1 /* $NetBSD: in6.c,v 1.159 2011/11/19 22:51:26 tls Exp $ */ 2 /* $KAME: in6.c,v 1.198 2001/07/18 09:12:38 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)in.c 8.2 (Berkeley) 11/15/93 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: in6.c,v 1.159 2011/11/19 22:51:26 tls Exp $"); 66 67 #include "opt_inet.h" 68 #include "opt_pfil_hooks.h" 69 #include "opt_compat_netbsd.h" 70 71 #include <sys/param.h> 72 #include <sys/ioctl.h> 73 #include <sys/errno.h> 74 #include <sys/malloc.h> 75 #include <sys/socket.h> 76 #include <sys/socketvar.h> 77 #include <sys/sockio.h> 78 #include <sys/systm.h> 79 #include <sys/proc.h> 80 #include <sys/time.h> 81 #include <sys/kernel.h> 82 #include <sys/syslog.h> 83 #include <sys/kauth.h> 84 #include <sys/cprng.h> 85 86 #include <net/if.h> 87 #include <net/if_types.h> 88 #include <net/route.h> 89 #include <net/if_dl.h> 90 91 #include <netinet/in.h> 92 #include <netinet/in_var.h> 93 #include <net/if_ether.h> 94 95 #include <netinet/ip6.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/nd6.h> 98 #include <netinet6/mld6_var.h> 99 #include <netinet6/ip6_mroute.h> 100 #include <netinet6/in6_ifattach.h> 101 #include <netinet6/scope6_var.h> 102 103 #include <net/net_osdep.h> 104 105 #ifdef PFIL_HOOKS 106 #include <net/pfil.h> 107 #endif 108 #ifdef COMPAT_50 109 #include <compat/netinet6/in6_var.h> 110 #endif 111 112 MALLOC_DEFINE(M_IP6OPT, "ip6_options", "IPv6 options"); 113 114 /* enable backward compatibility code for obsoleted ioctls */ 115 #define COMPAT_IN6IFIOCTL 116 117 #ifdef IN6_DEBUG 118 #define IN6_DPRINTF(__fmt, ...) printf(__fmt, __VA_ARGS__) 119 #else 120 #define IN6_DPRINTF(__fmt, ...) do { } while (/*CONSTCOND*/0) 121 #endif /* IN6_DEBUG */ 122 123 /* 124 * Definitions of some constant IP6 addresses. 125 */ 126 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 127 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 128 const struct in6_addr in6addr_nodelocal_allnodes = 129 IN6ADDR_NODELOCAL_ALLNODES_INIT; 130 const struct in6_addr in6addr_linklocal_allnodes = 131 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 132 const struct in6_addr in6addr_linklocal_allrouters = 133 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 134 135 const struct in6_addr in6mask0 = IN6MASK0; 136 const struct in6_addr in6mask32 = IN6MASK32; 137 const struct in6_addr in6mask64 = IN6MASK64; 138 const struct in6_addr in6mask96 = IN6MASK96; 139 const struct in6_addr in6mask128 = IN6MASK128; 140 141 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6, 142 0, 0, IN6ADDR_ANY_INIT, 0}; 143 144 static int in6_lifaddr_ioctl(struct socket *, u_long, void *, 145 struct ifnet *, struct lwp *); 146 static int in6_ifinit(struct ifnet *, struct in6_ifaddr *, 147 const struct sockaddr_in6 *, int); 148 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *); 149 150 /* 151 * Subroutine for in6_ifaddloop() and in6_ifremloop(). 152 * This routine does actual work. 153 */ 154 static void 155 in6_ifloop_request(int cmd, struct ifaddr *ifa) 156 { 157 struct sockaddr_in6 lo_sa; 158 struct sockaddr_in6 all1_sa; 159 struct rtentry *nrt = NULL; 160 int e; 161 162 sockaddr_in6_init(&all1_sa, &in6mask128, 0, 0, 0); 163 sockaddr_in6_init(&lo_sa, &in6addr_loopback, 0, 0, 0); 164 165 /* 166 * We specify the address itself as the gateway, and set the 167 * RTF_LLINFO flag, so that the corresponding host route would have 168 * the flag, and thus applications that assume traditional behavior 169 * would be happy. Note that we assume the caller of the function 170 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, 171 * which changes the outgoing interface to the loopback interface. 172 */ 173 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr, 174 (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt); 175 if (e != 0) { 176 log(LOG_ERR, "in6_ifloop_request: " 177 "%s operation failed for %s (errno=%d)\n", 178 cmd == RTM_ADD ? "ADD" : "DELETE", 179 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), 180 e); 181 } 182 183 /* 184 * Make sure rt_ifa be equal to IFA, the second argument of the 185 * function. 186 * We need this because when we refer to rt_ifa->ia6_flags in 187 * ip6_input, we assume that the rt_ifa points to the address instead 188 * of the loopback address. 189 */ 190 if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) 191 rt_replace_ifa(nrt, ifa); 192 193 /* 194 * Report the addition/removal of the address to the routing socket. 195 * XXX: since we called rtinit for a p2p interface with a destination, 196 * we end up reporting twice in such a case. Should we rather 197 * omit the second report? 198 */ 199 if (nrt) { 200 rt_newaddrmsg(cmd, ifa, e, nrt); 201 if (cmd == RTM_DELETE) { 202 if (nrt->rt_refcnt <= 0) { 203 /* XXX: we should free the entry ourselves. */ 204 nrt->rt_refcnt++; 205 rtfree(nrt); 206 } 207 } else { 208 /* the cmd must be RTM_ADD here */ 209 nrt->rt_refcnt--; 210 } 211 } 212 } 213 214 /* 215 * Add ownaddr as loopback rtentry. We previously add the route only if 216 * necessary (ex. on a p2p link). However, since we now manage addresses 217 * separately from prefixes, we should always add the route. We can't 218 * rely on the cloning mechanism from the corresponding interface route 219 * any more. 220 */ 221 void 222 in6_ifaddloop(struct ifaddr *ifa) 223 { 224 struct rtentry *rt; 225 226 /* If there is no loopback entry, allocate one. */ 227 rt = rtalloc1(ifa->ifa_addr, 0); 228 if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 || 229 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) 230 in6_ifloop_request(RTM_ADD, ifa); 231 if (rt != NULL) 232 rt->rt_refcnt--; 233 } 234 235 /* 236 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), 237 * if it exists. 238 */ 239 void 240 in6_ifremloop(struct ifaddr *ifa) 241 { 242 struct in6_ifaddr *alt_ia = NULL, *ia; 243 struct rtentry *rt; 244 int ia_count = 0; 245 246 /* 247 * Some of BSD variants do not remove cloned routes 248 * from an interface direct route, when removing the direct route 249 * (see comments in net/net_osdep.h). Even for variants that do remove 250 * cloned routes, they could fail to remove the cloned routes when 251 * we handle multple addresses that share a common prefix. 252 * So, we should remove the route corresponding to the deleted address. 253 */ 254 255 /* 256 * Delete the entry only if exactly one ifaddr matches the 257 * address, ifa->ifa_addr. 258 * 259 * If more than one ifaddr matches, replace the ifaddr in 260 * the routing table, rt_ifa, with a different ifaddr than 261 * the one we are purging, ifa. It is important to do 262 * this, or else the routing table can accumulate dangling 263 * pointers rt->rt_ifa->ifa_ifp to destroyed interfaces, 264 * which will lead to crashes, later. (More than one ifaddr 265 * can match if we assign the same address to multiple---probably 266 * p2p---interfaces.) 267 * 268 * XXX An old comment at this place said, "we should avoid 269 * XXX such a configuration [i.e., interfaces with the same 270 * XXX addressed assigned --ed.] in IPv6...". I do not 271 * XXX agree, especially now that I have fixed the dangling 272 * XXX ifp-pointers bug. 273 */ 274 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 275 if (!IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) 276 continue; 277 if (ia->ia_ifp != ifa->ifa_ifp) 278 alt_ia = ia; 279 if (++ia_count > 1 && alt_ia != NULL) 280 break; 281 } 282 283 if (ia_count == 0) 284 return; 285 286 if ((rt = rtalloc1(ifa->ifa_addr, 0)) == NULL) 287 return; 288 rt->rt_refcnt--; 289 290 /* 291 * Before deleting, check if a corresponding loopbacked 292 * host route surely exists. With this check, we can avoid 293 * deleting an interface direct route whose destination is 294 * the same as the address being removed. This can happen 295 * when removing a subnet-router anycast address on an 296 * interface attached to a shared medium. 297 */ 298 if ((rt->rt_flags & RTF_HOST) == 0 || 299 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) 300 return; 301 302 /* If we cannot replace the route's ifaddr with the equivalent 303 * ifaddr of another interface, I believe it is safest to 304 * delete the route. 