1 /* $NetBSD: in6.c,v 1.74 2003/02/27 22:06:38 thorpej Exp $ */ 2 /* $KAME: in6.c,v 1.198 2001/07/18 09:12:38 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)in.c 8.2 (Berkeley) 11/15/93 66 */ 67 68 #include <sys/cdefs.h> 69 __KERNEL_RCSID(0, "$NetBSD: in6.c,v 1.74 2003/02/27 22:06:38 thorpej Exp $"); 70 71 #include "opt_inet.h" 72 73 #include <sys/param.h> 74 #include <sys/ioctl.h> 75 #include <sys/errno.h> 76 #include <sys/malloc.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/sockio.h> 80 #include <sys/systm.h> 81 #include <sys/proc.h> 82 #include <sys/time.h> 83 #include <sys/kernel.h> 84 #include <sys/syslog.h> 85 86 #include <net/if.h> 87 #include <net/if_types.h> 88 #include <net/route.h> 89 #include <net/if_dl.h> 90 91 #include <netinet/in.h> 92 #include <netinet/in_var.h> 93 #include <net/if_ether.h> 94 95 #include <netinet/ip6.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/nd6.h> 98 #include <netinet6/mld6_var.h> 99 #include <netinet6/ip6_mroute.h> 100 #include <netinet6/in6_ifattach.h> 101 102 #include <net/net_osdep.h> 103 104 MALLOC_DEFINE(M_IP6OPT, "ip6_options", "IPv6 options"); 105 106 /* enable backward compatibility code for obsoleted ioctls */ 107 #define COMPAT_IN6IFIOCTL 108 109 /* 110 * Definitions of some costant IP6 addresses. 111 */ 112 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; 113 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; 114 const struct in6_addr in6addr_nodelocal_allnodes = 115 IN6ADDR_NODELOCAL_ALLNODES_INIT; 116 const struct in6_addr in6addr_linklocal_allnodes = 117 IN6ADDR_LINKLOCAL_ALLNODES_INIT; 118 const struct in6_addr in6addr_linklocal_allrouters = 119 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; 120 121 const struct in6_addr in6mask0 = IN6MASK0; 122 const struct in6_addr in6mask32 = IN6MASK32; 123 const struct in6_addr in6mask64 = IN6MASK64; 124 const struct in6_addr in6mask96 = IN6MASK96; 125 const struct in6_addr in6mask128 = IN6MASK128; 126 127 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6, 128 0, 0, IN6ADDR_ANY_INIT, 0}; 129 130 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t, 131 struct ifnet *, struct proc *)); 132 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *, 133 struct sockaddr_in6 *, int)); 134 static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *)); 135 136 /* 137 * This structure is used to keep track of in6_multi chains which belong to 138 * deleted interface addresses. 139 */ 140 static LIST_HEAD(, multi6_kludge) in6_mk; /* XXX BSS initialization */ 141 142 struct multi6_kludge { 143 LIST_ENTRY(multi6_kludge) mk_entry; 144 struct ifnet *mk_ifp; 145 struct in6_multihead mk_head; 146 }; 147 148 /* 149 * Subroutine for in6_ifaddloop() and in6_ifremloop(). 150 * This routine does actual work. 151 */ 152 static void 153 in6_ifloop_request(int cmd, struct ifaddr *ifa) 154 { 155 struct sockaddr_in6 lo_sa; 156 struct sockaddr_in6 all1_sa; 157 struct rtentry *nrt = NULL; 158 int e; 159 160 bzero(&lo_sa, sizeof(lo_sa)); 161 bzero(&all1_sa, sizeof(all1_sa)); 162 lo_sa.sin6_family = all1_sa.sin6_family = AF_INET6; 163 lo_sa.sin6_len = all1_sa.sin6_len = sizeof(struct sockaddr_in6); 164 lo_sa.sin6_addr = in6addr_loopback; 165 all1_sa.sin6_addr = in6mask128; 166 167 /* 168 * We specify the address itself as the gateway, and set the 169 * RTF_LLINFO flag, so that the corresponding host route would have 170 * the flag, and thus applications that assume traditional behavior 171 * would be happy. Note that we assume the caller of the function 172 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, 173 * which changes the outgoing interface to the loopback interface. 174 */ 175 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr, 176 (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt); 177 if (e != 0) { 178 log(LOG_ERR, "in6_ifloop_request: " 179 "%s operation failed for %s (errno=%d)\n", 180 cmd == RTM_ADD ? "ADD" : "DELETE", 181 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), 182 e); 183 } 184 185 /* 186 * Make sure rt_ifa be equal to IFA, the second argument of the 187 * function. 188 * We need this because when we refer to rt_ifa->ia6_flags in 189 * ip6_input, we assume that the rt_ifa points to the address instead 190 * of the loopback address. 191 */ 192 if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) { 193 IFAFREE(nrt->rt_ifa); 194 IFAREF(ifa); 195 nrt->rt_ifa = ifa; 196 } 197 198 /* 199 * Report the addition/removal of the address to the routing socket. 200 * XXX: since we called rtinit for a p2p interface with a destination, 201 * we end up reporting twice in such a case. Should we rather 202 * omit the second report? 203 */ 204 if (nrt) { 205 rt_newaddrmsg(cmd, ifa, e, nrt); 206 if (cmd == RTM_DELETE) { 207 if (nrt->rt_refcnt <= 0) { 208 /* XXX: we should free the entry ourselves. */ 209 nrt->rt_refcnt++; 210 rtfree(nrt); 211 } 212 } else { 213 /* the cmd must be RTM_ADD here */ 214 nrt->rt_refcnt--; 215 } 216 } 217 } 218 219 /* 220 * Add ownaddr as loopback rtentry. We previously add the route only if 221 * necessary (ex. on a p2p link). However, since we now manage addresses 222 * separately from prefixes, we should always add the route. We can't 223 * rely on the cloning mechanism from the corresponding interface route 224 * any more. 225 */ 226 static void 227 in6_ifaddloop(struct ifaddr *ifa) 228 { 229 struct rtentry *rt; 230 231 /* If there is no loopback entry, allocate one. */ 232 rt = rtalloc1(ifa->ifa_addr, 0); 233 if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 || 234 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) 235 in6_ifloop_request(RTM_ADD, ifa); 236 if (rt) 237 rt->rt_refcnt--; 238 } 239 240 /* 241 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), 242 * if it exists. 243 */ 244 static void 245 in6_ifremloop(struct ifaddr *ifa) 246 { 247 struct in6_ifaddr *ia; 248 struct rtentry *rt; 249 int ia_count = 0; 250 251 /* 252 * Some of BSD variants do not remove cloned routes 253 * from an interface direct route, when removing the direct route 254 * (see comments in net/net_osdep.h). Even for variants that do remove 255 * cloned routes, they could fail to remove the cloned routes when 256 * we handle multple addresses that share a common prefix. 257 * So, we should remove the route corresponding to the deleted address. 258 */ 259 260 /* 261 * Delete the entry only if exact one ifa exists. More than one ifa 262 * can exist if we assign a same single address to multiple 263 * (probably p2p) interfaces. 264 * XXX: we should avoid such a configuration in IPv6... 265 */ 266 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 267 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { 268 ia_count++; 269 if (ia_count > 1) 270 break; 271 } 272 } 273 274 if (ia_count == 1) { 275 /* 276 * Before deleting, check if a corresponding loopbacked host 277 * route surely exists. With this check, we can avoid to 278 * delete an interface direct route whose destination is same 279 * as the address being removed. This can happen when removing 280 * a subnet-router anycast address on an interface attahced 281 * to a shared medium. 282 */ 283 rt = rtalloc1(ifa->ifa_addr, 0); 284 if (rt != NULL && (rt->rt_flags & RTF_HOST) != 0 && 285 (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 286 rt->rt_refcnt--; 287 in6_ifloop_request(RTM_DELETE, ifa); 288 } 289 } 290 } 291 292 int 293 in6_ifindex2scopeid(idx) 294 int idx; 295 { 296 struct ifnet *ifp; 297 struct ifaddr *ifa; 298 struct sockaddr_in6 *sin6; 299 300 if (idx < 0 || if_index < idx) 301 return -1; 302 ifp = ifindex2ifnet[idx]; 303 if (!ifp) 304 return -1; 305 306 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next) 307 { 308 if (ifa->ifa_addr->sa_family != AF_INET6) 309 continue; 310 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; 311 if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr)) 312 return sin6->sin6_scope_id & 0xffff; 313 } 314 315 return -1; 316 } 317 318 int 319 in6_mask2len(mask, lim0) 320 struct in6_addr *mask; 321 u_char *lim0; 322 { 323 int x = 0, y; 324 u_char *lim = lim0, *p; 325 326 /* ignore the scope_id part */ 327 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) 328 lim = (u_char *)mask + sizeof(*mask); 329 for (p = (u_char *)mask; p < lim; x++, p++) { 330 if (*p != 0xff) 331 break; 332 } 333 y = 0; 334 if (p < lim) { 335 for (y = 0; y < 8; y++) { 336 if ((*p & (0x80 >> y)) == 0) 337 break; 338 } 339 } 340 341 /* 342 * when the limit pointer is given, do a stricter check on the 343 * remaining bits. 344 */ 345 if (p < lim) { 346 if (y != 0 && (*p & (0x00ff >> y)) != 0) 347 return (-1); 348 for (p = p + 1; p < lim; p++) 349 if (*p != 0) 350 return (-1); 351 } 352 353 return x * 8 + y; 354 } 355 356 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) 357 #define ia62ifa(ia6) (&((ia6)->ia_ifa)) 358 359 int 360 in6_control(so, cmd, data, ifp, p) 361 struct socket *so; 362 u_long cmd; 363 caddr_t data; 364 struct ifnet *ifp; 365 struct proc *p; 366 { 367 struct in6_ifreq *ifr = (struct in6_ifreq *)data; 368 struct in6_ifaddr *ia = NULL; 369 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; 370 struct sockaddr_in6 *sa6; 371 time_t time_second = (time_t)time.tv_sec; 372 int privileged; 373 374 privileged = 0; 375 if (p && !suser(p->p_ucred, &p->p_acflag)) 376 privileged++; 377 378 switch (cmd) { 379 case SIOCGETSGCNT_IN6: 380 case SIOCGETMIFCNT_IN6: 381 return (mrt6_ioctl(cmd, data)); 382 } 383 384 if (ifp == NULL) 385 return (EOPNOTSUPP); 386 387 switch (cmd) { 388 case SIOCSNDFLUSH_IN6: 389 case SIOCSPFXFLUSH_IN6: 390 case SIOCSRTRFLUSH_IN6: 391 case SIOCSDEFIFACE_IN6: 392 case SIOCSIFINFO_FLAGS: 393 if (!privileged) 394 return (EPERM); 395 /* FALLTHROUGH */ 396 case OSIOCGIFINFO_IN6: 397 case SIOCGIFINFO_IN6: 398 case SIOCGDRLST_IN6: 399 case SIOCGPRLST_IN6: 400 case SIOCGNBRINFO_IN6: 401 case SIOCGDEFIFACE_IN6: 402 return (nd6_ioctl(cmd, data, ifp)); 403 } 404 405 switch (cmd) { 406 case SIOCSIFPREFIX_IN6: 407 case SIOCDIFPREFIX_IN6: 408 case SIOCAIFPREFIX_IN6: 409 case SIOCCIFPREFIX_IN6: 410 case SIOCSGIFPREFIX_IN6: 411 case SIOCGIFPREFIX_IN6: 412 log(LOG_NOTICE, 413 "prefix ioctls are now invalidated. " 414 "please use ifconfig.