1 /* $NetBSD: ip6_output.c,v 1.43 2001/12/20 07:26:37 itojun Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 66 */ 67 68 #include <sys/cdefs.h> 69 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.43 2001/12/20 07:26:37 itojun Exp $"); 70 71 #include "opt_inet.h" 72 #include "opt_ipsec.h" 73 #include "opt_pfil_hooks.h" 74 75 #include <sys/param.h> 76 #include <sys/malloc.h> 77 #include <sys/mbuf.h> 78 #include <sys/errno.h> 79 #include <sys/protosw.h> 80 #include <sys/socket.h> 81 #include <sys/socketvar.h> 82 #include <sys/systm.h> 83 #include <sys/proc.h> 84 85 #include <net/if.h> 86 #include <net/route.h> 87 #ifdef PFIL_HOOKS 88 #include <net/pfil.h> 89 #endif 90 91 #include <netinet/in.h> 92 #include <netinet/in_var.h> 93 #include <netinet/ip6.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/in6_pcb.h> 97 #include <netinet6/nd6.h> 98 99 #ifdef IPSEC 100 #include <netinet6/ipsec.h> 101 #include <netkey/key.h> 102 #endif /* IPSEC */ 103 104 #include "loop.h" 105 106 #include <net/net_osdep.h> 107 108 #ifdef PFIL_HOOKS 109 extern struct pfil_head inet6_pfil_hook; /* XXX */ 110 #endif 111 112 struct ip6_exthdrs { 113 struct mbuf *ip6e_ip6; 114 struct mbuf *ip6e_hbh; 115 struct mbuf *ip6e_dest1; 116 struct mbuf *ip6e_rthdr; 117 struct mbuf *ip6e_dest2; 118 }; 119 120 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 121 struct socket *)); 122 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 123 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 124 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 125 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 126 struct ip6_frag **)); 127 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 128 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 129 130 extern struct ifnet loif[NLOOP]; 131 132 /* 133 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 134 * header (with pri, len, nxt, hlim, src, dst). 135 * This function may modify ver and hlim only. 136 * The mbuf chain containing the packet will be freed. 137 * The mbuf opt, if present, will not be freed. 138 */ 139 int 140 ip6_output(m0, opt, ro, flags, im6o, ifpp) 141 struct mbuf *m0; 142 struct ip6_pktopts *opt; 143 struct route_in6 *ro; 144 int flags; 145 struct ip6_moptions *im6o; 146 struct ifnet **ifpp; /* XXX: just for statistics */ 147 { 148 struct ip6_hdr *ip6, *mhip6; 149 struct ifnet *ifp, *origifp; 150 struct mbuf *m = m0; 151 int hlen, tlen, len, off; 152 struct route_in6 ip6route; 153 struct sockaddr_in6 *dst; 154 int error = 0; 155 struct in6_ifaddr *ia; 156 u_long mtu; 157 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 158 struct ip6_exthdrs exthdrs; 159 struct in6_addr finaldst; 160 struct route_in6 *ro_pmtu = NULL; 161 int hdrsplit = 0; 162 int needipsec = 0; 163 #ifdef IPSEC 164 int needipsectun = 0; 165 struct socket *so; 166 struct secpolicy *sp = NULL; 167 168 /* for AH processing. stupid to have "socket" variable in IP layer... */ 169 so = ipsec_getsocket(m); 170 (void)ipsec_setsocket(m, NULL); 171 ip6 = mtod(m, struct ip6_hdr *); 172 #endif /* IPSEC */ 173 174 #define MAKE_EXTHDR(hp, mp) \ 175 do { \ 176 if (hp) { \ 177 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 178 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 179 ((eh)->ip6e_len + 1) << 3); \ 180 if (error) \ 181 goto freehdrs; \ 182 } \ 183 } while (0) 184 185 bzero(&exthdrs, sizeof(exthdrs)); 186 if (opt) { 187 /* Hop-by-Hop options header */ 188 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 189 /* Destination options header(1st part) */ 190 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 191 /* Routing header */ 192 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 193 /* Destination options header(2nd part) */ 194 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 195 } 196 197 #ifdef IPSEC 198 /* get a security policy for this packet */ 199 if (so == NULL) 200 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 201 else 202 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 203 204 if (sp == NULL) { 205 ipsec6stat.out_inval++; 206 goto freehdrs; 207 } 208 209 error = 0; 210 211 /* check policy */ 212 switch (sp->policy) { 213 case IPSEC_POLICY_DISCARD: 214 /* 215 * This packet is just discarded. 216 */ 217 ipsec6stat.out_polvio++; 218 goto freehdrs; 219 220 case IPSEC_POLICY_BYPASS: 221 case IPSEC_POLICY_NONE: 222 /* no need to do IPsec. */ 223 needipsec = 0; 224 break; 225 226 case IPSEC_POLICY_IPSEC: 227 if (sp->req == NULL) { 228 /* XXX should be panic ? */ 229 printf("ip6_output: No IPsec request specified.\n"); 230 error = EINVAL; 231 goto freehdrs; 232 } 233 needipsec = 1; 234 break; 235 236 case IPSEC_POLICY_ENTRUST: 237 default: 238 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 239 } 240 #endif /* IPSEC */ 241 242 /* 243 * Calculate the total length of the extension header chain. 244 * Keep the length of the unfragmentable part for fragmentation. 245 */ 246 optlen = 0; 247 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 248 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 249 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 250 unfragpartlen = optlen + sizeof(struct ip6_hdr); 251 /* NOTE: we don't add AH/ESP length here. do that later. */ 252 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 253 254 /* 255 * If we need IPsec, or there is at least one extension header, 256 * separate IP6 header from the payload. 257 */ 258 if ((needipsec || optlen) && !hdrsplit) { 259 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 260 m = NULL; 261 goto freehdrs; 262 } 263 m = exthdrs.ip6e_ip6; 264 hdrsplit++; 265 } 266 267 /* adjust pointer */ 268 ip6 = mtod(m, struct ip6_hdr *); 269 270 /* adjust mbuf packet header length */ 271 m->m_pkthdr.len += optlen; 272 plen = m->m_pkthdr.len - sizeof(*ip6); 273 274 /* If this is a jumbo payload, insert a jumbo payload option. */ 275 if (plen > IPV6_MAXPACKET) { 276 if (!hdrsplit) { 277 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 278 m = NULL; 279 goto freehdrs; 280 } 281 m = exthdrs.ip6e_ip6; 282 hdrsplit++; 283 } 284 /* adjust pointer */ 285 ip6 = mtod(m, struct ip6_hdr *); 286 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 287 goto freehdrs; 288 ip6->ip6_plen = 0; 289 } else 290 ip6->ip6_plen = htons(plen); 291 292 /* 293 * Concatenate headers and fill in next header fields. 294 * Here we have, on "m" 295 * IPv6 payload 296 * and we insert headers accordingly. Finally, we should be getting: 297 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 298 * 299 * during the header composing process, "m" points to IPv6 header. 300 * "mprev" points to an extension header prior to esp. 301 */ 302 { 303 u_char *nexthdrp = &ip6->ip6_nxt; 304 struct mbuf *mprev = m; 305 306 /* 307 * we treat dest2 specially. this makes IPsec processing 308 * much easier. 309 * 310 * result: IPv6 dest2 payload 311 * m and mprev will point to IPv6 header. 