1 /* $NetBSD: ip6_output.c,v 1.41 2001/11/13 00:57:02 lukem Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 66 */ 67 68 #include <sys/cdefs.h> 69 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.41 2001/11/13 00:57:02 lukem Exp $"); 70 71 #include "opt_inet.h" 72 #include "opt_ipsec.h" 73 #include "opt_pfil_hooks.h" 74 75 #include <sys/param.h> 76 #include <sys/malloc.h> 77 #include <sys/mbuf.h> 78 #include <sys/errno.h> 79 #include <sys/protosw.h> 80 #include <sys/socket.h> 81 #include <sys/socketvar.h> 82 #include <sys/systm.h> 83 #include <sys/proc.h> 84 85 #include <net/if.h> 86 #include <net/route.h> 87 #ifdef PFIL_HOOKS 88 #include <net/pfil.h> 89 #endif 90 91 #include <netinet/in.h> 92 #include <netinet/in_var.h> 93 #include <netinet/ip6.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/in6_pcb.h> 97 #include <netinet6/nd6.h> 98 99 #ifdef IPSEC 100 #include <netinet6/ipsec.h> 101 #include <netkey/key.h> 102 #endif /* IPSEC */ 103 104 #include "loop.h" 105 106 #include <net/net_osdep.h> 107 108 #ifdef PFIL_HOOKS 109 extern struct pfil_head inet6_pfil_hook; /* XXX */ 110 #endif 111 112 struct ip6_exthdrs { 113 struct mbuf *ip6e_ip6; 114 struct mbuf *ip6e_hbh; 115 struct mbuf *ip6e_dest1; 116 struct mbuf *ip6e_rthdr; 117 struct mbuf *ip6e_dest2; 118 }; 119 120 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 121 struct socket *)); 122 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 123 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 124 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 125 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 126 struct ip6_frag **)); 127 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 128 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 129 130 extern struct ifnet loif[NLOOP]; 131 132 /* 133 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 134 * header (with pri, len, nxt, hlim, src, dst). 135 * This function may modify ver and hlim only. 136 * The mbuf chain containing the packet will be freed. 137 * The mbuf opt, if present, will not be freed. 138 */ 139 int 140 ip6_output(m0, opt, ro, flags, im6o, ifpp) 141 struct mbuf *m0; 142 struct ip6_pktopts *opt; 143 struct route_in6 *ro; 144 int flags; 145 struct ip6_moptions *im6o; 146 struct ifnet **ifpp; /* XXX: just for statistics */ 147 { 148 struct ip6_hdr *ip6, *mhip6; 149 struct ifnet *ifp, *origifp; 150 struct mbuf *m = m0; 151 int hlen, tlen, len, off; 152 struct route_in6 ip6route; 153 struct sockaddr_in6 *dst; 154 int error = 0; 155 struct in6_ifaddr *ia; 156 u_long mtu; 157 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 158 struct ip6_exthdrs exthdrs; 159 struct in6_addr finaldst; 160 struct route_in6 *ro_pmtu = NULL; 161 int hdrsplit = 0; 162 int needipsec = 0; 163 #ifdef IPSEC 164 int needipsectun = 0; 165 struct socket *so; 166 struct secpolicy *sp = NULL; 167 168 /* for AH processing. stupid to have "socket" variable in IP layer... */ 169 so = ipsec_getsocket(m); 170 (void)ipsec_setsocket(m, NULL); 171 ip6 = mtod(m, struct ip6_hdr *); 172 #endif /* IPSEC */ 173 174 #define MAKE_EXTHDR(hp, mp) \ 175 do { \ 176 if (hp) { \ 177 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 178 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 179 ((eh)->ip6e_len + 1) << 3); \ 180 if (error) \ 181 goto freehdrs; \ 182 } \ 183 } while (0) 184 185 bzero(&exthdrs, sizeof(exthdrs)); 186 if (opt) { 187 /* Hop-by-Hop options header */ 188 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 189 /* Destination options header(1st part) */ 190 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 191 /* Routing header */ 192 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 193 /* Destination options header(2nd part) */ 194 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 195 } 196 197 #ifdef IPSEC 198 /* get a security policy for this packet */ 199 if (so == NULL) 200 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 201 else 202 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 203 204 if (sp == NULL) { 205 ipsec6stat.out_inval++; 206 goto freehdrs; 207 } 208 209 error = 0; 210 211 /* check policy */ 212 switch (sp->policy) { 213 case IPSEC_POLICY_DISCARD: 214 /* 215 * This packet is just discarded. 216 */ 217 ipsec6stat.out_polvio++; 218 goto freehdrs; 219 220 case IPSEC_POLICY_BYPASS: 221 case IPSEC_POLICY_NONE: 222 /* no need to do IPsec. */ 223 needipsec = 0; 224 break; 225 226 case IPSEC_POLICY_IPSEC: 227 if (sp->req == NULL) { 228 /* XXX should be panic ? */ 229 printf("ip6_output: No IPsec request specified.\n"); 230 error = EINVAL; 231 goto freehdrs; 232 } 233 needipsec = 1; 234 break; 235 236 case IPSEC_POLICY_ENTRUST: 237 default: 238 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 239 } 240 #endif /* IPSEC */ 241 242 /* 243 * Calculate the total length of the extension header chain. 244 * Keep the length of the unfragmentable part for fragmentation. 245 */ 246 optlen = 0; 247 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 248 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 249 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 250 unfragpartlen = optlen + sizeof(struct ip6_hdr); 251 /* NOTE: we don't add AH/ESP length here. do that later. */ 252 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 253 254 /* 255 * If we need IPsec, or there is at least one extension header, 256 * separate IP6 header from the payload. 257 */ 258 if ((needipsec || optlen) && !hdrsplit) { 259 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 260 m = NULL; 261 goto freehdrs; 262 } 263 m = exthdrs.ip6e_ip6; 264 hdrsplit++; 265 } 266 267 /* adjust pointer */ 268 ip6 = mtod(m, struct ip6_hdr *); 269 270 /* adjust mbuf packet header length */ 271 m->m_pkthdr.len += optlen; 272 plen = m->m_pkthdr.len - sizeof(*ip6); 273 274 /* If this is a jumbo payload, insert a jumbo payload option. */ 275 if (plen > IPV6_MAXPACKET) { 276 if (!hdrsplit) { 277 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 278 m = NULL; 279 goto freehdrs; 280 } 281 m = exthdrs.ip6e_ip6; 282 hdrsplit++; 283 } 284 /* adjust pointer */ 285 ip6 = mtod(m, struct ip6_hdr *); 286 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 287 goto freehdrs; 288 ip6->ip6_plen = 0; 289 } else 290 ip6->ip6_plen = htons(plen); 291 292 /* 293 * Concatenate headers and fill in next header fields. 294 * Here we have, on "m" 295 * IPv6 payload 296 * and we insert headers accordingly. Finally, we should be getting: 297 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 298 * 299 * during the header composing process, "m" points to IPv6 header. 300 * "mprev" points to an extension header prior to esp. 301 */ 302 { 303 u_char *nexthdrp = &ip6->ip6_nxt; 304 struct mbuf *mprev = m; 305 306 /* 307 * we treat dest2 specially. this makes IPsec processing 308 * much easier. 309 * 310 * result: IPv6 dest2 payload 311 * m and mprev will point to IPv6 header. 