { 114 struct mbuf *ip6e_ip6; 115 struct mbuf *ip6e_hbh; 116 struct mbuf *ip6e_dest1; 117 struct mbuf *ip6e_rthdr; 118 struct mbuf *ip6e_dest2; 119 }; 120 121 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 122 struct socket *)); 123 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 124 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 125 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 126 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 127 struct ip6_frag **)); 128 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 129 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 130 131 extern struct ifnet loif[NLOOP]; 132 133 /* 134 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 135 * header (with pri, len, nxt, hlim, src, dst). 136 * This function may modify ver and hlim only. 137 * The mbuf chain containing the packet will be freed. 138 * The mbuf opt, if present, will not be freed. 139 */ 140 int 141 ip6_output(m0, opt, ro, flags, im6o, ifpp) 142 struct mbuf *m0; 143 struct ip6_pktopts *opt; 144 struct route_in6 *ro; 145 int flags; 146 struct ip6_moptions *im6o; 147 struct ifnet **ifpp; /* XXX: just for statistics */ 148 { 149 struct ip6_hdr *ip6, *mhip6; 150 struct ifnet *ifp, *origifp; 151 struct mbuf *m = m0; 152 int hlen, tlen, len, off; 153 struct route_in6 ip6route; 154 struct sockaddr_in6 *dst; 155 int error = 0; 156 struct in6_ifaddr *ia; 157 u_long mtu; 158 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 159 struct ip6_exthdrs exthdrs; 160 struct in6_addr finaldst; 161 struct route_in6 *ro_pmtu = NULL; 162 int hdrsplit = 0; 163 int needipsec = 0; 164 #ifdef IPSEC 165 int needipsectun = 0; 166 struct socket *so; 167 struct secpolicy *sp = NULL; 168 169 /* for AH processing. stupid to have "socket" variable in IP layer... */ 170 so = ipsec_getsocket(m); 171 (void)ipsec_setsocket(m, NULL); 172 ip6 = mtod(m, struct ip6_hdr *); 173 #endif /* IPSEC */ 174 175 #define MAKE_EXTHDR(hp, mp) \ 176 do { \ 177 if (hp) { \ 178 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 179 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 180 ((eh)->ip6e_len + 1) << 3); \ 181 if (error) \ 182 goto freehdrs; \ 183 } \ 184 } while (0) 185 186 bzero(&exthdrs, sizeof(exthdrs)); 187 if (opt) { 188 /* Hop-by-Hop options header */ 189 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 190 /* Destination options header(1st part) */ 191 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 192 /* Routing header */ 193 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 194 /* Destination options header(2nd part) */ 195 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 196 } 197 198 #ifdef IPSEC 199 /* get a security policy for this packet */ 200 if (so == NULL) 201 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 202 else 203 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 204 205 if (sp == NULL) { 206 ipsec6stat.out_inval++; 207 goto freehdrs; 208 } 209 210 error = 0; 211 212 /* check policy */ 213 switch (sp->policy) { 214 case IPSEC_POLICY_DISCARD: 215 /* 216 * This packet is just discarded. 217 */ 218 ipsec6stat.out_polvio++; 219 goto freehdrs; 220 221 case IPSEC_POLICY_BYPASS: 222 case IPSEC_POLICY_NONE: 223 /* no need to do IPsec. */ 224 needipsec = 0; 225 break; 226 227 case IPSEC_POLICY_IPSEC: 228 if (sp->req == NULL) { 229 /* XXX should be panic ? */ 230 printf("ip6_output: No IPsec request specified.\n"); 231 error = EINVAL; 232 goto freehdrs; 233 } 234 needipsec = 1; 235 break; 236 237 case IPSEC_POLICY_ENTRUST: 238 default: 239 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 240 } 241 #endif /* IPSEC */ 242 243 /* 244 * Calculate the total length of the extension header chain. 245 * Keep the length of the unfragmentable part for fragmentation. 246 */ 247 optlen = 0; 248 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 249 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 250 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 251 unfragpartlen = optlen + sizeof(struct ip6_hdr); 252 /* NOTE: we don't add AH/ESP length here. do that later. */ 253 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 254 255 /* 256 * If we need IPsec, or there is at least one extension header, 257 * separate IP6 header from the payload. 258 */ 259 if ((needipsec || optlen) && !hdrsplit) { 260 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 261 m = NULL; 262 goto freehdrs; 263 } 264 m = exthdrs.ip6e_ip6; 265 hdrsplit++; 266 } 267 268 /* adjust pointer */ 269 ip6 = mtod(m, struct ip6_hdr *); 270 271 /* adjust mbuf packet header length */ 272 m->m_pkthdr.len += optlen; 273 plen = m->m_pkthdr.len - sizeof(*ip6); 274 275 /* If this is a jumbo payload, insert a jumbo payload option. */ 276 if (plen > IPV6_MAXPACKET) { 277 if (!hdrsplit) { 278 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 279 m = NULL; 280 goto freehdrs; 281 } 282 m = exthdrs.ip6e_ip6; 283 hdrsplit++; 284 } 285 /* adjust pointer */ 286 ip6 = mtod(m, struct ip6_hdr *); 287 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 288 goto freehdrs; 289 ip6->ip6_plen = 0; 290 } else 291 ip6->ip6_plen = htons(plen); 292 293 /* 294 * Concatenate headers and fill in next header fields. 295 * Here we have, on "m" 296 * IPv6 payload 297 * and we insert headers accordingly. Finally, we should be getting: 298 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 299 * 300 * during the header composing process, "m" points to IPv6 header. 301 * "mprev" points to an extension header prior to esp. 302 */ 303 { 304 u_char *nexthdrp = &ip6->ip6_nxt; 305 struct mbuf *mprev = m; 306 307 /* 308 * we treat dest2 specially. this makes IPsec processing 309 * much easier. 310 * 311 * result: IPv6 dest2 payload 312 * m and mprev will point to IPv6 header. 313 */ 314 if (exthdrs.ip6e_dest2) { 315 if (!hdrsplit) 316 panic("assumption failed: hdr not split"); 317 exthdrs.ip6e_dest2->m_next = m->m_next; 318 m->m_next = exthdrs.ip6e_dest2; 319 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 320 ip6->ip6_nxt = IPPROTO_DSTOPTS; 321 } 322 323 #define MAKE_CHAIN(m, mp, p, i)\ 324 do {\ 325 if (m) {\ 326 if (!hdrsplit) \ 327 panic("assumption failed: hdr not split"); \ 328 *mtod((m), u_char *) = *(p);\ 329 *(p) = (i);\ 330 p = mtod((m), u_char *);\ 331 (m)->m_next = (mp)->m_next;\ 332 (mp)->m_next = (m);\ 333 (mp) = (m);\ 334 }\ 335 } while (0) 336 /* 337 * result: IPv6 hbh dest1 rthdr dest2 payload 338 * m will point to IPv6 header. mprev will point to the 339 * extension header prior to dest2 (rthdr in the above case). 