312 */ 313 if (exthdrs.ip6e_dest2) { 314 if (!hdrsplit) 315 panic("assumption failed: hdr not split"); 316 exthdrs.ip6e_dest2->m_next = m->m_next; 317 m->m_next = exthdrs.ip6e_dest2; 318 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 319 ip6->ip6_nxt = IPPROTO_DSTOPTS; 320 } 321 322 #define MAKE_CHAIN(m, mp, p, i)\ 323 do {\ 324 if (m) {\ 325 if (!hdrsplit) \ 326 panic("assumption failed: hdr not split"); \ 327 *mtod((m), u_char *) = *(p);\ 328 *(p) = (i);\ 329 p = mtod((m), u_char *);\ 330 (m)->m_next = (mp)->m_next;\ 331 (mp)->m_next = (m);\ 332 (mp) = (m);\ 333 }\ 334 } while (0) 335 /* 336 * result: IPv6 hbh dest1 rthdr dest2 payload 337 * m will point to IPv6 header. mprev will point to the 338 * extension header prior to dest2 (rthdr in the above case). 339 */ 340 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, 341 nexthdrp, IPPROTO_HOPOPTS); 342 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, 343 nexthdrp, IPPROTO_DSTOPTS); 344 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, 345 nexthdrp, IPPROTO_ROUTING); 346 347 #ifdef IPSEC 348 if (!needipsec) 349 goto skip_ipsec2; 350 351 /* 352 * pointers after IPsec headers are not valid any more. 353 * other pointers need a great care too. 354 * (IPsec routines should not mangle mbufs prior to AH/ESP) 355 */ 356 exthdrs.ip6e_dest2 = NULL; 357 358 { 359 struct ip6_rthdr *rh = NULL; 360 int segleft_org = 0; 361 struct ipsec_output_state state; 362 363 if (exthdrs.ip6e_rthdr) { 364 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 365 segleft_org = rh->ip6r_segleft; 366 rh->ip6r_segleft = 0; 367 } 368 369 bzero(&state, sizeof(state)); 370 state.m = m; 371 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 372 &needipsectun); 373 m = state.m; 374 if (error) { 375 /* mbuf is already reclaimed in ipsec6_output_trans. */ 376 m = NULL; 377 switch (error) { 378 case EHOSTUNREACH: 379 case ENETUNREACH: 380 case EMSGSIZE: 381 case ENOBUFS: 382 case ENOMEM: 383 break; 384 default: 385 printf("ip6_output (ipsec): error code %d\n", error); 386 /* fall through */ 387 case ENOENT: 388 /* don't show these error codes to the user */ 389 error = 0; 390 break; 391 } 392 goto bad; 393 } 394 if (exthdrs.ip6e_rthdr) { 395 /* ah6_output doesn't modify mbuf chain */ 396 rh->ip6r_segleft = segleft_org; 397 } 398 } 399 skip_ipsec2:; 400 #endif 401 } 402 403 /* 404 * If there is a routing header, replace destination address field 405 * with the first hop of the routing header. 406 */ 407 if (exthdrs.ip6e_rthdr) { 408 struct ip6_rthdr *rh = 409 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 410 struct ip6_rthdr *)); 411 struct ip6_rthdr0 *rh0; 412 413 finaldst = ip6->ip6_dst; 414 switch (rh->ip6r_type) { 415 case IPV6_RTHDR_TYPE_0: 416 rh0 = (struct ip6_rthdr0 *)rh; 417 ip6->ip6_dst = rh0->ip6r0_addr[0]; 418 bcopy((caddr_t)&rh0->ip6r0_addr[1], 419 (caddr_t)&rh0->ip6r0_addr[0], 420 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1) 421 ); 422 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst; 423 break; 424 default: /* is it possible? */ 425 error = EINVAL; 426 goto bad; 427 } 428 } 429 430 /* Source address validation */ 431 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 432 (flags & IPV6_DADOUTPUT) == 0) { 433 error = EOPNOTSUPP; 434 ip6stat.ip6s_badscope++; 435 goto bad; 436 } 437 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 438 error = EOPNOTSUPP; 439 ip6stat.ip6s_badscope++; 440 goto bad; 441 } 442 443 ip6stat.ip6s_localout++; 444 445 /* 446 * Route packet. 447 */ 448 if (ro == 0) { 449 ro = &ip6route; 450 bzero((caddr_t)ro, sizeof(*ro)); 451 } 452 ro_pmtu = ro; 453 if (opt && opt->ip6po_rthdr) 454 ro = &opt->ip6po_route; 455 dst = (struct sockaddr_in6 *)&ro->ro_dst; 456 /* 457 * If there is a cached route, 458 * check that it is to the same destination 459 * and is still up. If not, free it and try again. 460 */ 461 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 462 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 463 RTFREE(ro->ro_rt); 464 ro->ro_rt = (struct rtentry *)0; 465 } 466 if (ro->ro_rt == 0) { 467 bzero(dst, sizeof(*dst)); 468 dst->sin6_family = AF_INET6; 469 dst->sin6_len = sizeof(struct sockaddr_in6); 470 dst->sin6_addr = ip6->ip6_dst; 471 } 472 #ifdef IPSEC 473 if (needipsec && needipsectun) { 474 struct ipsec_output_state state; 475 476 /* 477 * All the extension headers will become inaccessible 478 * (since they can be encrypted). 479 * Don't panic, we need no more updates to extension headers 480 * on inner IPv6 packet (since they are now encapsulated). 481 * 482 * IPv6 [ESP|AH] IPv6 [extension headers] payload 483 */ 484 bzero(&exthdrs, sizeof(exthdrs)); 485 exthdrs.ip6e_ip6 = m; 486 487 bzero(&state, sizeof(state)); 488 state.m = m; 489 state.ro = (struct route *)ro; 490 state.dst = (struct sockaddr *)dst; 491 492 error = ipsec6_output_tunnel(&state, sp, flags); 493 494 m = state.m; 495 ro = (struct route_in6 *)state.ro; 496 dst = (struct sockaddr_in6 *)state.dst; 497 if (error) { 498 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 499 m0 = m = NULL; 500 m = NULL; 501 switch (error) { 502 case EHOSTUNREACH: 503 case ENETUNREACH: 504 case EMSGSIZE: 505 case ENOBUFS: 506 case ENOMEM: 507 break; 508 default: 509 printf("ip6_output (ipsec): error code %d\n", error); 510 /* fall through */ 511 case ENOENT: 512 /* don't show these error codes to the user */ 513 error = 0; 514 break; 515 } 516 goto bad; 517 } 518 519 exthdrs.ip6e_ip6 = m; 520 } 521 #endif /* IPSEC */ 522 523 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 524 /* Unicast */ 525 526 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 527 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 528 /* xxx 529 * interface selection comes here 530 * if an interface is specified from an upper layer, 531 * ifp must point it. 532 */ 533 if (ro->ro_rt == 0) { 534 /* 535 * non-bsdi always clone routes, if parent is 536 * PRF_CLONING. 537 */ 538 rtalloc((struct route *)ro); 539 } 540 if (ro->ro_rt == 0) { 541 ip6stat.ip6s_noroute++; 542 error = EHOSTUNREACH; 543 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 544 goto bad; 545 } 546 ia = ifatoia6(ro->ro_rt->rt_ifa); 547 ifp = ro->ro_rt->rt_ifp; 548 ro->ro_rt->rt_use++; 549 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 550 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 551 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 552 553 in6_ifstat_inc(ifp, ifs6_out_request); 554 555 /* 556 * Check if the outgoing interface conflicts with 557 * the interface specified by ifi6_ifindex (if specified). 558 * Note that loopback interface is always okay. 559 * (this may happen when we are sending a packet to one of 560 * our own addresses.) 561 */ 562 if (opt && opt->ip6po_pktinfo 563 && opt->ip6po_pktinfo->ipi6_ifindex) { 564 if (!(ifp->if_flags & IFF_LOOPBACK) 565 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 566 ip6stat.ip6s_noroute++; 567 in6_ifstat_inc(ifp, ifs6_out_discard); 568 error = EHOSTUNREACH; 569 goto bad; 570 } 571 } 572 573 if (opt && opt->ip6po_hlim != -1) 574 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 575 } else { 576 /* Multicast */ 577 struct in6_multi *in6m; 578 579 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 580 581 /* 582 * See if the caller provided any multicast options 583 */ 584 ifp = NULL; 585 if (im6o != NULL) { 586 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 587 if (im6o->im6o_multicast_ifp != NULL) 588 ifp = im6o->im6o_multicast_ifp; 589 } else 590 ip6->ip6_hlim = ip6_defmcasthlim; 591 592 /* 593 * See if the caller provided the outgoing interface 594 * as an ancillary data. 595 * Boundary check for ifindex is assumed to be already done. 596 */ 597 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 598 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]; 599 600 /* 601 * If the destination is a node-local scope multicast, 602 * the packet should be loop-backed only. 603 */ 604 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 605 /* 606 * If the outgoing interface is already specified, 607 * it should be a loopback interface. 