1 /* $NetBSD: ip6_output.c,v 1.193 2017/08/02 01:28:03 ozaki-r Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.193 2017/08/02 01:28:03 ozaki-r Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/malloc.h> 75 #include <sys/mbuf.h> 76 #include <sys/errno.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/syslog.h> 80 #include <sys/systm.h> 81 #include <sys/proc.h> 82 #include <sys/kauth.h> 83 84 #include <net/if.h> 85 #include <net/route.h> 86 #include <net/pfil.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/ip6.h> 91 #include <netinet/ip_var.h> 92 #include <netinet/icmp6.h> 93 #include <netinet/in_offload.h> 94 #include <netinet/portalgo.h> 95 #include <netinet6/in6_offload.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/ip6_private.h> 98 #include <netinet6/in6_pcb.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6protosw.h> 101 #include <netinet6/scope6_var.h> 102 103 #ifdef IPSEC 104 #include <netipsec/ipsec.h> 105 #include <netipsec/ipsec6.h> 106 #include <netipsec/key.h> 107 #include <netipsec/xform.h> 108 #endif 109 110 111 #include <net/net_osdep.h> 112 113 extern pfil_head_t *inet6_pfil_hook; /* XXX */ 114 115 struct ip6_exthdrs { 116 struct mbuf *ip6e_ip6; 117 struct mbuf *ip6e_hbh; 118 struct mbuf *ip6e_dest1; 119 struct mbuf *ip6e_rthdr; 120 struct mbuf *ip6e_dest2; 121 }; 122 123 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 124 kauth_cred_t, int); 125 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 126 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t, 127 int, int, int); 128 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *); 129 static int ip6_getmoptions(struct sockopt *, struct in6pcb *); 130 static int ip6_copyexthdr(struct mbuf **, void *, int); 131 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 132 struct ip6_frag **); 133 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 134 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 135 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *); 136 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 137 static int ip6_ifaddrvalid(const struct in6_addr *); 138 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *); 139 140 #ifdef RFC2292 141 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *); 142 #endif 143 144 static int 145 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6) 146 { 147 struct ip6_rthdr0 *rh0; 148 struct in6_addr *addr; 149 struct sockaddr_in6 sa; 150 int error = 0; 151 152 switch (rh->ip6r_type) { 153 case IPV6_RTHDR_TYPE_0: 154 rh0 = (struct ip6_rthdr0 *)rh; 155 addr = (struct in6_addr *)(rh0 + 1); 156 157 /* 158 * construct a sockaddr_in6 form of the first hop. 159 * 160 * XXX we may not have enough information about its scope zone; 161 * there is no standard API to pass the information from the 162 * application. 163 */ 164 sockaddr_in6_init(&sa, addr, 0, 0, 0); 165 error = sa6_embedscope(&sa, ip6_use_defzone); 166 if (error != 0) 167 break; 168 (void)memmove(&addr[0], &addr[1], 169 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)); 170 addr[rh0->ip6r0_segleft - 1] = ip6->ip6_dst; 171 ip6->ip6_dst = sa.sin6_addr; 172 /* XXX */ 173 in6_clearscope(addr + rh0->ip6r0_segleft - 1); 174 break; 175 default: /* is it possible? */ 176 error = EINVAL; 177 } 178 179 return error; 180 } 181 182 /* 183 * Send an IP packet to a host. 184 */ 185 int 186 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp, 187 struct mbuf * const m, 188 const struct sockaddr_in6 * const dst, const struct rtentry *rt) 189 { 190 int error = 0; 191 192 if (rt != NULL) { 193 error = rt_check_reject_route(rt, ifp); 194 if (error != 0) { 195 m_freem(m); 196 return error; 197 } 198 } 199 200 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 201 error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt); 202 else 203 error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt); 204 return error; 205 } 206 207 /* 208 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 209 * header (with pri, len, nxt, hlim, src, dst). 210 * This function may modify ver and hlim only. 211 * The mbuf chain containing the packet will be freed. 212 * The mbuf opt, if present, will not be freed. 213 * 214 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 215 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 216 * which is rt_rmx.rmx_mtu. 217 */ 218 int 219 ip6_output( 220 struct mbuf *m0, 221 struct ip6_pktopts *opt, 222 struct route *ro, 223 int flags, 224 struct ip6_moptions *im6o, 225 struct in6pcb *in6p, 226 struct ifnet **ifpp /* XXX: just for statistics */ 227 ) 228 { 229 struct ip6_hdr *ip6, *mhip6; 230 struct ifnet *ifp = NULL, *origifp = NULL; 231 struct mbuf *m = m0; 232 int hlen, tlen, len, off; 233 bool tso; 234 struct route ip6route; 235 struct rtentry *rt = NULL, *rt_pmtu; 236 const struct sockaddr_in6 *dst; 237 struct sockaddr_in6 src_sa, dst_sa; 238 int error = 0; 239 struct in6_ifaddr *ia = NULL; 240 u_long mtu; 241 int alwaysfrag, dontfrag; 242 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 243 struct ip6_exthdrs exthdrs; 244 struct in6_addr finaldst, src0, dst0; 245 u_int32_t zone; 246 struct route *ro_pmtu = NULL; 247 int hdrsplit = 0; 248 int needipsec = 0; 249 #ifdef IPSEC 250 struct secpolicy *sp = NULL; 251 #endif 252 struct psref psref, psref_ia; 253 int bound = curlwp_bind(); 254 bool release_psref_ia = false; 255 256 #ifdef DIAGNOSTIC 257 if ((m->m_flags & M_PKTHDR) == 0) 258 panic("ip6_output: no HDR"); 259 260 if ((m->m_pkthdr.csum_flags & 261 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) { 262 panic("ip6_output: IPv4 checksum offload flags: %d", 263 m->m_pkthdr.csum_flags); 264 } 265 266 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 267 (M_CSUM_TCPv6|M_CSUM_UDPv6)) { 268 panic("ip6_output: conflicting checksum offload flags: %d", 269 m->m_pkthdr.csum_flags); 270 } 271 #endif 272 273 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr)); 274 275 #define MAKE_EXTHDR(hp, mp) \ 276 do { \ 277 if (hp) { \ 278 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 279 error = ip6_copyexthdr((mp), (void *)(hp), \ 280 ((eh)->ip6e_len + 1) << 3); \ 281 if (error) \ 282 goto freehdrs; \ 283 } \ 284 } while (/*CONSTCOND*/ 0) 285 286 memset(&exthdrs, 0, sizeof(exthdrs)); 287 if (opt) { 288 /* Hop-by-Hop options header */ 289 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 290 /* Destination options header(1st part) */ 291 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 292 /* Routing header */ 293 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 294 /* Destination options header(2nd part) */ 295 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 296 } 297 298 /* 299 * Calculate the total length of the extension header chain. 300 * Keep the length of the unfragmentable part for fragmentation. 301 */ 302 optlen = 0; 303 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 304 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 305 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 306 unfragpartlen = optlen + sizeof(struct ip6_hdr); 307 /* NOTE: we don't add AH/ESP length here. do that later. */ 308 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 309 310 #ifdef IPSEC 311 if (ipsec_used) { 312 /* Check the security policy (SP) for the packet */ 313 314 sp = ipsec6_check_policy(m, in6p, flags, &needipsec, &error); 315 if (error != 0) { 316 /* 317 * Hack: -EINVAL is used to signal that a packet 318 * should be silently discarded. This is typically 319 * because we asked key management for an SA and 320 * it was delayed (e.g. kicked up to IKE). 321 */ 322 if (error == -EINVAL) 323 error = 0; 324 goto freehdrs; 325 } 326 } 327 #endif /* IPSEC */ 328 329 330 if (needipsec && 331 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 332 in6_delayed_cksum(m); 333 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 334 } 335 336 337 /* 338 * If we need IPsec, or there is at least one extension header, 339 * separate IP6 header from the payload. 340 */ 341 if ((needipsec || optlen) && !hdrsplit) { 342 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 343 m = NULL; 344 goto freehdrs; 345 } 346 m = exthdrs.ip6e_ip6; 347 hdrsplit++; 348 } 349 350 /* adjust pointer */ 351 ip6 = mtod(m, struct ip6_hdr *); 352 353 /* adjust mbuf packet header length */ 354 m->m_pkthdr.len += optlen; 355 plen = m->m_pkthdr.len - sizeof(*ip6); 356 357 /* If this is a jumbo payload, insert a jumbo payload option. */ 358 if (plen > IPV6_MAXPACKET) { 359 if (!hdrsplit) { 360 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 361 m = NULL; 362 goto freehdrs; 363 } 364 m = exthdrs.ip6e_ip6; 365 hdrsplit++; 366 } 367 /* adjust pointer */ 368 ip6 = mtod(m, struct ip6_hdr *); 369 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 370 goto freehdrs; 371 optlen += 8; /* XXX JUMBOOPTLEN */ 372 ip6->ip6_plen = 0; 373 } else 374 ip6->ip6_plen = htons(plen); 375 376 /* 377 * Concatenate headers and fill in next header fields. 378 * Here we have, on "m" 379 * IPv6 payload 380 * and we insert headers accordingly. Finally, we should be getting: 381 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 382 * 383 * during the header composing process, "m" points to IPv6 header. 384 * "mprev" points to an extension header prior to esp. 385 */ 386 { 387 u_char *nexthdrp = &ip6->ip6_nxt; 388 struct mbuf *mprev = m; 389 390 /* 391 * we treat dest2 specially. this makes IPsec processing 392 * much easier. the goal here is to make mprev point the 393 * mbuf prior to dest2. 394 * 395 * result: IPv6 dest2 payload 396 * m and mprev will point to IPv6 header. 397 */ 398 if (exthdrs.ip6e_dest2) { 399 if (!hdrsplit) 400 panic("assumption failed: hdr not split"); 401 exthdrs.ip6e_dest2->m_next = m->m_next; 402 m->m_next = exthdrs.ip6e_dest2; 403 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 404 ip6->ip6_nxt = IPPROTO_DSTOPTS; 405 } 406 407 #define MAKE_CHAIN(m, mp, p, i)\ 408 do {\ 409 if (m) {\ 410 if (!hdrsplit) \ 411 panic("assumption failed: hdr not split"); \ 412 *mtod((m), u_char *) = *(p);\ 413 *(p) = (i);\ 414 p = mtod((m), u_char *);\ 415 (m)->m_next = (mp)->m_next;\ 416 (mp)->m_next = (m);\ 417 (mp) = (m);\ 418 }\ 419 } while (/*CONSTCOND*/ 0) 420 /* 421 * result: IPv6 hbh dest1 rthdr dest2 payload 422 * m will point to IPv6 header. mprev will point to the 423 * extension header prior to dest2 (rthdr in the above case). 424 */ 425 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 426 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 427 IPPROTO_DSTOPTS); 428 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 429 IPPROTO_ROUTING); 430 431 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, 432 sizeof(struct ip6_hdr) + optlen); 433 } 434 435 /* Need to save for pmtu */ 436 finaldst = ip6->ip6_dst; 437 438 /* 439 * If there is a routing header, replace destination address field 440 * with the first hop of the routing header. 