340 */ 341 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, 342 nexthdrp, IPPROTO_HOPOPTS); 343 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, 344 nexthdrp, IPPROTO_DSTOPTS); 345 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, 346 nexthdrp, IPPROTO_ROUTING); 347 348 #ifdef IPSEC 349 if (!needipsec) 350 goto skip_ipsec2; 351 352 /* 353 * pointers after IPsec headers are not valid any more. 354 * other pointers need a great care too. 355 * (IPsec routines should not mangle mbufs prior to AH/ESP) 356 */ 357 exthdrs.ip6e_dest2 = NULL; 358 359 { 360 struct ip6_rthdr *rh = NULL; 361 int segleft_org = 0; 362 struct ipsec_output_state state; 363 364 if (exthdrs.ip6e_rthdr) { 365 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 366 segleft_org = rh->ip6r_segleft; 367 rh->ip6r_segleft = 0; 368 } 369 370 bzero(&state, sizeof(state)); 371 state.m = m; 372 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 373 &needipsectun); 374 m = state.m; 375 if (error) { 376 /* mbuf is already reclaimed in ipsec6_output_trans. */ 377 m = NULL; 378 switch (error) { 379 case EHOSTUNREACH: 380 case ENETUNREACH: 381 case EMSGSIZE: 382 case ENOBUFS: 383 case ENOMEM: 384 break; 385 default: 386 printf("ip6_output (ipsec): error code %d\n", error); 387 /*fall through*/ 388 case ENOENT: 389 /* don't show these error codes to the user */ 390 error = 0; 391 break; 392 } 393 goto bad; 394 } 395 if (exthdrs.ip6e_rthdr) { 396 /* ah6_output doesn't modify mbuf chain */ 397 rh->ip6r_segleft = segleft_org; 398 } 399 } 400 skip_ipsec2:; 401 #endif 402 } 403 404 /* 405 * If there is a routing header, replace destination address field 406 * with the first hop of the routing header. 407 */ 408 if (exthdrs.ip6e_rthdr) { 409 struct ip6_rthdr *rh = 410 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 411 struct ip6_rthdr *)); 412 struct ip6_rthdr0 *rh0; 413 414 finaldst = ip6->ip6_dst; 415 switch (rh->ip6r_type) { 416 case IPV6_RTHDR_TYPE_0: 417 rh0 = (struct ip6_rthdr0 *)rh; 418 ip6->ip6_dst = rh0->ip6r0_addr[0]; 419 bcopy((caddr_t)&rh0->ip6r0_addr[1], 420 (caddr_t)&rh0->ip6r0_addr[0], 421 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1) 422 ); 423 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst; 424 break; 425 default: /* is it possible? */ 426 error = EINVAL; 427 goto bad; 428 } 429 } 430 431 /* Source address validation */ 432 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 433 (flags & IPV6_DADOUTPUT) == 0) { 434 error = EOPNOTSUPP; 435 ip6stat.ip6s_badscope++; 436 goto bad; 437 } 438 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 439 error = EOPNOTSUPP; 440 ip6stat.ip6s_badscope++; 441 goto bad; 442 } 443 444 ip6stat.ip6s_localout++; 445 446 /* 447 * Route packet. 448 */ 449 if (ro == 0) { 450 ro = &ip6route; 451 bzero((caddr_t)ro, sizeof(*ro)); 452 } 453 ro_pmtu = ro; 454 if (opt && opt->ip6po_rthdr) 455 ro = &opt->ip6po_route; 456 dst = (struct sockaddr_in6 *)&ro->ro_dst; 457 /* 458 * If there is a cached route, 459 * check that it is to the same destination 460 * and is still up. If not, free it and try again. 461 */ 462 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 463 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 464 RTFREE(ro->ro_rt); 465 ro->ro_rt = (struct rtentry *)0; 466 } 467 if (ro->ro_rt == 0) { 468 bzero(dst, sizeof(*dst)); 469 dst->sin6_family = AF_INET6; 470 dst->sin6_len = sizeof(struct sockaddr_in6); 471 dst->sin6_addr = ip6->ip6_dst; 472 } 473 #ifdef IPSEC 474 if (needipsec && needipsectun) { 475 struct ipsec_output_state state; 476 477 /* 478 * All the extension headers will become inaccessible 479 * (since they can be encrypted). 480 * Don't panic, we need no more updates to extension headers 481 * on inner IPv6 packet (since they are now encapsulated). 482 * 483 * IPv6 [ESP|AH] IPv6 [extension headers] payload 484 */ 485 bzero(&exthdrs, sizeof(exthdrs)); 486 exthdrs.ip6e_ip6 = m; 487 488 bzero(&state, sizeof(state)); 489 state.m = m; 490 state.ro = (struct route *)ro; 491 state.dst = (struct sockaddr *)dst; 492 493 error = ipsec6_output_tunnel(&state, sp, flags); 494 495 m = state.m; 496 ro = (struct route_in6 *)state.ro; 497 dst = (struct sockaddr_in6 *)state.dst; 498 if (error) { 499 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 500 m0 = m = NULL; 501 m = NULL; 502 switch (error) { 503 case EHOSTUNREACH: 504 case ENETUNREACH: 505 case EMSGSIZE: 506 case ENOBUFS: 507 case ENOMEM: 508 break; 509 default: 510 printf("ip6_output (ipsec): error code %d\n", error); 511 /*fall through*/ 512 case ENOENT: 513 /* don't show these error codes to the user */ 514 error = 0; 515 break; 516 } 517 goto bad; 518 } 519 520 exthdrs.ip6e_ip6 = m; 521 } 522 #endif /*IPSEC*/ 523 524 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 525 /* Unicast */ 526 527 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 528 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 529 /* xxx 530 * interface selection comes here 531 * if an interface is specified from an upper layer, 532 * ifp must point it. 533 */ 534 if (ro->ro_rt == 0) { 535 /* 536 * non-bsdi always clone routes, if parent is 537 * PRF_CLONING. 538 */ 539 rtalloc((struct route *)ro); 540 } 541 if (ro->ro_rt == 0) { 542 ip6stat.ip6s_noroute++; 543 error = EHOSTUNREACH; 544 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 545 goto bad; 546 } 547 ia = ifatoia6(ro->ro_rt->rt_ifa); 548 ifp = ro->ro_rt->rt_ifp; 549 ro->ro_rt->rt_use++; 550 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 551 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 552 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 553 554 in6_ifstat_inc(ifp, ifs6_out_request); 555 556 /* 557 * Check if the outgoing interface conflicts with 558 * the interface specified by ifi6_ifindex (if specified). 559 * Note that loopback interface is always okay. 560 * (this may happen when we are sending a packet to one of 561 * our own addresses.) 562 */ 563 if (opt && opt->ip6po_pktinfo 564 && opt->ip6po_pktinfo->ipi6_ifindex) { 565 if (!(ifp->if_flags & IFF_LOOPBACK) 566 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 567 ip6stat.ip6s_noroute++; 568 in6_ifstat_inc(ifp, ifs6_out_discard); 569 error = EHOSTUNREACH; 570 goto bad; 571 } 572 } 573 574 if (opt && opt->ip6po_hlim != -1) 575 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 576 } else { 577 /* Multicast */ 578 struct in6_multi *in6m; 579 580 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 581 582 /* 583 * See if the caller provided any multicast options 584 */ 585 ifp = NULL; 586 if (im6o != NULL) { 587 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 588 if (im6o->im6o_multicast_ifp != NULL) 589 ifp = im6o->im6o_multicast_ifp; 590 } else 591 ip6->ip6_hlim = ip6_defmcasthlim; 592 593 /* 594 * See if the caller provided the outgoing interface 595 * as an ancillary data. 596 * Boundary check for ifindex is assumed to be already done. 597 */ 598 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 599 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]; 600 601 /* 602 * If the destination is a node-local scope multicast, 603 * the packet should be loop-backed only. 604 */ 605 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 606 /* 607 * If the outgoing interface is already specified, 608 * it should be a loopback interface. 