1 /* $NetBSD: frag6.c,v 1.73 2018/05/03 07:25:49 maxv Exp $ */ 2 /* $KAME: frag6.c,v 1.40 2002/05/27 21:40:31 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: frag6.c,v 1.73 2018/05/03 07:25:49 maxv Exp $"); 35 36 #ifdef _KERNEL_OPT 37 #include "opt_net_mpsafe.h" 38 #endif 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/mbuf.h> 43 #include <sys/errno.h> 44 #include <sys/time.h> 45 #include <sys/kmem.h> 46 #include <sys/kernel.h> 47 #include <sys/syslog.h> 48 49 #include <net/if.h> 50 #include <net/route.h> 51 52 #include <netinet/in.h> 53 #include <netinet/in_var.h> 54 #include <netinet/ip6.h> 55 #include <netinet6/ip6_var.h> 56 #include <netinet6/ip6_private.h> 57 #include <netinet/icmp6.h> 58 59 /* 60 * IPv6 reassembly queue structure. Each fragment being reassembled is 61 * attached to one of these structures. 62 * 63 * XXX: Would be better to use TAILQ. 64 */ 65 struct ip6q { 66 u_int32_t ip6q_head; 67 u_int16_t ip6q_len; 68 u_int8_t ip6q_nxt; /* ip6f_nxt in first fragment */ 69 u_int8_t ip6q_hlim; 70 struct ip6asfrag *ip6q_down; 71 struct ip6asfrag *ip6q_up; 72 u_int32_t ip6q_ident; 73 u_int8_t ip6q_ttl; 74 struct in6_addr ip6q_src, ip6q_dst; 75 struct ip6q *ip6q_next; 76 struct ip6q *ip6q_prev; 77 int ip6q_unfrglen; /* len of unfragmentable part */ 78 int ip6q_nfrag; /* # of fragments */ 79 }; 80 81 struct ip6asfrag { 82 u_int32_t ip6af_head; 83 u_int16_t ip6af_len; 84 u_int8_t ip6af_nxt; 85 u_int8_t ip6af_hlim; 86 /* must not override the above members during reassembling */ 87 struct ip6asfrag *ip6af_down; 88 struct ip6asfrag *ip6af_up; 89 struct mbuf *ip6af_m; 90 int ip6af_offset; /* offset in ip6af_m to next header */ 91 int ip6af_frglen; /* fragmentable part length */ 92 int ip6af_off; /* fragment offset */ 93 bool ip6af_mff; /* more fragment bit in frag off */ 94 }; 95 96 static void frag6_enq(struct ip6asfrag *, struct ip6asfrag *); 97 static void frag6_deq(struct ip6asfrag *); 98 static void frag6_insque(struct ip6q *, struct ip6q *); 99 static void frag6_remque(struct ip6q *); 100 static void frag6_freef(struct ip6q *); 101 102 static int frag6_drainwanted; 103 104 static u_int frag6_nfragpackets; 105 static u_int frag6_nfrags; 106 static struct ip6q ip6q; /* ip6 reassembly queue */ 107 108 /* Protects ip6q */ 109 static kmutex_t frag6_lock __cacheline_aligned; 110 111 /* 112 * Initialise reassembly queue and fragment identifier. 113 */ 114 void 115 frag6_init(void) 116 { 117 118 ip6q.ip6q_next = ip6q.ip6q_prev = &ip6q; 119 mutex_init(&frag6_lock, MUTEX_DEFAULT, IPL_NET); 120 } 121 122 /* 123 * IPv6 fragment input. 124 * 125 * In RFC2460, fragment and reassembly rule do not agree with each other, 126 * in terms of next header field handling in fragment header. 127 * While the sender will use the same value for all of the fragmented packets, 128 * receiver is suggested not to check the consistency. 129 * 130 * fragment rule (p20): 131 * (2) A Fragment header containing: 132 * The Next Header value that identifies the first header of 133 * the Fragmentable Part of the original packet. 134 * -> next header field is same for all fragments 135 * 136 * reassembly rule (p21): 137 * The Next Header field of the last header of the Unfragmentable 138 * Part is obtained from the Next Header field of the first 139 * fragment's Fragment header. 