441 */ 442 if (exthdrs.ip6e_rthdr) { 443 struct ip6_rthdr *rh; 444 445 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 446 struct ip6_rthdr *)); 447 448 error = ip6_handle_rthdr(rh, ip6); 449 if (error != 0) 450 goto bad; 451 } 452 453 /* Source address validation */ 454 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 455 (flags & IPV6_UNSPECSRC) == 0) { 456 error = EOPNOTSUPP; 457 IP6_STATINC(IP6_STAT_BADSCOPE); 458 goto bad; 459 } 460 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 461 error = EOPNOTSUPP; 462 IP6_STATINC(IP6_STAT_BADSCOPE); 463 goto bad; 464 } 465 466 IP6_STATINC(IP6_STAT_LOCALOUT); 467 468 /* 469 * Route packet. 470 */ 471 /* initialize cached route */ 472 if (ro == NULL) { 473 memset(&ip6route, 0, sizeof(ip6route)); 474 ro = &ip6route; 475 } 476 ro_pmtu = ro; 477 if (opt && opt->ip6po_rthdr) 478 ro = &opt->ip6po_route; 479 480 /* 481 * if specified, try to fill in the traffic class field. 482 * do not override if a non-zero value is already set. 483 * we check the diffserv field and the ecn field separately. 484 */ 485 if (opt && opt->ip6po_tclass >= 0) { 486 int mask = 0; 487 488 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 489 mask |= 0xfc; 490 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 491 mask |= 0x03; 492 if (mask != 0) 493 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 494 } 495 496 /* fill in or override the hop limit field, if necessary. */ 497 if (opt && opt->ip6po_hlim != -1) 498 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 499 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 500 if (im6o != NULL) 501 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 502 else 503 ip6->ip6_hlim = ip6_defmcasthlim; 504 } 505 506 #ifdef IPSEC 507 if (needipsec) { 508 int s = splsoftnet(); 509 error = ipsec6_process_packet(m, sp->req); 510 511 /* 512 * Preserve KAME behaviour: ENOENT can be returned 513 * when an SA acquire is in progress. Don't propagate 514 * this to user-level; it confuses applications. 515 * XXX this will go away when the SADB is redone. 516 */ 517 if (error == ENOENT) 518 error = 0; 519 splx(s); 520 goto done; 521 } 522 #endif /* IPSEC */ 523 524 /* adjust pointer */ 525 ip6 = mtod(m, struct ip6_hdr *); 526 527 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 528 529 /* We do not need a route for multicast */ 530 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 531 struct in6_pktinfo *pi = NULL; 532 533 /* 534 * If the outgoing interface for the address is specified by 535 * the caller, use it. 536 */ 537 if (opt && (pi = opt->ip6po_pktinfo) != NULL) { 538 /* XXX boundary check is assumed to be already done. */ 539 ifp = if_get_byindex(pi->ipi6_ifindex, &psref); 540 } else if (im6o != NULL) { 541 ifp = if_get_byindex(im6o->im6o_multicast_if_index, 542 &psref); 543 } 544 } 545 546 if (ifp == NULL) { 547 error = in6_selectroute(&dst_sa, opt, &ro, &rt, true); 548 if (error != 0) 549 goto bad; 550 ifp = if_get_byindex(rt->rt_ifp->if_index, &psref); 551 } 552 553 if (rt == NULL) { 554 /* 555 * If in6_selectroute() does not return a route entry, 556 * dst may not have been updated. 557 */ 558 error = rtcache_setdst(ro, sin6tosa(&dst_sa)); 559 if (error) { 560 goto bad; 561 } 562 } 563 564 /* 565 * then rt (for unicast) and ifp must be non-NULL valid values. 566 */ 567 if ((flags & IPV6_FORWARDING) == 0) { 568 /* XXX: the FORWARDING flag can be set for mrouting. */ 569 in6_ifstat_inc(ifp, ifs6_out_request); 570 } 571 if (rt != NULL) { 572 ia = (struct in6_ifaddr *)(rt->rt_ifa); 573 rt->rt_use++; 574 } 575 576 /* 577 * The outgoing interface must be in the zone of source and 578 * destination addresses. We should use ia_ifp to support the 579 * case of sending packets to an address of our own. 580 */ 581 if (ia != NULL && ia->ia_ifp) { 582 origifp = ia->ia_ifp; 583 if (if_is_deactivated(origifp)) 584 goto bad; 585 if_acquire(origifp, &psref_ia); 586 release_psref_ia = true; 587 } else 588 origifp = ifp; 589 590 src0 = ip6->ip6_src; 591 if (in6_setscope(&src0, origifp, &zone)) 592 goto badscope; 593 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0); 594 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 595 goto badscope; 596 597 dst0 = ip6->ip6_dst; 598 if (in6_setscope(&dst0, origifp, &zone)) 599 goto badscope; 600 /* re-initialize to be sure */ 601 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 602 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) 603 goto badscope; 604 605 /* scope check is done. */ 606 607 /* Ensure we only send from a valid address. */ 608 if ((error = ip6_ifaddrvalid(&src0)) != 0) { 609 char ip6buf[INET6_ADDRSTRLEN]; 610 nd6log(LOG_ERR, 611 "refusing to send from invalid address %s (pid %d)\n", 612 IN6_PRINT(ip6buf, &src0), curproc->p_pid); 613 IP6_STATINC(IP6_STAT_ODROPPED); 614 in6_ifstat_inc(origifp, ifs6_out_discard); 615 if (error == 1) 616 /* 617 * Address exists, but is tentative or detached. 618 * We can't send from it because it's invalid, 619 * so we drop the packet. 620 */ 621 error = 0; 622 else 623 error = EADDRNOTAVAIL; 624 goto bad; 625 } 626 627 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) && 628 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 629 dst = satocsin6(rt->rt_gateway); 630 else 631 dst = satocsin6(rtcache_getdst(ro)); 632 633 /* 634 * XXXXXX: original code follows: 635 */ 636 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 637 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 638 else { 639 bool ingroup; 640 641 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 642 643 in6_ifstat_inc(ifp, ifs6_out_mcast); 644 645 /* 646 * Confirm that the outgoing interface supports multicast. 647 */ 648 if (!(ifp->if_flags & IFF_MULTICAST)) { 649 IP6_STATINC(IP6_STAT_NOROUTE); 650 in6_ifstat_inc(ifp, ifs6_out_discard); 651 error = ENETUNREACH; 652 goto bad; 653 } 654 655 ingroup = in6_multi_group(&ip6->ip6_dst, ifp); 656 if (ingroup && (im6o == NULL || im6o->im6o_multicast_loop)) { 657 /* 658 * If we belong to the destination multicast group 659 * on the outgoing interface, and the caller did not 660 * forbid loopback, loop back a copy. 661 */ 662 KASSERT(dst != NULL); 663 ip6_mloopback(ifp, m, dst); 664 } else { 665 /* 666 * If we are acting as a multicast router, perform 667 * multicast forwarding as if the packet had just 668 * arrived on the interface to which we are about 669 * to send. The multicast forwarding function 670 * recursively calls this function, using the 671 * IPV6_FORWARDING flag to prevent infinite recursion. 672 * 673 * Multicasts that are looped back by ip6_mloopback(), 674 * above, will be forwarded by the ip6_input() routine, 675 * if necessary. 676 */ 677 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 678 if (ip6_mforward(ip6, ifp, m) != 0) { 679 m_freem(m); 680 goto done; 681 } 682 } 683 } 684 /* 685 * Multicasts with a hoplimit of zero may be looped back, 686 * above, but must not be transmitted on a network. 687 * Also, multicasts addressed to the loopback interface 688 * are not sent -- the above call to ip6_mloopback() will 689 * loop back a copy if this host actually belongs to the 690 * destination group on the loopback interface. 691 */ 692 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 693 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 694 m_freem(m); 695 goto done; 696 } 697 } 698 699 /* 700 * Fill the outgoing inteface to tell the upper layer 701 * to increment per-interface statistics. 702 */ 703 if (ifpp) 704 *ifpp = ifp; 705 706 /* Determine path MTU. */ 707 /* 708 * ro_pmtu represent final destination while 709 * ro might represent immediate destination. 710 * Use ro_pmtu destination since MTU might differ. 711 */ 712 if (ro_pmtu != ro) { 713 union { 714 struct sockaddr dst; 715 struct sockaddr_in6 dst6; 716 } u; 717 718 /* ro_pmtu may not have a cache */ 719 sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0); 720 rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst); 721 } else 722 rt_pmtu = rt; 723 error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag); 724 if (rt_pmtu != NULL && rt_pmtu != rt) 725 rtcache_unref(rt_pmtu, ro_pmtu); 726 if (error != 0) 727 goto bad; 728 729 /* 730 * The caller of this function may specify to use the minimum MTU 731 * in some cases. 732 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 733 * setting. The logic is a bit complicated; by default, unicast 734 * packets will follow path MTU while multicast packets will be sent at 735 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 736 * including unicast ones will be sent at the minimum MTU. Multicast 737 * packets will always be sent at the minimum MTU unless 738 * IP6PO_MINMTU_DISABLE is explicitly specified. 739 * See RFC 3542 for more details. 740 */ 741 if (mtu > IPV6_MMTU) { 742 if ((flags & IPV6_MINMTU)) 743 mtu = IPV6_MMTU; 744 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 745 mtu = IPV6_MMTU; 746 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 747 (opt == NULL || 748 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 749 mtu = IPV6_MMTU; 750 } 751 } 752 753 /* 754 * clear embedded scope identifiers if necessary. 755 * in6_clearscope will touch the addresses only when necessary. 756 */ 757 in6_clearscope(&ip6->ip6_src); 758 in6_clearscope(&ip6->ip6_dst); 759 760 /* 761 * If the outgoing packet contains a hop-by-hop options header, 762 * it must be examined and processed even by the source node. 763 * (RFC 2460, section 4.) 764 */ 765 if (ip6->ip6_nxt == IPV6_HOPOPTS) { 766 u_int32_t dummy1; /* XXX unused */ 767 u_int32_t dummy2; /* XXX unused */ 768 int hoff = sizeof(struct ip6_hdr); 769 770 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) { 771 /* m was already freed at this point */ 772 error = EINVAL;/* better error? */ 773 goto done; 774 } 775 776 ip6 = mtod(m, struct ip6_hdr *); 777 } 778 779 /* 780 * Run through list of hooks for output packets. 781 */ 782 if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0) 783 goto done; 784 if (m == NULL) 785 goto done; 786 ip6 = mtod(m, struct ip6_hdr *); 787 788 /* 789 * Send the packet to the outgoing interface. 790 * If necessary, do IPv6 fragmentation before sending. 791 * 792 * the logic here is rather complex: 793 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 794 * 1-a: send as is if tlen <= path mtu 795 * 1-b: fragment if tlen > path mtu 796 * 797 * 2: if user asks us not to fragment (dontfrag == 1) 798 * 2-a: send as is if tlen <= interface mtu 799 * 2-b: error if tlen > interface mtu 800 * 801 * 3: if we always need to attach fragment header (alwaysfrag == 1) 802 * always fragment 803 * 804 * 4: if dontfrag == 1 && alwaysfrag == 1 805 * error, as we cannot handle this conflicting request 806 */ 807 tlen = m->m_pkthdr.len; 808 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0; 809 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 810 dontfrag = 1; 811 else 812 dontfrag = 0; 813 814 if (dontfrag && alwaysfrag) { /* case 4 */ 815 /* conflicting request - can't transmit */ 816 error = EMSGSIZE; 817 goto bad; 818 } 819 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */ 820 /* 821 * Even if the DONTFRAG option is specified, we cannot send the 822 * packet when the data length is larger than the MTU of the 823 * outgoing interface. 