312 */ 313 if (exthdrs.ip6e_dest2) { 314 if (!hdrsplit) 315 panic("assumption failed: hdr not split"); 316 exthdrs.ip6e_dest2->m_next = m->m_next; 317 m->m_next = exthdrs.ip6e_dest2; 318 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 319 ip6->ip6_nxt = IPPROTO_DSTOPTS; 320 } 321 322 #define MAKE_CHAIN(m, mp, p, i)\ 323 do {\ 324 if (m) {\ 325 if (!hdrsplit) \ 326 panic("assumption failed: hdr not split"); \ 327 *mtod((m), u_char *) = *(p);\ 328 *(p) = (i);\ 329 p = mtod((m), u_char *);\ 330 (m)->m_next = (mp)->m_next;\ 331 (mp)->m_next = (m);\ 332 (mp) = (m);\ 333 }\ 334 } while (0) 335 /* 336 * result: IPv6 hbh dest1 rthdr dest2 payload 337 * m will point to IPv6 header. mprev will point to the 338 * extension header prior to dest2 (rthdr in the above case). 339 */ 340 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, 341 nexthdrp, IPPROTO_HOPOPTS); 342 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, 343 nexthdrp, IPPROTO_DSTOPTS); 344 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, 345 nexthdrp, IPPROTO_ROUTING); 346 347 #ifdef IPSEC 348 if (!needipsec) 349 goto skip_ipsec2; 350 351 /* 352 * pointers after IPsec headers are not valid any more. 353 * other pointers need a great care too. 354 * (IPsec routines should not mangle mbufs prior to AH/ESP) 355 */ 356 exthdrs.ip6e_dest2 = NULL; 357 358 { 359 struct ip6_rthdr *rh = NULL; 360 int segleft_org = 0; 361 struct ipsec_output_state state; 362 363 if (exthdrs.ip6e_rthdr) { 364 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 365 segleft_org = rh->ip6r_segleft; 366 rh->ip6r_segleft = 0; 367 } 368 369 bzero(&state, sizeof(state)); 370 state.m = m; 371 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 372 &needipsectun); 373 m = state.m; 374 if (error) { 375 /* mbuf is already reclaimed in ipsec6_output_trans. */ 376 m = NULL; 377 switch (error) { 378 case EHOSTUNREACH: 379 case ENETUNREACH: 380 case EMSGSIZE: 381 case ENOBUFS: 382 case ENOMEM: 383 break; 384 default: 385 printf("ip6_output (ipsec): error code %d\n", error); 386 /*fall through*/ 387 case ENOENT: 388 /* don't show these error codes to the user */ 389 error = 0; 390 break; 391 } 392 goto bad; 393 } 394 if (exthdrs.ip6e_rthdr) { 395 /* ah6_output doesn't modify mbuf chain */ 396 rh->ip6r_segleft = segleft_org; 397 } 398 } 399 skip_ipsec2:; 400 #endif 401 } 402 403 /* 404 * If there is a routing header, replace destination address field 405 * with the first hop of the routing header. 406 */ 407 if (exthdrs.ip6e_rthdr) { 408 struct ip6_rthdr *rh = 409 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 410 struct ip6_rthdr *)); 411 struct ip6_rthdr0 *rh0; 412 413 finaldst = ip6->ip6_dst; 414 switch (rh->ip6r_type) { 415 case IPV6_RTHDR_TYPE_0: 416 rh0 = (struct ip6_rthdr0 *)rh; 417 ip6->ip6_dst = rh0->ip6r0_addr[0]; 418 bcopy((caddr_t)&rh0->ip6r0_addr[1], 419 (caddr_t)&rh0->ip6r0_addr[0], 420 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1) 421 ); 422 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst; 423 break; 424 default: /* is it possible? */ 425 error = EINVAL; 426 goto bad; 427 } 428 } 429 430 /* Source address validation */ 431 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 432 (flags & IPV6_DADOUTPUT) == 0) { 433 error = EOPNOTSUPP; 434 ip6stat.ip6s_badscope++; 435 goto bad; 436 } 437 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 438 error = EOPNOTSUPP; 439 ip6stat.ip6s_badscope++; 440 goto bad; 441 } 442 443 ip6stat.ip6s_localout++; 444 445 /* 446 * Route packet. 447 */ 448 if (ro == 0) { 449 ro = &ip6route; 450 bzero((caddr_t)ro, sizeof(*ro)); 451 } 452 ro_pmtu = ro; 453 if (opt && opt->ip6po_rthdr) 454 ro = &opt->ip6po_route; 455 dst = (struct sockaddr_in6 *)&ro->ro_dst; 456 /* 457 * If there is a cached route, 458 * check that it is to the same destination 459 * and is still up. If not, free it and try again. 460 */ 461 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 462 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 463 RTFREE(ro->ro_rt); 464 ro->ro_rt = (struct rtentry *)0; 465 } 466 if (ro->ro_rt == 0) { 467 bzero(dst, sizeof(*dst)); 468 dst->sin6_family = AF_INET6; 469 dst->sin6_len = sizeof(struct sockaddr_in6); 470 dst->sin6_addr = ip6->ip6_dst; 471 } 472 #ifdef IPSEC 473 if (needipsec && needipsectun) { 474 struct ipsec_output_state state; 475 476 /* 477 * All the extension headers will become inaccessible 478 * (since they can be encrypted). 479 * Don't panic, we need no more updates to extension headers 480 * on inner IPv6 packet (since they are now encapsulated). 481 * 482 * IPv6 [ESP|AH] IPv6 [extension headers] payload 483 */ 484 bzero(&exthdrs, sizeof(exthdrs)); 485 exthdrs.ip6e_ip6 = m; 486 487 bzero(&state, sizeof(state)); 488 state.m = m; 489 state.ro = (struct route *)ro; 490 state.dst = (struct sockaddr *)dst; 491 492 error = ipsec6_output_tunnel(&state, sp, flags); 493 494 m = state.m; 495 ro = (struct route_in6 *)state.ro; 496 dst = (struct sockaddr_in6 *)state.dst; 497 if (error) { 498 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 499 m0 = m = NULL; 500 m = NULL; 501 switch (error) { 502 case EHOSTUNREACH: 503 case ENETUNREACH: 504 case EMSGSIZE: 505 case ENOBUFS: 506 case ENOMEM: 507 break; 508 default: 509 printf("ip6_output (ipsec): error code %d\n", error); 510 /*fall through*/ 511 case ENOENT: 512 /* don't show these error codes to the user */ 513 error = 0; 514 break; 515 } 516 goto bad; 517 } 518 519 exthdrs.ip6e_ip6 = m; 520 } 521 #endif /* IPSEC */ 522 523 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 524 /* Unicast */ 525 526 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 527 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 528 /* xxx 529 * interface selection comes here 530 * if an interface is specified from an upper layer, 531 * ifp must point it. 532 */ 533 if (ro->ro_rt == 0) { 534 /* 535 * non-bsdi always clone routes, if parent is 536 * PRF_CLONING. 537 */ 538 rtalloc((struct route *)ro); 539 } 540 if (ro->ro_rt == 0) { 541 ip6stat.ip6s_noroute++; 542 error = EHOSTUNREACH; 543 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 544 goto bad; 545 } 546 ia = ifatoia6(ro->ro_rt->rt_ifa); 547 ifp = ro->ro_rt->rt_ifp; 548 ro->ro_rt->rt_use++; 549 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 550 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 551 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 552 553 in6_ifstat_inc(ifp, ifs6_out_request); 554 555 /* 556 * Check if the outgoing interface conflicts with 557 * the interface specified by ifi6_ifindex (if specified). 558 * Note that loopback interface is always okay. 559 * (this may happen when we are sending a packet to one of 560 * our own addresses.) 561 */ 562 if (opt && opt->ip6po_pktinfo 563 && opt->ip6po_pktinfo->ipi6_ifindex) { 564 if (!(ifp->if_flags & IFF_LOOPBACK) 565 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 566 ip6stat.ip6s_noroute++; 567 in6_ifstat_inc(ifp, ifs6_out_discard); 568 error = EHOSTUNREACH; 569 goto bad; 570 } 571 } 572 573 if (opt && opt->ip6po_hlim != -1) 574 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 575 } else { 576 /* Multicast */ 577 struct in6_multi *in6m; 578 579 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 580 581 /* 582 * See if the caller provided any multicast options 583 */ 584 ifp = NULL; 585 if (im6o != NULL) { 586 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 587 if (im6o->im6o_multicast_ifp != NULL) 588 ifp = im6o->im6o_multicast_ifp; 589 } else 590 ip6->ip6_hlim = ip6_defmcasthlim; 591 592 /* 593 * See if the caller provided the outgoing interface 594 * as an ancillary data. 595 * Boundary check for ifindex is assumed to be already done. 596 */ 597 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 598 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]; 599 600 /* 601 * If the destination is a node-local scope multicast, 602 * the packet should be loop-backed only. 603 */ 604 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 605 /* 606 * If the outgoing interface is already specified, 607 * it should be a loopback interface. 