1 /* $NetBSD: ip6_output.c,v 1.36 2001/06/11 13:49:18 itojun Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 66 */ 67 68 #include "opt_inet.h" 69 #include "opt_ipsec.h" 70 #include "opt_pfil_hooks.h" 71 72 #include <sys/param.h> 73 #include <sys/malloc.h> 74 #include <sys/mbuf.h> 75 #include <sys/errno.h> 76 #include <sys/protosw.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/systm.h> 80 #include <sys/proc.h> 81 82 #include <net/if.h> 83 #include <net/route.h> 84 #ifdef PFIL_HOOKS 85 #include <net/pfil.h> 86 #endif 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/ip6.h> 91 #include <netinet/icmp6.h> 92 #include <netinet6/ip6_var.h> 93 #include <netinet6/in6_pcb.h> 94 #include <netinet6/nd6.h> 95 96 #ifdef IPSEC 97 #include <netinet6/ipsec.h> 98 #include <netkey/key.h> 99 #endif /* IPSEC */ 100 101 #include "loop.h" 102 103 #include <net/net_osdep.h> 104 105 #ifdef PFIL_HOOKS 106 extern struct pfil_head inet6_pfil_hook; /* XXX */ 107 #endif 108 109 struct ip6_exthdrs { 110 struct mbuf *ip6e_ip6; 111 struct mbuf *ip6e_hbh; 112 struct mbuf *ip6e_dest1; 113 struct mbuf *ip6e_rthdr; 114 struct mbuf *ip6e_dest2; 115 }; 116 117 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 118 struct socket *)); 119 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 120 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 121 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 122 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 123 struct ip6_frag **)); 124 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 125 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 126 127 extern struct ifnet loif[NLOOP]; 128 129 /* 130 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 131 * header (with pri, len, nxt, hlim, src, dst). 132 * This function may modify ver and hlim only. 133 * The mbuf chain containing the packet will be freed. 134 * The mbuf opt, if present, will not be freed. 135 */ 136 int 137 ip6_output(m0, opt, ro, flags, im6o, ifpp) 138 struct mbuf *m0; 139 struct ip6_pktopts *opt; 140 struct route_in6 *ro; 141 int flags; 142 struct ip6_moptions *im6o; 143 struct ifnet **ifpp; /* XXX: just for statistics */ 144 { 145 struct ip6_hdr *ip6, *mhip6; 146 struct ifnet *ifp, *origifp; 147 struct mbuf *m = m0; 148 int hlen, tlen, len, off; 149 struct route_in6 ip6route; 150 struct sockaddr_in6 *dst; 151 int error = 0; 152 struct in6_ifaddr *ia; 153 u_long mtu; 154 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 155 struct ip6_exthdrs exthdrs; 156 struct in6_addr finaldst; 157 struct route_in6 *ro_pmtu = NULL; 158 int hdrsplit = 0; 159 int needipsec = 0; 160 #ifdef IPSEC 161 int needipsectun = 0; 162 struct socket *so; 163 struct secpolicy *sp = NULL; 164 165 /* for AH processing. stupid to have "socket" variable in IP layer... */ 166 so = ipsec_getsocket(m); 167 (void)ipsec_setsocket(m, NULL); 168 ip6 = mtod(m, struct ip6_hdr *); 169 #endif /* IPSEC */ 170 171 #define MAKE_EXTHDR(hp, mp) \ 172 do { \ 173 if (hp) { \ 174 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 175 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 176 ((eh)->ip6e_len + 1) << 3); \ 177 if (error) \ 178 goto freehdrs; \ 179 } \ 180 } while (0) 181 182 bzero(&exthdrs, sizeof(exthdrs)); 183 if (opt) { 184 /* Hop-by-Hop options header */ 185 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 186 /* Destination options header(1st part) */ 187 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 188 /* Routing header */ 189 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 190 /* Destination options header(2nd part) */ 191 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 192 } 193 194 #ifdef IPSEC 195 /* get a security policy for this packet */ 196 if (so == NULL) 197 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 198 else 199 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 200 201 if (sp == NULL) { 202 ipsec6stat.out_inval++; 203 goto freehdrs; 204 } 205 206 error = 0; 207 208 /* check policy */ 209 switch (sp->policy) { 210 case IPSEC_POLICY_DISCARD: 211 /* 212 * This packet is just discarded. 213 */ 214 ipsec6stat.out_polvio++; 215 goto freehdrs; 216 217 case IPSEC_POLICY_BYPASS: 218 case IPSEC_POLICY_NONE: 219 /* no need to do IPsec. */ 220 needipsec = 0; 221 break; 222 223 case IPSEC_POLICY_IPSEC: 224 if (sp->req == NULL) { 225 /* XXX should be panic ? */ 226 printf("ip6_output: No IPsec request specified.\n"); 227 error = EINVAL; 228 goto freehdrs; 229 } 230 needipsec = 1; 231 break; 232 233 case IPSEC_POLICY_ENTRUST: 234 default: 235 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 236 } 237 #endif /* IPSEC */ 238 239 /* 240 * Calculate the total length of the extension header chain. 241 * Keep the length of the unfragmentable part for fragmentation. 242 */ 243 optlen = 0; 244 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 245 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 246 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 247 unfragpartlen = optlen + sizeof(struct ip6_hdr); 248 /* NOTE: we don't add AH/ESP length here. do that later. */ 249 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 250 251 /* 252 * If we need IPsec, or there is at least one extension header, 253 * separate IP6 header from the payload. 254 */ 255 if ((needipsec || optlen) && !hdrsplit) { 256 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 257 m = NULL; 258 goto freehdrs; 259 } 260 m = exthdrs.ip6e_ip6; 261 hdrsplit++; 262 } 263 264 /* adjust pointer */ 265 ip6 = mtod(m, struct ip6_hdr *); 266 267 /* adjust mbuf packet header length */ 268 m->m_pkthdr.len += optlen; 269 plen = m->m_pkthdr.len - sizeof(*ip6); 270 271 /* If this is a jumbo payload, insert a jumbo payload option. */ 272 if (plen > IPV6_MAXPACKET) { 273 if (!hdrsplit) { 274 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 275 m = NULL; 276 goto freehdrs; 277 } 278 m = exthdrs.ip6e_ip6; 279 hdrsplit++; 280 } 281 /* adjust pointer */ 282 ip6 = mtod(m, struct ip6_hdr *); 283 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 284 goto freehdrs; 285 ip6->ip6_plen = 0; 286 } else 287 ip6->ip6_plen = htons(plen); 288 289 /* 290 * Concatenate headers and fill in next header fields. 291 * Here we have, on "m" 292 * IPv6 payload 293 * and we insert headers accordingly. Finally, we should be getting: 294 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 295 * 296 * during the header composing process, "m" points to IPv6 header. 297 * "mprev" points to an extension header prior to esp. 298 */ 299 { 300 u_char *nexthdrp = &ip6->ip6_nxt; 301 struct mbuf *mprev = m; 302 303 /* 304 * we treat dest2 specially. this makes IPsec processing 305 * much easier. 306 * 307 * result: IPv6 dest2 payload 308 * m and mprev will point to IPv6 header. 309 */ 310 if (exthdrs.ip6e_dest2) { 311 if (!hdrsplit) 312 panic("assumption failed: hdr not split"); 313 exthdrs.ip6e_dest2->m_next = m->m_next; 314 m->m_next = exthdrs.ip6e_dest2; 315 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 316 ip6->ip6_nxt = IPPROTO_DSTOPTS; 317 } 318 319 #define MAKE_CHAIN(m, mp, p, i)\ 320 do {\ 321 if (m) {\ 322 if (!hdrsplit) \ 323 panic("assumption failed: hdr not split"); \ 324 *mtod((m), u_char *) = *(p);\ 325 *(p) = (i);\ 326 p = mtod((m), u_char *);\ 327 (m)->m_next = (mp)->m_next;\ 328 (mp)->m_next = (m);\ 329 (mp) = (m);\ 330 }\ 331 } while (0) 332 /* 333 * result: IPv6 hbh dest1 rthdr dest2 payload 334 * m will point to IPv6 header. mprev will point to the 335 * extension header prior to dest2 (rthdr in the above case). 