1 /* $NetBSD: ip6_output.c,v 1.203 2018/02/27 15:01:30 maxv Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.203 2018/02/27 15:01:30 maxv Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/malloc.h> 75 #include <sys/mbuf.h> 76 #include <sys/errno.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/syslog.h> 80 #include <sys/systm.h> 81 #include <sys/proc.h> 82 #include <sys/kauth.h> 83 84 #include <net/if.h> 85 #include <net/route.h> 86 #include <net/pfil.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/ip6.h> 91 #include <netinet/ip_var.h> 92 #include <netinet/icmp6.h> 93 #include <netinet/in_offload.h> 94 #include <netinet/portalgo.h> 95 #include <netinet6/in6_offload.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/ip6_private.h> 98 #include <netinet6/in6_pcb.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6protosw.h> 101 #include <netinet6/scope6_var.h> 102 103 #ifdef IPSEC 104 #include <netipsec/ipsec.h> 105 #include <netipsec/ipsec6.h> 106 #include <netipsec/key.h> 107 #include <netipsec/xform.h> 108 #endif 109 110 111 #include <net/net_osdep.h> 112 113 extern pfil_head_t *inet6_pfil_hook; /* XXX */ 114 115 struct ip6_exthdrs { 116 struct mbuf *ip6e_ip6; 117 struct mbuf *ip6e_hbh; 118 struct mbuf *ip6e_dest1; 119 struct mbuf *ip6e_rthdr; 120 struct mbuf *ip6e_dest2; 121 }; 122 123 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 124 kauth_cred_t, int); 125 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 126 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t, 127 int, int, int); 128 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *); 129 static int ip6_getmoptions(struct sockopt *, struct in6pcb *); 130 static int ip6_copyexthdr(struct mbuf **, void *, int); 131 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 132 struct ip6_frag **); 133 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 134 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 135 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *); 136 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 137 static int ip6_ifaddrvalid(const struct in6_addr *, const struct in6_addr *); 138 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *); 139 140 #ifdef RFC2292 141 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *); 142 #endif 143 144 static int 145 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6) 146 { 147 struct ip6_rthdr0 *rh0; 148 struct in6_addr *addr; 149 struct sockaddr_in6 sa; 150 int error = 0; 151 152 switch (rh->ip6r_type) { 153 case IPV6_RTHDR_TYPE_0: 154 rh0 = (struct ip6_rthdr0 *)rh; 155 addr = (struct in6_addr *)(rh0 + 1); 156 157 /* 158 * construct a sockaddr_in6 form of the first hop. 159 * 160 * XXX we may not have enough information about its scope zone; 161 * there is no standard API to pass the information from the 162 * application. 163 */ 164 sockaddr_in6_init(&sa, addr, 0, 0, 0); 165 error = sa6_embedscope(&sa, ip6_use_defzone); 166 if (error != 0) 167 break; 168 memmove(&addr[0], &addr[1], 169 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)); 170 addr[rh0->ip6r0_segleft - 1] = ip6->ip6_dst; 171 ip6->ip6_dst = sa.sin6_addr; 172 /* XXX */ 173 in6_clearscope(addr + rh0->ip6r0_segleft - 1); 174 break; 175 default: /* is it possible? */ 176 error = EINVAL; 177 } 178 179 return error; 180 } 181 182 /* 183 * Send an IP packet to a host. 184 */ 185 int 186 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp, 187 struct mbuf * const m, const struct sockaddr_in6 * const dst, 188 const struct rtentry *rt) 189 { 190 int error = 0; 191 192 if (rt != NULL) { 193 error = rt_check_reject_route(rt, ifp); 194 if (error != 0) { 195 m_freem(m); 196 return error; 197 } 198 } 199 200 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 201 error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt); 202 else 203 error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt); 204 return error; 205 } 206 207 /* 208 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 209 * header (with pri, len, nxt, hlim, src, dst). 210 * 211 * This function may modify ver and hlim only. The mbuf chain containing the 212 * packet will be freed. The mbuf opt, if present, will not be freed. 213 * 214 * Type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 215 * nd_ifinfo.linkmtu is u_int32_t. So we use u_long to hold largest one, 216 * which is rt_rmx.rmx_mtu. 217 */ 218 int 219 ip6_output( 220 struct mbuf *m0, 221 struct ip6_pktopts *opt, 222 struct route *ro, 223 int flags, 224 struct ip6_moptions *im6o, 225 struct in6pcb *in6p, 226 struct ifnet **ifpp /* XXX: just for statistics */ 227 ) 228 { 229 struct ip6_hdr *ip6, *mhip6; 230 struct ifnet *ifp = NULL, *origifp = NULL; 231 struct mbuf *m = m0; 232 int tlen, len, off; 233 bool tso; 234 struct route ip6route; 235 struct rtentry *rt = NULL, *rt_pmtu; 236 const struct sockaddr_in6 *dst; 237 struct sockaddr_in6 src_sa, dst_sa; 238 int error = 0; 239 struct in6_ifaddr *ia = NULL; 240 u_long mtu; 241 int alwaysfrag, dontfrag; 242 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 243 struct ip6_exthdrs exthdrs; 244 struct in6_addr finaldst, src0, dst0; 245 u_int32_t zone; 246 struct route *ro_pmtu = NULL; 247 int hdrsplit = 0; 248 int needipsec = 0; 249 #ifdef IPSEC 250 struct secpolicy *sp = NULL; 251 #endif 252 struct psref psref, psref_ia; 253 int bound = curlwp_bind(); 254 bool release_psref_ia = false; 255 256 #ifdef DIAGNOSTIC 257 if ((m->m_flags & M_PKTHDR) == 0) 258 panic("ip6_output: no HDR"); 259 if ((m->m_pkthdr.csum_flags & 260 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) { 261 panic("ip6_output: IPv4 checksum offload flags: %d", 262 m->m_pkthdr.csum_flags); 263 } 264 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 265 (M_CSUM_TCPv6|M_CSUM_UDPv6)) { 266 panic("ip6_output: conflicting checksum offload flags: %d", 267 m->m_pkthdr.csum_flags); 268 } 269 #endif 270 271 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr)); 272 273 #define MAKE_EXTHDR(hp, mp) \ 274 do { \ 275 if (hp) { \ 276 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 277 error = ip6_copyexthdr((mp), (void *)(hp), \ 278 ((eh)->ip6e_len + 1) << 3); \ 279 if (error) \ 280 goto freehdrs; \ 281 } \ 282 } while (/*CONSTCOND*/ 0) 283 284 memset(&exthdrs, 0, sizeof(exthdrs)); 285 if (opt) { 286 /* Hop-by-Hop options header */ 287 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 288 /* Destination options header (1st part) */ 289 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 290 /* Routing header */ 291 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 292 /* Destination options header (2nd part) */ 293 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 294 } 295 296 /* 297 * Calculate the total length of the extension header chain. 298 * Keep the length of the unfragmentable part for fragmentation. 299 */ 300 optlen = 0; 301 if (exthdrs.ip6e_hbh) 302 optlen += exthdrs.ip6e_hbh->m_len; 303 if (exthdrs.ip6e_dest1) 304 optlen += exthdrs.ip6e_dest1->m_len; 305 if (exthdrs.ip6e_rthdr) 306 optlen += exthdrs.ip6e_rthdr->m_len; 307 unfragpartlen = optlen + sizeof(struct ip6_hdr); 308 /* NOTE: we don't add AH/ESP length here. do that later. */ 309 if (exthdrs.ip6e_dest2) 310 optlen += exthdrs.ip6e_dest2->m_len; 311 312 #ifdef IPSEC 313 if (ipsec_used) { 314 /* Check the security policy (SP) for the packet */ 315 sp = ipsec6_check_policy(m, in6p, flags, &needipsec, &error); 316 if (error != 0) { 317 /* 318 * Hack: -EINVAL is used to signal that a packet 319 * should be silently discarded. This is typically 320 * because we asked key management for an SA and 321 * it was delayed (e.g. kicked up to IKE). 322 */ 323 if (error == -EINVAL) 324 error = 0; 325 goto freehdrs; 326 } 327 } 328 #endif 329 330 if (needipsec && 331 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 332 in6_delayed_cksum(m); 333 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 334 } 335 336 /* 337 * If we need IPsec, or there is at least one extension header, 338 * separate IP6 header from the payload. 339 */ 340 if ((needipsec || optlen) && !hdrsplit) { 341 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 342 m = NULL; 343 goto freehdrs; 344 } 345 m = exthdrs.ip6e_ip6; 346 hdrsplit++; 347 } 348 349 /* adjust pointer */ 350 ip6 = mtod(m, struct ip6_hdr *); 351 352 /* adjust mbuf packet header length */ 353 m->m_pkthdr.len += optlen; 354 plen = m->m_pkthdr.len - sizeof(*ip6); 355 356 /* If this is a jumbo payload, insert a jumbo payload option. */ 357 if (plen > IPV6_MAXPACKET) { 358 if (!hdrsplit) { 359 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 360 m = NULL; 361 goto freehdrs; 362 } 363 m = exthdrs.ip6e_ip6; 364 hdrsplit++; 365 } 366 /* adjust pointer */ 367 ip6 = mtod(m, struct ip6_hdr *); 368 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 369 goto freehdrs; 370 optlen += 8; /* XXX JUMBOOPTLEN */ 371 ip6->ip6_plen = 0; 372 } else 373 ip6->ip6_plen = htons(plen); 374 375 /* 376 * Concatenate headers and fill in next header fields. 377 * Here we have, on "m" 378 * IPv6 payload 379 * and we insert headers accordingly. Finally, we should be getting: 380 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 381 * 382 * during the header composing process, "m" points to IPv6 header. 383 * "mprev" points to an extension header prior to esp. 384 */ 385 { 386 u_char *nexthdrp = &ip6->ip6_nxt; 387 struct mbuf *mprev = m; 388 389 /* 390 * we treat dest2 specially. this makes IPsec processing 391 * much easier. the goal here is to make mprev point the 392 * mbuf prior to dest2. 393 * 394 * result: IPv6 dest2 payload 395 * m and mprev will point to IPv6 header. 396 */ 397 if (exthdrs.ip6e_dest2) { 398 if (!hdrsplit) 399 panic("assumption failed: hdr not split"); 400 exthdrs.ip6e_dest2->m_next = m->m_next; 401 m->m_next = exthdrs.ip6e_dest2; 402 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 403 ip6->ip6_nxt = IPPROTO_DSTOPTS; 404 } 405 406 #define MAKE_CHAIN(m, mp, p, i)\ 407 do {\ 408 if (m) {\ 409 if (!hdrsplit) \ 410 panic("assumption failed: hdr not split"); \ 411 *mtod((m), u_char *) = *(p);\ 412 *(p) = (i);\ 413 p = mtod((m), u_char *);\ 414 (m)->m_next = (mp)->m_next;\ 415 (mp)->m_next = (m);\ 416 (mp) = (m);\ 417 }\ 418 } while (/*CONSTCOND*/ 0) 419 /* 420 * result: IPv6 hbh dest1 rthdr dest2 payload 421 * m will point to IPv6 header. mprev will point to the 422 * extension header prior to dest2 (rthdr in the above case). 423 */ 424 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 425 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 426 IPPROTO_DSTOPTS); 427 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 428 IPPROTO_ROUTING); 429 430 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, 431 sizeof(struct ip6_hdr) + optlen); 432 } 433 434 /* Need to save for pmtu */ 435 finaldst = ip6->ip6_dst; 436 437 /* 438 * If there is a routing header, replace destination address field 439 * with the first hop of the routing header. 440 */ 441 if (exthdrs.ip6e_rthdr) { 442 struct ip6_rthdr *rh; 443 444 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 445 446 error = ip6_handle_rthdr(rh, ip6); 447 if (error != 0) 448 goto bad; 449 } 450 451 /* Source address validation */ 452 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 453 (flags & IPV6_UNSPECSRC) == 0) { 454 error = EOPNOTSUPP; 455 IP6_STATINC(IP6_STAT_BADSCOPE); 456 goto bad; 457 } 458 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 459 error = EOPNOTSUPP; 460 IP6_STATINC(IP6_STAT_BADSCOPE); 461 goto bad; 462 } 463 464 IP6_STATINC(IP6_STAT_LOCALOUT); 465 466 /* 467 * Route packet. 