608 */ 609 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 610 ip6stat.ip6s_badscope++; 611 error = ENETUNREACH; /* XXX: better error? */ 612 /* XXX correct ifp? */ 613 in6_ifstat_inc(ifp, ifs6_out_discard); 614 goto bad; 615 } else { 616 ifp = &loif[0]; 617 } 618 } 619 620 if (opt && opt->ip6po_hlim != -1) 621 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 622 623 /* 624 * If caller did not provide an interface lookup a 625 * default in the routing table. This is either a 626 * default for the speicfied group (i.e. a host 627 * route), or a multicast default (a route for the 628 * ``net'' ff00::/8). 629 */ 630 if (ifp == NULL) { 631 if (ro->ro_rt == 0) { 632 ro->ro_rt = rtalloc1((struct sockaddr *) 633 &ro->ro_dst, 0 634 ); 635 } 636 if (ro->ro_rt == 0) { 637 ip6stat.ip6s_noroute++; 638 error = EHOSTUNREACH; 639 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 640 goto bad; 641 } 642 ia = ifatoia6(ro->ro_rt->rt_ifa); 643 ifp = ro->ro_rt->rt_ifp; 644 ro->ro_rt->rt_use++; 645 } 646 647 if ((flags & IPV6_FORWARDING) == 0) 648 in6_ifstat_inc(ifp, ifs6_out_request); 649 in6_ifstat_inc(ifp, ifs6_out_mcast); 650 651 /* 652 * Confirm that the outgoing interface supports multicast. 653 */ 654 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 655 ip6stat.ip6s_noroute++; 656 in6_ifstat_inc(ifp, ifs6_out_discard); 657 error = ENETUNREACH; 658 goto bad; 659 } 660 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 661 if (in6m != NULL && 662 (im6o == NULL || im6o->im6o_multicast_loop)) { 663 /* 664 * If we belong to the destination multicast group 665 * on the outgoing interface, and the caller did not 666 * forbid loopback, loop back a copy. 667 */ 668 ip6_mloopback(ifp, m, dst); 669 } else { 670 /* 671 * If we are acting as a multicast router, perform 672 * multicast forwarding as if the packet had just 673 * arrived on the interface to which we are about 674 * to send. The multicast forwarding function 675 * recursively calls this function, using the 676 * IPV6_FORWARDING flag to prevent infinite recursion. 677 * 678 * Multicasts that are looped back by ip6_mloopback(), 679 * above, will be forwarded by the ip6_input() routine, 680 * if necessary. 681 */ 682 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 683 if (ip6_mforward(ip6, ifp, m) != 0) { 684 m_freem(m); 685 goto done; 686 } 687 } 688 } 689 /* 690 * Multicasts with a hoplimit of zero may be looped back, 691 * above, but must not be transmitted on a network. 692 * Also, multicasts addressed to the loopback interface 693 * are not sent -- the above call to ip6_mloopback() will 694 * loop back a copy if this host actually belongs to the 695 * destination group on the loopback interface. 696 */ 697 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 698 m_freem(m); 699 goto done; 700 } 701 } 702 703 /* 704 * Fill the outgoing inteface to tell the upper layer 705 * to increment per-interface statistics. 706 */ 707 if (ifpp) 708 *ifpp = ifp; 709 710 /* 711 * Determine path MTU. 712 */ 713 if (ro_pmtu != ro) { 714 /* The first hop and the final destination may differ. */ 715 struct sockaddr_in6 *sin6_fin = 716 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 717 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 718 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, 719 &finaldst))) { 720 RTFREE(ro_pmtu->ro_rt); 721 ro_pmtu->ro_rt = (struct rtentry *)0; 722 } 723 if (ro_pmtu->ro_rt == 0) { 724 bzero(sin6_fin, sizeof(*sin6_fin)); 725 sin6_fin->sin6_family = AF_INET6; 726 sin6_fin->sin6_len = sizeof(struct sockaddr_in6); 727 sin6_fin->sin6_addr = finaldst; 728 729 rtalloc((struct route *)ro_pmtu); 730 } 731 } 732 if (ro_pmtu->ro_rt != NULL) { 733 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu; 734 735 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 736 if (mtu > ifmtu || mtu == 0) { 737 /* 738 * The MTU on the route is larger than the MTU on 739 * the interface! This shouldn't happen, unless the 740 * MTU of the interface has been changed after the 741 * interface was brought up. Change the MTU in the 742 * route to match the interface MTU (as long as the 743 * field isn't locked). 744 * 745 * if MTU on the route is 0, we need to fix the MTU. 746 * this case happens with path MTU discovery timeouts. 747 */ 748 mtu = ifmtu; 749 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 750 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */ 751 } 752 } else { 753 mtu = nd_ifinfo[ifp->if_index].linkmtu; 754 } 755 756 if (mtu > IPV6_MMTU && 757 (flags & IPV6_MINMTU)) { 758 mtu = IPV6_MMTU; 759 } 760 761 /* Fake scoped addresses */ 762 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 763 /* 764 * If source or destination address is a scoped address, and 765 * the packet is going to be sent to a loopback interface, 766 * we should keep the original interface. 767 */ 768 769 /* 770 * XXX: this is a very experimental and temporary solution. 771 * We eventually have sockaddr_in6 and use the sin6_scope_id 772 * field of the structure here. 773 * We rely on the consistency between two scope zone ids 774 * of source add destination, which should already be assured 775 * Larger scopes than link will be supported in the near 776 * future. 777 */ 778 origifp = NULL; 779 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 780 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])]; 781 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 782 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])]; 783 /* 784 * XXX: origifp can be NULL even in those two cases above. 785 * For example, if we remove the (only) link-local address 786 * from the loopback interface, and try to send a link-local 787 * address without link-id information. Then the source 788 * address is ::1, and the destination address is the 789 * link-local address with its s6_addr16[1] being zero. 790 * What is worse, if the packet goes to the loopback interface 791 * by a default rejected route, the null pointer would be 792 * passed to looutput, and the kernel would hang. 793 * The following last resort would prevent such disaster. 794 */ 795 if (origifp == NULL) 796 origifp = ifp; 797 } 798 else 799 origifp = ifp; 800 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 801 ip6->ip6_src.s6_addr16[1] = 0; 802 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 803 ip6->ip6_dst.s6_addr16[1] = 0; 804 805 /* 806 * If the outgoing packet contains a hop-by-hop options header, 807 * it must be examined and processed even by the source node. 808 * (RFC 2460, section 4.) 