336 */ 337 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, 338 nexthdrp, IPPROTO_HOPOPTS); 339 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, 340 nexthdrp, IPPROTO_DSTOPTS); 341 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, 342 nexthdrp, IPPROTO_ROUTING); 343 344 #ifdef IPSEC 345 if (!needipsec) 346 goto skip_ipsec2; 347 348 /* 349 * pointers after IPsec headers are not valid any more. 350 * other pointers need a great care too. 351 * (IPsec routines should not mangle mbufs prior to AH/ESP) 352 */ 353 exthdrs.ip6e_dest2 = NULL; 354 355 { 356 struct ip6_rthdr *rh = NULL; 357 int segleft_org = 0; 358 struct ipsec_output_state state; 359 360 if (exthdrs.ip6e_rthdr) { 361 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 362 segleft_org = rh->ip6r_segleft; 363 rh->ip6r_segleft = 0; 364 } 365 366 bzero(&state, sizeof(state)); 367 state.m = m; 368 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 369 &needipsectun); 370 m = state.m; 371 if (error) { 372 /* mbuf is already reclaimed in ipsec6_output_trans. */ 373 m = NULL; 374 switch (error) { 375 case EHOSTUNREACH: 376 case ENETUNREACH: 377 case EMSGSIZE: 378 case ENOBUFS: 379 case ENOMEM: 380 break; 381 default: 382 printf("ip6_output (ipsec): error code %d\n", error); 383 /*fall through*/ 384 case ENOENT: 385 /* don't show these error codes to the user */ 386 error = 0; 387 break; 388 } 389 goto bad; 390 } 391 if (exthdrs.ip6e_rthdr) { 392 /* ah6_output doesn't modify mbuf chain */ 393 rh->ip6r_segleft = segleft_org; 394 } 395 } 396 skip_ipsec2:; 397 #endif 398 } 399 400 /* 401 * If there is a routing header, replace destination address field 402 * with the first hop of the routing header. 403 */ 404 if (exthdrs.ip6e_rthdr) { 405 struct ip6_rthdr *rh = 406 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 407 struct ip6_rthdr *)); 408 struct ip6_rthdr0 *rh0; 409 410 finaldst = ip6->ip6_dst; 411 switch (rh->ip6r_type) { 412 case IPV6_RTHDR_TYPE_0: 413 rh0 = (struct ip6_rthdr0 *)rh; 414 ip6->ip6_dst = rh0->ip6r0_addr[0]; 415 bcopy((caddr_t)&rh0->ip6r0_addr[1], 416 (caddr_t)&rh0->ip6r0_addr[0], 417 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1) 418 ); 419 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst; 420 break; 421 default: /* is it possible? */ 422 error = EINVAL; 423 goto bad; 424 } 425 } 426 427 /* Source address validation */ 428 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 429 (flags & IPV6_DADOUTPUT) == 0) { 430 error = EOPNOTSUPP; 431 ip6stat.ip6s_badscope++; 432 goto bad; 433 } 434 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 435 error = EOPNOTSUPP; 436 ip6stat.ip6s_badscope++; 437 goto bad; 438 } 439 440 ip6stat.ip6s_localout++; 441 442 /* 443 * Route packet. 444 */ 445 if (ro == 0) { 446 ro = &ip6route; 447 bzero((caddr_t)ro, sizeof(*ro)); 448 } 449 ro_pmtu = ro; 450 if (opt && opt->ip6po_rthdr) 451 ro = &opt->ip6po_route; 452 dst = (struct sockaddr_in6 *)&ro->ro_dst; 453 /* 454 * If there is a cached route, 455 * check that it is to the same destination 456 * and is still up. If not, free it and try again. 457 */ 458 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 459 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 460 RTFREE(ro->ro_rt); 461 ro->ro_rt = (struct rtentry *)0; 462 } 463 if (ro->ro_rt == 0) { 464 bzero(dst, sizeof(*dst)); 465 dst->sin6_family = AF_INET6; 466 dst->sin6_len = sizeof(struct sockaddr_in6); 467 dst->sin6_addr = ip6->ip6_dst; 468 } 469 #ifdef IPSEC 470 if (needipsec && needipsectun) { 471 struct ipsec_output_state state; 472 473 /* 474 * All the extension headers will become inaccessible 475 * (since they can be encrypted). 476 * Don't panic, we need no more updates to extension headers 477 * on inner IPv6 packet (since they are now encapsulated). 478 * 479 * IPv6 [ESP|AH] IPv6 [extension headers] payload 480 */ 481 bzero(&exthdrs, sizeof(exthdrs)); 482 exthdrs.ip6e_ip6 = m; 483 484 bzero(&state, sizeof(state)); 485 state.m = m; 486 state.ro = (struct route *)ro; 487 state.dst = (struct sockaddr *)dst; 488 489 error = ipsec6_output_tunnel(&state, sp, flags); 490 491 m = state.m; 492 ro = (struct route_in6 *)state.ro; 493 dst = (struct sockaddr_in6 *)state.dst; 494 if (error) { 495 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 496 m0 = m = NULL; 497 m = NULL; 498 switch (error) { 499 case EHOSTUNREACH: 500 case ENETUNREACH: 501 case EMSGSIZE: 502 case ENOBUFS: 503 case ENOMEM: 504 break; 505 default: 506 printf("ip6_output (ipsec): error code %d\n", error); 507 /*fall through*/ 508 case ENOENT: 509 /* don't show these error codes to the user */ 510 error = 0; 511 break; 512 } 513 goto bad; 514 } 515 516 exthdrs.ip6e_ip6 = m; 517 } 518 #endif /*IPSEC*/ 519 520 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 521 /* Unicast */ 522 523 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 524 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 525 /* xxx 526 * interface selection comes here 527 * if an interface is specified from an upper layer, 528 * ifp must point it. 529 */ 530 if (ro->ro_rt == 0) { 531 /* 532 * non-bsdi always clone routes, if parent is 533 * PRF_CLONING. 534 */ 535 rtalloc((struct route *)ro); 536 } 537 if (ro->ro_rt == 0) { 538 ip6stat.ip6s_noroute++; 539 error = EHOSTUNREACH; 540 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 541 goto bad; 542 } 543 ia = ifatoia6(ro->ro_rt->rt_ifa); 544 ifp = ro->ro_rt->rt_ifp; 545 ro->ro_rt->rt_use++; 546 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 547 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 548 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 549 550 in6_ifstat_inc(ifp, ifs6_out_request); 551 552 /* 553 * Check if the outgoing interface conflicts with 554 * the interface specified by ifi6_ifindex (if specified). 555 * Note that loopback interface is always okay. 556 * (this may happen when we are sending a packet to one of 557 * our own addresses.) 558 */ 559 if (opt && opt->ip6po_pktinfo 560 && opt->ip6po_pktinfo->ipi6_ifindex) { 561 if (!(ifp->if_flags & IFF_LOOPBACK) 562 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 563 ip6stat.ip6s_noroute++; 564 in6_ifstat_inc(ifp, ifs6_out_discard); 565 error = EHOSTUNREACH; 566 goto bad; 567 } 568 } 569 570 if (opt && opt->ip6po_hlim != -1) 571 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 572 } else { 573 /* Multicast */ 574 struct in6_multi *in6m; 575 576 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 577 578 /* 579 * See if the caller provided any multicast options 580 */ 581 ifp = NULL; 582 if (im6o != NULL) { 583 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 584 if (im6o->im6o_multicast_ifp != NULL) 585 ifp = im6o->im6o_multicast_ifp; 586 } else 587 ip6->ip6_hlim = ip6_defmcasthlim; 588 589 /* 590 * See if the caller provided the outgoing interface 591 * as an ancillary data. 592 * Boundary check for ifindex is assumed to be already done. 593 */ 594 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 595 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]; 596 597 /* 598 * If the destination is a node-local scope multicast, 599 * the packet should be loop-backed only. 600 */ 601 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 602 /* 603 * If the outgoing interface is already specified, 604 * it should be a loopback interface. 