305 */ 306 if (ia_count == 1 || alt_ia == NULL) 307 in6_ifloop_request(RTM_DELETE, ifa); 308 else 309 rt_replace_ifa(rt, &alt_ia->ia_ifa); 310 } 311 312 int 313 in6_mask2len(struct in6_addr *mask, u_char *lim0) 314 { 315 int x = 0, y; 316 u_char *lim = lim0, *p; 317 318 /* ignore the scope_id part */ 319 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) 320 lim = (u_char *)mask + sizeof(*mask); 321 for (p = (u_char *)mask; p < lim; x++, p++) { 322 if (*p != 0xff) 323 break; 324 } 325 y = 0; 326 if (p < lim) { 327 for (y = 0; y < NBBY; y++) { 328 if ((*p & (0x80 >> y)) == 0) 329 break; 330 } 331 } 332 333 /* 334 * when the limit pointer is given, do a stricter check on the 335 * remaining bits. 336 */ 337 if (p < lim) { 338 if (y != 0 && (*p & (0x00ff >> y)) != 0) 339 return -1; 340 for (p = p + 1; p < lim; p++) 341 if (*p != 0) 342 return -1; 343 } 344 345 return x * NBBY + y; 346 } 347 348 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 349 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 350 351 static int 352 in6_control1(struct socket *so, u_long cmd, void *data, struct ifnet *ifp, 353 lwp_t *l) 354 { 355 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 356 struct in6_ifaddr *ia = NULL; 357 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 358 struct sockaddr_in6 *sa6; 359 int error; 360 361 switch (cmd) { 362 /* 363 * XXX: Fix me, once we fix SIOCSIFADDR, SIOCIFDSTADDR, etc. 364 */ 365 case SIOCSIFADDR: 366 case SIOCSIFDSTADDR: 367 #ifdef SIOCSIFCONF_X25 368 case SIOCSIFCONF_X25: 369 #endif 370 return EOPNOTSUPP; 371 case SIOCGETSGCNT_IN6: 372 case SIOCGETMIFCNT_IN6: 373 return mrt6_ioctl(cmd, data); 374 case SIOCGIFADDRPREF: 375 case SIOCSIFADDRPREF: 376 if (ifp == NULL) 377 return EINVAL; 378 return ifaddrpref_ioctl(so, cmd, data, ifp, l); 379 } 380 381 if (ifp == NULL) 382 return EOPNOTSUPP; 383 384 switch (cmd) { 385 case SIOCSNDFLUSH_IN6: 386 case SIOCSPFXFLUSH_IN6: 387 case SIOCSRTRFLUSH_IN6: 388 case SIOCSDEFIFACE_IN6: 389 case SIOCSIFINFO_FLAGS: 390 case SIOCSIFINFO_IN6: 391 /* Privileged. */ 392 /* FALLTHROUGH */ 393 case OSIOCGIFINFO_IN6: 394 case SIOCGIFINFO_IN6: 395 case SIOCGDRLST_IN6: 396 case SIOCGPRLST_IN6: 397 case SIOCGNBRINFO_IN6: 398 case SIOCGDEFIFACE_IN6: 399 return nd6_ioctl(cmd, data, ifp); 400 } 401 402 switch (cmd) { 403 case SIOCSIFPREFIX_IN6: 404 case SIOCDIFPREFIX_IN6: 405 case SIOCAIFPREFIX_IN6: 406 case SIOCCIFPREFIX_IN6: 407 case SIOCSGIFPREFIX_IN6: 408 case SIOCGIFPREFIX_IN6: 409 log(LOG_NOTICE, 410 "prefix ioctls are now invalidated. " 411 "please use ifconfig.\n"); 412 return EOPNOTSUPP; 413 } 414 415 switch (cmd) { 416 case SIOCALIFADDR: 417 case SIOCDLIFADDR: 418 /* Privileged. */ 419 /* FALLTHROUGH */ 420 case SIOCGLIFADDR: 421 return in6_lifaddr_ioctl(so, cmd, data, ifp, l); 422 } 423 424 /* 425 * Find address for this interface, if it exists. 426 * 427 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation 428 * only, and used the first interface address as the target of other 429 * operations (without checking ifra_addr). This was because netinet 430 * code/API assumed at most 1 interface address per interface. 431 * Since IPv6 allows a node to assign multiple addresses 432 * on a single interface, we almost always look and check the 433 * presence of ifra_addr, and reject invalid ones here. 434 * It also decreases duplicated code among SIOC*_IN6 operations. 435 */ 436 switch (cmd) { 437 case SIOCAIFADDR_IN6: 438 #ifdef OSIOCAIFADDR_IN6 439 case OSIOCAIFADDR_IN6: 440 #endif 441 #ifdef OSIOCSIFPHYADDR_IN6 442 case OSIOCSIFPHYADDR_IN6: 443 #endif 444 case SIOCSIFPHYADDR_IN6: 445 sa6 = &ifra->ifra_addr; 446 break; 447 case SIOCSIFADDR_IN6: 448 case SIOCGIFADDR_IN6: 449 case SIOCSIFDSTADDR_IN6: 450 case SIOCSIFNETMASK_IN6: 451 case SIOCGIFDSTADDR_IN6: 452 case SIOCGIFNETMASK_IN6: 453 case SIOCDIFADDR_IN6: 454 case SIOCGIFPSRCADDR_IN6: 455 case SIOCGIFPDSTADDR_IN6: 456 case SIOCGIFAFLAG_IN6: 457 case SIOCSNDFLUSH_IN6: 458 case SIOCSPFXFLUSH_IN6: 459 case SIOCSRTRFLUSH_IN6: 460 case SIOCGIFALIFETIME_IN6: 461 #ifdef OSIOCGIFALIFETIME_IN6 462 case OSIOCGIFALIFETIME_IN6: 463 #endif 464 case SIOCGIFSTAT_IN6: 465 case SIOCGIFSTAT_ICMP6: 466 sa6 = &ifr->ifr_addr; 467 break; 468 default: 469 sa6 = NULL; 470 break; 471 } 472 if (sa6 && sa6->sin6_family == AF_INET6) { 473 if (sa6->sin6_scope_id != 0) 474 error = sa6_embedscope(sa6, 0); 475 else 476 error = in6_setscope(&sa6->sin6_addr, ifp, NULL); 477 if (error != 0) 478 return error; 479 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); 480 } else 481 ia = NULL; 482 483 switch (cmd) { 484 case SIOCSIFADDR_IN6: 485 case SIOCSIFDSTADDR_IN6: 486 case SIOCSIFNETMASK_IN6: 487 /* 488 * Since IPv6 allows a node to assign multiple addresses 489 * on a single interface, SIOCSIFxxx ioctls are deprecated. 490 */ 491 return EINVAL; 492 493 case SIOCDIFADDR_IN6: 494 /* 495 * for IPv4, we look for existing in_ifaddr here to allow 496 * "ifconfig if0 delete" to remove the first IPv4 address on 497 * the interface. For IPv6, as the spec allows multiple 498 * interface address from the day one, we consider "remove the 499 * first one" semantics to be not preferable. 500 */ 501 if (ia == NULL) 502 return EADDRNOTAVAIL; 503 /* FALLTHROUGH */ 504 #ifdef OSIOCAIFADDR_IN6 505 case OSIOCAIFADDR_IN6: 506 #endif 507 case SIOCAIFADDR_IN6: 508 /* 509 * We always require users to specify a valid IPv6 address for 510 * the corresponding operation. 511 */ 512 if (ifra->ifra_addr.sin6_family != AF_INET6 || 513 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) 514 return EAFNOSUPPORT; 515 /* Privileged. */ 516 517 break; 518 519 case SIOCGIFADDR_IN6: 520 /* This interface is basically deprecated. use SIOCGIFCONF. */ 521 /* FALLTHROUGH */ 522 case SIOCGIFAFLAG_IN6: 523 case SIOCGIFNETMASK_IN6: 524 case SIOCGIFDSTADDR_IN6: 525 case SIOCGIFALIFETIME_IN6: 526 #ifdef OSIOCGIFALIFETIME_IN6 527 case OSIOCGIFALIFETIME_IN6: 528 #endif 529 /* must think again about its semantics */ 530 if (ia == NULL) 531 return EADDRNOTAVAIL; 532 break; 533 } 534 535 switch (cmd) { 536 537 case SIOCGIFADDR_IN6: 538 ifr->ifr_addr = ia->ia_addr; 539 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0) 540 return error; 541 break; 542 543 case SIOCGIFDSTADDR_IN6: 544 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 545 return EINVAL; 546 /* 547 * XXX: should we check if ifa_dstaddr is NULL and return 548 * an error? 549 */ 550 ifr->ifr_dstaddr = ia->ia_dstaddr; 551 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0) 552 return error; 553 break; 554 555 case SIOCGIFNETMASK_IN6: 556 ifr->ifr_addr = ia->ia_prefixmask; 557 break; 558 559 case SIOCGIFAFLAG_IN6: 560 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 561 break; 562 563 case SIOCGIFSTAT_IN6: 564 if (ifp == NULL) 565 return EINVAL; 566 memset(&ifr->ifr_ifru.ifru_stat, 0, 567 sizeof(ifr->ifr_ifru.ifru_stat)); 568 ifr->ifr_ifru.ifru_stat = 569 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat; 570 break; 571 572 case SIOCGIFSTAT_ICMP6: 573 if (ifp == NULL) 574 return EINVAL; 575 memset(&ifr->ifr_ifru.ifru_icmp6stat, 0, 576 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 577 ifr->ifr_ifru.ifru_icmp6stat = 578 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat; 579 break; 580 581 #ifdef OSIOCGIFALIFETIME_IN6 582 case OSIOCGIFALIFETIME_IN6: 583 #endif 584 case SIOCGIFALIFETIME_IN6: 585 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 586 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 587 time_t maxexpire; 588 struct in6_addrlifetime *retlt = 589 &ifr->ifr_ifru.ifru_lifetime; 590 591 /* 592 * XXX: adjust expiration time assuming time_t is 593 * signed. 594 */ 595 maxexpire = ((time_t)~0) & 596 ~((time_t)1 << ((sizeof(maxexpire) * NBBY) - 1)); 597 if (ia->ia6_lifetime.ia6t_vltime < 598 maxexpire - ia->ia6_updatetime) { 599 retlt->ia6t_expire = ia->ia6_updatetime + 600 ia->ia6_lifetime.ia6t_vltime; 601 } else 602 retlt->ia6t_expire = maxexpire; 603 } 604 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 605 time_t maxexpire; 606 struct in6_addrlifetime *retlt = 607 &ifr->ifr_ifru.ifru_lifetime; 608 609 /* 610 * XXX: adjust expiration time assuming time_t is 611 * signed. 