809 */ 810 if (exthdrs.ip6e_hbh) { 811 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 812 u_int32_t dummy1; /* XXX unused */ 813 u_int32_t dummy2; /* XXX unused */ 814 815 /* 816 * XXX: if we have to send an ICMPv6 error to the sender, 817 * we need the M_LOOP flag since icmp6_error() expects 818 * the IPv6 and the hop-by-hop options header are 819 * continuous unless the flag is set. 820 */ 821 m->m_flags |= M_LOOP; 822 m->m_pkthdr.rcvif = ifp; 823 if (ip6_process_hopopts(m, 824 (u_int8_t *)(hbh + 1), 825 ((hbh->ip6h_len + 1) << 3) - 826 sizeof(struct ip6_hbh), 827 &dummy1, &dummy2) < 0) { 828 /* m was already freed at this point */ 829 error = EINVAL;/* better error? */ 830 goto done; 831 } 832 m->m_flags &= ~M_LOOP; /* XXX */ 833 m->m_pkthdr.rcvif = NULL; 834 } 835 836 #ifdef PFIL_HOOKS 837 /* 838 * Run through list of hooks for output packets. 839 */ 840 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, 841 PFIL_OUT)) != 0) 842 goto done; 843 if (m == NULL) 844 goto done; 845 ip6 = mtod(m, struct ip6_hdr *); 846 #endif /* PFIL_HOOKS */ 847 /* 848 * Send the packet to the outgoing interface. 849 * If necessary, do IPv6 fragmentation before sending. 850 */ 851 tlen = m->m_pkthdr.len; 852 if (tlen <= mtu 853 #ifdef notyet 854 /* 855 * On any link that cannot convey a 1280-octet packet in one piece, 856 * link-specific fragmentation and reassembly must be provided at 857 * a layer below IPv6. [RFC 2460, sec.5] 858 * Thus if the interface has ability of link-level fragmentation, 859 * we can just send the packet even if the packet size is 860 * larger than the link's MTU. 861 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet... 862 */ 863 864 || ifp->if_flags & IFF_FRAGMENTABLE 865 #endif 866 ) 867 { 868 #ifdef IFA_STATS 869 struct in6_ifaddr *ia6; 870 ip6 = mtod(m, struct ip6_hdr *); 871 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 872 if (ia6) { 873 /* Record statistics for this interface address. */ 874 ia6->ia_ifa.ifa_data.ifad_outbytes += 875 m->m_pkthdr.len; 876 } 877 #endif 878 #ifdef IPSEC 879 /* clean ipsec history once it goes out of the node */ 880 ipsec_delaux(m); 881 #endif 882 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 883 goto done; 884 } else if (mtu < IPV6_MMTU) { 885 /* 886 * note that path MTU is never less than IPV6_MMTU 887 * (see icmp6_input). 888 */ 889 error = EMSGSIZE; 890 in6_ifstat_inc(ifp, ifs6_out_fragfail); 891 goto bad; 892 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 893 error = EMSGSIZE; 894 in6_ifstat_inc(ifp, ifs6_out_fragfail); 895 goto bad; 896 } else { 897 struct mbuf **mnext, *m_frgpart; 898 struct ip6_frag *ip6f; 899 u_int32_t id = htonl(ip6_id++); 900 u_char nextproto; 901 902 /* 903 * Too large for the destination or interface; 904 * fragment if possible. 905 * Must be able to put at least 8 bytes per fragment. 906 */ 907 hlen = unfragpartlen; 908 if (mtu > IPV6_MAXPACKET) 909 mtu = IPV6_MAXPACKET; 910 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 911 if (len < 8) { 912 error = EMSGSIZE; 913 in6_ifstat_inc(ifp, ifs6_out_fragfail); 914 goto bad; 915 } 916 917 mnext = &m->m_nextpkt; 918 919 /* 920 * Change the next header field of the last header in the 921 * unfragmentable part. 922 */ 923 if (exthdrs.ip6e_rthdr) { 924 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 925 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 926 } else if (exthdrs.ip6e_dest1) { 927 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 928 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 929 } else if (exthdrs.ip6e_hbh) { 930 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 931 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 932 } else { 933 nextproto = ip6->ip6_nxt; 934 ip6->ip6_nxt = IPPROTO_FRAGMENT; 935 } 936 937 /* 938 * Loop through length of segment after first fragment, 939 * make new header and copy data of each part and link onto 940 * chain. 941 */ 942 m0 = m; 943 for (off = hlen; off < tlen; off += len) { 944 MGETHDR(m, M_DONTWAIT, MT_HEADER); 945 if (!m) { 946 error = ENOBUFS; 947 ip6stat.ip6s_odropped++; 948 goto sendorfree; 949 } 950 m->m_flags = m0->m_flags & M_COPYFLAGS; 951 *mnext = m; 952 mnext = &m->m_nextpkt; 953 m->m_data += max_linkhdr; 954 mhip6 = mtod(m, struct ip6_hdr *); 955 *mhip6 = *ip6; 956 m->m_len = sizeof(*mhip6); 957 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 958 if (error) { 959 ip6stat.ip6s_odropped++; 960 goto sendorfree; 961 } 962 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 963 if (off + len >= tlen) 964 len = tlen - off; 965 else 966 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 967 mhip6->ip6_plen = htons((u_short)(len + hlen + 968 sizeof(*ip6f) - 969 sizeof(struct ip6_hdr))); 970 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 971 error = ENOBUFS; 972 ip6stat.ip6s_odropped++; 973 goto sendorfree; 974 } 975 m_cat(m, m_frgpart); 976 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 977 m->m_pkthdr.rcvif = (struct ifnet *)0; 978 ip6f->ip6f_reserved = 0; 979 ip6f->ip6f_ident = id; 980 ip6f->ip6f_nxt = nextproto; 981 ip6stat.ip6s_ofragments++; 982 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 983 } 984 985 in6_ifstat_inc(ifp, ifs6_out_fragok); 986 } 987 988 /* 989 * Remove leading garbages. 990 */ 991 sendorfree: 992 m = m0->m_nextpkt; 993 m0->m_nextpkt = 0; 994 m_freem(m0); 995 for (m0 = m; m; m = m0) { 996 m0 = m->m_nextpkt; 997 m->m_nextpkt = 0; 998 if (error == 0) { 999 #ifdef IFA_STATS 1000 struct in6_ifaddr *ia6; 1001 ip6 = mtod(m, struct ip6_hdr *); 1002 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1003 if (ia6) { 1004 /* 1005 * Record statistics for this interface 1006 * address. 1007 */ 1008 ia6->ia_ifa.ifa_data.ifad_outbytes += 1009 m->m_pkthdr.len; 1010 } 1011 #endif 1012 #ifdef IPSEC 1013 /* clean ipsec history once it goes out of the node */ 1014 ipsec_delaux(m); 1015 #endif 1016 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1017 } else 1018 m_freem(m); 1019 } 1020 1021 if (error == 0) 1022 ip6stat.ip6s_fragmented++; 1023 1024 done: 1025 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1026 RTFREE(ro->ro_rt); 1027 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1028 RTFREE(ro_pmtu->ro_rt); 1029 } 1030 1031 #ifdef IPSEC 1032 if (sp != NULL) 1033 key_freesp(sp); 1034 #endif /* IPSEC */ 1035 1036 return(error); 1037 1038 freehdrs: 1039 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1040 m_freem(exthdrs.ip6e_dest1); 1041 m_freem(exthdrs.ip6e_rthdr); 1042 m_freem(exthdrs.ip6e_dest2); 1043 /* fall through */ 1044 bad: 1045 m_freem(m); 1046 goto done; 1047 } 1048 1049 static int 1050 ip6_copyexthdr(mp, hdr, hlen) 1051 struct mbuf **mp; 1052 caddr_t hdr; 1053 int hlen; 1054 { 1055 struct mbuf *m; 1056 1057 if (hlen > MCLBYTES) 1058 return(ENOBUFS); /* XXX */ 1059 1060 MGET(m, M_DONTWAIT, MT_DATA); 1061 if (!m) 1062 return(ENOBUFS); 1063 1064 if (hlen > MLEN) { 1065 MCLGET(m, M_DONTWAIT); 1066 if ((m->m_flags & M_EXT) == 0) { 1067 m_free(m); 1068 return(ENOBUFS); 1069 } 1070 } 1071 m->m_len = hlen; 1072 if (hdr) 1073 bcopy(hdr, mtod(m, caddr_t), hlen); 1074 1075 *mp = m; 1076 return(0); 1077 } 1078 1079 /* 1080 * Insert jumbo payload option. 