\n"); 415 return (EOPNOTSUPP); 416 } 417 418 switch (cmd) { 419 case SIOCALIFADDR: 420 case SIOCDLIFADDR: 421 if (!privileged) 422 return (EPERM); 423 /* FALLTHROUGH */ 424 case SIOCGLIFADDR: 425 return in6_lifaddr_ioctl(so, cmd, data, ifp, p); 426 } 427 428 /* 429 * Find address for this interface, if it exists. 430 * 431 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation 432 * only, and used the first interface address as the target of other 433 * operations (without checking ifra_addr). This was because netinet 434 * code/API assumed at most 1 interface address per interface. 435 * Since IPv6 allows a node to assign multiple addresses 436 * on a single interface, we almost always look and check the 437 * presence of ifra_addr, and reject invalid ones here. 438 * It also decreases duplicated code among SIOC*_IN6 operations. 439 */ 440 switch (cmd) { 441 case SIOCAIFADDR_IN6: 442 case SIOCSIFPHYADDR_IN6: 443 sa6 = &ifra->ifra_addr; 444 break; 445 case SIOCSIFADDR_IN6: 446 case SIOCGIFADDR_IN6: 447 case SIOCSIFDSTADDR_IN6: 448 case SIOCSIFNETMASK_IN6: 449 case SIOCGIFDSTADDR_IN6: 450 case SIOCGIFNETMASK_IN6: 451 case SIOCDIFADDR_IN6: 452 case SIOCGIFPSRCADDR_IN6: 453 case SIOCGIFPDSTADDR_IN6: 454 case SIOCGIFAFLAG_IN6: 455 case SIOCSNDFLUSH_IN6: 456 case SIOCSPFXFLUSH_IN6: 457 case SIOCSRTRFLUSH_IN6: 458 case SIOCGIFALIFETIME_IN6: 459 case SIOCSIFALIFETIME_IN6: 460 case SIOCGIFSTAT_IN6: 461 case SIOCGIFSTAT_ICMP6: 462 sa6 = &ifr->ifr_addr; 463 break; 464 default: 465 sa6 = NULL; 466 break; 467 } 468 if (sa6 && sa6->sin6_family == AF_INET6) { 469 if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) { 470 if (sa6->sin6_addr.s6_addr16[1] == 0) { 471 /* link ID is not embedded by the user */ 472 sa6->sin6_addr.s6_addr16[1] = 473 htons(ifp->if_index); 474 } else if (sa6->sin6_addr.s6_addr16[1] != 475 htons(ifp->if_index)) { 476 return (EINVAL); /* link ID contradicts */ 477 } 478 if (sa6->sin6_scope_id) { 479 if (sa6->sin6_scope_id != 480 (u_int32_t)ifp->if_index) 481 return (EINVAL); 482 sa6->sin6_scope_id = 0; /* XXX: good way? */ 483 } 484 } 485 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); 486 } else 487 ia = NULL; 488 489 switch (cmd) { 490 case SIOCSIFADDR_IN6: 491 case SIOCSIFDSTADDR_IN6: 492 case SIOCSIFNETMASK_IN6: 493 /* 494 * Since IPv6 allows a node to assign multiple addresses 495 * on a single interface, SIOCSIFxxx ioctls are deprecated. 496 */ 497 return (EINVAL); 498 499 case SIOCDIFADDR_IN6: 500 /* 501 * for IPv4, we look for existing in_ifaddr here to allow 502 * "ifconfig if0 delete" to remove the first IPv4 address on 503 * the interface. For IPv6, as the spec allows multiple 504 * interface address from the day one, we consider "remove the 505 * first one" semantics to be not preferable. 506 */ 507 if (ia == NULL) 508 return (EADDRNOTAVAIL); 509 /* FALLTHROUGH */ 510 case SIOCAIFADDR_IN6: 511 /* 512 * We always require users to specify a valid IPv6 address for 513 * the corresponding operation. 514 */ 515 if (ifra->ifra_addr.sin6_family != AF_INET6 || 516 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) 517 return (EAFNOSUPPORT); 518 if (!privileged) 519 return (EPERM); 520 521 break; 522 523 case SIOCGIFADDR_IN6: 524 /* This interface is basically deprecated. use SIOCGIFCONF. */ 525 /* FALLTHROUGH */ 526 case SIOCGIFAFLAG_IN6: 527 case SIOCGIFNETMASK_IN6: 528 case SIOCGIFDSTADDR_IN6: 529 case SIOCGIFALIFETIME_IN6: 530 /* must think again about its semantics */ 531 if (ia == NULL) 532 return (EADDRNOTAVAIL); 533 break; 534 case SIOCSIFALIFETIME_IN6: 535 { 536 struct in6_addrlifetime *lt; 537 538 if (!privileged) 539 return (EPERM); 540 if (ia == NULL) 541 return (EADDRNOTAVAIL); 542 /* sanity for overflow - beware unsigned */ 543 lt = &ifr->ifr_ifru.ifru_lifetime; 544 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME 545 && lt->ia6t_vltime + time_second < time_second) { 546 return EINVAL; 547 } 548 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME 549 && lt->ia6t_pltime + time_second < time_second) { 550 return EINVAL; 551 } 552 break; 553 } 554 } 555 556 switch (cmd) { 557 558 case SIOCGIFADDR_IN6: 559 ifr->ifr_addr = ia->ia_addr; 560 break; 561 562 case SIOCGIFDSTADDR_IN6: 563 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 564 return (EINVAL); 565 /* 566 * XXX: should we check if ifa_dstaddr is NULL and return 567 * an error? 568 */ 569 ifr->ifr_dstaddr = ia->ia_dstaddr; 570 break; 571 572 case SIOCGIFNETMASK_IN6: 573 ifr->ifr_addr = ia->ia_prefixmask; 574 break; 575 576 case SIOCGIFAFLAG_IN6: 577 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; 578 break; 579 580 case SIOCGIFSTAT_IN6: 581 if (ifp == NULL) 582 return EINVAL; 583 bzero(&ifr->ifr_ifru.ifru_stat, 584 sizeof(ifr->ifr_ifru.ifru_stat)); 585 ifr->ifr_ifru.ifru_stat = 586 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat; 587 break; 588 589 case SIOCGIFSTAT_ICMP6: 590 if (ifp == NULL) 591 return EINVAL; 592 bzero(&ifr->ifr_ifru.ifru_stat, 593 sizeof(ifr->ifr_ifru.ifru_icmp6stat)); 594 ifr->ifr_ifru.ifru_icmp6stat = 595 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat; 596 break; 597 598 case SIOCGIFALIFETIME_IN6: 599 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; 600 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 601 time_t maxexpire; 602 struct in6_addrlifetime *retlt = 603 &ifr->ifr_ifru.ifru_lifetime; 604 605 /* 606 * XXX: adjust expiration time assuming time_t is 607 * signed. 608 */ 609 maxexpire = (-1) & 610 ~(1 << ((sizeof(maxexpire) * 8) - 1)); 611 if (ia->ia6_lifetime.ia6t_vltime < 612 maxexpire - ia->ia6_updatetime) { 613 retlt->ia6t_expire = ia->ia6_updatetime + 614 ia->ia6_lifetime.ia6t_vltime; 615 } else 616 retlt->ia6t_expire = maxexpire; 617 } 618 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 619 time_t maxexpire; 620 struct in6_addrlifetime *retlt = 621 &ifr->ifr_ifru.ifru_lifetime; 622 623 /* 624 * XXX: adjust expiration time assuming time_t is 625 * signed. 626 */ 627 maxexpire = (-1) & 628 ~(1 << ((sizeof(maxexpire) * 8) - 1)); 629 if (ia->ia6_lifetime.ia6t_pltime < 630 maxexpire - ia->ia6_updatetime) { 631 retlt->ia6t_preferred = ia->ia6_updatetime + 632 ia->ia6_lifetime.ia6t_pltime; 633 } else 634 retlt->ia6t_preferred = maxexpire; 635 } 636 break; 637 638 case SIOCSIFALIFETIME_IN6: 639 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; 640 /* for sanity */ 641 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 642 ia->ia6_lifetime.ia6t_expire = 643 time_second + ia->ia6_lifetime.ia6t_vltime; 644 } else 645 ia->ia6_lifetime.ia6t_expire = 0; 646 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 647 ia->ia6_lifetime.ia6t_preferred = 648 time_second + ia->ia6_lifetime.ia6t_pltime; 649 } else 650 ia->ia6_lifetime.ia6t_preferred = 0; 651 break; 652 653 case SIOCAIFADDR_IN6: 654 { 655 int i, error = 0; 656 struct nd_prefix pr0, *pr; 657 658 /* reject read-only flags */ 659 if ((ifra->ifra_flags & IN6_IFF_DUPLICATED) != 0 || 660 (ifra->ifra_flags & IN6_IFF_DETACHED) != 0 || 661 (ifra->ifra_flags & IN6_IFF_NODAD) != 0 || 662 (ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0) { 663 return (EINVAL); 664 } 665 /* 666 * first, make or update the interface address structure, 667 * and link it to the list. 668 */ 669 if ((error = in6_update_ifa(ifp, ifra, ia)) != 0) 670 return (error); 671 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) 672 == NULL) { 673 /* 674 * this can happen when the user specify the 0 valid 675 * lifetime. 676 */ 677 break; 678 } 679 680 /* 681 * then, make the prefix on-link on the interface. 682 * XXX: we'd rather create the prefix before the address, but 683 * we need at least one address to install the corresponding 684 * interface route, so we configure the address first. 685 */ 686 687 /* 688 * convert mask to prefix length (prefixmask has already 689 * been validated in in6_update_ifa(). 690 */ 691 bzero(&pr0, sizeof(pr0)); 692 pr0.ndpr_ifp = ifp; 693 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 694 NULL); 695 if (pr0.ndpr_plen == 128) { 696 break; /* we don't need to install a host route. */ 697 } 698 pr0.ndpr_prefix = ifra->ifra_addr; 699 pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr; 700 /* apply the mask for safety. */ 701 for (i = 0; i < 4; i++) { 702 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 703 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; 704 } 705 /* 706 * XXX: since we don't have an API to set prefix (not address) 707 * lifetimes, we just use the same lifetimes as addresses. 708 * The (temporarily) installed lifetimes can be overridden by 709 * later advertised RAs (when accept_rtadv is non 0), which is 710 * an intended behavior. 711 */ 712 pr0.ndpr_raf_onlink = 1; /* should be configurable? */ 713 pr0.ndpr_raf_auto = 714 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); 715 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; 716 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; 717 718 /* add the prefix if not yet. */ 719 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { 720 /* 721 * nd6_prelist_add will install the corresponding 722 * interface route. 