608 */ 609 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 610 ip6stat.ip6s_badscope++; 611 error = ENETUNREACH; /* XXX: better error? */ 612 /* XXX correct ifp? */ 613 in6_ifstat_inc(ifp, ifs6_out_discard); 614 goto bad; 615 } else { 616 ifp = &loif[0]; 617 } 618 } 619 620 if (opt && opt->ip6po_hlim != -1) 621 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 622 623 /* 624 * If caller did not provide an interface lookup a 625 * default in the routing table. This is either a 626 * default for the speicfied group (i.e. a host 627 * route), or a multicast default (a route for the 628 * ``net'' ff00::/8). 629 */ 630 if (ifp == NULL) { 631 if (ro->ro_rt == 0) { 632 ro->ro_rt = rtalloc1((struct sockaddr *) 633 &ro->ro_dst, 0 634 ); 635 } 636 if (ro->ro_rt == 0) { 637 ip6stat.ip6s_noroute++; 638 error = EHOSTUNREACH; 639 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 640 goto bad; 641 } 642 ia = ifatoia6(ro->ro_rt->rt_ifa); 643 ifp = ro->ro_rt->rt_ifp; 644 ro->ro_rt->rt_use++; 645 } 646 647 if ((flags & IPV6_FORWARDING) == 0) 648 in6_ifstat_inc(ifp, ifs6_out_request); 649 in6_ifstat_inc(ifp, ifs6_out_mcast); 650 651 /* 652 * Confirm that the outgoing interface supports multicast. 653 */ 654 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 655 ip6stat.ip6s_noroute++; 656 in6_ifstat_inc(ifp, ifs6_out_discard); 657 error = ENETUNREACH; 658 goto bad; 659 } 660 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 661 if (in6m != NULL && 662 (im6o == NULL || im6o->im6o_multicast_loop)) { 663 /* 664 * If we belong to the destination multicast group 665 * on the outgoing interface, and the caller did not 666 * forbid loopback, loop back a copy. 667 */ 668 ip6_mloopback(ifp, m, dst); 669 } else { 670 /* 671 * If we are acting as a multicast router, perform 672 * multicast forwarding as if the packet had just 673 * arrived on the interface to which we are about 674 * to send. The multicast forwarding function 675 * recursively calls this function, using the 676 * IPV6_FORWARDING flag to prevent infinite recursion. 677 * 678 * Multicasts that are looped back by ip6_mloopback(), 679 * above, will be forwarded by the ip6_input() routine, 680 * if necessary. 681 */ 682 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 683 if (ip6_mforward(ip6, ifp, m) != 0) { 684 m_freem(m); 685 goto done; 686 } 687 } 688 } 689 /* 690 * Multicasts with a hoplimit of zero may be looped back, 691 * above, but must not be transmitted on a network. 692 * Also, multicasts addressed to the loopback interface 693 * are not sent -- the above call to ip6_mloopback() will 694 * loop back a copy if this host actually belongs to the 695 * destination group on the loopback interface. 696 */ 697 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 698 m_freem(m); 699 goto done; 700 } 701 } 702 703 /* 704 * Fill the outgoing inteface to tell the upper layer 705 * to increment per-interface statistics. 706 */ 707 if (ifpp) 708 *ifpp = ifp; 709 710 /* 711 * Determine path MTU. 712 */ 713 if (ro_pmtu != ro) { 714 /* The first hop and the final destination may differ. */ 715 struct sockaddr_in6 *sin6_fin = 716 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 717 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 718 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, 719 &finaldst))) { 720 RTFREE(ro_pmtu->ro_rt); 721 ro_pmtu->ro_rt = (struct rtentry *)0; 722 } 723 if (ro_pmtu->ro_rt == 0) { 724 bzero(sin6_fin, sizeof(*sin6_fin)); 725 sin6_fin->sin6_family = AF_INET6; 726 sin6_fin->sin6_len = sizeof(struct sockaddr_in6); 727 sin6_fin->sin6_addr = finaldst; 728 729 rtalloc((struct route *)ro_pmtu); 730 } 731 } 732 if (ro_pmtu->ro_rt != NULL) { 733 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu; 734 735 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 736 if (mtu > ifmtu || mtu == 0) { 737 /* 738 * The MTU on the route is larger than the MTU on 739 * the interface! This shouldn't happen, unless the 740 * MTU of the interface has been changed after the 741 * interface was brought up. Change the MTU in the 742 * route to match the interface MTU (as long as the 743 * field isn't locked). 744 * 745 * if MTU on the route is 0, we need to fix the MTU. 746 * this case happens with path MTU discovery timeouts. 747 */ 748 mtu = ifmtu; 749 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 750 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */ 751 } 752 } else { 753 mtu = nd_ifinfo[ifp->if_index].linkmtu; 754 } 755 756 /* Fake scoped addresses */ 757 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 758 /* 759 * If source or destination address is a scoped address, and 760 * the packet is going to be sent to a loopback interface, 761 * we should keep the original interface. 762 */ 763 764 /* 765 * XXX: this is a very experimental and temporary solution. 766 * We eventually have sockaddr_in6 and use the sin6_scope_id 767 * field of the structure here. 768 * We rely on the consistency between two scope zone ids 769 * of source add destination, which should already be assured 770 * Larger scopes than link will be supported in the near 771 * future. 772 */ 773 origifp = NULL; 774 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 775 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])]; 776 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 777 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])]; 778 /* 779 * XXX: origifp can be NULL even in those two cases above. 780 * For example, if we remove the (only) link-local address 781 * from the loopback interface, and try to send a link-local 782 * address without link-id information. Then the source 783 * address is ::1, and the destination address is the 784 * link-local address with its s6_addr16[1] being zero. 785 * What is worse, if the packet goes to the loopback interface 786 * by a default rejected route, the null pointer would be 787 * passed to looutput, and the kernel would hang. 788 * The following last resort would prevent such disaster. 789 */ 790 if (origifp == NULL) 791 origifp = ifp; 792 } 793 else 794 origifp = ifp; 795 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 796 ip6->ip6_src.s6_addr16[1] = 0; 797 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 798 ip6->ip6_dst.s6_addr16[1] = 0; 799 800 /* 801 * If the outgoing packet contains a hop-by-hop options header, 802 * it must be examined and processed even by the source node. 803 * (RFC 2460, section 4.) 