612 */ 613 maxexpire = ((time_t)~0) & 614 ~((time_t)1 << ((sizeof(maxexpire) * NBBY) - 1)); 615 if (ia->ia6_lifetime.ia6t_pltime < 616 maxexpire - ia->ia6_updatetime) { 617 retlt->ia6t_preferred = ia->ia6_updatetime + 618 ia->ia6_lifetime.ia6t_pltime; 619 } else 620 retlt->ia6t_preferred = maxexpire; 621 } 622 #ifdef OSIOCFIFALIFETIME_IN6 623 if (cmd == OSIOCFIFALIFETIME_IN6) 624 in6_addrlifetime_to_in6_addrlifetime50( 625 &ifr->ifru.ifru_lifetime); 626 #endif 627 break; 628 629 #ifdef OSIOCAIFADDR_IN6 630 case OSIOCAIFADDR_IN6: 631 in6_aliasreq50_to_in6_aliasreq(ifra); 632 /*FALLTHROUGH*/ 633 #endif 634 case SIOCAIFADDR_IN6: 635 { 636 int i; 637 struct nd_prefixctl pr0; 638 struct nd_prefix *pr; 639 640 /* reject read-only flags */ 641 if ((ifra->ifra_flags & IN6_IFF_DUPLICATED) != 0 || 642 (ifra->ifra_flags & IN6_IFF_DETACHED) != 0 || 643 (ifra->ifra_flags & IN6_IFF_NODAD) != 0 || 644 (ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0) { 645 return EINVAL; 646 } 647 /* 648 * first, make or update the interface address structure, 649 * and link it to the list. 650 */ 651 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0) 652 return error; 653 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 654 == NULL) { 655 /* 656 * this can happen when the user specify the 0 valid 657 * lifetime. 658 */ 659 break; 660 } 661 662 /* 663 * then, make the prefix on-link on the interface. 664 * XXX: we'd rather create the prefix before the address, but 665 * we need at least one address to install the corresponding 666 * interface route, so we configure the address first. 667 */ 668 669 /* 670 * convert mask to prefix length (prefixmask has already 671 * been validated in in6_update_ifa(). 672 */ 673 memset(&pr0, 0, sizeof(pr0)); 674 pr0.ndpr_ifp = ifp; 675 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 676 NULL); 677 if (pr0.ndpr_plen == 128) { 678 break; /* we don't need to install a host route. */ 679 } 680 pr0.ndpr_prefix = ifra->ifra_addr; 681 /* apply the mask for safety. */ 682 for (i = 0; i < 4; i++) { 683 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 684 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 685 } 686 /* 687 * XXX: since we don't have an API to set prefix (not address) 688 * lifetimes, we just use the same lifetimes as addresses. 689 * The (temporarily) installed lifetimes can be overridden by 690 * later advertised RAs (when accept_rtadv is non 0), which is 691 * an intended behavior. 692 */ 693 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 694 pr0.ndpr_raf_auto = 695 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 696 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 697 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 698 699 /* add the prefix if not yet. */ 700 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 701 /* 702 * nd6_prelist_add will install the corresponding 703 * interface route. 704 */ 705 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 706 return error; 707 if (pr == NULL) { 708 log(LOG_ERR, "nd6_prelist_add succeeded but " 709 "no prefix\n"); 710 return EINVAL; /* XXX panic here? */ 711 } 712 } 713 714 /* relate the address to the prefix */ 715 if (ia->ia6_ndpr == NULL) { 716 ia->ia6_ndpr = pr; 717 pr->ndpr_refcnt++; 718 719 /* 720 * If this is the first autoconf address from the 721 * prefix, create a temporary address as well 722 * (when required). 723 */ 724 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && 725 ip6_use_tempaddr && pr->ndpr_refcnt == 1) { 726 int e; 727 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) { 728 log(LOG_NOTICE, "in6_control: failed " 729 "to create a temporary address, " 730 "errno=%d\n", e); 731 } 732 } 733 } 734 735 /* 736 * this might affect the status of autoconfigured addresses, 737 * that is, this address might make other addresses detached. 738 */ 739 pfxlist_onlink_check(); 740 741 #ifdef PFIL_HOOKS 742 (void)pfil_run_hooks(&if_pfil, (struct mbuf **)SIOCAIFADDR_IN6, 743 ifp, PFIL_IFADDR); 744 #endif 745 746 break; 747 } 748 749 case SIOCDIFADDR_IN6: 750 { 751 struct nd_prefix *pr; 752 753 /* 754 * If the address being deleted is the only one that owns 755 * the corresponding prefix, expire the prefix as well. 756 * XXX: theoretically, we don't have to worry about such 757 * relationship, since we separate the address management 758 * and the prefix management. We do this, however, to provide 759 * as much backward compatibility as possible in terms of 760 * the ioctl operation. 761 * Note that in6_purgeaddr() will decrement ndpr_refcnt. 762 */ 763 pr = ia->ia6_ndpr; 764 in6_purgeaddr(&ia->ia_ifa); 765 if (pr && pr->ndpr_refcnt == 0) 766 prelist_remove(pr); 767 #ifdef PFIL_HOOKS 768 (void)pfil_run_hooks(&if_pfil, (struct mbuf **)SIOCDIFADDR_IN6, 769 ifp, PFIL_IFADDR); 770 #endif 771 break; 772 } 773 774 default: 775 return ENOTTY; 776 } 777 778 return 0; 779 } 780 781 int 782 in6_control(struct socket *so, u_long cmd, void *data, struct ifnet *ifp, 783 struct lwp *l) 784 { 785 int error, s; 786 787 switch (cmd) { 788 case SIOCSNDFLUSH_IN6: 789 case SIOCSPFXFLUSH_IN6: 790 case SIOCSRTRFLUSH_IN6: 791 case SIOCSDEFIFACE_IN6: 792 case SIOCSIFINFO_FLAGS: 793 case SIOCSIFINFO_IN6: 794 795 case SIOCALIFADDR: 796 case SIOCDLIFADDR: 797 798 case SIOCDIFADDR_IN6: 799 #ifdef OSIOCAIFADDR_IN6 800 case OSIOCAIFADDR_IN6: 801 #endif 802 case SIOCAIFADDR_IN6: 803 if (l == NULL || kauth_authorize_generic(l->l_cred, 804 KAUTH_GENERIC_ISSUSER, NULL)) 805 return EPERM; 806 break; 807 } 808 809 s = splnet(); 810 error = in6_control1(so , cmd, data, ifp, l); 811 splx(s); 812 return error; 813 } 814 815 /* 816 * Update parameters of an IPv6 interface address. 817 * If necessary, a new entry is created and linked into address chains. 818 * This function is separated from in6_control(). 819 * XXX: should this be performed under splnet()? 820 */ 821 static int 822 in6_update_ifa1(struct ifnet *ifp, struct in6_aliasreq *ifra, 823 struct in6_ifaddr *ia, int flags) 824 { 825 int error = 0, hostIsNew = 0, plen = -1; 826 struct in6_ifaddr *oia; 827 struct sockaddr_in6 dst6; 828 struct in6_addrlifetime *lt; 829 struct in6_multi_mship *imm; 830 struct in6_multi *in6m_sol; 831 struct rtentry *rt; 832 int dad_delay; 833 834 in6m_sol = NULL; 835 836 /* Validate parameters */ 837 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 838 return EINVAL; 839 840 /* 841 * The destination address for a p2p link must have a family 842 * of AF_UNSPEC or AF_INET6. 843 */ 844 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 845 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 846 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 847 return EAFNOSUPPORT; 848 /* 849 * validate ifra_prefixmask. don't check sin6_family, netmask 850 * does not carry fields other than sin6_len. 851 */ 852 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 853 return EINVAL; 854 /* 855 * Because the IPv6 address architecture is classless, we require 856 * users to specify a (non 0) prefix length (mask) for a new address. 857 * We also require the prefix (when specified) mask is valid, and thus 858 * reject a non-consecutive mask. 859 */ 860 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 861 return EINVAL; 862 if (ifra->ifra_prefixmask.sin6_len != 0) { 863 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 864 (u_char *)&ifra->ifra_prefixmask + 865 ifra->ifra_prefixmask.sin6_len); 866 if (plen <= 0) 867 return EINVAL; 868 } else { 869 /* 870 * In this case, ia must not be NULL. We just use its prefix 871 * length. 872 */ 873 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 874 } 875 /* 876 * If the destination address on a p2p interface is specified, 877 * and the address is a scoped one, validate/set the scope 878 * zone identifier. 879 */ 880 dst6 = ifra->ifra_dstaddr; 881 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && 882 (dst6.sin6_family == AF_INET6)) { 883 struct in6_addr in6_tmp; 884 u_int32_t zoneid; 885 886 in6_tmp = dst6.sin6_addr; 887 if (in6_setscope(&in6_tmp, ifp, &zoneid)) 888 return EINVAL; /* XXX: should be impossible */ 889 890 if (dst6.sin6_scope_id != 0) { 891 if (dst6.sin6_scope_id != zoneid) 892 return EINVAL; 893 } else /* user omit to specify the ID. */ 894 dst6.sin6_scope_id = zoneid; 895 896 /* convert into the internal form */ 897 if (sa6_embedscope(&dst6, 0)) 898 return EINVAL; /* XXX: should be impossible */ 899 } 900 /* 901 * The destination address can be specified only for a p2p or a 902 * loopback interface. If specified, the corresponding prefix length 903 * must be 128. 904 */ 905 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 906 #ifdef FORCE_P2PPLEN 907 int i; 908 #endif 909 910 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 911 /* XXX: noisy message */ 912 nd6log((LOG_INFO, "in6_update_ifa: a destination can " 913 "be specified for a p2p or a loopback IF only\n")); 914 return EINVAL; 915 } 916 if (plen != 128) { 917 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " 918 "be 128 when dstaddr is specified\n")); 919 #ifdef FORCE_P2PPLEN 920 /* 921 * To be compatible with old configurations, 922 * such as ifconfig gif0 inet6 2001::1 2001::2 923 * prefixlen 126, we override the specified 924 * prefixmask as if the prefix length was 128. 