1081 */ 1082 static int 1083 ip6_insert_jumboopt(exthdrs, plen) 1084 struct ip6_exthdrs *exthdrs; 1085 u_int32_t plen; 1086 { 1087 struct mbuf *mopt; 1088 u_char *optbuf; 1089 u_int32_t v; 1090 1091 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1092 1093 /* 1094 * If there is no hop-by-hop options header, allocate new one. 1095 * If there is one but it doesn't have enough space to store the 1096 * jumbo payload option, allocate a cluster to store the whole options. 1097 * Otherwise, use it to store the options. 1098 */ 1099 if (exthdrs->ip6e_hbh == 0) { 1100 MGET(mopt, M_DONTWAIT, MT_DATA); 1101 if (mopt == 0) 1102 return(ENOBUFS); 1103 mopt->m_len = JUMBOOPTLEN; 1104 optbuf = mtod(mopt, u_char *); 1105 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1106 exthdrs->ip6e_hbh = mopt; 1107 } else { 1108 struct ip6_hbh *hbh; 1109 1110 mopt = exthdrs->ip6e_hbh; 1111 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1112 /* 1113 * XXX assumption: 1114 * - exthdrs->ip6e_hbh is not referenced from places 1115 * other than exthdrs. 1116 * - exthdrs->ip6e_hbh is not an mbuf chain. 1117 */ 1118 int oldoptlen = mopt->m_len; 1119 struct mbuf *n; 1120 1121 /* 1122 * XXX: give up if the whole (new) hbh header does 1123 * not fit even in an mbuf cluster. 1124 */ 1125 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1126 return(ENOBUFS); 1127 1128 /* 1129 * As a consequence, we must always prepare a cluster 1130 * at this point. 1131 */ 1132 MGET(n, M_DONTWAIT, MT_DATA); 1133 if (n) { 1134 MCLGET(n, M_DONTWAIT); 1135 if ((n->m_flags & M_EXT) == 0) { 1136 m_freem(n); 1137 n = NULL; 1138 } 1139 } 1140 if (!n) 1141 return(ENOBUFS); 1142 n->m_len = oldoptlen + JUMBOOPTLEN; 1143 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1144 oldoptlen); 1145 optbuf = mtod(n, caddr_t) + oldoptlen; 1146 m_freem(mopt); 1147 mopt = exthdrs->ip6e_hbh = n; 1148 } else { 1149 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1150 mopt->m_len += JUMBOOPTLEN; 1151 } 1152 optbuf[0] = IP6OPT_PADN; 1153 optbuf[1] = 1; 1154 1155 /* 1156 * Adjust the header length according to the pad and 1157 * the jumbo payload option. 1158 */ 1159 hbh = mtod(mopt, struct ip6_hbh *); 1160 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1161 } 1162 1163 /* fill in the option. */ 1164 optbuf[2] = IP6OPT_JUMBO; 1165 optbuf[3] = 4; 1166 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1167 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1168 1169 /* finally, adjust the packet header length */ 1170 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1171 1172 return(0); 1173 #undef JUMBOOPTLEN 1174 } 1175 1176 /* 1177 * Insert fragment header and copy unfragmentable header portions. 1178 */ 1179 static int 1180 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1181 struct mbuf *m0, *m; 1182 int hlen; 1183 struct ip6_frag **frghdrp; 1184 { 1185 struct mbuf *n, *mlast; 1186 1187 if (hlen > sizeof(struct ip6_hdr)) { 1188 n = m_copym(m0, sizeof(struct ip6_hdr), 1189 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1190 if (n == 0) 1191 return(ENOBUFS); 1192 m->m_next = n; 1193 } else 1194 n = m; 1195 1196 /* Search for the last mbuf of unfragmentable part. */ 1197 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1198 ; 1199 1200 if ((mlast->m_flags & M_EXT) == 0 && 1201 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1202 /* use the trailing space of the last mbuf for the fragment hdr */ 1203 *frghdrp = 1204 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1205 mlast->m_len += sizeof(struct ip6_frag); 1206 m->m_pkthdr.len += sizeof(struct ip6_frag); 1207 } else { 1208 /* allocate a new mbuf for the fragment header */ 1209 struct mbuf *mfrg; 1210 1211 MGET(mfrg, M_DONTWAIT, MT_DATA); 1212 if (mfrg == 0) 1213 return(ENOBUFS); 1214 mfrg->m_len = sizeof(struct ip6_frag); 1215 *frghdrp = mtod(mfrg, struct ip6_frag *); 1216 mlast->m_next = mfrg; 1217 } 1218 1219 return(0); 1220 } 1221 1222 /* 1223 * IP6 socket option processing. 1224 */ 1225 int 1226 ip6_ctloutput(op, so, level, optname, mp) 1227 int op; 1228 struct socket *so; 1229 int level, optname; 1230 struct mbuf **mp; 1231 { 1232 struct in6pcb *in6p = sotoin6pcb(so); 1233 struct mbuf *m = *mp; 1234 int optval = 0; 1235 int error = 0; 1236 struct proc *p = curproc; /* XXX */ 1237 1238 if (level == IPPROTO_IPV6) { 1239 switch (op) { 1240 1241 case PRCO_SETOPT: 1242 switch (optname) { 1243 case IPV6_PKTOPTIONS: 1244 /* m is freed in ip6_pcbopts */ 1245 return(ip6_pcbopts(&in6p->in6p_outputopts, 1246 m, so)); 1247 case IPV6_HOPOPTS: 1248 case IPV6_DSTOPTS: 1249 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1250 error = EPERM; 1251 break; 1252 } 1253 /* fall through */ 1254 case IPV6_UNICAST_HOPS: 1255 case IPV6_RECVOPTS: 1256 case IPV6_RECVRETOPTS: 1257 case IPV6_RECVDSTADDR: 1258 case IPV6_PKTINFO: 1259 case IPV6_HOPLIMIT: 1260 case IPV6_RTHDR: 1261 case IPV6_FAITH: 1262 case IPV6_V6ONLY: 1263 if (!m || m->m_len != sizeof(int)) { 1264 error = EINVAL; 1265 break; 1266 } 1267 optval = *mtod(m, int *); 1268 switch (optname) { 1269 1270 case IPV6_UNICAST_HOPS: 1271 if (optval < -1 || optval >= 256) 1272 error = EINVAL; 1273 else { 1274 /* -1 = kernel default */ 1275 in6p->in6p_hops = optval; 1276 } 1277 break; 1278 #define OPTSET(bit) \ 1279 if (optval) \ 1280 in6p->in6p_flags |= bit; \ 1281 else \ 1282 in6p->in6p_flags &= ~bit; 1283 1284 case IPV6_RECVOPTS: 1285 OPTSET(IN6P_RECVOPTS); 1286 break; 1287 1288 case IPV6_RECVRETOPTS: 1289 OPTSET(IN6P_RECVRETOPTS); 1290 break; 1291 1292 case IPV6_RECVDSTADDR: 1293 OPTSET(IN6P_RECVDSTADDR); 1294 break; 1295 1296 case IPV6_PKTINFO: 1297 OPTSET(IN6P_PKTINFO); 1298 break; 1299 1300 case IPV6_HOPLIMIT: 1301 OPTSET(IN6P_HOPLIMIT); 1302 break; 1303 1304 case IPV6_HOPOPTS: 1305 OPTSET(IN6P_HOPOPTS); 1306 break; 1307 1308 case IPV6_DSTOPTS: 1309 OPTSET(IN6P_DSTOPTS); 1310 break; 1311 1312 case IPV6_RTHDR: 1313 OPTSET(IN6P_RTHDR); 1314 break; 1315 1316 case IPV6_FAITH: 1317 OPTSET(IN6P_FAITH); 1318 break; 1319 1320 case IPV6_V6ONLY: 1321 /* 1322 * make setsockopt(IPV6_V6ONLY) 1323 * available only prior to bind(2). 1324 * see ipng mailing list, Jun 22 2001. 1325 */ 1326 if (in6p->in6p_lport || 1327 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) 1328 { 1329 error = EINVAL; 1330 break; 1331 } 1332 #ifdef INET6_BINDV6ONLY 1333 if (!optval) 1334 error = EINVAL; 1335 #else 1336 OPTSET(IN6P_IPV6_V6ONLY); 1337 #endif 1338 break; 1339 } 1340 break; 1341 #undef OPTSET 1342 1343 case IPV6_MULTICAST_IF: 1344 case IPV6_MULTICAST_HOPS: 1345 case IPV6_MULTICAST_LOOP: 1346 case IPV6_JOIN_GROUP: 1347 case IPV6_LEAVE_GROUP: 1348 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m); 1349 break; 1350 1351 case IPV6_PORTRANGE: 1352 optval = *mtod(m, int *); 1353 1354 switch (optval) { 1355 case IPV6_PORTRANGE_DEFAULT: 1356 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1357 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1358 break; 1359 1360 case IPV6_PORTRANGE_HIGH: 1361 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1362 in6p->in6p_flags |= IN6P_HIGHPORT; 1363 break; 1364 1365 case IPV6_PORTRANGE_LOW: 1366 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1367 in6p->in6p_flags |= IN6P_LOWPORT; 1368 break; 