468 */ 469 /* initialize cached route */ 470 if (ro == NULL) { 471 memset(&ip6route, 0, sizeof(ip6route)); 472 ro = &ip6route; 473 } 474 ro_pmtu = ro; 475 if (opt && opt->ip6po_rthdr) 476 ro = &opt->ip6po_route; 477 478 /* 479 * if specified, try to fill in the traffic class field. 480 * do not override if a non-zero value is already set. 481 * we check the diffserv field and the ecn field separately. 482 */ 483 if (opt && opt->ip6po_tclass >= 0) { 484 int mask = 0; 485 486 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 487 mask |= 0xfc; 488 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 489 mask |= 0x03; 490 if (mask != 0) 491 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 492 } 493 494 /* fill in or override the hop limit field, if necessary. */ 495 if (opt && opt->ip6po_hlim != -1) 496 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 497 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 498 if (im6o != NULL) 499 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 500 else 501 ip6->ip6_hlim = ip6_defmcasthlim; 502 } 503 504 #ifdef IPSEC 505 if (needipsec) { 506 int s = splsoftnet(); 507 error = ipsec6_process_packet(m, sp->req); 508 splx(s); 509 510 /* 511 * Preserve KAME behaviour: ENOENT can be returned 512 * when an SA acquire is in progress. Don't propagate 513 * this to user-level; it confuses applications. 514 * XXX this will go away when the SADB is redone. 515 */ 516 if (error == ENOENT) 517 error = 0; 518 519 goto done; 520 } 521 #endif 522 523 /* adjust pointer */ 524 ip6 = mtod(m, struct ip6_hdr *); 525 526 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 527 528 /* We do not need a route for multicast */ 529 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 530 struct in6_pktinfo *pi = NULL; 531 532 /* 533 * If the outgoing interface for the address is specified by 534 * the caller, use it. 535 */ 536 if (opt && (pi = opt->ip6po_pktinfo) != NULL) { 537 /* XXX boundary check is assumed to be already done. */ 538 ifp = if_get_byindex(pi->ipi6_ifindex, &psref); 539 } else if (im6o != NULL) { 540 ifp = if_get_byindex(im6o->im6o_multicast_if_index, 541 &psref); 542 } 543 } 544 545 if (ifp == NULL) { 546 error = in6_selectroute(&dst_sa, opt, &ro, &rt, true); 547 if (error != 0) 548 goto bad; 549 ifp = if_get_byindex(rt->rt_ifp->if_index, &psref); 550 } 551 552 if (rt == NULL) { 553 /* 554 * If in6_selectroute() does not return a route entry, 555 * dst may not have been updated. 556 */ 557 error = rtcache_setdst(ro, sin6tosa(&dst_sa)); 558 if (error) { 559 goto bad; 560 } 561 } 562 563 /* 564 * then rt (for unicast) and ifp must be non-NULL valid values. 565 */ 566 if ((flags & IPV6_FORWARDING) == 0) { 567 /* XXX: the FORWARDING flag can be set for mrouting. */ 568 in6_ifstat_inc(ifp, ifs6_out_request); 569 } 570 if (rt != NULL) { 571 ia = (struct in6_ifaddr *)(rt->rt_ifa); 572 rt->rt_use++; 573 } 574 575 /* 576 * The outgoing interface must be in the zone of source and 577 * destination addresses. We should use ia_ifp to support the 578 * case of sending packets to an address of our own. 579 */ 580 if (ia != NULL && ia->ia_ifp) { 581 origifp = ia->ia_ifp; 582 if (if_is_deactivated(origifp)) 583 goto bad; 584 if_acquire(origifp, &psref_ia); 585 release_psref_ia = true; 586 } else 587 origifp = ifp; 588 589 src0 = ip6->ip6_src; 590 if (in6_setscope(&src0, origifp, &zone)) 591 goto badscope; 592 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0); 593 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 594 goto badscope; 595 596 dst0 = ip6->ip6_dst; 597 if (in6_setscope(&dst0, origifp, &zone)) 598 goto badscope; 599 /* re-initialize to be sure */ 600 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 601 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) 602 goto badscope; 603 604 /* scope check is done. */ 605 606 /* Ensure we only send from a valid address. */ 607 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 608 (error = ip6_ifaddrvalid(&src0, &dst0)) != 0) 609 { 610 char ip6buf[INET6_ADDRSTRLEN]; 611 nd6log(LOG_ERR, 612 "refusing to send from invalid address %s (pid %d)\n", 613 IN6_PRINT(ip6buf, &src0), curproc->p_pid); 614 IP6_STATINC(IP6_STAT_ODROPPED); 615 in6_ifstat_inc(origifp, ifs6_out_discard); 616 if (error == 1) 617 /* 618 * Address exists, but is tentative or detached. 619 * We can't send from it because it's invalid, 620 * so we drop the packet. 621 */ 622 error = 0; 623 else 624 error = EADDRNOTAVAIL; 625 goto bad; 626 } 627 628 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) && 629 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 630 dst = satocsin6(rt->rt_gateway); 631 else 632 dst = satocsin6(rtcache_getdst(ro)); 633 634 /* 635 * XXXXXX: original code follows: 636 */ 637 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 638 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 639 else { 640 bool ingroup; 641 642 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 643 644 in6_ifstat_inc(ifp, ifs6_out_mcast); 645 646 /* 647 * Confirm that the outgoing interface supports multicast. 648 */ 649 if (!(ifp->if_flags & IFF_MULTICAST)) { 650 IP6_STATINC(IP6_STAT_NOROUTE); 651 in6_ifstat_inc(ifp, ifs6_out_discard); 652 error = ENETUNREACH; 653 goto bad; 654 } 655 656 ingroup = in6_multi_group(&ip6->ip6_dst, ifp); 657 if (ingroup && (im6o == NULL || im6o->im6o_multicast_loop)) { 658 /* 659 * If we belong to the destination multicast group 660 * on the outgoing interface, and the caller did not 661 * forbid loopback, loop back a copy. 662 */ 663 KASSERT(dst != NULL); 664 ip6_mloopback(ifp, m, dst); 665 } else { 666 /* 667 * If we are acting as a multicast router, perform 668 * multicast forwarding as if the packet had just 669 * arrived on the interface to which we are about 670 * to send. The multicast forwarding function 671 * recursively calls this function, using the 672 * IPV6_FORWARDING flag to prevent infinite recursion. 673 * 674 * Multicasts that are looped back by ip6_mloopback(), 675 * above, will be forwarded by the ip6_input() routine, 676 * if necessary. 677 */ 678 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 679 if (ip6_mforward(ip6, ifp, m) != 0) { 680 m_freem(m); 681 goto done; 682 } 683 } 684 } 685 /* 686 * Multicasts with a hoplimit of zero may be looped back, 687 * above, but must not be transmitted on a network. 688 * Also, multicasts addressed to the loopback interface 689 * are not sent -- the above call to ip6_mloopback() will 690 * loop back a copy if this host actually belongs to the 691 * destination group on the loopback interface. 692 */ 693 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 694 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 695 m_freem(m); 696 goto done; 697 } 698 } 699 700 /* 701 * Fill the outgoing inteface to tell the upper layer 702 * to increment per-interface statistics. 703 */ 704 if (ifpp) 705 *ifpp = ifp; 706 707 /* Determine path MTU. */ 708 /* 709 * ro_pmtu represent final destination while 710 * ro might represent immediate destination. 711 * Use ro_pmtu destination since MTU might differ. 712 */ 713 if (ro_pmtu != ro) { 714 union { 715 struct sockaddr dst; 716 struct sockaddr_in6 dst6; 717 } u; 718 719 /* ro_pmtu may not have a cache */ 720 sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0); 721 rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst); 722 } else 723 rt_pmtu = rt; 724 error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag); 725 if (rt_pmtu != NULL && rt_pmtu != rt) 726 rtcache_unref(rt_pmtu, ro_pmtu); 727 if (error != 0) 728 goto bad; 729 730 /* 731 * The caller of this function may specify to use the minimum MTU 732 * in some cases. 733 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 734 * setting. The logic is a bit complicated; by default, unicast 735 * packets will follow path MTU while multicast packets will be sent at 736 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 737 * including unicast ones will be sent at the minimum MTU. Multicast 738 * packets will always be sent at the minimum MTU unless 739 * IP6PO_MINMTU_DISABLE is explicitly specified. 740 * See RFC 3542 for more details. 741 */ 742 if (mtu > IPV6_MMTU) { 743 if ((flags & IPV6_MINMTU)) 744 mtu = IPV6_MMTU; 745 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 746 mtu = IPV6_MMTU; 747 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 748 (opt == NULL || 749 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 750 mtu = IPV6_MMTU; 751 } 752 } 753 754 /* 755 * clear embedded scope identifiers if necessary. 756 * in6_clearscope will touch the addresses only when necessary. 757 */ 758 in6_clearscope(&ip6->ip6_src); 759 in6_clearscope(&ip6->ip6_dst); 760 761 /* 762 * If the outgoing packet contains a hop-by-hop options header, 763 * it must be examined and processed even by the source node. 764 * (RFC 2460, section 4.) 765 * 766 * XXX Is this really necessary? 767 */ 768 if (ip6->ip6_nxt == IPPROTO_HOPOPTS) { 769 u_int32_t dummy1; /* XXX unused */ 770 u_int32_t dummy2; /* XXX unused */ 771 int hoff = sizeof(struct ip6_hdr); 772 773 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) { 774 /* m was already freed at this point */ 775 error = EINVAL; 776 goto done; 777 } 778 779 ip6 = mtod(m, struct ip6_hdr *); 780 } 781 782 /* 783 * Run through list of hooks for output packets. 784 */ 785 if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0) 786 goto done; 787 if (m == NULL) 788 goto done; 789 ip6 = mtod(m, struct ip6_hdr *); 790 791 /* 792 * Send the packet to the outgoing interface. 793 * If necessary, do IPv6 fragmentation before sending. 794 * 795 * the logic here is rather complex: 796 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 797 * 1-a: send as is if tlen <= path mtu 798 * 1-b: fragment if tlen > path mtu 799 * 800 * 2: if user asks us not to fragment (dontfrag == 1) 801 * 2-a: send as is if tlen <= interface mtu 802 * 2-b: error if tlen > interface mtu 803 * 804 * 3: if we always need to attach fragment header (alwaysfrag == 1) 805 * always fragment 806 * 807 * 4: if dontfrag == 1 && alwaysfrag == 1 808 * error, as we cannot handle this conflicting request 809 */ 810 tlen = m->m_pkthdr.len; 811 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0; 812 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 813 dontfrag = 1; 814 else 815 dontfrag = 0; 816 817 if (dontfrag && alwaysfrag) { /* case 4 */ 818 /* conflicting request - can't transmit */ 819 error = EMSGSIZE; 820 goto bad; 821 } 822 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */ 823 /* 824 * Even if the DONTFRAG option is specified, we cannot send the 825 * packet when the data length is larger than the MTU of the 826 * outgoing interface. 