xref: /netbsd-src/sys/netinet/tcp_subr.c (revision da9817918ec7e88db2912a2882967c7570a83f47)
1 /*	$NetBSD: tcp_subr.c,v 1.237 2009/05/27 17:41:03 pooka Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38  * Facility, NASA Ames Research Center.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59  * POSSIBILITY OF SUCH DAMAGE.
60  */
61 
62 /*
63  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
64  *	The Regents of the University of California.  All rights reserved.
65  *
66  * Redistribution and use in source and binary forms, with or without
67  * modification, are permitted provided that the following conditions
68  * are met:
69  * 1. Redistributions of source code must retain the above copyright
70  *    notice, this list of conditions and the following disclaimer.
71  * 2. Redistributions in binary form must reproduce the above copyright
72  *    notice, this list of conditions and the following disclaimer in the
73  *    documentation and/or other materials provided with the distribution.
74  * 3. Neither the name of the University nor the names of its contributors
75  *    may be used to endorse or promote products derived from this software
76  *    without specific prior written permission.
77  *
78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88  * SUCH DAMAGE.
89  *
90  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
91  */
92 
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.237 2009/05/27 17:41:03 pooka Exp $");
95 
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_tcp_compat_42.h"
99 #include "opt_inet_csum.h"
100 #include "opt_mbuftrace.h"
101 #include "rnd.h"
102 
103 #include <sys/param.h>
104 #include <sys/proc.h>
105 #include <sys/systm.h>
106 #include <sys/malloc.h>
107 #include <sys/mbuf.h>
108 #include <sys/socket.h>
109 #include <sys/socketvar.h>
110 #include <sys/protosw.h>
111 #include <sys/errno.h>
112 #include <sys/kernel.h>
113 #include <sys/pool.h>
114 #if NRND > 0
115 #include <sys/md5.h>
116 #include <sys/rnd.h>
117 #endif
118 
119 #include <net/route.h>
120 #include <net/if.h>
121 
122 #include <netinet/in.h>
123 #include <netinet/in_systm.h>
124 #include <netinet/ip.h>
125 #include <netinet/in_pcb.h>
126 #include <netinet/ip_var.h>
127 #include <netinet/ip_icmp.h>
128 
129 #ifdef INET6
130 #ifndef INET
131 #include <netinet/in.h>
132 #endif
133 #include <netinet/ip6.h>
134 #include <netinet6/in6_pcb.h>
135 #include <netinet6/ip6_var.h>
136 #include <netinet6/in6_var.h>
137 #include <netinet6/ip6protosw.h>
138 #include <netinet/icmp6.h>
139 #include <netinet6/nd6.h>
140 #endif
141 
142 #include <netinet/tcp.h>
143 #include <netinet/tcp_fsm.h>
144 #include <netinet/tcp_seq.h>
145 #include <netinet/tcp_timer.h>
146 #include <netinet/tcp_var.h>
147 #include <netinet/tcp_private.h>
148 #include <netinet/tcp_congctl.h>
149 #include <netinet/tcpip.h>
150 
151 #ifdef IPSEC
152 #include <netinet6/ipsec.h>
153 #include <netkey/key.h>
154 #endif /*IPSEC*/
155 
156 #ifdef FAST_IPSEC
157 #include <netipsec/ipsec.h>
158 #include <netipsec/xform.h>
159 #ifdef INET6
160 #include <netipsec/ipsec6.h>
161 #endif
162  #include <netipsec/key.h>
163 #endif	/* FAST_IPSEC*/
164 
165 
166 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
167 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
168 
169 percpu_t *tcpstat_percpu;
170 
171 /* patchable/settable parameters for tcp */
172 int 	tcp_mssdflt = TCP_MSS;
173 int	tcp_minmss = TCP_MINMSS;
174 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
175 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
176 #if NRND > 0
177 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
178 #endif
179 int	tcp_do_sack = 1;	/* selective acknowledgement */
180 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
181 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
182 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
183 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
184 #ifndef TCP_INIT_WIN
185 #define	TCP_INIT_WIN	0	/* initial slow start window */
186 #endif
187 #ifndef TCP_INIT_WIN_LOCAL
188 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
189 #endif
190 int	tcp_init_win = TCP_INIT_WIN;
191 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
192 int	tcp_mss_ifmtu = 0;
193 #ifdef TCP_COMPAT_42
194 int	tcp_compat_42 = 1;
195 #else
196 int	tcp_compat_42 = 0;
197 #endif
198 int	tcp_rst_ppslim = 100;	/* 100pps */
199 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
200 int	tcp_do_loopback_cksum = 0;
201 int	tcp_do_abc = 1;		/* RFC3465 Appropriate byte counting. */
202 int	tcp_abc_aggressive = 1;	/* 1: L=2*SMSS  0: L=1*SMSS */
203 int	tcp_sack_tp_maxholes = 32;
204 int	tcp_sack_globalmaxholes = 1024;
205 int	tcp_sack_globalholes = 0;
206 int	tcp_ecn_maxretries = 1;
207 
208 /* tcb hash */
209 #ifndef TCBHASHSIZE
210 #define	TCBHASHSIZE	128
211 #endif
212 int	tcbhashsize = TCBHASHSIZE;
213 
214 /* syn hash parameters */
215 #define	TCP_SYN_HASH_SIZE	293
216 #define	TCP_SYN_BUCKET_SIZE	35
217 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
218 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
219 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
220 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
221 
222 int	tcp_freeq(struct tcpcb *);
223 
224 #ifdef INET
225 void	tcp_mtudisc_callback(struct in_addr);
226 #endif
227 #ifdef INET6
228 void	tcp6_mtudisc_callback(struct in6_addr *);
229 #endif
230 
231 #ifdef INET6
232 void	tcp6_mtudisc(struct in6pcb *, int);
233 #endif
234 
235 static struct pool tcpcb_pool;
236 
237 #ifdef TCP_CSUM_COUNTERS
238 #include <sys/device.h>
239 
240 #if defined(INET)
241 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
242     NULL, "tcp", "hwcsum bad");
243 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
244     NULL, "tcp", "hwcsum ok");
245 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
246     NULL, "tcp", "hwcsum data");
247 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
248     NULL, "tcp", "swcsum");
249 
250 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
251 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
252 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
253 EVCNT_ATTACH_STATIC(tcp_swcsum);
254 #endif /* defined(INET) */
255 
256 #if defined(INET6)
257 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
258     NULL, "tcp6", "hwcsum bad");
259 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
260     NULL, "tcp6", "hwcsum ok");
261 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262     NULL, "tcp6", "hwcsum data");
263 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264     NULL, "tcp6", "swcsum");
265 
266 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
267 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
268 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
269 EVCNT_ATTACH_STATIC(tcp6_swcsum);
270 #endif /* defined(INET6) */
271 #endif /* TCP_CSUM_COUNTERS */
272 
273 
274 #ifdef TCP_OUTPUT_COUNTERS
275 #include <sys/device.h>
276 
277 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
278     NULL, "tcp", "output big header");
279 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
280     NULL, "tcp", "output predict hit");
281 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282     NULL, "tcp", "output predict miss");
283 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284     NULL, "tcp", "output copy small");
285 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286     NULL, "tcp", "output copy big");
287 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288     NULL, "tcp", "output reference big");
289 
290 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
291 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
292 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
293 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
294 EVCNT_ATTACH_STATIC(tcp_output_copybig);
295 EVCNT_ATTACH_STATIC(tcp_output_refbig);
296 
297 #endif /* TCP_OUTPUT_COUNTERS */
298 
299 #ifdef TCP_REASS_COUNTERS
300 #include <sys/device.h>
301 
302 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
303     NULL, "tcp_reass", "calls");
304 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
305     &tcp_reass_, "tcp_reass", "insert into empty queue");
306 struct evcnt tcp_reass_iteration[8] = {
307     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
308     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
309     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
310     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
311     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
312     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
315 };
316 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
317     &tcp_reass_, "tcp_reass", "prepend to first");
318 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
319     &tcp_reass_, "tcp_reass", "prepend");
320 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
321     &tcp_reass_, "tcp_reass", "insert");
322 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
323     &tcp_reass_, "tcp_reass", "insert at tail");
324 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
325     &tcp_reass_, "tcp_reass", "append");
326 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
327     &tcp_reass_, "tcp_reass", "append to tail fragment");
328 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
329     &tcp_reass_, "tcp_reass", "overlap at end");
330 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
331     &tcp_reass_, "tcp_reass", "overlap at start");
332 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
333     &tcp_reass_, "tcp_reass", "duplicate segment");
334 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
335     &tcp_reass_, "tcp_reass", "duplicate fragment");
336 
337 EVCNT_ATTACH_STATIC(tcp_reass_);
338 EVCNT_ATTACH_STATIC(tcp_reass_empty);
339 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
340 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
341 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
342 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
343 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
344 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
347 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
348 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
349 EVCNT_ATTACH_STATIC(tcp_reass_insert);
350 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
351 EVCNT_ATTACH_STATIC(tcp_reass_append);
352 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
353 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
354 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
355 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
356 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
357 
358 #endif /* TCP_REASS_COUNTERS */
359 
360 #ifdef MBUFTRACE
361 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
362 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
363 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
364 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
365 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
366 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
367 #endif
368 
369 /*
370  * Tcp initialization
371  */
372 void
373 tcp_init(void)
374 {
375 	int hlen;
376 
377 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
378 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
379 	    NULL, IPL_SOFTNET);
380 
381 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
382 #ifdef INET6
383 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
384 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
385 #endif
386 	if (max_protohdr < hlen)
387 		max_protohdr = hlen;
388 	if (max_linkhdr + hlen > MHLEN)
389 		panic("tcp_init");
390 
391 #ifdef INET
392 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
393 #endif
394 #ifdef INET6
395 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
396 #endif
397 
398 	/* Initialize timer state. */
399 	tcp_timer_init();
400 
401 	/* Initialize the compressed state engine. */
402 	syn_cache_init();
403 
404 	/* Initialize the congestion control algorithms. */
405 	tcp_congctl_init();
406 
407 	/* Initialize the TCPCB template. */
408 	tcp_tcpcb_template();
409 
410 	/* Initialize reassembly queue */
411 	tcpipqent_init();
412 
413 	/* SACK */
414 	tcp_sack_init();
415 
416 	MOWNER_ATTACH(&tcp_tx_mowner);
417 	MOWNER_ATTACH(&tcp_rx_mowner);
418 	MOWNER_ATTACH(&tcp_reass_mowner);
419 	MOWNER_ATTACH(&tcp_sock_mowner);
420 	MOWNER_ATTACH(&tcp_sock_tx_mowner);
421 	MOWNER_ATTACH(&tcp_sock_rx_mowner);
422 	MOWNER_ATTACH(&tcp_mowner);
423 
424 	tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
425 }
426 
427 /*
428  * Create template to be used to send tcp packets on a connection.