824 * Notify the error by sending IPV6_PATHMTU ancillary data as 825 * well as returning an error code (the latter is not described 826 * in the API spec.) 827 */ 828 u_int32_t mtu32; 829 struct ip6ctlparam ip6cp; 830 831 mtu32 = (u_int32_t)mtu; 832 memset(&ip6cp, 0, sizeof(ip6cp)); 833 ip6cp.ip6c_cmdarg = (void *)&mtu32; 834 pfctlinput2(PRC_MSGSIZE, 835 rtcache_getdst(ro_pmtu), &ip6cp); 836 837 error = EMSGSIZE; 838 goto bad; 839 } 840 841 /* 842 * transmit packet without fragmentation 843 */ 844 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) { 845 /* case 1-a and 2-a */ 846 struct in6_ifaddr *ia6; 847 int sw_csum; 848 int s; 849 850 ip6 = mtod(m, struct ip6_hdr *); 851 s = pserialize_read_enter(); 852 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 853 if (ia6) { 854 /* Record statistics for this interface address. */ 855 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len; 856 } 857 pserialize_read_exit(s); 858 859 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 860 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 861 if (IN6_NEED_CHECKSUM(ifp, 862 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 863 in6_delayed_cksum(m); 864 } 865 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 866 } 867 868 KASSERT(dst != NULL); 869 if (__predict_true(!tso || 870 (ifp->if_capenable & IFCAP_TSOv6) != 0)) { 871 error = ip6_if_output(ifp, origifp, m, dst, rt); 872 } else { 873 error = ip6_tso_output(ifp, origifp, m, dst, rt); 874 } 875 goto done; 876 } 877 878 if (tso) { 879 error = EINVAL; /* XXX */ 880 goto bad; 881 } 882 883 /* 884 * try to fragment the packet. case 1-b and 3 885 */ 886 if (mtu < IPV6_MMTU) { 887 /* path MTU cannot be less than IPV6_MMTU */ 888 error = EMSGSIZE; 889 in6_ifstat_inc(ifp, ifs6_out_fragfail); 890 goto bad; 891 } else if (ip6->ip6_plen == 0) { 892 /* jumbo payload cannot be fragmented */ 893 error = EMSGSIZE; 894 in6_ifstat_inc(ifp, ifs6_out_fragfail); 895 goto bad; 896 } else { 897 struct mbuf **mnext, *m_frgpart; 898 struct ip6_frag *ip6f; 899 u_int32_t id = htonl(ip6_randomid()); 900 u_char nextproto; 901 #if 0 /* see below */ 902 struct ip6ctlparam ip6cp; 903 u_int32_t mtu32; 904 #endif 905 906 /* 907 * Too large for the destination or interface; 908 * fragment if possible. 909 * Must be able to put at least 8 bytes per fragment. 910 */ 911 hlen = unfragpartlen; 912 if (mtu > IPV6_MAXPACKET) 913 mtu = IPV6_MAXPACKET; 914 915 #if 0 916 /* 917 * It is believed this code is a leftover from the 918 * development of the IPV6_RECVPATHMTU sockopt and 919 * associated work to implement RFC3542. 920 * It's not entirely clear what the intent of the API 921 * is at this point, so disable this code for now. 922 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG 923 * will send notifications if the application requests. 924 */ 925 926 /* Notify a proper path MTU to applications. */ 927 mtu32 = (u_int32_t)mtu; 928 memset(&ip6cp, 0, sizeof(ip6cp)); 929 ip6cp.ip6c_cmdarg = (void *)&mtu32; 930 pfctlinput2(PRC_MSGSIZE, 931 rtcache_getdst(ro_pmtu), &ip6cp); 932 #endif 933 934 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 935 if (len < 8) { 936 error = EMSGSIZE; 937 in6_ifstat_inc(ifp, ifs6_out_fragfail); 938 goto bad; 939 } 940 941 mnext = &m->m_nextpkt; 942 943 /* 944 * Change the next header field of the last header in the 945 * unfragmentable part. 946 */ 947 if (exthdrs.ip6e_rthdr) { 948 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 949 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 950 } else if (exthdrs.ip6e_dest1) { 951 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 952 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 953 } else if (exthdrs.ip6e_hbh) { 954 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 955 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 956 } else { 957 nextproto = ip6->ip6_nxt; 958 ip6->ip6_nxt = IPPROTO_FRAGMENT; 959 } 960 961 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) 962 != 0) { 963 if (IN6_NEED_CHECKSUM(ifp, 964 m->m_pkthdr.csum_flags & 965 (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 966 in6_delayed_cksum(m); 967 } 968 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 969 } 970 971 /* 972 * Loop through length of segment after first fragment, 973 * make new header and copy data of each part and link onto 974 * chain. 975 */ 976 m0 = m; 977 for (off = hlen; off < tlen; off += len) { 978 struct mbuf *mlast; 979 980 MGETHDR(m, M_DONTWAIT, MT_HEADER); 981 if (!m) { 982 error = ENOBUFS; 983 IP6_STATINC(IP6_STAT_ODROPPED); 984 goto sendorfree; 985 } 986 m_reset_rcvif(m); 987 m->m_flags = m0->m_flags & M_COPYFLAGS; 988 *mnext = m; 989 mnext = &m->m_nextpkt; 990 m->m_data += max_linkhdr; 991 mhip6 = mtod(m, struct ip6_hdr *); 992 *mhip6 = *ip6; 993 m->m_len = sizeof(*mhip6); 994 /* 995 * ip6f must be valid if error is 0. But how 996 * can a compiler be expected to infer this? 997 */ 998 ip6f = NULL; 999 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1000 if (error) { 1001 IP6_STATINC(IP6_STAT_ODROPPED); 1002 goto sendorfree; 1003 } 1004 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 1005 if (off + len >= tlen) 1006 len = tlen - off; 1007 else 1008 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1009 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 1010 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1011 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1012 error = ENOBUFS; 1013 IP6_STATINC(IP6_STAT_ODROPPED); 1014 goto sendorfree; 1015 } 1016 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 1017 ; 1018 mlast->m_next = m_frgpart; 1019 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1020 m_reset_rcvif(m); 1021 ip6f->ip6f_reserved = 0; 1022 ip6f->ip6f_ident = id; 1023 ip6f->ip6f_nxt = nextproto; 1024 IP6_STATINC(IP6_STAT_OFRAGMENTS); 1025 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1026 } 1027 1028 in6_ifstat_inc(ifp, ifs6_out_fragok); 1029 } 1030 1031 /* 1032 * Remove leading garbages. 1033 */ 1034 sendorfree: 1035 m = m0->m_nextpkt; 1036 m0->m_nextpkt = 0; 1037 m_freem(m0); 1038 for (m0 = m; m; m = m0) { 1039 m0 = m->m_nextpkt; 1040 m->m_nextpkt = 0; 1041 if (error == 0) { 1042 struct in6_ifaddr *ia6; 1043 int s; 1044 ip6 = mtod(m, struct ip6_hdr *); 1045 s = pserialize_read_enter(); 1046 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1047 if (ia6) { 1048 /* 1049 * Record statistics for this interface 1050 * address. 1051 */ 1052 ia6->ia_ifa.ifa_data.ifad_outbytes += 1053 m->m_pkthdr.len; 1054 } 1055 pserialize_read_exit(s); 1056 KASSERT(dst != NULL); 1057 error = ip6_if_output(ifp, origifp, m, dst, rt); 1058 } else 1059 m_freem(m); 1060 } 1061 1062 if (error == 0) 1063 IP6_STATINC(IP6_STAT_FRAGMENTED); 1064 1065 done: 1066 rtcache_unref(rt, ro); 1067 if (ro == &ip6route) 1068 rtcache_free(&ip6route); 1069 1070 #ifdef IPSEC 1071 if (sp != NULL) 1072 KEY_SP_UNREF(&sp); 1073 #endif /* IPSEC */ 1074 1075 if_put(ifp, &psref); 1076 if (release_psref_ia) 1077 if_put(origifp, &psref_ia); 1078 curlwp_bindx(bound); 1079 1080 return (error); 1081 1082 freehdrs: 1083 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1084 m_freem(exthdrs.ip6e_dest1); 1085 m_freem(exthdrs.ip6e_rthdr); 1086 m_freem(exthdrs.ip6e_dest2); 1087 /* FALLTHROUGH */ 1088 bad: 1089 m_freem(m); 1090 goto done; 1091 badscope: 1092 IP6_STATINC(IP6_STAT_BADSCOPE); 1093 in6_ifstat_inc(origifp, ifs6_out_discard); 1094 if (error == 0) 1095 error = EHOSTUNREACH; /* XXX */ 1096 goto bad; 1097 } 1098 1099 static int 1100 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen) 1101 { 1102 struct mbuf *m; 1103 1104 if (hlen > MCLBYTES) 1105 return (ENOBUFS); /* XXX */ 1106 1107 MGET(m, M_DONTWAIT, MT_DATA); 1108 if (!m) 1109 return (ENOBUFS); 1110 1111 if (hlen > MLEN) { 1112 MCLGET(m, M_DONTWAIT); 1113 if ((m->m_flags & M_EXT) == 0) { 1114 m_free(m); 1115 return (ENOBUFS); 1116 } 1117 } 1118 m->m_len = hlen; 1119 if (hdr) 1120 bcopy(hdr, mtod(m, void *), hlen); 1121 1122 *mp = m; 1123 return (0); 1124 } 1125 1126 /* 1127 * Process a delayed payload checksum calculation. 1128 */ 1129 void 1130 in6_delayed_cksum(struct mbuf *m) 1131 { 1132 uint16_t csum, offset; 1133 1134 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1135 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1136 KASSERT((m->m_pkthdr.csum_flags 1137 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0); 1138 1139 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data); 1140 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset); 1141 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) { 1142 csum = 0xffff; 1143 } 1144 1145 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data); 1146 if ((offset + sizeof(csum)) > m->m_len) { 1147 m_copyback(m, offset, sizeof(csum), &csum); 1148 } else { 1149 *(uint16_t *)(mtod(m, char *) + offset) = csum; 1150 } 1151 } 1152 1153 /* 1154 * Insert jumbo payload option. 1155 */ 1156 static int 1157 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1158 { 1159 struct mbuf *mopt; 1160 u_int8_t *optbuf; 1161 u_int32_t v; 1162 1163 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1164 1165 /* 1166 * If there is no hop-by-hop options header, allocate new one. 1167 * If there is one but it doesn't have enough space to store the 1168 * jumbo payload option, allocate a cluster to store the whole options. 1169 * Otherwise, use it to store the options. 1170 */ 1171 if (exthdrs->ip6e_hbh == 0) { 1172 MGET(mopt, M_DONTWAIT, MT_DATA); 1173 if (mopt == 0) 1174 return (ENOBUFS); 1175 mopt->m_len = JUMBOOPTLEN; 1176 optbuf = mtod(mopt, u_int8_t *); 1177 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1178 exthdrs->ip6e_hbh = mopt; 1179 } else { 1180 struct ip6_hbh *hbh; 1181 1182 mopt = exthdrs->ip6e_hbh; 1183 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1184 /* 1185 * XXX assumption: 1186 * - exthdrs->ip6e_hbh is not referenced from places 1187 * other than exthdrs. 1188 * - exthdrs->ip6e_hbh is not an mbuf chain. 1189 */ 1190 int oldoptlen = mopt->m_len; 1191 struct mbuf *n; 1192 1193 /* 1194 * XXX: give up if the whole (new) hbh header does 1195 * not fit even in an mbuf cluster. 1196 */ 1197 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1198 return (ENOBUFS); 1199 1200 /* 1201 * As a consequence, we must always prepare a cluster 1202 * at this point. 1203 */ 1204 MGET(n, M_DONTWAIT, MT_DATA); 1205 if (n) { 1206 MCLGET(n, M_DONTWAIT); 1207 if ((n->m_flags & M_EXT) == 0) { 1208 m_freem(n); 1209 n = NULL; 1210 } 1211 } 1212 if (!n) 1213 return (ENOBUFS); 1214 n->m_len = oldoptlen + JUMBOOPTLEN; 1215 bcopy(mtod(mopt, void *), mtod(n, void *), 1216 oldoptlen); 1217 optbuf = mtod(n, u_int8_t *) + oldoptlen; 1218 m_freem(mopt); 1219 mopt = exthdrs->ip6e_hbh = n; 1220 } else { 1221 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 1222 mopt->m_len += JUMBOOPTLEN; 1223 } 1224 optbuf[0] = IP6OPT_PADN; 1225 optbuf[1] = 0; 1226 1227 /* 1228 * Adjust the header length according to the pad and 1229 * the jumbo payload option. 1230 */ 1231 hbh = mtod(mopt, struct ip6_hbh *); 1232 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1233 } 1234 1235 /* fill in the option. */ 1236 optbuf[2] = IP6OPT_JUMBO; 1237 optbuf[3] = 4; 1238 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1239 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1240 1241 /* finally, adjust the packet header length */ 1242 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1243 1244 return (0); 1245 #undef JUMBOOPTLEN 1246 } 1247 1248 /* 1249 * Insert fragment header and copy unfragmentable header portions. 