609 */ 610 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 611 ip6stat.ip6s_badscope++; 612 error = ENETUNREACH; /* XXX: better error? */ 613 /* XXX correct ifp? */ 614 in6_ifstat_inc(ifp, ifs6_out_discard); 615 goto bad; 616 } else { 617 ifp = &loif[0]; 618 } 619 } 620 621 if (opt && opt->ip6po_hlim != -1) 622 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 623 624 /* 625 * If caller did not provide an interface lookup a 626 * default in the routing table. This is either a 627 * default for the speicfied group (i.e. a host 628 * route), or a multicast default (a route for the 629 * ``net'' ff00::/8). 630 */ 631 if (ifp == NULL) { 632 if (ro->ro_rt == 0) { 633 ro->ro_rt = rtalloc1((struct sockaddr *) 634 &ro->ro_dst, 0 635 ); 636 } 637 if (ro->ro_rt == 0) { 638 ip6stat.ip6s_noroute++; 639 error = EHOSTUNREACH; 640 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 641 goto bad; 642 } 643 ia = ifatoia6(ro->ro_rt->rt_ifa); 644 ifp = ro->ro_rt->rt_ifp; 645 ro->ro_rt->rt_use++; 646 } 647 648 if ((flags & IPV6_FORWARDING) == 0) 649 in6_ifstat_inc(ifp, ifs6_out_request); 650 in6_ifstat_inc(ifp, ifs6_out_mcast); 651 652 /* 653 * Confirm that the outgoing interface supports multicast. 654 */ 655 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 656 ip6stat.ip6s_noroute++; 657 in6_ifstat_inc(ifp, ifs6_out_discard); 658 error = ENETUNREACH; 659 goto bad; 660 } 661 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 662 if (in6m != NULL && 663 (im6o == NULL || im6o->im6o_multicast_loop)) { 664 /* 665 * If we belong to the destination multicast group 666 * on the outgoing interface, and the caller did not 667 * forbid loopback, loop back a copy. 668 */ 669 ip6_mloopback(ifp, m, dst); 670 } else { 671 /* 672 * If we are acting as a multicast router, perform 673 * multicast forwarding as if the packet had just 674 * arrived on the interface to which we are about 675 * to send. The multicast forwarding function 676 * recursively calls this function, using the 677 * IPV6_FORWARDING flag to prevent infinite recursion. 678 * 679 * Multicasts that are looped back by ip6_mloopback(), 680 * above, will be forwarded by the ip6_input() routine, 681 * if necessary. 682 */ 683 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 684 if (ip6_mforward(ip6, ifp, m) != 0) { 685 m_freem(m); 686 goto done; 687 } 688 } 689 } 690 /* 691 * Multicasts with a hoplimit of zero may be looped back, 692 * above, but must not be transmitted on a network. 693 * Also, multicasts addressed to the loopback interface 694 * are not sent -- the above call to ip6_mloopback() will 695 * loop back a copy if this host actually belongs to the 696 * destination group on the loopback interface. 697 */ 698 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 699 m_freem(m); 700 goto done; 701 } 702 } 703 704 /* 705 * Fill the outgoing inteface to tell the upper layer 706 * to increment per-interface statistics. 707 */ 708 if (ifpp) 709 *ifpp = ifp; 710 711 /* 712 * Determine path MTU. 713 */ 714 if (ro_pmtu != ro) { 715 /* The first hop and the final destination may differ. */ 716 struct sockaddr_in6 *sin6_fin = 717 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 718 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 719 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, 720 &finaldst))) { 721 RTFREE(ro_pmtu->ro_rt); 722 ro_pmtu->ro_rt = (struct rtentry *)0; 723 } 724 if (ro_pmtu->ro_rt == 0) { 725 bzero(sin6_fin, sizeof(*sin6_fin)); 726 sin6_fin->sin6_family = AF_INET6; 727 sin6_fin->sin6_len = sizeof(struct sockaddr_in6); 728 sin6_fin->sin6_addr = finaldst; 729 730 rtalloc((struct route *)ro_pmtu); 731 } 732 } 733 if (ro_pmtu->ro_rt != NULL) { 734 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu; 735 736 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 737 if (mtu > ifmtu) { 738 /* 739 * The MTU on the route is larger than the MTU on 740 * the interface! This shouldn't happen, unless the 741 * MTU of the interface has been changed after the 742 * interface was brought up. Change the MTU in the 743 * route to match the interface MTU (as long as the 744 * field isn't locked). 745 */ 746 mtu = ifmtu; 747 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 748 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */ 749 } 750 } else { 751 mtu = nd_ifinfo[ifp->if_index].linkmtu; 752 } 753 754 /* Fake scoped addresses */ 755 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 756 /* 757 * If source or destination address is a scoped address, and 758 * the packet is going to be sent to a loopback interface, 759 * we should keep the original interface. 760 */ 761 762 /* 763 * XXX: this is a very experimental and temporary solution. 764 * We eventually have sockaddr_in6 and use the sin6_scope_id 765 * field of the structure here. 766 * We rely on the consistency between two scope zone ids 767 * of source add destination, which should already be assured 768 * Larger scopes than link will be supported in the near 769 * future. 770 */ 771 origifp = NULL; 772 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 773 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])]; 774 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 775 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])]; 776 /* 777 * XXX: origifp can be NULL even in those two cases above. 778 * For example, if we remove the (only) link-local address 779 * from the loopback interface, and try to send a link-local 780 * address without link-id information. Then the source 781 * address is ::1, and the destination address is the 782 * link-local address with its s6_addr16[1] being zero. 783 * What is worse, if the packet goes to the loopback interface 784 * by a default rejected route, the null pointer would be 785 * passed to looutput, and the kernel would hang. 786 * The following last resort would prevent such disaster. 787 */ 788 if (origifp == NULL) 789 origifp = ifp; 790 } 791 else 792 origifp = ifp; 793 #ifndef FAKE_LOOPBACK_IF 794 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 795 #else 796 if (1) 797 #endif 798 { 799 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 800 ip6->ip6_src.s6_addr16[1] = 0; 801 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 802 ip6->ip6_dst.s6_addr16[1] = 0; 803 } 804 805 /* 806 * If the outgoing packet contains a hop-by-hop options header, 807 * it must be examined and processed even by the source node. 808 * (RFC 2460, section 4.) 809 */ 810 if (exthdrs.ip6e_hbh) { 811 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 812 u_int32_t dummy1; /* XXX unused */ 813 u_int32_t dummy2; /* XXX unused */ 814 815 /* 816 * XXX: if we have to send an ICMPv6 error to the sender, 817 * we need the M_LOOP flag since icmp6_error() expects 818 * the IPv6 and the hop-by-hop options header are 819 * continuous unless the flag is set. 820 */ 821 m->m_flags |= M_LOOP; 822 m->m_pkthdr.rcvif = ifp; 823 if (ip6_process_hopopts(m, 824 (u_int8_t *)(hbh + 1), 825 ((hbh->ip6h_len + 1) << 3) - 826 sizeof(struct ip6_hbh), 827 &dummy1, &dummy2) < 0) { 828 /* m was already freed at this point */ 829 error = EINVAL;/* better error? */ 830 goto done; 831 } 832 m->m_flags &= ~M_LOOP; /* XXX */ 833 m->m_pkthdr.rcvif = NULL; 834 } 835 836 #ifdef PFIL_HOOKS 837 /* 838 * Run through list of hooks for output packets. 