429  * Call after host entry created, allocates an mbuf and fills
430  * in a skeletal tcp/ip header, minimizing the amount of work
431  * necessary when the connection is used.
432  */
433 struct mbuf *
434 tcp_template(struct tcpcb *tp)
435 {
436 	struct inpcb *inp = tp->t_inpcb;
437 #ifdef INET6
438 	struct in6pcb *in6p = tp->t_in6pcb;
439 #endif
440 	struct tcphdr *n;
441 	struct mbuf *m;
442 	int hlen;
443 
444 	switch (tp->t_family) {
445 	case AF_INET:
446 		hlen = sizeof(struct ip);
447 		if (inp)
448 			break;
449 #ifdef INET6
450 		if (in6p) {
451 			/* mapped addr case */
452 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
453 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
454 				break;
455 		}
456 #endif
457 		return NULL;	/*EINVAL*/
458 #ifdef INET6
459 	case AF_INET6:
460 		hlen = sizeof(struct ip6_hdr);
461 		if (in6p) {
462 			/* more sainty check? */
463 			break;
464 		}
465 		return NULL;	/*EINVAL*/
466 #endif
467 	default:
468 		hlen = 0;	/*pacify gcc*/
469 		return NULL;	/*EAFNOSUPPORT*/
470 	}
471 #ifdef DIAGNOSTIC
472 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
473 		panic("mclbytes too small for t_template");
474 #endif
475 	m = tp->t_template;
476 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
477 		;
478 	else {
479 		if (m)
480 			m_freem(m);
481 		m = tp->t_template = NULL;
482 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
483 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
484 			MCLGET(m, M_DONTWAIT);
485 			if ((m->m_flags & M_EXT) == 0) {
486 				m_free(m);
487 				m = NULL;
488 			}
489 		}
490 		if (m == NULL)
491 			return NULL;
492 		MCLAIM(m, &tcp_mowner);
493 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
494 	}
495 
496 	memset(mtod(m, void *), 0, m->m_len);
497 
498 	n = (struct tcphdr *)(mtod(m, char *) + hlen);
499 
500 	switch (tp->t_family) {
501 	case AF_INET:
502 	    {
503 		struct ipovly *ipov;
504 		mtod(m, struct ip *)->ip_v = 4;
505 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
506 		ipov = mtod(m, struct ipovly *);
507 		ipov->ih_pr = IPPROTO_TCP;
508 		ipov->ih_len = htons(sizeof(struct tcphdr));
509 		if (inp) {
510 			ipov->ih_src = inp->inp_laddr;
511 			ipov->ih_dst = inp->inp_faddr;
512 		}
513 #ifdef INET6
514 		else if (in6p) {
515 			/* mapped addr case */
516 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
517 				sizeof(ipov->ih_src));
518 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
519 				sizeof(ipov->ih_dst));
520 		}
521 #endif
522 		/*
523 		 * Compute the pseudo-header portion of the checksum
524 		 * now.  We incrementally add in the TCP option and
525 		 * payload lengths later, and then compute the TCP
526 		 * checksum right before the packet is sent off onto
527 		 * the wire.
528 		 */
529 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
530 		    ipov->ih_dst.s_addr,
531 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
532 		break;
533 	    }
534 #ifdef INET6
535 	case AF_INET6:
536 	    {
537 		struct ip6_hdr *ip6;
538 		mtod(m, struct ip *)->ip_v = 6;
539 		ip6 = mtod(m, struct ip6_hdr *);
540 		ip6->ip6_nxt = IPPROTO_TCP;
541 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
542 		ip6->ip6_src = in6p->in6p_laddr;
543 		ip6->ip6_dst = in6p->in6p_faddr;
544 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
545 		if (ip6_auto_flowlabel) {
546 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
547 			ip6->ip6_flow |=
548 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
549 		}
550 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
551 		ip6->ip6_vfc |= IPV6_VERSION;
552 
553 		/*
554 		 * Compute the pseudo-header portion of the checksum
555 		 * now.  We incrementally add in the TCP option and
556 		 * payload lengths later, and then compute the TCP
557 		 * checksum right before the packet is sent off onto
558 		 * the wire.
559 		 */
560 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
561 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
562 		    htonl(IPPROTO_TCP));
563 		break;
564 	    }
565 #endif
566 	}
567 	if (inp) {
568 		n->th_sport = inp->inp_lport;
569 		n->th_dport = inp->inp_fport;
570 	}
571 #ifdef INET6
572 	else if (in6p) {
573 		n->th_sport = in6p->in6p_lport;
574 		n->th_dport = in6p->in6p_fport;
575 	}
576 #endif
577 	n->th_seq = 0;
578 	n->th_ack = 0;
579 	n->th_x2 = 0;
580 	n->th_off = 5;
581 	n->th_flags = 0;
582 	n->th_win = 0;
583 	n->th_urp = 0;
584 	return (m);
585 }
586 
587 /*
588  * Send a single message to the TCP at address specified by
589  * the given TCP/IP header.  If m == 0, then we make a copy
590  * of the tcpiphdr at ti and send directly to the addressed host.
591  * This is used to force keep alive messages out using the TCP
592  * template for a connection tp->t_template.  If flags are given
593  * then we send a message back to the TCP which originated the
594  * segment ti, and discard the mbuf containing it and any other
595  * attached mbufs.
596  *
597  * In any case the ack and sequence number of the transmitted
598  * segment are as specified by the parameters.