1250 * 1251 * *frghdrp will not be read, and it is guaranteed that either an 1252 * error is returned or that *frghdrp will point to space allocated 1253 * for the fragment header. 1254 */ 1255 static int 1256 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1257 struct ip6_frag **frghdrp) 1258 { 1259 struct mbuf *n, *mlast; 1260 1261 if (hlen > sizeof(struct ip6_hdr)) { 1262 n = m_copym(m0, sizeof(struct ip6_hdr), 1263 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1264 if (n == 0) 1265 return (ENOBUFS); 1266 m->m_next = n; 1267 } else 1268 n = m; 1269 1270 /* Search for the last mbuf of unfragmentable part. */ 1271 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1272 ; 1273 1274 if ((mlast->m_flags & M_EXT) == 0 && 1275 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1276 /* use the trailing space of the last mbuf for the fragment hdr */ 1277 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) + 1278 mlast->m_len); 1279 mlast->m_len += sizeof(struct ip6_frag); 1280 m->m_pkthdr.len += sizeof(struct ip6_frag); 1281 } else { 1282 /* allocate a new mbuf for the fragment header */ 1283 struct mbuf *mfrg; 1284 1285 MGET(mfrg, M_DONTWAIT, MT_DATA); 1286 if (mfrg == 0) 1287 return (ENOBUFS); 1288 mfrg->m_len = sizeof(struct ip6_frag); 1289 *frghdrp = mtod(mfrg, struct ip6_frag *); 1290 mlast->m_next = mfrg; 1291 } 1292 1293 return (0); 1294 } 1295 1296 static int 1297 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup, 1298 int *alwaysfragp) 1299 { 1300 u_int32_t mtu = 0; 1301 int alwaysfrag = 0; 1302 int error = 0; 1303 1304 if (rt != NULL) { 1305 u_int32_t ifmtu; 1306 1307 if (ifp == NULL) 1308 ifp = rt->rt_ifp; 1309 ifmtu = IN6_LINKMTU(ifp); 1310 mtu = rt->rt_rmx.rmx_mtu; 1311 if (mtu == 0) 1312 mtu = ifmtu; 1313 else if (mtu < IPV6_MMTU) { 1314 /* 1315 * RFC2460 section 5, last paragraph: 1316 * if we record ICMPv6 too big message with 1317 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1318 * or smaller, with fragment header attached. 1319 * (fragment header is needed regardless from the 1320 * packet size, for translators to identify packets) 1321 */ 1322 alwaysfrag = 1; 1323 mtu = IPV6_MMTU; 1324 } else if (mtu > ifmtu) { 1325 /* 1326 * The MTU on the route is larger than the MTU on 1327 * the interface! This shouldn't happen, unless the 1328 * MTU of the interface has been changed after the 1329 * interface was brought up. Change the MTU in the 1330 * route to match the interface MTU (as long as the 1331 * field isn't locked). 1332 */ 1333 mtu = ifmtu; 1334 if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) 1335 rt->rt_rmx.rmx_mtu = mtu; 1336 } 1337 } else if (ifp) { 1338 mtu = IN6_LINKMTU(ifp); 1339 } else 1340 error = EHOSTUNREACH; /* XXX */ 1341 1342 *mtup = mtu; 1343 if (alwaysfragp) 1344 *alwaysfragp = alwaysfrag; 1345 return (error); 1346 } 1347 1348 /* 1349 * IP6 socket option processing. 1350 */ 1351 int 1352 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1353 { 1354 int optdatalen, uproto; 1355 void *optdata; 1356 struct in6pcb *in6p = sotoin6pcb(so); 1357 struct ip_moptions **mopts; 1358 int error, optval; 1359 int level, optname; 1360 1361 KASSERT(solocked(so)); 1362 KASSERT(sopt != NULL); 1363 1364 level = sopt->sopt_level; 1365 optname = sopt->sopt_name; 1366 1367 error = optval = 0; 1368 uproto = (int)so->so_proto->pr_protocol; 1369 1370 switch (level) { 1371 case IPPROTO_IP: 1372 switch (optname) { 1373 case IP_ADD_MEMBERSHIP: 1374 case IP_DROP_MEMBERSHIP: 1375 case IP_MULTICAST_IF: 1376 case IP_MULTICAST_LOOP: 1377 case IP_MULTICAST_TTL: 1378 mopts = &in6p->in6p_v4moptions; 1379 switch (op) { 1380 case PRCO_GETOPT: 1381 return ip_getmoptions(*mopts, sopt); 1382 case PRCO_SETOPT: 1383 return ip_setmoptions(mopts, sopt); 1384 default: 1385 return EINVAL; 1386 } 1387 default: 1388 return ENOPROTOOPT; 1389 } 1390 case IPPROTO_IPV6: 1391 break; 1392 default: 1393 return ENOPROTOOPT; 1394 } 1395 switch (op) { 1396 case PRCO_SETOPT: 1397 switch (optname) { 1398 #ifdef RFC2292 1399 case IPV6_2292PKTOPTIONS: 1400 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt); 1401 break; 1402 #endif 1403 1404 /* 1405 * Use of some Hop-by-Hop options or some 1406 * Destination options, might require special 1407 * privilege. That is, normal applications 1408 * (without special privilege) might be forbidden 1409 * from setting certain options in outgoing packets, 1410 * and might never see certain options in received 1411 * packets. [RFC 2292 Section 6] 1412 * KAME specific note: 1413 * KAME prevents non-privileged users from sending or 1414 * receiving ANY hbh/dst options in order to avoid 1415 * overhead of parsing options in the kernel. 1416 */ 1417 case IPV6_RECVHOPOPTS: 1418 case IPV6_RECVDSTOPTS: 1419 case IPV6_RECVRTHDRDSTOPTS: 1420 error = kauth_authorize_network(kauth_cred_get(), 1421 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, 1422 NULL, NULL, NULL); 1423 if (error) 1424 break; 1425 /* FALLTHROUGH */ 1426 case IPV6_UNICAST_HOPS: 1427 case IPV6_HOPLIMIT: 1428 case IPV6_FAITH: 1429 1430 case IPV6_RECVPKTINFO: 1431 case IPV6_RECVHOPLIMIT: 1432 case IPV6_RECVRTHDR: 1433 case IPV6_RECVPATHMTU: 1434 case IPV6_RECVTCLASS: 1435 case IPV6_V6ONLY: 1436 error = sockopt_getint(sopt, &optval); 1437 if (error) 1438 break; 1439 switch (optname) { 1440 case IPV6_UNICAST_HOPS: 1441 if (optval < -1 || optval >= 256) 1442 error = EINVAL; 1443 else { 1444 /* -1 = kernel default */ 1445 in6p->in6p_hops = optval; 1446 } 1447 break; 1448 #define OPTSET(bit) \ 1449 do { \ 1450 if (optval) \ 1451 in6p->in6p_flags |= (bit); \ 1452 else \ 1453 in6p->in6p_flags &= ~(bit); \ 1454 } while (/*CONSTCOND*/ 0) 1455 1456 #ifdef RFC2292 1457 #define OPTSET2292(bit) \ 1458 do { \ 1459 in6p->in6p_flags |= IN6P_RFC2292; \ 1460 if (optval) \ 1461 in6p->in6p_flags |= (bit); \ 1462 else \ 1463 in6p->in6p_flags &= ~(bit); \ 1464 } while (/*CONSTCOND*/ 0) 1465 #endif 1466 1467 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1468 1469 case IPV6_RECVPKTINFO: 1470 #ifdef RFC2292 1471 /* cannot mix with RFC2292 */ 1472 if (OPTBIT(IN6P_RFC2292)) { 1473 error = EINVAL; 1474 break; 1475 } 1476 #endif 1477 OPTSET(IN6P_PKTINFO); 1478 break; 1479 1480 case IPV6_HOPLIMIT: 1481 { 1482 struct ip6_pktopts **optp; 1483 1484 #ifdef RFC2292 1485 /* cannot mix with RFC2292 */ 1486 if (OPTBIT(IN6P_RFC2292)) { 1487 error = EINVAL; 1488 break; 1489 } 1490 #endif 1491 optp = &in6p->in6p_outputopts; 1492 error = ip6_pcbopt(IPV6_HOPLIMIT, 1493 (u_char *)&optval, 1494 sizeof(optval), 1495 optp, 1496 kauth_cred_get(), uproto); 1497 break; 1498 } 1499 1500 case IPV6_RECVHOPLIMIT: 1501 #ifdef RFC2292 1502 /* cannot mix with RFC2292 */ 1503 if (OPTBIT(IN6P_RFC2292)) { 1504 error = EINVAL; 1505 break; 1506 } 1507 #endif 1508 OPTSET(IN6P_HOPLIMIT); 1509 break; 1510 1511 case IPV6_RECVHOPOPTS: 1512 #ifdef RFC2292 1513 /* cannot mix with RFC2292 */ 1514 if (OPTBIT(IN6P_RFC2292)) { 1515 error = EINVAL; 1516 break; 1517 } 1518 #endif 1519 OPTSET(IN6P_HOPOPTS); 1520 break; 1521 1522 case IPV6_RECVDSTOPTS: 1523 #ifdef RFC2292 1524 /* cannot mix with RFC2292 */ 1525 if (OPTBIT(IN6P_RFC2292)) { 1526 error = EINVAL; 1527 break; 1528 } 1529 #endif 1530 OPTSET(IN6P_DSTOPTS); 1531 break; 1532 1533 case IPV6_RECVRTHDRDSTOPTS: 1534 #ifdef RFC2292 1535 /* cannot mix with RFC2292 */ 1536 if (OPTBIT(IN6P_RFC2292)) { 1537 error = EINVAL; 1538 break; 1539 } 1540 #endif 1541 OPTSET(IN6P_RTHDRDSTOPTS); 1542 break; 1543 1544 case IPV6_RECVRTHDR: 1545 #ifdef RFC2292 1546 /* cannot mix with RFC2292 */ 1547 if (OPTBIT(IN6P_RFC2292)) { 1548 error = EINVAL; 1549 break; 1550 } 1551 #endif 1552 OPTSET(IN6P_RTHDR); 1553 break; 1554 1555 case IPV6_FAITH: 1556 OPTSET(IN6P_FAITH); 1557 break; 1558 1559 case IPV6_RECVPATHMTU: 1560 /* 1561 * We ignore this option for TCP 1562 * sockets. 1563 * (RFC3542 leaves this case 1564 * unspecified.) 1565 */ 1566 if (uproto != IPPROTO_TCP) 1567 OPTSET(IN6P_MTU); 1568 break; 1569 1570 case IPV6_V6ONLY: 1571 /* 1572 * make setsockopt(IPV6_V6ONLY) 1573 * available only prior to bind(2). 1574 * see ipng mailing list, Jun 22 2001. 1575 */ 1576 if (in6p->in6p_lport || 1577 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1578 error = EINVAL; 1579 break; 1580 } 1581 #ifdef INET6_BINDV6ONLY 1582 if (!optval) 1583 error = EINVAL; 1584 #else 1585 OPTSET(IN6P_IPV6_V6ONLY); 1586 #endif 1587 break; 1588 case IPV6_RECVTCLASS: 1589 #ifdef RFC2292 1590 /* cannot mix with RFC2292 XXX */ 1591 if (OPTBIT(IN6P_RFC2292)) { 1592 error = EINVAL; 1593 break; 1594 } 1595 #endif 1596 OPTSET(IN6P_TCLASS); 1597 break; 1598 1599 } 1600 break; 1601 1602 case IPV6_OTCLASS: 1603 { 1604 struct ip6_pktopts **optp; 1605 u_int8_t tclass; 1606 1607 error = sockopt_get(sopt, &tclass, sizeof(tclass)); 1608 if (error) 1609 break; 1610 optp = &in6p->in6p_outputopts; 1611 error = ip6_pcbopt(optname, 1612 (u_char *)&tclass, 1613 sizeof(tclass), 1614 optp, 1615 kauth_cred_get(), uproto); 1616 break; 1617 } 1618 1619 case IPV6_TCLASS: 1620 case IPV6_DONTFRAG: 1621 case IPV6_USE_MIN_MTU: 1622 case IPV6_PREFER_TEMPADDR: 1623 error = sockopt_getint(sopt, &optval); 1624 if (error) 1625 break; 1626 { 1627 struct ip6_pktopts **optp; 1628 optp = &in6p->in6p_outputopts; 1629 error = ip6_pcbopt(optname, 1630 (u_char *)&optval, 1631 sizeof(optval), 1632 optp, 1633 kauth_cred_get(), uproto); 1634 break; 1635 } 1636 1637 #ifdef RFC2292 1638 case IPV6_2292PKTINFO: 1639 case IPV6_2292HOPLIMIT: 1640 case IPV6_2292HOPOPTS: 1641 case IPV6_2292DSTOPTS: 1642 case IPV6_2292RTHDR: 1643 /* RFC 2292 */ 1644 error = sockopt_getint(sopt, &optval); 1645 if (error) 1646 break; 1647 1648 switch (optname) { 1649 case IPV6_2292PKTINFO: 1650 OPTSET2292(IN6P_PKTINFO); 1651 break; 1652 case IPV6_2292HOPLIMIT: 1653 OPTSET2292(IN6P_HOPLIMIT); 1654 break; 1655 case IPV6_2292HOPOPTS: 1656 /* 1657 * Check super-user privilege. 1658 * See comments for IPV6_RECVHOPOPTS. 