140 * -> should grab it from the first fragment only 141 * 142 * The following note also contradicts with fragment rule - noone is going to 143 * send different fragment with different next header field. 144 * 145 * additional note (p22): 146 * The Next Header values in the Fragment headers of different 147 * fragments of the same original packet may differ. Only the value 148 * from the Offset zero fragment packet is used for reassembly. 149 * -> should grab it from the first fragment only 150 * 151 * There is no explicit reason given in the RFC. Historical reason maybe? 152 * 153 * XXX: It would be better to use a pool, rather than kmem. 154 */ 155 int 156 frag6_input(struct mbuf **mp, int *offp, int proto) 157 { 158 struct rtentry *rt; 159 struct mbuf *m = *mp, *t; 160 struct ip6_hdr *ip6; 161 struct ip6_frag *ip6f; 162 struct ip6q *q6; 163 struct ip6asfrag *af6, *ip6af, *af6dwn; 164 int offset = *offp, nxt, i, next; 165 int first_frag = 0; 166 int fragoff, frgpartlen; /* must be larger than u_int16_t */ 167 struct ifnet *dstifp; 168 static struct route ro; 169 union { 170 struct sockaddr dst; 171 struct sockaddr_in6 dst6; 172 } u; 173 174 ip6 = mtod(m, struct ip6_hdr *); 175 IP6_EXTHDR_GET(ip6f, struct ip6_frag *, m, offset, sizeof(*ip6f)); 176 if (ip6f == NULL) 177 return IPPROTO_DONE; 178 179 dstifp = NULL; 180 /* find the destination interface of the packet. */ 181 sockaddr_in6_init(&u.dst6, &ip6->ip6_dst, 0, 0, 0); 182 if ((rt = rtcache_lookup(&ro, &u.dst)) != NULL && rt->rt_ifa != NULL) 183 dstifp = ((struct in6_ifaddr *)rt->rt_ifa)->ia_ifp; 184 185 /* jumbo payload can't contain a fragment header */ 186 if (ip6->ip6_plen == 0) { 187 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset); 188 in6_ifstat_inc(dstifp, ifs6_reass_fail); 189 goto done; 190 } 191 192 /* 193 * Check whether fragment packet's fragment length is non-zero and 194 * multiple of 8 octets. 195 * sizeof(struct ip6_frag) == 8 196 * sizeof(struct ip6_hdr) = 40 197 */ 198 if ((ip6f->ip6f_offlg & IP6F_MORE_FRAG) && 199 (((ntohs(ip6->ip6_plen) - offset) == 0) || 200 ((ntohs(ip6->ip6_plen) - offset) & 0x7) != 0)) { 201 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, 202 offsetof(struct ip6_hdr, ip6_plen)); 203 in6_ifstat_inc(dstifp, ifs6_reass_fail); 204 goto done; 205 } 206 207 IP6_STATINC(IP6_STAT_FRAGMENTS); 208 in6_ifstat_inc(dstifp, ifs6_reass_reqd); 209 210 /* offset now points to data portion */ 211 offset += sizeof(struct ip6_frag); 212 213 /* 214 * RFC6946: A host that receives an IPv6 packet which includes 215 * a Fragment Header with the "Fragment Offset" equal to 0 and 216 * the "M" bit equal to 0 MUST process such packet in isolation 217 * from any other packets/fragments. 218 * 219 * XXX: Would be better to remove this fragment header entirely, 220 * for us not to get confused later when looking back at the 221 * previous headers in the chain. 222 */ 223 fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK); 224 if (fragoff == 0 && !