827 * Notify the error by sending IPV6_PATHMTU ancillary data as 828 * well as returning an error code (the latter is not described 829 * in the API spec.) 830 */ 831 u_int32_t mtu32; 832 struct ip6ctlparam ip6cp; 833 834 mtu32 = (u_int32_t)mtu; 835 memset(&ip6cp, 0, sizeof(ip6cp)); 836 ip6cp.ip6c_cmdarg = (void *)&mtu32; 837 pfctlinput2(PRC_MSGSIZE, 838 rtcache_getdst(ro_pmtu), &ip6cp); 839 840 error = EMSGSIZE; 841 goto bad; 842 } 843 844 /* 845 * transmit packet without fragmentation 846 */ 847 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) { 848 /* case 1-a and 2-a */ 849 struct in6_ifaddr *ia6; 850 int sw_csum; 851 int s; 852 853 ip6 = mtod(m, struct ip6_hdr *); 854 s = pserialize_read_enter(); 855 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 856 if (ia6) { 857 /* Record statistics for this interface address. */ 858 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len; 859 } 860 pserialize_read_exit(s); 861 862 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 863 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 864 if (IN6_NEED_CHECKSUM(ifp, 865 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 866 in6_delayed_cksum(m); 867 } 868 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 869 } 870 871 KASSERT(dst != NULL); 872 if (__predict_true(!tso || 873 (ifp->if_capenable & IFCAP_TSOv6) != 0)) { 874 error = ip6_if_output(ifp, origifp, m, dst, rt); 875 } else { 876 error = ip6_tso_output(ifp, origifp, m, dst, rt); 877 } 878 goto done; 879 } 880 881 if (tso) { 882 error = EINVAL; /* XXX */ 883 goto bad; 884 } 885 886 /* 887 * try to fragment the packet. case 1-b and 3 888 */ 889 if (mtu < IPV6_MMTU) { 890 /* path MTU cannot be less than IPV6_MMTU */ 891 error = EMSGSIZE; 892 in6_ifstat_inc(ifp, ifs6_out_fragfail); 893 goto bad; 894 } else if (ip6->ip6_plen == 0) { 895 /* jumbo payload cannot be fragmented */ 896 error = EMSGSIZE; 897 in6_ifstat_inc(ifp, ifs6_out_fragfail); 898 goto bad; 899 } else { 900 const u_int32_t id = htonl(ip6_randomid()); 901 struct mbuf **mnext, *m_frgpart; 902 const int hlen = unfragpartlen; 903 struct ip6_frag *ip6f; 904 u_char nextproto; 905 #if 0 /* see below */ 906 struct ip6ctlparam ip6cp; 907 u_int32_t mtu32; 908 #endif 909 910 if (mtu > IPV6_MAXPACKET) 911 mtu = IPV6_MAXPACKET; 912 913 #if 0 914 /* 915 * It is believed this code is a leftover from the 916 * development of the IPV6_RECVPATHMTU sockopt and 917 * associated work to implement RFC3542. 918 * It's not entirely clear what the intent of the API 919 * is at this point, so disable this code for now. 920 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG 921 * will send notifications if the application requests. 922 */ 923 924 /* Notify a proper path MTU to applications. */ 925 mtu32 = (u_int32_t)mtu; 926 memset(&ip6cp, 0, sizeof(ip6cp)); 927 ip6cp.ip6c_cmdarg = (void *)&mtu32; 928 pfctlinput2(PRC_MSGSIZE, 929 rtcache_getdst(ro_pmtu), &ip6cp); 930 #endif 931 932 /* 933 * Must be able to put at least 8 bytes per fragment. 934 */ 935 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 936 if (len < 8) { 937 error = EMSGSIZE; 938 in6_ifstat_inc(ifp, ifs6_out_fragfail); 939 goto bad; 940 } 941 942 mnext = &m->m_nextpkt; 943 944 /* 945 * Change the next header field of the last header in the 946 * unfragmentable part. 947 */ 948 if (exthdrs.ip6e_rthdr) { 949 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 950 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 951 } else if (exthdrs.ip6e_dest1) { 952 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 953 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 954 } else if (exthdrs.ip6e_hbh) { 955 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 956 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 957 } else { 958 nextproto = ip6->ip6_nxt; 959 ip6->ip6_nxt = IPPROTO_FRAGMENT; 960 } 961 962 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) 963 != 0) { 964 if (IN6_NEED_CHECKSUM(ifp, 965 m->m_pkthdr.csum_flags & 966 (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 967 in6_delayed_cksum(m); 968 } 969 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 970 } 971 972 /* 973 * Loop through length of segment after first fragment, 974 * make new header and copy data of each part and link onto 975 * chain. 976 */ 977 m0 = m; 978 for (off = hlen; off < tlen; off += len) { 979 struct mbuf *mlast; 980 981 MGETHDR(m, M_DONTWAIT, MT_HEADER); 982 if (!m) { 983 error = ENOBUFS; 984 IP6_STATINC(IP6_STAT_ODROPPED); 985 goto sendorfree; 986 } 987 m_reset_rcvif(m); 988 m->m_flags = m0->m_flags & M_COPYFLAGS; 989 *mnext = m; 990 mnext = &m->m_nextpkt; 991 m->m_data += max_linkhdr; 992 mhip6 = mtod(m, struct ip6_hdr *); 993 *mhip6 = *ip6; 994 m->m_len = sizeof(*mhip6); 995 996 ip6f = NULL; 997 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 998 if (error) { 999 IP6_STATINC(IP6_STAT_ODROPPED); 1000 goto sendorfree; 1001 } 1002 1003 /* Fill in the Frag6 Header */ 1004 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 1005 if (off + len >= tlen) 1006 len = tlen - off; 1007 else 1008 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1009 ip6f->ip6f_reserved = 0; 1010 ip6f->ip6f_ident = id; 1011 ip6f->ip6f_nxt = nextproto; 1012 1013 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 1014 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1015 if ((m_frgpart = m_copy(m0, off, len)) == NULL) { 1016 error = ENOBUFS; 1017 IP6_STATINC(IP6_STAT_ODROPPED); 1018 goto sendorfree; 1019 } 1020 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 1021 ; 1022 mlast->m_next = m_frgpart; 1023 1024 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1025 m_reset_rcvif(m); 1026 IP6_STATINC(IP6_STAT_OFRAGMENTS); 1027 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1028 } 1029 1030 in6_ifstat_inc(ifp, ifs6_out_fragok); 1031 } 1032 1033 sendorfree: 1034 m = m0->m_nextpkt; 1035 m0->m_nextpkt = 0; 1036 m_freem(m0); 1037 for (m0 = m; m; m = m0) { 1038 m0 = m->m_nextpkt; 1039 m->m_nextpkt = 0; 1040 if (error == 0) { 1041 struct in6_ifaddr *ia6; 1042 int s; 1043 ip6 = mtod(m, struct ip6_hdr *); 1044 s = pserialize_read_enter(); 1045 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1046 if (ia6) { 1047 /* 1048 * Record statistics for this interface 1049 * address. 1050 */ 1051 ia6->ia_ifa.ifa_data.ifad_outbytes += 1052 m->m_pkthdr.len; 1053 } 1054 pserialize_read_exit(s); 1055 KASSERT(dst != NULL); 1056 error = ip6_if_output(ifp, origifp, m, dst, rt); 1057 } else 1058 m_freem(m); 1059 } 1060 1061 if (error == 0) 1062 IP6_STATINC(IP6_STAT_FRAGMENTED); 1063 1064 done: 1065 rtcache_unref(rt, ro); 1066 if (ro == &ip6route) 1067 rtcache_free(&ip6route); 1068 #ifdef IPSEC 1069 if (sp != NULL) 1070 KEY_SP_UNREF(&sp); 1071 #endif 1072 if_put(ifp, &psref); 1073 if (release_psref_ia) 1074 if_put(origifp, &psref_ia); 1075 curlwp_bindx(bound); 1076 1077 return error; 1078 1079 freehdrs: 1080 m_freem(exthdrs.ip6e_hbh); 1081 m_freem(exthdrs.ip6e_dest1); 1082 m_freem(exthdrs.ip6e_rthdr); 1083 m_freem(exthdrs.ip6e_dest2); 1084 /* FALLTHROUGH */ 1085 bad: 1086 m_freem(m); 1087 goto done; 1088 1089 badscope: 1090 IP6_STATINC(IP6_STAT_BADSCOPE); 1091 in6_ifstat_inc(origifp, ifs6_out_discard); 1092 if (error == 0) 1093 error = EHOSTUNREACH; /* XXX */ 1094 goto bad; 1095 } 1096 1097 static int 1098 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen) 1099 { 1100 struct mbuf *m; 1101 1102 if (hlen > MCLBYTES) 1103 return ENOBUFS; /* XXX */ 1104 1105 MGET(m, M_DONTWAIT, MT_DATA); 1106 if (!m) 1107 return ENOBUFS; 1108 1109 if (hlen > MLEN) { 1110 MCLGET(m, M_DONTWAIT); 1111 if ((m->m_flags & M_EXT) == 0) { 1112 m_free(m); 1113 return ENOBUFS; 1114 } 1115 } 1116 m->m_len = hlen; 1117 if (hdr) 1118 memcpy(mtod(m, void *), hdr, hlen); 1119 1120 *mp = m; 1121 return 0; 1122 } 1123 1124 /* 1125 * Process a delayed payload checksum calculation. 1126 */ 1127 void 1128 in6_delayed_cksum(struct mbuf *m) 1129 { 1130 uint16_t csum, offset; 1131 1132 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1133 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1134 KASSERT((m->m_pkthdr.csum_flags 1135 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0); 1136 1137 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data); 1138 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset); 1139 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) { 1140 csum = 0xffff; 1141 } 1142 1143 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data); 1144 if ((offset + sizeof(csum)) > m->m_len) { 1145 m_copyback(m, offset, sizeof(csum), &csum); 1146 } else { 1147 *(uint16_t *)(mtod(m, char *) + offset) = csum; 1148 } 1149 } 1150 1151 /* 1152 * Insert jumbo payload option. 1153 */ 1154 static int 1155 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1156 { 1157 struct mbuf *mopt; 1158 u_int8_t *optbuf; 1159 u_int32_t v; 1160 1161 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1162 1163 /* 1164 * If there is no hop-by-hop options header, allocate new one. 1165 * If there is one but it doesn't have enough space to store the 1166 * jumbo payload option, allocate a cluster to store the whole options. 1167 * Otherwise, use it to store the options. 1168 */ 1169 if (exthdrs->ip6e_hbh == NULL) { 1170 MGET(mopt, M_DONTWAIT, MT_DATA); 1171 if (mopt == 0) 1172 return (ENOBUFS); 1173 mopt->m_len = JUMBOOPTLEN; 1174 optbuf = mtod(mopt, u_int8_t *); 1175 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1176 exthdrs->ip6e_hbh = mopt; 1177 } else { 1178 struct ip6_hbh *hbh; 1179 1180 mopt = exthdrs->ip6e_hbh; 1181 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1182 const int oldoptlen = mopt->m_len; 1183 struct mbuf *n; 1184 1185 /* 1186 * Assumptions: 1187 * - exthdrs->ip6e_hbh is not referenced from places 1188 * other than exthdrs. 1189 * - exthdrs->ip6e_hbh is not an mbuf chain. 1190 */ 1191 KASSERT(mopt->m_next == NULL); 1192 1193 /* 1194 * Give up if the whole (new) hbh header does not fit 1195 * even in an mbuf cluster. 1196 */ 1197 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1198 return ENOBUFS; 1199 1200 /* 1201 * At this point, we must always prepare a cluster. 1202 */ 1203 MGET(n, M_DONTWAIT, MT_DATA); 1204 if (n) { 1205 MCLGET(n, M_DONTWAIT); 1206 if ((n->m_flags & M_EXT) == 0) { 1207 m_freem(n); 1208 n = NULL; 1209 } 1210 } 1211 if (!n) 1212 return ENOBUFS; 1213 1214 n->m_len = oldoptlen + JUMBOOPTLEN; 1215 bcopy(mtod(mopt, void *), mtod(n, void *), 1216 oldoptlen); 1217 optbuf = mtod(n, u_int8_t *) + oldoptlen; 1218 m_freem(mopt); 1219 mopt = exthdrs->ip6e_hbh = n; 1220 } else { 1221 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 1222 mopt->m_len += JUMBOOPTLEN; 1223 } 1224 optbuf[0] = IP6OPT_PADN; 1225 optbuf[1] = 0; 1226 1227 /* 1228 * Adjust the header length according to the pad and 1229 * the jumbo payload option. 1230 */ 1231 hbh = mtod(mopt, struct ip6_hbh *); 1232 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1233 } 1234 1235 /* fill in the option. */ 1236 optbuf[2] = IP6OPT_JUMBO; 1237 optbuf[3] = 4; 1238 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1239 memcpy(&optbuf[4], &v, sizeof(u_int32_t)); 1240 1241 /* finally, adjust the packet header length */ 1242 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1243 1244 return 0; 1245 #undef JUMBOOPTLEN 1246 } 1247 1248 /* 1249 * Insert fragment header and copy unfragmentable header portions. 1250 * 1251 * *frghdrp will not be read, and it is guaranteed that either an 1252 * error is returned or that *frghdrp will point to space allocated 1253 * for the fragment header. 