925 */ 926 ifra->ifra_prefixmask.sin6_len = 927 sizeof(struct sockaddr_in6); 928 for (i = 0; i < 4; i++) 929 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i] = 930 0xffffffff; 931 plen = 128; 932 #else 933 return EINVAL; 934 #endif 935 } 936 } 937 /* lifetime consistency check */ 938 lt = &ifra->ifra_lifetime; 939 if (lt->ia6t_pltime > lt->ia6t_vltime) 940 return EINVAL; 941 if (lt->ia6t_vltime == 0) { 942 /* 943 * the following log might be noisy, but this is a typical 944 * configuration mistake or a tool's bug. 945 */ 946 nd6log((LOG_INFO, 947 "in6_update_ifa: valid lifetime is 0 for %s\n", 948 ip6_sprintf(&ifra->ifra_addr.sin6_addr))); 949 950 if (ia == NULL) 951 return 0; /* there's nothing to do */ 952 } 953 954 /* 955 * If this is a new address, allocate a new ifaddr and link it 956 * into chains. 957 */ 958 if (ia == NULL) { 959 hostIsNew = 1; 960 /* 961 * When in6_update_ifa() is called in a process of a received 962 * RA, it is called under an interrupt context. So, we should 963 * call malloc with M_NOWAIT. 964 */ 965 ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR, 966 M_NOWAIT); 967 if (ia == NULL) 968 return ENOBUFS; 969 memset(ia, 0, sizeof(*ia)); 970 LIST_INIT(&ia->ia6_memberships); 971 /* Initialize the address and masks, and put time stamp */ 972 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 973 ia->ia_addr.sin6_family = AF_INET6; 974 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 975 ia->ia6_createtime = time_second; 976 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 977 /* 978 * XXX: some functions expect that ifa_dstaddr is not 979 * NULL for p2p interfaces. 980 */ 981 ia->ia_ifa.ifa_dstaddr = 982 (struct sockaddr *)&ia->ia_dstaddr; 983 } else { 984 ia->ia_ifa.ifa_dstaddr = NULL; 985 } 986 ia->ia_ifa.ifa_netmask = 987 (struct sockaddr *)&ia->ia_prefixmask; 988 989 ia->ia_ifp = ifp; 990 if ((oia = in6_ifaddr) != NULL) { 991 for ( ; oia->ia_next; oia = oia->ia_next) 992 continue; 993 oia->ia_next = ia; 994 } else 995 in6_ifaddr = ia; 996 /* gain a refcnt for the link from in6_ifaddr */ 997 IFAREF(&ia->ia_ifa); 998 999 ifa_insert(ifp, &ia->ia_ifa); 1000 } 1001 1002 /* update timestamp */ 1003 ia->ia6_updatetime = time_second; 1004 1005 /* set prefix mask */ 1006 if (ifra->ifra_prefixmask.sin6_len) { 1007 /* 1008 * We prohibit changing the prefix length of an existing 1009 * address, because 1010 * + such an operation should be rare in IPv6, and 1011 * + the operation would confuse prefix management. 1012 */ 1013 if (ia->ia_prefixmask.sin6_len && 1014 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 1015 nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an" 1016 " existing (%s) address should not be changed\n", 1017 ip6_sprintf(&ia->ia_addr.sin6_addr))); 1018 error = EINVAL; 1019 goto unlink; 1020 } 1021 ia->ia_prefixmask = ifra->ifra_prefixmask; 1022 } 1023 1024 /* 1025 * If a new destination address is specified, scrub the old one and 1026 * install the new destination. Note that the interface must be 1027 * p2p or loopback (see the check above.) 1028 */ 1029 if (dst6.sin6_family == AF_INET6 && 1030 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) { 1031 if ((ia->ia_flags & IFA_ROUTE) != 0 && 1032 rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST) != 0) { 1033 nd6log((LOG_ERR, "in6_update_ifa: failed to remove " 1034 "a route to the old destination: %s\n", 1035 ip6_sprintf(&ia->ia_addr.sin6_addr))); 1036 /* proceed anyway... */ 1037 } else 1038 ia->ia_flags &= ~IFA_ROUTE; 1039 ia->ia_dstaddr = dst6; 1040 } 1041 1042 /* 1043 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred 1044 * to see if the address is deprecated or invalidated, but initialize 1045 * these members for applications. 1046 */ 1047 ia->ia6_lifetime = ifra->ifra_lifetime; 1048 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1049 ia->ia6_lifetime.ia6t_expire = 1050 time_second + ia->ia6_lifetime.ia6t_vltime; 1051 } else 1052 ia->ia6_lifetime.ia6t_expire = 0; 1053 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1054 ia->ia6_lifetime.ia6t_preferred = 1055 time_second + ia->ia6_lifetime.ia6t_pltime; 1056 } else 1057 ia->ia6_lifetime.ia6t_preferred = 0; 1058 1059 /* reset the interface and routing table appropriately. */ 1060 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 1061 goto unlink; 1062 1063 /* 1064 * configure address flags. 1065 */ 1066 ia->ia6_flags = ifra->ifra_flags; 1067 /* 1068 * backward compatibility - if IN6_IFF_DEPRECATED is set from the 1069 * userland, make it deprecated. 1070 */ 1071 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { 1072 ia->ia6_lifetime.ia6t_pltime = 0; 1073 ia->ia6_lifetime.ia6t_preferred = time_second; 1074 } 1075 1076 /* 1077 * Make the address tentative before joining multicast addresses, 1078 * so that corresponding MLD responses would not have a tentative 1079 * source address. 1080 */ 1081 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ 1082 if (hostIsNew && in6if_do_dad(ifp)) 1083 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1084 1085 /* 1086 * We are done if we have simply modified an existing address. 1087 */ 1088 if (!hostIsNew) 1089 return error; 1090 1091 /* 1092 * Beyond this point, we should call in6_purgeaddr upon an error, 1093 * not just go to unlink. 1094 */ 1095 1096 /* join necessary multicast groups */ 1097 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1098 struct sockaddr_in6 mltaddr, mltmask; 1099 struct in6_addr llsol; 1100 1101 /* join solicited multicast addr for new host id */ 1102 memset(&llsol, 0, sizeof(struct in6_addr)); 1103 llsol.s6_addr16[0] = htons(0xff02); 1104 llsol.s6_addr32[1] = 0; 1105 llsol.s6_addr32[2] = htonl(1); 1106 llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; 1107 llsol.s6_addr8[12] = 0xff; 1108 if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) { 1109 /* XXX: should not happen */ 1110 log(LOG_ERR, "in6_update_ifa: " 1111 "in6_setscope failed\n"); 1112 goto cleanup; 1113 } 1114 dad_delay = 0; 1115 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1116 /* 1117 * We need a random delay for DAD on the address 1118 * being configured. It also means delaying 1119 * transmission of the corresponding MLD report to 1120 * avoid report collision. 1121 * [draft-ietf-ipv6-rfc2462bis-02.txt] 1122 */ 1123 dad_delay = cprng_fast32() % 1124 (MAX_RTR_SOLICITATION_DELAY * hz); 1125 } 1126 1127 #define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */ 1128 /* join solicited multicast addr for new host id */ 1129 imm = in6_joingroup(ifp, &llsol, &error, dad_delay); 1130 if (!imm) { 1131 nd6log((LOG_ERR, 1132 "in6_update_ifa: addmulti " 1133 "failed for %s on %s (errno=%d)\n", 1134 ip6_sprintf(&llsol), if_name(ifp), error)); 1135 goto cleanup; 1136 } 1137 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 1138 in6m_sol = imm->i6mm_maddr; 1139 1140 sockaddr_in6_init(&mltmask, &in6mask32, 0, 0, 0); 1141 1142 /* 1143 * join link-local all-nodes address 1144 */ 1145 sockaddr_in6_init(&mltaddr, &in6addr_linklocal_allnodes, 1146 0, 0, 0); 1147 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0) 1148 goto cleanup; /* XXX: should not fail */ 1149 1150 /* 1151 * XXX: do we really need this automatic routes? 1152 * We should probably reconsider this stuff. Most applications 1153 * actually do not need the routes, since they usually specify 1154 * the outgoing interface. 