1659 */ 1660 error = 1661 kauth_authorize_network(kauth_cred_get(), 1662 KAUTH_NETWORK_IPV6, 1663 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1664 NULL, NULL); 1665 if (error) 1666 return (error); 1667 OPTSET2292(IN6P_HOPOPTS); 1668 break; 1669 case IPV6_2292DSTOPTS: 1670 error = 1671 kauth_authorize_network(kauth_cred_get(), 1672 KAUTH_NETWORK_IPV6, 1673 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1674 NULL, NULL); 1675 if (error) 1676 return (error); 1677 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1678 break; 1679 case IPV6_2292RTHDR: 1680 OPTSET2292(IN6P_RTHDR); 1681 break; 1682 } 1683 break; 1684 #endif 1685 case IPV6_PKTINFO: 1686 case IPV6_HOPOPTS: 1687 case IPV6_RTHDR: 1688 case IPV6_DSTOPTS: 1689 case IPV6_RTHDRDSTOPTS: 1690 case IPV6_NEXTHOP: { 1691 /* new advanced API (RFC3542) */ 1692 void *optbuf; 1693 int optbuflen; 1694 struct ip6_pktopts **optp; 1695 1696 #ifdef RFC2292 1697 /* cannot mix with RFC2292 */ 1698 if (OPTBIT(IN6P_RFC2292)) { 1699 error = EINVAL; 1700 break; 1701 } 1702 #endif 1703 1704 optbuflen = sopt->sopt_size; 1705 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT); 1706 if (optbuf == NULL) { 1707 error = ENOBUFS; 1708 break; 1709 } 1710 1711 error = sockopt_get(sopt, optbuf, optbuflen); 1712 if (error) { 1713 free(optbuf, M_IP6OPT); 1714 break; 1715 } 1716 optp = &in6p->in6p_outputopts; 1717 error = ip6_pcbopt(optname, optbuf, optbuflen, 1718 optp, kauth_cred_get(), uproto); 1719 1720 free(optbuf, M_IP6OPT); 1721 break; 1722 } 1723 #undef OPTSET 1724 1725 case IPV6_MULTICAST_IF: 1726 case IPV6_MULTICAST_HOPS: 1727 case IPV6_MULTICAST_LOOP: 1728 case IPV6_JOIN_GROUP: 1729 case IPV6_LEAVE_GROUP: 1730 error = ip6_setmoptions(sopt, in6p); 1731 break; 1732 1733 case IPV6_PORTRANGE: 1734 error = sockopt_getint(sopt, &optval); 1735 if (error) 1736 break; 1737 1738 switch (optval) { 1739 case IPV6_PORTRANGE_DEFAULT: 1740 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1741 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1742 break; 1743 1744 case IPV6_PORTRANGE_HIGH: 1745 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1746 in6p->in6p_flags |= IN6P_HIGHPORT; 1747 break; 1748 1749 case IPV6_PORTRANGE_LOW: 1750 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1751 in6p->in6p_flags |= IN6P_LOWPORT; 1752 break; 1753 1754 default: 1755 error = EINVAL; 1756 break; 1757 } 1758 break; 1759 1760 case IPV6_PORTALGO: 1761 error = sockopt_getint(sopt, &optval); 1762 if (error) 1763 break; 1764 1765 error = portalgo_algo_index_select( 1766 (struct inpcb_hdr *)in6p, optval); 1767 break; 1768 1769 #if defined(IPSEC) 1770 case IPV6_IPSEC_POLICY: 1771 if (ipsec_enabled) { 1772 error = ipsec6_set_policy(in6p, optname, 1773 sopt->sopt_data, sopt->sopt_size, 1774 kauth_cred_get()); 1775 break; 1776 } 1777 /*FALLTHROUGH*/ 1778 #endif /* IPSEC */ 1779 1780 default: 1781 error = ENOPROTOOPT; 1782 break; 1783 } 1784 break; 1785 1786 case PRCO_GETOPT: 1787 switch (optname) { 1788 #ifdef RFC2292 1789 case IPV6_2292PKTOPTIONS: 1790 /* 1791 * RFC3542 (effectively) deprecated the 1792 * semantics of the 2292-style pktoptions. 1793 * Since it was not reliable in nature (i.e., 1794 * applications had to expect the lack of some 1795 * information after all), it would make sense 1796 * to simplify this part by always returning 1797 * empty data. 1798 */ 1799 break; 1800 #endif 1801 1802 case IPV6_RECVHOPOPTS: 1803 case IPV6_RECVDSTOPTS: 1804 case IPV6_RECVRTHDRDSTOPTS: 1805 case IPV6_UNICAST_HOPS: 1806 case IPV6_RECVPKTINFO: 1807 case IPV6_RECVHOPLIMIT: 1808 case IPV6_RECVRTHDR: 1809 case IPV6_RECVPATHMTU: 1810 1811 case IPV6_FAITH: 1812 case IPV6_V6ONLY: 1813 case IPV6_PORTRANGE: 1814 case IPV6_RECVTCLASS: 1815 switch (optname) { 1816 1817 case IPV6_RECVHOPOPTS: 1818 optval = OPTBIT(IN6P_HOPOPTS); 1819 break; 1820 1821 case IPV6_RECVDSTOPTS: 1822 optval = OPTBIT(IN6P_DSTOPTS); 1823 break; 1824 1825 case IPV6_RECVRTHDRDSTOPTS: 1826 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1827 break; 1828 1829 case IPV6_UNICAST_HOPS: 1830 optval = in6p->in6p_hops; 1831 break; 1832 1833 case IPV6_RECVPKTINFO: 1834 optval = OPTBIT(IN6P_PKTINFO); 1835 break; 1836 1837 case IPV6_RECVHOPLIMIT: 1838 optval = OPTBIT(IN6P_HOPLIMIT); 1839 break; 1840 1841 case IPV6_RECVRTHDR: 1842 optval = OPTBIT(IN6P_RTHDR); 1843 break; 1844 1845 case IPV6_RECVPATHMTU: 1846 optval = OPTBIT(IN6P_MTU); 1847 break; 1848 1849 case IPV6_FAITH: 1850 optval = OPTBIT(IN6P_FAITH); 1851 break; 1852 1853 case IPV6_V6ONLY: 1854 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1855 break; 1856 1857 case IPV6_PORTRANGE: 1858 { 1859 int flags; 1860 flags = in6p->in6p_flags; 1861 if (flags & IN6P_HIGHPORT) 1862 optval = IPV6_PORTRANGE_HIGH; 1863 else if (flags & IN6P_LOWPORT) 1864 optval = IPV6_PORTRANGE_LOW; 1865 else 1866 optval = 0; 1867 break; 1868 } 1869 case IPV6_RECVTCLASS: 1870 optval = OPTBIT(IN6P_TCLASS); 1871 break; 1872 1873 } 1874 if (error) 1875 break; 1876 error = sockopt_setint(sopt, optval); 1877 break; 1878 1879 case IPV6_PATHMTU: 1880 { 1881 u_long pmtu = 0; 1882 struct ip6_mtuinfo mtuinfo; 1883 struct route *ro = &in6p->in6p_route; 1884 struct rtentry *rt; 1885 union { 1886 struct sockaddr dst; 1887 struct sockaddr_in6 dst6; 1888 } u; 1889 1890 if (!(so->so_state & SS_ISCONNECTED)) 1891 return (ENOTCONN); 1892 /* 1893 * XXX: we dot not consider the case of source 1894 * routing, or optional information to specify 1895 * the outgoing interface. 1896 */ 1897 sockaddr_in6_init(&u.dst6, &in6p->in6p_faddr, 0, 0, 0); 1898 rt = rtcache_lookup(ro, &u.dst); 1899 error = ip6_getpmtu(rt, NULL, &pmtu, NULL); 1900 rtcache_unref(rt, ro); 1901 if (error) 1902 break; 1903 if (pmtu > IPV6_MAXPACKET) 1904 pmtu = IPV6_MAXPACKET; 1905 1906 memset(&mtuinfo, 0, sizeof(mtuinfo)); 1907 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1908 optdata = (void *)&mtuinfo; 1909 optdatalen = sizeof(mtuinfo); 1910 if (optdatalen > MCLBYTES) 1911 return (EMSGSIZE); /* XXX */ 1912 error = sockopt_set(sopt, optdata, optdatalen); 1913 break; 1914 } 1915 1916 #ifdef RFC2292 1917 case IPV6_2292PKTINFO: 1918 case IPV6_2292HOPLIMIT: 1919 case IPV6_2292HOPOPTS: 1920 case IPV6_2292RTHDR: 1921 case IPV6_2292DSTOPTS: 1922 switch (optname) { 1923 case IPV6_2292PKTINFO: 1924 optval = OPTBIT(IN6P_PKTINFO); 1925 break; 1926 case IPV6_2292HOPLIMIT: 1927 optval = OPTBIT(IN6P_HOPLIMIT); 1928 break; 1929 case IPV6_2292HOPOPTS: 1930 optval = OPTBIT(IN6P_HOPOPTS); 1931 break; 1932 case IPV6_2292RTHDR: 1933 optval = OPTBIT(IN6P_RTHDR); 1934 break; 1935 case IPV6_2292DSTOPTS: 1936 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1937 break; 1938 } 1939 error = sockopt_setint(sopt, optval); 1940 break; 1941 #endif 1942 case IPV6_PKTINFO: 1943 case IPV6_HOPOPTS: 1944 case IPV6_RTHDR: 1945 case IPV6_DSTOPTS: 1946 case IPV6_RTHDRDSTOPTS: 1947 case IPV6_NEXTHOP: 1948 case IPV6_OTCLASS: 1949 case IPV6_TCLASS: 1950 case IPV6_DONTFRAG: 1951 case IPV6_USE_MIN_MTU: 1952 case IPV6_PREFER_TEMPADDR: 1953 error = ip6_getpcbopt(in6p->in6p_outputopts, 1954 optname, sopt); 1955 break; 1956 1957 case IPV6_MULTICAST_IF: 1958 case IPV6_MULTICAST_HOPS: 1959 case IPV6_MULTICAST_LOOP: 1960 case IPV6_JOIN_GROUP: 1961 case IPV6_LEAVE_GROUP: 1962 error = ip6_getmoptions(sopt, in6p); 1963 break; 1964 1965 case IPV6_PORTALGO: 1966 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo; 1967 error = sockopt_setint(sopt, optval); 1968 break; 1969 1970 #if defined(IPSEC) 1971 case IPV6_IPSEC_POLICY: 1972 if (ipsec_used) { 1973 struct mbuf *m = NULL; 1974 1975 /* 1976 * XXX: this will return EINVAL as sopt is 1977 * empty 1978 */ 1979 error = ipsec6_get_policy(in6p, sopt->sopt_data, 1980 sopt->sopt_size, &m); 1981 if (!error) 1982 error = sockopt_setmbuf(sopt, m); 1983 break; 1984 } 1985 /*FALLTHROUGH*/ 1986 #endif /* IPSEC */ 1987 1988 default: 1989 error = ENOPROTOOPT; 1990 break; 1991 } 1992 break; 1993 } 1994 return (error); 1995 } 1996 1997 int 1998 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1999 { 2000 int error = 0, optval; 2001 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2002 struct in6pcb *in6p = sotoin6pcb(so); 2003 int level, optname; 2004 2005 KASSERT(sopt != NULL); 2006 2007 level = sopt->sopt_level; 2008 optname = sopt->sopt_name; 2009 2010 if (level != IPPROTO_IPV6) { 2011 return ENOPROTOOPT; 2012 } 2013 2014 switch (optname) { 2015 case IPV6_CHECKSUM: 2016 /* 2017 * For ICMPv6 sockets, no modification allowed for checksum 2018 * offset, permit "no change" values to help existing apps. 2019 * 2020 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM 2021 * for an ICMPv6 socket will fail." The current 2022 * behavior does not meet RFC3542. 2023 */ 2024 switch (op) { 2025 case PRCO_SETOPT: 2026 error = sockopt_getint(sopt, &optval); 2027 if (error) 2028 break; 2029 if ((optval % 2) != 0) { 2030 /* the API assumes even offset values */ 2031 error = EINVAL; 2032 } else if (so->so_proto->pr_protocol == 2033 IPPROTO_ICMPV6) { 2034 if (optval != icmp6off) 2035 error = EINVAL; 2036 } else 2037 in6p->in6p_cksum = optval; 2038 break; 2039 2040 case PRCO_GETOPT: 2041 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2042 optval = icmp6off; 2043 else 2044 optval = in6p->in6p_cksum; 2045 2046 error = sockopt_setint(sopt, optval); 2047 break; 2048 2049 default: 2050 error = EINVAL; 2051 break; 2052 } 2053 break; 2054 2055 default: 2056 error = ENOPROTOOPT; 2057 break; 2058 } 2059 2060 return (error); 2061 } 2062 2063 #ifdef RFC2292 2064 /* 2065 * Set up IP6 options in pcb for insertion in output packets or 2066 * specifying behavior of outgoing packets. 2067 */ 2068 static int 2069 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so, 2070 struct sockopt *sopt) 2071 { 2072 struct ip6_pktopts *opt = *pktopt; 2073 struct mbuf *m; 2074 int error = 0; 2075 2076 KASSERT(solocked(so)); 2077 2078 /* turn off any old options. */ 2079 if (opt) { 2080 #ifdef DIAGNOSTIC 2081 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2082 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2083 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2084 printf("ip6_pcbopts: all specified options are cleared.\n"); 2085 #endif 2086 ip6_clearpktopts(opt, -1); 2087 } else { 2088 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2089 if (opt == NULL) 2090 return (ENOBUFS); 2091 } 2092 *pktopt = NULL; 2093 2094 if (sopt == NULL || sopt->sopt_size == 0) { 2095 /* 2096 * Only turning off any previous options, regardless of 2097 * whether the opt is just created or given. 2098 */ 2099 free(opt, M_IP6OPT); 2100 return (0); 2101 } 2102 2103 /* set options specified by user. */ 2104 m = sockopt_getmbuf(sopt); 2105 if (m == NULL) { 2106 free(opt, M_IP6OPT); 2107 return (ENOBUFS); 2108 } 2109 2110 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(), 2111 so->so_proto->pr_protocol); 2112 m_freem(m); 2113 if (error != 0) { 2114 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2115 free(opt, M_IP6OPT); 2116 return (error); 2117 } 2118 *pktopt = opt; 2119 return (0); 2120 } 2121 #endif 2122 2123 /* 2124 * initialize ip6_pktopts. beware that there are non-zero default values in 2125 * the struct. 