599  */
600 int
601 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
602     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
603 {
604 #ifdef INET6
605 	struct rtentry *rt;
606 #endif
607 	struct route *ro;
608 	int error, tlen, win = 0;
609 	int hlen;
610 	struct ip *ip;
611 #ifdef INET6
612 	struct ip6_hdr *ip6;
613 #endif
614 	int family;	/* family on packet, not inpcb/in6pcb! */
615 	struct tcphdr *th;
616 	struct socket *so;
617 
618 	if (tp != NULL && (flags & TH_RST) == 0) {
619 #ifdef DIAGNOSTIC
620 		if (tp->t_inpcb && tp->t_in6pcb)
621 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
622 #endif
623 #ifdef INET
624 		if (tp->t_inpcb)
625 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
626 #endif
627 #ifdef INET6
628 		if (tp->t_in6pcb)
629 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
630 #endif
631 	}
632 
633 	th = NULL;	/* Quell uninitialized warning */
634 	ip = NULL;
635 #ifdef INET6
636 	ip6 = NULL;
637 #endif
638 	if (m == 0) {
639 		if (!template)
640 			return EINVAL;
641 
642 		/* get family information from template */
643 		switch (mtod(template, struct ip *)->ip_v) {
644 		case 4:
645 			family = AF_INET;
646 			hlen = sizeof(struct ip);
647 			break;
648 #ifdef INET6
649 		case 6:
650 			family = AF_INET6;
651 			hlen = sizeof(struct ip6_hdr);
652 			break;
653 #endif
654 		default:
655 			return EAFNOSUPPORT;
656 		}
657 
658 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
659 		if (m) {
660 			MCLAIM(m, &tcp_tx_mowner);
661 			MCLGET(m, M_DONTWAIT);
662 			if ((m->m_flags & M_EXT) == 0) {
663 				m_free(m);
664 				m = NULL;
665 			}
666 		}
667 		if (m == NULL)
668 			return (ENOBUFS);
669 
670 		if (tcp_compat_42)
671 			tlen = 1;
672 		else
673 			tlen = 0;
674 
675 		m->m_data += max_linkhdr;
676 		bcopy(mtod(template, void *), mtod(m, void *),
677 			template->m_len);
678 		switch (family) {
679 		case AF_INET:
680 			ip = mtod(m, struct ip *);
681 			th = (struct tcphdr *)(ip + 1);
682 			break;
683 #ifdef INET6
684 		case AF_INET6:
685 			ip6 = mtod(m, struct ip6_hdr *);
686 			th = (struct tcphdr *)(ip6 + 1);
687 			break;
688 #endif
689 #if 0
690 		default:
691 			/* noone will visit here */
692 			m_freem(m);
693 			return EAFNOSUPPORT;
694 #endif
695 		}
696 		flags = TH_ACK;
697 	} else {
698 
699 		if ((m->m_flags & M_PKTHDR) == 0) {
700 #if 0
701 			printf("non PKTHDR to tcp_respond\n");
702 #endif
703 			m_freem(m);
704 			return EINVAL;
705 		}
706 #ifdef DIAGNOSTIC
707 		if (!th0)
708 			panic("th0 == NULL in tcp_respond");
709 #endif
710 
711 		/* get family information from m */
712 		switch (mtod(m, struct ip *)->ip_v) {
713 		case 4:
714 			family = AF_INET;
715 			hlen = sizeof(struct ip);
716 			ip = mtod(m, struct ip *);
717 			break;
718 #ifdef INET6
719 		case 6:
720 			family = AF_INET6;
721 			hlen = sizeof(struct ip6_hdr);
722 			ip6 = mtod(m, struct ip6_hdr *);
723 			break;
724 #endif
725 		default:
726 			m_freem(m);
727 			return EAFNOSUPPORT;
728 		}
729 		/* clear h/w csum flags inherited from rx packet */
730 		m->m_pkthdr.csum_flags = 0;
731 
732 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
733 			tlen = sizeof(*th0);
734 		else
735 			tlen = th0->th_off << 2;
736 
737 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
738 		    mtod(m, char *) + hlen == (char *)th0) {
739 			m->m_len = hlen + tlen;
740 			m_freem(m->m_next);
741 			m->m_next = NULL;
742 		} else {
743 			struct mbuf *n;
744 
745 #ifdef DIAGNOSTIC
746 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
747 				m_freem(m);
748 				return EMSGSIZE;
749 			}
750 #endif
751 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
752 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
753 				MCLGET(n, M_DONTWAIT);
754 				if ((n->m_flags & M_EXT) == 0) {
755 					m_freem(n);
756 					n = NULL;
757 				}
758 			}
759 			if (!n) {
760 				m_freem(m);
761 				return ENOBUFS;
762 			}
763 
764 			MCLAIM(n, &tcp_tx_mowner);
765 			n->m_data += max_linkhdr;
766 			n->m_len = hlen + tlen;
767 			m_copyback(n, 0, hlen, mtod(m, void *));
768 			m_copyback(n, hlen, tlen, (void *)th0);
769 
770 			m_freem(m);
771 			m = n;
772 			n = NULL;
773 		}
774 
775 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
776 		switch (family) {
777 		case AF_INET:
778 			ip = mtod(m, struct ip *);
779 			th = (struct tcphdr *)(ip + 1);
780 			ip->ip_p = IPPROTO_TCP;
781 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
782 			ip->ip_p = IPPROTO_TCP;
783 			break;
784 #ifdef INET6
785 		case AF_INET6:
786 			ip6 = mtod(m, struct ip6_hdr *);
787 			th = (struct tcphdr *)(ip6 + 1);
788 			ip6->ip6_nxt = IPPROTO_TCP;
789 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
790 			ip6->ip6_nxt = IPPROTO_TCP;
791 			break;
792 #endif
793 #if 0
794 		default:
795 			/* noone will visit here */
796 			m_freem(m);
797 			return EAFNOSUPPORT;
798 #endif
799 		}
800 		xchg(th->th_dport, th->th_sport, u_int16_t);
801 #undef xchg
802 		tlen = 0;	/*be friendly with the following code*/
803 	}
804 	th->th_seq = htonl(seq);
805 	th->th_ack = htonl(ack);
806 	th->th_x2 = 0;
807 	if ((flags & TH_SYN) == 0) {
808 		if (tp)
809 			win >>= tp->rcv_scale;
810 		if (win > TCP_MAXWIN)
811 			win = TCP_MAXWIN;
812 		th->th_win = htons((u_int16_t)win);
813 		th->th_off = sizeof (struct tcphdr) >> 2;
814 		tlen += sizeof(*th);
815 	} else
816 		tlen += th->th_off << 2;
817 	m->m_len = hlen + tlen;
818 	m->m_pkthdr.len = hlen + tlen;
819 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
820 	th->th_flags = flags;
821 	th->th_urp = 0;
822 
823 	switch (family) {
824 #ifdef INET
825 	case AF_INET:
826 	    {
827 		struct ipovly *ipov = (struct ipovly *)ip;
828 		memset(ipov->ih_x1, 0, sizeof ipov->ih_x1);
829 		ipov->ih_len = htons((u_int16_t)tlen);
830 
831 		th->th_sum = 0;
832 		th->th_sum = in_cksum(m, hlen + tlen);
833 		ip->ip_len = htons(hlen + tlen);
834 		ip->ip_ttl = ip_defttl;
835 		break;
836 	    }
837 #endif
838 #ifdef INET6
839 	case AF_INET6:
840 	    {
841 		th->th_sum = 0;
842 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
843 				tlen);
844 		ip6->ip6_plen = htons(tlen);
845 		if (tp && tp->t_in6pcb) {
846 			struct ifnet *oifp;
847 			ro = &tp->t_in6pcb->in6p_route;
848 			oifp = (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
849 			                                           : NULL;
850 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
851 		} else
852 			ip6->ip6_hlim = ip6_defhlim;
853 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
854 		if (ip6_auto_flowlabel) {
855 			ip6->ip6_flow |=
856 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
857 		}
858 		break;
859 	    }
860 #endif
861 	}
862 
863 	if (tp && tp->t_inpcb)
864 		so = tp->t_inpcb->inp_socket;
865 #ifdef INET6
866 	else if (tp && tp->t_in6pcb)
867 		so = tp->t_in6pcb->in6p_socket;
868 #endif
869 	else
870 		so = NULL;
871 
872 	if (tp != NULL && tp->t_inpcb != NULL) {
873 		ro = &tp->t_inpcb->inp_route;
874 #ifdef DIAGNOSTIC
875 		if (family != AF_INET)
876 			panic("tcp_respond: address family mismatch");
877 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
878 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
879 			    ntohl(ip->ip_dst.s_addr),
880 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
881 		}
882 #endif
883 	}
884 #ifdef INET6
885 	else if (tp != NULL && tp->t_in6pcb != NULL) {
886 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
887 #ifdef DIAGNOSTIC
888 		if (family == AF_INET) {
889 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
890 				panic("tcp_respond: not mapped addr");
891 			if (memcmp(&ip->ip_dst,
892 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
893 			    sizeof(ip->ip_dst)) != 0) {
894 				panic("tcp_respond: ip_dst != in6p_faddr");
895 			}
896 		} else if (family == AF_INET6) {
897 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
898 			    &tp->t_in6pcb->in6p_faddr))
899 				panic("tcp_respond: ip6_dst != in6p_faddr");
900 		} else
901 			panic("tcp_respond: address family mismatch");
902 #endif
903 	}
904 #endif
905 	else
906 		ro = NULL;
907 
908 	switch (family) {
909 #ifdef INET
910 	case AF_INET:
911 		error = ip_output(m, NULL, ro,
912 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
913 		    (struct ip_moptions *)0, so);
914 		break;
915 #endif
916 #ifdef INET6
917 	case AF_INET6:
918 		error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
919 		break;
920 #endif
921 	default:
922 		error = EAFNOSUPPORT;
923 		break;
924 	}
925 
926 	return (error);
927 }
928 
929 /*
930  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
931  * a bunch of members individually, we maintain this template for the
932  * static and mostly-static components of the TCPCB, and copy it into
933  * the new TCPCB instead.
934  */
935 static struct tcpcb tcpcb_template = {
936 	.t_srtt = TCPTV_SRTTBASE,
937 	.t_rttmin = TCPTV_MIN,
938 
939 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
940 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
941 	.snd_numholes = 0,
942 
943 	.t_partialacks = -1,
944 	.t_bytes_acked = 0,
945 };
946 
947 /*
948  * Updates the TCPCB template whenever a parameter that would affect
949  * the template is changed.
950  */
951 void
952 tcp_tcpcb_template(void)
953 {
954 	struct tcpcb *tp = &tcpcb_template;
955 	int flags;
956 
957 	tp->t_peermss = tcp_mssdflt;
958 	tp->t_ourmss = tcp_mssdflt;
959 	tp->t_segsz = tcp_mssdflt;
960 
961 	flags = 0;
962 	if (tcp_do_rfc1323 && tcp_do_win_scale)
963 		flags |= TF_REQ_SCALE;
964 	if (tcp_do_rfc1323 && tcp_do_timestamps)
965 		flags |= TF_REQ_TSTMP;
966 	tp->t_flags = flags;
967 
968 	/*
969 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
970 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
971 	 * reasonable initial retransmit time.