1155 */ 1156 rt = rtalloc1((struct sockaddr *)&mltaddr, 0); 1157 if (rt) { 1158 if (memcmp(&mltaddr.sin6_addr, 1159 &satocsin6(rt_getkey(rt))->sin6_addr, 1160 MLTMASK_LEN)) { 1161 RTFREE(rt); 1162 rt = NULL; 1163 } else if (rt->rt_ifp != ifp) { 1164 IN6_DPRINTF("%s: rt_ifp %p -> %p (%s) " 1165 "network %04x:%04x::/32 = %04x:%04x::/32\n", 1166 __func__, rt->rt_ifp, ifp, ifp->if_xname, 1167 ntohs(mltaddr.sin6_addr.s6_addr16[0]), 1168 ntohs(mltaddr.sin6_addr.s6_addr16[1]), 1169 satocsin6(rt_getkey(rt))->sin6_addr.s6_addr16[0], 1170 satocsin6(rt_getkey(rt))->sin6_addr.s6_addr16[1]); 1171 rt_replace_ifa(rt, &ia->ia_ifa); 1172 rt->rt_ifp = ifp; 1173 } 1174 } 1175 if (!rt) { 1176 struct rt_addrinfo info; 1177 1178 memset(&info, 0, sizeof(info)); 1179 info.rti_info[RTAX_DST] = (struct sockaddr *)&mltaddr; 1180 info.rti_info[RTAX_GATEWAY] = 1181 (struct sockaddr *)&ia->ia_addr; 1182 info.rti_info[RTAX_NETMASK] = 1183 (struct sockaddr *)&mltmask; 1184 info.rti_info[RTAX_IFA] = 1185 (struct sockaddr *)&ia->ia_addr; 1186 /* XXX: we need RTF_CLONING to fake nd6_rtrequest */ 1187 info.rti_flags = RTF_UP | RTF_CLONING; 1188 error = rtrequest1(RTM_ADD, &info, NULL); 1189 if (error) 1190 goto cleanup; 1191 } else { 1192 RTFREE(rt); 1193 } 1194 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 1195 if (!imm) { 1196 nd6log((LOG_WARNING, 1197 "in6_update_ifa: addmulti failed for " 1198 "%s on %s (errno=%d)\n", 1199 ip6_sprintf(&mltaddr.sin6_addr), 1200 if_name(ifp), error)); 1201 goto cleanup; 1202 } 1203 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 1204 1205 /* 1206 * join node information group address 1207 */ 1208 dad_delay = 0; 1209 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1210 /* 1211 * The spec doesn't say anything about delay for this 1212 * group, but the same logic should apply. 1213 */ 1214 dad_delay = cprng_fast32() % 1215 (MAX_RTR_SOLICITATION_DELAY * hz); 1216 } 1217 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr) != 0) 1218 ; 1219 else if ((imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 1220 dad_delay)) == NULL) { /* XXX jinmei */ 1221 nd6log((LOG_WARNING, "in6_update_ifa: " 1222 "addmulti failed for %s on %s (errno=%d)\n", 1223 ip6_sprintf(&mltaddr.sin6_addr), 1224 if_name(ifp), error)); 1225 /* XXX not very fatal, go on... */ 1226 } else { 1227 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 1228 } 1229 1230 1231 /* 1232 * join interface-local all-nodes address. 1233 * (ff01::1%ifN, and ff01::%ifN/32) 1234 */ 1235 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1236 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0) 1237 goto cleanup; /* XXX: should not fail */ 1238 1239 /* XXX: again, do we really need the route? */ 1240 rt = rtalloc1((struct sockaddr *)&mltaddr, 0); 1241 if (rt) { 1242 /* 32bit came from "mltmask" */ 1243 if (memcmp(&mltaddr.sin6_addr, 1244 &satocsin6(rt_getkey(rt))->sin6_addr, 1245 32 / NBBY)) { 1246 RTFREE(rt); 1247 rt = NULL; 1248 } else if (rt->rt_ifp != ifp) { 1249 IN6_DPRINTF("%s: rt_ifp %p -> %p (%s) " 1250 "network %04x:%04x::/32 = %04x:%04x::/32\n", 1251 __func__, rt->rt_ifp, ifp, ifp->if_xname, 1252 ntohs(mltaddr.sin6_addr.s6_addr16[0]), 1253 ntohs(mltaddr.sin6_addr.s6_addr16[1]), 1254 satocsin6(rt_getkey(rt))->sin6_addr.s6_addr16[0], 1255 satocsin6(rt_getkey(rt))->sin6_addr.s6_addr16[1]); 1256 rt_replace_ifa(rt, &ia->ia_ifa); 1257 rt->rt_ifp = ifp; 1258 } 1259 } 1260 if (!rt) { 1261 struct rt_addrinfo info; 1262 1263 memset(&info, 0, sizeof(info)); 1264 info.rti_info[RTAX_DST] = (struct sockaddr *)&mltaddr; 1265 info.rti_info[RTAX_GATEWAY] = 1266 (struct sockaddr *)&ia->ia_addr; 1267 info.rti_info[RTAX_NETMASK] = 1268 (struct sockaddr *)&mltmask; 1269 info.rti_info[RTAX_IFA] = 1270 (struct sockaddr *)&ia->ia_addr; 1271 info.rti_flags = RTF_UP | RTF_CLONING; 1272 error = rtrequest1(RTM_ADD, &info, NULL); 1273 if (error) 1274 goto cleanup; 1275 #undef MLTMASK_LEN 1276 } else { 1277 RTFREE(rt); 1278 } 1279 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); 1280 if (!imm) { 1281 nd6log((LOG_WARNING, "in6_update_ifa: " 1282 "addmulti failed for %s on %s (errno=%d)\n", 1283 ip6_sprintf(&mltaddr.sin6_addr), 1284 if_name(ifp), error)); 1285 goto cleanup; 1286 } else { 1287 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); 1288 } 1289 } 1290 1291 /* 1292 * Perform DAD, if needed. 1293 * XXX It may be of use, if we can administratively 1294 * disable DAD. 1295 */ 1296 if (hostIsNew && in6if_do_dad(ifp) && 1297 ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) && 1298 (ia->ia6_flags & IN6_IFF_TENTATIVE)) 1299 { 1300 int mindelay, maxdelay; 1301 1302 dad_delay = 0; 1303 if ((flags & IN6_IFAUPDATE_DADDELAY)) { 1304 /* 1305 * We need to impose a delay before sending an NS 1306 * for DAD. Check if we also needed a delay for the 1307 * corresponding MLD message. If we did, the delay 1308 * should be larger than the MLD delay (this could be 1309 * relaxed a bit, but this simple logic is at least 1310 * safe). 1311 */ 1312 mindelay = 0; 1313 if (in6m_sol != NULL && 1314 in6m_sol->in6m_state == MLD_REPORTPENDING) { 1315 mindelay = in6m_sol->in6m_timer; 1316 } 1317 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; 1318 if (maxdelay - mindelay == 0) 1319 dad_delay = 0; 1320 else { 1321 dad_delay = 1322 (cprng_fast32() % (maxdelay - mindelay)) + 1323 mindelay; 1324 } 1325 } 1326 nd6_dad_start(&ia->ia_ifa, dad_delay); 1327 } 1328 1329 return error; 1330 1331 unlink: 1332 /* 1333 * XXX: if a change of an existing address failed, keep the entry 1334 * anyway. 1335 */ 1336 if (hostIsNew) 1337 in6_unlink_ifa(ia, ifp); 1338 return error; 1339 1340 cleanup: 1341 in6_purgeaddr(&ia->ia_ifa); 1342 return error; 1343 } 1344 1345 int 1346 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, 1347 struct in6_ifaddr *ia, int flags) 1348 { 1349 int rc, s; 1350 1351 s = splnet(); 1352 rc = in6_update_ifa1(ifp, ifra, ia, flags); 1353 splx(s); 1354 return rc; 1355 } 1356 1357 void 1358 in6_purgeaddr(struct ifaddr *ifa) 1359 { 1360 struct ifnet *ifp = ifa->ifa_ifp; 1361 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1362 struct in6_multi_mship *imm; 1363 1364 /* stop DAD processing */ 1365 nd6_dad_stop(ifa); 1366 1367 /* 1368 * delete route to the destination of the address being purged. 1369 * The interface must be p2p or loopback in this case. 1370 */ 1371 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) { 1372 int e; 1373 1374 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1375 != 0) { 1376 log(LOG_ERR, "in6_purgeaddr: failed to remove " 1377 "a route to the p2p destination: %s on %s, " 1378 "errno=%d\n", 1379 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp), 1380 e); 1381 /* proceed anyway... */ 1382 } else 1383 ia->ia_flags &= ~IFA_ROUTE; 1384 } 1385 1386 /* Remove ownaddr's loopback rtentry, if it exists. */ 1387 in6_ifremloop(&(ia->ia_ifa)); 1388 1389 /* 1390 * leave from multicast groups we have joined for the interface 1391 */ 1392 while ((imm = LIST_FIRST(&ia->ia6_memberships)) != NULL) { 1393 LIST_REMOVE(imm, i6mm_chain); 1394 in6_leavegroup(imm); 1395 } 1396 1397 in6_unlink_ifa(ia, ifp); 1398 } 1399 1400 static void 1401 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) 1402 { 1403 struct in6_ifaddr *oia; 1404 int s = splnet(); 1405 1406 ifa_remove(ifp, &ia->ia_ifa); 1407 1408 oia = ia; 1409 if (oia == (ia = in6_ifaddr)) 1410 in6_ifaddr = ia->ia_next; 1411 else { 1412 while (ia->ia_next && (ia->ia_next != oia)) 1413 ia = ia->ia_next; 1414 if (ia->ia_next) 1415 ia->ia_next = oia->ia_next; 1416 else { 1417 /* search failed */ 1418 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); 1419 } 1420 } 1421 1422 /* 1423 * XXX thorpej@NetBSD.org -- if the interface is going 1424 * XXX away, don't save the multicast entries, delete them! 1425 */ 1426 if (LIST_EMPTY(&oia->ia6_multiaddrs)) 1427 ; 1428 else if (oia->ia_ifa.ifa_ifp->if_output == if_nulloutput) { 1429 struct in6_multi *in6m, *next; 1430 1431 for (in6m = LIST_FIRST(&oia->ia6_multiaddrs); in6m != NULL; 1432 in6m = next) { 1433 next = LIST_NEXT(in6m, in6m_entry); 1434 in6_delmulti(in6m); 1435 } 1436 } else 1437 in6_savemkludge(oia); 1438 1439 /* 1440 * Release the reference to the base prefix. There should be a 1441 * positive reference. 1442 */ 1443 if (oia->ia6_ndpr == NULL) { 1444 nd6log((LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address " 1445 "%p has no prefix\n", oia)); 1446 } else { 1447 oia->ia6_ndpr->ndpr_refcnt--; 1448 oia->ia6_ndpr = NULL; 1449 } 1450 1451 /* 1452 * Also, if the address being removed is autoconf'ed, call 1453 * pfxlist_onlink_check() since the release might affect the status of 1454 * other (detached) addresses. 1455 */ 1456 if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) 1457 pfxlist_onlink_check(); 1458 1459 /* 1460 * release another refcnt for the link from in6_ifaddr. 1461 * Note that we should decrement the refcnt at least once for all *BSD. 1462 */ 1463 IFAFREE(&oia->ia_ifa); 1464 1465 splx(s); 1466 } 1467 1468 void 1469 in6_purgeif(struct ifnet *ifp) 1470 { 1471 if_purgeaddrs(ifp, AF_INET6, in6_purgeaddr); 1472 1473 in6_ifdetach(ifp); 1474 } 1475 1476 /* 1477 * SIOC[GAD]LIFADDR. 