723 */ 724 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) 725 return (error); 726 if (pr == NULL) { 727 log(LOG_ERR, "nd6_prelist_add succeeded but " 728 "no prefix\n"); 729 return (EINVAL); /* XXX panic here? */ 730 } 731 } 732 733 /* relate the address to the prefix */ 734 if (ia->ia6_ndpr == NULL) { 735 ia->ia6_ndpr = pr; 736 pr->ndpr_refcnt++; 737 } 738 739 /* 740 * this might affect the status of autoconfigured addresses, 741 * that is, this address might make other addresses detached. 742 */ 743 pfxlist_onlink_check(); 744 745 break; 746 } 747 748 case SIOCDIFADDR_IN6: 749 { 750 int i = 0, purgeprefix = 0; 751 struct nd_prefix pr0, *pr = NULL; 752 753 /* 754 * If the address being deleted is the only one that owns 755 * the corresponding prefix, expire the prefix as well. 756 * XXX: theoretically, we don't have to worry about such 757 * relationship, since we separate the address management 758 * and the prefix management. We do this, however, to provide 759 * as much backward compatibility as possible in terms of 760 * the ioctl operation. 761 */ 762 bzero(&pr0, sizeof(pr0)); 763 pr0.ndpr_ifp = ifp; 764 pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, 765 NULL); 766 if (pr0.ndpr_plen == 128) 767 goto purgeaddr; 768 pr0.ndpr_prefix = ia->ia_addr; 769 pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr; 770 for (i = 0; i < 4; i++) { 771 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= 772 ia->ia_prefixmask.sin6_addr.s6_addr32[i]; 773 } 774 if ((pr = nd6_prefix_lookup(&pr0)) != NULL && 775 pr == ia->ia6_ndpr) { 776 pr->ndpr_refcnt--; 777 if (pr->ndpr_refcnt == 0) 778 purgeprefix = 1; 779 } 780 781 purgeaddr: 782 in6_purgeaddr(&ia->ia_ifa); 783 if (pr && purgeprefix) 784 prelist_remove(pr); 785 break; 786 } 787 788 default: 789 if (ifp == NULL || ifp->if_ioctl == 0) 790 return (EOPNOTSUPP); 791 return ((*ifp->if_ioctl)(ifp, cmd, data)); 792 } 793 794 return (0); 795 } 796 797 /* 798 * Update parameters of an IPv6 interface address. 799 * If necessary, a new entry is created and linked into address chains. 800 * This function is separated from in6_control(). 801 * XXX: should this be performed under splnet()? 802 */ 803 int 804 in6_update_ifa(ifp, ifra, ia) 805 struct ifnet *ifp; 806 struct in6_aliasreq *ifra; 807 struct in6_ifaddr *ia; 808 { 809 int error = 0, hostIsNew = 0, plen = -1; 810 struct in6_ifaddr *oia; 811 struct sockaddr_in6 dst6; 812 struct in6_addrlifetime *lt; 813 struct in6_multi_mship *imm; 814 time_t time_second = (time_t)time.tv_sec; 815 struct rtentry *rt; 816 817 /* Validate parameters */ 818 if (ifp == NULL || ifra == NULL) /* this maybe redundant */ 819 return (EINVAL); 820 821 /* 822 * The destination address for a p2p link must have a family 823 * of AF_UNSPEC or AF_INET6. 824 */ 825 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 826 ifra->ifra_dstaddr.sin6_family != AF_INET6 && 827 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) 828 return (EAFNOSUPPORT); 829 /* 830 * validate ifra_prefixmask. don't check sin6_family, netmask 831 * does not carry fields other than sin6_len. 832 */ 833 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) 834 return (EINVAL); 835 /* 836 * Because the IPv6 address architecture is classless, we require 837 * users to specify a (non 0) prefix length (mask) for a new address. 838 * We also require the prefix (when specified) mask is valid, and thus 839 * reject a non-consecutive mask. 840 */ 841 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) 842 return (EINVAL); 843 if (ifra->ifra_prefixmask.sin6_len != 0) { 844 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, 845 (u_char *)&ifra->ifra_prefixmask + 846 ifra->ifra_prefixmask.sin6_len); 847 if (plen <= 0) 848 return (EINVAL); 849 } else { 850 /* 851 * In this case, ia must not be NULL. We just use its prefix 852 * length. 853 */ 854 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 855 } 856 /* 857 * If the destination address on a p2p interface is specified, 858 * and the address is a scoped one, validate/set the scope 859 * zone identifier. 860 */ 861 dst6 = ifra->ifra_dstaddr; 862 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && 863 (dst6.sin6_family == AF_INET6)) { 864 /* link-local index check: should be a separate function? */ 865 if (IN6_IS_ADDR_LINKLOCAL(&dst6.sin6_addr)) { 866 if (dst6.sin6_addr.s6_addr16[1] == 0) { 867 /* 868 * interface ID is not embedded by 869 * the user 870 */ 871 dst6.sin6_addr.s6_addr16[1] = 872 htons(ifp->if_index); 873 } else if (dst6.sin6_addr.s6_addr16[1] != 874 htons(ifp->if_index)) { 875 return (EINVAL); /* ifid contradicts */ 876 } 877 } 878 } 879 /* 880 * The destination address can be specified only for a p2p or a 881 * loopback interface. If specified, the corresponding prefix length 882 * must be 128. 883 */ 884 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { 885 #ifdef FORCE_P2PPLEN 886 int i; 887 #endif 888 889 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { 890 /* XXX: noisy message */ 891 nd6log((LOG_INFO, "in6_update_ifa: a destination can " 892 "be specified for a p2p or a loopback IF only\n")); 893 return (EINVAL); 894 } 895 if (plen != 128) { 896 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " 897 "be 128 when dstaddr is specified\n")); 898 #ifdef FORCE_P2PPLEN 899 /* 900 * To be compatible with old configurations, 901 * such as ifconfig gif0 inet6 2001::1 2001::2 902 * prefixlen 126, we override the specified 903 * prefixmask as if the prefix length was 128. 904 */ 905 ifra->ifra_prefixmask.sin6_len = 906 sizeof(struct sockaddr_in6); 907 for (i = 0; i < 4; i++) 908 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i] = 909 0xffffffff; 910 plen = 128; 911 #else 912 return (EINVAL); 913 #endif 914 } 915 } 916 /* lifetime consistency check */ 917 lt = &ifra->ifra_lifetime; 918 if (lt->ia6t_pltime > lt->ia6t_vltime) 919 return (EINVAL); 920 if (lt->ia6t_vltime == 0) { 921 /* 922 * the following log might be noisy, but this is a typical 923 * configuration mistake or a tool's bug. 924 */ 925 nd6log((LOG_INFO, 926 "in6_update_ifa: valid lifetime is 0 for %s\n", 927 ip6_sprintf(&ifra->ifra_addr.sin6_addr))); 928 929 if (ia == NULL) 930 return (0); /* there's nothing to do */ 931 } 932 933 /* 934 * If this is a new address, allocate a new ifaddr and link it 935 * into chains. 936 */ 937 if (ia == NULL) { 938 hostIsNew = 1; 939 /* 940 * When in6_update_ifa() is called in a process of a received 941 * RA, it is called under an interrupt context. So, we should 942 * call malloc with M_NOWAIT. 943 */ 944 ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR, 945 M_NOWAIT); 946 if (ia == NULL) 947 return (ENOBUFS); 948 bzero((caddr_t)ia, sizeof(*ia)); 949 LIST_INIT(&ia->ia6_memberships); 950 /* Initialize the address and masks, and put time stamp */ 951 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; 952 ia->ia_addr.sin6_family = AF_INET6; 953 ia->ia_addr.sin6_len = sizeof(ia->ia_addr); 954 ia->ia6_createtime = ia->ia6_updatetime = time_second; 955 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { 956 /* 957 * XXX: some functions expect that ifa_dstaddr is not 958 * NULL for p2p interfaces. 959 */ 960 ia->ia_ifa.ifa_dstaddr = 961 (struct sockaddr *)&ia->ia_dstaddr; 962 } else { 963 ia->ia_ifa.ifa_dstaddr = NULL; 964 } 965 ia->ia_ifa.ifa_netmask = 966 (struct sockaddr *)&ia->ia_prefixmask; 967 968 ia->ia_ifp = ifp; 969 if ((oia = in6_ifaddr) != NULL) { 970 for ( ; oia->ia_next; oia = oia->ia_next) 971 continue; 972 oia->ia_next = ia; 973 } else 974 in6_ifaddr = ia; 975 /* gain a refcnt for the link from in6_ifaddr */ 976 IFAREF(&ia->ia_ifa); 977 978 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, 979 ifa_list); 980 /* gain another refcnt for the link from if_addrlist */ 981 IFAREF(&ia->ia_ifa); 982 } 983 984 /* set prefix mask */ 985 if (ifra->ifra_prefixmask.sin6_len) { 986 /* 987 * We prohibit changing the prefix length of an existing 988 * address, because 989 * + such an operation should be rare in IPv6, and 990 * + the operation would confuse prefix management. 991 */ 992 if (ia->ia_prefixmask.sin6_len && 993 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { 994 nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an" 995 " existing (%s) address should not be changed\n", 996 ip6_sprintf(&ia->ia_addr.sin6_addr))); 997 error = EINVAL; 998 goto unlink; 999 } 1000 ia->ia_prefixmask = ifra->ifra_prefixmask; 1001 } 1002 1003 /* 1004 * If a new destination address is specified, scrub the old one and 1005 * install the new destination. Note that the interface must be 1006 * p2p or loopback (see the check above.) 1007 */ 1008 if (dst6.sin6_family == AF_INET6 && 1009 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) { 1010 int e; 1011 1012 if ((ia->ia_flags & IFA_ROUTE) != 0 && 1013 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) { 1014 nd6log((LOG_ERR, "in6_update_ifa: failed to remove " 1015 "a route to the old destination: %s\n", 1016 ip6_sprintf(&ia->ia_addr.sin6_addr))); 1017 /* proceed anyway... */ 1018 } else 1019 ia->ia_flags &= ~IFA_ROUTE; 1020 ia->ia_dstaddr = dst6; 1021 } 1022 1023 /* 1024 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred 1025 * to see if the address is deprecated or invalidated, but initialize 1026 * these members for applications. 