972 	 */
973 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
974 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
975 	    TCPTV_MIN, TCPTV_REXMTMAX);
976 
977 	/* Keep Alive */
978 	tp->t_keepinit = tcp_keepinit;
979 	tp->t_keepidle = tcp_keepidle;
980 	tp->t_keepintvl = tcp_keepintvl;
981 	tp->t_keepcnt = tcp_keepcnt;
982 	tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
983 }
984 
985 /*
986  * Create a new TCP control block, making an
987  * empty reassembly queue and hooking it to the argument
988  * protocol control block.
989  */
990 /* family selects inpcb, or in6pcb */
991 struct tcpcb *
992 tcp_newtcpcb(int family, void *aux)
993 {
994 #ifdef INET6
995 	struct rtentry *rt;
996 #endif
997 	struct tcpcb *tp;
998 	int i;
999 
1000 	/* XXX Consider using a pool_cache for speed. */
1001 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
1002 	if (tp == NULL)
1003 		return (NULL);
1004 	memcpy(tp, &tcpcb_template, sizeof(*tp));
1005 	TAILQ_INIT(&tp->segq);
1006 	TAILQ_INIT(&tp->timeq);
1007 	tp->t_family = family;		/* may be overridden later on */
1008 	TAILQ_INIT(&tp->snd_holes);
1009 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
1010 
1011 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
1012 	for (i = 0; i < TCPT_NTIMERS; i++) {
1013 		callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
1014 		TCP_TIMER_INIT(tp, i);
1015 	}
1016 	callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
1017 
1018 	switch (family) {
1019 	case AF_INET:
1020 	    {
1021 		struct inpcb *inp = (struct inpcb *)aux;
1022 
1023 		inp->inp_ip.ip_ttl = ip_defttl;
1024 		inp->inp_ppcb = (void *)tp;
1025 
1026 		tp->t_inpcb = inp;
1027 		tp->t_mtudisc = ip_mtudisc;
1028 		break;
1029 	    }
1030 #ifdef INET6
1031 	case AF_INET6:
1032 	    {
1033 		struct in6pcb *in6p = (struct in6pcb *)aux;
1034 
1035 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1036 			(rt = rtcache_validate(&in6p->in6p_route)) != NULL
1037 			    ? rt->rt_ifp
1038 			    : NULL);
1039 		in6p->in6p_ppcb = (void *)tp;
1040 
1041 		tp->t_in6pcb = in6p;
1042 		/* for IPv6, always try to run path MTU discovery */
1043 		tp->t_mtudisc = 1;
1044 		break;
1045 	    }
1046 #endif /* INET6 */
1047 	default:
1048 		for (i = 0; i < TCPT_NTIMERS; i++)
1049 			callout_destroy(&tp->t_timer[i]);
1050 		callout_destroy(&tp->t_delack_ch);
1051 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
1052 		return (NULL);
1053 	}
1054 
1055 	/*
1056 	 * Initialize our timebase.  When we send timestamps, we take
1057 	 * the delta from tcp_now -- this means each connection always
1058 	 * gets a timebase of 1, which makes it, among other things,
1059 	 * more difficult to determine how long a system has been up,
1060 	 * and thus how many TCP sequence increments have occurred.
1061 	 *
1062 	 * We start with 1, because 0 doesn't work with linux, which
1063 	 * considers timestamp 0 in a SYN packet as a bug and disables
1064 	 * timestamps.
1065 	 */
1066 	tp->ts_timebase = tcp_now - 1;
1067 
1068 	tcp_congctl_select(tp, tcp_congctl_global_name);
1069 
1070 	return (tp);
1071 }
1072 
1073 /*
1074  * Drop a TCP connection, reporting
1075  * the specified error.  If connection is synchronized,
1076  * then send a RST to peer.
1077  */
1078 struct tcpcb *
1079 tcp_drop(struct tcpcb *tp, int errno)
1080 {
1081 	struct socket *so = NULL;
1082 
1083 #ifdef DIAGNOSTIC
1084 	if (tp->t_inpcb && tp->t_in6pcb)
1085 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1086 #endif
1087 #ifdef INET
1088 	if (tp->t_inpcb)
1089 		so = tp->t_inpcb->inp_socket;
1090 #endif
1091 #ifdef INET6
1092 	if (tp->t_in6pcb)
1093 		so = tp->t_in6pcb->in6p_socket;
1094 #endif
1095 	if (!so)
1096 		return NULL;
1097 
1098 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1099 		tp->t_state = TCPS_CLOSED;
1100 		(void) tcp_output(tp);
1101 		TCP_STATINC(TCP_STAT_DROPS);
1102 	} else
1103 		TCP_STATINC(TCP_STAT_CONNDROPS);
1104 	if (errno == ETIMEDOUT && tp->t_softerror)
1105 		errno = tp->t_softerror;
1106 	so->so_error = errno;
1107 	return (tcp_close(tp));
1108 }
1109 
1110 /*
1111  * Close a TCP control block:
1112  *	discard all space held by the tcp
1113  *	discard internet protocol block
1114  *	wake up any sleepers
1115  */
1116 struct tcpcb *
1117 tcp_close(struct tcpcb *tp)
1118 {
1119 	struct inpcb *inp;
1120 #ifdef INET6
1121 	struct in6pcb *in6p;
1122 #endif
1123 	struct socket *so;
1124 #ifdef RTV_RTT
1125 	struct rtentry *rt;
1126 #endif
1127 	struct route *ro;
1128 	int j;
1129 
1130 	inp = tp->t_inpcb;
1131 #ifdef INET6
1132 	in6p = tp->t_in6pcb;
1133 #endif
1134 	so = NULL;
1135 	ro = NULL;
1136 	if (inp) {
1137 		so = inp->inp_socket;
1138 		ro = &inp->inp_route;
1139 	}
1140 #ifdef INET6
1141 	else if (in6p) {
1142 		so = in6p->in6p_socket;
1143 		ro = (struct route *)&in6p->in6p_route;
1144 	}
1145 #endif
1146 
1147 #ifdef RTV_RTT
1148 	/*
1149 	 * If we sent enough data to get some meaningful characteristics,
1150 	 * save them in the routing entry.  'Enough' is arbitrarily
1151 	 * defined as the sendpipesize (default 4K) * 16.  This would
1152 	 * give us 16 rtt samples assuming we only get one sample per
1153 	 * window (the usual case on a long haul net).  16 samples is
1154 	 * enough for the srtt filter to converge to within 5% of the correct
1155 	 * value; fewer samples and we could save a very bogus rtt.
1156 	 *
1157 	 * Don't update the default route's characteristics and don't
1158 	 * update anything that the user "locked".
1159 	 */
1160 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1161 	    ro && (rt = rtcache_validate(ro)) != NULL &&
1162 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1163 		u_long i = 0;
1164 
1165 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1166 			i = tp->t_srtt *
1167 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1168 			if (rt->rt_rmx.rmx_rtt && i)
1169 				/*
1170 				 * filter this update to half the old & half
1171 				 * the new values, converting scale.
1172 				 * See route.h and tcp_var.h for a
1173 				 * description of the scaling constants.
1174 				 */
1175 				rt->rt_rmx.rmx_rtt =
1176 				    (rt->rt_rmx.rmx_rtt + i) / 2;
1177 			else
1178 				rt->rt_rmx.rmx_rtt = i;
1179 		}
1180 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1181 			i = tp->t_rttvar *
1182 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1183 			if (rt->rt_rmx.rmx_rttvar && i)
1184 				rt->rt_rmx.rmx_rttvar =
1185 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
1186 			else
1187 				rt->rt_rmx.rmx_rttvar = i;
1188 		}
1189 		/*
1190 		 * update the pipelimit (ssthresh) if it has been updated
1191 		 * already or if a pipesize was specified & the threshhold
1192 		 * got below half the pipesize.  I.e., wait for bad news
1193 		 * before we start updating, then update on both good
1194 		 * and bad news.
1195 		 */
1196 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1197 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1198 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1199 			/*
1200 			 * convert the limit from user data bytes to
1201 			 * packets then to packet data bytes.
1202 			 */
1203 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
1204 			if (i < 2)
1205 				i = 2;
1206 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1207 			if (rt->rt_rmx.rmx_ssthresh)
1208 				rt->rt_rmx.rmx_ssthresh =
1209 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1210 			else
1211 				rt->rt_rmx.rmx_ssthresh = i;
1212 		}
1213 	}
1214 #endif /* RTV_RTT */
1215 	/* free the reassembly queue, if any */
1216 	TCP_REASS_LOCK(tp);
1217 	(void) tcp_freeq(tp);
1218 	TCP_REASS_UNLOCK(tp);
1219 
1220 	/* free the SACK holes list. */
1221 	tcp_free_sackholes(tp);
1222 	tcp_congctl_release(tp);
1223 	syn_cache_cleanup(tp);
1224 
1225 	if (tp->t_template) {
1226 		m_free(tp->t_template);
1227 		tp->t_template = NULL;
1228 	}
1229 
1230 	/*
1231 	 * Detaching the pcb will unlock the socket/tcpcb, and stopping
1232 	 * the timers can also drop the lock.  We need to prevent access
1233 	 * to the tcpcb as it's half torn down.  Flag the pcb as dead
1234 	 * (prevents access by timers) and only then detach it.