605 */ 606 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 607 ip6stat.ip6s_badscope++; 608 error = ENETUNREACH; /* XXX: better error? */ 609 /* XXX correct ifp? */ 610 in6_ifstat_inc(ifp, ifs6_out_discard); 611 goto bad; 612 } else { 613 ifp = &loif[0]; 614 } 615 } 616 617 if (opt && opt->ip6po_hlim != -1) 618 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 619 620 /* 621 * If caller did not provide an interface lookup a 622 * default in the routing table. This is either a 623 * default for the speicfied group (i.e. a host 624 * route), or a multicast default (a route for the 625 * ``net'' ff00::/8). 626 */ 627 if (ifp == NULL) { 628 if (ro->ro_rt == 0) { 629 ro->ro_rt = rtalloc1((struct sockaddr *) 630 &ro->ro_dst, 0 631 ); 632 } 633 if (ro->ro_rt == 0) { 634 ip6stat.ip6s_noroute++; 635 error = EHOSTUNREACH; 636 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 637 goto bad; 638 } 639 ia = ifatoia6(ro->ro_rt->rt_ifa); 640 ifp = ro->ro_rt->rt_ifp; 641 ro->ro_rt->rt_use++; 642 } 643 644 if ((flags & IPV6_FORWARDING) == 0) 645 in6_ifstat_inc(ifp, ifs6_out_request); 646 in6_ifstat_inc(ifp, ifs6_out_mcast); 647 648 /* 649 * Confirm that the outgoing interface supports multicast. 650 */ 651 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 652 ip6stat.ip6s_noroute++; 653 in6_ifstat_inc(ifp, ifs6_out_discard); 654 error = ENETUNREACH; 655 goto bad; 656 } 657 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 658 if (in6m != NULL && 659 (im6o == NULL || im6o->im6o_multicast_loop)) { 660 /* 661 * If we belong to the destination multicast group 662 * on the outgoing interface, and the caller did not 663 * forbid loopback, loop back a copy. 664 */ 665 ip6_mloopback(ifp, m, dst); 666 } else { 667 /* 668 * If we are acting as a multicast router, perform 669 * multicast forwarding as if the packet had just 670 * arrived on the interface to which we are about 671 * to send. The multicast forwarding function 672 * recursively calls this function, using the 673 * IPV6_FORWARDING flag to prevent infinite recursion. 674 * 675 * Multicasts that are looped back by ip6_mloopback(), 676 * above, will be forwarded by the ip6_input() routine, 677 * if necessary. 678 */ 679 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 680 if (ip6_mforward(ip6, ifp, m) != 0) { 681 m_freem(m); 682 goto done; 683 } 684 } 685 } 686 /* 687 * Multicasts with a hoplimit of zero may be looped back, 688 * above, but must not be transmitted on a network. 689 * Also, multicasts addressed to the loopback interface 690 * are not sent -- the above call to ip6_mloopback() will 691 * loop back a copy if this host actually belongs to the 692 * destination group on the loopback interface. 693 */ 694 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 695 m_freem(m); 696 goto done; 697 } 698 } 699 700 /* 701 * Fill the outgoing inteface to tell the upper layer 702 * to increment per-interface statistics. 703 */ 704 if (ifpp) 705 *ifpp = ifp; 706 707 /* 708 * Determine path MTU. 709 */ 710 if (ro_pmtu != ro) { 711 /* The first hop and the final destination may differ. */ 712 struct sockaddr_in6 *sin6_fin = 713 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 714 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 715 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, 716 &finaldst))) { 717 RTFREE(ro_pmtu->ro_rt); 718 ro_pmtu->ro_rt = (struct rtentry *)0; 719 } 720 if (ro_pmtu->ro_rt == 0) { 721 bzero(sin6_fin, sizeof(*sin6_fin)); 722 sin6_fin->sin6_family = AF_INET6; 723 sin6_fin->sin6_len = sizeof(struct sockaddr_in6); 724 sin6_fin->sin6_addr = finaldst; 725 726 rtalloc((struct route *)ro_pmtu); 727 } 728 } 729 if (ro_pmtu->ro_rt != NULL) { 730 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu; 731 732 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 733 if (mtu > ifmtu || mtu == 0) { 734 /* 735 * The MTU on the route is larger than the MTU on 736 * the interface! This shouldn't happen, unless the 737 * MTU of the interface has been changed after the 738 * interface was brought up. Change the MTU in the 739 * route to match the interface MTU (as long as the 740 * field isn't locked). 741 * 742 * if MTU on the route is 0, we need to fix the MTU. 743 * this case happens with path MTU discovery timeouts. 744 */ 745 mtu = ifmtu; 746 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 747 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */ 748 } 749 } else { 750 mtu = nd_ifinfo[ifp->if_index].linkmtu; 751 } 752 753 /* Fake scoped addresses */ 754 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 755 /* 756 * If source or destination address is a scoped address, and 757 * the packet is going to be sent to a loopback interface, 758 * we should keep the original interface. 759 */ 760 761 /* 762 * XXX: this is a very experimental and temporary solution. 763 * We eventually have sockaddr_in6 and use the sin6_scope_id 764 * field of the structure here. 765 * We rely on the consistency between two scope zone ids 766 * of source add destination, which should already be assured 767 * Larger scopes than link will be supported in the near 768 * future. 769 */ 770 origifp = NULL; 771 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 772 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])]; 773 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 774 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])]; 775 /* 776 * XXX: origifp can be NULL even in those two cases above. 777 * For example, if we remove the (only) link-local address 778 * from the loopback interface, and try to send a link-local 779 * address without link-id information. Then the source 780 * address is ::1, and the destination address is the 781 * link-local address with its s6_addr16[1] being zero. 782 * What is worse, if the packet goes to the loopback interface 783 * by a default rejected route, the null pointer would be 784 * passed to looutput, and the kernel would hang. 785 * The following last resort would prevent such disaster. 786 */ 787 if (origifp == NULL) 788 origifp = ifp; 789 } 790 else 791 origifp = ifp; 792 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 793 ip6->ip6_src.s6_addr16[1] = 0; 794 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 795 ip6->ip6_dst.s6_addr16[1] = 0; 796 797 /* 798 * If the outgoing packet contains a hop-by-hop options header, 799 * it must be examined and processed even by the source node. 800 * (RFC 2460, section 4.) 