839 */ 840 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, 841 PFIL_OUT)) != 0) 842 goto done; 843 if (m == NULL) 844 goto done; 845 ip6 = mtod(m, struct ip6_hdr *); 846 #endif /* PFIL_HOOKS */ 847 /* 848 * Send the packet to the outgoing interface. 849 * If necessary, do IPv6 fragmentation before sending. 850 */ 851 tlen = m->m_pkthdr.len; 852 if (tlen <= mtu 853 #ifdef notyet 854 /* 855 * On any link that cannot convey a 1280-octet packet in one piece, 856 * link-specific fragmentation and reassembly must be provided at 857 * a layer below IPv6. [RFC 2460, sec.5] 858 * Thus if the interface has ability of link-level fragmentation, 859 * we can just send the packet even if the packet size is 860 * larger than the link's MTU. 861 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet... 862 */ 863 864 || ifp->if_flags & IFF_FRAGMENTABLE 865 #endif 866 ) 867 { 868 #ifdef IFA_STATS 869 struct in6_ifaddr *ia6; 870 ip6 = mtod(m, struct ip6_hdr *); 871 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 872 if (ia6) { 873 ia6->ia_ifa.ifa_data.ifad_outbytes += 874 m->m_pkthdr.len; 875 } 876 #endif 877 #ifdef IPSEC 878 /* clean ipsec history once it goes out of the node */ 879 ipsec_delaux(m); 880 #endif 881 #ifdef OLDIP6OUTPUT 882 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, 883 ro->ro_rt); 884 #else 885 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 886 #endif 887 goto done; 888 } else if (mtu < IPV6_MMTU) { 889 /* 890 * note that path MTU is never less than IPV6_MMTU 891 * (see icmp6_input). 892 */ 893 error = EMSGSIZE; 894 in6_ifstat_inc(ifp, ifs6_out_fragfail); 895 goto bad; 896 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 897 error = EMSGSIZE; 898 in6_ifstat_inc(ifp, ifs6_out_fragfail); 899 goto bad; 900 } else { 901 struct mbuf **mnext, *m_frgpart; 902 struct ip6_frag *ip6f; 903 u_int32_t id = htonl(ip6_id++); 904 u_char nextproto; 905 906 /* 907 * Too large for the destination or interface; 908 * fragment if possible. 909 * Must be able to put at least 8 bytes per fragment. 910 */ 911 hlen = unfragpartlen; 912 if (mtu > IPV6_MAXPACKET) 913 mtu = IPV6_MAXPACKET; 914 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 915 if (len < 8) { 916 error = EMSGSIZE; 917 in6_ifstat_inc(ifp, ifs6_out_fragfail); 918 goto bad; 919 } 920 921 mnext = &m->m_nextpkt; 922 923 /* 924 * Change the next header field of the last header in the 925 * unfragmentable part. 926 */ 927 if (exthdrs.ip6e_rthdr) { 928 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 929 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 930 } else if (exthdrs.ip6e_dest1) { 931 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 932 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 933 } else if (exthdrs.ip6e_hbh) { 934 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 935 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 936 } else { 937 nextproto = ip6->ip6_nxt; 938 ip6->ip6_nxt = IPPROTO_FRAGMENT; 939 } 940 941 /* 942 * Loop through length of segment after first fragment, 943 * make new header and copy data of each part and link onto chain. 944 */ 945 m0 = m; 946 for (off = hlen; off < tlen; off += len) { 947 MGETHDR(m, M_DONTWAIT, MT_HEADER); 948 if (!m) { 949 error = ENOBUFS; 950 ip6stat.ip6s_odropped++; 951 goto sendorfree; 952 } 953 m->m_flags = m0->m_flags & M_COPYFLAGS; 954 *mnext = m; 955 mnext = &m->m_nextpkt; 956 m->m_data += max_linkhdr; 957 mhip6 = mtod(m, struct ip6_hdr *); 958 *mhip6 = *ip6; 959 m->m_len = sizeof(*mhip6); 960 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 961 if (error) { 962 ip6stat.ip6s_odropped++; 963 goto sendorfree; 964 } 965 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 966 if (off + len >= tlen) 967 len = tlen - off; 968 else 969 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 970 mhip6->ip6_plen = htons((u_short)(len + hlen + 971 sizeof(*ip6f) - 972 sizeof(struct ip6_hdr))); 973 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 974 error = ENOBUFS; 975 ip6stat.ip6s_odropped++; 976 goto sendorfree; 977 } 978 m_cat(m, m_frgpart); 979 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 980 m->m_pkthdr.rcvif = (struct ifnet *)0; 981 ip6f->ip6f_reserved = 0; 982 ip6f->ip6f_ident = id; 983 ip6f->ip6f_nxt = nextproto; 984 ip6stat.ip6s_ofragments++; 985 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 986 } 987 988 in6_ifstat_inc(ifp, ifs6_out_fragok); 989 } 990 991 /* 992 * Remove leading garbages. 993 */ 994 sendorfree: 995 m = m0->m_nextpkt; 996 m0->m_nextpkt = 0; 997 m_freem(m0); 998 for (m0 = m; m; m = m0) { 999 m0 = m->m_nextpkt; 1000 m->m_nextpkt = 0; 1001 if (error == 0) { 1002 #ifdef IFA_STATS 1003 struct in6_ifaddr *ia6; 1004 ip6 = mtod(m, struct ip6_hdr *); 1005 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1006 if (ia6) { 1007 ia6->ia_ifa.ifa_data.ifad_outbytes += 1008 m->m_pkthdr.len; 1009 } 1010 #endif 1011 #ifdef IPSEC 1012 /* clean ipsec history once it goes out of the node */ 1013 ipsec_delaux(m); 1014 #endif 1015 #ifdef OLDIP6OUTPUT 1016 error = (*ifp->if_output)(ifp, m, 1017 (struct sockaddr *)dst, 1018 ro->ro_rt); 1019 #else 1020 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1021 #endif 1022 } else 1023 m_freem(m); 1024 } 1025 1026 if (error == 0) 1027 ip6stat.ip6s_fragmented++; 1028 1029 done: 1030 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1031 RTFREE(ro->ro_rt); 1032 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1033 RTFREE(ro_pmtu->ro_rt); 1034 } 1035 1036 #ifdef IPSEC 1037 if (sp != NULL) 1038 key_freesp(sp); 1039 #endif /* IPSEC */ 1040 1041 return(error); 1042 1043 freehdrs: 1044 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1045 m_freem(exthdrs.ip6e_dest1); 1046 m_freem(exthdrs.ip6e_rthdr); 1047 m_freem(exthdrs.ip6e_dest2); 1048 /* fall through */ 1049 bad: 1050 m_freem(m); 1051 goto done; 1052 } 1053 1054 static int 1055 ip6_copyexthdr(mp, hdr, hlen) 1056 struct mbuf **mp; 1057 caddr_t hdr; 1058 int hlen; 1059 { 1060 struct mbuf *m; 1061 1062 if (hlen > MCLBYTES) 1063 return(ENOBUFS); /* XXX */ 1064 1065 MGET(m, M_DONTWAIT, MT_DATA); 1066 if (!m) 1067 return(ENOBUFS); 1068 1069 if (hlen > MLEN) { 1070 MCLGET(m, M_DONTWAIT); 1071 if ((m->m_flags & M_EXT) == 0) { 1072 m_free(m); 1073 return(ENOBUFS); 1074 } 1075 } 1076 m->m_len = hlen; 1077 if (hdr) 1078 bcopy(hdr, mtod(m, caddr_t), hlen); 1079 1080 *mp = m; 1081 return(0); 1082 } 1083 1084 /* 1085 * Insert jumbo payload option. 1086 */ 1087 static int 1088 ip6_insert_jumboopt(exthdrs, plen) 1089 struct ip6_exthdrs *exthdrs; 1090 u_int32_t plen; 1091 { 1092 struct mbuf *mopt; 1093 u_char *optbuf; 1094 u_int32_t v; 1095 1096 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1097 1098 /* 1099 * If there is no hop-by-hop options header, allocate new one. 1100 * If there is one but it doesn't have enough space to store the 1101 * jumbo payload option, allocate a cluster to store the whole options. 1102 * Otherwise, use it to store the options. 