1235 	 */
1236 	tp->t_flags |= TF_DEAD;
1237 	if (inp) {
1238 		inp->inp_ppcb = 0;
1239 		soisdisconnected(so);
1240 		in_pcbdetach(inp);
1241 	}
1242 #ifdef INET6
1243 	else if (in6p) {
1244 		in6p->in6p_ppcb = 0;
1245 		soisdisconnected(so);
1246 		in6_pcbdetach(in6p);
1247 	}
1248 #endif
1249 	/*
1250 	 * pcb is no longer visble elsewhere, so we can safely release
1251 	 * the lock in callout_halt() if needed.
1252 	 */
1253 	TCP_STATINC(TCP_STAT_CLOSED);
1254 	for (j = 0; j < TCPT_NTIMERS; j++) {
1255 		callout_halt(&tp->t_timer[j], softnet_lock);
1256 		callout_destroy(&tp->t_timer[j]);
1257 	}
1258 	callout_halt(&tp->t_delack_ch, softnet_lock);
1259 	callout_destroy(&tp->t_delack_ch);
1260 	pool_put(&tcpcb_pool, tp);
1261 
1262 	return ((struct tcpcb *)0);
1263 }
1264 
1265 int
1266 tcp_freeq(struct tcpcb *tp)
1267 {
1268 	struct ipqent *qe;
1269 	int rv = 0;
1270 #ifdef TCPREASS_DEBUG
1271 	int i = 0;
1272 #endif
1273 
1274 	TCP_REASS_LOCK_CHECK(tp);
1275 
1276 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1277 #ifdef TCPREASS_DEBUG
1278 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1279 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1280 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1281 #endif
1282 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1283 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1284 		m_freem(qe->ipqe_m);
1285 		tcpipqent_free(qe);
1286 		rv = 1;
1287 	}
1288 	tp->t_segqlen = 0;
1289 	KASSERT(TAILQ_EMPTY(&tp->timeq));
1290 	return (rv);
1291 }
1292 
1293 /*
1294  * Protocol drain routine.  Called when memory is in short supply.
1295  * Don't acquire softnet_lock as can be called from hardware
1296  * interrupt handler.
1297  */
1298 void
1299 tcp_drain(void)
1300 {
1301 	struct inpcb_hdr *inph;
1302 	struct tcpcb *tp;
1303 
1304 	KERNEL_LOCK(1, NULL);
1305 
1306 	/*
1307 	 * Free the sequence queue of all TCP connections.
1308 	 */
1309 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1310 		switch (inph->inph_af) {
1311 		case AF_INET:
1312 			tp = intotcpcb((struct inpcb *)inph);
1313 			break;
1314 #ifdef INET6
1315 		case AF_INET6:
1316 			tp = in6totcpcb((struct in6pcb *)inph);
1317 			break;
1318 #endif
1319 		default:
1320 			tp = NULL;
1321 			break;
1322 		}
1323 		if (tp != NULL) {
1324 			/*
1325 			 * We may be called from a device's interrupt
1326 			 * context.  If the tcpcb is already busy,
1327 			 * just bail out now.
1328 			 */
1329 			if (tcp_reass_lock_try(tp) == 0)
1330 				continue;
1331 			if (tcp_freeq(tp))
1332 				TCP_STATINC(TCP_STAT_CONNSDRAINED);
1333 			TCP_REASS_UNLOCK(tp);
1334 		}
1335 	}
1336 
1337 	KERNEL_UNLOCK_ONE(NULL);
1338 }
1339 
1340 /*
1341  * Notify a tcp user of an asynchronous error;
1342  * store error as soft error, but wake up user
1343  * (for now, won't do anything until can select for soft error).
1344  */
1345 void
1346 tcp_notify(struct inpcb *inp, int error)
1347 {
1348 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1349 	struct socket *so = inp->inp_socket;
1350 
1351 	/*
1352 	 * Ignore some errors if we are hooked up.
1353 	 * If connection hasn't completed, has retransmitted several times,
1354 	 * and receives a second error, give up now.  This is better
1355 	 * than waiting a long time to establish a connection that
1356 	 * can never complete.
1357 	 */
1358 	if (tp->t_state == TCPS_ESTABLISHED &&
1359 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1360 	      error == EHOSTDOWN)) {
1361 		return;
1362 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1363 	    tp->t_rxtshift > 3 && tp->t_softerror)
1364 		so->so_error = error;
1365 	else
1366 		tp->t_softerror = error;
1367 	cv_broadcast(&so->so_cv);
1368 	sorwakeup(so);
1369 	sowwakeup(so);
1370 }
1371 
1372 #ifdef INET6
1373 void
1374 tcp6_notify(struct in6pcb *in6p, int error)
1375 {
1376 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1377 	struct socket *so = in6p->in6p_socket;
1378 
1379 	/*
1380 	 * Ignore some errors if we are hooked up.
1381 	 * If connection hasn't completed, has retransmitted several times,
1382 	 * and receives a second error, give up now.  This is better
1383 	 * than waiting a long time to establish a connection that
1384 	 * can never complete.
1385 	 */
1386 	if (tp->t_state == TCPS_ESTABLISHED &&
1387 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1388 	      error == EHOSTDOWN)) {
1389 		return;
1390 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1391 	    tp->t_rxtshift > 3 && tp->t_softerror)
1392 		so->so_error = error;
1393 	else
1394 		tp->t_softerror = error;
1395 	cv_broadcast(&so->so_cv);
1396 	sorwakeup(so);
1397 	sowwakeup(so);
1398 }
1399 #endif
1400 
1401 #ifdef INET6
1402 void *
1403 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1404 {
1405 	struct tcphdr th;
1406 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
1407 	int nmatch;
1408 	struct ip6_hdr *ip6;
1409 	const struct sockaddr_in6 *sa6_src = NULL;
1410 	const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1411 	struct mbuf *m;
1412 	int off;
1413 
1414 	if (sa->sa_family != AF_INET6 ||
1415 	    sa->sa_len != sizeof(struct sockaddr_in6))
1416 		return NULL;
1417 	if ((unsigned)cmd >= PRC_NCMDS)
1418 		return NULL;
1419 	else if (cmd == PRC_QUENCH) {
1420 		/*
1421 		 * Don't honor ICMP Source Quench messages meant for
1422 		 * TCP connections.
1423 		 */
1424 		return NULL;
1425 	} else if (PRC_IS_REDIRECT(cmd))
1426 		notify = in6_rtchange, d = NULL;
1427 	else if (cmd == PRC_MSGSIZE)
1428 		; /* special code is present, see below */
1429 	else if (cmd == PRC_HOSTDEAD)
1430 		d = NULL;
1431 	else if (inet6ctlerrmap[cmd] == 0)
1432 		return NULL;
1433 
1434 	/* if the parameter is from icmp6, decode it. */
1435 	if (d != NULL) {
1436 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1437 		m = ip6cp->ip6c_m;
1438 		ip6 = ip6cp->ip6c_ip6;
1439 		off = ip6cp->ip6c_off;
1440 		sa6_src = ip6cp->ip6c_src;
1441 	} else {
1442 		m = NULL;
1443 		ip6 = NULL;
1444 		sa6_src = &sa6_any;
1445 		off = 0;
1446 	}
1447 
1448 	if (ip6) {
1449 		/*
1450 		 * XXX: We assume that when ip6 is non NULL,
1451 		 * M and OFF are valid.
1452 		 */
1453 
1454 		/* check if we can safely examine src and dst ports */
1455 		if (m->m_pkthdr.len < off + sizeof(th)) {
1456 			if (cmd == PRC_MSGSIZE)
1457 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1458 			return NULL;
1459 		}
1460 
1461 		memset(&th, 0, sizeof(th));
1462 		m_copydata(m, off, sizeof(th), (void *)&th);
1463 
1464 		if (cmd == PRC_MSGSIZE) {
1465 			int valid = 0;
1466 
1467 			/*
1468 			 * Check to see if we have a valid TCP connection
1469 			 * corresponding to the address in the ICMPv6 message
1470 			 * payload.
1471 			 */
1472 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1473 			    th.th_dport,
1474 			    (const struct in6_addr *)&sa6_src->sin6_addr,
1475 			    th.th_sport, 0))
1476 				valid++;
1477 
1478 			/*
1479 			 * Depending on the value of "valid" and routing table
1480 			 * size (mtudisc_{hi,lo}wat), we will:
1481 			 * - recalcurate the new MTU and create the
1482 			 *   corresponding routing entry, or
1483 			 * - ignore the MTU change notification.