801 */ 802 if (exthdrs.ip6e_hbh) { 803 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 804 u_int32_t dummy1; /* XXX unused */ 805 u_int32_t dummy2; /* XXX unused */ 806 807 /* 808 * XXX: if we have to send an ICMPv6 error to the sender, 809 * we need the M_LOOP flag since icmp6_error() expects 810 * the IPv6 and the hop-by-hop options header are 811 * continuous unless the flag is set. 812 */ 813 m->m_flags |= M_LOOP; 814 m->m_pkthdr.rcvif = ifp; 815 if (ip6_process_hopopts(m, 816 (u_int8_t *)(hbh + 1), 817 ((hbh->ip6h_len + 1) << 3) - 818 sizeof(struct ip6_hbh), 819 &dummy1, &dummy2) < 0) { 820 /* m was already freed at this point */ 821 error = EINVAL;/* better error? */ 822 goto done; 823 } 824 m->m_flags &= ~M_LOOP; /* XXX */ 825 m->m_pkthdr.rcvif = NULL; 826 } 827 828 #ifdef PFIL_HOOKS 829 /* 830 * Run through list of hooks for output packets. 831 */ 832 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, 833 PFIL_OUT)) != 0) 834 goto done; 835 if (m == NULL) 836 goto done; 837 ip6 = mtod(m, struct ip6_hdr *); 838 #endif /* PFIL_HOOKS */ 839 /* 840 * Send the packet to the outgoing interface. 841 * If necessary, do IPv6 fragmentation before sending. 842 */ 843 tlen = m->m_pkthdr.len; 844 if (tlen <= mtu 845 #ifdef notyet 846 /* 847 * On any link that cannot convey a 1280-octet packet in one piece, 848 * link-specific fragmentation and reassembly must be provided at 849 * a layer below IPv6. [RFC 2460, sec.5] 850 * Thus if the interface has ability of link-level fragmentation, 851 * we can just send the packet even if the packet size is 852 * larger than the link's MTU. 853 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet... 854 */ 855 856 || ifp->if_flags & IFF_FRAGMENTABLE 857 #endif 858 ) 859 { 860 #ifdef IFA_STATS 861 struct in6_ifaddr *ia6; 862 ip6 = mtod(m, struct ip6_hdr *); 863 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 864 if (ia6) { 865 ia6->ia_ifa.ifa_data.ifad_outbytes += 866 m->m_pkthdr.len; 867 } 868 #endif 869 #ifdef IPSEC 870 /* clean ipsec history once it goes out of the node */ 871 ipsec_delaux(m); 872 #endif 873 #ifdef OLDIP6OUTPUT 874 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, 875 ro->ro_rt); 876 #else 877 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 878 #endif 879 goto done; 880 } else if (mtu < IPV6_MMTU) { 881 /* 882 * note that path MTU is never less than IPV6_MMTU 883 * (see icmp6_input). 884 */ 885 error = EMSGSIZE; 886 in6_ifstat_inc(ifp, ifs6_out_fragfail); 887 goto bad; 888 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 889 error = EMSGSIZE; 890 in6_ifstat_inc(ifp, ifs6_out_fragfail); 891 goto bad; 892 } else { 893 struct mbuf **mnext, *m_frgpart; 894 struct ip6_frag *ip6f; 895 u_int32_t id = htonl(ip6_id++); 896 u_char nextproto; 897 898 /* 899 * Too large for the destination or interface; 900 * fragment if possible. 901 * Must be able to put at least 8 bytes per fragment. 902 */ 903 hlen = unfragpartlen; 904 if (mtu > IPV6_MAXPACKET) 905 mtu = IPV6_MAXPACKET; 906 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 907 if (len < 8) { 908 error = EMSGSIZE; 909 in6_ifstat_inc(ifp, ifs6_out_fragfail); 910 goto bad; 911 } 912 913 mnext = &m->m_nextpkt; 914 915 /* 916 * Change the next header field of the last header in the 917 * unfragmentable part. 918 */ 919 if (exthdrs.ip6e_rthdr) { 920 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 921 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 922 } else if (exthdrs.ip6e_dest1) { 923 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 924 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 925 } else if (exthdrs.ip6e_hbh) { 926 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 927 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 928 } else { 929 nextproto = ip6->ip6_nxt; 930 ip6->ip6_nxt = IPPROTO_FRAGMENT; 931 } 932 933 /* 934 * Loop through length of segment after first fragment, 935 * make new header and copy data of each part and link onto chain. 936 */ 937 m0 = m; 938 for (off = hlen; off < tlen; off += len) { 939 MGETHDR(m, M_DONTWAIT, MT_HEADER); 940 if (!m) { 941 error = ENOBUFS; 942 ip6stat.ip6s_odropped++; 943 goto sendorfree; 944 } 945 m->m_flags = m0->m_flags & M_COPYFLAGS; 946 *mnext = m; 947 mnext = &m->m_nextpkt; 948 m->m_data += max_linkhdr; 949 mhip6 = mtod(m, struct ip6_hdr *); 950 *mhip6 = *ip6; 951 m->m_len = sizeof(*mhip6); 952 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 953 if (error) { 954 ip6stat.ip6s_odropped++; 955 goto sendorfree; 956 } 957 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 958 if (off + len >= tlen) 959 len = tlen - off; 960 else 961 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 962 mhip6->ip6_plen = htons((u_short)(len + hlen + 963 sizeof(*ip6f) - 964 sizeof(struct ip6_hdr))); 965 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 966 error = ENOBUFS; 967 ip6stat.ip6s_odropped++; 968 goto sendorfree; 969 } 970 m_cat(m, m_frgpart); 971 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 972 m->m_pkthdr.rcvif = (struct ifnet *)0; 973 ip6f->ip6f_reserved = 0; 974 ip6f->ip6f_ident = id; 975 ip6f->ip6f_nxt = nextproto; 976 ip6stat.ip6s_ofragments++; 977 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 978 } 979 980 in6_ifstat_inc(ifp, ifs6_out_fragok); 981 } 982 983 /* 984 * Remove leading garbages. 985 */ 986 sendorfree: 987 m = m0->m_nextpkt; 988 m0->m_nextpkt = 0; 989 m_freem(m0); 990 for (m0 = m; m; m = m0) { 991 m0 = m->m_nextpkt; 992 m->m_nextpkt = 0; 993 if (error == 0) { 994 #ifdef IFA_STATS 995 struct in6_ifaddr *ia6; 996 ip6 = mtod(m, struct ip6_hdr *); 997 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 998 if (ia6) { 999 ia6->ia_ifa.ifa_data.ifad_outbytes += 1000 m->m_pkthdr.len; 1001 } 1002 #endif 1003 #ifdef IPSEC 1004 /* clean ipsec history once it goes out of the node */ 1005 ipsec_delaux(m); 1006 #endif 1007 #ifdef OLDIP6OUTPUT 1008 error = (*ifp->if_output)(ifp, m, 1009 (struct sockaddr *)dst, 1010 ro->ro_rt); 1011 #else 1012 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1013 #endif 1014 } else 1015 m_freem(m); 1016 } 1017 1018 if (error == 0) 1019 ip6stat.ip6s_fragmented++; 1020 1021 done: 1022 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1023 RTFREE(ro->ro_rt); 1024 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1025 RTFREE(ro_pmtu->ro_rt); 1026 } 1027 1028 #ifdef IPSEC 1029 if (sp != NULL) 1030 key_freesp(sp); 1031 #endif /* IPSEC */ 1032 1033 return(error); 1034 1035 freehdrs: 1036 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1037 m_freem(exthdrs.ip6e_dest1); 1038 m_freem(exthdrs.ip6e_rthdr); 1039 m_freem(exthdrs.ip6e_dest2); 1040 /* fall through */ 1041 bad: 1042 m_freem(m); 1043 goto done; 1044 } 1045 1046 static int 1047 ip6_copyexthdr(mp, hdr, hlen) 1048 struct mbuf **mp; 1049 caddr_t hdr; 1050 int hlen; 1051 { 1052 struct mbuf *m; 1053 1054 if (hlen > MCLBYTES) 1055 return(ENOBUFS); /* XXX */ 1056 1057 MGET(m, M_DONTWAIT, MT_DATA); 1058 if (!m) 1059 return(ENOBUFS); 1060 1061 if (hlen > MLEN) { 1062 MCLGET(m, M_DONTWAIT); 1063 if ((m->m_flags & M_EXT) == 0) { 1064 m_free(m); 1065 return(ENOBUFS); 1066 } 1067 } 1068 m->m_len = hlen; 1069 if (hdr) 1070 bcopy(hdr, mtod(m, caddr_t), hlen); 1071 1072 *mp = m; 1073 return(0); 1074 } 1075 1076 /* 1077 * Insert jumbo payload option. 