1369 1370 default: 1371 error = EINVAL; 1372 break; 1373 } 1374 break; 1375 1376 #ifdef IPSEC 1377 case IPV6_IPSEC_POLICY: 1378 { 1379 caddr_t req = NULL; 1380 size_t len = 0; 1381 1382 int priv = 0; 1383 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) 1384 priv = 0; 1385 else 1386 priv = 1; 1387 if (m) { 1388 req = mtod(m, caddr_t); 1389 len = m->m_len; 1390 } 1391 error = ipsec6_set_policy(in6p, 1392 optname, req, len, priv); 1393 } 1394 break; 1395 #endif /* IPSEC */ 1396 1397 default: 1398 error = ENOPROTOOPT; 1399 break; 1400 } 1401 if (m) 1402 (void)m_free(m); 1403 break; 1404 1405 case PRCO_GETOPT: 1406 switch (optname) { 1407 1408 case IPV6_OPTIONS: 1409 case IPV6_RETOPTS: 1410 #if 0 1411 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1412 if (in6p->in6p_options) { 1413 m->m_len = in6p->in6p_options->m_len; 1414 bcopy(mtod(in6p->in6p_options, caddr_t), 1415 mtod(m, caddr_t), 1416 (unsigned)m->m_len); 1417 } else 1418 m->m_len = 0; 1419 break; 1420 #else 1421 error = ENOPROTOOPT; 1422 break; 1423 #endif 1424 1425 case IPV6_PKTOPTIONS: 1426 if (in6p->in6p_options) { 1427 *mp = m_copym(in6p->in6p_options, 0, 1428 M_COPYALL, M_WAIT); 1429 } else { 1430 *mp = m_get(M_WAIT, MT_SOOPTS); 1431 (*mp)->m_len = 0; 1432 } 1433 break; 1434 1435 case IPV6_HOPOPTS: 1436 case IPV6_DSTOPTS: 1437 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1438 error = EPERM; 1439 break; 1440 } 1441 /* fall through */ 1442 case IPV6_UNICAST_HOPS: 1443 case IPV6_RECVOPTS: 1444 case IPV6_RECVRETOPTS: 1445 case IPV6_RECVDSTADDR: 1446 case IPV6_PORTRANGE: 1447 case IPV6_PKTINFO: 1448 case IPV6_HOPLIMIT: 1449 case IPV6_RTHDR: 1450 case IPV6_FAITH: 1451 case IPV6_V6ONLY: 1452 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1453 m->m_len = sizeof(int); 1454 switch (optname) { 1455 1456 case IPV6_UNICAST_HOPS: 1457 optval = in6p->in6p_hops; 1458 break; 1459 1460 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0) 1461 1462 case IPV6_RECVOPTS: 1463 optval = OPTBIT(IN6P_RECVOPTS); 1464 break; 1465 1466 case IPV6_RECVRETOPTS: 1467 optval = OPTBIT(IN6P_RECVRETOPTS); 1468 break; 1469 1470 case IPV6_RECVDSTADDR: 1471 optval = OPTBIT(IN6P_RECVDSTADDR); 1472 break; 1473 1474 case IPV6_PORTRANGE: 1475 { 1476 int flags; 1477 flags = in6p->in6p_flags; 1478 if (flags & IN6P_HIGHPORT) 1479 optval = IPV6_PORTRANGE_HIGH; 1480 else if (flags & IN6P_LOWPORT) 1481 optval = IPV6_PORTRANGE_LOW; 1482 else 1483 optval = 0; 1484 break; 1485 } 1486 1487 case IPV6_PKTINFO: 1488 optval = OPTBIT(IN6P_PKTINFO); 1489 break; 1490 1491 case IPV6_HOPLIMIT: 1492 optval = OPTBIT(IN6P_HOPLIMIT); 1493 break; 1494 1495 case IPV6_HOPOPTS: 1496 optval = OPTBIT(IN6P_HOPOPTS); 1497 break; 1498 1499 case IPV6_DSTOPTS: 1500 optval = OPTBIT(IN6P_DSTOPTS); 1501 break; 1502 1503 case IPV6_RTHDR: 1504 optval = OPTBIT(IN6P_RTHDR); 1505 break; 1506 1507 case IPV6_FAITH: 1508 optval = OPTBIT(IN6P_FAITH); 1509 break; 1510 1511 case IPV6_V6ONLY: 1512 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1513 break; 1514 } 1515 *mtod(m, int *) = optval; 1516 break; 1517 1518 case IPV6_MULTICAST_IF: 1519 case IPV6_MULTICAST_HOPS: 1520 case IPV6_MULTICAST_LOOP: 1521 case IPV6_JOIN_GROUP: 1522 case IPV6_LEAVE_GROUP: 1523 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp); 1524 break; 1525 1526 #ifdef IPSEC 1527 case IPV6_IPSEC_POLICY: 1528 { 1529 caddr_t req = NULL; 1530 size_t len = 0; 1531 1532 if (m) { 1533 req = mtod(m, caddr_t); 1534 len = m->m_len; 1535 } 1536 error = ipsec6_get_policy(in6p, req, len, mp); 1537 break; 1538 } 1539 #endif /* IPSEC */ 1540 1541 default: 1542 error = ENOPROTOOPT; 1543 break; 1544 } 1545 break; 1546 } 1547 } else { 1548 error = EINVAL; 1549 if (op == PRCO_SETOPT && *mp) 1550 (void)m_free(*mp); 1551 } 1552 return(error); 1553 } 1554 1555 /* 1556 * Set up IP6 options in pcb for insertion in output packets. 1557 * Store in mbuf with pointer in pcbopt, adding pseudo-option 1558 * with destination address if source routed. 1559 */ 1560 static int 1561 ip6_pcbopts(pktopt, m, so) 1562 struct ip6_pktopts **pktopt; 1563 struct mbuf *m; 1564 struct socket *so; 1565 { 1566 struct ip6_pktopts *opt = *pktopt; 1567 int error = 0; 1568 struct proc *p = curproc; /* XXX */ 1569 int priv = 0; 1570 1571 /* turn off any old options. */ 1572 if (opt) { 1573 if (opt->ip6po_m) 1574 (void)m_free(opt->ip6po_m); 1575 } else 1576 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 1577 *pktopt = 0; 1578 1579 if (!m || m->m_len == 0) { 1580 /* 1581 * Only turning off any previous options. 1582 */ 1583 if (opt) 1584 free(opt, M_IP6OPT); 1585 if (m) 1586 (void)m_free(m); 1587 return(0); 1588 } 1589 1590 /* set options specified by user. */ 1591 if (p && !suser(p->p_ucred, &p->p_acflag)) 1592 priv = 1; 1593 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) { 1594 (void)m_free(m); 1595 return(error); 1596 } 1597 *pktopt = opt; 1598 return(0); 1599 } 1600 1601 /* 1602 * Set the IP6 multicast options in response to user setsockopt(). 1603 */ 1604 static int 1605 ip6_setmoptions(optname, im6op, m) 1606 int optname; 1607 struct ip6_moptions **im6op; 1608 struct mbuf *m; 1609 { 1610 int error = 0; 1611 u_int loop, ifindex; 1612 struct ipv6_mreq *mreq; 1613 struct ifnet *ifp; 1614 struct ip6_moptions *im6o = *im6op; 1615 struct route_in6 ro; 1616 struct sockaddr_in6 *dst; 1617 struct in6_multi_mship *imm; 1618 struct proc *p = curproc; /* XXX */ 1619 1620 if (im6o == NULL) { 1621 /* 1622 * No multicast option buffer attached to the pcb; 1623 * allocate one and initialize to default values. 1624 */ 1625 im6o = (struct ip6_moptions *) 1626 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1627 1628 if (im6o == NULL) 1629 return(ENOBUFS); 1630 *im6op = im6o; 1631 im6o->im6o_multicast_ifp = NULL; 1632 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1633 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1634 LIST_INIT(&im6o->im6o_memberships); 1635 } 1636 1637 switch (optname) { 1638 1639 case IPV6_MULTICAST_IF: 1640 /* 1641 * Select the interface for outgoing multicast packets. 1642 */ 1643 if (m == NULL || m->m_len != sizeof(u_int)) { 1644 error = EINVAL; 1645 break; 1646 } 1647 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 1648 if (ifindex < 0 || if_index < ifindex) { 1649 error = ENXIO; /* XXX EINVAL? */ 1650 break; 1651 } 1652 ifp = ifindex2ifnet[ifindex]; 1653 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1654 error = EADDRNOTAVAIL; 1655 break; 1656 } 1657 im6o->im6o_multicast_ifp = ifp; 1658 break; 1659 1660 case IPV6_MULTICAST_HOPS: 1661 { 1662 /* 1663 * Set the IP6 hoplimit for outgoing multicast packets. 1664 */ 1665 int optval; 1666 if (m == NULL || m->m_len != sizeof(int)) { 1667 error = EINVAL; 1668 break; 1669 } 1670 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 1671 if (optval < -1 || optval >= 256) 1672 error = EINVAL; 1673 else if (optval == -1) 1674 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1675 else 1676 im6o->im6o_multicast_hlim = optval; 1677 break; 1678 } 1679 1680 case IPV6_MULTICAST_LOOP: 1681 /* 1682 * Set the loopback flag for outgoing multicast packets. 