804 */ 805 if (exthdrs.ip6e_hbh) { 806 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 807 u_int32_t dummy1; /* XXX unused */ 808 u_int32_t dummy2; /* XXX unused */ 809 810 /* 811 * XXX: if we have to send an ICMPv6 error to the sender, 812 * we need the M_LOOP flag since icmp6_error() expects 813 * the IPv6 and the hop-by-hop options header are 814 * continuous unless the flag is set. 815 */ 816 m->m_flags |= M_LOOP; 817 m->m_pkthdr.rcvif = ifp; 818 if (ip6_process_hopopts(m, 819 (u_int8_t *)(hbh + 1), 820 ((hbh->ip6h_len + 1) << 3) - 821 sizeof(struct ip6_hbh), 822 &dummy1, &dummy2) < 0) { 823 /* m was already freed at this point */ 824 error = EINVAL;/* better error? */ 825 goto done; 826 } 827 m->m_flags &= ~M_LOOP; /* XXX */ 828 m->m_pkthdr.rcvif = NULL; 829 } 830 831 #ifdef PFIL_HOOKS 832 /* 833 * Run through list of hooks for output packets. 834 */ 835 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, 836 PFIL_OUT)) != 0) 837 goto done; 838 if (m == NULL) 839 goto done; 840 ip6 = mtod(m, struct ip6_hdr *); 841 #endif /* PFIL_HOOKS */ 842 /* 843 * Send the packet to the outgoing interface. 844 * If necessary, do IPv6 fragmentation before sending. 845 */ 846 tlen = m->m_pkthdr.len; 847 if (tlen <= mtu 848 #ifdef notyet 849 /* 850 * On any link that cannot convey a 1280-octet packet in one piece, 851 * link-specific fragmentation and reassembly must be provided at 852 * a layer below IPv6. [RFC 2460, sec.5] 853 * Thus if the interface has ability of link-level fragmentation, 854 * we can just send the packet even if the packet size is 855 * larger than the link's MTU. 856 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet... 857 */ 858 859 || ifp->if_flags & IFF_FRAGMENTABLE 860 #endif 861 ) 862 { 863 #ifdef IFA_STATS 864 struct in6_ifaddr *ia6; 865 ip6 = mtod(m, struct ip6_hdr *); 866 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 867 if (ia6) { 868 ia6->ia_ifa.ifa_data.ifad_outbytes += 869 m->m_pkthdr.len; 870 } 871 #endif 872 #ifdef IPSEC 873 /* clean ipsec history once it goes out of the node */ 874 ipsec_delaux(m); 875 #endif 876 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 877 goto done; 878 } else if (mtu < IPV6_MMTU) { 879 /* 880 * note that path MTU is never less than IPV6_MMTU 881 * (see icmp6_input). 882 */ 883 error = EMSGSIZE; 884 in6_ifstat_inc(ifp, ifs6_out_fragfail); 885 goto bad; 886 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 887 error = EMSGSIZE; 888 in6_ifstat_inc(ifp, ifs6_out_fragfail); 889 goto bad; 890 } else { 891 struct mbuf **mnext, *m_frgpart; 892 struct ip6_frag *ip6f; 893 u_int32_t id = htonl(ip6_id++); 894 u_char nextproto; 895 896 /* 897 * Too large for the destination or interface; 898 * fragment if possible. 899 * Must be able to put at least 8 bytes per fragment. 900 */ 901 hlen = unfragpartlen; 902 if (mtu > IPV6_MAXPACKET) 903 mtu = IPV6_MAXPACKET; 904 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 905 if (len < 8) { 906 error = EMSGSIZE; 907 in6_ifstat_inc(ifp, ifs6_out_fragfail); 908 goto bad; 909 } 910 911 mnext = &m->m_nextpkt; 912 913 /* 914 * Change the next header field of the last header in the 915 * unfragmentable part. 916 */ 917 if (exthdrs.ip6e_rthdr) { 918 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 919 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 920 } else if (exthdrs.ip6e_dest1) { 921 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 922 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 923 } else if (exthdrs.ip6e_hbh) { 924 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 925 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 926 } else { 927 nextproto = ip6->ip6_nxt; 928 ip6->ip6_nxt = IPPROTO_FRAGMENT; 929 } 930 931 /* 932 * Loop through length of segment after first fragment, 933 * make new header and copy data of each part and link onto chain. 934 */ 935 m0 = m; 936 for (off = hlen; off < tlen; off += len) { 937 MGETHDR(m, M_DONTWAIT, MT_HEADER); 938 if (!m) { 939 error = ENOBUFS; 940 ip6stat.ip6s_odropped++; 941 goto sendorfree; 942 } 943 m->m_flags = m0->m_flags & M_COPYFLAGS; 944 *mnext = m; 945 mnext = &m->m_nextpkt; 946 m->m_data += max_linkhdr; 947 mhip6 = mtod(m, struct ip6_hdr *); 948 *mhip6 = *ip6; 949 m->m_len = sizeof(*mhip6); 950 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 951 if (error) { 952 ip6stat.ip6s_odropped++; 953 goto sendorfree; 954 } 955 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 956 if (off + len >= tlen) 957 len = tlen - off; 958 else 959 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 960 mhip6->ip6_plen = htons((u_short)(len + hlen + 961 sizeof(*ip6f) - 962 sizeof(struct ip6_hdr))); 963 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 964 error = ENOBUFS; 965 ip6stat.ip6s_odropped++; 966 goto sendorfree; 967 } 968 m_cat(m, m_frgpart); 969 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 970 m->m_pkthdr.rcvif = (struct ifnet *)0; 971 ip6f->ip6f_reserved = 0; 972 ip6f->ip6f_ident = id; 973 ip6f->ip6f_nxt = nextproto; 974 ip6stat.ip6s_ofragments++; 975 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 976 } 977 978 in6_ifstat_inc(ifp, ifs6_out_fragok); 979 } 980 981 /* 982 * Remove leading garbages. 983 */ 984 sendorfree: 985 m = m0->m_nextpkt; 986 m0->m_nextpkt = 0; 987 m_freem(m0); 988 for (m0 = m; m; m = m0) { 989 m0 = m->m_nextpkt; 990 m->m_nextpkt = 0; 991 if (error == 0) { 992 #ifdef IFA_STATS 993 struct in6_ifaddr *ia6; 994 ip6 = mtod(m, struct ip6_hdr *); 995 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 996 if (ia6) { 997 ia6->ia_ifa.ifa_data.ifad_outbytes += 998 m->m_pkthdr.len; 999 } 1000 #endif 1001 #ifdef IPSEC 1002 /* clean ipsec history once it goes out of the node */ 1003 ipsec_delaux(m); 1004 #endif 1005 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1006 } else 1007 m_freem(m); 1008 } 1009 1010 if (error == 0) 1011 ip6stat.ip6s_fragmented++; 1012 1013 done: 1014 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1015 RTFREE(ro->ro_rt); 1016 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1017 RTFREE(ro_pmtu->ro_rt); 1018 } 1019 1020 #ifdef IPSEC 1021 if (sp != NULL) 1022 key_freesp(sp); 1023 #endif /* IPSEC */ 1024 1025 return(error); 1026 1027 freehdrs: 1028 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1029 m_freem(exthdrs.ip6e_dest1); 1030 m_freem(exthdrs.ip6e_rthdr); 1031 m_freem(exthdrs.ip6e_dest2); 1032 /* fall through */ 1033 bad: 1034 m_freem(m); 1035 goto done; 1036 } 1037 1038 static int 1039 ip6_copyexthdr(mp, hdr, hlen) 1040 struct mbuf **mp; 1041 caddr_t hdr; 1042 int hlen; 1043 { 1044 struct mbuf *m; 1045 1046 if (hlen > MCLBYTES) 1047 return(ENOBUFS); /* XXX */ 1048 1049 MGET(m, M_DONTWAIT, MT_DATA); 1050 if (!m) 1051 return(ENOBUFS); 1052 1053 if (hlen > MLEN) { 1054 MCLGET(m, M_DONTWAIT); 1055 if ((m->m_flags & M_EXT) == 0) { 1056 m_free(m); 1057 return(ENOBUFS); 1058 } 1059 } 1060 m->m_len = hlen; 1061 if (hdr) 1062 bcopy(hdr, mtod(m, caddr_t), hlen); 1063 1064 *mp = m; 1065 return(0); 1066 } 1067 1068 /* 1069 * Insert jumbo payload option. 1070 */ 1071 static int 1072 ip6_insert_jumboopt(exthdrs, plen) 1073 struct ip6_exthdrs *exthdrs; 1074 u_int32_t plen; 1075 { 1076 struct mbuf *mopt; 1077 u_char *optbuf; 1078 u_int32_t v; 1079 1080 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1081 1082 /* 1083 * If there is no hop-by-hop options header, allocate new one. 1084 * If there is one but it doesn't have enough space to store the 1085 * jumbo payload option, allocate a cluster to store the whole options. 