1103 */ 1104 if (exthdrs->ip6e_hbh == 0) { 1105 MGET(mopt, M_DONTWAIT, MT_DATA); 1106 if (mopt == 0) 1107 return(ENOBUFS); 1108 mopt->m_len = JUMBOOPTLEN; 1109 optbuf = mtod(mopt, u_char *); 1110 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1111 exthdrs->ip6e_hbh = mopt; 1112 } else { 1113 struct ip6_hbh *hbh; 1114 1115 mopt = exthdrs->ip6e_hbh; 1116 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1117 /* 1118 * XXX assumption: 1119 * - exthdrs->ip6e_hbh is not referenced from places 1120 * other than exthdrs. 1121 * - exthdrs->ip6e_hbh is not an mbuf chain. 1122 */ 1123 int oldoptlen = mopt->m_len; 1124 struct mbuf *n; 1125 1126 /* 1127 * XXX: give up if the whole (new) hbh header does 1128 * not fit even in an mbuf cluster. 1129 */ 1130 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1131 return(ENOBUFS); 1132 1133 /* 1134 * As a consequence, we must always prepare a cluster 1135 * at this point. 1136 */ 1137 MGET(n, M_DONTWAIT, MT_DATA); 1138 if (n) { 1139 MCLGET(n, M_DONTWAIT); 1140 if ((n->m_flags & M_EXT) == 0) { 1141 m_freem(n); 1142 n = NULL; 1143 } 1144 } 1145 if (!n) 1146 return(ENOBUFS); 1147 n->m_len = oldoptlen + JUMBOOPTLEN; 1148 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1149 oldoptlen); 1150 optbuf = mtod(n, caddr_t) + oldoptlen; 1151 m_freem(mopt); 1152 exthdrs->ip6e_hbh = n; 1153 } else { 1154 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1155 mopt->m_len += JUMBOOPTLEN; 1156 } 1157 optbuf[0] = IP6OPT_PADN; 1158 optbuf[1] = 1; 1159 1160 /* 1161 * Adjust the header length according to the pad and 1162 * the jumbo payload option. 1163 */ 1164 hbh = mtod(mopt, struct ip6_hbh *); 1165 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1166 } 1167 1168 /* fill in the option. */ 1169 optbuf[2] = IP6OPT_JUMBO; 1170 optbuf[3] = 4; 1171 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1172 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1173 1174 /* finally, adjust the packet header length */ 1175 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1176 1177 return(0); 1178 #undef JUMBOOPTLEN 1179 } 1180 1181 /* 1182 * Insert fragment header and copy unfragmentable header portions. 1183 */ 1184 static int 1185 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1186 struct mbuf *m0, *m; 1187 int hlen; 1188 struct ip6_frag **frghdrp; 1189 { 1190 struct mbuf *n, *mlast; 1191 1192 if (hlen > sizeof(struct ip6_hdr)) { 1193 n = m_copym(m0, sizeof(struct ip6_hdr), 1194 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1195 if (n == 0) 1196 return(ENOBUFS); 1197 m->m_next = n; 1198 } else 1199 n = m; 1200 1201 /* Search for the last mbuf of unfragmentable part. */ 1202 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1203 ; 1204 1205 if ((mlast->m_flags & M_EXT) == 0 && 1206 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1207 /* use the trailing space of the last mbuf for the fragment hdr */ 1208 *frghdrp = 1209 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1210 mlast->m_len += sizeof(struct ip6_frag); 1211 m->m_pkthdr.len += sizeof(struct ip6_frag); 1212 } else { 1213 /* allocate a new mbuf for the fragment header */ 1214 struct mbuf *mfrg; 1215 1216 MGET(mfrg, M_DONTWAIT, MT_DATA); 1217 if (mfrg == 0) 1218 return(ENOBUFS); 1219 mfrg->m_len = sizeof(struct ip6_frag); 1220 *frghdrp = mtod(mfrg, struct ip6_frag *); 1221 mlast->m_next = mfrg; 1222 } 1223 1224 return(0); 1225 } 1226 1227 /* 1228 * IP6 socket option processing. 1229 */ 1230 int 1231 ip6_ctloutput(op, so, level, optname, mp) 1232 int op; 1233 struct socket *so; 1234 int level, optname; 1235 struct mbuf **mp; 1236 { 1237 struct in6pcb *in6p = sotoin6pcb(so); 1238 struct mbuf *m = *mp; 1239 int optval = 0; 1240 int error = 0; 1241 struct proc *p = curproc; /* XXX */ 1242 1243 if (level == IPPROTO_IPV6) { 1244 switch (op) { 1245 1246 case PRCO_SETOPT: 1247 switch (optname) { 1248 case IPV6_PKTOPTIONS: 1249 /* m is freed in ip6_pcbopts */ 1250 return(ip6_pcbopts(&in6p->in6p_outputopts, 1251 m, so)); 1252 case IPV6_HOPOPTS: 1253 case IPV6_DSTOPTS: 1254 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1255 error = EPERM; 1256 break; 1257 } 1258 /* fall through */ 1259 case IPV6_UNICAST_HOPS: 1260 case IPV6_RECVOPTS: 1261 case IPV6_RECVRETOPTS: 1262 case IPV6_RECVDSTADDR: 1263 case IPV6_PKTINFO: 1264 case IPV6_HOPLIMIT: 1265 case IPV6_RTHDR: 1266 case IPV6_CHECKSUM: 1267 case IPV6_FAITH: 1268 #ifndef INET6_BINDV6ONLY 1269 case IPV6_BINDV6ONLY: 1270 #endif 1271 if (!m || m->m_len != sizeof(int)) 1272 error = EINVAL; 1273 else { 1274 optval = *mtod(m, int *); 1275 switch (optname) { 1276 1277 case IPV6_UNICAST_HOPS: 1278 if (optval < -1 || optval >= 256) 1279 error = EINVAL; 1280 else { 1281 /* -1 = kernel default */ 1282 in6p->in6p_hops = optval; 1283 } 1284 break; 1285 #define OPTSET(bit) \ 1286 if (optval) \ 1287 in6p->in6p_flags |= bit; \ 1288 else \ 1289 in6p->in6p_flags &= ~bit; 1290 1291 case IPV6_RECVOPTS: 1292 OPTSET(IN6P_RECVOPTS); 1293 break; 1294 1295 case IPV6_RECVRETOPTS: 1296 OPTSET(IN6P_RECVRETOPTS); 1297 break; 1298 1299 case IPV6_RECVDSTADDR: 1300 OPTSET(IN6P_RECVDSTADDR); 1301 break; 1302 1303 case IPV6_PKTINFO: 1304 OPTSET(IN6P_PKTINFO); 1305 break; 1306 1307 case IPV6_HOPLIMIT: 1308 OPTSET(IN6P_HOPLIMIT); 1309 break; 1310 1311 case IPV6_HOPOPTS: 1312 OPTSET(IN6P_HOPOPTS); 1313 break; 1314 1315 case IPV6_DSTOPTS: 1316 OPTSET(IN6P_DSTOPTS); 1317 break; 1318 1319 case IPV6_RTHDR: 1320 OPTSET(IN6P_RTHDR); 1321 break; 1322 1323 case IPV6_CHECKSUM: 1324 in6p->in6p_cksum = optval; 1325 break; 1326 1327 case IPV6_FAITH: 1328 OPTSET(IN6P_FAITH); 1329 break; 1330 1331 #ifndef INET6_BINDV6ONLY 1332 case IPV6_BINDV6ONLY: 1333 OPTSET(IN6P_BINDV6ONLY); 1334 break; 1335 #endif 1336 } 1337 } 1338 break; 1339 #undef OPTSET 1340 1341 case IPV6_MULTICAST_IF: 1342 case IPV6_MULTICAST_HOPS: 1343 case IPV6_MULTICAST_LOOP: 1344 case IPV6_JOIN_GROUP: 1345 case IPV6_LEAVE_GROUP: 1346 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m); 1347 break; 1348 1349 case IPV6_PORTRANGE: 1350 optval = *mtod(m, int *); 1351 1352 switch (optval) { 1353 case IPV6_PORTRANGE_DEFAULT: 1354 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1355 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1356 break; 1357 1358 case IPV6_PORTRANGE_HIGH: 1359 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1360 in6p->in6p_flags |= IN6P_HIGHPORT; 1361 break; 1362 1363 case IPV6_PORTRANGE_LOW: 1364 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1365 in6p->in6p_flags |= IN6P_LOWPORT; 1366 break; 1367 1368 default: 1369 error = EINVAL; 1370 break; 1371 } 1372 break; 1373 1374 #ifdef IPSEC 1375 case IPV6_IPSEC_POLICY: 1376 { 1377 caddr_t req = NULL; 1378 size_t len = 0; 1379 1380 int priv = 0; 1381 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) 1382 priv = 0; 1383 else 1384 priv = 1; 1385 if (m) { 1386 req = mtod(m, caddr_t); 1387 len = m->m_len; 1388 } 1389 error = ipsec6_set_policy(in6p, 1390 optname, req, len, priv); 1391 } 1392 break; 1393 #endif /* IPSEC */ 1394 1395 default: 1396 error = ENOPROTOOPT; 1397 break; 1398 } 1399 if (m) 1400 (void)m_free(m); 1401 break; 1402 1403 case PRCO_GETOPT: 1404 switch (optname) { 1405 1406 case IPV6_OPTIONS: 1407 case IPV6_RETOPTS: 1408 #if 0 