1254 * 1255 * On entry, m contains: 1256 * IPv6 Header 1257 * On exit, it contains: 1258 * IPv6 Header -> Unfragmentable Part -> Frag6 Header 1259 */ 1260 static int 1261 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1262 struct ip6_frag **frghdrp) 1263 { 1264 struct mbuf *n, *mlast; 1265 1266 if (hlen > sizeof(struct ip6_hdr)) { 1267 n = m_copym(m0, sizeof(struct ip6_hdr), 1268 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1269 if (n == NULL) 1270 return ENOBUFS; 1271 m->m_next = n; 1272 } else 1273 n = m; 1274 1275 /* Search for the last mbuf of unfragmentable part. */ 1276 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1277 ; 1278 1279 if ((mlast->m_flags & M_EXT) == 0 && 1280 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1281 /* use the trailing space of the last mbuf for the fragment hdr */ 1282 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) + 1283 mlast->m_len); 1284 mlast->m_len += sizeof(struct ip6_frag); 1285 } else { 1286 /* allocate a new mbuf for the fragment header */ 1287 struct mbuf *mfrg; 1288 1289 MGET(mfrg, M_DONTWAIT, MT_DATA); 1290 if (mfrg == NULL) 1291 return ENOBUFS; 1292 mfrg->m_len = sizeof(struct ip6_frag); 1293 *frghdrp = mtod(mfrg, struct ip6_frag *); 1294 mlast->m_next = mfrg; 1295 } 1296 1297 return 0; 1298 } 1299 1300 static int 1301 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup, 1302 int *alwaysfragp) 1303 { 1304 u_int32_t mtu = 0; 1305 int alwaysfrag = 0; 1306 int error = 0; 1307 1308 if (rt != NULL) { 1309 u_int32_t ifmtu; 1310 1311 if (ifp == NULL) 1312 ifp = rt->rt_ifp; 1313 ifmtu = IN6_LINKMTU(ifp); 1314 mtu = rt->rt_rmx.rmx_mtu; 1315 if (mtu == 0) 1316 mtu = ifmtu; 1317 else if (mtu < IPV6_MMTU) { 1318 /* 1319 * RFC2460 section 5, last paragraph: 1320 * if we record ICMPv6 too big message with 1321 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1322 * or smaller, with fragment header attached. 1323 * (fragment header is needed regardless from the 1324 * packet size, for translators to identify packets) 1325 */ 1326 alwaysfrag = 1; 1327 mtu = IPV6_MMTU; 1328 } else if (mtu > ifmtu) { 1329 /* 1330 * The MTU on the route is larger than the MTU on 1331 * the interface! This shouldn't happen, unless the 1332 * MTU of the interface has been changed after the 1333 * interface was brought up. Change the MTU in the 1334 * route to match the interface MTU (as long as the 1335 * field isn't locked). 1336 */ 1337 mtu = ifmtu; 1338 if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) 1339 rt->rt_rmx.rmx_mtu = mtu; 1340 } 1341 } else if (ifp) { 1342 mtu = IN6_LINKMTU(ifp); 1343 } else 1344 error = EHOSTUNREACH; /* XXX */ 1345 1346 *mtup = mtu; 1347 if (alwaysfragp) 1348 *alwaysfragp = alwaysfrag; 1349 return (error); 1350 } 1351 1352 /* 1353 * IP6 socket option processing. 1354 */ 1355 int 1356 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1357 { 1358 int optdatalen, uproto; 1359 void *optdata; 1360 struct in6pcb *in6p = sotoin6pcb(so); 1361 struct ip_moptions **mopts; 1362 int error, optval; 1363 int level, optname; 1364 1365 KASSERT(solocked(so)); 1366 KASSERT(sopt != NULL); 1367 1368 level = sopt->sopt_level; 1369 optname = sopt->sopt_name; 1370 1371 error = optval = 0; 1372 uproto = (int)so->so_proto->pr_protocol; 1373 1374 switch (level) { 1375 case IPPROTO_IP: 1376 switch (optname) { 1377 case IP_ADD_MEMBERSHIP: 1378 case IP_DROP_MEMBERSHIP: 1379 case IP_MULTICAST_IF: 1380 case IP_MULTICAST_LOOP: 1381 case IP_MULTICAST_TTL: 1382 mopts = &in6p->in6p_v4moptions; 1383 switch (op) { 1384 case PRCO_GETOPT: 1385 return ip_getmoptions(*mopts, sopt); 1386 case PRCO_SETOPT: 1387 return ip_setmoptions(mopts, sopt); 1388 default: 1389 return EINVAL; 1390 } 1391 default: 1392 return ENOPROTOOPT; 1393 } 1394 case IPPROTO_IPV6: 1395 break; 1396 default: 1397 return ENOPROTOOPT; 1398 } 1399 switch (op) { 1400 case PRCO_SETOPT: 1401 switch (optname) { 1402 #ifdef RFC2292 1403 case IPV6_2292PKTOPTIONS: 1404 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt); 1405 break; 1406 #endif 1407 1408 /* 1409 * Use of some Hop-by-Hop options or some 1410 * Destination options, might require special 1411 * privilege. That is, normal applications 1412 * (without special privilege) might be forbidden 1413 * from setting certain options in outgoing packets, 1414 * and might never see certain options in received 1415 * packets. [RFC 2292 Section 6] 1416 * KAME specific note: 1417 * KAME prevents non-privileged users from sending or 1418 * receiving ANY hbh/dst options in order to avoid 1419 * overhead of parsing options in the kernel. 1420 */ 1421 case IPV6_RECVHOPOPTS: 1422 case IPV6_RECVDSTOPTS: 1423 case IPV6_RECVRTHDRDSTOPTS: 1424 error = kauth_authorize_network(kauth_cred_get(), 1425 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, 1426 NULL, NULL, NULL); 1427 if (error) 1428 break; 1429 /* FALLTHROUGH */ 1430 case IPV6_UNICAST_HOPS: 1431 case IPV6_HOPLIMIT: 1432 case IPV6_FAITH: 1433 1434 case IPV6_RECVPKTINFO: 1435 case IPV6_RECVHOPLIMIT: 1436 case IPV6_RECVRTHDR: 1437 case IPV6_RECVPATHMTU: 1438 case IPV6_RECVTCLASS: 1439 case IPV6_V6ONLY: 1440 error = sockopt_getint(sopt, &optval); 1441 if (error) 1442 break; 1443 switch (optname) { 1444 case IPV6_UNICAST_HOPS: 1445 if (optval < -1 || optval >= 256) 1446 error = EINVAL; 1447 else { 1448 /* -1 = kernel default */ 1449 in6p->in6p_hops = optval; 1450 } 1451 break; 1452 #define OPTSET(bit) \ 1453 do { \ 1454 if (optval) \ 1455 in6p->in6p_flags |= (bit); \ 1456 else \ 1457 in6p->in6p_flags &= ~(bit); \ 1458 } while (/*CONSTCOND*/ 0) 1459 1460 #ifdef RFC2292 1461 #define OPTSET2292(bit) \ 1462 do { \ 1463 in6p->in6p_flags |= IN6P_RFC2292; \ 1464 if (optval) \ 1465 in6p->in6p_flags |= (bit); \ 1466 else \ 1467 in6p->in6p_flags &= ~(bit); \ 1468 } while (/*CONSTCOND*/ 0) 1469 #endif 1470 1471 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1472 1473 case IPV6_RECVPKTINFO: 1474 #ifdef RFC2292 1475 /* cannot mix with RFC2292 */ 1476 if (OPTBIT(IN6P_RFC2292)) { 1477 error = EINVAL; 1478 break; 1479 } 1480 #endif 1481 OPTSET(IN6P_PKTINFO); 1482 break; 1483 1484 case IPV6_HOPLIMIT: 1485 { 1486 struct ip6_pktopts **optp; 1487 1488 #ifdef RFC2292 1489 /* cannot mix with RFC2292 */ 1490 if (OPTBIT(IN6P_RFC2292)) { 1491 error = EINVAL; 1492 break; 1493 } 1494 #endif 1495 optp = &in6p->in6p_outputopts; 1496 error = ip6_pcbopt(IPV6_HOPLIMIT, 1497 (u_char *)&optval, 1498 sizeof(optval), 1499 optp, 1500 kauth_cred_get(), uproto); 1501 break; 1502 } 1503 1504 case IPV6_RECVHOPLIMIT: 1505 #ifdef RFC2292 1506 /* cannot mix with RFC2292 */ 1507 if (OPTBIT(IN6P_RFC2292)) { 1508 error = EINVAL; 1509 break; 1510 } 1511 #endif 1512 OPTSET(IN6P_HOPLIMIT); 1513 break; 1514 1515 case IPV6_RECVHOPOPTS: 1516 #ifdef RFC2292 1517 /* cannot mix with RFC2292 */ 1518 if (OPTBIT(IN6P_RFC2292)) { 1519 error = EINVAL; 1520 break; 1521 } 1522 #endif 1523 OPTSET(IN6P_HOPOPTS); 1524 break; 1525 1526 case IPV6_RECVDSTOPTS: 1527 #ifdef RFC2292 1528 /* cannot mix with RFC2292 */ 1529 if (OPTBIT(IN6P_RFC2292)) { 1530 error = EINVAL; 1531 break; 1532 } 1533 #endif 1534 OPTSET(IN6P_DSTOPTS); 1535 break; 1536 1537 case IPV6_RECVRTHDRDSTOPTS: 1538 #ifdef RFC2292 1539 /* cannot mix with RFC2292 */ 1540 if (OPTBIT(IN6P_RFC2292)) { 1541 error = EINVAL; 1542 break; 1543 } 1544 #endif 1545 OPTSET(IN6P_RTHDRDSTOPTS); 1546 break; 1547 1548 case IPV6_RECVRTHDR: 1549 #ifdef RFC2292 1550 /* cannot mix with RFC2292 */ 1551 if (OPTBIT(IN6P_RFC2292)) { 1552 error = EINVAL; 1553 break; 1554 } 1555 #endif 1556 OPTSET(IN6P_RTHDR); 1557 break; 1558 1559 case IPV6_FAITH: 1560 OPTSET(IN6P_FAITH); 1561 break; 1562 1563 case IPV6_RECVPATHMTU: 1564 /* 1565 * We ignore this option for TCP 1566 * sockets. 1567 * (RFC3542 leaves this case 1568 * unspecified.) 1569 */ 1570 if (uproto != IPPROTO_TCP) 1571 OPTSET(IN6P_MTU); 1572 break; 1573 1574 case IPV6_V6ONLY: 1575 /* 1576 * make setsockopt(IPV6_V6ONLY) 1577 * available only prior to bind(2). 1578 * see ipng mailing list, Jun 22 2001. 1579 */ 1580 if (in6p->in6p_lport || 1581 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1582 error = EINVAL; 1583 break; 1584 } 1585 #ifdef INET6_BINDV6ONLY 1586 if (!optval) 1587 error = EINVAL; 1588 #else 1589 OPTSET(IN6P_IPV6_V6ONLY); 1590 #endif 1591 break; 1592 case IPV6_RECVTCLASS: 1593 #ifdef RFC2292 1594 /* cannot mix with RFC2292 XXX */ 1595 if (OPTBIT(IN6P_RFC2292)) { 1596 error = EINVAL; 1597 break; 1598 } 1599 #endif 1600 OPTSET(IN6P_TCLASS); 1601 break; 1602 1603 } 1604 break; 1605 1606 case IPV6_OTCLASS: 1607 { 1608 struct ip6_pktopts **optp; 1609 u_int8_t tclass; 1610 1611 error = sockopt_get(sopt, &tclass, sizeof(tclass)); 1612 if (error) 1613 break; 1614 optp = &in6p->in6p_outputopts; 1615 error = ip6_pcbopt(optname, 1616 (u_char *)&tclass, 1617 sizeof(tclass), 1618 optp, 1619 kauth_cred_get(), uproto); 1620 break; 1621 } 1622 1623 case IPV6_TCLASS: 1624 case IPV6_DONTFRAG: 1625 case IPV6_USE_MIN_MTU: 1626 case IPV6_PREFER_TEMPADDR: 1627 error = sockopt_getint(sopt, &optval); 1628 if (error) 1629 break; 1630 { 1631 struct ip6_pktopts **optp; 1632 optp = &in6p->in6p_outputopts; 1633 error = ip6_pcbopt(optname, 1634 (u_char *)&optval, 1635 sizeof(optval), 1636 optp, 1637 kauth_cred_get(), uproto); 1638 break; 1639 } 1640 1641 #ifdef RFC2292 1642 case IPV6_2292PKTINFO: 1643 case IPV6_2292HOPLIMIT: 1644 case IPV6_2292HOPOPTS: 1645 case IPV6_2292DSTOPTS: 1646 case IPV6_2292RTHDR: 1647 /* RFC 2292 */ 1648 error = sockopt_getint(sopt, &optval); 1649 if (error) 1650 break; 1651 1652 switch (optname) { 1653 case IPV6_2292PKTINFO: 1654 OPTSET2292(IN6P_PKTINFO); 1655 break; 1656 case IPV6_2292HOPLIMIT: 1657 OPTSET2292(IN6P_HOPLIMIT); 1658 break; 1659 case IPV6_2292HOPOPTS: 1660 /* 1661 * Check super-user privilege. 1662 * See comments for IPV6_RECVHOPOPTS. 