1027 */ 1028 ia->ia6_lifetime = ifra->ifra_lifetime; 1029 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { 1030 ia->ia6_lifetime.ia6t_expire = 1031 time_second + ia->ia6_lifetime.ia6t_vltime; 1032 } else 1033 ia->ia6_lifetime.ia6t_expire = 0; 1034 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { 1035 ia->ia6_lifetime.ia6t_preferred = 1036 time_second + ia->ia6_lifetime.ia6t_pltime; 1037 } else 1038 ia->ia6_lifetime.ia6t_preferred = 0; 1039 1040 /* reset the interface and routing table appropriately. */ 1041 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) 1042 goto unlink; 1043 1044 /* 1045 * configure address flags. 1046 */ 1047 ia->ia6_flags = ifra->ifra_flags; 1048 /* 1049 * backward compatibility - if IN6_IFF_DEPRECATED is set from the 1050 * userland, make it deprecated. 1051 */ 1052 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { 1053 ia->ia6_lifetime.ia6t_pltime = 0; 1054 ia->ia6_lifetime.ia6t_preferred = time_second; 1055 } 1056 /* 1057 * Make the address tentative before joining multicast addresses, 1058 * so that corresponding MLD responses would not have a tentative 1059 * source address. 1060 */ 1061 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ 1062 if (hostIsNew && in6if_do_dad(ifp)) 1063 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1064 1065 /* 1066 * Beyond this point, we should call in6_purgeaddr upon an error, 1067 * not just go to unlink. 1068 */ 1069 1070 if ((ifp->if_flags & IFF_MULTICAST) != 0) { 1071 struct sockaddr_in6 mltaddr, mltmask; 1072 #ifndef SCOPEDROUTING 1073 u_int32_t zoneid = 0; 1074 #endif 1075 1076 if (hostIsNew) { 1077 /* join solicited multicast addr for new host id */ 1078 struct sockaddr_in6 llsol; 1079 1080 bzero(&llsol, sizeof(llsol)); 1081 llsol.sin6_family = AF_INET6; 1082 llsol.sin6_len = sizeof(llsol); 1083 llsol.sin6_addr.s6_addr16[0] = htons(0xff02); 1084 llsol.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 1085 llsol.sin6_addr.s6_addr32[1] = 0; 1086 llsol.sin6_addr.s6_addr32[2] = htonl(1); 1087 llsol.sin6_addr.s6_addr32[3] = 1088 ifra->ifra_addr.sin6_addr.s6_addr32[3]; 1089 llsol.sin6_addr.s6_addr8[12] = 0xff; 1090 imm = in6_joingroup(ifp, &llsol.sin6_addr, &error); 1091 if (imm) { 1092 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, 1093 i6mm_chain); 1094 } else { 1095 nd6log((LOG_ERR, "in6_update_ifa: addmulti " 1096 "failed for %s on %s (errno=%d)\n", 1097 ip6_sprintf(&llsol.sin6_addr), 1098 if_name(ifp), error)); 1099 goto cleanup; 1100 } 1101 } 1102 1103 bzero(&mltmask, sizeof(mltmask)); 1104 mltmask.sin6_len = sizeof(struct sockaddr_in6); 1105 mltmask.sin6_family = AF_INET6; 1106 mltmask.sin6_addr = in6mask32; 1107 1108 /* 1109 * join link-local all-nodes address 1110 */ 1111 bzero(&mltaddr, sizeof(mltaddr)); 1112 mltaddr.sin6_len = sizeof(struct sockaddr_in6); 1113 mltaddr.sin6_family = AF_INET6; 1114 mltaddr.sin6_addr = in6addr_linklocal_allnodes; 1115 mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 1116 1117 /* 1118 * XXX: do we really need this automatic routes? 1119 * We should probably reconsider this stuff. Most applications 1120 * actually do not need the routes, since they usually specify 1121 * the outgoing interface. 1122 */ 1123 rt = rtalloc1((struct sockaddr *)&mltaddr, 0); 1124 if (rt) { 1125 /* 1126 * 32bit came from "mltmask" 1127 * XXX: only works in !SCOPEDROUTING case. 1128 */ 1129 if (memcmp(&mltaddr.sin6_addr, 1130 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1131 32 / 8)) { 1132 RTFREE(rt); 1133 rt = NULL; 1134 } 1135 } 1136 if (!rt) { 1137 struct rt_addrinfo info; 1138 1139 bzero(&info, sizeof(info)); 1140 info.rti_info[RTAX_DST] = (struct sockaddr *)&mltaddr; 1141 info.rti_info[RTAX_GATEWAY] = 1142 (struct sockaddr *)&ia->ia_addr; 1143 info.rti_info[RTAX_NETMASK] = 1144 (struct sockaddr *)&mltmask; 1145 info.rti_info[RTAX_IFA] = 1146 (struct sockaddr *)&ia->ia_addr; 1147 /* XXX: we need RTF_CLONING to fake nd6_rtrequest */ 1148 info.rti_flags = RTF_UP | RTF_CLONING; 1149 error = rtrequest1(RTM_ADD, &info, NULL); 1150 if (error) 1151 goto cleanup; 1152 } else { 1153 RTFREE(rt); 1154 } 1155 #ifndef SCOPEDROUTING 1156 mltaddr.sin6_scope_id = zoneid; /* XXX */ 1157 #endif 1158 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error); 1159 if (imm) { 1160 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, 1161 i6mm_chain); 1162 } else { 1163 nd6log((LOG_WARNING, 1164 "in6_update_ifa: addmulti failed for " 1165 "%s on %s (errno=%d)\n", 1166 ip6_sprintf(&mltaddr.sin6_addr), 1167 if_name(ifp), error)); 1168 goto cleanup; 1169 } 1170 1171 /* 1172 * join node information group address 1173 */ 1174 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr) == 0) { 1175 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error); 1176 if (imm) { 1177 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, 1178 i6mm_chain); 1179 } else { 1180 nd6log((LOG_WARNING, "in6_update_ifa: " 1181 "addmulti failed for %s on %s (errno=%d)\n", 1182 ip6_sprintf(&mltaddr.sin6_addr), 1183 if_name(ifp), error)); 1184 /* XXX not very fatal, go on... */ 1185 } 1186 } 1187 1188 if (ifp->if_flags & IFF_LOOPBACK) { 1189 /* 1190 * join node-local all-nodes address, on loopback. 1191 * (ff01::1%ifN, and ff01::%ifN/32) 1192 */ 1193 mltaddr.sin6_addr = in6addr_nodelocal_allnodes; 1194 1195 /* XXX: again, do we really need the route? */ 1196 rt = rtalloc1((struct sockaddr *)&mltaddr, 0); 1197 if (rt) { 1198 /* 32bit came from "mltmask" */ 1199 if (memcmp(&mltaddr.sin6_addr, 1200 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1201 32 / 8)) { 1202 RTFREE(rt); 1203 rt = NULL; 1204 } 1205 } 1206 if (!rt) { 1207 struct rt_addrinfo info; 1208 1209 bzero(&info, sizeof(info)); 1210 info.rti_info[RTAX_DST] = (struct sockaddr *)&mltaddr; 1211 info.rti_info[RTAX_GATEWAY] = 1212 (struct sockaddr *)&ia->ia_addr; 1213 info.rti_info[RTAX_NETMASK] = 1214 (struct sockaddr *)&mltmask; 1215 info.rti_info[RTAX_IFA] = 1216 (struct sockaddr *)&ia->ia_addr; 1217 info.rti_flags = RTF_UP | RTF_CLONING; 1218 error = rtrequest1(RTM_ADD, &info, NULL); 1219 if (error) 1220 goto cleanup; 1221 } else { 1222 RTFREE(rt); 1223 } 1224 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error); 1225 if (imm) { 1226 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, 1227 i6mm_chain); 1228 } else { 1229 nd6log((LOG_WARNING, "in6_update_ifa: " 1230 "addmulti failed for %s on %s " 1231 "(errno=%d)\n", 1232 ip6_sprintf(&mltaddr.sin6_addr), 1233 if_name(ifp), error)); 1234 goto cleanup; 1235 } 1236 } 1237 } 1238 1239 /* 1240 * Perform DAD, if needed. 1241 * XXX It may be of use, if we can administratively 1242 * disable DAD. 1243 */ 1244 if (hostIsNew && in6if_do_dad(ifp) && 1245 (ifra->ifra_flags & IN6_IFF_NODAD) == 0) 1246 { 1247 nd6_dad_start((struct ifaddr *)ia, NULL); 1248 } 1249 1250 return (error); 1251 1252 unlink: 1253 /* 1254 * XXX: if a change of an existing address failed, keep the entry 1255 * anyway. 1256 */ 1257 if (hostIsNew) 1258 in6_unlink_ifa(ia, ifp); 1259 return (error); 1260 1261 cleanup: 1262 in6_purgeaddr(&ia->ia_ifa); 1263 return error; 1264 } 1265 1266 void 1267 in6_purgeaddr(ifa) 1268 struct ifaddr *ifa; 1269 { 1270 struct ifnet *ifp = ifa->ifa_ifp; 1271 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; 1272 struct in6_multi_mship *imm; 1273 1274 /* stop DAD processing */ 1275 nd6_dad_stop(ifa); 1276 1277 /* 1278 * delete route to the destination of the address being purged. 1279 * The interface must be p2p or loopback in this case. 1280 */ 1281 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) { 1282 int e; 1283 1284 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) 1285 != 0) { 1286 log(LOG_ERR, "in6_purgeaddr: failed to remove " 1287 "a route to the p2p destination: %s on %s, " 1288 "errno=%d\n", 1289 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp), 1290 e); 1291 /* proceed anyway... */ 1292 } else 1293 ia->ia_flags &= ~IFA_ROUTE; 1294 } 1295 1296 /* Remove ownaddr's loopback rtentry, if it exists. */ 1297 in6_ifremloop(&(ia->ia_ifa)); 1298 1299 /* 1300 * leave from multicast groups we have joined for the interface 1301 */ 1302 while ((imm = ia->ia6_memberships.lh_first) != NULL) { 1303 LIST_REMOVE(imm, i6mm_chain); 1304 in6_leavegroup(imm); 1305 } 1306 1307 in6_unlink_ifa(ia, ifp); 1308 } 1309 1310 static void 1311 in6_unlink_ifa(ia, ifp) 1312 struct in6_ifaddr *ia; 1313 struct ifnet *ifp; 1314 { 1315 struct in6_ifaddr *oia; 1316 int s = splnet(); 1317 1318 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); 1319 /* release a refcnt for the link from if_addrlist */ 1320 IFAFREE(&ia->ia_ifa); 1321 1322 oia = ia; 1323 if (oia == (ia = in6_ifaddr)) 1324 in6_ifaddr = ia->ia_next; 1325 else { 1326 while (ia->ia_next && (ia->ia_next != oia)) 1327 ia = ia->ia_next; 1328 if (ia->ia_next) 1329 ia->ia_next = oia->ia_next; 1330 else { 1331 /* search failed */ 1332 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); 1333 } 1334 } 1335 1336 if (oia->ia6_multiaddrs.lh_first != NULL) { 1337 /* 1338 * XXX thorpej@netbsd.org -- if the interface is going 1339 * XXX away, don't save the multicast entries, delete them! 1340 */ 1341 if (oia->ia_ifa.ifa_ifp->if_output == if_nulloutput) { 1342 struct in6_multi *in6m; 1343 1344 while ((in6m = 1345 LIST_FIRST(&oia->ia6_multiaddrs)) != NULL) 1346 in6_delmulti(in6m); 1347 } else 1348 in6_savemkludge(oia); 1349 } 1350 1351 /* 1352 * When an autoconfigured address is being removed, release the 1353 * reference to the base prefix. Also, since the release might 1354 * affect the status of other (detached) addresses, call 1355 * pfxlist_onlink_check(). 