1478 * SIOCGLIFADDR: get first address. (?) 1479 * SIOCGLIFADDR with IFLR_PREFIX: 1480 * get first address that matches the specified prefix. 1481 * SIOCALIFADDR: add the specified address. 1482 * SIOCALIFADDR with IFLR_PREFIX: 1483 * add the specified prefix, filling hostid part from 1484 * the first link-local address. prefixlen must be <= 64. 1485 * SIOCDLIFADDR: delete the specified address. 1486 * SIOCDLIFADDR with IFLR_PREFIX: 1487 * delete the first address that matches the specified prefix. 1488 * return values: 1489 * EINVAL on invalid parameters 1490 * EADDRNOTAVAIL on prefix match failed/specified address not found 1491 * other values may be returned from in6_ioctl() 1492 * 1493 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1494 * this is to accommodate address naming scheme other than RFC2374, 1495 * in the future. 1496 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1497 * address encoding scheme. (see figure on page 8) 1498 */ 1499 static int 1500 in6_lifaddr_ioctl(struct socket *so, u_long cmd, void *data, 1501 struct ifnet *ifp, struct lwp *l) 1502 { 1503 struct in6_ifaddr *ia; 1504 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1505 struct ifaddr *ifa; 1506 struct sockaddr *sa; 1507 1508 /* sanity checks */ 1509 if (!data || !ifp) { 1510 panic("invalid argument to in6_lifaddr_ioctl"); 1511 /* NOTREACHED */ 1512 } 1513 1514 switch (cmd) { 1515 case SIOCGLIFADDR: 1516 /* address must be specified on GET with IFLR_PREFIX */ 1517 if ((iflr->flags & IFLR_PREFIX) == 0) 1518 break; 1519 /* FALLTHROUGH */ 1520 case SIOCALIFADDR: 1521 case SIOCDLIFADDR: 1522 /* address must be specified on ADD and DELETE */ 1523 sa = (struct sockaddr *)&iflr->addr; 1524 if (sa->sa_family != AF_INET6) 1525 return EINVAL; 1526 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1527 return EINVAL; 1528 /* XXX need improvement */ 1529 sa = (struct sockaddr *)&iflr->dstaddr; 1530 if (sa->sa_family && sa->sa_family != AF_INET6) 1531 return EINVAL; 1532 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1533 return EINVAL; 1534 break; 1535 default: /* shouldn't happen */ 1536 #if 0 1537 panic("invalid cmd to in6_lifaddr_ioctl"); 1538 /* NOTREACHED */ 1539 #else 1540 return EOPNOTSUPP; 1541 #endif 1542 } 1543 if (sizeof(struct in6_addr) * NBBY < iflr->prefixlen) 1544 return EINVAL; 1545 1546 switch (cmd) { 1547 case SIOCALIFADDR: 1548 { 1549 struct in6_aliasreq ifra; 1550 struct in6_addr *xhostid = NULL; 1551 int prefixlen; 1552 1553 if ((iflr->flags & IFLR_PREFIX) != 0) { 1554 struct sockaddr_in6 *sin6; 1555 1556 /* 1557 * xhostid is to fill in the hostid part of the 1558 * address. xhostid points to the first link-local 1559 * address attached to the interface. 1560 */ 1561 ia = in6ifa_ifpforlinklocal(ifp, 0); 1562 if (ia == NULL) 1563 return EADDRNOTAVAIL; 1564 xhostid = IFA_IN6(&ia->ia_ifa); 1565 1566 /* prefixlen must be <= 64. */ 1567 if (64 < iflr->prefixlen) 1568 return EINVAL; 1569 prefixlen = iflr->prefixlen; 1570 1571 /* hostid part must be zero. */ 1572 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1573 if (sin6->sin6_addr.s6_addr32[2] != 0 1574 || sin6->sin6_addr.s6_addr32[3] != 0) { 1575 return EINVAL; 1576 } 1577 } else 1578 prefixlen = iflr->prefixlen; 1579 1580 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1581 memset(&ifra, 0, sizeof(ifra)); 1582 memcpy(ifra.ifra_name, iflr->iflr_name, sizeof(ifra.ifra_name)); 1583 1584 memcpy(&ifra.ifra_addr, &iflr->addr, 1585 ((struct sockaddr *)&iflr->addr)->sa_len); 1586 if (xhostid) { 1587 /* fill in hostid part */ 1588 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1589 xhostid->s6_addr32[2]; 1590 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1591 xhostid->s6_addr32[3]; 1592 } 1593 1594 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */ 1595 memcpy(&ifra.ifra_dstaddr, &iflr->dstaddr, 1596 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1597 if (xhostid) { 1598 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1599 xhostid->s6_addr32[2]; 1600 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1601 xhostid->s6_addr32[3]; 1602 } 1603 } 1604 1605 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1606 in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1607 1608 ifra.ifra_lifetime.ia6t_vltime = ND6_INFINITE_LIFETIME; 1609 ifra.ifra_lifetime.ia6t_pltime = ND6_INFINITE_LIFETIME; 1610 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1611 return in6_control(so, SIOCAIFADDR_IN6, &ifra, ifp, l); 1612 } 1613 case SIOCGLIFADDR: 1614 case SIOCDLIFADDR: 1615 { 1616 struct in6_addr mask, candidate, match; 1617 struct sockaddr_in6 *sin6; 1618 int cmp; 1619 1620 memset(&mask, 0, sizeof(mask)); 1621 if (iflr->flags & IFLR_PREFIX) { 1622 /* lookup a prefix rather than address. */ 1623 in6_prefixlen2mask(&mask, iflr->prefixlen); 1624 1625 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1626 memcpy(&match, &sin6->sin6_addr, sizeof(match)); 1627 match.s6_addr32[0] &= mask.s6_addr32[0]; 1628 match.s6_addr32[1] &= mask.s6_addr32[1]; 1629 match.s6_addr32[2] &= mask.s6_addr32[2]; 1630 match.s6_addr32[3] &= mask.s6_addr32[3]; 1631 1632 /* if you set extra bits, that's wrong */ 1633 if (memcmp(&match, &sin6->sin6_addr, sizeof(match))) 1634 return EINVAL; 1635 1636 cmp = 1; 1637 } else { 1638 if (cmd == SIOCGLIFADDR) { 1639 /* on getting an address, take the 1st match */ 1640 cmp = 0; /* XXX */ 1641 } else { 1642 /* on deleting an address, do exact match */ 1643 in6_prefixlen2mask(&mask, 128); 1644 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1645 memcpy(&match, &sin6->sin6_addr, sizeof(match)); 1646 1647 cmp = 1; 1648 } 1649 } 1650 1651 IFADDR_FOREACH(ifa, ifp) { 1652 if (ifa->ifa_addr->sa_family != AF_INET6) 1653 continue; 1654 if (!cmp) 1655 break; 1656 1657 /* 1658 * XXX: this is adhoc, but is necessary to allow 1659 * a user to specify fe80::/64 (not /10) for a 1660 * link-local address. 1661 */ 1662 memcpy(&candidate, IFA_IN6(ifa), sizeof(candidate)); 1663 in6_clearscope(&candidate); 1664 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1665 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1666 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1667 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1668 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1669 break; 1670 } 1671 if (!ifa) 1672 return EADDRNOTAVAIL; 1673 ia = ifa2ia6(ifa); 1674 1675 if (cmd == SIOCGLIFADDR) { 1676 int error; 1677 1678 /* fill in the if_laddrreq structure */ 1679 memcpy(&iflr->addr, &ia->ia_addr, ia->ia_addr.sin6_len); 1680 error = sa6_recoverscope( 1681 (struct sockaddr_in6 *)&iflr->addr); 1682 if (error != 0) 1683 return error; 1684 1685 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1686 memcpy(&iflr->dstaddr, &ia->ia_dstaddr, 1687 ia->ia_dstaddr.sin6_len); 1688 error = sa6_recoverscope( 1689 (struct sockaddr_in6 *)&iflr->dstaddr); 1690 if (error != 0) 1691 return error; 1692 } else 1693 memset(&iflr->dstaddr, 0, sizeof(iflr->dstaddr)); 1694 1695 iflr->prefixlen = 1696 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 1697 1698 iflr->flags = ia->ia6_flags; /* XXX */ 1699 1700 return 0; 1701 } else { 1702 struct in6_aliasreq ifra; 1703 1704 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1705 memset(&ifra, 0, sizeof(ifra)); 1706 memcpy(ifra.ifra_name, iflr->iflr_name, 1707 sizeof(ifra.ifra_name)); 1708 1709 memcpy(&ifra.ifra_addr, &ia->ia_addr, 1710 ia->ia_addr.sin6_len); 1711 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1712 memcpy(&ifra.ifra_dstaddr, &ia->ia_dstaddr, 1713 ia->ia_dstaddr.sin6_len); 1714 } else { 1715 memset(&ifra.ifra_dstaddr, 0, 1716 sizeof(ifra.ifra_dstaddr)); 1717 } 1718 memcpy(&ifra.ifra_dstaddr, &ia->ia_prefixmask, 1719 ia->ia_prefixmask.sin6_len); 1720 1721 ifra.ifra_flags = ia->ia6_flags; 1722 return in6_control(so, SIOCDIFADDR_IN6, &ifra, ifp, l); 1723 } 1724 } 1725 } 1726 1727 return EOPNOTSUPP; /* just for safety */ 1728 } 1729 1730 /* 1731 * Initialize an interface's internet6 address 1732 * and routing table entry. 1733 */ 1734 static int 1735 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, 1736 const struct sockaddr_in6 *sin6, int newhost) 1737 { 1738 int error = 0, plen, ifacount = 0; 1739 int s = splnet(); 1740 struct ifaddr *ifa; 1741 1742 /* 1743 * Give the interface a chance to initialize 1744 * if this is its first address, 1745 * and to validate the address if necessary. 