(ip6f->ip6f_offlg & IP6F_MORE_FRAG)) { 225 IP6_STATINC(IP6_STAT_REASSEMBLED); 226 in6_ifstat_inc(dstifp, ifs6_reass_ok); 227 *offp = offset; 228 rtcache_unref(rt, &ro); 229 return ip6f->ip6f_nxt; 230 } 231 232 mutex_enter(&frag6_lock); 233 234 /* 235 * Enforce upper bound on number of fragments. 236 * If maxfrag is 0, never accept fragments. 237 * If maxfrag is -1, accept all fragments without limitation. 238 */ 239 if (ip6_maxfrags < 0) 240 ; 241 else if (frag6_nfrags >= (u_int)ip6_maxfrags) 242 goto dropfrag; 243 244 for (q6 = ip6q.ip6q_next; q6 != &ip6q; q6 = q6->ip6q_next) 245 if (ip6f->ip6f_ident == q6->ip6q_ident && 246 IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &q6->ip6q_src) && 247 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &q6->ip6q_dst)) 248 break; 249 250 if (q6 == &ip6q) { 251 /* 252 * the first fragment to arrive, create a reassembly queue. 253 */ 254 first_frag = 1; 255 256 /* 257 * Enforce upper bound on number of fragmented packets 258 * for which we attempt reassembly; 259 * If maxfragpackets is 0, never accept fragments. 260 * If maxfragpackets is -1, accept all fragments without 261 * limitation. 262 */ 263 if (ip6_maxfragpackets < 0) 264 ; 265 else if (frag6_nfragpackets >= (u_int)ip6_maxfragpackets) 266 goto dropfrag; 267 frag6_nfragpackets++; 268 269 q6 = kmem_intr_zalloc(sizeof(struct ip6q), KM_NOSLEEP); 270 if (q6 == NULL) { 271 goto dropfrag; 272 } 273 frag6_insque(q6, &ip6q); 274 275 /* ip6q_nxt will be filled afterwards, from 1st fragment */ 276 q6->ip6q_down = q6->ip6q_up = (struct ip6asfrag *)q6; 277 q6->ip6q_ident = ip6f->ip6f_ident; 278 q6->ip6q_ttl = IPV6_FRAGTTL; 279 q6->ip6q_src = ip6->ip6_src; 280 q6->ip6q_dst = ip6->ip6_dst; 281 q6->ip6q_unfrglen = -1; /* The 1st fragment has not arrived. */ 282 283 q6->ip6q_nfrag = 0; 284 } 285 286 /* 287 * If it's the 1st fragment, record the length of the 288 * unfragmentable part and the next header of the fragment header. 289 */ 290 if (fragoff == 0) { 291 q6->ip6q_unfrglen = offset - sizeof(struct ip6_hdr) - 292 sizeof(struct ip6_frag); 293 q6->ip6q_nxt = ip6f->ip6f_nxt; 294 } 295 296 /* 297 * Check that the reassembled packet would not exceed 65535 bytes 298 * in size. If it would exceed, discard the fragment and return an 299 * ICMP error. 300 */ 301 frgpartlen = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - offset; 302 if (q6->ip6q_unfrglen >= 0) { 303 /* The 1st fragment has already arrived. */ 304 if (q6->ip6q_unfrglen + fragoff + frgpartlen > IPV6_MAXPACKET) { 305 mutex_exit(&frag6_lock); 306 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, 307 offset - sizeof(struct ip6_frag) + 308 offsetof(struct ip6_frag, ip6f_offlg)); 309 goto done; 310 } 311 } else if (fragoff + frgpartlen > IPV6_MAXPACKET) { 312 mutex_exit(&frag6_lock); 313 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, 314 offset - sizeof(struct ip6_frag) + 315 offsetof(struct ip6_frag, ip6f_offlg)); 316 goto done; 317 } 318 319 /* 320 * If it's the first fragment, do the above check for each 321 * fragment already stored in the reassembly queue. 