1663 */ 1664 error = 1665 kauth_authorize_network(kauth_cred_get(), 1666 KAUTH_NETWORK_IPV6, 1667 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1668 NULL, NULL); 1669 if (error) 1670 return (error); 1671 OPTSET2292(IN6P_HOPOPTS); 1672 break; 1673 case IPV6_2292DSTOPTS: 1674 error = 1675 kauth_authorize_network(kauth_cred_get(), 1676 KAUTH_NETWORK_IPV6, 1677 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1678 NULL, NULL); 1679 if (error) 1680 return (error); 1681 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1682 break; 1683 case IPV6_2292RTHDR: 1684 OPTSET2292(IN6P_RTHDR); 1685 break; 1686 } 1687 break; 1688 #endif 1689 case IPV6_PKTINFO: 1690 case IPV6_HOPOPTS: 1691 case IPV6_RTHDR: 1692 case IPV6_DSTOPTS: 1693 case IPV6_RTHDRDSTOPTS: 1694 case IPV6_NEXTHOP: { 1695 /* new advanced API (RFC3542) */ 1696 void *optbuf; 1697 int optbuflen; 1698 struct ip6_pktopts **optp; 1699 1700 #ifdef RFC2292 1701 /* cannot mix with RFC2292 */ 1702 if (OPTBIT(IN6P_RFC2292)) { 1703 error = EINVAL; 1704 break; 1705 } 1706 #endif 1707 1708 optbuflen = sopt->sopt_size; 1709 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT); 1710 if (optbuf == NULL) { 1711 error = ENOBUFS; 1712 break; 1713 } 1714 1715 error = sockopt_get(sopt, optbuf, optbuflen); 1716 if (error) { 1717 free(optbuf, M_IP6OPT); 1718 break; 1719 } 1720 optp = &in6p->in6p_outputopts; 1721 error = ip6_pcbopt(optname, optbuf, optbuflen, 1722 optp, kauth_cred_get(), uproto); 1723 1724 free(optbuf, M_IP6OPT); 1725 break; 1726 } 1727 #undef OPTSET 1728 1729 case IPV6_MULTICAST_IF: 1730 case IPV6_MULTICAST_HOPS: 1731 case IPV6_MULTICAST_LOOP: 1732 case IPV6_JOIN_GROUP: 1733 case IPV6_LEAVE_GROUP: 1734 error = ip6_setmoptions(sopt, in6p); 1735 break; 1736 1737 case IPV6_PORTRANGE: 1738 error = sockopt_getint(sopt, &optval); 1739 if (error) 1740 break; 1741 1742 switch (optval) { 1743 case IPV6_PORTRANGE_DEFAULT: 1744 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1745 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1746 break; 1747 1748 case IPV6_PORTRANGE_HIGH: 1749 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1750 in6p->in6p_flags |= IN6P_HIGHPORT; 1751 break; 1752 1753 case IPV6_PORTRANGE_LOW: 1754 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1755 in6p->in6p_flags |= IN6P_LOWPORT; 1756 break; 1757 1758 default: 1759 error = EINVAL; 1760 break; 1761 } 1762 break; 1763 1764 case IPV6_PORTALGO: 1765 error = sockopt_getint(sopt, &optval); 1766 if (error) 1767 break; 1768 1769 error = portalgo_algo_index_select( 1770 (struct inpcb_hdr *)in6p, optval); 1771 break; 1772 1773 #if defined(IPSEC) 1774 case IPV6_IPSEC_POLICY: 1775 if (ipsec_enabled) { 1776 error = ipsec_set_policy(in6p, optname, 1777 sopt->sopt_data, sopt->sopt_size, 1778 kauth_cred_get()); 1779 break; 1780 } 1781 /*FALLTHROUGH*/ 1782 #endif /* IPSEC */ 1783 1784 default: 1785 error = ENOPROTOOPT; 1786 break; 1787 } 1788 break; 1789 1790 case PRCO_GETOPT: 1791 switch (optname) { 1792 #ifdef RFC2292 1793 case IPV6_2292PKTOPTIONS: 1794 /* 1795 * RFC3542 (effectively) deprecated the 1796 * semantics of the 2292-style pktoptions. 1797 * Since it was not reliable in nature (i.e., 1798 * applications had to expect the lack of some 1799 * information after all), it would make sense 1800 * to simplify this part by always returning 1801 * empty data. 1802 */ 1803 break; 1804 #endif 1805 1806 case IPV6_RECVHOPOPTS: 1807 case IPV6_RECVDSTOPTS: 1808 case IPV6_RECVRTHDRDSTOPTS: 1809 case IPV6_UNICAST_HOPS: 1810 case IPV6_RECVPKTINFO: 1811 case IPV6_RECVHOPLIMIT: 1812 case IPV6_RECVRTHDR: 1813 case IPV6_RECVPATHMTU: 1814 1815 case IPV6_FAITH: 1816 case IPV6_V6ONLY: 1817 case IPV6_PORTRANGE: 1818 case IPV6_RECVTCLASS: 1819 switch (optname) { 1820 1821 case IPV6_RECVHOPOPTS: 1822 optval = OPTBIT(IN6P_HOPOPTS); 1823 break; 1824 1825 case IPV6_RECVDSTOPTS: 1826 optval = OPTBIT(IN6P_DSTOPTS); 1827 break; 1828 1829 case IPV6_RECVRTHDRDSTOPTS: 1830 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1831 break; 1832 1833 case IPV6_UNICAST_HOPS: 1834 optval = in6p->in6p_hops; 1835 break; 1836 1837 case IPV6_RECVPKTINFO: 1838 optval = OPTBIT(IN6P_PKTINFO); 1839 break; 1840 1841 case IPV6_RECVHOPLIMIT: 1842 optval = OPTBIT(IN6P_HOPLIMIT); 1843 break; 1844 1845 case IPV6_RECVRTHDR: 1846 optval = OPTBIT(IN6P_RTHDR); 1847 break; 1848 1849 case IPV6_RECVPATHMTU: 1850 optval = OPTBIT(IN6P_MTU); 1851 break; 1852 1853 case IPV6_FAITH: 1854 optval = OPTBIT(IN6P_FAITH); 1855 break; 1856 1857 case IPV6_V6ONLY: 1858 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1859 break; 1860 1861 case IPV6_PORTRANGE: 1862 { 1863 int flags; 1864 flags = in6p->in6p_flags; 1865 if (flags & IN6P_HIGHPORT) 1866 optval = IPV6_PORTRANGE_HIGH; 1867 else if (flags & IN6P_LOWPORT) 1868 optval = IPV6_PORTRANGE_LOW; 1869 else 1870 optval = 0; 1871 break; 1872 } 1873 case IPV6_RECVTCLASS: 1874 optval = OPTBIT(IN6P_TCLASS); 1875 break; 1876 1877 } 1878 if (error) 1879 break; 1880 error = sockopt_setint(sopt, optval); 1881 break; 1882 1883 case IPV6_PATHMTU: 1884 { 1885 u_long pmtu = 0; 1886 struct ip6_mtuinfo mtuinfo; 1887 struct route *ro = &in6p->in6p_route; 1888 struct rtentry *rt; 1889 union { 1890 struct sockaddr dst; 1891 struct sockaddr_in6 dst6; 1892 } u; 1893 1894 if (!(so->so_state & SS_ISCONNECTED)) 1895 return (ENOTCONN); 1896 /* 1897 * XXX: we dot not consider the case of source 1898 * routing, or optional information to specify 1899 * the outgoing interface. 1900 */ 1901 sockaddr_in6_init(&u.dst6, &in6p->in6p_faddr, 0, 0, 0); 1902 rt = rtcache_lookup(ro, &u.dst); 1903 error = ip6_getpmtu(rt, NULL, &pmtu, NULL); 1904 rtcache_unref(rt, ro); 1905 if (error) 1906 break; 1907 if (pmtu > IPV6_MAXPACKET) 1908 pmtu = IPV6_MAXPACKET; 1909 1910 memset(&mtuinfo, 0, sizeof(mtuinfo)); 1911 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1912 optdata = (void *)&mtuinfo; 1913 optdatalen = sizeof(mtuinfo); 1914 if (optdatalen > MCLBYTES) 1915 return (EMSGSIZE); /* XXX */ 1916 error = sockopt_set(sopt, optdata, optdatalen); 1917 break; 1918 } 1919 1920 #ifdef RFC2292 1921 case IPV6_2292PKTINFO: 1922 case IPV6_2292HOPLIMIT: 1923 case IPV6_2292HOPOPTS: 1924 case IPV6_2292RTHDR: 1925 case IPV6_2292DSTOPTS: 1926 switch (optname) { 1927 case IPV6_2292PKTINFO: 1928 optval = OPTBIT(IN6P_PKTINFO); 1929 break; 1930 case IPV6_2292HOPLIMIT: 1931 optval = OPTBIT(IN6P_HOPLIMIT); 1932 break; 1933 case IPV6_2292HOPOPTS: 1934 optval = OPTBIT(IN6P_HOPOPTS); 1935 break; 1936 case IPV6_2292RTHDR: 1937 optval = OPTBIT(IN6P_RTHDR); 1938 break; 1939 case IPV6_2292DSTOPTS: 1940 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1941 break; 1942 } 1943 error = sockopt_setint(sopt, optval); 1944 break; 1945 #endif 1946 case IPV6_PKTINFO: 1947 case IPV6_HOPOPTS: 1948 case IPV6_RTHDR: 1949 case IPV6_DSTOPTS: 1950 case IPV6_RTHDRDSTOPTS: 1951 case IPV6_NEXTHOP: 1952 case IPV6_OTCLASS: 1953 case IPV6_TCLASS: 1954 case IPV6_DONTFRAG: 1955 case IPV6_USE_MIN_MTU: 1956 case IPV6_PREFER_TEMPADDR: 1957 error = ip6_getpcbopt(in6p->in6p_outputopts, 1958 optname, sopt); 1959 break; 1960 1961 case IPV6_MULTICAST_IF: 1962 case IPV6_MULTICAST_HOPS: 1963 case IPV6_MULTICAST_LOOP: 1964 case IPV6_JOIN_GROUP: 1965 case IPV6_LEAVE_GROUP: 1966 error = ip6_getmoptions(sopt, in6p); 1967 break; 1968 1969 case IPV6_PORTALGO: 1970 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo; 1971 error = sockopt_setint(sopt, optval); 1972 break; 1973 1974 #if defined(IPSEC) 1975 case IPV6_IPSEC_POLICY: 1976 if (ipsec_used) { 1977 struct mbuf *m = NULL; 1978 1979 /* 1980 * XXX: this will return EINVAL as sopt is 1981 * empty 1982 */ 1983 error = ipsec_get_policy(in6p, sopt->sopt_data, 1984 sopt->sopt_size, &m); 1985 if (!error) 1986 error = sockopt_setmbuf(sopt, m); 1987 break; 1988 } 1989 /*FALLTHROUGH*/ 1990 #endif /* IPSEC */ 1991 1992 default: 1993 error = ENOPROTOOPT; 1994 break; 1995 } 1996 break; 1997 } 1998 return (error); 1999 } 2000 2001 int 2002 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt) 2003 { 2004 int error = 0, optval; 2005 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2006 struct in6pcb *in6p = sotoin6pcb(so); 2007 int level, optname; 2008 2009 KASSERT(sopt != NULL); 2010 2011 level = sopt->sopt_level; 2012 optname = sopt->sopt_name; 2013 2014 if (level != IPPROTO_IPV6) { 2015 return ENOPROTOOPT; 2016 } 2017 2018 switch (optname) { 2019 case IPV6_CHECKSUM: 2020 /* 2021 * For ICMPv6 sockets, no modification allowed for checksum 2022 * offset, permit "no change" values to help existing apps. 2023 * 2024 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM 2025 * for an ICMPv6 socket will fail." The current 2026 * behavior does not meet RFC3542. 2027 */ 2028 switch (op) { 2029 case PRCO_SETOPT: 2030 error = sockopt_getint(sopt, &optval); 2031 if (error) 2032 break; 2033 if ((optval % 2) != 0) { 2034 /* the API assumes even offset values */ 2035 error = EINVAL; 2036 } else if (so->so_proto->pr_protocol == 2037 IPPROTO_ICMPV6) { 2038 if (optval != icmp6off) 2039 error = EINVAL; 2040 } else 2041 in6p->in6p_cksum = optval; 2042 break; 2043 2044 case PRCO_GETOPT: 2045 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2046 optval = icmp6off; 2047 else 2048 optval = in6p->in6p_cksum; 2049 2050 error = sockopt_setint(sopt, optval); 2051 break; 2052 2053 default: 2054 error = EINVAL; 2055 break; 2056 } 2057 break; 2058 2059 default: 2060 error = ENOPROTOOPT; 2061 break; 2062 } 2063 2064 return (error); 2065 } 2066 2067 #ifdef RFC2292 2068 /* 2069 * Set up IP6 options in pcb for insertion in output packets or 2070 * specifying behavior of outgoing packets. 2071 */ 2072 static int 2073 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so, 2074 struct sockopt *sopt) 2075 { 2076 struct ip6_pktopts *opt = *pktopt; 2077 struct mbuf *m; 2078 int error = 0; 2079 2080 KASSERT(solocked(so)); 2081 2082 /* turn off any old options. */ 2083 if (opt) { 2084 #ifdef DIAGNOSTIC 2085 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2086 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2087 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2088 printf("ip6_pcbopts: all specified options are cleared.\n"); 2089 #endif 2090 ip6_clearpktopts(opt, -1); 2091 } else { 2092 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2093 if (opt == NULL) 2094 return (ENOBUFS); 2095 } 2096 *pktopt = NULL; 2097 2098 if (sopt == NULL || sopt->sopt_size == 0) { 2099 /* 2100 * Only turning off any previous options, regardless of 2101 * whether the opt is just created or given. 2102 */ 2103 free(opt, M_IP6OPT); 2104 return (0); 2105 } 2106 2107 /* set options specified by user. */ 2108 m = sockopt_getmbuf(sopt); 2109 if (m == NULL) { 2110 free(opt, M_IP6OPT); 2111 return (ENOBUFS); 2112 } 2113 2114 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(), 2115 so->so_proto->pr_protocol); 2116 m_freem(m); 2117 if (error != 0) { 2118 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2119 free(opt, M_IP6OPT); 2120 return (error); 2121 } 2122 *pktopt = opt; 2123 return (0); 2124 } 2125 #endif 2126 2127 /* 2128 * initialize ip6_pktopts. beware that there are non-zero default values in 2129 * the struct. 