1409 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1410 if (in6p->in6p_options) { 1411 m->m_len = in6p->in6p_options->m_len; 1412 bcopy(mtod(in6p->in6p_options, caddr_t), 1413 mtod(m, caddr_t), 1414 (unsigned)m->m_len); 1415 } else 1416 m->m_len = 0; 1417 break; 1418 #else 1419 error = ENOPROTOOPT; 1420 break; 1421 #endif 1422 1423 case IPV6_PKTOPTIONS: 1424 if (in6p->in6p_options) { 1425 *mp = m_copym(in6p->in6p_options, 0, 1426 M_COPYALL, M_WAIT); 1427 } else { 1428 *mp = m_get(M_WAIT, MT_SOOPTS); 1429 (*mp)->m_len = 0; 1430 } 1431 break; 1432 1433 case IPV6_HOPOPTS: 1434 case IPV6_DSTOPTS: 1435 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1436 error = EPERM; 1437 break; 1438 } 1439 /* fall through */ 1440 case IPV6_UNICAST_HOPS: 1441 case IPV6_RECVOPTS: 1442 case IPV6_RECVRETOPTS: 1443 case IPV6_RECVDSTADDR: 1444 case IPV6_PORTRANGE: 1445 case IPV6_PKTINFO: 1446 case IPV6_HOPLIMIT: 1447 case IPV6_RTHDR: 1448 case IPV6_CHECKSUM: 1449 case IPV6_FAITH: 1450 #ifndef INET6_BINDV6ONLY 1451 case IPV6_BINDV6ONLY: 1452 #endif 1453 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1454 m->m_len = sizeof(int); 1455 switch (optname) { 1456 1457 case IPV6_UNICAST_HOPS: 1458 optval = in6p->in6p_hops; 1459 break; 1460 1461 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0) 1462 1463 case IPV6_RECVOPTS: 1464 optval = OPTBIT(IN6P_RECVOPTS); 1465 break; 1466 1467 case IPV6_RECVRETOPTS: 1468 optval = OPTBIT(IN6P_RECVRETOPTS); 1469 break; 1470 1471 case IPV6_RECVDSTADDR: 1472 optval = OPTBIT(IN6P_RECVDSTADDR); 1473 break; 1474 1475 case IPV6_PORTRANGE: 1476 { 1477 int flags; 1478 flags = in6p->in6p_flags; 1479 if (flags & IN6P_HIGHPORT) 1480 optval = IPV6_PORTRANGE_HIGH; 1481 else if (flags & IN6P_LOWPORT) 1482 optval = IPV6_PORTRANGE_LOW; 1483 else 1484 optval = 0; 1485 break; 1486 } 1487 1488 case IPV6_PKTINFO: 1489 optval = OPTBIT(IN6P_PKTINFO); 1490 break; 1491 1492 case IPV6_HOPLIMIT: 1493 optval = OPTBIT(IN6P_HOPLIMIT); 1494 break; 1495 1496 case IPV6_HOPOPTS: 1497 optval = OPTBIT(IN6P_HOPOPTS); 1498 break; 1499 1500 case IPV6_DSTOPTS: 1501 optval = OPTBIT(IN6P_DSTOPTS); 1502 break; 1503 1504 case IPV6_RTHDR: 1505 optval = OPTBIT(IN6P_RTHDR); 1506 break; 1507 1508 case IPV6_CHECKSUM: 1509 optval = in6p->in6p_cksum; 1510 break; 1511 1512 case IPV6_FAITH: 1513 optval = OPTBIT(IN6P_FAITH); 1514 break; 1515 1516 #ifndef INET6_BINDV6ONLY 1517 case IPV6_BINDV6ONLY: 1518 optval = OPTBIT(IN6P_BINDV6ONLY); 1519 break; 1520 #endif 1521 } 1522 *mtod(m, int *) = optval; 1523 break; 1524 1525 case IPV6_MULTICAST_IF: 1526 case IPV6_MULTICAST_HOPS: 1527 case IPV6_MULTICAST_LOOP: 1528 case IPV6_JOIN_GROUP: 1529 case IPV6_LEAVE_GROUP: 1530 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp); 1531 break; 1532 1533 #ifdef IPSEC 1534 case IPV6_IPSEC_POLICY: 1535 { 1536 caddr_t req = NULL; 1537 size_t len = 0; 1538 1539 if (m) { 1540 req = mtod(m, caddr_t); 1541 len = m->m_len; 1542 } 1543 error = ipsec6_get_policy(in6p, req, len, mp); 1544 break; 1545 } 1546 #endif /* IPSEC */ 1547 1548 default: 1549 error = ENOPROTOOPT; 1550 break; 1551 } 1552 break; 1553 } 1554 } else { 1555 error = EINVAL; 1556 if (op == PRCO_SETOPT && *mp) 1557 (void)m_free(*mp); 1558 } 1559 return(error); 1560 } 1561 1562 /* 1563 * Set up IP6 options in pcb for insertion in output packets. 1564 * Store in mbuf with pointer in pcbopt, adding pseudo-option 1565 * with destination address if source routed. 1566 */ 1567 static int 1568 ip6_pcbopts(pktopt, m, so) 1569 struct ip6_pktopts **pktopt; 1570 struct mbuf *m; 1571 struct socket *so; 1572 { 1573 struct ip6_pktopts *opt = *pktopt; 1574 int error = 0; 1575 struct proc *p = curproc; /* XXX */ 1576 int priv = 0; 1577 1578 /* turn off any old options. */ 1579 if (opt) { 1580 if (opt->ip6po_m) 1581 (void)m_free(opt->ip6po_m); 1582 } else 1583 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 1584 *pktopt = 0; 1585 1586 if (!m || m->m_len == 0) { 1587 /* 1588 * Only turning off any previous options. 1589 */ 1590 if (opt) 1591 free(opt, M_IP6OPT); 1592 if (m) 1593 (void)m_free(m); 1594 return(0); 1595 } 1596 1597 /* set options specified by user. */ 1598 if (p && !suser(p->p_ucred, &p->p_acflag)) 1599 priv = 1; 1600 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) { 1601 (void)m_free(m); 1602 return(error); 1603 } 1604 *pktopt = opt; 1605 return(0); 1606 } 1607 1608 /* 1609 * Set the IP6 multicast options in response to user setsockopt(). 1610 */ 1611 static int 1612 ip6_setmoptions(optname, im6op, m) 1613 int optname; 1614 struct ip6_moptions **im6op; 1615 struct mbuf *m; 1616 { 1617 int error = 0; 1618 u_int loop, ifindex; 1619 struct ipv6_mreq *mreq; 1620 struct ifnet *ifp; 1621 struct ip6_moptions *im6o = *im6op; 1622 struct route_in6 ro; 1623 struct sockaddr_in6 *dst; 1624 struct in6_multi_mship *imm; 1625 struct proc *p = curproc; /* XXX */ 1626 1627 if (im6o == NULL) { 1628 /* 1629 * No multicast option buffer attached to the pcb; 1630 * allocate one and initialize to default values. 1631 */ 1632 im6o = (struct ip6_moptions *) 1633 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1634 1635 if (im6o == NULL) 1636 return(ENOBUFS); 1637 *im6op = im6o; 1638 im6o->im6o_multicast_ifp = NULL; 1639 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1640 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1641 LIST_INIT(&im6o->im6o_memberships); 1642 } 1643 1644 switch (optname) { 1645 1646 case IPV6_MULTICAST_IF: 1647 /* 1648 * Select the interface for outgoing multicast packets. 1649 */ 1650 if (m == NULL || m->m_len != sizeof(u_int)) { 1651 error = EINVAL; 1652 break; 1653 } 1654 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 1655 if (ifindex < 0 || if_index < ifindex) { 1656 error = ENXIO; /* XXX EINVAL? */ 1657 break; 1658 } 1659 ifp = ifindex2ifnet[ifindex]; 1660 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1661 error = EADDRNOTAVAIL; 1662 break; 1663 } 1664 im6o->im6o_multicast_ifp = ifp; 1665 break; 1666 1667 case IPV6_MULTICAST_HOPS: 1668 { 1669 /* 1670 * Set the IP6 hoplimit for outgoing multicast packets. 1671 */ 1672 int optval; 1673 if (m == NULL || m->m_len != sizeof(int)) { 1674 error = EINVAL; 1675 break; 1676 } 1677 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 1678 if (optval < -1 || optval >= 256) 1679 error = EINVAL; 1680 else if (optval == -1) 1681 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1682 else 1683 im6o->im6o_multicast_hlim = optval; 1684 break; 1685 } 1686 1687 case IPV6_MULTICAST_LOOP: 1688 /* 1689 * Set the loopback flag for outgoing multicast packets. 1690 * Must be zero or one. 1691 */ 1692 if (m == NULL || m->m_len != sizeof(u_int)) { 1693 error = EINVAL; 1694 break; 1695 } 1696 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 1697 if (loop > 1) { 1698 error = EINVAL; 1699 break; 1700 } 1701 im6o->im6o_multicast_loop = loop; 1702 break; 1703 1704 case IPV6_JOIN_GROUP: 1705 /* 1706 * Add a multicast group membership. 1707 * Group must be a valid IP6 multicast address. 