1356 */ 1357 if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) { 1358 if (oia->ia6_ndpr == NULL) { 1359 log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address " 1360 "%p has no prefix\n", oia); 1361 } else { 1362 oia->ia6_ndpr->ndpr_refcnt--; 1363 oia->ia6_flags &= ~IN6_IFF_AUTOCONF; 1364 oia->ia6_ndpr = NULL; 1365 } 1366 1367 pfxlist_onlink_check(); 1368 } 1369 1370 /* 1371 * release another refcnt for the link from in6_ifaddr. 1372 * Note that we should decrement the refcnt at least once for all *BSD. 1373 */ 1374 IFAFREE(&oia->ia_ifa); 1375 1376 splx(s); 1377 } 1378 1379 void 1380 in6_purgeif(ifp) 1381 struct ifnet *ifp; 1382 { 1383 struct ifaddr *ifa, *nifa; 1384 1385 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) 1386 { 1387 nifa = TAILQ_NEXT(ifa, ifa_list); 1388 if (ifa->ifa_addr->sa_family != AF_INET6) 1389 continue; 1390 in6_purgeaddr(ifa); 1391 } 1392 1393 in6_ifdetach(ifp); 1394 } 1395 1396 /* 1397 * SIOC[GAD]LIFADDR. 1398 * SIOCGLIFADDR: get first address. (?) 1399 * SIOCGLIFADDR with IFLR_PREFIX: 1400 * get first address that matches the specified prefix. 1401 * SIOCALIFADDR: add the specified address. 1402 * SIOCALIFADDR with IFLR_PREFIX: 1403 * add the specified prefix, filling hostid part from 1404 * the first link-local address. prefixlen must be <= 64. 1405 * SIOCDLIFADDR: delete the specified address. 1406 * SIOCDLIFADDR with IFLR_PREFIX: 1407 * delete the first address that matches the specified prefix. 1408 * return values: 1409 * EINVAL on invalid parameters 1410 * EADDRNOTAVAIL on prefix match failed/specified address not found 1411 * other values may be returned from in6_ioctl() 1412 * 1413 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. 1414 * this is to accomodate address naming scheme other than RFC2374, 1415 * in the future. 1416 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 1417 * address encoding scheme. (see figure on page 8) 1418 */ 1419 static int 1420 in6_lifaddr_ioctl(so, cmd, data, ifp, p) 1421 struct socket *so; 1422 u_long cmd; 1423 caddr_t data; 1424 struct ifnet *ifp; 1425 struct proc *p; 1426 { 1427 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 1428 struct ifaddr *ifa; 1429 struct sockaddr *sa; 1430 1431 /* sanity checks */ 1432 if (!data || !ifp) { 1433 panic("invalid argument to in6_lifaddr_ioctl"); 1434 /* NOTREACHED */ 1435 } 1436 1437 switch (cmd) { 1438 case SIOCGLIFADDR: 1439 /* address must be specified on GET with IFLR_PREFIX */ 1440 if ((iflr->flags & IFLR_PREFIX) == 0) 1441 break; 1442 /* FALLTHROUGH */ 1443 case SIOCALIFADDR: 1444 case SIOCDLIFADDR: 1445 /* address must be specified on ADD and DELETE */ 1446 sa = (struct sockaddr *)&iflr->addr; 1447 if (sa->sa_family != AF_INET6) 1448 return EINVAL; 1449 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1450 return EINVAL; 1451 /* XXX need improvement */ 1452 sa = (struct sockaddr *)&iflr->dstaddr; 1453 if (sa->sa_family && sa->sa_family != AF_INET6) 1454 return EINVAL; 1455 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) 1456 return EINVAL; 1457 break; 1458 default: /* shouldn't happen */ 1459 #if 0 1460 panic("invalid cmd to in6_lifaddr_ioctl"); 1461 /* NOTREACHED */ 1462 #else 1463 return EOPNOTSUPP; 1464 #endif 1465 } 1466 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) 1467 return EINVAL; 1468 1469 switch (cmd) { 1470 case SIOCALIFADDR: 1471 { 1472 struct in6_aliasreq ifra; 1473 struct in6_addr *hostid = NULL; 1474 int prefixlen; 1475 1476 if ((iflr->flags & IFLR_PREFIX) != 0) { 1477 struct sockaddr_in6 *sin6; 1478 1479 /* 1480 * hostid is to fill in the hostid part of the 1481 * address. hostid points to the first link-local 1482 * address attached to the interface. 1483 */ 1484 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); 1485 if (!ifa) 1486 return EADDRNOTAVAIL; 1487 hostid = IFA_IN6(ifa); 1488 1489 /* prefixlen must be <= 64. */ 1490 if (64 < iflr->prefixlen) 1491 return EINVAL; 1492 prefixlen = iflr->prefixlen; 1493 1494 /* hostid part must be zero. */ 1495 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1496 if (sin6->sin6_addr.s6_addr32[2] != 0 1497 || sin6->sin6_addr.s6_addr32[3] != 0) { 1498 return EINVAL; 1499 } 1500 } else 1501 prefixlen = iflr->prefixlen; 1502 1503 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ 1504 bzero(&ifra, sizeof(ifra)); 1505 bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name)); 1506 1507 bcopy(&iflr->addr, &ifra.ifra_addr, 1508 ((struct sockaddr *)&iflr->addr)->sa_len); 1509 if (hostid) { 1510 /* fill in hostid part */ 1511 ifra.ifra_addr.sin6_addr.s6_addr32[2] = 1512 hostid->s6_addr32[2]; 1513 ifra.ifra_addr.sin6_addr.s6_addr32[3] = 1514 hostid->s6_addr32[3]; 1515 } 1516 1517 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */ 1518 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, 1519 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1520 if (hostid) { 1521 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = 1522 hostid->s6_addr32[2]; 1523 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = 1524 hostid->s6_addr32[3]; 1525 } 1526 } 1527 1528 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); 1529 in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); 1530 1531 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; 1532 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, p); 1533 } 1534 case SIOCGLIFADDR: 1535 case SIOCDLIFADDR: 1536 { 1537 struct in6_ifaddr *ia; 1538 struct in6_addr mask, candidate, match; 1539 struct sockaddr_in6 *sin6; 1540 int cmp; 1541 1542 bzero(&mask, sizeof(mask)); 1543 if (iflr->flags & IFLR_PREFIX) { 1544 /* lookup a prefix rather than address. */ 1545 in6_prefixlen2mask(&mask, iflr->prefixlen); 1546 1547 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1548 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1549 match.s6_addr32[0] &= mask.s6_addr32[0]; 1550 match.s6_addr32[1] &= mask.s6_addr32[1]; 1551 match.s6_addr32[2] &= mask.s6_addr32[2]; 1552 match.s6_addr32[3] &= mask.s6_addr32[3]; 1553 1554 /* if you set extra bits, that's wrong */ 1555 if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) 1556 return EINVAL; 1557 1558 cmp = 1; 1559 } else { 1560 if (cmd == SIOCGLIFADDR) { 1561 /* on getting an address, take the 1st match */ 1562 cmp = 0; /* XXX */ 1563 } else { 1564 /* on deleting an address, do exact match */ 1565 in6_prefixlen2mask(&mask, 128); 1566 sin6 = (struct sockaddr_in6 *)&iflr->addr; 1567 bcopy(&sin6->sin6_addr, &match, sizeof(match)); 1568 1569 cmp = 1; 1570 } 1571 } 1572 1573 for (ifa = ifp->if_addrlist.tqh_first; 1574 ifa; 1575 ifa = ifa->ifa_list.tqe_next) 1576 { 1577 if (ifa->ifa_addr->sa_family != AF_INET6) 1578 continue; 1579 if (!cmp) 1580 break; 1581 1582 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); 1583 candidate.s6_addr32[0] &= mask.s6_addr32[0]; 1584 candidate.s6_addr32[1] &= mask.s6_addr32[1]; 1585 candidate.s6_addr32[2] &= mask.s6_addr32[2]; 1586 candidate.s6_addr32[3] &= mask.s6_addr32[3]; 1587 if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) 1588 break; 1589 } 1590 if (!ifa) 1591 return EADDRNOTAVAIL; 1592 ia = ifa2ia6(ifa); 1593 1594 if (cmd == SIOCGLIFADDR) { 1595 /* fill in the if_laddrreq structure */ 1596 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); 1597 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1598 bcopy(&ia->ia_dstaddr, &iflr->dstaddr, 1599 ia->ia_dstaddr.sin6_len); 1600 } else 1601 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); 1602 1603 iflr->prefixlen = 1604 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); 1605 1606 iflr->flags = ia->ia6_flags; /* XXX */ 1607 1608 return 0; 1609 } else { 1610 struct in6_aliasreq ifra; 1611 1612 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ 1613 bzero(&ifra, sizeof(ifra)); 1614 bcopy(iflr->iflr_name, ifra.ifra_name, 1615 sizeof(ifra.ifra_name)); 1616 1617 bcopy(&ia->ia_addr, &ifra.ifra_addr, 1618 ia->ia_addr.sin6_len); 1619 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1620 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, 1621 ia->ia_dstaddr.sin6_len); 1622 } else { 1623 bzero(&ifra.ifra_dstaddr, 1624 sizeof(ifra.ifra_dstaddr)); 1625 } 1626 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, 1627 ia->ia_prefixmask.sin6_len); 1628 1629 ifra.ifra_flags = ia->ia6_flags; 1630 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, 1631 ifp, p); 1632 } 1633 } 1634 } 1635 1636 return EOPNOTSUPP; /* just for safety */ 1637 } 1638 1639 /* 1640 * Initialize an interface's intetnet6 address 1641 * and routing table entry. 1642 */ 1643 static int 1644 in6_ifinit(ifp, ia, sin6, newhost) 1645 struct ifnet *ifp; 1646 struct in6_ifaddr *ia; 1647 struct sockaddr_in6 *sin6; 1648 int newhost; 1649 { 1650 int error = 0, plen, ifacount = 0; 1651 int s = splnet(); 1652 struct ifaddr *ifa; 1653 1654 /* 1655 * Give the interface a chance to initialize 1656 * if this is its first address, 1657 * and to validate the address if necessary. 1658 */ 1659 for (ifa = ifp->if_addrlist.tqh_first; ifa; 1660 ifa = ifa->ifa_list.tqe_next) 1661 { 1662 if (ifa->ifa_addr == NULL) 1663 continue; /* just for safety */ 1664 if (ifa->ifa_addr->sa_family != AF_INET6) 1665 continue; 1666 ifacount++; 1667 } 1668 1669 ia->ia_addr = *sin6; 1670 1671 if (ifacount <= 1 && ifp->if_ioctl && 1672 (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) { 1673 splx(s); 1674 return (error); 1675 } 1676 splx(s); 1677 1678 ia->ia_ifa.ifa_metric = ifp->if_metric; 1679 1680 /* we could do in(6)_socktrim here, but just omit it at this moment. */ 1681 1682 /* 1683 * Special case: 1684 * If the destination address is specified for a point-to-point 1685 * interface, install a route to the destination as an interface 1686 * direct route. 