2126 */ 2127 void 2128 ip6_initpktopts(struct ip6_pktopts *opt) 2129 { 2130 2131 memset(opt, 0, sizeof(*opt)); 2132 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2133 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2134 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2135 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2136 } 2137 2138 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */ 2139 static int 2140 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2141 kauth_cred_t cred, int uproto) 2142 { 2143 struct ip6_pktopts *opt; 2144 2145 if (*pktopt == NULL) { 2146 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2147 M_NOWAIT); 2148 if (*pktopt == NULL) 2149 return (ENOBUFS); 2150 2151 ip6_initpktopts(*pktopt); 2152 } 2153 opt = *pktopt; 2154 2155 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2156 } 2157 2158 static int 2159 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2160 { 2161 void *optdata = NULL; 2162 int optdatalen = 0; 2163 struct ip6_ext *ip6e; 2164 int error = 0; 2165 struct in6_pktinfo null_pktinfo; 2166 int deftclass = 0, on; 2167 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2168 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2169 2170 switch (optname) { 2171 case IPV6_PKTINFO: 2172 if (pktopt && pktopt->ip6po_pktinfo) 2173 optdata = (void *)pktopt->ip6po_pktinfo; 2174 else { 2175 /* XXX: we don't have to do this every time... */ 2176 memset(&null_pktinfo, 0, sizeof(null_pktinfo)); 2177 optdata = (void *)&null_pktinfo; 2178 } 2179 optdatalen = sizeof(struct in6_pktinfo); 2180 break; 2181 case IPV6_OTCLASS: 2182 /* XXX */ 2183 return (EINVAL); 2184 case IPV6_TCLASS: 2185 if (pktopt && pktopt->ip6po_tclass >= 0) 2186 optdata = (void *)&pktopt->ip6po_tclass; 2187 else 2188 optdata = (void *)&deftclass; 2189 optdatalen = sizeof(int); 2190 break; 2191 case IPV6_HOPOPTS: 2192 if (pktopt && pktopt->ip6po_hbh) { 2193 optdata = (void *)pktopt->ip6po_hbh; 2194 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2195 optdatalen = (ip6e->ip6e_len + 1) << 3; 2196 } 2197 break; 2198 case IPV6_RTHDR: 2199 if (pktopt && pktopt->ip6po_rthdr) { 2200 optdata = (void *)pktopt->ip6po_rthdr; 2201 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2202 optdatalen = (ip6e->ip6e_len + 1) << 3; 2203 } 2204 break; 2205 case IPV6_RTHDRDSTOPTS: 2206 if (pktopt && pktopt->ip6po_dest1) { 2207 optdata = (void *)pktopt->ip6po_dest1; 2208 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2209 optdatalen = (ip6e->ip6e_len + 1) << 3; 2210 } 2211 break; 2212 case IPV6_DSTOPTS: 2213 if (pktopt && pktopt->ip6po_dest2) { 2214 optdata = (void *)pktopt->ip6po_dest2; 2215 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2216 optdatalen = (ip6e->ip6e_len + 1) << 3; 2217 } 2218 break; 2219 case IPV6_NEXTHOP: 2220 if (pktopt && pktopt->ip6po_nexthop) { 2221 optdata = (void *)pktopt->ip6po_nexthop; 2222 optdatalen = pktopt->ip6po_nexthop->sa_len; 2223 } 2224 break; 2225 case IPV6_USE_MIN_MTU: 2226 if (pktopt) 2227 optdata = (void *)&pktopt->ip6po_minmtu; 2228 else 2229 optdata = (void *)&defminmtu; 2230 optdatalen = sizeof(int); 2231 break; 2232 case IPV6_DONTFRAG: 2233 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2234 on = 1; 2235 else 2236 on = 0; 2237 optdata = (void *)&on; 2238 optdatalen = sizeof(on); 2239 break; 2240 case IPV6_PREFER_TEMPADDR: 2241 if (pktopt) 2242 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2243 else 2244 optdata = (void *)&defpreftemp; 2245 optdatalen = sizeof(int); 2246 break; 2247 default: /* should not happen */ 2248 #ifdef DIAGNOSTIC 2249 panic("ip6_getpcbopt: unexpected option\n"); 2250 #endif 2251 return (ENOPROTOOPT); 2252 } 2253 2254 error = sockopt_set(sopt, optdata, optdatalen); 2255 2256 return (error); 2257 } 2258 2259 void 2260 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2261 { 2262 if (optname == -1 || optname == IPV6_PKTINFO) { 2263 if (pktopt->ip6po_pktinfo) 2264 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2265 pktopt->ip6po_pktinfo = NULL; 2266 } 2267 if (optname == -1 || optname == IPV6_HOPLIMIT) 2268 pktopt->ip6po_hlim = -1; 2269 if (optname == -1 || optname == IPV6_TCLASS) 2270 pktopt->ip6po_tclass = -1; 2271 if (optname == -1 || optname == IPV6_NEXTHOP) { 2272 rtcache_free(&pktopt->ip6po_nextroute); 2273 if (pktopt->ip6po_nexthop) 2274 free(pktopt->ip6po_nexthop, M_IP6OPT); 2275 pktopt->ip6po_nexthop = NULL; 2276 } 2277 if (optname == -1 || optname == IPV6_HOPOPTS) { 2278 if (pktopt->ip6po_hbh) 2279 free(pktopt->ip6po_hbh, M_IP6OPT); 2280 pktopt->ip6po_hbh = NULL; 2281 } 2282 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2283 if (pktopt->ip6po_dest1) 2284 free(pktopt->ip6po_dest1, M_IP6OPT); 2285 pktopt->ip6po_dest1 = NULL; 2286 } 2287 if (optname == -1 || optname == IPV6_RTHDR) { 2288 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2289 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2290 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2291 rtcache_free(&pktopt->ip6po_route); 2292 } 2293 if (optname == -1 || optname == IPV6_DSTOPTS) { 2294 if (pktopt->ip6po_dest2) 2295 free(pktopt->ip6po_dest2, M_IP6OPT); 2296 pktopt->ip6po_dest2 = NULL; 2297 } 2298 } 2299 2300 #define PKTOPT_EXTHDRCPY(type) \ 2301 do { \ 2302 if (src->type) { \ 2303 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2304 dst->type = malloc(hlen, M_IP6OPT, canwait); \ 2305 if (dst->type == NULL) \ 2306 goto bad; \ 2307 memcpy(dst->type, src->type, hlen); \ 2308 } \ 2309 } while (/*CONSTCOND*/ 0) 2310 2311 static int 2312 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2313 { 2314 dst->ip6po_hlim = src->ip6po_hlim; 2315 dst->ip6po_tclass = src->ip6po_tclass; 2316 dst->ip6po_flags = src->ip6po_flags; 2317 dst->ip6po_minmtu = src->ip6po_minmtu; 2318 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2319 if (src->ip6po_pktinfo) { 2320 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2321 M_IP6OPT, canwait); 2322 if (dst->ip6po_pktinfo == NULL) 2323 goto bad; 2324 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2325 } 2326 if (src->ip6po_nexthop) { 2327 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2328 M_IP6OPT, canwait); 2329 if (dst->ip6po_nexthop == NULL) 2330 goto bad; 2331 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop, 2332 src->ip6po_nexthop->sa_len); 2333 } 2334 PKTOPT_EXTHDRCPY(ip6po_hbh); 2335 PKTOPT_EXTHDRCPY(ip6po_dest1); 2336 PKTOPT_EXTHDRCPY(ip6po_dest2); 2337 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2338 return (0); 2339 2340 bad: 2341 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 2342 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 2343 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 2344 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 2345 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 2346 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 2347 2348 return (ENOBUFS); 2349 } 2350 #undef PKTOPT_EXTHDRCPY 2351 2352 struct ip6_pktopts * 2353 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2354 { 2355 int error; 2356 struct ip6_pktopts *dst; 2357 2358 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2359 if (dst == NULL) 2360 return (NULL); 2361 ip6_initpktopts(dst); 2362 2363 if ((error = copypktopts(dst, src, canwait)) != 0) { 2364 free(dst, M_IP6OPT); 2365 return (NULL); 2366 } 2367 2368 return (dst); 2369 } 2370 2371 void 2372 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2373 { 2374 if (pktopt == NULL) 2375 return; 2376 2377 ip6_clearpktopts(pktopt, -1); 2378 2379 free(pktopt, M_IP6OPT); 2380 } 2381 2382 int 2383 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp, 2384 struct psref *psref, void *v, size_t l) 2385 { 2386 struct ipv6_mreq mreq; 2387 int error; 2388 struct in6_addr *ia = &mreq.ipv6mr_multiaddr; 2389 struct in_addr *ia4 = (void *)&ia->s6_addr32[3]; 2390 2391 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2392 if (error != 0) 2393 return error; 2394 2395 if (IN6_IS_ADDR_UNSPECIFIED(ia)) { 2396 /* 2397 * We use the unspecified address to specify to accept 2398 * all multicast addresses. Only super user is allowed 2399 * to do this. 2400 */ 2401 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6, 2402 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL)) 2403 return EACCES; 2404 } else if (IN6_IS_ADDR_V4MAPPED(ia)) { 2405 // Don't bother if we are not going to use ifp. 2406 if (l == sizeof(*ia)) { 2407 memcpy(v, ia, l); 2408 return 0; 2409 } 2410 } else if (!IN6_IS_ADDR_MULTICAST(ia)) { 2411 return EINVAL; 2412 } 2413 2414 /* 2415 * If no interface was explicitly specified, choose an 2416 * appropriate one according to the given multicast address. 2417 */ 2418 if (mreq.ipv6mr_interface == 0) { 2419 struct rtentry *rt; 2420 union { 2421 struct sockaddr dst; 2422 struct sockaddr_in dst4; 2423 struct sockaddr_in6 dst6; 2424 } u; 2425 struct route ro; 2426 2427 /* 2428 * Look up the routing table for the 2429 * address, and choose the outgoing interface. 2430 * XXX: is it a good approach? 2431 */ 2432 memset(&ro, 0, sizeof(ro)); 2433 if (IN6_IS_ADDR_V4MAPPED(ia)) 2434 sockaddr_in_init(&u.dst4, ia4, 0); 2435 else 2436 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0); 2437 error = rtcache_setdst(&ro, &u.dst); 2438 if (error != 0) 2439 return error; 2440 rt = rtcache_init(&ro); 2441 *ifp = rt != NULL ? 2442 if_get_byindex(rt->rt_ifp->if_index, psref) : NULL; 2443 rtcache_unref(rt, &ro); 2444 rtcache_free(&ro); 2445 } else { 2446 /* 2447 * If the interface is specified, validate it. 2448 */ 2449 *ifp = if_get_byindex(mreq.ipv6mr_interface, psref); 2450 if (*ifp == NULL) 2451 return ENXIO; /* XXX EINVAL? */ 2452 } 2453 if (sizeof(*ia) == l) 2454 memcpy(v, ia, l); 2455 else 2456 memcpy(v, ia4, l); 2457 return 0; 2458 } 2459 2460 /* 2461 * Set the IP6 multicast options in response to user setsockopt(). 2462 */ 2463 static int 2464 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p) 2465 { 2466 int error = 0; 2467 u_int loop, ifindex; 2468 struct ipv6_mreq mreq; 2469 struct in6_addr ia; 2470 struct ifnet *ifp; 2471 struct ip6_moptions *im6o = in6p->in6p_moptions; 2472 struct in6_multi_mship *imm; 2473 2474 KASSERT(in6p_locked(in6p)); 2475 2476 if (im6o == NULL) { 2477 /* 2478 * No multicast option buffer attached to the pcb; 2479 * allocate one and initialize to default values. 2480 */ 2481 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT); 2482 if (im6o == NULL) 2483 return (ENOBUFS); 2484 in6p->in6p_moptions = im6o; 2485 im6o->im6o_multicast_if_index = 0; 2486 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2487 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2488 LIST_INIT(&im6o->im6o_memberships); 2489 } 2490 2491 switch (sopt->sopt_name) { 2492 2493 case IPV6_MULTICAST_IF: { 2494 int s; 2495 /* 2496 * Select the interface for outgoing multicast packets. 2497 */ 2498 error = sockopt_get(sopt, &ifindex, sizeof(ifindex)); 2499 if (error != 0) 2500 break; 2501 2502 s = pserialize_read_enter(); 2503 if (ifindex != 0) { 2504 if ((ifp = if_byindex(ifindex)) == NULL) { 2505 pserialize_read_exit(s); 2506 error = ENXIO; /* XXX EINVAL? */ 2507 break; 2508 } 2509 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 2510 pserialize_read_exit(s); 2511 error = EADDRNOTAVAIL; 2512 break; 2513 } 2514 } else 2515 ifp = NULL; 2516 im6o->im6o_multicast_if_index = if_get_index(ifp); 2517 pserialize_read_exit(s); 2518 break; 2519 } 2520 2521 case IPV6_MULTICAST_HOPS: 2522 { 2523 /* 2524 * Set the IP6 hoplimit for outgoing multicast packets. 2525 */ 2526 int optval; 2527 2528 error = sockopt_getint(sopt, &optval); 2529 if (error != 0) 2530 break; 2531 2532 if (optval < -1 || optval >= 256) 2533 error = EINVAL; 2534 else if (optval == -1) 2535 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2536 else 2537 im6o->im6o_multicast_hlim = optval; 2538 break; 2539 } 2540 2541 case IPV6_MULTICAST_LOOP: 2542 /* 2543 * Set the loopback flag for outgoing multicast packets. 2544 * Must be zero or one. 2545 */ 2546 error = sockopt_get(sopt, &loop, sizeof(loop)); 2547 if (error != 0) 2548 break; 2549 if (loop > 1) { 2550 error = EINVAL; 2551 break; 2552 } 2553 im6o->im6o_multicast_loop = loop; 2554 break; 2555 2556 case IPV6_JOIN_GROUP: { 2557 int bound; 2558 struct psref psref; 2559 /* 2560 * Add a multicast group membership. 2561 * Group must be a valid IP6 multicast address. 