1086 * Otherwise, use it to store the options. 1087 */ 1088 if (exthdrs->ip6e_hbh == 0) { 1089 MGET(mopt, M_DONTWAIT, MT_DATA); 1090 if (mopt == 0) 1091 return(ENOBUFS); 1092 mopt->m_len = JUMBOOPTLEN; 1093 optbuf = mtod(mopt, u_char *); 1094 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1095 exthdrs->ip6e_hbh = mopt; 1096 } else { 1097 struct ip6_hbh *hbh; 1098 1099 mopt = exthdrs->ip6e_hbh; 1100 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1101 /* 1102 * XXX assumption: 1103 * - exthdrs->ip6e_hbh is not referenced from places 1104 * other than exthdrs. 1105 * - exthdrs->ip6e_hbh is not an mbuf chain. 1106 */ 1107 int oldoptlen = mopt->m_len; 1108 struct mbuf *n; 1109 1110 /* 1111 * XXX: give up if the whole (new) hbh header does 1112 * not fit even in an mbuf cluster. 1113 */ 1114 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1115 return(ENOBUFS); 1116 1117 /* 1118 * As a consequence, we must always prepare a cluster 1119 * at this point. 1120 */ 1121 MGET(n, M_DONTWAIT, MT_DATA); 1122 if (n) { 1123 MCLGET(n, M_DONTWAIT); 1124 if ((n->m_flags & M_EXT) == 0) { 1125 m_freem(n); 1126 n = NULL; 1127 } 1128 } 1129 if (!n) 1130 return(ENOBUFS); 1131 n->m_len = oldoptlen + JUMBOOPTLEN; 1132 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1133 oldoptlen); 1134 optbuf = mtod(n, caddr_t) + oldoptlen; 1135 m_freem(mopt); 1136 mopt = exthdrs->ip6e_hbh = n; 1137 } else { 1138 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1139 mopt->m_len += JUMBOOPTLEN; 1140 } 1141 optbuf[0] = IP6OPT_PADN; 1142 optbuf[1] = 1; 1143 1144 /* 1145 * Adjust the header length according to the pad and 1146 * the jumbo payload option. 1147 */ 1148 hbh = mtod(mopt, struct ip6_hbh *); 1149 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1150 } 1151 1152 /* fill in the option. */ 1153 optbuf[2] = IP6OPT_JUMBO; 1154 optbuf[3] = 4; 1155 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1156 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1157 1158 /* finally, adjust the packet header length */ 1159 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1160 1161 return(0); 1162 #undef JUMBOOPTLEN 1163 } 1164 1165 /* 1166 * Insert fragment header and copy unfragmentable header portions. 1167 */ 1168 static int 1169 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1170 struct mbuf *m0, *m; 1171 int hlen; 1172 struct ip6_frag **frghdrp; 1173 { 1174 struct mbuf *n, *mlast; 1175 1176 if (hlen > sizeof(struct ip6_hdr)) { 1177 n = m_copym(m0, sizeof(struct ip6_hdr), 1178 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1179 if (n == 0) 1180 return(ENOBUFS); 1181 m->m_next = n; 1182 } else 1183 n = m; 1184 1185 /* Search for the last mbuf of unfragmentable part. */ 1186 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1187 ; 1188 1189 if ((mlast->m_flags & M_EXT) == 0 && 1190 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1191 /* use the trailing space of the last mbuf for the fragment hdr */ 1192 *frghdrp = 1193 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1194 mlast->m_len += sizeof(struct ip6_frag); 1195 m->m_pkthdr.len += sizeof(struct ip6_frag); 1196 } else { 1197 /* allocate a new mbuf for the fragment header */ 1198 struct mbuf *mfrg; 1199 1200 MGET(mfrg, M_DONTWAIT, MT_DATA); 1201 if (mfrg == 0) 1202 return(ENOBUFS); 1203 mfrg->m_len = sizeof(struct ip6_frag); 1204 *frghdrp = mtod(mfrg, struct ip6_frag *); 1205 mlast->m_next = mfrg; 1206 } 1207 1208 return(0); 1209 } 1210 1211 /* 1212 * IP6 socket option processing. 1213 */ 1214 int 1215 ip6_ctloutput(op, so, level, optname, mp) 1216 int op; 1217 struct socket *so; 1218 int level, optname; 1219 struct mbuf **mp; 1220 { 1221 struct in6pcb *in6p = sotoin6pcb(so); 1222 struct mbuf *m = *mp; 1223 int optval = 0; 1224 int error = 0; 1225 struct proc *p = curproc; /* XXX */ 1226 1227 if (level == IPPROTO_IPV6) { 1228 switch (op) { 1229 1230 case PRCO_SETOPT: 1231 switch (optname) { 1232 case IPV6_PKTOPTIONS: 1233 /* m is freed in ip6_pcbopts */ 1234 return(ip6_pcbopts(&in6p->in6p_outputopts, 1235 m, so)); 1236 case IPV6_HOPOPTS: 1237 case IPV6_DSTOPTS: 1238 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1239 error = EPERM; 1240 break; 1241 } 1242 /* fall through */ 1243 case IPV6_UNICAST_HOPS: 1244 case IPV6_RECVOPTS: 1245 case IPV6_RECVRETOPTS: 1246 case IPV6_RECVDSTADDR: 1247 case IPV6_PKTINFO: 1248 case IPV6_HOPLIMIT: 1249 case IPV6_RTHDR: 1250 case IPV6_FAITH: 1251 case IPV6_V6ONLY: 1252 if (!m || m->m_len != sizeof(int)) { 1253 error = EINVAL; 1254 break; 1255 } 1256 optval = *mtod(m, int *); 1257 switch (optname) { 1258 1259 case IPV6_UNICAST_HOPS: 1260 if (optval < -1 || optval >= 256) 1261 error = EINVAL; 1262 else { 1263 /* -1 = kernel default */ 1264 in6p->in6p_hops = optval; 1265 } 1266 break; 1267 #define OPTSET(bit) \ 1268 if (optval) \ 1269 in6p->in6p_flags |= bit; \ 1270 else \ 1271 in6p->in6p_flags &= ~bit; 1272 1273 case IPV6_RECVOPTS: 1274 OPTSET(IN6P_RECVOPTS); 1275 break; 1276 1277 case IPV6_RECVRETOPTS: 1278 OPTSET(IN6P_RECVRETOPTS); 1279 break; 1280 1281 case IPV6_RECVDSTADDR: 1282 OPTSET(IN6P_RECVDSTADDR); 1283 break; 1284 1285 case IPV6_PKTINFO: 1286 OPTSET(IN6P_PKTINFO); 1287 break; 1288 1289 case IPV6_HOPLIMIT: 1290 OPTSET(IN6P_HOPLIMIT); 1291 break; 1292 1293 case IPV6_HOPOPTS: 1294 OPTSET(IN6P_HOPOPTS); 1295 break; 1296 1297 case IPV6_DSTOPTS: 1298 OPTSET(IN6P_DSTOPTS); 1299 break; 1300 1301 case IPV6_RTHDR: 1302 OPTSET(IN6P_RTHDR); 1303 break; 1304 1305 case IPV6_FAITH: 1306 OPTSET(IN6P_FAITH); 1307 break; 1308 1309 case IPV6_V6ONLY: 1310 /* 1311 * make setsockopt(IPV6_V6ONLY) 1312 * available only prior to bind(2). 1313 * see ipng mailing list, Jun 22 2001. 1314 */ 1315 if (in6p->in6p_lport || 1316 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) 1317 { 1318 error = EINVAL; 1319 break; 1320 } 1321 #ifdef INET6_BINDV6ONLY 1322 if (!optval) 1323 error = EINVAL; 1324 #else 1325 OPTSET(IN6P_IPV6_V6ONLY); 1326 #endif 1327 break; 1328 } 1329 break; 1330 #undef OPTSET 1331 1332 case IPV6_MULTICAST_IF: 1333 case IPV6_MULTICAST_HOPS: 1334 case IPV6_MULTICAST_LOOP: 1335 case IPV6_JOIN_GROUP: 1336 case IPV6_LEAVE_GROUP: 1337 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m); 1338 break; 1339 1340 case IPV6_PORTRANGE: 1341 optval = *mtod(m, int *); 1342 1343 switch (optval) { 1344 case IPV6_PORTRANGE_DEFAULT: 1345 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1346 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1347 break; 1348 1349 case IPV6_PORTRANGE_HIGH: 1350 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1351 in6p->in6p_flags |= IN6P_HIGHPORT; 1352 break; 1353 1354 case IPV6_PORTRANGE_LOW: 1355 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1356 in6p->in6p_flags |= IN6P_LOWPORT; 1357 break; 1358 1359 default: 1360 error = EINVAL; 1361 break; 1362 } 1363 break; 1364 1365 #ifdef IPSEC 1366 case IPV6_IPSEC_POLICY: 1367 { 1368 caddr_t req = NULL; 1369 size_t len = 0; 1370 1371 int priv = 0; 1372 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) 