1687 */ 1688 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ 1689 if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) { 1690 if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD, 1691 RTF_UP | RTF_HOST)) != 0) 1692 return (error); 1693 ia->ia_flags |= IFA_ROUTE; 1694 } 1695 1696 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */ 1697 if (newhost) { 1698 /* set the rtrequest function to create llinfo */ 1699 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 1700 in6_ifaddloop(&(ia->ia_ifa)); 1701 } 1702 1703 if (ifp->if_flags & IFF_MULTICAST) 1704 in6_restoremkludge(ia, ifp); 1705 1706 return (error); 1707 } 1708 1709 /* 1710 * Multicast address kludge: 1711 * If there were any multicast addresses attached to this interface address, 1712 * either move them to another address on this interface, or save them until 1713 * such time as this interface is reconfigured for IPv6. 1714 */ 1715 void 1716 in6_savemkludge(oia) 1717 struct in6_ifaddr *oia; 1718 { 1719 struct in6_ifaddr *ia; 1720 struct in6_multi *in6m, *next; 1721 1722 IFP_TO_IA6(oia->ia_ifp, ia); 1723 if (ia) { /* there is another address */ 1724 for (in6m = oia->ia6_multiaddrs.lh_first; in6m; in6m = next){ 1725 next = in6m->in6m_entry.le_next; 1726 IFAFREE(&in6m->in6m_ia->ia_ifa); 1727 IFAREF(&ia->ia_ifa); 1728 in6m->in6m_ia = ia; 1729 LIST_INSERT_HEAD(&ia->ia6_multiaddrs, in6m, in6m_entry); 1730 } 1731 } else { /* last address on this if deleted, save */ 1732 struct multi6_kludge *mk; 1733 1734 for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) { 1735 if (mk->mk_ifp == oia->ia_ifp) 1736 break; 1737 } 1738 if (mk == NULL) /* this should not happen! */ 1739 panic("in6_savemkludge: no kludge space"); 1740 1741 for (in6m = oia->ia6_multiaddrs.lh_first; in6m; in6m = next){ 1742 next = in6m->in6m_entry.le_next; 1743 IFAFREE(&in6m->in6m_ia->ia_ifa); /* release reference */ 1744 in6m->in6m_ia = NULL; 1745 LIST_INSERT_HEAD(&mk->mk_head, in6m, in6m_entry); 1746 } 1747 } 1748 } 1749 1750 /* 1751 * Continuation of multicast address hack: 1752 * If there was a multicast group list previously saved for this interface, 1753 * then we re-attach it to the first address configured on the i/f. 1754 */ 1755 void 1756 in6_restoremkludge(ia, ifp) 1757 struct in6_ifaddr *ia; 1758 struct ifnet *ifp; 1759 { 1760 struct multi6_kludge *mk; 1761 1762 for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) { 1763 if (mk->mk_ifp == ifp) { 1764 struct in6_multi *in6m, *next; 1765 1766 for (in6m = mk->mk_head.lh_first; in6m; in6m = next) { 1767 next = in6m->in6m_entry.le_next; 1768 in6m->in6m_ia = ia; 1769 IFAREF(&ia->ia_ifa); 1770 LIST_INSERT_HEAD(&ia->ia6_multiaddrs, 1771 in6m, in6m_entry); 1772 } 1773 LIST_INIT(&mk->mk_head); 1774 break; 1775 } 1776 } 1777 } 1778 1779 /* 1780 * Allocate space for the kludge at interface initialization time. 1781 * Formerly, we dynamically allocated the space in in6_savemkludge() with 1782 * malloc(M_WAITOK). However, it was wrong since the function could be called 1783 * under an interrupt context (software timer on address lifetime expiration). 1784 * Also, we cannot just give up allocating the strucutre, since the group 1785 * membership structure is very complex and we need to keep it anyway. 1786 * Of course, this function MUST NOT be called under an interrupt context. 1787 * Specifically, it is expected to be called only from in6_ifattach(), though 1788 * it is a global function. 1789 */ 1790 void 1791 in6_createmkludge(ifp) 1792 struct ifnet *ifp; 1793 { 1794 struct multi6_kludge *mk; 1795 1796 for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) { 1797 /* If we've already had one, do not allocate. */ 1798 if (mk->mk_ifp == ifp) 1799 return; 1800 } 1801 1802 mk = malloc(sizeof(*mk), M_IPMADDR, M_WAITOK); 1803 1804 bzero(mk, sizeof(*mk)); 1805 LIST_INIT(&mk->mk_head); 1806 mk->mk_ifp = ifp; 1807 LIST_INSERT_HEAD(&in6_mk, mk, mk_entry); 1808 } 1809 1810 void 1811 in6_purgemkludge(ifp) 1812 struct ifnet *ifp; 1813 { 1814 struct multi6_kludge *mk; 1815 struct in6_multi *in6m; 1816 1817 for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) { 1818 if (mk->mk_ifp != ifp) 1819 continue; 1820 1821 /* leave from all multicast groups joined */ 1822 while ((in6m = LIST_FIRST(&mk->mk_head)) != NULL) 1823 in6_delmulti(in6m); 1824 LIST_REMOVE(mk, mk_entry); 1825 free(mk, M_IPMADDR); 1826 break; 1827 } 1828 } 1829 1830 /* 1831 * Add an address to the list of IP6 multicast addresses for a 1832 * given interface. 1833 */ 1834 struct in6_multi * 1835 in6_addmulti(maddr6, ifp, errorp) 1836 struct in6_addr *maddr6; 1837 struct ifnet *ifp; 1838 int *errorp; 1839 { 1840 struct in6_ifaddr *ia; 1841 struct in6_ifreq ifr; 1842 struct in6_multi *in6m; 1843 int s = splsoftnet(); 1844 1845 *errorp = 0; 1846 /* 1847 * See if address already in list. 1848 */ 1849 IN6_LOOKUP_MULTI(*maddr6, ifp, in6m); 1850 if (in6m != NULL) { 1851 /* 1852 * Found it; just increment the refrence count. 1853 */ 1854 in6m->in6m_refcount++; 1855 } else { 1856 /* 1857 * New address; allocate a new multicast record 1858 * and link it into the interface's multicast list. 1859 */ 1860 in6m = (struct in6_multi *) 1861 malloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT); 1862 if (in6m == NULL) { 1863 splx(s); 1864 *errorp = ENOBUFS; 1865 return (NULL); 1866 } 1867 in6m->in6m_addr = *maddr6; 1868 in6m->in6m_ifp = ifp; 1869 in6m->in6m_refcount = 1; 1870 IFP_TO_IA6(ifp, ia); 1871 if (ia == NULL) { 1872 free(in6m, M_IPMADDR); 1873 splx(s); 1874 *errorp = EADDRNOTAVAIL; /* appropriate? */ 1875 return (NULL); 1876 } 1877 in6m->in6m_ia = ia; 1878 IFAREF(&ia->ia_ifa); /* gain a reference */ 1879 LIST_INSERT_HEAD(&ia->ia6_multiaddrs, in6m, in6m_entry); 1880 1881 /* 1882 * Ask the network driver to update its multicast reception 1883 * filter appropriately for the new address. 1884 */ 1885 bzero(&ifr.ifr_addr, sizeof(struct sockaddr_in6)); 1886 ifr.ifr_addr.sin6_len = sizeof(struct sockaddr_in6); 1887 ifr.ifr_addr.sin6_family = AF_INET6; 1888 ifr.ifr_addr.sin6_addr = *maddr6; 1889 if (ifp->if_ioctl == NULL) 1890 *errorp = ENXIO; /* XXX: appropriate? */ 1891 else 1892 *errorp = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, 1893 (caddr_t)&ifr); 1894 if (*errorp) { 1895 LIST_REMOVE(in6m, in6m_entry); 1896 free(in6m, M_IPMADDR); 1897 IFAFREE(&ia->ia_ifa); 1898 splx(s); 1899 return (NULL); 1900 } 1901 /* 1902 * Let MLD6 know that we have joined a new IP6 multicast 1903 * group. 1904 */ 1905 mld6_start_listening(in6m); 1906 } 1907 splx(s); 1908 return (in6m); 1909 } 1910 1911 /* 1912 * Delete a multicast address record. 1913 */ 1914 void 1915 in6_delmulti(in6m) 1916 struct in6_multi *in6m; 1917 { 1918 struct in6_ifreq ifr; 1919 int s = splsoftnet(); 1920 1921 if (--in6m->in6m_refcount == 0) { 1922 /* 1923 * No remaining claims to this record; let MLD6 know 1924 * that we are leaving the multicast group. 1925 */ 1926 mld6_stop_listening(in6m); 1927 1928 /* 1929 * Unlink from list. 1930 */ 1931 LIST_REMOVE(in6m, in6m_entry); 1932 if (in6m->in6m_ia) { 1933 IFAFREE(&in6m->in6m_ia->ia_ifa); /* release reference */ 1934 } 1935 1936 /* 1937 * Notify the network driver to update its multicast 1938 * reception filter. 1939 */ 1940 bzero(&ifr.ifr_addr, sizeof(struct sockaddr_in6)); 1941 ifr.ifr_addr.sin6_len = sizeof(struct sockaddr_in6); 1942 ifr.ifr_addr.sin6_family = AF_INET6; 1943 ifr.ifr_addr.sin6_addr = in6m->in6m_addr; 1944 (*in6m->in6m_ifp->if_ioctl)(in6m->in6m_ifp, 1945 SIOCDELMULTI, (caddr_t)&ifr); 1946 free(in6m, M_IPMADDR); 1947 } 1948 splx(s); 1949 } 1950 1951 struct in6_multi_mship * 1952 in6_joingroup(ifp, addr, errorp) 1953 struct ifnet *ifp; 1954 struct in6_addr *addr; 1955 int *errorp; 1956 { 1957 struct in6_multi_mship *imm; 1958 1959 imm = malloc(sizeof(*imm), M_IPMADDR, M_NOWAIT); 1960 if (!imm) { 1961 *errorp = ENOBUFS; 1962 return NULL; 1963 } 1964 imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp); 1965 if (!imm->i6mm_maddr) { 1966 /* *errorp is alrady set */ 1967 free(imm, M_IPMADDR); 1968 return NULL; 1969 } 1970 return imm; 1971 } 1972 1973 int 1974 in6_leavegroup(imm) 1975 struct in6_multi_mship *imm; 1976 { 1977 1978 if (imm->i6mm_maddr) 1979 in6_delmulti(imm->i6mm_maddr); 1980 free(imm, M_IPMADDR); 1981 return 0; 1982 } 1983 1984 /* 1985 * Find an IPv6 interface link-local address specific to an interface. 1986 */ 1987 struct in6_ifaddr * 1988 in6ifa_ifpforlinklocal(ifp, ignoreflags) 1989 struct ifnet *ifp; 1990 int ignoreflags; 1991 { 1992 struct ifaddr *ifa; 1993 1994 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next) 1995 { 1996 if (ifa->ifa_addr == NULL) 1997 continue; /* just for safety */ 1998 if (ifa->ifa_addr->sa_family != AF_INET6) 1999 continue; 2000 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { 2001 if ((((struct in6_ifaddr *)ifa)->ia6_flags & 2002 ignoreflags) != 0) 2003 continue; 2004 break; 2005 } 2006 } 2007 2008 return ((struct in6_ifaddr *)ifa); 2009 } 2010 2011 2012 /* 2013 * find the internet address corresponding to a given interface and address. 2014 */ 2015 struct in6_ifaddr * 2016 in6ifa_ifpwithaddr(ifp, addr) 2017 struct ifnet *ifp; 2018 struct in6_addr *addr; 2019 { 2020 struct ifaddr *ifa; 2021 2022 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next) 2023 { 2024 if (ifa->ifa_addr == NULL) 2025 continue; /* just for safety */ 2026 if (ifa->ifa_addr->sa_family != AF_INET6) 2027 continue; 2028 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) 2029 break; 2030 } 2031 2032 return ((struct in6_ifaddr *)ifa); 2033 } 2034 2035 /* 2036 * Convert IP6 address to printable (loggable) representation. 