1484 			 */
1485 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1486 
1487 			/*
1488 			 * no need to call in6_pcbnotify, it should have been
1489 			 * called via callback if necessary
1490 			 */
1491 			return NULL;
1492 		}
1493 
1494 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1495 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1496 		if (nmatch == 0 && syn_cache_count &&
1497 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1498 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
1499 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
1500 			syn_cache_unreach((const struct sockaddr *)sa6_src,
1501 					  sa, &th);
1502 	} else {
1503 		(void) in6_pcbnotify(&tcbtable, sa, 0,
1504 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1505 	}
1506 
1507 	return NULL;
1508 }
1509 #endif
1510 
1511 #ifdef INET
1512 /* assumes that ip header and tcp header are contiguous on mbuf */
1513 void *
1514 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1515 {
1516 	struct ip *ip = v;
1517 	struct tcphdr *th;
1518 	struct icmp *icp;
1519 	extern const int inetctlerrmap[];
1520 	void (*notify)(struct inpcb *, int) = tcp_notify;
1521 	int errno;
1522 	int nmatch;
1523 	struct tcpcb *tp;
1524 	u_int mtu;
1525 	tcp_seq seq;
1526 	struct inpcb *inp;
1527 #ifdef INET6
1528 	struct in6pcb *in6p;
1529 	struct in6_addr src6, dst6;
1530 #endif
1531 
1532 	if (sa->sa_family != AF_INET ||
1533 	    sa->sa_len != sizeof(struct sockaddr_in))
1534 		return NULL;
1535 	if ((unsigned)cmd >= PRC_NCMDS)
1536 		return NULL;
1537 	errno = inetctlerrmap[cmd];
1538 	if (cmd == PRC_QUENCH)
1539 		/*
1540 		 * Don't honor ICMP Source Quench messages meant for
1541 		 * TCP connections.
1542 		 */
1543 		return NULL;
1544 	else if (PRC_IS_REDIRECT(cmd))
1545 		notify = in_rtchange, ip = 0;
1546 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1547 		/*
1548 		 * Check to see if we have a valid TCP connection
1549 		 * corresponding to the address in the ICMP message
1550 		 * payload.
1551 		 *
1552 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1553 		 */
1554 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1555 #ifdef INET6
1556 		memset(&src6, 0, sizeof(src6));
1557 		memset(&dst6, 0, sizeof(dst6));
1558 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1559 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1560 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1561 #endif
1562 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1563 		    th->th_dport, ip->ip_src, th->th_sport)) != NULL)
1564 #ifdef INET6
1565 			in6p = NULL;
1566 #else
1567 			;
1568 #endif
1569 #ifdef INET6
1570 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1571 		    th->th_dport, &src6, th->th_sport, 0)) != NULL)
1572 			;
1573 #endif
1574 		else
1575 			return NULL;
1576 
1577 		/*
1578 		 * Now that we've validated that we are actually communicating
1579 		 * with the host indicated in the ICMP message, locate the
1580 		 * ICMP header, recalculate the new MTU, and create the
1581 		 * corresponding routing entry.
1582 		 */
1583 		icp = (struct icmp *)((char *)ip -
1584 		    offsetof(struct icmp, icmp_ip));
1585 		if (inp) {
1586 			if ((tp = intotcpcb(inp)) == NULL)
1587 				return NULL;
1588 		}
1589 #ifdef INET6
1590 		else if (in6p) {
1591 			if ((tp = in6totcpcb(in6p)) == NULL)
1592 				return NULL;
1593 		}
1594 #endif
1595 		else
1596 			return NULL;
1597 		seq = ntohl(th->th_seq);
1598 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1599 			return NULL;
1600 		/*
1601 		 * If the ICMP message advertises a Next-Hop MTU
1602 		 * equal or larger than the maximum packet size we have
1603 		 * ever sent, drop the message.
1604 		 */
1605 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
1606 		if (mtu >= tp->t_pmtud_mtu_sent)
1607 			return NULL;
1608 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1609 			/*
1610 			 * Calculate new MTU, and create corresponding
1611 			 * route (traditional PMTUD).
1612 			 */
1613 			tp->t_flags &= ~TF_PMTUD_PEND;
1614 			icmp_mtudisc(icp, ip->ip_dst);
1615 		} else {
1616 			/*
1617 			 * Record the information got in the ICMP
1618 			 * message; act on it later.
1619 			 * If we had already recorded an ICMP message,
1620 			 * replace the old one only if the new message
1621 			 * refers to an older TCP segment
1622 			 */
1623 			if (tp->t_flags & TF_PMTUD_PEND) {
1624 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1625 					return NULL;
1626 			} else
1627 				tp->t_flags |= TF_PMTUD_PEND;
1628 			tp->t_pmtud_th_seq = seq;
1629 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1630 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1631 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1632 		}
1633 		return NULL;
1634 	} else if (cmd == PRC_HOSTDEAD)
1635 		ip = 0;
1636 	else if (errno == 0)
1637 		return NULL;
1638 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1639 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1640 		nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1641 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1642 		if (nmatch == 0 && syn_cache_count &&
1643 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
1644 		    inetctlerrmap[cmd] == ENETUNREACH ||
1645 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
1646 			struct sockaddr_in sin;
1647 			memset(&sin, 0, sizeof(sin));
1648 			sin.sin_len = sizeof(sin);
1649 			sin.sin_family = AF_INET;
1650 			sin.sin_port = th->th_sport;
1651 			sin.sin_addr = ip->ip_src;
1652 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1653 		}
1654 
1655 		/* XXX mapped address case */
1656 	} else
1657 		in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1658 		    notify);
1659 	return NULL;
1660 }
1661 
1662 /*
1663  * When a source quench is received, we are being notified of congestion.
1664  * Close the congestion window down to the Loss Window (one segment).
1665  * We will gradually open it again as we proceed.
1666  */
1667 void
1668 tcp_quench(struct inpcb *inp, int errno)
1669 {
1670 	struct tcpcb *tp = intotcpcb(inp);
1671 
1672 	if (tp) {
1673 		tp->snd_cwnd = tp->t_segsz;
1674 		tp->t_bytes_acked = 0;
1675 	}
1676 }
1677 #endif
1678 
1679 #ifdef INET6
1680 void
1681 tcp6_quench(struct in6pcb *in6p, int errno)
1682 {
1683 	struct tcpcb *tp = in6totcpcb(in6p);
1684 
1685 	if (tp) {
1686 		tp->snd_cwnd = tp->t_segsz;
1687 		tp->t_bytes_acked = 0;
1688 	}
1689 }
1690 #endif
1691 
1692 #ifdef INET
1693 /*
1694  * Path MTU Discovery handlers.
1695  */
1696 void
1697 tcp_mtudisc_callback(struct in_addr faddr)
1698 {
1699 #ifdef INET6
1700 	struct in6_addr in6;
1701 #endif
1702 
1703 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1704 #ifdef INET6
1705 	memset(&in6, 0, sizeof(in6));
1706 	in6.s6_addr16[5] = 0xffff;
1707 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1708 	tcp6_mtudisc_callback(&in6);
1709 #endif
1710 }
1711 
1712 /*
1713  * On receipt of path MTU corrections, flush old route and replace it
1714  * with the new one.  Retransmit all unacknowledged packets, to ensure
1715  * that all packets will be received.
1716  */
1717 void
1718 tcp_mtudisc(struct inpcb *inp, int errno)
1719 {
1720 	struct tcpcb *tp = intotcpcb(inp);
1721 	struct rtentry *rt = in_pcbrtentry(inp);
1722 
1723 	if (tp != 0) {
1724 		if (rt != 0) {
1725 			/*
1726 			 * If this was not a host route, remove and realloc.
1727 			 */
1728 			if ((rt->rt_flags & RTF_HOST) == 0) {
1729 				in_rtchange(inp, errno);
1730 				if ((rt = in_pcbrtentry(inp)) == 0)
1731 					return;
1732 			}
1733 
1734 			/*
1735 			 * Slow start out of the error condition.  We
1736 			 * use the MTU because we know it's smaller
1737 			 * than the previously transmitted segment.
1738 			 *
1739 			 * Note: This is more conservative than the
1740 			 * suggestion in draft-floyd-incr-init-win-03.
1741 			 */
1742 			if (rt->rt_rmx.rmx_mtu != 0)
1743 				tp->snd_cwnd =
1744 				    TCP_INITIAL_WINDOW(tcp_init_win,
1745 				    rt->rt_rmx.rmx_mtu);
1746 		}
1747 
1748 		/*
1749 		 * Resend unacknowledged packets.
1750 		 */
1751 		tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1752 		tcp_output(tp);
1753 	}
1754 }
1755 #endif
1756 
1757 #ifdef INET6
1758 /*
1759  * Path MTU Discovery handlers.
1760  */
1761 void
1762 tcp6_mtudisc_callback(struct in6_addr *faddr)
1763 {
1764 	struct sockaddr_in6 sin6;
1765 
1766 	memset(&sin6, 0, sizeof(sin6));
1767 	sin6.sin6_family = AF_INET6;
1768 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1769 	sin6.sin6_addr = *faddr;
1770 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1771 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1772 }
1773 
1774 void
1775 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1776 {
1777 	struct tcpcb *tp = in6totcpcb(in6p);
1778 	struct rtentry *rt = in6_pcbrtentry(in6p);
1779 
1780 	if (tp != 0) {
1781 		if (rt != 0) {
1782 			/*
1783 			 * If this was not a host route, remove and realloc.
1784 			 */
1785 			if ((rt->rt_flags & RTF_HOST) == 0) {
1786 				in6_rtchange(in6p, errno);
1787 				if ((rt = in6_pcbrtentry(in6p)) == 0)
1788 					return;
1789 			}
1790 
1791 			/*
1792 			 * Slow start out of the error condition.  We
1793 			 * use the MTU because we know it's smaller
1794 			 * than the previously transmitted segment.