322 */ 323 if (fragoff == 0) { 324 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6; 325 af6 = af6dwn) { 326 af6dwn = af6->ip6af_down; 327 328 if (q6->ip6q_unfrglen + af6->ip6af_off + af6->ip6af_frglen > 329 IPV6_MAXPACKET) { 330 struct mbuf *merr = af6->ip6af_m; 331 struct ip6_hdr *ip6err; 332 int erroff = af6->ip6af_offset; 333 334 /* dequeue the fragment. */ 335 frag6_deq(af6); 336 kmem_intr_free(af6, sizeof(struct ip6asfrag)); 337 338 /* adjust pointer. */ 339 ip6err = mtod(merr, struct ip6_hdr *); 340 341 /* 342 * Restore source and destination addresses 343 * in the erroneous IPv6 header. 344 */ 345 ip6err->ip6_src = q6->ip6q_src; 346 ip6err->ip6_dst = q6->ip6q_dst; 347 348 icmp6_error(merr, ICMP6_PARAM_PROB, 349 ICMP6_PARAMPROB_HEADER, 350 erroff - sizeof(struct ip6_frag) + 351 offsetof(struct ip6_frag, ip6f_offlg)); 352 } 353 } 354 } 355 356 ip6af = kmem_intr_zalloc(sizeof(struct ip6asfrag), KM_NOSLEEP); 357 if (ip6af == NULL) { 358 goto dropfrag; 359 } 360 ip6af->ip6af_head = ip6->ip6_flow; 361 ip6af->ip6af_len = ip6->ip6_plen; 362 ip6af->ip6af_nxt = ip6->ip6_nxt; 363 ip6af->ip6af_hlim = ip6->ip6_hlim; 364 ip6af->ip6af_mff = (ip6f->ip6f_offlg & IP6F_MORE_FRAG) != 0; 365 ip6af->ip6af_off = fragoff; 366 ip6af->ip6af_frglen = frgpartlen; 367 ip6af->ip6af_offset = offset; 368 ip6af->ip6af_m = m; 369 370 if (first_frag) { 371 af6 = (struct ip6asfrag *)q6; 372 goto insert; 373 } 374 375 /* 376 * Find a segment which begins after this one does. 377 */ 378 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6; 379 af6 = af6->ip6af_down) 380 if (af6->ip6af_off > ip6af->ip6af_off) 381 break; 382 383 /* 384 * If the incoming fragment overlaps some existing fragments in 385 * the reassembly queue - drop it as per RFC 5722. 386 */ 387 if (af6->ip6af_up != (struct ip6asfrag *)q6) { 388 i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen 389 - ip6af->ip6af_off; 390 if (i > 0) { 391 kmem_intr_free(ip6af, sizeof(struct ip6asfrag)); 392 goto dropfrag; 393 } 394 } 395 if (af6 != (struct ip6asfrag *)q6) { 396 i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off; 397 if (i > 0) { 398 kmem_intr_free(ip6af, sizeof(struct ip6asfrag)); 399 goto dropfrag; 400 } 401 } 402 403 insert: 404 /* 405 * Stick new segment in its place. 406 */ 407 frag6_enq(ip6af, af6->ip6af_up); 408 frag6_nfrags++; 409 q6->ip6q_nfrag++; 410 411 /* 412 * Check for complete reassembly. 413 */ 414 next = 0; 415 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6; 416 af6 = af6->ip6af_down) { 417 if (af6->ip6af_off != next) { 418 mutex_exit(&frag6_lock); 419 goto done; 420 } 421 next += af6->ip6af_frglen; 422 } 423 if (af6->ip6af_up->ip6af_mff) { 424 mutex_exit(&frag6_lock); 425 goto done; 426 } 427 428 /* 429 * Reassembly is complete; concatenate fragments. 430 */ 431 ip6af = q6->ip6q_down; 432 t = m = ip6af->ip6af_m; 433 af6 = ip6af->ip6af_down; 434 frag6_deq(ip6af); 435 while (af6 != (struct ip6asfrag *)q6) { 436 af6dwn = af6->ip6af_down; 437 frag6_deq(af6); 438 while (t->m_next) 439 t = t->m_next; 440 t->m_next = af6->ip6af_m; 441 m_adj(t->m_next, af6->ip6af_offset); 442 m_remove_pkthdr(t->m_next); 443 kmem_intr_free(af6, sizeof(struct ip6asfrag)); 444 af6 = af6dwn; 445 } 446 447 /* adjust offset to point where the original next header starts */ 448 offset = ip6af->ip6af_offset - sizeof(struct ip6_frag); 449 kmem_intr_free(ip6af, sizeof(struct ip6asfrag)); 450 ip6 = mtod(m, struct ip6_hdr *); 451 ip6->ip6_plen = htons(next + offset - sizeof(struct ip6_hdr)); 452 ip6->ip6_src = q6->ip6q_src; 453 ip6->ip6_dst = q6->ip6q_dst; 454 nxt = q6->ip6q_nxt; 455 456 /* 457 * Delete frag6 header. 