1078 */ 1079 static int 1080 ip6_insert_jumboopt(exthdrs, plen) 1081 struct ip6_exthdrs *exthdrs; 1082 u_int32_t plen; 1083 { 1084 struct mbuf *mopt; 1085 u_char *optbuf; 1086 u_int32_t v; 1087 1088 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1089 1090 /* 1091 * If there is no hop-by-hop options header, allocate new one. 1092 * If there is one but it doesn't have enough space to store the 1093 * jumbo payload option, allocate a cluster to store the whole options. 1094 * Otherwise, use it to store the options. 1095 */ 1096 if (exthdrs->ip6e_hbh == 0) { 1097 MGET(mopt, M_DONTWAIT, MT_DATA); 1098 if (mopt == 0) 1099 return(ENOBUFS); 1100 mopt->m_len = JUMBOOPTLEN; 1101 optbuf = mtod(mopt, u_char *); 1102 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1103 exthdrs->ip6e_hbh = mopt; 1104 } else { 1105 struct ip6_hbh *hbh; 1106 1107 mopt = exthdrs->ip6e_hbh; 1108 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1109 /* 1110 * XXX assumption: 1111 * - exthdrs->ip6e_hbh is not referenced from places 1112 * other than exthdrs. 1113 * - exthdrs->ip6e_hbh is not an mbuf chain. 1114 */ 1115 int oldoptlen = mopt->m_len; 1116 struct mbuf *n; 1117 1118 /* 1119 * XXX: give up if the whole (new) hbh header does 1120 * not fit even in an mbuf cluster. 1121 */ 1122 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1123 return(ENOBUFS); 1124 1125 /* 1126 * As a consequence, we must always prepare a cluster 1127 * at this point. 1128 */ 1129 MGET(n, M_DONTWAIT, MT_DATA); 1130 if (n) { 1131 MCLGET(n, M_DONTWAIT); 1132 if ((n->m_flags & M_EXT) == 0) { 1133 m_freem(n); 1134 n = NULL; 1135 } 1136 } 1137 if (!n) 1138 return(ENOBUFS); 1139 n->m_len = oldoptlen + JUMBOOPTLEN; 1140 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1141 oldoptlen); 1142 optbuf = mtod(n, caddr_t) + oldoptlen; 1143 m_freem(mopt); 1144 mopt = exthdrs->ip6e_hbh = n; 1145 } else { 1146 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1147 mopt->m_len += JUMBOOPTLEN; 1148 } 1149 optbuf[0] = IP6OPT_PADN; 1150 optbuf[1] = 1; 1151 1152 /* 1153 * Adjust the header length according to the pad and 1154 * the jumbo payload option. 1155 */ 1156 hbh = mtod(mopt, struct ip6_hbh *); 1157 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1158 } 1159 1160 /* fill in the option. */ 1161 optbuf[2] = IP6OPT_JUMBO; 1162 optbuf[3] = 4; 1163 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1164 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1165 1166 /* finally, adjust the packet header length */ 1167 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1168 1169 return(0); 1170 #undef JUMBOOPTLEN 1171 } 1172 1173 /* 1174 * Insert fragment header and copy unfragmentable header portions. 1175 */ 1176 static int 1177 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1178 struct mbuf *m0, *m; 1179 int hlen; 1180 struct ip6_frag **frghdrp; 1181 { 1182 struct mbuf *n, *mlast; 1183 1184 if (hlen > sizeof(struct ip6_hdr)) { 1185 n = m_copym(m0, sizeof(struct ip6_hdr), 1186 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1187 if (n == 0) 1188 return(ENOBUFS); 1189 m->m_next = n; 1190 } else 1191 n = m; 1192 1193 /* Search for the last mbuf of unfragmentable part. */ 1194 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1195 ; 1196 1197 if ((mlast->m_flags & M_EXT) == 0 && 1198 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1199 /* use the trailing space of the last mbuf for the fragment hdr */ 1200 *frghdrp = 1201 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1202 mlast->m_len += sizeof(struct ip6_frag); 1203 m->m_pkthdr.len += sizeof(struct ip6_frag); 1204 } else { 1205 /* allocate a new mbuf for the fragment header */ 1206 struct mbuf *mfrg; 1207 1208 MGET(mfrg, M_DONTWAIT, MT_DATA); 1209 if (mfrg == 0) 1210 return(ENOBUFS); 1211 mfrg->m_len = sizeof(struct ip6_frag); 1212 *frghdrp = mtod(mfrg, struct ip6_frag *); 1213 mlast->m_next = mfrg; 1214 } 1215 1216 return(0); 1217 } 1218 1219 /* 1220 * IP6 socket option processing. 1221 */ 1222 int 1223 ip6_ctloutput(op, so, level, optname, mp) 1224 int op; 1225 struct socket *so; 1226 int level, optname; 1227 struct mbuf **mp; 1228 { 1229 struct in6pcb *in6p = sotoin6pcb(so); 1230 struct mbuf *m = *mp; 1231 int optval = 0; 1232 int error = 0; 1233 struct proc *p = curproc; /* XXX */ 1234 1235 if (level == IPPROTO_IPV6) { 1236 switch (op) { 1237 1238 case PRCO_SETOPT: 1239 switch (optname) { 1240 case IPV6_PKTOPTIONS: 1241 /* m is freed in ip6_pcbopts */ 1242 return(ip6_pcbopts(&in6p->in6p_outputopts, 1243 m, so)); 1244 case IPV6_HOPOPTS: 1245 case IPV6_DSTOPTS: 1246 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1247 error = EPERM; 1248 break; 1249 } 1250 /* fall through */ 1251 case IPV6_UNICAST_HOPS: 1252 case IPV6_RECVOPTS: 1253 case IPV6_RECVRETOPTS: 1254 case IPV6_RECVDSTADDR: 1255 case IPV6_PKTINFO: 1256 case IPV6_HOPLIMIT: 1257 case IPV6_RTHDR: 1258 case IPV6_CHECKSUM: 1259 case IPV6_FAITH: 1260 #ifndef INET6_BINDV6ONLY 1261 case IPV6_BINDV6ONLY: 1262 #endif 1263 if (!m || m->m_len != sizeof(int)) 1264 error = EINVAL; 1265 else { 1266 optval = *mtod(m, int *); 1267 switch (optname) { 1268 1269 case IPV6_UNICAST_HOPS: 1270 if (optval < -1 || optval >= 256) 1271 error = EINVAL; 1272 else { 1273 /* -1 = kernel default */ 1274 in6p->in6p_hops = optval; 1275 } 1276 break; 1277 #define OPTSET(bit) \ 1278 if (optval) \ 1279 in6p->in6p_flags |= bit; \ 1280 else \ 1281 in6p->in6p_flags &= ~bit; 1282 1283 case IPV6_RECVOPTS: 1284 OPTSET(IN6P_RECVOPTS); 1285 break; 1286 1287 case IPV6_RECVRETOPTS: 1288 OPTSET(IN6P_RECVRETOPTS); 1289 break; 1290 1291 case IPV6_RECVDSTADDR: 1292 OPTSET(IN6P_RECVDSTADDR); 1293 break; 1294 1295 case IPV6_PKTINFO: 1296 OPTSET(IN6P_PKTINFO); 1297 break; 1298 1299 case IPV6_HOPLIMIT: 1300 OPTSET(IN6P_HOPLIMIT); 1301 break; 1302 1303 case IPV6_HOPOPTS: 1304 OPTSET(IN6P_HOPOPTS); 1305 break; 1306 1307 case IPV6_DSTOPTS: 1308 OPTSET(IN6P_DSTOPTS); 1309 break; 1310 1311 case IPV6_RTHDR: 1312 OPTSET(IN6P_RTHDR); 1313 break; 1314 1315 case IPV6_CHECKSUM: 1316 in6p->in6p_cksum = optval; 1317 break; 1318 1319 case IPV6_FAITH: 1320 OPTSET(IN6P_FAITH); 1321 break; 1322 1323 #ifndef INET6_BINDV6ONLY 1324 case IPV6_BINDV6ONLY: 1325 OPTSET(IN6P_BINDV6ONLY); 1326 break; 1327 #endif 1328 } 1329 } 1330 break; 1331 #undef OPTSET 1332 1333 case IPV6_MULTICAST_IF: 1334 case IPV6_MULTICAST_HOPS: 1335 case IPV6_MULTICAST_LOOP: 1336 case IPV6_JOIN_GROUP: 1337 case IPV6_LEAVE_GROUP: 1338 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m); 1339 break; 1340 1341 case IPV6_PORTRANGE: 1342 optval = *mtod(m, int *); 1343 1344 switch (optval) { 1345 case IPV6_PORTRANGE_DEFAULT: 1346 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1347 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1348 break; 1349 1350 case IPV6_PORTRANGE_HIGH: 1351 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1352 in6p->in6p_flags |= IN6P_HIGHPORT; 1353 break; 1354 1355 case IPV6_PORTRANGE_LOW: 1356 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1357 in6p->in6p_flags |= IN6P_LOWPORT; 1358 break; 1359 1360 default: 1361 error = EINVAL; 1362 break; 1363 } 1364 break; 1365 1366 #ifdef IPSEC 1367 case IPV6_IPSEC_POLICY: 1368 { 1369 caddr_t req = NULL; 1370 size_t len = 0; 1371 1372 int priv = 0; 1373 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) 1374 priv = 0; 1375 else 1376 priv = 1; 1377 if (m) { 1378 req = mtod(m, caddr_t); 1379 len = m->m_len; 1380 } 1381 error = ipsec6_set_policy(in6p, 1382 optname, req, len, priv); 1383 } 1384 break; 1385 #endif /* IPSEC */ 1386 1387 default: 1388 error = ENOPROTOOPT; 1389 break; 1390 } 1391 if (m) 1392 (void)m_free(m); 1393 break; 1394 1395 case PRCO_GETOPT: 1396 switch (optname) { 1397 1398 case IPV6_OPTIONS: 1399 case IPV6_RETOPTS: 1400 #if 0 1401 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1402 if (in6p->in6p_options) { 1403 m->m_len = in6p->in6p_options->m_len; 1404 bcopy(mtod(in6p->in6p_options, caddr_t), 1405 mtod(m, caddr_t), 1406 (unsigned)m->m_len); 1407 } else 1408 m->m_len = 0; 1409 break; 1410 #else 1411 error = ENOPROTOOPT; 1412 break; 1413 #endif 1414 1415 case IPV6_PKTOPTIONS: 1416 if (in6p->in6p_options) { 1417 *mp = m_copym(in6p->in6p_options, 0, 1418 M_COPYALL, M_WAIT); 1419 } else { 1420 *mp = m_get(M_WAIT, MT_SOOPTS); 1421 (*mp)->m_len = 0; 1422 } 1423 break; 1424 1425 case IPV6_HOPOPTS: 1426 case IPV6_DSTOPTS: 1427 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1428 error = EPERM; 1429 break; 1430 } 1431 /* fall through */ 1432 case IPV6_UNICAST_HOPS: 1433 case IPV6_RECVOPTS: 1434 case IPV6_RECVRETOPTS: 1435 case IPV6_RECVDSTADDR: 1436 case IPV6_PORTRANGE: 1437 case IPV6_PKTINFO: 1438 case IPV6_HOPLIMIT: 1439 case IPV6_RTHDR: 1440 case IPV6_CHECKSUM: 1441 case IPV6_FAITH: 1442 #ifndef INET6_BINDV6ONLY 1443 case IPV6_BINDV6ONLY: 1444 #endif 1445 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1446 m->m_len = sizeof(int); 1447 switch (optname) { 1448 1449 case IPV6_UNICAST_HOPS: 1450 optval = in6p->in6p_hops; 1451 break; 1452 1453 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0) 1454 1455 case IPV6_RECVOPTS: 1456 optval = OPTBIT(IN6P_RECVOPTS); 1457 break; 1458 1459 case IPV6_RECVRETOPTS: 1460 optval = OPTBIT(IN6P_RECVRETOPTS); 1461 break; 1462 1463 case IPV6_RECVDSTADDR: 1464 optval = OPTBIT(IN6P_RECVDSTADDR); 1465 break; 1466 1467 case IPV6_PORTRANGE: 1468 { 1469 int flags; 1470 flags = in6p->in6p_flags; 1471 if (flags & IN6P_HIGHPORT) 1472 optval = IPV6_PORTRANGE_HIGH; 1473 else if (flags & IN6P_LOWPORT) 1474 optval = IPV6_PORTRANGE_LOW; 1475 else 1476 optval = 0; 1477 break; 1478 } 1479 1480 case IPV6_PKTINFO: 1481 optval = OPTBIT(IN6P_PKTINFO); 1482 break; 1483 1484 case IPV6_HOPLIMIT: 1485 optval = OPTBIT(IN6P_HOPLIMIT); 1486 break; 1487 1488 case IPV6_HOPOPTS: 1489 optval = OPTBIT(IN6P_HOPOPTS); 1490 break; 1491 1492 case IPV6_DSTOPTS: 1493 optval = OPTBIT(IN6P_DSTOPTS); 1494 break; 1495 1496 case IPV6_RTHDR: 1497 optval = OPTBIT(IN6P_RTHDR); 1498 break; 1499 1500 case IPV6_CHECKSUM: 1501 optval = in6p->in6p_cksum; 1502 break; 1503 1504 case IPV6_FAITH: 1505 optval = OPTBIT(IN6P_FAITH); 1506 break; 1507 1508 #ifndef INET6_BINDV6ONLY 1509 case IPV6_BINDV6ONLY: 1510 optval = OPTBIT(IN6P_BINDV6ONLY); 1511 break; 1512 #endif 1513 } 1514 *mtod(m, int *) = optval; 1515 break; 1516 1517 case IPV6_MULTICAST_IF: 1518 case IPV6_MULTICAST_HOPS: 1519 case IPV6_MULTICAST_LOOP: 1520 case IPV6_JOIN_GROUP: 1521 case IPV6_LEAVE_GROUP: 1522 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp); 1523 break; 1524 1525 #ifdef IPSEC 1526 case IPV6_IPSEC_POLICY: 1527 { 1528 caddr_t req = NULL; 1529 size_t len = 0; 1530 1531 if (m) { 1532 req = mtod(m, caddr_t); 1533 len = m->m_len; 1534 } 1535 error = ipsec6_get_policy(in6p, req, len, mp); 1536 break; 1537 } 1538 #endif /* IPSEC */ 1539 1540 default: 1541 error = ENOPROTOOPT; 1542 break; 1543 } 1544 break; 1545 } 1546 } else { 1547 error = EINVAL; 1548 if (op == PRCO_SETOPT && *mp) 1549 (void)m_free(*mp); 1550 } 1551 return(error); 1552 } 1553 1554 /* 1555 * Set up IP6 options in pcb for insertion in output packets. 1556 * Store in mbuf with pointer in pcbopt, adding pseudo-option 1557 * with destination address if source routed. 1558 */ 1559 static int 1560 ip6_pcbopts(pktopt, m, so) 1561 struct ip6_pktopts **pktopt; 1562 struct mbuf *m; 1563 struct socket *so; 1564 { 1565 struct ip6_pktopts *opt = *pktopt; 1566 int error = 0; 1567 struct proc *p = curproc; /* XXX */ 1568 int priv = 0; 1569 1570 /* turn off any old options. */ 1571 if (opt) { 1572 if (opt->ip6po_m) 1573 (void)m_free(opt->ip6po_m); 1574 } else 1575 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 1576 *pktopt = 0; 1577 1578 if (!m || m->m_len == 0) { 1579 /* 1580 * Only turning off any previous options. 1581 */ 1582 if (opt) 1583 free(opt, M_IP6OPT); 1584 if (m) 1585 (void)m_free(m); 1586 return(0); 1587 } 1588 1589 /* set options specified by user. */ 1590 if (p && !suser(p->p_ucred, &p->p_acflag)) 1591 priv = 1; 1592 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) { 1593 (void)m_free(m); 1594 return(error); 1595 } 1596 *pktopt = opt; 1597 return(0); 1598 } 1599 1600 /* 1601 * Set the IP6 multicast options in response to user setsockopt(). 1602 */ 1603 static int 1604 ip6_setmoptions(optname, im6op, m) 1605 int optname; 1606 struct ip6_moptions **im6op; 1607 struct mbuf *m; 1608 { 1609 int error = 0; 1610 u_int loop, ifindex; 1611 struct ipv6_mreq *mreq; 1612 struct ifnet *ifp; 1613 struct ip6_moptions *im6o = *im6op; 1614 struct route_in6 ro; 1615 struct sockaddr_in6 *dst; 1616 struct in6_multi_mship *imm; 1617 struct proc *p = curproc; /* XXX */ 1618 1619 if (im6o == NULL) { 1620 /* 1621 * No multicast option buffer attached to the pcb; 1622 * allocate one and initialize to default values. 1623 */ 1624 im6o = (struct ip6_moptions *) 1625 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1626 1627 if (im6o == NULL) 1628 return(ENOBUFS); 1629 *im6op = im6o; 1630 im6o->im6o_multicast_ifp = NULL; 1631 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1632 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1633 LIST_INIT(&im6o->im6o_memberships); 1634 } 1635 1636 switch (optname) { 1637 1638 case IPV6_MULTICAST_IF: 1639 /* 1640 * Select the interface for outgoing multicast packets. 1641 */ 1642 if (m == NULL || m->m_len != sizeof(u_int)) { 1643 error = EINVAL; 1644 break; 1645 } 1646 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 1647 if (ifindex < 0 || if_index < ifindex) { 1648 error = ENXIO; /* XXX EINVAL? */ 1649 break; 1650 } 1651 ifp = ifindex2ifnet[ifindex]; 1652 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1653 error = EADDRNOTAVAIL; 1654 break; 1655 } 1656 im6o->im6o_multicast_ifp = ifp; 1657 break; 1658 1659 case IPV6_MULTICAST_HOPS: 1660 { 1661 /* 1662 * Set the IP6 hoplimit for outgoing multicast packets. 1663 */ 1664 int optval; 1665 if (m == NULL || m->m_len != sizeof(int)) { 1666 error = EINVAL; 1667 break; 1668 } 1669 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 1670 if (optval < -1 || optval >= 256) 1671 error = EINVAL; 1672 else if (optval == -1) 1673 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1674 else 1675 im6o->im6o_multicast_hlim = optval; 1676 break; 1677 } 1678 1679 case IPV6_MULTICAST_LOOP: 1680 /* 1681 * Set the loopback flag for outgoing multicast packets. 1682 * Must be zero or one. 1683 */ 1684 if (m == NULL || m->m_len != sizeof(u_int)) { 1685 error = EINVAL; 1686 break; 1687 } 1688 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 1689 if (loop > 1) { 1690 error = EINVAL; 1691 break; 1692 } 1693 im6o->im6o_multicast_loop = loop; 1694 break; 1695 1696 case IPV6_JOIN_GROUP: 1697 /* 1698 * Add a multicast group membership. 