1795 			 *
1796 			 * Note: This is more conservative than the
1797 			 * suggestion in draft-floyd-incr-init-win-03.
1798 			 */
1799 			if (rt->rt_rmx.rmx_mtu != 0)
1800 				tp->snd_cwnd =
1801 				    TCP_INITIAL_WINDOW(tcp_init_win,
1802 				    rt->rt_rmx.rmx_mtu);
1803 		}
1804 
1805 		/*
1806 		 * Resend unacknowledged packets.
1807 		 */
1808 		tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1809 		tcp_output(tp);
1810 	}
1811 }
1812 #endif /* INET6 */
1813 
1814 /*
1815  * Compute the MSS to advertise to the peer.  Called only during
1816  * the 3-way handshake.  If we are the server (peer initiated
1817  * connection), we are called with a pointer to the interface
1818  * on which the SYN packet arrived.  If we are the client (we
1819  * initiated connection), we are called with a pointer to the
1820  * interface out which this connection should go.
1821  *
1822  * NOTE: Do not subtract IP option/extension header size nor IPsec
1823  * header size from MSS advertisement.  MSS option must hold the maximum
1824  * segment size we can accept, so it must always be:
1825  *	 max(if mtu) - ip header - tcp header
1826  */
1827 u_long
1828 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1829 {
1830 	extern u_long in_maxmtu;
1831 	u_long mss = 0;
1832 	u_long hdrsiz;
1833 
1834 	/*
1835 	 * In order to avoid defeating path MTU discovery on the peer,
1836 	 * we advertise the max MTU of all attached networks as our MSS,
1837 	 * per RFC 1191, section 3.1.
1838 	 *
1839 	 * We provide the option to advertise just the MTU of
1840 	 * the interface on which we hope this connection will
1841 	 * be receiving.  If we are responding to a SYN, we
1842 	 * will have a pretty good idea about this, but when
1843 	 * initiating a connection there is a bit more doubt.
1844 	 *
1845 	 * We also need to ensure that loopback has a large enough
1846 	 * MSS, as the loopback MTU is never included in in_maxmtu.
1847 	 */
1848 
1849 	if (ifp != NULL)
1850 		switch (af) {
1851 		case AF_INET:
1852 			mss = ifp->if_mtu;
1853 			break;
1854 #ifdef INET6
1855 		case AF_INET6:
1856 			mss = IN6_LINKMTU(ifp);
1857 			break;
1858 #endif
1859 		}
1860 
1861 	if (tcp_mss_ifmtu == 0)
1862 		switch (af) {
1863 		case AF_INET:
1864 			mss = max(in_maxmtu, mss);
1865 			break;
1866 #ifdef INET6
1867 		case AF_INET6:
1868 			mss = max(in6_maxmtu, mss);
1869 			break;
1870 #endif
1871 		}
1872 
1873 	switch (af) {
1874 	case AF_INET:
1875 		hdrsiz = sizeof(struct ip);
1876 		break;
1877 #ifdef INET6
1878 	case AF_INET6:
1879 		hdrsiz = sizeof(struct ip6_hdr);
1880 		break;
1881 #endif
1882 	default:
1883 		hdrsiz = 0;
1884 		break;
1885 	}
1886 	hdrsiz += sizeof(struct tcphdr);
1887 	if (mss > hdrsiz)
1888 		mss -= hdrsiz;
1889 
1890 	mss = max(tcp_mssdflt, mss);
1891 	return (mss);
1892 }
1893 
1894 /*
1895  * Set connection variables based on the peer's advertised MSS.
1896  * We are passed the TCPCB for the actual connection.  If we
1897  * are the server, we are called by the compressed state engine
1898  * when the 3-way handshake is complete.  If we are the client,
1899  * we are called when we receive the SYN,ACK from the server.
1900  *
1901  * NOTE: Our advertised MSS value must be initialized in the TCPCB
1902  * before this routine is called!
1903  */
1904 void
1905 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1906 {
1907 	struct socket *so;
1908 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1909 	struct rtentry *rt;
1910 #endif
1911 	u_long bufsize;
1912 	int mss;
1913 
1914 #ifdef DIAGNOSTIC
1915 	if (tp->t_inpcb && tp->t_in6pcb)
1916 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1917 #endif
1918 	so = NULL;
1919 	rt = NULL;
1920 #ifdef INET
1921 	if (tp->t_inpcb) {
1922 		so = tp->t_inpcb->inp_socket;
1923 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1924 		rt = in_pcbrtentry(tp->t_inpcb);
1925 #endif
1926 	}
1927 #endif
1928 #ifdef INET6
1929 	if (tp->t_in6pcb) {
1930 		so = tp->t_in6pcb->in6p_socket;
1931 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1932 		rt = in6_pcbrtentry(tp->t_in6pcb);
1933 #endif
1934 	}
1935 #endif
1936 
1937 	/*
1938 	 * As per RFC1122, use the default MSS value, unless they
1939 	 * sent us an offer.  Do not accept offers less than 256 bytes.
1940 	 */
1941 	mss = tcp_mssdflt;
1942 	if (offer)
1943 		mss = offer;
1944 	mss = max(mss, 256);		/* sanity */
1945 	tp->t_peermss = mss;
1946 	mss -= tcp_optlen(tp);
1947 #ifdef INET
1948 	if (tp->t_inpcb)
1949 		mss -= ip_optlen(tp->t_inpcb);
1950 #endif
1951 #ifdef INET6
1952 	if (tp->t_in6pcb)
1953 		mss -= ip6_optlen(tp->t_in6pcb);
1954 #endif
1955 
1956 	/*
1957 	 * If there's a pipesize, change the socket buffer to that size.
1958 	 * Make the socket buffer an integral number of MSS units.  If
1959 	 * the MSS is larger than the socket buffer, artificially decrease
1960 	 * the MSS.
1961 	 */
1962 #ifdef RTV_SPIPE
1963 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1964 		bufsize = rt->rt_rmx.rmx_sendpipe;
1965 	else
1966 #endif
1967 	{
1968 		KASSERT(so != NULL);
1969 		bufsize = so->so_snd.sb_hiwat;
1970 	}
1971 	if (bufsize < mss)
1972 		mss = bufsize;
1973 	else {
1974 		bufsize = roundup(bufsize, mss);
1975 		if (bufsize > sb_max)
1976 			bufsize = sb_max;
1977 		(void) sbreserve(&so->so_snd, bufsize, so);
1978 	}
1979 	tp->t_segsz = mss;
1980 
1981 #ifdef RTV_SSTHRESH
1982 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1983 		/*
1984 		 * There's some sort of gateway or interface buffer
1985 		 * limit on the path.  Use this to set the slow
1986 		 * start threshold, but set the threshold to no less
1987 		 * than 2 * MSS.
1988 		 */
1989 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1990 	}
1991 #endif
1992 }
1993 
1994 /*
1995  * Processing necessary when a TCP connection is established.
1996  */
1997 void
1998 tcp_established(struct tcpcb *tp)
1999 {
2000 	struct socket *so;
2001 #ifdef RTV_RPIPE
2002 	struct rtentry *rt;
2003 #endif
2004 	u_long bufsize;
2005 
2006 #ifdef DIAGNOSTIC
2007 	if (tp->t_inpcb && tp->t_in6pcb)
2008 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
2009 #endif
2010 	so = NULL;
2011 	rt = NULL;
2012 #ifdef INET
2013 	if (tp->t_inpcb) {
2014 		so = tp->t_inpcb->inp_socket;
2015 #if defined(RTV_RPIPE)
2016 		rt = in_pcbrtentry(tp->t_inpcb);
2017 #endif
2018 	}
2019 #endif
2020 #ifdef INET6
2021 	if (tp->t_in6pcb) {
2022 		so = tp->t_in6pcb->in6p_socket;
2023 #if defined(RTV_RPIPE)
2024 		rt = in6_pcbrtentry(tp->t_in6pcb);
2025 #endif
2026 	}
2027 #endif
2028 
2029 	tp->t_state = TCPS_ESTABLISHED;
2030 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2031 
2032 #ifdef RTV_RPIPE
2033 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2034 		bufsize = rt->rt_rmx.rmx_recvpipe;
2035 	else
2036 #endif
2037 	{
2038 		KASSERT(so != NULL);
2039 		bufsize = so->so_rcv.sb_hiwat;
2040 	}
2041 	if (bufsize > tp->t_ourmss) {
2042 		bufsize = roundup(bufsize, tp->t_ourmss);
2043 		if (bufsize > sb_max)
2044 			bufsize = sb_max;
2045 		(void) sbreserve(&so->so_rcv, bufsize, so);
2046 	}
2047 }
2048 
2049 /*
2050  * Check if there's an initial rtt or rttvar.  Convert from the
2051  * route-table units to scaled multiples of the slow timeout timer.
2052  * Called only during the 3-way handshake.