2562 */ 2563 bound = curlwp_bind(); 2564 ifp = NULL; 2565 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia)); 2566 if (error != 0) { 2567 KASSERT(ifp == NULL); 2568 curlwp_bindx(bound); 2569 return error; 2570 } 2571 2572 if (IN6_IS_ADDR_V4MAPPED(&ia)) { 2573 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt); 2574 goto put_break; 2575 } 2576 /* 2577 * See if we found an interface, and confirm that it 2578 * supports multicast 2579 */ 2580 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2581 error = EADDRNOTAVAIL; 2582 goto put_break; 2583 } 2584 2585 if (in6_setscope(&ia, ifp, NULL)) { 2586 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2587 goto put_break; 2588 } 2589 2590 /* 2591 * See if the membership already exists. 2592 */ 2593 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2594 if (imm->i6mm_maddr->in6m_ifp == ifp && 2595 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2596 &ia)) 2597 goto put_break; 2598 } 2599 if (imm != NULL) { 2600 error = EADDRINUSE; 2601 goto put_break; 2602 } 2603 /* 2604 * Everything looks good; add a new record to the multicast 2605 * address list for the given interface. 2606 */ 2607 imm = in6_joingroup(ifp, &ia, &error, 0); 2608 if (imm == NULL) 2609 goto put_break; 2610 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2611 put_break: 2612 if_put(ifp, &psref); 2613 curlwp_bindx(bound); 2614 break; 2615 } 2616 2617 case IPV6_LEAVE_GROUP: 2618 /* 2619 * Drop a multicast group membership. 2620 * Group must be a valid IP6 multicast address. 2621 */ 2622 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2623 if (error != 0) 2624 break; 2625 2626 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) { 2627 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt); 2628 break; 2629 } 2630 /* 2631 * If an interface address was specified, get a pointer 2632 * to its ifnet structure. 2633 */ 2634 if (mreq.ipv6mr_interface != 0) { 2635 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) { 2636 error = ENXIO; /* XXX EINVAL? */ 2637 break; 2638 } 2639 } else 2640 ifp = NULL; 2641 2642 /* Fill in the scope zone ID */ 2643 if (ifp) { 2644 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) { 2645 /* XXX: should not happen */ 2646 error = EADDRNOTAVAIL; 2647 break; 2648 } 2649 } else if (mreq.ipv6mr_interface != 0) { 2650 /* 2651 * XXX: This case would happens when the (positive) 2652 * index is in the valid range, but the corresponding 2653 * interface has been detached dynamically. The above 2654 * check probably avoids such case to happen here, but 2655 * we check it explicitly for safety. 2656 */ 2657 error = EADDRNOTAVAIL; 2658 break; 2659 } else { /* ipv6mr_interface == 0 */ 2660 struct sockaddr_in6 sa6_mc; 2661 2662 /* 2663 * The API spec says as follows: 2664 * If the interface index is specified as 0, the 2665 * system may choose a multicast group membership to 2666 * drop by matching the multicast address only. 2667 * On the other hand, we cannot disambiguate the scope 2668 * zone unless an interface is provided. Thus, we 2669 * check if there's ambiguity with the default scope 2670 * zone as the last resort. 2671 */ 2672 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr, 2673 0, 0, 0); 2674 error = sa6_embedscope(&sa6_mc, ip6_use_defzone); 2675 if (error != 0) 2676 break; 2677 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr; 2678 } 2679 2680 /* 2681 * Find the membership in the membership list. 2682 */ 2683 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2684 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2685 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2686 &mreq.ipv6mr_multiaddr)) 2687 break; 2688 } 2689 if (imm == NULL) { 2690 /* Unable to resolve interface */ 2691 error = EADDRNOTAVAIL; 2692 break; 2693 } 2694 /* 2695 * Give up the multicast address record to which the 2696 * membership points. 2697 */ 2698 LIST_REMOVE(imm, i6mm_chain); 2699 in6_leavegroup(imm); 2700 break; 2701 2702 default: 2703 error = EOPNOTSUPP; 2704 break; 2705 } 2706 2707 /* 2708 * If all options have default values, no need to keep the mbuf. 2709 */ 2710 if (im6o->im6o_multicast_if_index == 0 && 2711 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2712 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2713 LIST_EMPTY(&im6o->im6o_memberships)) { 2714 free(in6p->in6p_moptions, M_IPMOPTS); 2715 in6p->in6p_moptions = NULL; 2716 } 2717 2718 return (error); 2719 } 2720 2721 /* 2722 * Return the IP6 multicast options in response to user getsockopt(). 2723 */ 2724 static int 2725 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p) 2726 { 2727 u_int optval; 2728 int error; 2729 struct ip6_moptions *im6o = in6p->in6p_moptions; 2730 2731 switch (sopt->sopt_name) { 2732 case IPV6_MULTICAST_IF: 2733 if (im6o == NULL || im6o->im6o_multicast_if_index == 0) 2734 optval = 0; 2735 else 2736 optval = im6o->im6o_multicast_if_index; 2737 2738 error = sockopt_set(sopt, &optval, sizeof(optval)); 2739 break; 2740 2741 case IPV6_MULTICAST_HOPS: 2742 if (im6o == NULL) 2743 optval = ip6_defmcasthlim; 2744 else 2745 optval = im6o->im6o_multicast_hlim; 2746 2747 error = sockopt_set(sopt, &optval, sizeof(optval)); 2748 break; 2749 2750 case IPV6_MULTICAST_LOOP: 2751 if (im6o == NULL) 2752 optval = IPV6_DEFAULT_MULTICAST_LOOP; 2753 else 2754 optval = im6o->im6o_multicast_loop; 2755 2756 error = sockopt_set(sopt, &optval, sizeof(optval)); 2757 break; 2758 2759 default: 2760 error = EOPNOTSUPP; 2761 } 2762 2763 return (error); 2764 } 2765 2766 /* 2767 * Discard the IP6 multicast options. 2768 */ 2769 void 2770 ip6_freemoptions(struct ip6_moptions *im6o) 2771 { 2772 struct in6_multi_mship *imm, *nimm; 2773 2774 if (im6o == NULL) 2775 return; 2776 2777 /* The owner of im6o (in6p) should be protected by solock */ 2778 LIST_FOREACH_SAFE(imm, &im6o->im6o_memberships, i6mm_chain, nimm) { 2779 LIST_REMOVE(imm, i6mm_chain); 2780 in6_leavegroup(imm); 2781 } 2782 free(im6o, M_IPMOPTS); 2783 } 2784 2785 /* 2786 * Set IPv6 outgoing packet options based on advanced API. 2787 */ 2788 int 2789 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2790 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto) 2791 { 2792 struct cmsghdr *cm = 0; 2793 2794 if (control == NULL || opt == NULL) 2795 return (EINVAL); 2796 2797 ip6_initpktopts(opt); 2798 if (stickyopt) { 2799 int error; 2800 2801 /* 2802 * If stickyopt is provided, make a local copy of the options 2803 * for this particular packet, then override them by ancillary 2804 * objects. 2805 * XXX: copypktopts() does not copy the cached route to a next 2806 * hop (if any). This is not very good in terms of efficiency, 2807 * but we can allow this since this option should be rarely 2808 * used. 2809 */ 2810 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2811 return (error); 2812 } 2813 2814 /* 2815 * XXX: Currently, we assume all the optional information is stored 2816 * in a single mbuf. 2817 */ 2818 if (control->m_next) 2819 return (EINVAL); 2820 2821 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */ 2822 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2823 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2824 int error; 2825 2826 if (control->m_len < CMSG_LEN(0)) 2827 return (EINVAL); 2828 2829 cm = mtod(control, struct cmsghdr *); 2830 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2831 return (EINVAL); 2832 if (cm->cmsg_level != IPPROTO_IPV6) 2833 continue; 2834 2835 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2836 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2837 if (error) 2838 return (error); 2839 } 2840 2841 return (0); 2842 } 2843 2844 /* 2845 * Set a particular packet option, as a sticky option or an ancillary data 2846 * item. "len" can be 0 only when it's a sticky option. 2847 * We have 4 cases of combination of "sticky" and "cmsg": 2848 * "sticky=0, cmsg=0": impossible 2849 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2850 * "sticky=1, cmsg=0": RFC3542 socket option 2851 * "sticky=1, cmsg=1": RFC2292 socket option 2852 */ 2853 static int 2854 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2855 kauth_cred_t cred, int sticky, int cmsg, int uproto) 2856 { 2857 int minmtupolicy; 2858 int error; 2859 2860 if (!sticky && !cmsg) { 2861 #ifdef DIAGNOSTIC 2862 printf("ip6_setpktopt: impossible case\n"); 2863 #endif 2864 return (EINVAL); 2865 } 2866 2867 /* 2868 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2869 * not be specified in the context of RFC3542. Conversely, 2870 * RFC3542 types should not be specified in the context of RFC2292. 2871 */ 2872 if (!cmsg) { 2873 switch (optname) { 2874 case IPV6_2292PKTINFO: 2875 case IPV6_2292HOPLIMIT: 2876 case IPV6_2292NEXTHOP: 2877 case IPV6_2292HOPOPTS: 2878 case IPV6_2292DSTOPTS: 2879 case IPV6_2292RTHDR: 2880 case IPV6_2292PKTOPTIONS: 2881 return (ENOPROTOOPT); 2882 } 2883 } 2884 if (sticky && cmsg) { 2885 switch (optname) { 2886 case IPV6_PKTINFO: 2887 case IPV6_HOPLIMIT: 2888 case IPV6_NEXTHOP: 2889 case IPV6_HOPOPTS: 2890 case IPV6_DSTOPTS: 2891 case IPV6_RTHDRDSTOPTS: 2892 case IPV6_RTHDR: 2893 case IPV6_USE_MIN_MTU: 2894 case IPV6_DONTFRAG: 2895 case IPV6_OTCLASS: 2896 case IPV6_TCLASS: 2897 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */ 2898 return (ENOPROTOOPT); 2899 } 2900 } 2901 2902 switch (optname) { 2903 #ifdef RFC2292 2904 case IPV6_2292PKTINFO: 2905 #endif 2906 case IPV6_PKTINFO: 2907 { 2908 struct in6_pktinfo *pktinfo; 2909 2910 if (len != sizeof(struct in6_pktinfo)) 2911 return (EINVAL); 2912 2913 pktinfo = (struct in6_pktinfo *)buf; 2914 2915 /* 2916 * An application can clear any sticky IPV6_PKTINFO option by 2917 * doing a "regular" setsockopt with ipi6_addr being 2918 * in6addr_any and ipi6_ifindex being zero. 2919 * [RFC 3542, Section 6] 2920 */ 2921 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2922 pktinfo->ipi6_ifindex == 0 && 2923 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2924 ip6_clearpktopts(opt, optname); 2925 break; 2926 } 2927 2928 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2929 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2930 return (EINVAL); 2931 } 2932 2933 /* Validate the interface index if specified. */ 2934 if (pktinfo->ipi6_ifindex) { 2935 struct ifnet *ifp; 2936 int s = pserialize_read_enter(); 2937 ifp = if_byindex(pktinfo->ipi6_ifindex); 2938 if (ifp == NULL) { 2939 pserialize_read_exit(s); 2940 return ENXIO; 2941 } 2942 pserialize_read_exit(s); 2943 } 2944 2945 /* 2946 * We store the address anyway, and let in6_selectsrc() 2947 * validate the specified address. This is because ipi6_addr 2948 * may not have enough information about its scope zone, and 2949 * we may need additional information (such as outgoing 2950 * interface or the scope zone of a destination address) to 2951 * disambiguate the scope. 2952 * XXX: the delay of the validation may confuse the 2953 * application when it is used as a sticky option. 2954 */ 2955 if (opt->ip6po_pktinfo == NULL) { 2956 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2957 M_IP6OPT, M_NOWAIT); 2958 if (opt->ip6po_pktinfo == NULL) 2959 return (ENOBUFS); 2960 } 2961 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo)); 2962 break; 2963 } 2964 2965 #ifdef RFC2292 2966 case IPV6_2292HOPLIMIT: 2967 #endif 2968 case IPV6_HOPLIMIT: 2969 { 2970 int *hlimp; 2971 2972 /* 2973 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2974 * to simplify the ordering among hoplimit options. 