1373 priv = 0; 1374 else 1375 priv = 1; 1376 if (m) { 1377 req = mtod(m, caddr_t); 1378 len = m->m_len; 1379 } 1380 error = ipsec6_set_policy(in6p, 1381 optname, req, len, priv); 1382 } 1383 break; 1384 #endif /* IPSEC */ 1385 1386 default: 1387 error = ENOPROTOOPT; 1388 break; 1389 } 1390 if (m) 1391 (void)m_free(m); 1392 break; 1393 1394 case PRCO_GETOPT: 1395 switch (optname) { 1396 1397 case IPV6_OPTIONS: 1398 case IPV6_RETOPTS: 1399 #if 0 1400 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1401 if (in6p->in6p_options) { 1402 m->m_len = in6p->in6p_options->m_len; 1403 bcopy(mtod(in6p->in6p_options, caddr_t), 1404 mtod(m, caddr_t), 1405 (unsigned)m->m_len); 1406 } else 1407 m->m_len = 0; 1408 break; 1409 #else 1410 error = ENOPROTOOPT; 1411 break; 1412 #endif 1413 1414 case IPV6_PKTOPTIONS: 1415 if (in6p->in6p_options) { 1416 *mp = m_copym(in6p->in6p_options, 0, 1417 M_COPYALL, M_WAIT); 1418 } else { 1419 *mp = m_get(M_WAIT, MT_SOOPTS); 1420 (*mp)->m_len = 0; 1421 } 1422 break; 1423 1424 case IPV6_HOPOPTS: 1425 case IPV6_DSTOPTS: 1426 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1427 error = EPERM; 1428 break; 1429 } 1430 /* fall through */ 1431 case IPV6_UNICAST_HOPS: 1432 case IPV6_RECVOPTS: 1433 case IPV6_RECVRETOPTS: 1434 case IPV6_RECVDSTADDR: 1435 case IPV6_PORTRANGE: 1436 case IPV6_PKTINFO: 1437 case IPV6_HOPLIMIT: 1438 case IPV6_RTHDR: 1439 case IPV6_FAITH: 1440 case IPV6_V6ONLY: 1441 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1442 m->m_len = sizeof(int); 1443 switch (optname) { 1444 1445 case IPV6_UNICAST_HOPS: 1446 optval = in6p->in6p_hops; 1447 break; 1448 1449 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0) 1450 1451 case IPV6_RECVOPTS: 1452 optval = OPTBIT(IN6P_RECVOPTS); 1453 break; 1454 1455 case IPV6_RECVRETOPTS: 1456 optval = OPTBIT(IN6P_RECVRETOPTS); 1457 break; 1458 1459 case IPV6_RECVDSTADDR: 1460 optval = OPTBIT(IN6P_RECVDSTADDR); 1461 break; 1462 1463 case IPV6_PORTRANGE: 1464 { 1465 int flags; 1466 flags = in6p->in6p_flags; 1467 if (flags & IN6P_HIGHPORT) 1468 optval = IPV6_PORTRANGE_HIGH; 1469 else if (flags & IN6P_LOWPORT) 1470 optval = IPV6_PORTRANGE_LOW; 1471 else 1472 optval = 0; 1473 break; 1474 } 1475 1476 case IPV6_PKTINFO: 1477 optval = OPTBIT(IN6P_PKTINFO); 1478 break; 1479 1480 case IPV6_HOPLIMIT: 1481 optval = OPTBIT(IN6P_HOPLIMIT); 1482 break; 1483 1484 case IPV6_HOPOPTS: 1485 optval = OPTBIT(IN6P_HOPOPTS); 1486 break; 1487 1488 case IPV6_DSTOPTS: 1489 optval = OPTBIT(IN6P_DSTOPTS); 1490 break; 1491 1492 case IPV6_RTHDR: 1493 optval = OPTBIT(IN6P_RTHDR); 1494 break; 1495 1496 case IPV6_FAITH: 1497 optval = OPTBIT(IN6P_FAITH); 1498 break; 1499 1500 case IPV6_V6ONLY: 1501 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1502 break; 1503 } 1504 *mtod(m, int *) = optval; 1505 break; 1506 1507 case IPV6_MULTICAST_IF: 1508 case IPV6_MULTICAST_HOPS: 1509 case IPV6_MULTICAST_LOOP: 1510 case IPV6_JOIN_GROUP: 1511 case IPV6_LEAVE_GROUP: 1512 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp); 1513 break; 1514 1515 #ifdef IPSEC 1516 case IPV6_IPSEC_POLICY: 1517 { 1518 caddr_t req = NULL; 1519 size_t len = 0; 1520 1521 if (m) { 1522 req = mtod(m, caddr_t); 1523 len = m->m_len; 1524 } 1525 error = ipsec6_get_policy(in6p, req, len, mp); 1526 break; 1527 } 1528 #endif /* IPSEC */ 1529 1530 default: 1531 error = ENOPROTOOPT; 1532 break; 1533 } 1534 break; 1535 } 1536 } else { 1537 error = EINVAL; 1538 if (op == PRCO_SETOPT && *mp) 1539 (void)m_free(*mp); 1540 } 1541 return(error); 1542 } 1543 1544 /* 1545 * Set up IP6 options in pcb for insertion in output packets. 1546 * Store in mbuf with pointer in pcbopt, adding pseudo-option 1547 * with destination address if source routed. 1548 */ 1549 static int 1550 ip6_pcbopts(pktopt, m, so) 1551 struct ip6_pktopts **pktopt; 1552 struct mbuf *m; 1553 struct socket *so; 1554 { 1555 struct ip6_pktopts *opt = *pktopt; 1556 int error = 0; 1557 struct proc *p = curproc; /* XXX */ 1558 int priv = 0; 1559 1560 /* turn off any old options. */ 1561 if (opt) { 1562 if (opt->ip6po_m) 1563 (void)m_free(opt->ip6po_m); 1564 } else 1565 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 1566 *pktopt = 0; 1567 1568 if (!m || m->m_len == 0) { 1569 /* 1570 * Only turning off any previous options. 1571 */ 1572 if (opt) 1573 free(opt, M_IP6OPT); 1574 if (m) 1575 (void)m_free(m); 1576 return(0); 1577 } 1578 1579 /* set options specified by user. */ 1580 if (p && !suser(p->p_ucred, &p->p_acflag)) 1581 priv = 1; 1582 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) { 1583 (void)m_free(m); 1584 return(error); 1585 } 1586 *pktopt = opt; 1587 return(0); 1588 } 1589 1590 /* 1591 * Set the IP6 multicast options in response to user setsockopt(). 1592 */ 1593 static int 1594 ip6_setmoptions(optname, im6op, m) 1595 int optname; 1596 struct ip6_moptions **im6op; 1597 struct mbuf *m; 1598 { 1599 int error = 0; 1600 u_int loop, ifindex; 1601 struct ipv6_mreq *mreq; 1602 struct ifnet *ifp; 1603 struct ip6_moptions *im6o = *im6op; 1604 struct route_in6 ro; 1605 struct sockaddr_in6 *dst; 1606 struct in6_multi_mship *imm; 1607 struct proc *p = curproc; /* XXX */ 1608 1609 if (im6o == NULL) { 1610 /* 1611 * No multicast option buffer attached to the pcb; 1612 * allocate one and initialize to default values. 1613 */ 1614 im6o = (struct ip6_moptions *) 1615 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1616 1617 if (im6o == NULL) 1618 return(ENOBUFS); 1619 *im6op = im6o; 1620 im6o->im6o_multicast_ifp = NULL; 1621 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1622 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1623 LIST_INIT(&im6o->im6o_memberships); 1624 } 1625 1626 switch (optname) { 1627 1628 case IPV6_MULTICAST_IF: 1629 /* 1630 * Select the interface for outgoing multicast packets. 1631 */ 1632 if (m == NULL || m->m_len != sizeof(u_int)) { 1633 error = EINVAL; 1634 break; 1635 } 1636 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 1637 if (ifindex < 0 || if_index < ifindex) { 1638 error = ENXIO; /* XXX EINVAL? */ 1639 break; 1640 } 1641 ifp = ifindex2ifnet[ifindex]; 1642 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1643 error = EADDRNOTAVAIL; 1644 break; 1645 } 1646 im6o->im6o_multicast_ifp = ifp; 1647 break; 1648 1649 case IPV6_MULTICAST_HOPS: 1650 { 1651 /* 1652 * Set the IP6 hoplimit for outgoing multicast packets. 1653 */ 1654 int optval; 1655 if (m == NULL || m->m_len != sizeof(int)) { 1656 error = EINVAL; 1657 break; 1658 } 1659 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 1660 if (optval < -1 || optval >= 256) 1661 error = EINVAL; 1662 else if (optval == -1) 1663 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1664 else 1665 im6o->im6o_multicast_hlim = optval; 1666 break; 1667 } 1668 1669 case IPV6_MULTICAST_LOOP: 1670 /* 1671 * Set the loopback flag for outgoing multicast packets. 1672 * Must be zero or one. 1673 */ 1674 if (m == NULL || m->m_len != sizeof(u_int)) { 1675 error = EINVAL; 1676 break; 1677 } 1678 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 1679 if (loop > 1) { 1680 error = EINVAL; 1681 break; 1682 } 1683 im6o->im6o_multicast_loop = loop; 1684 break; 1685 1686 case IPV6_JOIN_GROUP: 1687 /* 1688 * Add a multicast group membership. 