458 */ 459 if (m->m_len >= offset + sizeof(struct ip6_frag)) { 460 memmove((char *)ip6 + sizeof(struct ip6_frag), ip6, offset); 461 m->m_data += sizeof(struct ip6_frag); 462 m->m_len -= sizeof(struct ip6_frag); 463 } else { 464 /* this comes with no copy if the boundary is on cluster */ 465 if ((t = m_split(m, offset, M_DONTWAIT)) == NULL) { 466 frag6_remque(q6); 467 frag6_nfrags -= q6->ip6q_nfrag; 468 kmem_intr_free(q6, sizeof(struct ip6q)); 469 frag6_nfragpackets--; 470 goto dropfrag; 471 } 472 m_adj(t, sizeof(struct ip6_frag)); 473 m_cat(m, t); 474 } 475 476 frag6_remque(q6); 477 frag6_nfrags -= q6->ip6q_nfrag; 478 kmem_intr_free(q6, sizeof(struct ip6q)); 479 frag6_nfragpackets--; 480 481 { 482 KASSERT(m->m_flags & M_PKTHDR); 483 int plen = 0; 484 for (t = m; t; t = t->m_next) { 485 plen += t->m_len; 486 } 487 m->m_pkthdr.len = plen; 488 /* XXX XXX: clear csum_flags? */ 489 } 490 491 /* 492 * Restore NXT to the original. 493 */ 494 { 495 const int prvnxt = ip6_get_prevhdr(m, offset); 496 uint8_t *prvnxtp; 497 498 IP6_EXTHDR_GET(prvnxtp, uint8_t *, m, prvnxt, 499 sizeof(*prvnxtp)); 500 if (prvnxtp == NULL) { 501 goto dropfrag; 502 } 503 *prvnxtp = nxt; 504 } 505 506 IP6_STATINC(IP6_STAT_REASSEMBLED); 507 in6_ifstat_inc(dstifp, ifs6_reass_ok); 508 rtcache_unref(rt, &ro); 509 mutex_exit(&frag6_lock); 510 511 /* 512 * Tell launch routine the next header. 513 */ 514 *mp = m; 515 *offp = offset; 516 return nxt; 517 518 dropfrag: 519 mutex_exit(&frag6_lock); 520 in6_ifstat_inc(dstifp, ifs6_reass_fail); 521 IP6_STATINC(IP6_STAT_FRAGDROPPED); 522 m_freem(m); 523 done: 524 rtcache_unref(rt, &ro); 525 return IPPROTO_DONE; 526 } 527 528 int 529 ip6_reass_packet(struct mbuf **mp, int offset) 530 { 531 532 if (frag6_input(mp, &offset, IPPROTO_IPV6) == IPPROTO_DONE) { 533 *mp = NULL; 534 return EINVAL; 535 } 536 return 0; 537 } 538 539 /* 540 * Free a fragment reassembly header and all 541 * associated datagrams. 542 */ 543 static void 544 frag6_freef(struct ip6q *q6) 545 { 546 struct ip6asfrag *af6, *down6; 547 548 KASSERT(mutex_owned(&frag6_lock)); 549 550 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6; 551 af6 = down6) { 552 struct mbuf *m = af6->ip6af_m; 553 554 down6 = af6->ip6af_down; 555 frag6_deq(af6); 556 557 /* 558 * Return ICMP time exceeded error for the 1st fragment. 559 * Just free other fragments. 560 */ 561 if (af6->ip6af_off == 0) { 562 struct ip6_hdr *ip6; 563 564 /* adjust pointer */ 565 ip6 = mtod(m, struct ip6_hdr *); 566 567 /* restore source and destination addresses */ 568 ip6->ip6_src = q6->ip6q_src; 569 ip6->ip6_dst = q6->ip6q_dst; 570 571 icmp6_error(m, ICMP6_TIME_EXCEEDED, 572 ICMP6_TIME_EXCEED_REASSEMBLY, 0); 573 } else { 574 m_freem(m); 575 } 576 kmem_intr_free(af6, sizeof(struct ip6asfrag)); 577 } 578 579 frag6_remque(q6); 580 frag6_nfrags -= q6->ip6q_nfrag; 581 kmem_intr_free(q6, sizeof(struct ip6q)); 582 frag6_nfragpackets--; 583 } 584 585 /* 586 * Put an ip fragment on a reassembly chain. 