2130 */ 2131 void 2132 ip6_initpktopts(struct ip6_pktopts *opt) 2133 { 2134 2135 memset(opt, 0, sizeof(*opt)); 2136 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2137 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2138 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2139 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2140 } 2141 2142 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */ 2143 static int 2144 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2145 kauth_cred_t cred, int uproto) 2146 { 2147 struct ip6_pktopts *opt; 2148 2149 if (*pktopt == NULL) { 2150 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2151 M_NOWAIT); 2152 if (*pktopt == NULL) 2153 return (ENOBUFS); 2154 2155 ip6_initpktopts(*pktopt); 2156 } 2157 opt = *pktopt; 2158 2159 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2160 } 2161 2162 static int 2163 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2164 { 2165 void *optdata = NULL; 2166 int optdatalen = 0; 2167 struct ip6_ext *ip6e; 2168 int error = 0; 2169 struct in6_pktinfo null_pktinfo; 2170 int deftclass = 0, on; 2171 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2172 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2173 2174 switch (optname) { 2175 case IPV6_PKTINFO: 2176 if (pktopt && pktopt->ip6po_pktinfo) 2177 optdata = (void *)pktopt->ip6po_pktinfo; 2178 else { 2179 /* XXX: we don't have to do this every time... */ 2180 memset(&null_pktinfo, 0, sizeof(null_pktinfo)); 2181 optdata = (void *)&null_pktinfo; 2182 } 2183 optdatalen = sizeof(struct in6_pktinfo); 2184 break; 2185 case IPV6_OTCLASS: 2186 /* XXX */ 2187 return (EINVAL); 2188 case IPV6_TCLASS: 2189 if (pktopt && pktopt->ip6po_tclass >= 0) 2190 optdata = (void *)&pktopt->ip6po_tclass; 2191 else 2192 optdata = (void *)&deftclass; 2193 optdatalen = sizeof(int); 2194 break; 2195 case IPV6_HOPOPTS: 2196 if (pktopt && pktopt->ip6po_hbh) { 2197 optdata = (void *)pktopt->ip6po_hbh; 2198 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2199 optdatalen = (ip6e->ip6e_len + 1) << 3; 2200 } 2201 break; 2202 case IPV6_RTHDR: 2203 if (pktopt && pktopt->ip6po_rthdr) { 2204 optdata = (void *)pktopt->ip6po_rthdr; 2205 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2206 optdatalen = (ip6e->ip6e_len + 1) << 3; 2207 } 2208 break; 2209 case IPV6_RTHDRDSTOPTS: 2210 if (pktopt && pktopt->ip6po_dest1) { 2211 optdata = (void *)pktopt->ip6po_dest1; 2212 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2213 optdatalen = (ip6e->ip6e_len + 1) << 3; 2214 } 2215 break; 2216 case IPV6_DSTOPTS: 2217 if (pktopt && pktopt->ip6po_dest2) { 2218 optdata = (void *)pktopt->ip6po_dest2; 2219 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2220 optdatalen = (ip6e->ip6e_len + 1) << 3; 2221 } 2222 break; 2223 case IPV6_NEXTHOP: 2224 if (pktopt && pktopt->ip6po_nexthop) { 2225 optdata = (void *)pktopt->ip6po_nexthop; 2226 optdatalen = pktopt->ip6po_nexthop->sa_len; 2227 } 2228 break; 2229 case IPV6_USE_MIN_MTU: 2230 if (pktopt) 2231 optdata = (void *)&pktopt->ip6po_minmtu; 2232 else 2233 optdata = (void *)&defminmtu; 2234 optdatalen = sizeof(int); 2235 break; 2236 case IPV6_DONTFRAG: 2237 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2238 on = 1; 2239 else 2240 on = 0; 2241 optdata = (void *)&on; 2242 optdatalen = sizeof(on); 2243 break; 2244 case IPV6_PREFER_TEMPADDR: 2245 if (pktopt) 2246 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2247 else 2248 optdata = (void *)&defpreftemp; 2249 optdatalen = sizeof(int); 2250 break; 2251 default: /* should not happen */ 2252 #ifdef DIAGNOSTIC 2253 panic("ip6_getpcbopt: unexpected option\n"); 2254 #endif 2255 return (ENOPROTOOPT); 2256 } 2257 2258 error = sockopt_set(sopt, optdata, optdatalen); 2259 2260 return (error); 2261 } 2262 2263 void 2264 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2265 { 2266 if (optname == -1 || optname == IPV6_PKTINFO) { 2267 if (pktopt->ip6po_pktinfo) 2268 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2269 pktopt->ip6po_pktinfo = NULL; 2270 } 2271 if (optname == -1 || optname == IPV6_HOPLIMIT) 2272 pktopt->ip6po_hlim = -1; 2273 if (optname == -1 || optname == IPV6_TCLASS) 2274 pktopt->ip6po_tclass = -1; 2275 if (optname == -1 || optname == IPV6_NEXTHOP) { 2276 rtcache_free(&pktopt->ip6po_nextroute); 2277 if (pktopt->ip6po_nexthop) 2278 free(pktopt->ip6po_nexthop, M_IP6OPT); 2279 pktopt->ip6po_nexthop = NULL; 2280 } 2281 if (optname == -1 || optname == IPV6_HOPOPTS) { 2282 if (pktopt->ip6po_hbh) 2283 free(pktopt->ip6po_hbh, M_IP6OPT); 2284 pktopt->ip6po_hbh = NULL; 2285 } 2286 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2287 if (pktopt->ip6po_dest1) 2288 free(pktopt->ip6po_dest1, M_IP6OPT); 2289 pktopt->ip6po_dest1 = NULL; 2290 } 2291 if (optname == -1 || optname == IPV6_RTHDR) { 2292 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2293 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2294 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2295 rtcache_free(&pktopt->ip6po_route); 2296 } 2297 if (optname == -1 || optname == IPV6_DSTOPTS) { 2298 if (pktopt->ip6po_dest2) 2299 free(pktopt->ip6po_dest2, M_IP6OPT); 2300 pktopt->ip6po_dest2 = NULL; 2301 } 2302 } 2303 2304 #define PKTOPT_EXTHDRCPY(type) \ 2305 do { \ 2306 if (src->type) { \ 2307 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2308 dst->type = malloc(hlen, M_IP6OPT, canwait); \ 2309 if (dst->type == NULL) \ 2310 goto bad; \ 2311 memcpy(dst->type, src->type, hlen); \ 2312 } \ 2313 } while (/*CONSTCOND*/ 0) 2314 2315 static int 2316 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2317 { 2318 dst->ip6po_hlim = src->ip6po_hlim; 2319 dst->ip6po_tclass = src->ip6po_tclass; 2320 dst->ip6po_flags = src->ip6po_flags; 2321 dst->ip6po_minmtu = src->ip6po_minmtu; 2322 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2323 if (src->ip6po_pktinfo) { 2324 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2325 M_IP6OPT, canwait); 2326 if (dst->ip6po_pktinfo == NULL) 2327 goto bad; 2328 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2329 } 2330 if (src->ip6po_nexthop) { 2331 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2332 M_IP6OPT, canwait); 2333 if (dst->ip6po_nexthop == NULL) 2334 goto bad; 2335 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop, 2336 src->ip6po_nexthop->sa_len); 2337 } 2338 PKTOPT_EXTHDRCPY(ip6po_hbh); 2339 PKTOPT_EXTHDRCPY(ip6po_dest1); 2340 PKTOPT_EXTHDRCPY(ip6po_dest2); 2341 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2342 return (0); 2343 2344 bad: 2345 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 2346 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 2347 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 2348 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 2349 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 2350 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 2351 2352 return (ENOBUFS); 2353 } 2354 #undef PKTOPT_EXTHDRCPY 2355 2356 struct ip6_pktopts * 2357 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2358 { 2359 int error; 2360 struct ip6_pktopts *dst; 2361 2362 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2363 if (dst == NULL) 2364 return (NULL); 2365 ip6_initpktopts(dst); 2366 2367 if ((error = copypktopts(dst, src, canwait)) != 0) { 2368 free(dst, M_IP6OPT); 2369 return (NULL); 2370 } 2371 2372 return (dst); 2373 } 2374 2375 void 2376 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2377 { 2378 if (pktopt == NULL) 2379 return; 2380 2381 ip6_clearpktopts(pktopt, -1); 2382 2383 free(pktopt, M_IP6OPT); 2384 } 2385 2386 int 2387 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp, 2388 struct psref *psref, void *v, size_t l) 2389 { 2390 struct ipv6_mreq mreq; 2391 int error; 2392 struct in6_addr *ia = &mreq.ipv6mr_multiaddr; 2393 struct in_addr *ia4 = (void *)&ia->s6_addr32[3]; 2394 2395 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2396 if (error != 0) 2397 return error; 2398 2399 if (IN6_IS_ADDR_UNSPECIFIED(ia)) { 2400 /* 2401 * We use the unspecified address to specify to accept 2402 * all multicast addresses. Only super user is allowed 2403 * to do this. 2404 */ 2405 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6, 2406 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL)) 2407 return EACCES; 2408 } else if (IN6_IS_ADDR_V4MAPPED(ia)) { 2409 // Don't bother if we are not going to use ifp. 2410 if (l == sizeof(*ia)) { 2411 memcpy(v, ia, l); 2412 return 0; 2413 } 2414 } else if (!IN6_IS_ADDR_MULTICAST(ia)) { 2415 return EINVAL; 2416 } 2417 2418 /* 2419 * If no interface was explicitly specified, choose an 2420 * appropriate one according to the given multicast address. 2421 */ 2422 if (mreq.ipv6mr_interface == 0) { 2423 struct rtentry *rt; 2424 union { 2425 struct sockaddr dst; 2426 struct sockaddr_in dst4; 2427 struct sockaddr_in6 dst6; 2428 } u; 2429 struct route ro; 2430 2431 /* 2432 * Look up the routing table for the 2433 * address, and choose the outgoing interface. 2434 * XXX: is it a good approach? 2435 */ 2436 memset(&ro, 0, sizeof(ro)); 2437 if (IN6_IS_ADDR_V4MAPPED(ia)) 2438 sockaddr_in_init(&u.dst4, ia4, 0); 2439 else 2440 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0); 2441 error = rtcache_setdst(&ro, &u.dst); 2442 if (error != 0) 2443 return error; 2444 rt = rtcache_init(&ro); 2445 *ifp = rt != NULL ? 2446 if_get_byindex(rt->rt_ifp->if_index, psref) : NULL; 2447 rtcache_unref(rt, &ro); 2448 rtcache_free(&ro); 2449 } else { 2450 /* 2451 * If the interface is specified, validate it. 2452 */ 2453 *ifp = if_get_byindex(mreq.ipv6mr_interface, psref); 2454 if (*ifp == NULL) 2455 return ENXIO; /* XXX EINVAL? */ 2456 } 2457 if (sizeof(*ia) == l) 2458 memcpy(v, ia, l); 2459 else 2460 memcpy(v, ia4, l); 2461 return 0; 2462 } 2463 2464 /* 2465 * Set the IP6 multicast options in response to user setsockopt(). 2466 */ 2467 static int 2468 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p) 2469 { 2470 int error = 0; 2471 u_int loop, ifindex; 2472 struct ipv6_mreq mreq; 2473 struct in6_addr ia; 2474 struct ifnet *ifp; 2475 struct ip6_moptions *im6o = in6p->in6p_moptions; 2476 struct in6_multi_mship *imm; 2477 2478 KASSERT(in6p_locked(in6p)); 2479 2480 if (im6o == NULL) { 2481 /* 2482 * No multicast option buffer attached to the pcb; 2483 * allocate one and initialize to default values. 2484 */ 2485 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT); 2486 if (im6o == NULL) 2487 return (ENOBUFS); 2488 in6p->in6p_moptions = im6o; 2489 im6o->im6o_multicast_if_index = 0; 2490 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2491 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2492 LIST_INIT(&im6o->im6o_memberships); 2493 } 2494 2495 switch (sopt->sopt_name) { 2496 2497 case IPV6_MULTICAST_IF: { 2498 int s; 2499 /* 2500 * Select the interface for outgoing multicast packets. 2501 */ 2502 error = sockopt_get(sopt, &ifindex, sizeof(ifindex)); 2503 if (error != 0) 2504 break; 2505 2506 s = pserialize_read_enter(); 2507 if (ifindex != 0) { 2508 if ((ifp = if_byindex(ifindex)) == NULL) { 2509 pserialize_read_exit(s); 2510 error = ENXIO; /* XXX EINVAL? */ 2511 break; 2512 } 2513 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 2514 pserialize_read_exit(s); 2515 error = EADDRNOTAVAIL; 2516 break; 2517 } 2518 } else 2519 ifp = NULL; 2520 im6o->im6o_multicast_if_index = if_get_index(ifp); 2521 pserialize_read_exit(s); 2522 break; 2523 } 2524 2525 case IPV6_MULTICAST_HOPS: 2526 { 2527 /* 2528 * Set the IP6 hoplimit for outgoing multicast packets. 2529 */ 2530 int optval; 2531 2532 error = sockopt_getint(sopt, &optval); 2533 if (error != 0) 2534 break; 2535 2536 if (optval < -1 || optval >= 256) 2537 error = EINVAL; 2538 else if (optval == -1) 2539 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2540 else 2541 im6o->im6o_multicast_hlim = optval; 2542 break; 2543 } 2544 2545 case IPV6_MULTICAST_LOOP: 2546 /* 2547 * Set the loopback flag for outgoing multicast packets. 2548 * Must be zero or one. 2549 */ 2550 error = sockopt_get(sopt, &loop, sizeof(loop)); 2551 if (error != 0) 2552 break; 2553 if (loop > 1) { 2554 error = EINVAL; 2555 break; 2556 } 2557 im6o->im6o_multicast_loop = loop; 2558 break; 2559 2560 case IPV6_JOIN_GROUP: { 2561 int bound; 2562 struct psref psref; 2563 /* 2564 * Add a multicast group membership. 2565 * Group must be a valid IP6 multicast address. 2566 */ 2567 bound = curlwp_bind(); 2568 ifp = NULL; 2569 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia)); 2570 if (error != 0) { 2571 KASSERT(ifp == NULL); 2572 curlwp_bindx(bound); 2573 return error; 2574 } 2575 2576 if (IN6_IS_ADDR_V4MAPPED(&ia)) { 2577 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt); 2578 goto put_break; 2579 } 2580 /* 2581 * See if we found an interface, and confirm that it 2582 * supports multicast 2583 */ 2584 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2585 error = EADDRNOTAVAIL; 2586 goto put_break; 2587 } 2588 2589 if (in6_setscope(&ia, ifp, NULL)) { 2590 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2591 goto put_break; 2592 } 2593 2594 /* 2595 * See if the membership already exists. 