1689 * Group must be a valid IP6 multicast address. 1690 */ 1691 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1692 error = EINVAL; 1693 break; 1694 } 1695 mreq = mtod(m, struct ipv6_mreq *); 1696 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1697 /* 1698 * We use the unspecified address to specify to accept 1699 * all multicast addresses. Only super user is allowed 1700 * to do this. 1701 */ 1702 if (suser(p->p_ucred, &p->p_acflag)) 1703 { 1704 error = EACCES; 1705 break; 1706 } 1707 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1708 error = EINVAL; 1709 break; 1710 } 1711 1712 /* 1713 * If the interface is specified, validate it. 1714 */ 1715 if (mreq->ipv6mr_interface < 0 1716 || if_index < mreq->ipv6mr_interface) { 1717 error = ENXIO; /* XXX EINVAL? */ 1718 break; 1719 } 1720 /* 1721 * If no interface was explicitly specified, choose an 1722 * appropriate one according to the given multicast address. 1723 */ 1724 if (mreq->ipv6mr_interface == 0) { 1725 /* 1726 * If the multicast address is in node-local scope, 1727 * the interface should be a loopback interface. 1728 * Otherwise, look up the routing table for the 1729 * address, and choose the outgoing interface. 1730 * XXX: is it a good approach? 1731 */ 1732 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 1733 ifp = &loif[0]; 1734 } else { 1735 ro.ro_rt = NULL; 1736 dst = (struct sockaddr_in6 *)&ro.ro_dst; 1737 bzero(dst, sizeof(*dst)); 1738 dst->sin6_len = sizeof(struct sockaddr_in6); 1739 dst->sin6_family = AF_INET6; 1740 dst->sin6_addr = mreq->ipv6mr_multiaddr; 1741 rtalloc((struct route *)&ro); 1742 if (ro.ro_rt == NULL) { 1743 error = EADDRNOTAVAIL; 1744 break; 1745 } 1746 ifp = ro.ro_rt->rt_ifp; 1747 rtfree(ro.ro_rt); 1748 } 1749 } else 1750 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1751 1752 /* 1753 * See if we found an interface, and confirm that it 1754 * supports multicast 1755 */ 1756 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1757 error = EADDRNOTAVAIL; 1758 break; 1759 } 1760 /* 1761 * Put interface index into the multicast address, 1762 * if the address has link-local scope. 1763 */ 1764 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1765 mreq->ipv6mr_multiaddr.s6_addr16[1] 1766 = htons(mreq->ipv6mr_interface); 1767 } 1768 /* 1769 * See if the membership already exists. 1770 */ 1771 for (imm = im6o->im6o_memberships.lh_first; 1772 imm != NULL; imm = imm->i6mm_chain.le_next) 1773 if (imm->i6mm_maddr->in6m_ifp == ifp && 1774 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1775 &mreq->ipv6mr_multiaddr)) 1776 break; 1777 if (imm != NULL) { 1778 error = EADDRINUSE; 1779 break; 1780 } 1781 /* 1782 * Everything looks good; add a new record to the multicast 1783 * address list for the given interface. 1784 */ 1785 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 1786 if (imm == NULL) { 1787 error = ENOBUFS; 1788 break; 1789 } 1790 if ((imm->i6mm_maddr = 1791 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 1792 free(imm, M_IPMADDR); 1793 break; 1794 } 1795 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 1796 break; 1797 1798 case IPV6_LEAVE_GROUP: 1799 /* 1800 * Drop a multicast group membership. 1801 * Group must be a valid IP6 multicast address. 1802 */ 1803 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1804 error = EINVAL; 1805 break; 1806 } 1807 mreq = mtod(m, struct ipv6_mreq *); 1808 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1809 if (suser(p->p_ucred, &p->p_acflag)) 1810 { 1811 error = EACCES; 1812 break; 1813 } 1814 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1815 error = EINVAL; 1816 break; 1817 } 1818 /* 1819 * If an interface address was specified, get a pointer 1820 * to its ifnet structure. 1821 */ 1822 if (mreq->ipv6mr_interface < 0 1823 || if_index < mreq->ipv6mr_interface) { 1824 error = ENXIO; /* XXX EINVAL? */ 1825 break; 1826 } 1827 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1828 /* 1829 * Put interface index into the multicast address, 1830 * if the address has link-local scope. 1831 */ 1832 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1833 mreq->ipv6mr_multiaddr.s6_addr16[1] 1834 = htons(mreq->ipv6mr_interface); 1835 } 1836 /* 1837 * Find the membership in the membership list. 1838 */ 1839 for (imm = im6o->im6o_memberships.lh_first; 1840 imm != NULL; imm = imm->i6mm_chain.le_next) { 1841 if ((ifp == NULL || 1842 imm->i6mm_maddr->in6m_ifp == ifp) && 1843 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1844 &mreq->ipv6mr_multiaddr)) 1845 break; 1846 } 1847 if (imm == NULL) { 1848 /* Unable to resolve interface */ 1849 error = EADDRNOTAVAIL; 1850 break; 1851 } 1852 /* 1853 * Give up the multicast address record to which the 1854 * membership points. 1855 */ 1856 LIST_REMOVE(imm, i6mm_chain); 1857 in6_delmulti(imm->i6mm_maddr); 1858 free(imm, M_IPMADDR); 1859 break; 1860 1861 default: 1862 error = EOPNOTSUPP; 1863 break; 1864 } 1865 1866 /* 1867 * If all options have default values, no need to keep the mbuf. 1868 */ 1869 if (im6o->im6o_multicast_ifp == NULL && 1870 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 1871 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 1872 im6o->im6o_memberships.lh_first == NULL) { 1873 free(*im6op, M_IPMOPTS); 1874 *im6op = NULL; 1875 } 1876 1877 return(error); 1878 } 1879 1880 /* 1881 * Return the IP6 multicast options in response to user getsockopt(). 1882 */ 1883 static int 1884 ip6_getmoptions(optname, im6o, mp) 1885 int optname; 1886 struct ip6_moptions *im6o; 1887 struct mbuf **mp; 1888 { 1889 u_int *hlim, *loop, *ifindex; 1890 1891 *mp = m_get(M_WAIT, MT_SOOPTS); 1892 1893 switch (optname) { 1894 1895 case IPV6_MULTICAST_IF: 1896 ifindex = mtod(*mp, u_int *); 1897 (*mp)->m_len = sizeof(u_int); 1898 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 1899 *ifindex = 0; 1900 else 1901 *ifindex = im6o->im6o_multicast_ifp->if_index; 1902 return(0); 1903 1904 case IPV6_MULTICAST_HOPS: 1905 hlim = mtod(*mp, u_int *); 1906 (*mp)->m_len = sizeof(u_int); 1907 if (im6o == NULL) 1908 *hlim = ip6_defmcasthlim; 1909 else 1910 *hlim = im6o->im6o_multicast_hlim; 1911 return(0); 1912 1913 case IPV6_MULTICAST_LOOP: 1914 loop = mtod(*mp, u_int *); 1915 (*mp)->m_len = sizeof(u_int); 1916 if (im6o == NULL) 1917 *loop = ip6_defmcasthlim; 1918 else 1919 *loop = im6o->im6o_multicast_loop; 1920 return(0); 1921 1922 default: 1923 return(EOPNOTSUPP); 1924 } 1925 } 1926 1927 /* 1928 * Discard the IP6 multicast options. 