587 * Like insque, but pointers in middle of structure. 588 */ 589 void 590 frag6_enq(struct ip6asfrag *af6, struct ip6asfrag *up6) 591 { 592 593 KASSERT(mutex_owned(&frag6_lock)); 594 595 af6->ip6af_up = up6; 596 af6->ip6af_down = up6->ip6af_down; 597 up6->ip6af_down->ip6af_up = af6; 598 up6->ip6af_down = af6; 599 } 600 601 /* 602 * To frag6_enq as remque is to insque. 603 */ 604 void 605 frag6_deq(struct ip6asfrag *af6) 606 { 607 608 KASSERT(mutex_owned(&frag6_lock)); 609 610 af6->ip6af_up->ip6af_down = af6->ip6af_down; 611 af6->ip6af_down->ip6af_up = af6->ip6af_up; 612 } 613 614 /* 615 * Insert newq after oldq. 616 */ 617 void 618 frag6_insque(struct ip6q *newq, struct ip6q *oldq) 619 { 620 621 KASSERT(mutex_owned(&frag6_lock)); 622 623 newq->ip6q_prev = oldq; 624 newq->ip6q_next = oldq->ip6q_next; 625 oldq->ip6q_next->ip6q_prev = newq; 626 oldq->ip6q_next = newq; 627 } 628 629 /* 630 * Unlink p6. 631 */ 632 void 633 frag6_remque(struct ip6q *p6) 634 { 635 636 KASSERT(mutex_owned(&frag6_lock)); 637 638 p6->ip6q_prev->ip6q_next = p6->ip6q_next; 639 p6->ip6q_next->ip6q_prev = p6->ip6q_prev; 640 } 641 642 void 643 frag6_fasttimo(void) 644 { 645 646 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE(); 647 648 if (frag6_drainwanted) { 649 frag6_drain(); 650 frag6_drainwanted = 0; 651 } 652 653 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 654 } 655 656 /* 657 * IPv6 reassembling timer processing; 658 * if a timer expires on a reassembly 659 * queue, discard it. 660 */ 661 void 662 frag6_slowtimo(void) 663 { 664 struct ip6q *q6; 665 666 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE(); 667 668 mutex_enter(&frag6_lock); 669 q6 = ip6q.ip6q_next; 670 if (q6) { 671 while (q6 != &ip6q) { 672 --q6->ip6q_ttl; 673 q6 = q6->ip6q_next; 674 if (q6->ip6q_prev->ip6q_ttl == 0) { 675 IP6_STATINC(IP6_STAT_FRAGTIMEOUT); 676 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */ 677 frag6_freef(q6->ip6q_prev); 678 } 679 } 680 } 681 682 /* 683 * If we are over the maximum number of fragments 684 * (due to the limit being lowered), drain off 685 * enough to get down to the new limit. 686 */ 687 while (frag6_nfragpackets > (u_int)ip6_maxfragpackets && 688 ip6q.ip6q_prev) { 689 IP6_STATINC(IP6_STAT_FRAGOVERFLOW); 690 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */ 691 frag6_freef(ip6q.ip6q_prev); 692 } 693 mutex_exit(&frag6_lock); 694 695 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 696 697 #if 0 698 /* 699 * Routing changes might produce a better route than we last used; 700 * make sure we notice eventually, even if forwarding only for one 701 * destination and the cache is never replaced. 702 */ 703 rtcache_free(&ip6_forward_rt); 704 rtcache_free(&ipsrcchk_rt); 705 #endif 706 } 707 708 void 709 frag6_drainstub(void) 710 { 711 frag6_drainwanted = 1; 712 } 713 714 /* 715 * Drain off all datagram fragments. 716 */ 717 void 718 frag6_drain(void) 719 { 720 721 if (mutex_tryenter(&frag6_lock)) { 722 while (ip6q.ip6q_next != &ip6q) { 723 IP6_STATINC(IP6_STAT_FRAGDROPPED); 724 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */ 725 frag6_freef(ip6q.ip6q_next); 726 } 727 mutex_exit(&frag6_lock); 728 } 729 } 730