2037 */ 2038 static char digits[] = "0123456789abcdef"; 2039 static int ip6round = 0; 2040 char * 2041 ip6_sprintf(addr) 2042 const struct in6_addr *addr; 2043 { 2044 static char ip6buf[8][48]; 2045 int i; 2046 char *cp; 2047 const u_short *a = (const u_short *)addr; 2048 const u_char *d; 2049 int dcolon = 0; 2050 2051 ip6round = (ip6round + 1) & 7; 2052 cp = ip6buf[ip6round]; 2053 2054 for (i = 0; i < 8; i++) { 2055 if (dcolon == 1) { 2056 if (*a == 0) { 2057 if (i == 7) 2058 *cp++ = ':'; 2059 a++; 2060 continue; 2061 } else 2062 dcolon = 2; 2063 } 2064 if (*a == 0) { 2065 if (dcolon == 0 && *(a + 1) == 0) { 2066 if (i == 0) 2067 *cp++ = ':'; 2068 *cp++ = ':'; 2069 dcolon = 1; 2070 } else { 2071 *cp++ = '0'; 2072 *cp++ = ':'; 2073 } 2074 a++; 2075 continue; 2076 } 2077 d = (const u_char *)a; 2078 *cp++ = digits[*d >> 4]; 2079 *cp++ = digits[*d++ & 0xf]; 2080 *cp++ = digits[*d >> 4]; 2081 *cp++ = digits[*d & 0xf]; 2082 *cp++ = ':'; 2083 a++; 2084 } 2085 *--cp = 0; 2086 return (ip6buf[ip6round]); 2087 } 2088 2089 /* 2090 * Determine if an address is on a local network. 2091 */ 2092 int 2093 in6_localaddr(in6) 2094 struct in6_addr *in6; 2095 { 2096 struct in6_ifaddr *ia; 2097 2098 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) 2099 return (1); 2100 2101 for (ia = in6_ifaddr; ia; ia = ia->ia_next) 2102 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, 2103 &ia->ia_prefixmask.sin6_addr)) 2104 return (1); 2105 2106 return (0); 2107 } 2108 2109 /* 2110 * Get a scope of the address. Node-local, link-local, site-local or global. 2111 */ 2112 int 2113 in6_addrscope (addr) 2114 struct in6_addr *addr; 2115 { 2116 int scope; 2117 2118 if (addr->s6_addr8[0] == 0xfe) { 2119 scope = addr->s6_addr8[1] & 0xc0; 2120 2121 switch (scope) { 2122 case 0x80: 2123 return IPV6_ADDR_SCOPE_LINKLOCAL; 2124 case 0xc0: 2125 return IPV6_ADDR_SCOPE_SITELOCAL; 2126 default: 2127 return IPV6_ADDR_SCOPE_GLOBAL; /* just in case */ 2128 } 2129 } 2130 2131 2132 if (addr->s6_addr8[0] == 0xff) { 2133 scope = addr->s6_addr8[1] & 0x0f; 2134 2135 /* 2136 * due to other scope such as reserved, 2137 * return scope doesn't work. 2138 */ 2139 switch (scope) { 2140 case IPV6_ADDR_SCOPE_NODELOCAL: 2141 return IPV6_ADDR_SCOPE_NODELOCAL; 2142 case IPV6_ADDR_SCOPE_LINKLOCAL: 2143 return IPV6_ADDR_SCOPE_LINKLOCAL; 2144 case IPV6_ADDR_SCOPE_SITELOCAL: 2145 return IPV6_ADDR_SCOPE_SITELOCAL; 2146 default: 2147 return IPV6_ADDR_SCOPE_GLOBAL; 2148 } 2149 } 2150 2151 if (bcmp(&in6addr_loopback, addr, sizeof(*addr) - 1) == 0) { 2152 if (addr->s6_addr8[15] == 1) /* loopback */ 2153 return IPV6_ADDR_SCOPE_NODELOCAL; 2154 if (addr->s6_addr8[15] == 0) /* unspecified */ 2155 return IPV6_ADDR_SCOPE_LINKLOCAL; 2156 } 2157 2158 return IPV6_ADDR_SCOPE_GLOBAL; 2159 } 2160 2161 int 2162 in6_addr2scopeid(ifp, addr) 2163 struct ifnet *ifp; /* must not be NULL */ 2164 struct in6_addr *addr; /* must not be NULL */ 2165 { 2166 int scope = in6_addrscope(addr); 2167 2168 switch (scope) { 2169 case IPV6_ADDR_SCOPE_NODELOCAL: 2170 return (-1); /* XXX: is this an appropriate value? */ 2171 2172 case IPV6_ADDR_SCOPE_LINKLOCAL: 2173 /* XXX: we do not distinguish between a link and an I/F. */ 2174 return (ifp->if_index); 2175 2176 case IPV6_ADDR_SCOPE_SITELOCAL: 2177 return (0); /* XXX: invalid. */ 2178 2179 default: 2180 return (0); /* XXX: treat as global. */ 2181 } 2182 } 2183 2184 int 2185 in6_is_addr_deprecated(sa6) 2186 struct sockaddr_in6 *sa6; 2187 { 2188 struct in6_ifaddr *ia; 2189 2190 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 2191 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, 2192 &sa6->sin6_addr) && 2193 #ifdef SCOPEDROUTING 2194 ia->ia_addr.sin6_scope_id == sa6->sin6_scope_id && 2195 #endif 2196 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) 2197 return (1); /* true */ 2198 2199 /* XXX: do we still have to go thru the rest of the list? */ 2200 } 2201 2202 return (0); /* false */ 2203 } 2204 2205 /* 2206 * return length of part which dst and src are equal 2207 * hard coding... 2208 */ 2209 int 2210 in6_matchlen(src, dst) 2211 struct in6_addr *src, *dst; 2212 { 2213 int match = 0; 2214 u_char *s = (u_char *)src, *d = (u_char *)dst; 2215 u_char *lim = s + 16, r; 2216 2217 while (s < lim) 2218 if ((r = (*d++ ^ *s++)) != 0) { 2219 while (r < 128) { 2220 match++; 2221 r <<= 1; 2222 } 2223 break; 2224 } else 2225 match += 8; 2226 return match; 2227 } 2228 2229 /* XXX: to be scope conscious */ 2230 int 2231 in6_are_prefix_equal(p1, p2, len) 2232 struct in6_addr *p1, *p2; 2233 int len; 2234 { 2235 int bytelen, bitlen; 2236 2237 /* sanity check */ 2238 if (0 > len || len > 128) { 2239 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", 2240 len); 2241 return (0); 2242 } 2243 2244 bytelen = len / 8; 2245 bitlen = len % 8; 2246 2247 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) 2248 return (0); 2249 if (p1->s6_addr[bytelen] >> (8 - bitlen) != 2250 p2->s6_addr[bytelen] >> (8 - bitlen)) 2251 return (0); 2252 2253 return (1); 2254 } 2255 2256 void 2257 in6_prefixlen2mask(maskp, len) 2258 struct in6_addr *maskp; 2259 int len; 2260 { 2261 static const u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 2262 int bytelen, bitlen, i; 2263 2264 /* sanity check */ 2265 if (0 > len || len > 128) { 2266 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", 2267 len); 2268 return; 2269 } 2270 2271 bzero(maskp, sizeof(*maskp)); 2272 bytelen = len / 8; 2273 bitlen = len % 8; 2274 for (i = 0; i < bytelen; i++) 2275 maskp->s6_addr[i] = 0xff; 2276 if (bitlen) 2277 maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; 2278 } 2279 2280 /* 2281 * return the best address out of the same scope 2282 */ 2283 struct in6_ifaddr * 2284 in6_ifawithscope(oifp, dst) 2285 struct ifnet *oifp; 2286 struct in6_addr *dst; 2287 { 2288 int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0; 2289 int blen = -1; 2290 struct ifaddr *ifa; 2291 struct ifnet *ifp; 2292 struct in6_ifaddr *ifa_best = NULL; 2293 2294 if (oifp == NULL) { 2295 printf("in6_ifawithscope: output interface is not specified\n"); 2296 return (NULL); 2297 } 2298 2299 /* 2300 * We search for all addresses on all interfaces from the beginning. 2301 * Comparing an interface with the outgoing interface will be done 2302 * only at the final stage of tiebreaking. 2303 */ 2304 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 2305 { 2306 /* 2307 * We can never take an address that breaks the scope zone 2308 * of the destination. 2309 */ 2310 if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst)) 2311 continue; 2312 2313 for (ifa = ifp->if_addrlist.tqh_first; ifa; 2314 ifa = ifa->ifa_list.tqe_next) 2315 { 2316 int tlen = -1, dscopecmp, bscopecmp, matchcmp; 2317 2318 if (ifa->ifa_addr->sa_family != AF_INET6) 2319 continue; 2320 2321 src_scope = in6_addrscope(IFA_IN6(ifa)); 2322 2323 #ifdef ADDRSELECT_DEBUG /* should be removed after stabilization */ 2324 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope); 2325 printf("in6_ifawithscope: dst=%s bestaddr=%s, " 2326 "newaddr=%s, scope=%x, dcmp=%d, bcmp=%d, " 2327 "matchlen=%d, flgs=%x\n", 2328 ip6_sprintf(dst), 2329 ifa_best ? ip6_sprintf(&ifa_best->ia_addr.sin6_addr) : "none", 2330 ip6_sprintf(IFA_IN6(ifa)), src_scope, 2331 dscopecmp, 2332 ifa_best ? IN6_ARE_SCOPE_CMP(src_scope, best_scope) : -1, 2333 in6_matchlen(IFA_IN6(ifa), dst), 2334 ((struct in6_ifaddr *)ifa)->ia6_flags); 2335 #endif 2336 2337 /* 2338 * Don't use an address before completing DAD 2339 * nor a duplicated address. 2340 */ 2341 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2342 IN6_IFF_NOTREADY) 2343 continue; 2344 2345 /* XXX: is there any case to allow anycasts? */ 2346 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2347 IN6_IFF_ANYCAST) 2348 continue; 2349 2350 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2351 IN6_IFF_DETACHED) 2352 continue; 2353 2354 /* 2355 * If this is the first address we find, 2356 * keep it anyway. 2357 */ 2358 if (ifa_best == NULL) 2359 goto replace; 2360 2361 /* 2362 * ifa_best is never NULL beyond this line except 2363 * within the block labeled "replace". 2364 */ 2365 2366 /* 2367 * If ifa_best has a smaller scope than dst and 2368 * the current address has a larger one than 2369 * (or equal to) dst, always replace ifa_best. 2370 * Also, if the current address has a smaller scope 2371 * than dst, ignore it unless ifa_best also has a 2372 * smaller scope. 2373 */ 2374 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 && 2375 IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0) 2376 goto replace; 2377 if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 && 2378 IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0) 2379 continue; 2380 2381 /* 2382 * A deprecated address SHOULD NOT be used in new 2383 * communications if an alternate (non-deprecated) 2384 * address is available and has sufficient scope. 2385 * RFC 2462, Section 5.5.4. 2386 */ 2387 if (((struct in6_ifaddr *)ifa)->ia6_flags & 2388 IN6_IFF_DEPRECATED) { 2389 /* 2390 * Ignore any deprecated addresses if 2391 * specified by configuration. 2392 */ 2393 if (!ip6_use_deprecated) 2394 continue; 2395 2396 /* 2397 * If we have already found a non-deprecated 2398 * candidate, just ignore deprecated addresses. 2399 */ 2400 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) 2401 == 0) 2402 continue; 2403 } 2404 2405 /* 2406 * A non-deprecated address is always preferred 2407 * to a deprecated one regardless of scopes and 2408 * address matching. 