1746 */ 1747 IFADDR_FOREACH(ifa, ifp) { 1748 if (ifa->ifa_addr == NULL) 1749 continue; /* just for safety */ 1750 if (ifa->ifa_addr->sa_family != AF_INET6) 1751 continue; 1752 ifacount++; 1753 } 1754 1755 ia->ia_addr = *sin6; 1756 1757 if (ifacount <= 1 && 1758 (error = if_addr_init(ifp, &ia->ia_ifa, true)) != 0) { 1759 splx(s); 1760 return error; 1761 } 1762 splx(s); 1763 1764 ia->ia_ifa.ifa_metric = ifp->if_metric; 1765 1766 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1767 1768 /* 1769 * Special case: 1770 * If the destination address is specified for a point-to-point 1771 * interface, install a route to the destination as an interface 1772 * direct route. 1773 */ 1774 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1775 if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) { 1776 if ((error = rtinit(&ia->ia_ifa, RTM_ADD, 1777 RTF_UP | RTF_HOST)) != 0) 1778 return error; 1779 ia->ia_flags |= IFA_ROUTE; 1780 } 1781 1782 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */ 1783 if (newhost) { 1784 /* set the rtrequest function to create llinfo */ 1785 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 1786 in6_ifaddloop(&ia->ia_ifa); 1787 } 1788 1789 if (ifp->if_flags & IFF_MULTICAST) 1790 in6_restoremkludge(ia, ifp); 1791 1792 return error; 1793 } 1794 1795 static struct ifaddr * 1796 bestifa(struct ifaddr *best_ifa, struct ifaddr *ifa) 1797 { 1798 if (best_ifa == NULL || best_ifa->ifa_preference < ifa->ifa_preference) 1799 return ifa; 1800 return best_ifa; 1801 } 1802 1803 /* 1804 * Find an IPv6 interface link-local address specific to an interface. 1805 */ 1806 struct in6_ifaddr * 1807 in6ifa_ifpforlinklocal(const struct ifnet *ifp, const int ignoreflags) 1808 { 1809 struct ifaddr *best_ifa = NULL, *ifa; 1810 1811 IFADDR_FOREACH(ifa, ifp) { 1812 if (ifa->ifa_addr == NULL) 1813 continue; /* just for safety */ 1814 if (ifa->ifa_addr->sa_family != AF_INET6) 1815 continue; 1816 if (!IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) 1817 continue; 1818 if ((((struct in6_ifaddr *)ifa)->ia6_flags & ignoreflags) != 0) 1819 continue; 1820 best_ifa = bestifa(best_ifa, ifa); 1821 } 1822 1823 return (struct in6_ifaddr *)best_ifa; 1824 } 1825 1826 1827 /* 1828 * find the internet address corresponding to a given interface and address. 1829 */ 1830 struct in6_ifaddr * 1831 in6ifa_ifpwithaddr(const struct ifnet *ifp, const struct in6_addr *addr) 1832 { 1833 struct ifaddr *best_ifa = NULL, *ifa; 1834 1835 IFADDR_FOREACH(ifa, ifp) { 1836 if (ifa->ifa_addr == NULL) 1837 continue; /* just for safety */ 1838 if (ifa->ifa_addr->sa_family != AF_INET6) 1839 continue; 1840 if (!IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) 1841 continue; 1842 best_ifa = bestifa(best_ifa, ifa); 1843 } 1844 1845 return (struct in6_ifaddr *)best_ifa; 1846 } 1847 1848 static struct in6_ifaddr * 1849 bestia(struct in6_ifaddr *best_ia, struct in6_ifaddr *ia) 1850 { 1851 if (best_ia == NULL || 1852 best_ia->ia_ifa.ifa_preference < ia->ia_ifa.ifa_preference) 1853 return ia; 1854 return best_ia; 1855 } 1856 1857 /* 1858 * find the internet address on a given interface corresponding to a neighbor's 1859 * address. 1860 */ 1861 struct in6_ifaddr * 1862 in6ifa_ifplocaladdr(const struct ifnet *ifp, const struct in6_addr *addr) 1863 { 1864 struct ifaddr *ifa; 1865 struct in6_ifaddr *best_ia = NULL, *ia; 1866 1867 IFADDR_FOREACH(ifa, ifp) { 1868 if (ifa->ifa_addr == NULL) 1869 continue; /* just for safety */ 1870 if (ifa->ifa_addr->sa_family != AF_INET6) 1871 continue; 1872 ia = (struct in6_ifaddr *)ifa; 1873 if (!IN6_ARE_MASKED_ADDR_EQUAL(addr, 1874 &ia->ia_addr.sin6_addr, 1875 &ia->ia_prefixmask.sin6_addr)) 1876 continue; 1877 best_ia = bestia(best_ia, ia); 1878 } 1879 1880 return best_ia; 1881 } 1882 1883 /* 1884 * Convert IP6 address to printable (loggable) representation. 1885 */ 1886 static int ip6round = 0; 1887 char * 1888 ip6_sprintf(const struct in6_addr *addr) 1889 { 1890 static char ip6buf[8][48]; 1891 int i; 1892 char *bp; 1893 char *cp; 1894 const u_int16_t *a = (const u_int16_t *)addr; 1895 const u_int8_t *d; 1896 int dcolon = 0; 1897 1898 ip6round = (ip6round + 1) & 7; 1899 cp = ip6buf[ip6round]; 1900 1901 for (i = 0; i < 8; i++) { 1902 if (dcolon == 1) { 1903 if (*a == 0) { 1904 if (i == 7) 1905 *cp++ = ':'; 1906 a++; 1907 continue; 1908 } else 1909 dcolon = 2; 1910 } 1911 if (*a == 0) { 1912 if (dcolon == 0 && *(a + 1) == 0) { 1913 if (i == 0) 1914 *cp++ = ':'; 1915 *cp++ = ':'; 1916 dcolon = 1; 1917 } else { 1918 *cp++ = '0'; 1919 *cp++ = ':'; 1920 } 1921 a++; 1922 continue; 1923 } 1924 d = (const u_char *)a; 1925 bp = cp; 1926 *cp = hexdigits[*d >> 4]; 1927 if (*cp != '0') 1928 cp++; 1929 *cp = hexdigits[*d++ & 0xf]; 1930 if (cp != bp || *cp != '0') 1931 cp++; 1932 *cp = hexdigits[*d >> 4]; 1933 if (cp != bp || *cp != '0') 1934 cp++; 1935 *cp++ = hexdigits[*d & 0xf]; 1936 *cp++ = ':'; 1937 a++; 1938 } 1939 *--cp = 0; 1940 return ip6buf[ip6round]; 1941 } 1942 1943 /* 1944 * Determine if an address is on a local network. 1945 */ 1946 int 1947 in6_localaddr(const struct in6_addr *in6) 1948 { 1949 struct in6_ifaddr *ia; 1950 1951 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 1952 return 1; 1953 1954 for (ia = in6_ifaddr; ia; ia = ia->ia_next) 1955 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 1956 &ia->ia_prefixmask.sin6_addr)) 1957 return 1; 1958 1959 return 0; 1960 } 1961 1962 int 1963 in6_is_addr_deprecated(struct sockaddr_in6 *sa6) 1964 { 1965 struct in6_ifaddr *ia; 1966 1967 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 1968 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 1969 &sa6->sin6_addr) && 1970 #ifdef SCOPEDROUTING 1971 ia->ia_addr.sin6_scope_id == sa6->sin6_scope_id && 1972 #endif 1973 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) 1974 return 1; /* true */ 1975 1976 /* XXX: do we still have to go thru the rest of the list? */ 1977 } 1978 1979 return 0; /* false */ 1980 } 1981 1982 /* 1983 * return length of part which dst and src are equal 1984 * hard coding... 1985 */ 1986 int 1987 in6_matchlen(struct in6_addr *src, struct in6_addr *dst) 1988 { 1989 int match = 0; 1990 u_char *s = (u_char *)src, *d = (u_char *)dst; 1991 u_char *lim = s + 16, r; 1992 1993 while (s < lim) 1994 if ((r = (*d++ ^ *s++)) != 0) { 1995 while (r < 128) { 1996 match++; 1997 r <<= 1; 1998 } 1999 break; 2000 } else 2001 match += NBBY; 2002 return match; 2003 } 2004 2005 /* XXX: to be scope conscious */ 2006 int 2007 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) 2008 { 2009 int bytelen, bitlen; 2010 2011 /* sanity check */ 2012 if (len < 0 || len > 128) { 2013 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 2014 len); 2015 return 0; 2016 } 2017 2018 bytelen = len / NBBY; 2019 bitlen = len % NBBY; 2020 2021 if (memcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 2022 return 0; 2023 if (bitlen != 0 && 2024 p1->s6_addr[bytelen] >> (NBBY - bitlen) != 2025 p2->s6_addr[bytelen] >> (NBBY - bitlen)) 2026 return 0; 2027 2028 return 1; 2029 } 2030 2031 void 2032 in6_prefixlen2mask(struct in6_addr *maskp, int len) 2033 { 2034 static const u_char maskarray[NBBY] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 2035 int bytelen, bitlen, i; 2036 2037 /* sanity check */ 2038 if (len < 0 || len > 128) { 2039 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 2040 len); 2041 return; 2042 } 2043 2044 memset(maskp, 0, sizeof(*maskp)); 2045 bytelen = len / NBBY; 2046 bitlen = len % NBBY; 2047 for (i = 0; i < bytelen; i++) 2048 maskp->s6_addr[i] = 0xff; 2049 if (bitlen) 2050 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 2051 } 2052 2053 /* 2054 * return the best address out of the same scope. if no address was 2055 * found, return the first valid address from designated IF. 2056 */ 2057 struct in6_ifaddr * 2058 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) 2059 { 2060 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 2061 struct ifaddr *ifa; 2062 struct in6_ifaddr *best_ia = NULL, *ia; 2063 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 2064 2065 dep[0] = dep[1] = NULL; 2066 2067 /* 2068 * We first look for addresses in the same scope. 2069 * If there is one, return it. 2070 * If two or more, return one which matches the dst longest. 