2975 */ 2976 if (optname == IPV6_HOPLIMIT && sticky) 2977 return (ENOPROTOOPT); 2978 2979 if (len != sizeof(int)) 2980 return (EINVAL); 2981 hlimp = (int *)buf; 2982 if (*hlimp < -1 || *hlimp > 255) 2983 return (EINVAL); 2984 2985 opt->ip6po_hlim = *hlimp; 2986 break; 2987 } 2988 2989 case IPV6_OTCLASS: 2990 if (len != sizeof(u_int8_t)) 2991 return (EINVAL); 2992 2993 opt->ip6po_tclass = *(u_int8_t *)buf; 2994 break; 2995 2996 case IPV6_TCLASS: 2997 { 2998 int tclass; 2999 3000 if (len != sizeof(int)) 3001 return (EINVAL); 3002 tclass = *(int *)buf; 3003 if (tclass < -1 || tclass > 255) 3004 return (EINVAL); 3005 3006 opt->ip6po_tclass = tclass; 3007 break; 3008 } 3009 3010 #ifdef RFC2292 3011 case IPV6_2292NEXTHOP: 3012 #endif 3013 case IPV6_NEXTHOP: 3014 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 3015 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 3016 if (error) 3017 return (error); 3018 3019 if (len == 0) { /* just remove the option */ 3020 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3021 break; 3022 } 3023 3024 /* check if cmsg_len is large enough for sa_len */ 3025 if (len < sizeof(struct sockaddr) || len < *buf) 3026 return (EINVAL); 3027 3028 switch (((struct sockaddr *)buf)->sa_family) { 3029 case AF_INET6: 3030 { 3031 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3032 3033 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3034 return (EINVAL); 3035 3036 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3037 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3038 return (EINVAL); 3039 } 3040 if ((error = sa6_embedscope(sa6, ip6_use_defzone)) 3041 != 0) { 3042 return (error); 3043 } 3044 break; 3045 } 3046 case AF_LINK: /* eventually be supported? */ 3047 default: 3048 return (EAFNOSUPPORT); 3049 } 3050 3051 /* turn off the previous option, then set the new option. */ 3052 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3053 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3054 if (opt->ip6po_nexthop == NULL) 3055 return (ENOBUFS); 3056 memcpy(opt->ip6po_nexthop, buf, *buf); 3057 break; 3058 3059 #ifdef RFC2292 3060 case IPV6_2292HOPOPTS: 3061 #endif 3062 case IPV6_HOPOPTS: 3063 { 3064 struct ip6_hbh *hbh; 3065 int hbhlen; 3066 3067 /* 3068 * XXX: We don't allow a non-privileged user to set ANY HbH 3069 * options, since per-option restriction has too much 3070 * overhead. 3071 */ 3072 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 3073 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 3074 if (error) 3075 return (error); 3076 3077 if (len == 0) { 3078 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3079 break; /* just remove the option */ 3080 } 3081 3082 /* message length validation */ 3083 if (len < sizeof(struct ip6_hbh)) 3084 return (EINVAL); 3085 hbh = (struct ip6_hbh *)buf; 3086 hbhlen = (hbh->ip6h_len + 1) << 3; 3087 if (len != hbhlen) 3088 return (EINVAL); 3089 3090 /* turn off the previous option, then set the new option. */ 3091 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3092 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3093 if (opt->ip6po_hbh == NULL) 3094 return (ENOBUFS); 3095 memcpy(opt->ip6po_hbh, hbh, hbhlen); 3096 3097 break; 3098 } 3099 3100 #ifdef RFC2292 3101 case IPV6_2292DSTOPTS: 3102 #endif 3103 case IPV6_DSTOPTS: 3104 case IPV6_RTHDRDSTOPTS: 3105 { 3106 struct ip6_dest *dest, **newdest = NULL; 3107 int destlen; 3108 3109 /* XXX: see the comment for IPV6_HOPOPTS */ 3110 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 3111 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 3112 if (error) 3113 return (error); 3114 3115 if (len == 0) { 3116 ip6_clearpktopts(opt, optname); 3117 break; /* just remove the option */ 3118 } 3119 3120 /* message length validation */ 3121 if (len < sizeof(struct ip6_dest)) 3122 return (EINVAL); 3123 dest = (struct ip6_dest *)buf; 3124 destlen = (dest->ip6d_len + 1) << 3; 3125 if (len != destlen) 3126 return (EINVAL); 3127 /* 3128 * Determine the position that the destination options header 3129 * should be inserted; before or after the routing header. 3130 */ 3131 switch (optname) { 3132 case IPV6_2292DSTOPTS: 3133 /* 3134 * The old advanced API is ambiguous on this point. 3135 * Our approach is to determine the position based 3136 * according to the existence of a routing header. 3137 * Note, however, that this depends on the order of the 3138 * extension headers in the ancillary data; the 1st 3139 * part of the destination options header must appear 3140 * before the routing header in the ancillary data, 3141 * too. 3142 * RFC3542 solved the ambiguity by introducing 3143 * separate ancillary data or option types. 3144 */ 3145 if (opt->ip6po_rthdr == NULL) 3146 newdest = &opt->ip6po_dest1; 3147 else 3148 newdest = &opt->ip6po_dest2; 3149 break; 3150 case IPV6_RTHDRDSTOPTS: 3151 newdest = &opt->ip6po_dest1; 3152 break; 3153 case IPV6_DSTOPTS: 3154 newdest = &opt->ip6po_dest2; 3155 break; 3156 } 3157 3158 /* turn off the previous option, then set the new option. */ 3159 ip6_clearpktopts(opt, optname); 3160 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3161 if (*newdest == NULL) 3162 return (ENOBUFS); 3163 memcpy(*newdest, dest, destlen); 3164 3165 break; 3166 } 3167 3168 #ifdef RFC2292 3169 case IPV6_2292RTHDR: 3170 #endif 3171 case IPV6_RTHDR: 3172 { 3173 struct ip6_rthdr *rth; 3174 int rthlen; 3175 3176 if (len == 0) { 3177 ip6_clearpktopts(opt, IPV6_RTHDR); 3178 break; /* just remove the option */ 3179 } 3180 3181 /* message length validation */ 3182 if (len < sizeof(struct ip6_rthdr)) 3183 return (EINVAL); 3184 rth = (struct ip6_rthdr *)buf; 3185 rthlen = (rth->ip6r_len + 1) << 3; 3186 if (len != rthlen) 3187 return (EINVAL); 3188 switch (rth->ip6r_type) { 3189 case IPV6_RTHDR_TYPE_0: 3190 if (rth->ip6r_len == 0) /* must contain one addr */ 3191 return (EINVAL); 3192 if (rth->ip6r_len % 2) /* length must be even */ 3193 return (EINVAL); 3194 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3195 return (EINVAL); 3196 break; 3197 default: 3198 return (EINVAL); /* not supported */ 3199 } 3200 /* turn off the previous option */ 3201 ip6_clearpktopts(opt, IPV6_RTHDR); 3202 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3203 if (opt->ip6po_rthdr == NULL) 3204 return (ENOBUFS); 3205 memcpy(opt->ip6po_rthdr, rth, rthlen); 3206 break; 3207 } 3208 3209 case IPV6_USE_MIN_MTU: 3210 if (len != sizeof(int)) 3211 return (EINVAL); 3212 minmtupolicy = *(int *)buf; 3213 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3214 minmtupolicy != IP6PO_MINMTU_DISABLE && 3215 minmtupolicy != IP6PO_MINMTU_ALL) { 3216 return (EINVAL); 3217 } 3218 opt->ip6po_minmtu = minmtupolicy; 3219 break; 3220 3221 case IPV6_DONTFRAG: 3222 if (len != sizeof(int)) 3223 return (EINVAL); 3224 3225 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3226 /* 3227 * we ignore this option for TCP sockets. 3228 * (RFC3542 leaves this case unspecified.) 3229 */ 3230 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3231 } else 3232 opt->ip6po_flags |= IP6PO_DONTFRAG; 3233 break; 3234 3235 case IPV6_PREFER_TEMPADDR: 3236 { 3237 int preftemp; 3238 3239 if (len != sizeof(int)) 3240 return (EINVAL); 3241 preftemp = *(int *)buf; 3242 switch (preftemp) { 3243 case IP6PO_TEMPADDR_SYSTEM: 3244 case IP6PO_TEMPADDR_NOTPREFER: 3245 case IP6PO_TEMPADDR_PREFER: 3246 break; 3247 default: 3248 return (EINVAL); 3249 } 3250 opt->ip6po_prefer_tempaddr = preftemp; 3251 break; 3252 } 3253 3254 default: 3255 return (ENOPROTOOPT); 3256 } /* end of switch */ 3257 3258 return (0); 3259 } 3260 3261 /* 3262 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3263 * packet to the input queue of a specified interface. Note that this 3264 * calls the output routine of the loopback "driver", but with an interface 3265 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 3266 */ 3267 void 3268 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, 3269 const struct sockaddr_in6 *dst) 3270 { 3271 struct mbuf *copym; 3272 struct ip6_hdr *ip6; 3273 3274 copym = m_copy(m, 0, M_COPYALL); 3275 if (copym == NULL) 3276 return; 3277 3278 /* 3279 * Make sure to deep-copy IPv6 header portion in case the data 3280 * is in an mbuf cluster, so that we can safely override the IPv6 3281 * header portion later. 3282 */ 3283 if ((copym->m_flags & M_EXT) != 0 || 3284 copym->m_len < sizeof(struct ip6_hdr)) { 3285 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3286 if (copym == NULL) 3287 return; 3288 } 3289 3290 #ifdef DIAGNOSTIC 3291 if (copym->m_len < sizeof(*ip6)) { 3292 m_freem(copym); 3293 return; 3294 } 3295 #endif 3296 3297 ip6 = mtod(copym, struct ip6_hdr *); 3298 /* 3299 * clear embedded scope identifiers if necessary. 3300 * in6_clearscope will touch the addresses only when necessary. 3301 */ 3302 in6_clearscope(&ip6->ip6_src); 3303 in6_clearscope(&ip6->ip6_dst); 3304 3305 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL); 3306 } 3307 3308 /* 3309 * Chop IPv6 header off from the payload. 3310 */ 3311 static int 3312 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3313 { 3314 struct mbuf *mh; 3315 struct ip6_hdr *ip6; 3316 3317 ip6 = mtod(m, struct ip6_hdr *); 3318 if (m->m_len > sizeof(*ip6)) { 3319 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3320 if (mh == 0) { 3321 m_freem(m); 3322 return ENOBUFS; 3323 } 3324 M_MOVE_PKTHDR(mh, m); 3325 MH_ALIGN(mh, sizeof(*ip6)); 3326 m->m_len -= sizeof(*ip6); 3327 m->m_data += sizeof(*ip6); 3328 mh->m_next = m; 3329 m = mh; 3330 m->m_len = sizeof(*ip6); 3331 bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6)); 3332 } 3333 exthdrs->ip6e_ip6 = m; 3334 return 0; 3335 } 3336 3337 /* 3338 * Compute IPv6 extension header length. 3339 */ 3340 int 3341 ip6_optlen(struct in6pcb *in6p) 3342 { 3343 int len; 3344 3345 if (!in6p->in6p_outputopts) 3346 return 0; 3347 3348 len = 0; 3349 #define elen(x) \ 3350 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3351 3352 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3353 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3354 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3355 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3356 return len; 3357 #undef elen 3358 } 3359 3360 /* 3361 * Ensure sending address is valid. 3362 * Returns 0 on success, -1 if an error should be sent back or 1 3363 * if the packet could be dropped without error (protocol dependent). 3364 */ 3365 static int 3366 ip6_ifaddrvalid(const struct in6_addr *addr) 3367 { 3368 struct sockaddr_in6 sin6; 3369 int s, error; 3370 struct ifaddr *ifa; 3371 struct in6_ifaddr *ia6; 3372 3373 if (IN6_IS_ADDR_UNSPECIFIED(addr)) 3374 return 0; 3375 3376 memset(&sin6, 0, sizeof(sin6)); 3377 sin6.sin6_family = AF_INET6; 3378 sin6.sin6_len = sizeof(sin6); 3379 sin6.sin6_addr = *addr; 3380 3381 s = pserialize_read_enter(); 3382 ifa = ifa_ifwithaddr(sin6tosa(&sin6)); 3383 if ((ia6 = ifatoia6(ifa)) == NULL || 3384 ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED)) 3385 error = -1; 3386 else if (ia6->ia6_flags & (IN6_IFF_TENTATIVE | IN6_IFF_DETACHED)) 3387 error = 1; 3388 else 3389 error = 0; 3390 pserialize_read_exit(s); 3391 3392 return error; 3393 } 3394