2409 */ 2410 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) && 2411 (((struct in6_ifaddr *)ifa)->ia6_flags & 2412 IN6_IFF_DEPRECATED) == 0) 2413 goto replace; 2414 2415 /* 2416 * At this point, we have two cases: 2417 * 1. we are looking at a non-deprecated address, 2418 * and ifa_best is also non-deprecated. 2419 * 2. we are looking at a deprecated address, 2420 * and ifa_best is also deprecated. 2421 * Also, we do not have to consider a case where 2422 * the scope of if_best is larger(smaller) than dst and 2423 * the scope of the current address is smaller(larger) 2424 * than dst. Such a case has already been covered. 2425 * Tiebreaking is done according to the following 2426 * items: 2427 * - the scope comparison between the address and 2428 * dst (dscopecmp) 2429 * - the scope comparison between the address and 2430 * ifa_best (bscopecmp) 2431 * - if the address match dst longer than ifa_best 2432 * (matchcmp) 2433 * - if the address is on the outgoing I/F (outI/F) 2434 * 2435 * Roughly speaking, the selection policy is 2436 * - the most important item is scope. The same scope 2437 * is best. Then search for a larger scope. 2438 * Smaller scopes are the last resort. 2439 * - A deprecated address is chosen only when we have 2440 * no address that has an enough scope, but is 2441 * prefered to any addresses of smaller scopes. 2442 * - Longest address match against dst is considered 2443 * only for addresses that has the same scope of dst. 2444 * - If there is no other reasons to choose one, 2445 * addresses on the outgoing I/F are preferred. 2446 * 2447 * The precise decision table is as follows: 2448 * dscopecmp bscopecmp matchcmp outI/F | replace? 2449 * !equal equal N/A Yes | Yes (1) 2450 * !equal equal N/A No | No (2) 2451 * larger larger N/A N/A | No (3) 2452 * larger smaller N/A N/A | Yes (4) 2453 * smaller larger N/A N/A | Yes (5) 2454 * smaller smaller N/A N/A | No (6) 2455 * equal smaller N/A N/A | Yes (7) 2456 * equal larger (already done) 2457 * equal equal larger N/A | Yes (8) 2458 * equal equal smaller N/A | No (9) 2459 * equal equal equal Yes | Yes (a) 2460 * eaual eqaul equal No | No (b) 2461 */ 2462 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope); 2463 bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope); 2464 2465 if (dscopecmp && bscopecmp == 0) { 2466 if (oifp == ifp) /* (1) */ 2467 goto replace; 2468 continue; /* (2) */ 2469 } 2470 if (dscopecmp > 0) { 2471 if (bscopecmp > 0) /* (3) */ 2472 continue; 2473 goto replace; /* (4) */ 2474 } 2475 if (dscopecmp < 0) { 2476 if (bscopecmp > 0) /* (5) */ 2477 goto replace; 2478 continue; /* (6) */ 2479 } 2480 2481 /* now dscopecmp must be 0 */ 2482 if (bscopecmp < 0) 2483 goto replace; /* (7) */ 2484 2485 /* 2486 * At last both dscopecmp and bscopecmp must be 0. 2487 * We need address matching against dst for 2488 * tiebreaking. 2489 */ 2490 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2491 matchcmp = tlen - blen; 2492 if (matchcmp > 0) /* (8) */ 2493 goto replace; 2494 if (matchcmp < 0) /* (9) */ 2495 continue; 2496 if (oifp == ifp) /* (a) */ 2497 goto replace; 2498 continue; /* (b) */ 2499 2500 replace: 2501 ifa_best = (struct in6_ifaddr *)ifa; 2502 blen = tlen >= 0 ? tlen : 2503 in6_matchlen(IFA_IN6(ifa), dst); 2504 best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr); 2505 } 2506 } 2507 2508 /* count statistics for future improvements */ 2509 if (ifa_best == NULL) 2510 ip6stat.ip6s_sources_none++; 2511 else { 2512 if (oifp == ifa_best->ia_ifp) 2513 ip6stat.ip6s_sources_sameif[best_scope]++; 2514 else 2515 ip6stat.ip6s_sources_otherif[best_scope]++; 2516 2517 if (best_scope == dst_scope) 2518 ip6stat.ip6s_sources_samescope[best_scope]++; 2519 else 2520 ip6stat.ip6s_sources_otherscope[best_scope]++; 2521 2522 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0) 2523 ip6stat.ip6s_sources_deprecated[best_scope]++; 2524 } 2525 2526 return (ifa_best); 2527 } 2528 2529 /* 2530 * return the best address out of the same scope. if no address was 2531 * found, return the first valid address from designated IF. 2532 */ 2533 struct in6_ifaddr * 2534 in6_ifawithifp(ifp, dst) 2535 struct ifnet *ifp; 2536 struct in6_addr *dst; 2537 { 2538 int dst_scope = in6_addrscope(dst), blen = -1, tlen; 2539 struct ifaddr *ifa; 2540 struct in6_ifaddr *besta = 0; 2541 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ 2542 2543 dep[0] = dep[1] = NULL; 2544 2545 /* 2546 * We first look for addresses in the same scope. 2547 * If there is one, return it. 2548 * If two or more, return one which matches the dst longest. 2549 * If none, return one of global addresses assigned other ifs. 2550 */ 2551 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next) 2552 { 2553 if (ifa->ifa_addr->sa_family != AF_INET6) 2554 continue; 2555 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2556 continue; /* XXX: is there any case to allow anycast? */ 2557 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2558 continue; /* don't use this interface */ 2559 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2560 continue; 2561 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2562 if (ip6_use_deprecated) 2563 dep[0] = (struct in6_ifaddr *)ifa; 2564 continue; 2565 } 2566 2567 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { 2568 /* 2569 * call in6_matchlen() as few as possible 2570 */ 2571 if (besta) { 2572 if (blen == -1) 2573 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); 2574 tlen = in6_matchlen(IFA_IN6(ifa), dst); 2575 if (tlen > blen) { 2576 blen = tlen; 2577 besta = (struct in6_ifaddr *)ifa; 2578 } 2579 } else 2580 besta = (struct in6_ifaddr *)ifa; 2581 } 2582 } 2583 if (besta) 2584 return (besta); 2585 2586 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next) 2587 { 2588 if (ifa->ifa_addr->sa_family != AF_INET6) 2589 continue; 2590 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) 2591 continue; /* XXX: is there any case to allow anycast? */ 2592 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) 2593 continue; /* don't use this interface */ 2594 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) 2595 continue; 2596 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { 2597 if (ip6_use_deprecated) 2598 dep[1] = (struct in6_ifaddr *)ifa; 2599 continue; 2600 } 2601 2602 return (struct in6_ifaddr *)ifa; 2603 } 2604 2605 /* use the last-resort values, that are, deprecated addresses */ 2606 if (dep[0]) 2607 return dep[0]; 2608 if (dep[1]) 2609 return dep[1]; 2610 2611 return NULL; 2612 } 2613 2614 /* 2615 * perform DAD when interface becomes IFF_UP. 2616 */ 2617 void 2618 in6_if_up(ifp) 2619 struct ifnet *ifp; 2620 { 2621 struct ifaddr *ifa; 2622 struct in6_ifaddr *ia; 2623 int dad_delay; /* delay ticks before DAD output */ 2624 2625 /* 2626 * special cases, like 6to4, are handled in in6_ifattach 2627 */ 2628 in6_ifattach(ifp, NULL); 2629 2630 dad_delay = 0; 2631 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next) 2632 { 2633 if (ifa->ifa_addr->sa_family != AF_INET6) 2634 continue; 2635 ia = (struct in6_ifaddr *)ifa; 2636 if (ia->ia6_flags & IN6_IFF_TENTATIVE) 2637 nd6_dad_start(ifa, &dad_delay); 2638 } 2639 } 2640 2641 int 2642 in6if_do_dad(ifp) 2643 struct ifnet *ifp; 2644 { 2645 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2646 return (0); 2647 2648 switch (ifp->if_type) { 2649 case IFT_FAITH: 2650 /* 2651 * These interfaces do not have the IFF_LOOPBACK flag, 2652 * but loop packets back. We do not have to do DAD on such 2653 * interfaces. We should even omit it, because loop-backed 2654 * NS would confuse the DAD procedure. 2655 */ 2656 return (0); 2657 default: 2658 /* 2659 * Our DAD routine requires the interface up and running. 2660 * However, some interfaces can be up before the RUNNING 2661 * status. Additionaly, users may try to assign addresses 2662 * before the interface becomes up (or running). 2663 * We simply skip DAD in such a case as a work around. 2664 * XXX: we should rather mark "tentative" on such addresses, 2665 * and do DAD after the interface becomes ready. 2666 */ 2667 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != 2668 (IFF_UP|IFF_RUNNING)) 2669 return (0); 2670 2671 return (1); 2672 } 2673 } 2674 2675 /* 2676 * Calculate max IPv6 MTU through all the interfaces and store it 2677 * to in6_maxmtu. 2678 */ 2679 void 2680 in6_setmaxmtu() 2681 { 2682 unsigned long maxmtu = 0; 2683 struct ifnet *ifp; 2684 2685 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 2686 { 2687 /* this function can be called during ifnet initialization */ 2688 if (!ifp->if_afdata[AF_INET6]) 2689 continue; 2690 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 2691 IN6_LINKMTU(ifp) > maxmtu) 2692 maxmtu = IN6_LINKMTU(ifp); 2693 } 2694 if (maxmtu) /* update only when maxmtu is positive */ 2695 in6_maxmtu = maxmtu; 2696 } 2697 2698 void * 2699 in6_domifattach(ifp) 2700 struct ifnet *ifp; 2701 { 2702 struct in6_ifextra *ext; 2703 2704 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); 2705 bzero(ext, sizeof(*ext)); 2706 2707 ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat), 2708 M_IFADDR, M_WAITOK); 2709 bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat)); 2710 2711 ext->icmp6_ifstat = 2712 (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat), 2713 M_IFADDR, M_WAITOK); 2714 bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat)); 2715 2716 ext->nd_ifinfo = nd6_ifattach(ifp); 2717 return ext; 2718 } 2719 2720 void 2721 in6_domifdetach(ifp, aux) 2722 struct ifnet *ifp; 2723 void *aux; 2724 { 2725 struct in6_ifextra *ext = (struct in6_ifextra *)aux; 2726 2727 nd6_ifdetach(ext->nd_ifinfo); 2728 free(ext->in6_ifstat, M_IFADDR); 2729 free(ext->icmp6_ifstat, M_IFADDR); 2730 free(ext, M_IFADDR); 2731 } 2732