2071 * If none, return one of global addresses assigned other ifs. 2072 */ 2073 IFADDR_FOREACH(ifa, ifp) { 2074 if (ifa->ifa_addr->sa_family != AF_INET6) 2075 continue; 2076 ia = (struct in6_ifaddr *)ifa; 2077 if (ia->ia6_flags & IN6_IFF_ANYCAST) 2078 continue; /* XXX: is there any case to allow anycast? */ 2079 if (ia->ia6_flags & IN6_IFF_NOTREADY) 2080 continue; /* don't use this interface */ 2081 if (ia->ia6_flags & IN6_IFF_DETACHED) 2082 continue; 2083 if (ia->ia6_flags & IN6_IFF_DEPRECATED) { 2084 if (ip6_use_deprecated) 2085 dep[0] = ia; 2086 continue; 2087 } 2088 2089 if (dst_scope != in6_addrscope(IFA_IN6(ifa))) 2090 continue; 2091 /* 2092 * call in6_matchlen() as few as possible 2093 */ 2094 if (best_ia == NULL) { 2095 best_ia = ia; 2096 continue; 2097 } 2098 if (blen == -1) 2099 blen = in6_matchlen(&best_ia->ia_addr.sin6_addr, dst); 2100 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2101 if (tlen > blen) { 2102 blen = tlen; 2103 best_ia = ia; 2104 } else if (tlen == blen) 2105 best_ia = bestia(best_ia, ia); 2106 } 2107 if (best_ia != NULL) 2108 return best_ia; 2109 2110 IFADDR_FOREACH(ifa, ifp) { 2111 if (ifa->ifa_addr->sa_family != AF_INET6) 2112 continue; 2113 ia = (struct in6_ifaddr *)ifa; 2114 if (ia->ia6_flags & IN6_IFF_ANYCAST) 2115 continue; /* XXX: is there any case to allow anycast? */ 2116 if (ia->ia6_flags & IN6_IFF_NOTREADY) 2117 continue; /* don't use this interface */ 2118 if (ia->ia6_flags & IN6_IFF_DETACHED) 2119 continue; 2120 if (ia->ia6_flags & IN6_IFF_DEPRECATED) { 2121 if (ip6_use_deprecated) 2122 dep[1] = (struct in6_ifaddr *)ifa; 2123 continue; 2124 } 2125 2126 best_ia = bestia(best_ia, ia); 2127 } 2128 if (best_ia != NULL) 2129 return best_ia; 2130 2131 /* use the last-resort values, that are, deprecated addresses */ 2132 if (dep[0]) 2133 return dep[0]; 2134 if (dep[1]) 2135 return dep[1]; 2136 2137 return NULL; 2138 } 2139 2140 /* 2141 * perform DAD when interface becomes IFF_UP. 2142 */ 2143 void 2144 in6_if_up(struct ifnet *ifp) 2145 { 2146 struct ifaddr *ifa; 2147 struct in6_ifaddr *ia; 2148 2149 IFADDR_FOREACH(ifa, ifp) { 2150 if (ifa->ifa_addr->sa_family != AF_INET6) 2151 continue; 2152 ia = (struct in6_ifaddr *)ifa; 2153 if (ia->ia6_flags & IN6_IFF_TENTATIVE) { 2154 /* 2155 * The TENTATIVE flag was likely set by hand 2156 * beforehand, implicitly indicating the need for DAD. 2157 * We may be able to skip the random delay in this 2158 * case, but we impose delays just in case. 2159 */ 2160 nd6_dad_start(ifa, 2161 cprng_fast32() % 2162 (MAX_RTR_SOLICITATION_DELAY * hz)); 2163 } 2164 } 2165 2166 /* 2167 * special cases, like 6to4, are handled in in6_ifattach 2168 */ 2169 in6_ifattach(ifp, NULL); 2170 } 2171 2172 int 2173 in6if_do_dad(struct ifnet *ifp) 2174 { 2175 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2176 return 0; 2177 2178 switch (ifp->if_type) { 2179 case IFT_FAITH: 2180 /* 2181 * These interfaces do not have the IFF_LOOPBACK flag, 2182 * but loop packets back. We do not have to do DAD on such 2183 * interfaces. We should even omit it, because loop-backed 2184 * NS would confuse the DAD procedure. 2185 */ 2186 return 0; 2187 default: 2188 /* 2189 * Our DAD routine requires the interface up and running. 2190 * However, some interfaces can be up before the RUNNING 2191 * status. Additionaly, users may try to assign addresses 2192 * before the interface becomes up (or running). 2193 * We simply skip DAD in such a case as a work around. 2194 * XXX: we should rather mark "tentative" on such addresses, 2195 * and do DAD after the interface becomes ready. 2196 */ 2197 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != 2198 (IFF_UP|IFF_RUNNING)) 2199 return 0; 2200 2201 return 1; 2202 } 2203 } 2204 2205 /* 2206 * Calculate max IPv6 MTU through all the interfaces and store it 2207 * to in6_maxmtu. 2208 */ 2209 void 2210 in6_setmaxmtu(void) 2211 { 2212 unsigned long maxmtu = 0; 2213 struct ifnet *ifp; 2214 2215 TAILQ_FOREACH(ifp, &ifnet, if_list) { 2216 /* this function can be called during ifnet initialization */ 2217 if (!ifp->if_afdata[AF_INET6]) 2218 continue; 2219 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2220 IN6_LINKMTU(ifp) > maxmtu) 2221 maxmtu = IN6_LINKMTU(ifp); 2222 } 2223 if (maxmtu) /* update only when maxmtu is positive */ 2224 in6_maxmtu = maxmtu; 2225 } 2226 2227 /* 2228 * Provide the length of interface identifiers to be used for the link attached 2229 * to the given interface. The length should be defined in "IPv6 over 2230 * xxx-link" document. Note that address architecture might also define 2231 * the length for a particular set of address prefixes, regardless of the 2232 * link type. As clarified in rfc2462bis, those two definitions should be 2233 * consistent, and those really are as of August 2004. 2234 */ 2235 int 2236 in6_if2idlen(struct ifnet *ifp) 2237 { 2238 switch (ifp->if_type) { 2239 case IFT_ETHER: /* RFC2464 */ 2240 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ 2241 case IFT_L2VLAN: /* ditto */ 2242 case IFT_IEEE80211: /* ditto */ 2243 case IFT_FDDI: /* RFC2467 */ 2244 case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */ 2245 case IFT_PPP: /* RFC2472 */ 2246 case IFT_ARCNET: /* RFC2497 */ 2247 case IFT_FRELAY: /* RFC2590 */ 2248 case IFT_IEEE1394: /* RFC3146 */ 2249 case IFT_GIF: /* draft-ietf-v6ops-mech-v2-07 */ 2250 case IFT_LOOP: /* XXX: is this really correct? */ 2251 return 64; 2252 default: 2253 /* 2254 * Unknown link type: 2255 * It might be controversial to use the today's common constant 2256 * of 64 for these cases unconditionally. For full compliance, 2257 * we should return an error in this case. On the other hand, 2258 * if we simply miss the standard for the link type or a new 2259 * standard is defined for a new link type, the IFID length 2260 * is very likely to be the common constant. As a compromise, 2261 * we always use the constant, but make an explicit notice 2262 * indicating the "unknown" case. 2263 */ 2264 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); 2265 return 64; 2266 } 2267 } 2268 2269 void * 2270 in6_domifattach(struct ifnet *ifp) 2271 { 2272 struct in6_ifextra *ext; 2273 2274 ext = malloc(sizeof(*ext), M_IFADDR, M_WAITOK|M_ZERO); 2275 2276 ext->in6_ifstat = malloc(sizeof(struct in6_ifstat), 2277 M_IFADDR, M_WAITOK|M_ZERO); 2278 2279 ext->icmp6_ifstat = malloc(sizeof(struct icmp6_ifstat), 2280 M_IFADDR, M_WAITOK|M_ZERO); 2281 2282 ext->nd_ifinfo = nd6_ifattach(ifp); 2283 ext->scope6_id = scope6_ifattach(ifp); 2284 return ext; 2285 } 2286 2287 void 2288 in6_domifdetach(struct ifnet *ifp, void *aux) 2289 { 2290 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2291 2292 nd6_ifdetach(ext->nd_ifinfo); 2293 free(ext->in6_ifstat, M_IFADDR); 2294 free(ext->icmp6_ifstat, M_IFADDR); 2295 scope6_ifdetach(ext->scope6_id); 2296 free(ext, M_IFADDR); 2297 } 2298 2299 /* 2300 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be 2301 * v4 mapped addr or v4 compat addr 2302 */ 2303 void 2304 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2305 { 2306 memset(sin, 0, sizeof(*sin)); 2307 sin->sin_len = sizeof(struct sockaddr_in); 2308 sin->sin_family = AF_INET; 2309 sin->sin_port = sin6->sin6_port; 2310 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; 2311 } 2312 2313 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ 2314 void 2315 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) 2316 { 2317 memset(sin6, 0, sizeof(*sin6)); 2318 sin6->sin6_len = sizeof(struct sockaddr_in6); 2319 sin6->sin6_family = AF_INET6; 2320 sin6->sin6_port = sin->sin_port; 2321 sin6->sin6_addr.s6_addr32[0] = 0; 2322 sin6->sin6_addr.s6_addr32[1] = 0; 2323 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; 2324 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; 2325 } 2326 2327 /* Convert sockaddr_in6 into sockaddr_in. */ 2328 void 2329 in6_sin6_2_sin_in_sock(struct sockaddr *nam) 2330 { 2331 struct sockaddr_in *sin_p; 2332 struct sockaddr_in6 sin6; 2333 2334 /* 2335 * Save original sockaddr_in6 addr and convert it 2336 * to sockaddr_in. 2337 */ 2338 sin6 = *(struct sockaddr_in6 *)nam; 2339 sin_p = (struct sockaddr_in *)nam; 2340 in6_sin6_2_sin(sin_p, &sin6); 2341 } 2342 2343 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ 2344 void 2345 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) 2346 { 2347 struct sockaddr_in *sin_p; 2348 struct sockaddr_in6 *sin6_p; 2349 2350 sin6_p = malloc(sizeof(*sin6_p), M_SONAME, M_WAITOK); 2351 sin_p = (struct sockaddr_in *)*nam; 2352 in6_sin_2_v4mapsin6(sin_p, sin6_p); 2353 free(*nam, M_SONAME); 2354 *nam = (struct sockaddr *)sin6_p; 2355 } 2356