1699 * Group must be a valid IP6 multicast address. 1700 */ 1701 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1702 error = EINVAL; 1703 break; 1704 } 1705 mreq = mtod(m, struct ipv6_mreq *); 1706 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1707 /* 1708 * We use the unspecified address to specify to accept 1709 * all multicast addresses. Only super user is allowed 1710 * to do this. 1711 */ 1712 if (suser(p->p_ucred, &p->p_acflag)) 1713 { 1714 error = EACCES; 1715 break; 1716 } 1717 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1718 error = EINVAL; 1719 break; 1720 } 1721 1722 /* 1723 * If the interface is specified, validate it. 1724 */ 1725 if (mreq->ipv6mr_interface < 0 1726 || if_index < mreq->ipv6mr_interface) { 1727 error = ENXIO; /* XXX EINVAL? */ 1728 break; 1729 } 1730 /* 1731 * If no interface was explicitly specified, choose an 1732 * appropriate one according to the given multicast address. 1733 */ 1734 if (mreq->ipv6mr_interface == 0) { 1735 /* 1736 * If the multicast address is in node-local scope, 1737 * the interface should be a loopback interface. 1738 * Otherwise, look up the routing table for the 1739 * address, and choose the outgoing interface. 1740 * XXX: is it a good approach? 1741 */ 1742 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 1743 ifp = &loif[0]; 1744 } else { 1745 ro.ro_rt = NULL; 1746 dst = (struct sockaddr_in6 *)&ro.ro_dst; 1747 bzero(dst, sizeof(*dst)); 1748 dst->sin6_len = sizeof(struct sockaddr_in6); 1749 dst->sin6_family = AF_INET6; 1750 dst->sin6_addr = mreq->ipv6mr_multiaddr; 1751 rtalloc((struct route *)&ro); 1752 if (ro.ro_rt == NULL) { 1753 error = EADDRNOTAVAIL; 1754 break; 1755 } 1756 ifp = ro.ro_rt->rt_ifp; 1757 rtfree(ro.ro_rt); 1758 } 1759 } else 1760 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1761 1762 /* 1763 * See if we found an interface, and confirm that it 1764 * supports multicast 1765 */ 1766 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1767 error = EADDRNOTAVAIL; 1768 break; 1769 } 1770 /* 1771 * Put interface index into the multicast address, 1772 * if the address has link-local scope. 1773 */ 1774 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1775 mreq->ipv6mr_multiaddr.s6_addr16[1] 1776 = htons(mreq->ipv6mr_interface); 1777 } 1778 /* 1779 * See if the membership already exists. 1780 */ 1781 for (imm = im6o->im6o_memberships.lh_first; 1782 imm != NULL; imm = imm->i6mm_chain.le_next) 1783 if (imm->i6mm_maddr->in6m_ifp == ifp && 1784 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1785 &mreq->ipv6mr_multiaddr)) 1786 break; 1787 if (imm != NULL) { 1788 error = EADDRINUSE; 1789 break; 1790 } 1791 /* 1792 * Everything looks good; add a new record to the multicast 1793 * address list for the given interface. 1794 */ 1795 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 1796 if (imm == NULL) { 1797 error = ENOBUFS; 1798 break; 1799 } 1800 if ((imm->i6mm_maddr = 1801 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 1802 free(imm, M_IPMADDR); 1803 break; 1804 } 1805 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 1806 break; 1807 1808 case IPV6_LEAVE_GROUP: 1809 /* 1810 * Drop a multicast group membership. 1811 * Group must be a valid IP6 multicast address. 1812 */ 1813 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1814 error = EINVAL; 1815 break; 1816 } 1817 mreq = mtod(m, struct ipv6_mreq *); 1818 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1819 if (suser(p->p_ucred, &p->p_acflag)) 1820 { 1821 error = EACCES; 1822 break; 1823 } 1824 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1825 error = EINVAL; 1826 break; 1827 } 1828 /* 1829 * If an interface address was specified, get a pointer 1830 * to its ifnet structure. 1831 */ 1832 if (mreq->ipv6mr_interface < 0 1833 || if_index < mreq->ipv6mr_interface) { 1834 error = ENXIO; /* XXX EINVAL? */ 1835 break; 1836 } 1837 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1838 /* 1839 * Put interface index into the multicast address, 1840 * if the address has link-local scope. 1841 */ 1842 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1843 mreq->ipv6mr_multiaddr.s6_addr16[1] 1844 = htons(mreq->ipv6mr_interface); 1845 } 1846 /* 1847 * Find the membership in the membership list. 1848 */ 1849 for (imm = im6o->im6o_memberships.lh_first; 1850 imm != NULL; imm = imm->i6mm_chain.le_next) { 1851 if ((ifp == NULL || 1852 imm->i6mm_maddr->in6m_ifp == ifp) && 1853 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1854 &mreq->ipv6mr_multiaddr)) 1855 break; 1856 } 1857 if (imm == NULL) { 1858 /* Unable to resolve interface */ 1859 error = EADDRNOTAVAIL; 1860 break; 1861 } 1862 /* 1863 * Give up the multicast address record to which the 1864 * membership points. 1865 */ 1866 LIST_REMOVE(imm, i6mm_chain); 1867 in6_delmulti(imm->i6mm_maddr); 1868 free(imm, M_IPMADDR); 1869 break; 1870 1871 default: 1872 error = EOPNOTSUPP; 1873 break; 1874 } 1875 1876 /* 1877 * If all options have default values, no need to keep the mbuf. 1878 */ 1879 if (im6o->im6o_multicast_ifp == NULL && 1880 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 1881 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 1882 im6o->im6o_memberships.lh_first == NULL) { 1883 free(*im6op, M_IPMOPTS); 1884 *im6op = NULL; 1885 } 1886 1887 return(error); 1888 } 1889 1890 /* 1891 * Return the IP6 multicast options in response to user getsockopt(). 1892 */ 1893 static int 1894 ip6_getmoptions(optname, im6o, mp) 1895 int optname; 1896 struct ip6_moptions *im6o; 1897 struct mbuf **mp; 1898 { 1899 u_int *hlim, *loop, *ifindex; 1900 1901 *mp = m_get(M_WAIT, MT_SOOPTS); 1902 1903 switch (optname) { 1904 1905 case IPV6_MULTICAST_IF: 1906 ifindex = mtod(*mp, u_int *); 1907 (*mp)->m_len = sizeof(u_int); 1908 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 1909 *ifindex = 0; 1910 else 1911 *ifindex = im6o->im6o_multicast_ifp->if_index; 1912 return(0); 1913 1914 case IPV6_MULTICAST_HOPS: 1915 hlim = mtod(*mp, u_int *); 1916 (*mp)->m_len = sizeof(u_int); 1917 if (im6o == NULL) 1918 *hlim = ip6_defmcasthlim; 1919 else 1920 *hlim = im6o->im6o_multicast_hlim; 1921 return(0); 1922 1923 case IPV6_MULTICAST_LOOP: 1924 loop = mtod(*mp, u_int *); 1925 (*mp)->m_len = sizeof(u_int); 1926 if (im6o == NULL) 1927 *loop = ip6_defmcasthlim; 1928 else 1929 *loop = im6o->im6o_multicast_loop; 1930 return(0); 1931 1932 default: 1933 return(EOPNOTSUPP); 1934 } 1935 } 1936 1937 /* 1938 * Discard the IP6 multicast options. 