2596 */ 2597 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2598 if (imm->i6mm_maddr->in6m_ifp == ifp && 2599 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2600 &ia)) 2601 goto put_break; 2602 } 2603 if (imm != NULL) { 2604 error = EADDRINUSE; 2605 goto put_break; 2606 } 2607 /* 2608 * Everything looks good; add a new record to the multicast 2609 * address list for the given interface. 2610 */ 2611 IFNET_LOCK(ifp); 2612 imm = in6_joingroup(ifp, &ia, &error, 0); 2613 IFNET_UNLOCK(ifp); 2614 if (imm == NULL) 2615 goto put_break; 2616 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2617 put_break: 2618 if_put(ifp, &psref); 2619 curlwp_bindx(bound); 2620 break; 2621 } 2622 2623 case IPV6_LEAVE_GROUP: { 2624 struct ifnet *in6m_ifp; 2625 /* 2626 * Drop a multicast group membership. 2627 * Group must be a valid IP6 multicast address. 2628 */ 2629 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2630 if (error != 0) 2631 break; 2632 2633 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) { 2634 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt); 2635 break; 2636 } 2637 /* 2638 * If an interface address was specified, get a pointer 2639 * to its ifnet structure. 2640 */ 2641 if (mreq.ipv6mr_interface != 0) { 2642 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) { 2643 error = ENXIO; /* XXX EINVAL? */ 2644 break; 2645 } 2646 } else 2647 ifp = NULL; 2648 2649 /* Fill in the scope zone ID */ 2650 if (ifp) { 2651 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) { 2652 /* XXX: should not happen */ 2653 error = EADDRNOTAVAIL; 2654 break; 2655 } 2656 } else if (mreq.ipv6mr_interface != 0) { 2657 /* 2658 * XXX: This case would happens when the (positive) 2659 * index is in the valid range, but the corresponding 2660 * interface has been detached dynamically. The above 2661 * check probably avoids such case to happen here, but 2662 * we check it explicitly for safety. 2663 */ 2664 error = EADDRNOTAVAIL; 2665 break; 2666 } else { /* ipv6mr_interface == 0 */ 2667 struct sockaddr_in6 sa6_mc; 2668 2669 /* 2670 * The API spec says as follows: 2671 * If the interface index is specified as 0, the 2672 * system may choose a multicast group membership to 2673 * drop by matching the multicast address only. 2674 * On the other hand, we cannot disambiguate the scope 2675 * zone unless an interface is provided. Thus, we 2676 * check if there's ambiguity with the default scope 2677 * zone as the last resort. 2678 */ 2679 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr, 2680 0, 0, 0); 2681 error = sa6_embedscope(&sa6_mc, ip6_use_defzone); 2682 if (error != 0) 2683 break; 2684 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr; 2685 } 2686 2687 /* 2688 * Find the membership in the membership list. 2689 */ 2690 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2691 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2692 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2693 &mreq.ipv6mr_multiaddr)) 2694 break; 2695 } 2696 if (imm == NULL) { 2697 /* Unable to resolve interface */ 2698 error = EADDRNOTAVAIL; 2699 break; 2700 } 2701 /* 2702 * Give up the multicast address record to which the 2703 * membership points. 2704 */ 2705 LIST_REMOVE(imm, i6mm_chain); 2706 in6m_ifp = imm->i6mm_maddr->in6m_ifp; 2707 IFNET_LOCK(in6m_ifp); 2708 in6_leavegroup(imm); 2709 /* in6m_ifp should not leave thanks to in6p_lock */ 2710 IFNET_UNLOCK(in6m_ifp); 2711 break; 2712 } 2713 2714 default: 2715 error = EOPNOTSUPP; 2716 break; 2717 } 2718 2719 /* 2720 * If all options have default values, no need to keep the mbuf. 2721 */ 2722 if (im6o->im6o_multicast_if_index == 0 && 2723 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2724 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2725 LIST_EMPTY(&im6o->im6o_memberships)) { 2726 free(in6p->in6p_moptions, M_IPMOPTS); 2727 in6p->in6p_moptions = NULL; 2728 } 2729 2730 return (error); 2731 } 2732 2733 /* 2734 * Return the IP6 multicast options in response to user getsockopt(). 2735 */ 2736 static int 2737 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p) 2738 { 2739 u_int optval; 2740 int error; 2741 struct ip6_moptions *im6o = in6p->in6p_moptions; 2742 2743 switch (sopt->sopt_name) { 2744 case IPV6_MULTICAST_IF: 2745 if (im6o == NULL || im6o->im6o_multicast_if_index == 0) 2746 optval = 0; 2747 else 2748 optval = im6o->im6o_multicast_if_index; 2749 2750 error = sockopt_set(sopt, &optval, sizeof(optval)); 2751 break; 2752 2753 case IPV6_MULTICAST_HOPS: 2754 if (im6o == NULL) 2755 optval = ip6_defmcasthlim; 2756 else 2757 optval = im6o->im6o_multicast_hlim; 2758 2759 error = sockopt_set(sopt, &optval, sizeof(optval)); 2760 break; 2761 2762 case IPV6_MULTICAST_LOOP: 2763 if (im6o == NULL) 2764 optval = IPV6_DEFAULT_MULTICAST_LOOP; 2765 else 2766 optval = im6o->im6o_multicast_loop; 2767 2768 error = sockopt_set(sopt, &optval, sizeof(optval)); 2769 break; 2770 2771 default: 2772 error = EOPNOTSUPP; 2773 } 2774 2775 return (error); 2776 } 2777 2778 /* 2779 * Discard the IP6 multicast options. 2780 */ 2781 void 2782 ip6_freemoptions(struct ip6_moptions *im6o) 2783 { 2784 struct in6_multi_mship *imm, *nimm; 2785 2786 if (im6o == NULL) 2787 return; 2788 2789 /* The owner of im6o (in6p) should be protected by solock */ 2790 LIST_FOREACH_SAFE(imm, &im6o->im6o_memberships, i6mm_chain, nimm) { 2791 struct ifnet *ifp; 2792 2793 LIST_REMOVE(imm, i6mm_chain); 2794 2795 ifp = imm->i6mm_maddr->in6m_ifp; 2796 IFNET_LOCK(ifp); 2797 in6_leavegroup(imm); 2798 /* ifp should not leave thanks to solock */ 2799 IFNET_UNLOCK(ifp); 2800 } 2801 free(im6o, M_IPMOPTS); 2802 } 2803 2804 /* 2805 * Set IPv6 outgoing packet options based on advanced API. 2806 */ 2807 int 2808 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2809 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto) 2810 { 2811 struct cmsghdr *cm = 0; 2812 2813 if (control == NULL || opt == NULL) 2814 return (EINVAL); 2815 2816 ip6_initpktopts(opt); 2817 if (stickyopt) { 2818 int error; 2819 2820 /* 2821 * If stickyopt is provided, make a local copy of the options 2822 * for this particular packet, then override them by ancillary 2823 * objects. 2824 * XXX: copypktopts() does not copy the cached route to a next 2825 * hop (if any). This is not very good in terms of efficiency, 2826 * but we can allow this since this option should be rarely 2827 * used. 2828 */ 2829 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2830 return (error); 2831 } 2832 2833 /* 2834 * XXX: Currently, we assume all the optional information is stored 2835 * in a single mbuf. 2836 */ 2837 if (control->m_next) 2838 return (EINVAL); 2839 2840 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */ 2841 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2842 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2843 int error; 2844 2845 if (control->m_len < CMSG_LEN(0)) 2846 return (EINVAL); 2847 2848 cm = mtod(control, struct cmsghdr *); 2849 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2850 return (EINVAL); 2851 if (cm->cmsg_level != IPPROTO_IPV6) 2852 continue; 2853 2854 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2855 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2856 if (error) 2857 return (error); 2858 } 2859 2860 return (0); 2861 } 2862 2863 /* 2864 * Set a particular packet option, as a sticky option or an ancillary data 2865 * item. "len" can be 0 only when it's a sticky option. 2866 * We have 4 cases of combination of "sticky" and "cmsg": 2867 * "sticky=0, cmsg=0": impossible 2868 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2869 * "sticky=1, cmsg=0": RFC3542 socket option 2870 * "sticky=1, cmsg=1": RFC2292 socket option 2871 */ 2872 static int 2873 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2874 kauth_cred_t cred, int sticky, int cmsg, int uproto) 2875 { 2876 int minmtupolicy; 2877 int error; 2878 2879 if (!sticky && !cmsg) { 2880 #ifdef DIAGNOSTIC 2881 printf("ip6_setpktopt: impossible case\n"); 2882 #endif 2883 return (EINVAL); 2884 } 2885 2886 /* 2887 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2888 * not be specified in the context of RFC3542. Conversely, 2889 * RFC3542 types should not be specified in the context of RFC2292. 2890 */ 2891 if (!cmsg) { 2892 switch (optname) { 2893 case IPV6_2292PKTINFO: 2894 case IPV6_2292HOPLIMIT: 2895 case IPV6_2292NEXTHOP: 2896 case IPV6_2292HOPOPTS: 2897 case IPV6_2292DSTOPTS: 2898 case IPV6_2292RTHDR: 2899 case IPV6_2292PKTOPTIONS: 2900 return (ENOPROTOOPT); 2901 } 2902 } 2903 if (sticky && cmsg) { 2904 switch (optname) { 2905 case IPV6_PKTINFO: 2906 case IPV6_HOPLIMIT: 2907 case IPV6_NEXTHOP: 2908 case IPV6_HOPOPTS: 2909 case IPV6_DSTOPTS: 2910 case IPV6_RTHDRDSTOPTS: 2911 case IPV6_RTHDR: 2912 case IPV6_USE_MIN_MTU: 2913 case IPV6_DONTFRAG: 2914 case IPV6_OTCLASS: 2915 case IPV6_TCLASS: 2916 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */ 2917 return (ENOPROTOOPT); 2918 } 2919 } 2920 2921 switch (optname) { 2922 #ifdef RFC2292 2923 case IPV6_2292PKTINFO: 2924 #endif 2925 case IPV6_PKTINFO: 2926 { 2927 struct in6_pktinfo *pktinfo; 2928 2929 if (len != sizeof(struct in6_pktinfo)) 2930 return (EINVAL); 2931 2932 pktinfo = (struct in6_pktinfo *)buf; 2933 2934 /* 2935 * An application can clear any sticky IPV6_PKTINFO option by 2936 * doing a "regular" setsockopt with ipi6_addr being 2937 * in6addr_any and ipi6_ifindex being zero. 2938 * [RFC 3542, Section 6] 2939 */ 2940 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2941 pktinfo->ipi6_ifindex == 0 && 2942 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2943 ip6_clearpktopts(opt, optname); 2944 break; 2945 } 2946 2947 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2948 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2949 return (EINVAL); 2950 } 2951 2952 /* Validate the interface index if specified. */ 2953 if (pktinfo->ipi6_ifindex) { 2954 struct ifnet *ifp; 2955 int s = pserialize_read_enter(); 2956 ifp = if_byindex(pktinfo->ipi6_ifindex); 2957 if (ifp == NULL) { 2958 pserialize_read_exit(s); 2959 return ENXIO; 2960 } 2961 pserialize_read_exit(s); 2962 } 2963 2964 /* 2965 * We store the address anyway, and let in6_selectsrc() 2966 * validate the specified address. This is because ipi6_addr 2967 * may not have enough information about its scope zone, and 2968 * we may need additional information (such as outgoing 2969 * interface or the scope zone of a destination address) to 2970 * disambiguate the scope. 2971 * XXX: the delay of the validation may confuse the 2972 * application when it is used as a sticky option. 2973 */ 2974 if (opt->ip6po_pktinfo == NULL) { 2975 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2976 M_IP6OPT, M_NOWAIT); 2977 if (opt->ip6po_pktinfo == NULL) 2978 return (ENOBUFS); 2979 } 2980 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo)); 2981 break; 2982 } 2983 2984 #ifdef RFC2292 2985 case IPV6_2292HOPLIMIT: 2986 #endif 2987 case IPV6_HOPLIMIT: 2988 { 2989 int *hlimp; 2990 2991 /* 2992 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2993 * to simplify the ordering among hoplimit options. 