1683 * Must be zero or one. 1684 */ 1685 if (m == NULL || m->m_len != sizeof(u_int)) { 1686 error = EINVAL; 1687 break; 1688 } 1689 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 1690 if (loop > 1) { 1691 error = EINVAL; 1692 break; 1693 } 1694 im6o->im6o_multicast_loop = loop; 1695 break; 1696 1697 case IPV6_JOIN_GROUP: 1698 /* 1699 * Add a multicast group membership. 1700 * Group must be a valid IP6 multicast address. 1701 */ 1702 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1703 error = EINVAL; 1704 break; 1705 } 1706 mreq = mtod(m, struct ipv6_mreq *); 1707 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1708 /* 1709 * We use the unspecified address to specify to accept 1710 * all multicast addresses. Only super user is allowed 1711 * to do this. 1712 */ 1713 if (suser(p->p_ucred, &p->p_acflag)) 1714 { 1715 error = EACCES; 1716 break; 1717 } 1718 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1719 error = EINVAL; 1720 break; 1721 } 1722 1723 /* 1724 * If the interface is specified, validate it. 1725 */ 1726 if (mreq->ipv6mr_interface < 0 1727 || if_index < mreq->ipv6mr_interface) { 1728 error = ENXIO; /* XXX EINVAL? */ 1729 break; 1730 } 1731 /* 1732 * If no interface was explicitly specified, choose an 1733 * appropriate one according to the given multicast address. 1734 */ 1735 if (mreq->ipv6mr_interface == 0) { 1736 /* 1737 * If the multicast address is in node-local scope, 1738 * the interface should be a loopback interface. 1739 * Otherwise, look up the routing table for the 1740 * address, and choose the outgoing interface. 1741 * XXX: is it a good approach? 1742 */ 1743 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 1744 ifp = &loif[0]; 1745 } else { 1746 ro.ro_rt = NULL; 1747 dst = (struct sockaddr_in6 *)&ro.ro_dst; 1748 bzero(dst, sizeof(*dst)); 1749 dst->sin6_len = sizeof(struct sockaddr_in6); 1750 dst->sin6_family = AF_INET6; 1751 dst->sin6_addr = mreq->ipv6mr_multiaddr; 1752 rtalloc((struct route *)&ro); 1753 if (ro.ro_rt == NULL) { 1754 error = EADDRNOTAVAIL; 1755 break; 1756 } 1757 ifp = ro.ro_rt->rt_ifp; 1758 rtfree(ro.ro_rt); 1759 } 1760 } else 1761 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1762 1763 /* 1764 * See if we found an interface, and confirm that it 1765 * supports multicast 1766 */ 1767 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1768 error = EADDRNOTAVAIL; 1769 break; 1770 } 1771 /* 1772 * Put interface index into the multicast address, 1773 * if the address has link-local scope. 1774 */ 1775 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1776 mreq->ipv6mr_multiaddr.s6_addr16[1] 1777 = htons(mreq->ipv6mr_interface); 1778 } 1779 /* 1780 * See if the membership already exists. 1781 */ 1782 for (imm = im6o->im6o_memberships.lh_first; 1783 imm != NULL; imm = imm->i6mm_chain.le_next) 1784 if (imm->i6mm_maddr->in6m_ifp == ifp && 1785 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1786 &mreq->ipv6mr_multiaddr)) 1787 break; 1788 if (imm != NULL) { 1789 error = EADDRINUSE; 1790 break; 1791 } 1792 /* 1793 * Everything looks good; add a new record to the multicast 1794 * address list for the given interface. 1795 */ 1796 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error); 1797 if (!imm) 1798 break; 1799 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 1800 break; 1801 1802 case IPV6_LEAVE_GROUP: 1803 /* 1804 * Drop a multicast group membership. 1805 * Group must be a valid IP6 multicast address. 1806 */ 1807 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1808 error = EINVAL; 1809 break; 1810 } 1811 mreq = mtod(m, struct ipv6_mreq *); 1812 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1813 if (suser(p->p_ucred, &p->p_acflag)) 1814 { 1815 error = EACCES; 1816 break; 1817 } 1818 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1819 error = EINVAL; 1820 break; 1821 } 1822 /* 1823 * If an interface address was specified, get a pointer 1824 * to its ifnet structure. 1825 */ 1826 if (mreq->ipv6mr_interface < 0 1827 || if_index < mreq->ipv6mr_interface) { 1828 error = ENXIO; /* XXX EINVAL? */ 1829 break; 1830 } 1831 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1832 /* 1833 * Put interface index into the multicast address, 1834 * if the address has link-local scope. 1835 */ 1836 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1837 mreq->ipv6mr_multiaddr.s6_addr16[1] 1838 = htons(mreq->ipv6mr_interface); 1839 } 1840 /* 1841 * Find the membership in the membership list. 1842 */ 1843 for (imm = im6o->im6o_memberships.lh_first; 1844 imm != NULL; imm = imm->i6mm_chain.le_next) { 1845 if ((ifp == NULL || 1846 imm->i6mm_maddr->in6m_ifp == ifp) && 1847 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1848 &mreq->ipv6mr_multiaddr)) 1849 break; 1850 } 1851 if (imm == NULL) { 1852 /* Unable to resolve interface */ 1853 error = EADDRNOTAVAIL; 1854 break; 1855 } 1856 /* 1857 * Give up the multicast address record to which the 1858 * membership points. 1859 */ 1860 LIST_REMOVE(imm, i6mm_chain); 1861 in6_leavegroup(imm); 1862 break; 1863 1864 default: 1865 error = EOPNOTSUPP; 1866 break; 1867 } 1868 1869 /* 1870 * If all options have default values, no need to keep the mbuf. 1871 */ 1872 if (im6o->im6o_multicast_ifp == NULL && 1873 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 1874 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 1875 im6o->im6o_memberships.lh_first == NULL) { 1876 free(*im6op, M_IPMOPTS); 1877 *im6op = NULL; 1878 } 1879 1880 return(error); 1881 } 1882 1883 /* 1884 * Return the IP6 multicast options in response to user getsockopt(). 1885 */ 1886 static int 1887 ip6_getmoptions(optname, im6o, mp) 1888 int optname; 1889 struct ip6_moptions *im6o; 1890 struct mbuf **mp; 1891 { 1892 u_int *hlim, *loop, *ifindex; 1893 1894 *mp = m_get(M_WAIT, MT_SOOPTS); 1895 1896 switch (optname) { 1897 1898 case IPV6_MULTICAST_IF: 1899 ifindex = mtod(*mp, u_int *); 1900 (*mp)->m_len = sizeof(u_int); 1901 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 1902 *ifindex = 0; 1903 else 1904 *ifindex = im6o->im6o_multicast_ifp->if_index; 1905 return(0); 1906 1907 case IPV6_MULTICAST_HOPS: 1908 hlim = mtod(*mp, u_int *); 1909 (*mp)->m_len = sizeof(u_int); 1910 if (im6o == NULL) 1911 *hlim = ip6_defmcasthlim; 1912 else 1913 *hlim = im6o->im6o_multicast_hlim; 1914 return(0); 1915 1916 case IPV6_MULTICAST_LOOP: 1917 loop = mtod(*mp, u_int *); 1918 (*mp)->m_len = sizeof(u_int); 1919 if (im6o == NULL) 1920 *loop = ip6_defmcasthlim; 1921 else 1922 *loop = im6o->im6o_multicast_loop; 1923 return(0); 1924 1925 default: 1926 return(EOPNOTSUPP); 1927 } 1928 } 1929 1930 /* 1931 * Discard the IP6 multicast options. 