2053  */
2054 void
2055 tcp_rmx_rtt(struct tcpcb *tp)
2056 {
2057 #ifdef RTV_RTT
2058 	struct rtentry *rt = NULL;
2059 	int rtt;
2060 
2061 #ifdef DIAGNOSTIC
2062 	if (tp->t_inpcb && tp->t_in6pcb)
2063 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2064 #endif
2065 #ifdef INET
2066 	if (tp->t_inpcb)
2067 		rt = in_pcbrtentry(tp->t_inpcb);
2068 #endif
2069 #ifdef INET6
2070 	if (tp->t_in6pcb)
2071 		rt = in6_pcbrtentry(tp->t_in6pcb);
2072 #endif
2073 	if (rt == NULL)
2074 		return;
2075 
2076 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2077 		/*
2078 		 * XXX The lock bit for MTU indicates that the value
2079 		 * is also a minimum value; this is subject to time.
2080 		 */
2081 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2082 			TCPT_RANGESET(tp->t_rttmin,
2083 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2084 			    TCPTV_MIN, TCPTV_REXMTMAX);
2085 		tp->t_srtt = rtt /
2086 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2087 		if (rt->rt_rmx.rmx_rttvar) {
2088 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2089 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
2090 				(TCP_RTTVAR_SHIFT + 2));
2091 		} else {
2092 			/* Default variation is +- 1 rtt */
2093 			tp->t_rttvar =
2094 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2095 		}
2096 		TCPT_RANGESET(tp->t_rxtcur,
2097 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2098 		    tp->t_rttmin, TCPTV_REXMTMAX);
2099 	}
2100 #endif
2101 }
2102 
2103 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
2104 #if NRND > 0
2105 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
2106 #endif
2107 
2108 /*
2109  * Get a new sequence value given a tcp control block
2110  */
2111 tcp_seq
2112 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2113 {
2114 
2115 #ifdef INET
2116 	if (tp->t_inpcb != NULL) {
2117 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2118 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2119 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2120 		    addin));
2121 	}
2122 #endif
2123 #ifdef INET6
2124 	if (tp->t_in6pcb != NULL) {
2125 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2126 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2127 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2128 		    addin));
2129 	}
2130 #endif
2131 	/* Not possible. */
2132 	panic("tcp_new_iss");
2133 }
2134 
2135 /*
2136  * This routine actually generates a new TCP initial sequence number.
2137  */
2138 tcp_seq
2139 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2140     size_t addrsz, tcp_seq addin)
2141 {
2142 	tcp_seq tcp_iss;
2143 
2144 #if NRND > 0
2145 	static bool tcp_iss_gotten_secret;
2146 
2147 	/*
2148 	 * If we haven't been here before, initialize our cryptographic
2149 	 * hash secret.
2150 	 */
2151 	if (tcp_iss_gotten_secret == false) {
2152 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2153 		    RND_EXTRACT_ANY);
2154 		tcp_iss_gotten_secret = true;
2155 	}
2156 
2157 	if (tcp_do_rfc1948) {
2158 		MD5_CTX ctx;
2159 		u_int8_t hash[16];	/* XXX MD5 knowledge */
2160 
2161 		/*
2162 		 * Compute the base value of the ISS.  It is a hash
2163 		 * of (saddr, sport, daddr, dport, secret).
2164 		 */
2165 		MD5Init(&ctx);
2166 
2167 		MD5Update(&ctx, (u_char *) laddr, addrsz);
2168 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2169 
2170 		MD5Update(&ctx, (u_char *) faddr, addrsz);
2171 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2172 
2173 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2174 
2175 		MD5Final(hash, &ctx);
2176 
2177 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2178 
2179 		/*
2180 		 * Now increment our "timer", and add it in to
2181 		 * the computed value.
2182 		 *
2183 		 * XXX Use `addin'?
2184 		 * XXX TCP_ISSINCR too large to use?
2185 		 */
2186 		tcp_iss_seq += TCP_ISSINCR;
2187 #ifdef TCPISS_DEBUG
2188 		printf("ISS hash 0x%08x, ", tcp_iss);
2189 #endif
2190 		tcp_iss += tcp_iss_seq + addin;
2191 #ifdef TCPISS_DEBUG
2192 		printf("new ISS 0x%08x\n", tcp_iss);
2193 #endif
2194 	} else
2195 #endif /* NRND > 0 */
2196 	{
2197 		/*
2198 		 * Randomize.
2199 		 */
2200 #if NRND > 0
2201 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2202 #else
2203 		tcp_iss = arc4random();
2204 #endif
2205 
2206 		/*
2207 		 * If we were asked to add some amount to a known value,
2208 		 * we will take a random value obtained above, mask off
2209 		 * the upper bits, and add in the known value.  We also
2210 		 * add in a constant to ensure that we are at least a
2211 		 * certain distance from the original value.
2212 		 *
2213 		 * This is used when an old connection is in timed wait
2214 		 * and we have a new one coming in, for instance.
2215 		 */
2216 		if (addin != 0) {
2217 #ifdef TCPISS_DEBUG
2218 			printf("Random %08x, ", tcp_iss);
2219 #endif
2220 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2221 			tcp_iss += addin + TCP_ISSINCR;
2222 #ifdef TCPISS_DEBUG
2223 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2224 #endif
2225 		} else {
2226 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2227 			tcp_iss += tcp_iss_seq;
2228 			tcp_iss_seq += TCP_ISSINCR;
2229 #ifdef TCPISS_DEBUG
2230 			printf("ISS %08x\n", tcp_iss);
2231 #endif
2232 		}
2233 	}
2234 
2235 	if (tcp_compat_42) {
2236 		/*
2237 		 * Limit it to the positive range for really old TCP
2238 		 * implementations.
2239 		 * Just AND off the top bit instead of checking if
2240 		 * is set first - saves a branch 50% of the time.
2241 		 */
2242 		tcp_iss &= 0x7fffffff;		/* XXX */
2243 	}
2244 
2245 	return (tcp_iss);
2246 }
2247 
2248 #if defined(IPSEC) || defined(FAST_IPSEC)
2249 /* compute ESP/AH header size for TCP, including outer IP header. */
2250 size_t
2251 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2252 {
2253 	struct inpcb *inp;
2254 	size_t hdrsiz;
2255 
2256 	/* XXX mapped addr case (tp->t_in6pcb) */
2257 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2258 		return 0;
2259 	switch (tp->t_family) {
2260 	case AF_INET:
2261 		/* XXX: should use currect direction. */
2262 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2263 		break;
2264 	default:
2265 		hdrsiz = 0;
2266 		break;
2267 	}
2268 
2269 	return hdrsiz;
2270 }
2271 
2272 #ifdef INET6
2273 size_t
2274 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2275 {
2276 	struct in6pcb *in6p;
2277 	size_t hdrsiz;
2278 
2279 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2280 		return 0;
2281 	switch (tp->t_family) {
2282 	case AF_INET6:
2283 		/* XXX: should use currect direction. */
2284 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2285 		break;
2286 	case AF_INET:
2287 		/* mapped address case - tricky */
2288 	default:
2289 		hdrsiz = 0;
2290 		break;
2291 	}
2292 
2293 	return hdrsiz;
2294 }
2295 #endif
2296 #endif /*IPSEC*/
2297 
2298 /*
2299  * Determine the length of the TCP options for this connection.
2300  *
2301  * XXX:  What do we do for SACK, when we add that?  Just reserve
2302  *       all of the space?  Otherwise we can't exactly be incrementing
2303  *       cwnd by an amount that varies depending on the amount we last
2304  *       had to SACK!
2305  */
2306 
2307 u_int
2308 tcp_optlen(struct tcpcb *tp)
2309 {
2310 	u_int optlen;
2311 
2312 	optlen = 0;
2313 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2314 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2315 		optlen += TCPOLEN_TSTAMP_APPA;
2316 
2317 #ifdef TCP_SIGNATURE
2318 	if (tp->t_flags & TF_SIGNATURE)
2319 		optlen += TCPOLEN_SIGNATURE + 2;
2320 #endif /* TCP_SIGNATURE */
2321 
2322 	return optlen;
2323 }
2324 
2325 u_int
2326 tcp_hdrsz(struct tcpcb *tp)
2327 {
2328 	u_int hlen;
2329 
2330 	switch (tp->t_family) {
2331 #ifdef INET6
2332 	case AF_INET6:
2333 		hlen = sizeof(struct ip6_hdr);
2334 		break;
2335 #endif
2336 	case AF_INET:
2337 		hlen = sizeof(struct ip);
2338 		break;
2339 	default:
2340 		hlen = 0;
2341 		break;
2342 	}
2343 	hlen += sizeof(struct tcphdr);
2344 
2345 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2346 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2347 		hlen += TCPOLEN_TSTAMP_APPA;
2348 #ifdef TCP_SIGNATURE
2349 	if (tp->t_flags & TF_SIGNATURE)
2350 		hlen += TCPOLEN_SIGLEN;
2351 #endif
2352 	return hlen;
2353 }
2354 
2355 void
2356 tcp_statinc(u_int stat)
2357 {
2358 
2359 	KASSERT(stat < TCP_NSTATS);
2360 	TCP_STATINC(stat);
2361 }
2362 
2363 void
2364 tcp_statadd(u_int stat, uint64_t val)
2365 {
2366 
2367 	KASSERT(stat < TCP_NSTATS);
2368 	TCP_STATADD(stat, val);
2369 }
2370