2994 */ 2995 if (optname == IPV6_HOPLIMIT && sticky) 2996 return (ENOPROTOOPT); 2997 2998 if (len != sizeof(int)) 2999 return (EINVAL); 3000 hlimp = (int *)buf; 3001 if (*hlimp < -1 || *hlimp > 255) 3002 return (EINVAL); 3003 3004 opt->ip6po_hlim = *hlimp; 3005 break; 3006 } 3007 3008 case IPV6_OTCLASS: 3009 if (len != sizeof(u_int8_t)) 3010 return (EINVAL); 3011 3012 opt->ip6po_tclass = *(u_int8_t *)buf; 3013 break; 3014 3015 case IPV6_TCLASS: 3016 { 3017 int tclass; 3018 3019 if (len != sizeof(int)) 3020 return (EINVAL); 3021 tclass = *(int *)buf; 3022 if (tclass < -1 || tclass > 255) 3023 return (EINVAL); 3024 3025 opt->ip6po_tclass = tclass; 3026 break; 3027 } 3028 3029 #ifdef RFC2292 3030 case IPV6_2292NEXTHOP: 3031 #endif 3032 case IPV6_NEXTHOP: 3033 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 3034 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 3035 if (error) 3036 return (error); 3037 3038 if (len == 0) { /* just remove the option */ 3039 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3040 break; 3041 } 3042 3043 /* check if cmsg_len is large enough for sa_len */ 3044 if (len < sizeof(struct sockaddr) || len < *buf) 3045 return (EINVAL); 3046 3047 switch (((struct sockaddr *)buf)->sa_family) { 3048 case AF_INET6: 3049 { 3050 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3051 3052 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3053 return (EINVAL); 3054 3055 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3056 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3057 return (EINVAL); 3058 } 3059 if ((error = sa6_embedscope(sa6, ip6_use_defzone)) 3060 != 0) { 3061 return (error); 3062 } 3063 break; 3064 } 3065 case AF_LINK: /* eventually be supported? */ 3066 default: 3067 return (EAFNOSUPPORT); 3068 } 3069 3070 /* turn off the previous option, then set the new option. */ 3071 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3072 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3073 if (opt->ip6po_nexthop == NULL) 3074 return (ENOBUFS); 3075 memcpy(opt->ip6po_nexthop, buf, *buf); 3076 break; 3077 3078 #ifdef RFC2292 3079 case IPV6_2292HOPOPTS: 3080 #endif 3081 case IPV6_HOPOPTS: 3082 { 3083 struct ip6_hbh *hbh; 3084 int hbhlen; 3085 3086 /* 3087 * XXX: We don't allow a non-privileged user to set ANY HbH 3088 * options, since per-option restriction has too much 3089 * overhead. 3090 */ 3091 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 3092 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 3093 if (error) 3094 return (error); 3095 3096 if (len == 0) { 3097 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3098 break; /* just remove the option */ 3099 } 3100 3101 /* message length validation */ 3102 if (len < sizeof(struct ip6_hbh)) 3103 return (EINVAL); 3104 hbh = (struct ip6_hbh *)buf; 3105 hbhlen = (hbh->ip6h_len + 1) << 3; 3106 if (len != hbhlen) 3107 return (EINVAL); 3108 3109 /* turn off the previous option, then set the new option. */ 3110 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3111 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3112 if (opt->ip6po_hbh == NULL) 3113 return (ENOBUFS); 3114 memcpy(opt->ip6po_hbh, hbh, hbhlen); 3115 3116 break; 3117 } 3118 3119 #ifdef RFC2292 3120 case IPV6_2292DSTOPTS: 3121 #endif 3122 case IPV6_DSTOPTS: 3123 case IPV6_RTHDRDSTOPTS: 3124 { 3125 struct ip6_dest *dest, **newdest = NULL; 3126 int destlen; 3127 3128 /* XXX: see the comment for IPV6_HOPOPTS */ 3129 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 3130 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 3131 if (error) 3132 return (error); 3133 3134 if (len == 0) { 3135 ip6_clearpktopts(opt, optname); 3136 break; /* just remove the option */ 3137 } 3138 3139 /* message length validation */ 3140 if (len < sizeof(struct ip6_dest)) 3141 return (EINVAL); 3142 dest = (struct ip6_dest *)buf; 3143 destlen = (dest->ip6d_len + 1) << 3; 3144 if (len != destlen) 3145 return (EINVAL); 3146 /* 3147 * Determine the position that the destination options header 3148 * should be inserted; before or after the routing header. 3149 */ 3150 switch (optname) { 3151 case IPV6_2292DSTOPTS: 3152 /* 3153 * The old advanced API is ambiguous on this point. 3154 * Our approach is to determine the position based 3155 * according to the existence of a routing header. 3156 * Note, however, that this depends on the order of the 3157 * extension headers in the ancillary data; the 1st 3158 * part of the destination options header must appear 3159 * before the routing header in the ancillary data, 3160 * too. 3161 * RFC3542 solved the ambiguity by introducing 3162 * separate ancillary data or option types. 3163 */ 3164 if (opt->ip6po_rthdr == NULL) 3165 newdest = &opt->ip6po_dest1; 3166 else 3167 newdest = &opt->ip6po_dest2; 3168 break; 3169 case IPV6_RTHDRDSTOPTS: 3170 newdest = &opt->ip6po_dest1; 3171 break; 3172 case IPV6_DSTOPTS: 3173 newdest = &opt->ip6po_dest2; 3174 break; 3175 } 3176 3177 /* turn off the previous option, then set the new option. */ 3178 ip6_clearpktopts(opt, optname); 3179 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3180 if (*newdest == NULL) 3181 return (ENOBUFS); 3182 memcpy(*newdest, dest, destlen); 3183 3184 break; 3185 } 3186 3187 #ifdef RFC2292 3188 case IPV6_2292RTHDR: 3189 #endif 3190 case IPV6_RTHDR: 3191 { 3192 struct ip6_rthdr *rth; 3193 int rthlen; 3194 3195 if (len == 0) { 3196 ip6_clearpktopts(opt, IPV6_RTHDR); 3197 break; /* just remove the option */ 3198 } 3199 3200 /* message length validation */ 3201 if (len < sizeof(struct ip6_rthdr)) 3202 return (EINVAL); 3203 rth = (struct ip6_rthdr *)buf; 3204 rthlen = (rth->ip6r_len + 1) << 3; 3205 if (len != rthlen) 3206 return (EINVAL); 3207 switch (rth->ip6r_type) { 3208 case IPV6_RTHDR_TYPE_0: 3209 if (rth->ip6r_len == 0) /* must contain one addr */ 3210 return (EINVAL); 3211 if (rth->ip6r_len % 2) /* length must be even */ 3212 return (EINVAL); 3213 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3214 return (EINVAL); 3215 break; 3216 default: 3217 return (EINVAL); /* not supported */ 3218 } 3219 /* turn off the previous option */ 3220 ip6_clearpktopts(opt, IPV6_RTHDR); 3221 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3222 if (opt->ip6po_rthdr == NULL) 3223 return (ENOBUFS); 3224 memcpy(opt->ip6po_rthdr, rth, rthlen); 3225 break; 3226 } 3227 3228 case IPV6_USE_MIN_MTU: 3229 if (len != sizeof(int)) 3230 return (EINVAL); 3231 minmtupolicy = *(int *)buf; 3232 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3233 minmtupolicy != IP6PO_MINMTU_DISABLE && 3234 minmtupolicy != IP6PO_MINMTU_ALL) { 3235 return (EINVAL); 3236 } 3237 opt->ip6po_minmtu = minmtupolicy; 3238 break; 3239 3240 case IPV6_DONTFRAG: 3241 if (len != sizeof(int)) 3242 return (EINVAL); 3243 3244 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3245 /* 3246 * we ignore this option for TCP sockets. 3247 * (RFC3542 leaves this case unspecified.) 3248 */ 3249 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3250 } else 3251 opt->ip6po_flags |= IP6PO_DONTFRAG; 3252 break; 3253 3254 case IPV6_PREFER_TEMPADDR: 3255 { 3256 int preftemp; 3257 3258 if (len != sizeof(int)) 3259 return (EINVAL); 3260 preftemp = *(int *)buf; 3261 switch (preftemp) { 3262 case IP6PO_TEMPADDR_SYSTEM: 3263 case IP6PO_TEMPADDR_NOTPREFER: 3264 case IP6PO_TEMPADDR_PREFER: 3265 break; 3266 default: 3267 return (EINVAL); 3268 } 3269 opt->ip6po_prefer_tempaddr = preftemp; 3270 break; 3271 } 3272 3273 default: 3274 return (ENOPROTOOPT); 3275 } /* end of switch */ 3276 3277 return (0); 3278 } 3279 3280 /* 3281 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3282 * packet to the input queue of a specified interface. Note that this 3283 * calls the output routine of the loopback "driver", but with an interface 3284 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 3285 */ 3286 void 3287 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, 3288 const struct sockaddr_in6 *dst) 3289 { 3290 struct mbuf *copym; 3291 struct ip6_hdr *ip6; 3292 3293 copym = m_copy(m, 0, M_COPYALL); 3294 if (copym == NULL) 3295 return; 3296 3297 /* 3298 * Make sure to deep-copy IPv6 header portion in case the data 3299 * is in an mbuf cluster, so that we can safely override the IPv6 3300 * header portion later. 3301 */ 3302 if ((copym->m_flags & M_EXT) != 0 || 3303 copym->m_len < sizeof(struct ip6_hdr)) { 3304 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3305 if (copym == NULL) 3306 return; 3307 } 3308 3309 #ifdef DIAGNOSTIC 3310 if (copym->m_len < sizeof(*ip6)) { 3311 m_freem(copym); 3312 return; 3313 } 3314 #endif 3315 3316 ip6 = mtod(copym, struct ip6_hdr *); 3317 /* 3318 * clear embedded scope identifiers if necessary. 3319 * in6_clearscope will touch the addresses only when necessary. 3320 */ 3321 in6_clearscope(&ip6->ip6_src); 3322 in6_clearscope(&ip6->ip6_dst); 3323 3324 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL); 3325 } 3326 3327 /* 3328 * Chop IPv6 header off from the payload. 3329 */ 3330 static int 3331 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3332 { 3333 struct mbuf *mh; 3334 struct ip6_hdr *ip6; 3335 3336 ip6 = mtod(m, struct ip6_hdr *); 3337 if (m->m_len > sizeof(*ip6)) { 3338 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3339 if (mh == NULL) { 3340 m_freem(m); 3341 return ENOBUFS; 3342 } 3343 M_MOVE_PKTHDR(mh, m); 3344 MH_ALIGN(mh, sizeof(*ip6)); 3345 m->m_len -= sizeof(*ip6); 3346 m->m_data += sizeof(*ip6); 3347 mh->m_next = m; 3348 mh->m_len = sizeof(*ip6); 3349 memcpy(mtod(mh, void *), (void *)ip6, sizeof(*ip6)); 3350 m = mh; 3351 } 3352 exthdrs->ip6e_ip6 = m; 3353 return 0; 3354 } 3355 3356 /* 3357 * Compute IPv6 extension header length. 3358 */ 3359 int 3360 ip6_optlen(struct in6pcb *in6p) 3361 { 3362 int len; 3363 3364 if (!in6p->in6p_outputopts) 3365 return 0; 3366 3367 len = 0; 3368 #define elen(x) \ 3369 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3370 3371 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3372 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3373 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3374 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3375 return len; 3376 #undef elen 3377 } 3378 3379 /* 3380 * Ensure sending address is valid. 3381 * Returns 0 on success, -1 if an error should be sent back or 1 3382 * if the packet could be dropped without error (protocol dependent). 3383 */ 3384 static int 3385 ip6_ifaddrvalid(const struct in6_addr *src, const struct in6_addr *dst) 3386 { 3387 struct sockaddr_in6 sin6; 3388 int s, error; 3389 struct ifaddr *ifa; 3390 struct in6_ifaddr *ia6; 3391 3392 if (IN6_IS_ADDR_UNSPECIFIED(src)) 3393 return 0; 3394 3395 memset(&sin6, 0, sizeof(sin6)); 3396 sin6.sin6_family = AF_INET6; 3397 sin6.sin6_len = sizeof(sin6); 3398 sin6.sin6_addr = *src; 3399 3400 s = pserialize_read_enter(); 3401 ifa = ifa_ifwithaddr(sin6tosa(&sin6)); 3402 if ((ia6 = ifatoia6(ifa)) == NULL || 3403 ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED)) 3404 error = -1; 3405 else if (ia6->ia6_flags & IN6_IFF_TENTATIVE) 3406 error = 1; 3407 else if (ia6->ia6_flags & IN6_IFF_DETACHED && 3408 (sin6.sin6_addr = *dst, ifa_ifwithaddr(sin6tosa(&sin6)) == NULL)) 3409 /* Allow internal traffic to DETACHED addresses */ 3410 error = 1; 3411 else 3412 error = 0; 3413 pserialize_read_exit(s); 3414 3415 return error; 3416 } 3417