1708 */ 1709 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1710 error = EINVAL; 1711 break; 1712 } 1713 mreq = mtod(m, struct ipv6_mreq *); 1714 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1715 /* 1716 * We use the unspecified address to specify to accept 1717 * all multicast addresses. Only super user is allowed 1718 * to do this. 1719 */ 1720 if (suser(p->p_ucred, &p->p_acflag)) 1721 { 1722 error = EACCES; 1723 break; 1724 } 1725 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1726 error = EINVAL; 1727 break; 1728 } 1729 1730 /* 1731 * If the interface is specified, validate it. 1732 */ 1733 if (mreq->ipv6mr_interface < 0 1734 || if_index < mreq->ipv6mr_interface) { 1735 error = ENXIO; /* XXX EINVAL? */ 1736 break; 1737 } 1738 /* 1739 * If no interface was explicitly specified, choose an 1740 * appropriate one according to the given multicast address. 1741 */ 1742 if (mreq->ipv6mr_interface == 0) { 1743 /* 1744 * If the multicast address is in node-local scope, 1745 * the interface should be a loopback interface. 1746 * Otherwise, look up the routing table for the 1747 * address, and choose the outgoing interface. 1748 * XXX: is it a good approach? 1749 */ 1750 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 1751 ifp = &loif[0]; 1752 } else { 1753 ro.ro_rt = NULL; 1754 dst = (struct sockaddr_in6 *)&ro.ro_dst; 1755 bzero(dst, sizeof(*dst)); 1756 dst->sin6_len = sizeof(struct sockaddr_in6); 1757 dst->sin6_family = AF_INET6; 1758 dst->sin6_addr = mreq->ipv6mr_multiaddr; 1759 rtalloc((struct route *)&ro); 1760 if (ro.ro_rt == NULL) { 1761 error = EADDRNOTAVAIL; 1762 break; 1763 } 1764 ifp = ro.ro_rt->rt_ifp; 1765 rtfree(ro.ro_rt); 1766 } 1767 } else 1768 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1769 1770 /* 1771 * See if we found an interface, and confirm that it 1772 * supports multicast 1773 */ 1774 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1775 error = EADDRNOTAVAIL; 1776 break; 1777 } 1778 /* 1779 * Put interface index into the multicast address, 1780 * if the address has link-local scope. 1781 */ 1782 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1783 mreq->ipv6mr_multiaddr.s6_addr16[1] 1784 = htons(mreq->ipv6mr_interface); 1785 } 1786 /* 1787 * See if the membership already exists. 1788 */ 1789 for (imm = im6o->im6o_memberships.lh_first; 1790 imm != NULL; imm = imm->i6mm_chain.le_next) 1791 if (imm->i6mm_maddr->in6m_ifp == ifp && 1792 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1793 &mreq->ipv6mr_multiaddr)) 1794 break; 1795 if (imm != NULL) { 1796 error = EADDRINUSE; 1797 break; 1798 } 1799 /* 1800 * Everything looks good; add a new record to the multicast 1801 * address list for the given interface. 1802 */ 1803 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 1804 if (imm == NULL) { 1805 error = ENOBUFS; 1806 break; 1807 } 1808 if ((imm->i6mm_maddr = 1809 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 1810 free(imm, M_IPMADDR); 1811 break; 1812 } 1813 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 1814 break; 1815 1816 case IPV6_LEAVE_GROUP: 1817 /* 1818 * Drop a multicast group membership. 1819 * Group must be a valid IP6 multicast address. 1820 */ 1821 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1822 error = EINVAL; 1823 break; 1824 } 1825 mreq = mtod(m, struct ipv6_mreq *); 1826 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1827 if (suser(p->p_ucred, &p->p_acflag)) 1828 { 1829 error = EACCES; 1830 break; 1831 } 1832 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1833 error = EINVAL; 1834 break; 1835 } 1836 /* 1837 * If an interface address was specified, get a pointer 1838 * to its ifnet structure. 1839 */ 1840 if (mreq->ipv6mr_interface < 0 1841 || if_index < mreq->ipv6mr_interface) { 1842 error = ENXIO; /* XXX EINVAL? */ 1843 break; 1844 } 1845 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1846 /* 1847 * Put interface index into the multicast address, 1848 * if the address has link-local scope. 1849 */ 1850 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1851 mreq->ipv6mr_multiaddr.s6_addr16[1] 1852 = htons(mreq->ipv6mr_interface); 1853 } 1854 /* 1855 * Find the membership in the membership list. 1856 */ 1857 for (imm = im6o->im6o_memberships.lh_first; 1858 imm != NULL; imm = imm->i6mm_chain.le_next) { 1859 if ((ifp == NULL || 1860 imm->i6mm_maddr->in6m_ifp == ifp) && 1861 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1862 &mreq->ipv6mr_multiaddr)) 1863 break; 1864 } 1865 if (imm == NULL) { 1866 /* Unable to resolve interface */ 1867 error = EADDRNOTAVAIL; 1868 break; 1869 } 1870 /* 1871 * Give up the multicast address record to which the 1872 * membership points. 1873 */ 1874 LIST_REMOVE(imm, i6mm_chain); 1875 in6_delmulti(imm->i6mm_maddr); 1876 free(imm, M_IPMADDR); 1877 break; 1878 1879 default: 1880 error = EOPNOTSUPP; 1881 break; 1882 } 1883 1884 /* 1885 * If all options have default values, no need to keep the mbuf. 1886 */ 1887 if (im6o->im6o_multicast_ifp == NULL && 1888 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 1889 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 1890 im6o->im6o_memberships.lh_first == NULL) { 1891 free(*im6op, M_IPMOPTS); 1892 *im6op = NULL; 1893 } 1894 1895 return(error); 1896 } 1897 1898 /* 1899 * Return the IP6 multicast options in response to user getsockopt(). 1900 */ 1901 static int 1902 ip6_getmoptions(optname, im6o, mp) 1903 int optname; 1904 struct ip6_moptions *im6o; 1905 struct mbuf **mp; 1906 { 1907 u_int *hlim, *loop, *ifindex; 1908 1909 *mp = m_get(M_WAIT, MT_SOOPTS); 1910 1911 switch (optname) { 1912 1913 case IPV6_MULTICAST_IF: 1914 ifindex = mtod(*mp, u_int *); 1915 (*mp)->m_len = sizeof(u_int); 1916 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 1917 *ifindex = 0; 1918 else 1919 *ifindex = im6o->im6o_multicast_ifp->if_index; 1920 return(0); 1921 1922 case IPV6_MULTICAST_HOPS: 1923 hlim = mtod(*mp, u_int *); 1924 (*mp)->m_len = sizeof(u_int); 1925 if (im6o == NULL) 1926 *hlim = ip6_defmcasthlim; 1927 else 1928 *hlim = im6o->im6o_multicast_hlim; 1929 return(0); 1930 1931 case IPV6_MULTICAST_LOOP: 1932 loop = mtod(*mp, u_int *); 1933 (*mp)->m_len = sizeof(u_int); 1934 if (im6o == NULL) 1935 *loop = ip6_defmcasthlim; 1936 else 1937 *loop = im6o->im6o_multicast_loop; 1938 return(0); 1939 1940 default: 1941 return(EOPNOTSUPP); 1942 } 1943 } 1944 1945 /* 1946 * Discard the IP6 multicast options. 