1929 */ 1930 void 1931 ip6_freemoptions(im6o) 1932 struct ip6_moptions *im6o; 1933 { 1934 struct in6_multi_mship *imm; 1935 1936 if (im6o == NULL) 1937 return; 1938 1939 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 1940 LIST_REMOVE(imm, i6mm_chain); 1941 if (imm->i6mm_maddr) 1942 in6_delmulti(imm->i6mm_maddr); 1943 free(imm, M_IPMADDR); 1944 } 1945 free(im6o, M_IPMOPTS); 1946 } 1947 1948 /* 1949 * Set IPv6 outgoing packet options based on advanced API. 1950 */ 1951 int 1952 ip6_setpktoptions(control, opt, priv) 1953 struct mbuf *control; 1954 struct ip6_pktopts *opt; 1955 int priv; 1956 { 1957 struct cmsghdr *cm = 0; 1958 1959 if (control == 0 || opt == 0) 1960 return(EINVAL); 1961 1962 bzero(opt, sizeof(*opt)); 1963 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */ 1964 1965 /* 1966 * XXX: Currently, we assume all the optional information is stored 1967 * in a single mbuf. 1968 */ 1969 if (control->m_next) 1970 return(EINVAL); 1971 1972 opt->ip6po_m = control; 1973 1974 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 1975 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1976 cm = mtod(control, struct cmsghdr *); 1977 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 1978 return(EINVAL); 1979 if (cm->cmsg_level != IPPROTO_IPV6) 1980 continue; 1981 1982 switch (cm->cmsg_type) { 1983 case IPV6_PKTINFO: 1984 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 1985 return(EINVAL); 1986 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 1987 if (opt->ip6po_pktinfo->ipi6_ifindex && 1988 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr)) 1989 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] = 1990 htons(opt->ip6po_pktinfo->ipi6_ifindex); 1991 1992 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index 1993 || opt->ip6po_pktinfo->ipi6_ifindex < 0) { 1994 return(ENXIO); 1995 } 1996 1997 /* 1998 * Check if the requested source address is indeed a 1999 * unicast address assigned to the node, and can be 2000 * used as the packet's source address. 2001 */ 2002 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 2003 struct ifaddr *ia; 2004 struct in6_ifaddr *ia6; 2005 struct sockaddr_in6 sin6; 2006 2007 bzero(&sin6, sizeof(sin6)); 2008 sin6.sin6_len = sizeof(sin6); 2009 sin6.sin6_family = AF_INET6; 2010 sin6.sin6_addr = 2011 opt->ip6po_pktinfo->ipi6_addr; 2012 ia = ifa_ifwithaddr(sin6tosa(&sin6)); 2013 if (ia == NULL || 2014 (opt->ip6po_pktinfo->ipi6_ifindex && 2015 (ia->ifa_ifp->if_index != 2016 opt->ip6po_pktinfo->ipi6_ifindex))) { 2017 return(EADDRNOTAVAIL); 2018 } 2019 ia6 = (struct in6_ifaddr *)ia; 2020 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) { 2021 return(EADDRNOTAVAIL); 2022 } 2023 2024 /* 2025 * Check if the requested source address is 2026 * indeed a unicast address assigned to the 2027 * node. 2028 */ 2029 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr)) 2030 return(EADDRNOTAVAIL); 2031 } 2032 break; 2033 2034 case IPV6_HOPLIMIT: 2035 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 2036 return(EINVAL); 2037 2038 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim, 2039 sizeof(opt->ip6po_hlim)); 2040 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255) 2041 return(EINVAL); 2042 break; 2043 2044 case IPV6_NEXTHOP: 2045 if (!priv) 2046 return(EPERM); 2047 2048 if (cm->cmsg_len < sizeof(u_char) || 2049 /* check if cmsg_len is large enough for sa_len */ 2050 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 2051 return(EINVAL); 2052 2053 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm); 2054 2055 break; 2056 2057 case IPV6_HOPOPTS: 2058 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2059 return(EINVAL); 2060 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm); 2061 if (cm->cmsg_len != 2062 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3)) 2063 return(EINVAL); 2064 break; 2065 2066 case IPV6_DSTOPTS: 2067 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2068 return(EINVAL); 2069 2070 /* 2071 * If there is no routing header yet, the destination 2072 * options header should be put on the 1st part. 2073 * Otherwise, the header should be on the 2nd part. 2074 * (See RFC 2460, section 4.1) 2075 */ 2076 if (opt->ip6po_rthdr == NULL) { 2077 opt->ip6po_dest1 = 2078 (struct ip6_dest *)CMSG_DATA(cm); 2079 if (cm->cmsg_len != 2080 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1) 2081 << 3)) 2082 return(EINVAL); 2083 } 2084 else { 2085 opt->ip6po_dest2 = 2086 (struct ip6_dest *)CMSG_DATA(cm); 2087 if (cm->cmsg_len != 2088 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) 2089 << 3)) 2090 return(EINVAL); 2091 } 2092 break; 2093 2094 case IPV6_RTHDR: 2095 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2096 return(EINVAL); 2097 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm); 2098 if (cm->cmsg_len != 2099 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3)) 2100 return(EINVAL); 2101 switch (opt->ip6po_rthdr->ip6r_type) { 2102 case IPV6_RTHDR_TYPE_0: 2103 if (opt->ip6po_rthdr->ip6r_segleft == 0) 2104 return(EINVAL); 2105 break; 2106 default: 2107 return(EINVAL); 2108 } 2109 break; 2110 2111 default: 2112 return(ENOPROTOOPT); 2113 } 2114 } 2115 2116 return(0); 2117 } 2118 2119 /* 2120 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2121 * packet to the input queue of a specified interface. Note that this 2122 * calls the output routine of the loopback "driver", but with an interface 2123 * pointer that might NOT be &loif -- easier than replicating that code here. 2124 */ 2125 void 2126 ip6_mloopback(ifp, m, dst) 2127 struct ifnet *ifp; 2128 struct mbuf *m; 2129 struct sockaddr_in6 *dst; 2130 { 2131 struct mbuf *copym; 2132 struct ip6_hdr *ip6; 2133 2134 copym = m_copy(m, 0, M_COPYALL); 2135 if (copym == NULL) 2136 return; 2137 2138 /* 2139 * Make sure to deep-copy IPv6 header portion in case the data 2140 * is in an mbuf cluster, so that we can safely override the IPv6 2141 * header portion later. 2142 */ 2143 if ((copym->m_flags & M_EXT) != 0 || 2144 copym->m_len < sizeof(struct ip6_hdr)) { 2145 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2146 if (copym == NULL) 2147 return; 2148 } 2149 2150 #ifdef DIAGNOSTIC 2151 if (copym->m_len < sizeof(*ip6)) { 2152 m_freem(copym); 2153 return; 2154 } 2155 #endif 2156 2157 ip6 = mtod(copym, struct ip6_hdr *); 2158 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 2159 ip6->ip6_src.s6_addr16[1] = 0; 2160 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 2161 ip6->ip6_dst.s6_addr16[1] = 0; 2162 2163 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL); 2164 } 2165 2166 /* 2167 * Chop IPv6 header off from the payload. 2168 */ 2169 static int 2170 ip6_splithdr(m, exthdrs) 2171 struct mbuf *m; 2172 struct ip6_exthdrs *exthdrs; 2173 { 2174 struct mbuf *mh; 2175 struct ip6_hdr *ip6; 2176 2177 ip6 = mtod(m, struct ip6_hdr *); 2178 if (m->m_len > sizeof(*ip6)) { 2179 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2180 if (mh == 0) { 2181 m_freem(m); 2182 return ENOBUFS; 2183 } 2184 M_COPY_PKTHDR(mh, m); 2185 MH_ALIGN(mh, sizeof(*ip6)); 2186 m->m_flags &= ~M_PKTHDR; 2187 m->m_len -= sizeof(*ip6); 2188 m->m_data += sizeof(*ip6); 2189 mh->m_next = m; 2190 m = mh; 2191 m->m_len = sizeof(*ip6); 2192 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2193 } 2194 exthdrs->ip6e_ip6 = m; 2195 return 0; 2196 } 2197 2198 /* 2199 * Compute IPv6 extension header length. 2200 */ 2201 int 2202 ip6_optlen(in6p) 2203 struct in6pcb *in6p; 2204 { 2205 int len; 2206 2207 if (!in6p->in6p_outputopts) 2208 return 0; 2209 2210 len = 0; 2211 #define elen(x) \ 2212 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2213 2214 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2215 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2216 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2217 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2218 return len; 2219 #undef elen 2220 } 2221