1939 */ 1940 void 1941 ip6_freemoptions(im6o) 1942 struct ip6_moptions *im6o; 1943 { 1944 struct in6_multi_mship *imm; 1945 1946 if (im6o == NULL) 1947 return; 1948 1949 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 1950 LIST_REMOVE(imm, i6mm_chain); 1951 if (imm->i6mm_maddr) 1952 in6_delmulti(imm->i6mm_maddr); 1953 free(imm, M_IPMADDR); 1954 } 1955 free(im6o, M_IPMOPTS); 1956 } 1957 1958 /* 1959 * Set IPv6 outgoing packet options based on advanced API. 1960 */ 1961 int 1962 ip6_setpktoptions(control, opt, priv) 1963 struct mbuf *control; 1964 struct ip6_pktopts *opt; 1965 int priv; 1966 { 1967 struct cmsghdr *cm = 0; 1968 1969 if (control == 0 || opt == 0) 1970 return(EINVAL); 1971 1972 bzero(opt, sizeof(*opt)); 1973 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */ 1974 1975 /* 1976 * XXX: Currently, we assume all the optional information is stored 1977 * in a single mbuf. 1978 */ 1979 if (control->m_next) 1980 return(EINVAL); 1981 1982 opt->ip6po_m = control; 1983 1984 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 1985 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1986 cm = mtod(control, struct cmsghdr *); 1987 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 1988 return(EINVAL); 1989 if (cm->cmsg_level != IPPROTO_IPV6) 1990 continue; 1991 1992 switch (cm->cmsg_type) { 1993 case IPV6_PKTINFO: 1994 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 1995 return(EINVAL); 1996 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 1997 if (opt->ip6po_pktinfo->ipi6_ifindex && 1998 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr)) 1999 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] = 2000 htons(opt->ip6po_pktinfo->ipi6_ifindex); 2001 2002 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index 2003 || opt->ip6po_pktinfo->ipi6_ifindex < 0) { 2004 return(ENXIO); 2005 } 2006 2007 /* 2008 * Check if the requested source address is indeed a 2009 * unicast address assigned to the node, and can be 2010 * used as the packet's source address. 2011 */ 2012 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 2013 struct ifaddr *ia; 2014 struct in6_ifaddr *ia6; 2015 struct sockaddr_in6 sin6; 2016 2017 bzero(&sin6, sizeof(sin6)); 2018 sin6.sin6_len = sizeof(sin6); 2019 sin6.sin6_family = AF_INET6; 2020 sin6.sin6_addr = 2021 opt->ip6po_pktinfo->ipi6_addr; 2022 ia = ifa_ifwithaddr(sin6tosa(&sin6)); 2023 if (ia == NULL || 2024 (opt->ip6po_pktinfo->ipi6_ifindex && 2025 (ia->ifa_ifp->if_index != 2026 opt->ip6po_pktinfo->ipi6_ifindex))) { 2027 return(EADDRNOTAVAIL); 2028 } 2029 ia6 = (struct in6_ifaddr *)ia; 2030 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) { 2031 return(EADDRNOTAVAIL); 2032 } 2033 2034 /* 2035 * Check if the requested source address is 2036 * indeed a unicast address assigned to the 2037 * node. 2038 */ 2039 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr)) 2040 return(EADDRNOTAVAIL); 2041 } 2042 break; 2043 2044 case IPV6_HOPLIMIT: 2045 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 2046 return(EINVAL); 2047 2048 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim, 2049 sizeof(opt->ip6po_hlim)); 2050 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255) 2051 return(EINVAL); 2052 break; 2053 2054 case IPV6_NEXTHOP: 2055 if (!priv) 2056 return(EPERM); 2057 2058 if (cm->cmsg_len < sizeof(u_char) || 2059 /* check if cmsg_len is large enough for sa_len */ 2060 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 2061 return(EINVAL); 2062 2063 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm); 2064 2065 break; 2066 2067 case IPV6_HOPOPTS: 2068 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2069 return(EINVAL); 2070 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm); 2071 if (cm->cmsg_len != 2072 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3)) 2073 return(EINVAL); 2074 break; 2075 2076 case IPV6_DSTOPTS: 2077 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2078 return(EINVAL); 2079 2080 /* 2081 * If there is no routing header yet, the destination 2082 * options header should be put on the 1st part. 2083 * Otherwise, the header should be on the 2nd part. 2084 * (See RFC 2460, section 4.1) 2085 */ 2086 if (opt->ip6po_rthdr == NULL) { 2087 opt->ip6po_dest1 = 2088 (struct ip6_dest *)CMSG_DATA(cm); 2089 if (cm->cmsg_len != 2090 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1) 2091 << 3)) 2092 return(EINVAL); 2093 } 2094 else { 2095 opt->ip6po_dest2 = 2096 (struct ip6_dest *)CMSG_DATA(cm); 2097 if (cm->cmsg_len != 2098 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) 2099 << 3)) 2100 return(EINVAL); 2101 } 2102 break; 2103 2104 case IPV6_RTHDR: 2105 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2106 return(EINVAL); 2107 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm); 2108 if (cm->cmsg_len != 2109 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3)) 2110 return(EINVAL); 2111 switch (opt->ip6po_rthdr->ip6r_type) { 2112 case IPV6_RTHDR_TYPE_0: 2113 if (opt->ip6po_rthdr->ip6r_segleft == 0) 2114 return(EINVAL); 2115 break; 2116 default: 2117 return(EINVAL); 2118 } 2119 break; 2120 2121 default: 2122 return(ENOPROTOOPT); 2123 } 2124 } 2125 2126 return(0); 2127 } 2128 2129 /* 2130 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2131 * packet to the input queue of a specified interface. Note that this 2132 * calls the output routine of the loopback "driver", but with an interface 2133 * pointer that might NOT be &loif -- easier than replicating that code here. 2134 */ 2135 void 2136 ip6_mloopback(ifp, m, dst) 2137 struct ifnet *ifp; 2138 struct mbuf *m; 2139 struct sockaddr_in6 *dst; 2140 { 2141 struct mbuf *copym; 2142 struct ip6_hdr *ip6; 2143 2144 copym = m_copy(m, 0, M_COPYALL); 2145 if (copym == NULL) 2146 return; 2147 2148 /* 2149 * Make sure to deep-copy IPv6 header portion in case the data 2150 * is in an mbuf cluster, so that we can safely override the IPv6 2151 * header portion later. 2152 */ 2153 if ((copym->m_flags & M_EXT) != 0 || 2154 copym->m_len < sizeof(struct ip6_hdr)) { 2155 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2156 if (copym == NULL) 2157 return; 2158 } 2159 2160 #ifdef DIAGNOSTIC 2161 if (copym->m_len < sizeof(*ip6)) { 2162 m_freem(copym); 2163 return; 2164 } 2165 #endif 2166 2167 ip6 = mtod(copym, struct ip6_hdr *); 2168 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 2169 ip6->ip6_src.s6_addr16[1] = 0; 2170 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 2171 ip6->ip6_dst.s6_addr16[1] = 0; 2172 2173 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL); 2174 } 2175 2176 /* 2177 * Chop IPv6 header off from the payload. 2178 */ 2179 static int 2180 ip6_splithdr(m, exthdrs) 2181 struct mbuf *m; 2182 struct ip6_exthdrs *exthdrs; 2183 { 2184 struct mbuf *mh; 2185 struct ip6_hdr *ip6; 2186 2187 ip6 = mtod(m, struct ip6_hdr *); 2188 if (m->m_len > sizeof(*ip6)) { 2189 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2190 if (mh == 0) { 2191 m_freem(m); 2192 return ENOBUFS; 2193 } 2194 M_COPY_PKTHDR(mh, m); 2195 MH_ALIGN(mh, sizeof(*ip6)); 2196 m->m_flags &= ~M_PKTHDR; 2197 m->m_len -= sizeof(*ip6); 2198 m->m_data += sizeof(*ip6); 2199 mh->m_next = m; 2200 m = mh; 2201 m->m_len = sizeof(*ip6); 2202 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2203 } 2204 exthdrs->ip6e_ip6 = m; 2205 return 0; 2206 } 2207 2208 /* 2209 * Compute IPv6 extension header length. 2210 */ 2211 int 2212 ip6_optlen(in6p) 2213 struct in6pcb *in6p; 2214 { 2215 int len; 2216 2217 if (!in6p->in6p_outputopts) 2218 return 0; 2219 2220 len = 0; 2221 #define elen(x) \ 2222 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2223 2224 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2225 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2226 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2227 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2228 return len; 2229 #undef elen 2230 } 2231