1947 */ 1948 void 1949 ip6_freemoptions(im6o) 1950 struct ip6_moptions *im6o; 1951 { 1952 struct in6_multi_mship *imm; 1953 1954 if (im6o == NULL) 1955 return; 1956 1957 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 1958 LIST_REMOVE(imm, i6mm_chain); 1959 if (imm->i6mm_maddr) 1960 in6_delmulti(imm->i6mm_maddr); 1961 free(imm, M_IPMADDR); 1962 } 1963 free(im6o, M_IPMOPTS); 1964 } 1965 1966 /* 1967 * Set IPv6 outgoing packet options based on advanced API. 1968 */ 1969 int 1970 ip6_setpktoptions(control, opt, priv) 1971 struct mbuf *control; 1972 struct ip6_pktopts *opt; 1973 int priv; 1974 { 1975 struct cmsghdr *cm = 0; 1976 1977 if (control == 0 || opt == 0) 1978 return(EINVAL); 1979 1980 bzero(opt, sizeof(*opt)); 1981 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */ 1982 1983 /* 1984 * XXX: Currently, we assume all the optional information is stored 1985 * in a single mbuf. 1986 */ 1987 if (control->m_next) 1988 return(EINVAL); 1989 1990 opt->ip6po_m = control; 1991 1992 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 1993 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1994 cm = mtod(control, struct cmsghdr *); 1995 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 1996 return(EINVAL); 1997 if (cm->cmsg_level != IPPROTO_IPV6) 1998 continue; 1999 2000 switch (cm->cmsg_type) { 2001 case IPV6_PKTINFO: 2002 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 2003 return(EINVAL); 2004 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 2005 if (opt->ip6po_pktinfo->ipi6_ifindex && 2006 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr)) 2007 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] = 2008 htons(opt->ip6po_pktinfo->ipi6_ifindex); 2009 2010 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index 2011 || opt->ip6po_pktinfo->ipi6_ifindex < 0) { 2012 return(ENXIO); 2013 } 2014 2015 /* 2016 * Check if the requested source address is indeed a 2017 * unicast address assigned to the node. 2018 */ 2019 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 2020 struct ifaddr *ia; 2021 struct sockaddr_in6 sin6; 2022 2023 bzero(&sin6, sizeof(sin6)); 2024 sin6.sin6_len = sizeof(sin6); 2025 sin6.sin6_family = AF_INET6; 2026 sin6.sin6_addr = 2027 opt->ip6po_pktinfo->ipi6_addr; 2028 ia = ifa_ifwithaddr(sin6tosa(&sin6)); 2029 if (ia == NULL || 2030 (opt->ip6po_pktinfo->ipi6_ifindex && 2031 (ia->ifa_ifp->if_index != 2032 opt->ip6po_pktinfo->ipi6_ifindex))) { 2033 return(EADDRNOTAVAIL); 2034 } 2035 /* 2036 * Check if the requested source address is 2037 * indeed a unicast address assigned to the 2038 * node. 2039 */ 2040 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr)) 2041 return(EADDRNOTAVAIL); 2042 } 2043 break; 2044 2045 case IPV6_HOPLIMIT: 2046 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 2047 return(EINVAL); 2048 2049 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim, 2050 sizeof(opt->ip6po_hlim)); 2051 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255) 2052 return(EINVAL); 2053 break; 2054 2055 case IPV6_NEXTHOP: 2056 if (!priv) 2057 return(EPERM); 2058 2059 if (cm->cmsg_len < sizeof(u_char) || 2060 /* check if cmsg_len is large enough for sa_len */ 2061 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 2062 return(EINVAL); 2063 2064 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm); 2065 2066 break; 2067 2068 case IPV6_HOPOPTS: 2069 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2070 return(EINVAL); 2071 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm); 2072 if (cm->cmsg_len != 2073 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3)) 2074 return(EINVAL); 2075 break; 2076 2077 case IPV6_DSTOPTS: 2078 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2079 return(EINVAL); 2080 2081 /* 2082 * If there is no routing header yet, the destination 2083 * options header should be put on the 1st part. 2084 * Otherwise, the header should be on the 2nd part. 2085 * (See RFC 2460, section 4.1) 2086 */ 2087 if (opt->ip6po_rthdr == NULL) { 2088 opt->ip6po_dest1 = 2089 (struct ip6_dest *)CMSG_DATA(cm); 2090 if (cm->cmsg_len != 2091 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1) 2092 << 3)) 2093 return(EINVAL); 2094 } 2095 else { 2096 opt->ip6po_dest2 = 2097 (struct ip6_dest *)CMSG_DATA(cm); 2098 if (cm->cmsg_len != 2099 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) 2100 << 3)) 2101 return(EINVAL); 2102 } 2103 break; 2104 2105 case IPV6_RTHDR: 2106 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2107 return(EINVAL); 2108 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm); 2109 if (cm->cmsg_len != 2110 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3)) 2111 return(EINVAL); 2112 switch (opt->ip6po_rthdr->ip6r_type) { 2113 case IPV6_RTHDR_TYPE_0: 2114 if (opt->ip6po_rthdr->ip6r_segleft == 0) 2115 return(EINVAL); 2116 break; 2117 default: 2118 return(EINVAL); 2119 } 2120 break; 2121 2122 default: 2123 return(ENOPROTOOPT); 2124 } 2125 } 2126 2127 return(0); 2128 } 2129 2130 /* 2131 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2132 * packet to the input queue of a specified interface. Note that this 2133 * calls the output routine of the loopback "driver", but with an interface 2134 * pointer that might NOT be &loif -- easier than replicating that code here. 2135 */ 2136 void 2137 ip6_mloopback(ifp, m, dst) 2138 struct ifnet *ifp; 2139 struct mbuf *m; 2140 struct sockaddr_in6 *dst; 2141 { 2142 struct mbuf *copym; 2143 struct ip6_hdr *ip6; 2144 2145 copym = m_copy(m, 0, M_COPYALL); 2146 if (copym == NULL) 2147 return; 2148 2149 /* 2150 * Make sure to deep-copy IPv6 header portion in case the data 2151 * is in an mbuf cluster, so that we can safely override the IPv6 2152 * header portion later. 2153 */ 2154 if ((copym->m_flags & M_EXT) != 0 || 2155 copym->m_len < sizeof(struct ip6_hdr)) { 2156 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2157 if (copym == NULL) 2158 return; 2159 } 2160 2161 #ifdef DIAGNOSTIC 2162 if (copym->m_len < sizeof(*ip6)) { 2163 m_freem(copym); 2164 return; 2165 } 2166 #endif 2167 2168 #ifndef FAKE_LOOPBACK_IF 2169 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2170 #else 2171 if (1) 2172 #endif 2173 { 2174 ip6 = mtod(copym, struct ip6_hdr *); 2175 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 2176 ip6->ip6_src.s6_addr16[1] = 0; 2177 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 2178 ip6->ip6_dst.s6_addr16[1] = 0; 2179 } 2180 2181 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL); 2182 } 2183 2184 /* 2185 * Chop IPv6 header off from the payload. 2186 */ 2187 static int 2188 ip6_splithdr(m, exthdrs) 2189 struct mbuf *m; 2190 struct ip6_exthdrs *exthdrs; 2191 { 2192 struct mbuf *mh; 2193 struct ip6_hdr *ip6; 2194 2195 ip6 = mtod(m, struct ip6_hdr *); 2196 if (m->m_len > sizeof(*ip6)) { 2197 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2198 if (mh == 0) { 2199 m_freem(m); 2200 return ENOBUFS; 2201 } 2202 M_COPY_PKTHDR(mh, m); 2203 MH_ALIGN(mh, sizeof(*ip6)); 2204 m->m_flags &= ~M_PKTHDR; 2205 m->m_len -= sizeof(*ip6); 2206 m->m_data += sizeof(*ip6); 2207 mh->m_next = m; 2208 m = mh; 2209 m->m_len = sizeof(*ip6); 2210 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2211 } 2212 exthdrs->ip6e_ip6 = m; 2213 return 0; 2214 } 2215 2216 /* 2217 * Compute IPv6 extension header length. 2218 */ 2219 int 2220 ip6_optlen(in6p) 2221 struct in6pcb *in6p; 2222 { 2223 int len; 2224 2225 if (!in6p->in6p_outputopts) 2226 return 0; 2227 2228 len = 0; 2229 #define elen(x) \ 2230 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2231 2232 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2233 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2234 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2235 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2236 return len; 2237 #undef elen 2238 } 2239