1932 */ 1933 void 1934 ip6_freemoptions(im6o) 1935 struct ip6_moptions *im6o; 1936 { 1937 struct in6_multi_mship *imm; 1938 1939 if (im6o == NULL) 1940 return; 1941 1942 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 1943 LIST_REMOVE(imm, i6mm_chain); 1944 in6_leavegroup(imm); 1945 } 1946 free(im6o, M_IPMOPTS); 1947 } 1948 1949 /* 1950 * Set IPv6 outgoing packet options based on advanced API. 1951 */ 1952 int 1953 ip6_setpktoptions(control, opt, priv) 1954 struct mbuf *control; 1955 struct ip6_pktopts *opt; 1956 int priv; 1957 { 1958 struct cmsghdr *cm = 0; 1959 1960 if (control == 0 || opt == 0) 1961 return(EINVAL); 1962 1963 bzero(opt, sizeof(*opt)); 1964 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */ 1965 1966 /* 1967 * XXX: Currently, we assume all the optional information is stored 1968 * in a single mbuf. 1969 */ 1970 if (control->m_next) 1971 return(EINVAL); 1972 1973 opt->ip6po_m = control; 1974 1975 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 1976 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1977 cm = mtod(control, struct cmsghdr *); 1978 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 1979 return(EINVAL); 1980 if (cm->cmsg_level != IPPROTO_IPV6) 1981 continue; 1982 1983 switch (cm->cmsg_type) { 1984 case IPV6_PKTINFO: 1985 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 1986 return(EINVAL); 1987 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 1988 if (opt->ip6po_pktinfo->ipi6_ifindex && 1989 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr)) 1990 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] = 1991 htons(opt->ip6po_pktinfo->ipi6_ifindex); 1992 1993 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index 1994 || opt->ip6po_pktinfo->ipi6_ifindex < 0) { 1995 return(ENXIO); 1996 } 1997 1998 /* 1999 * Check if the requested source address is indeed a 2000 * unicast address assigned to the node, and can be 2001 * used as the packet's source address. 2002 */ 2003 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 2004 struct ifaddr *ia; 2005 struct in6_ifaddr *ia6; 2006 struct sockaddr_in6 sin6; 2007 2008 bzero(&sin6, sizeof(sin6)); 2009 sin6.sin6_len = sizeof(sin6); 2010 sin6.sin6_family = AF_INET6; 2011 sin6.sin6_addr = 2012 opt->ip6po_pktinfo->ipi6_addr; 2013 ia = ifa_ifwithaddr(sin6tosa(&sin6)); 2014 if (ia == NULL || 2015 (opt->ip6po_pktinfo->ipi6_ifindex && 2016 (ia->ifa_ifp->if_index != 2017 opt->ip6po_pktinfo->ipi6_ifindex))) { 2018 return(EADDRNOTAVAIL); 2019 } 2020 ia6 = (struct in6_ifaddr *)ia; 2021 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) { 2022 return(EADDRNOTAVAIL); 2023 } 2024 2025 /* 2026 * Check if the requested source address is 2027 * indeed a unicast address assigned to the 2028 * node. 2029 */ 2030 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr)) 2031 return(EADDRNOTAVAIL); 2032 } 2033 break; 2034 2035 case IPV6_HOPLIMIT: 2036 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 2037 return(EINVAL); 2038 2039 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim, 2040 sizeof(opt->ip6po_hlim)); 2041 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255) 2042 return(EINVAL); 2043 break; 2044 2045 case IPV6_NEXTHOP: 2046 if (!priv) 2047 return(EPERM); 2048 2049 if (cm->cmsg_len < sizeof(u_char) || 2050 /* check if cmsg_len is large enough for sa_len */ 2051 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 2052 return(EINVAL); 2053 2054 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm); 2055 2056 break; 2057 2058 case IPV6_HOPOPTS: 2059 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2060 return(EINVAL); 2061 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm); 2062 if (cm->cmsg_len != 2063 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3)) 2064 return(EINVAL); 2065 break; 2066 2067 case IPV6_DSTOPTS: 2068 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2069 return(EINVAL); 2070 2071 /* 2072 * If there is no routing header yet, the destination 2073 * options header should be put on the 1st part. 2074 * Otherwise, the header should be on the 2nd part. 2075 * (See RFC 2460, section 4.1) 2076 */ 2077 if (opt->ip6po_rthdr == NULL) { 2078 opt->ip6po_dest1 = 2079 (struct ip6_dest *)CMSG_DATA(cm); 2080 if (cm->cmsg_len != 2081 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1) 2082 << 3)) 2083 return(EINVAL); 2084 } 2085 else { 2086 opt->ip6po_dest2 = 2087 (struct ip6_dest *)CMSG_DATA(cm); 2088 if (cm->cmsg_len != 2089 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) 2090 << 3)) 2091 return(EINVAL); 2092 } 2093 break; 2094 2095 case IPV6_RTHDR: 2096 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2097 return(EINVAL); 2098 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm); 2099 if (cm->cmsg_len != 2100 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3)) 2101 return(EINVAL); 2102 switch (opt->ip6po_rthdr->ip6r_type) { 2103 case IPV6_RTHDR_TYPE_0: 2104 if (opt->ip6po_rthdr->ip6r_segleft == 0) 2105 return(EINVAL); 2106 break; 2107 default: 2108 return(EINVAL); 2109 } 2110 break; 2111 2112 default: 2113 return(ENOPROTOOPT); 2114 } 2115 } 2116 2117 return(0); 2118 } 2119 2120 /* 2121 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2122 * packet to the input queue of a specified interface. Note that this 2123 * calls the output routine of the loopback "driver", but with an interface 2124 * pointer that might NOT be &loif -- easier than replicating that code here. 2125 */ 2126 void 2127 ip6_mloopback(ifp, m, dst) 2128 struct ifnet *ifp; 2129 struct mbuf *m; 2130 struct sockaddr_in6 *dst; 2131 { 2132 struct mbuf *copym; 2133 struct ip6_hdr *ip6; 2134 2135 copym = m_copy(m, 0, M_COPYALL); 2136 if (copym == NULL) 2137 return; 2138 2139 /* 2140 * Make sure to deep-copy IPv6 header portion in case the data 2141 * is in an mbuf cluster, so that we can safely override the IPv6 2142 * header portion later. 2143 */ 2144 if ((copym->m_flags & M_EXT) != 0 || 2145 copym->m_len < sizeof(struct ip6_hdr)) { 2146 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2147 if (copym == NULL) 2148 return; 2149 } 2150 2151 #ifdef DIAGNOSTIC 2152 if (copym->m_len < sizeof(*ip6)) { 2153 m_freem(copym); 2154 return; 2155 } 2156 #endif 2157 2158 ip6 = mtod(copym, struct ip6_hdr *); 2159 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 2160 ip6->ip6_src.s6_addr16[1] = 0; 2161 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 2162 ip6->ip6_dst.s6_addr16[1] = 0; 2163 2164 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL); 2165 } 2166 2167 /* 2168 * Chop IPv6 header off from the payload. 2169 */ 2170 static int 2171 ip6_splithdr(m, exthdrs) 2172 struct mbuf *m; 2173 struct ip6_exthdrs *exthdrs; 2174 { 2175 struct mbuf *mh; 2176 struct ip6_hdr *ip6; 2177 2178 ip6 = mtod(m, struct ip6_hdr *); 2179 if (m->m_len > sizeof(*ip6)) { 2180 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2181 if (mh == 0) { 2182 m_freem(m); 2183 return ENOBUFS; 2184 } 2185 M_COPY_PKTHDR(mh, m); 2186 MH_ALIGN(mh, sizeof(*ip6)); 2187 m->m_flags &= ~M_PKTHDR; 2188 m->m_len -= sizeof(*ip6); 2189 m->m_data += sizeof(*ip6); 2190 mh->m_next = m; 2191 m = mh; 2192 m->m_len = sizeof(*ip6); 2193 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2194 } 2195 exthdrs->ip6e_ip6 = m; 2196 return 0; 2197 } 2198 2199 /* 2200 * Compute IPv6 extension header length. 2201 */ 2202 int 2203 ip6_optlen(in6p) 2204 struct in6pcb *in6p; 2205 { 2206 int len; 2207 2208 if (!in6p->in6p_outputopts) 2209 return 0; 2210 2211 len = 0; 2212 #define elen(x) \ 2213 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2214 2215 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2216 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2217 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2218 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2219 return len; 2220 #undef elen 2221 } 2222