xref: /netbsd-src/sys/netinet/tcp_subr.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: tcp_subr.c,v 1.205 2006/10/13 18:28:06 dogcow Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38  * Facility, NASA Ames Research Center.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the NetBSD
51  *	Foundation, Inc. and its contributors.
52  * 4. Neither the name of The NetBSD Foundation nor the names of its
53  *    contributors may be used to endorse or promote products derived
54  *    from this software without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66  * POSSIBILITY OF SUCH DAMAGE.
67  */
68 
69 /*
70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71  *	The Regents of the University of California.  All rights reserved.
72  *
73  * Redistribution and use in source and binary forms, with or without
74  * modification, are permitted provided that the following conditions
75  * are met:
76  * 1. Redistributions of source code must retain the above copyright
77  *    notice, this list of conditions and the following disclaimer.
78  * 2. Redistributions in binary form must reproduce the above copyright
79  *    notice, this list of conditions and the following disclaimer in the
80  *    documentation and/or other materials provided with the distribution.
81  * 3. Neither the name of the University nor the names of its contributors
82  *    may be used to endorse or promote products derived from this software
83  *    without specific prior written permission.
84  *
85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95  * SUCH DAMAGE.
96  *
97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
98  */
99 
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.205 2006/10/13 18:28:06 dogcow Exp $");
102 
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109 
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125 
126 #include <net/route.h>
127 #include <net/if.h>
128 
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135 
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148 
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcp_congctl.h>
155 #include <netinet/tcpip.h>
156 
157 #ifdef IPSEC
158 #include <netinet6/ipsec.h>
159 #include <netkey/key.h>
160 #endif /*IPSEC*/
161 
162 #ifdef FAST_IPSEC
163 #include <netipsec/ipsec.h>
164 #include <netipsec/xform.h>
165 #ifdef INET6
166 #include <netipsec/ipsec6.h>
167 #endif
168  #include <netipsec/key.h>
169 #endif	/* FAST_IPSEC*/
170 
171 
172 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
173 struct	tcpstat tcpstat;	/* tcp statistics */
174 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
175 
176 /* patchable/settable parameters for tcp */
177 int 	tcp_mssdflt = TCP_MSS;
178 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
179 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
180 #if NRND > 0
181 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
182 #endif
183 int	tcp_do_sack = 1;	/* selective acknowledgement */
184 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
185 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
186 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
187 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
188 #ifndef TCP_INIT_WIN
189 #define	TCP_INIT_WIN	0	/* initial slow start window */
190 #endif
191 #ifndef TCP_INIT_WIN_LOCAL
192 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
193 #endif
194 int	tcp_init_win = TCP_INIT_WIN;
195 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
196 int	tcp_mss_ifmtu = 0;
197 #ifdef TCP_COMPAT_42
198 int	tcp_compat_42 = 1;
199 #else
200 int	tcp_compat_42 = 0;
201 #endif
202 int	tcp_rst_ppslim = 100;	/* 100pps */
203 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
204 int	tcp_do_loopback_cksum = 0;
205 int	tcp_sack_tp_maxholes = 32;
206 int	tcp_sack_globalmaxholes = 1024;
207 int	tcp_sack_globalholes = 0;
208 int	tcp_ecn_maxretries = 1;
209 
210 /* tcb hash */
211 #ifndef TCBHASHSIZE
212 #define	TCBHASHSIZE	128
213 #endif
214 int	tcbhashsize = TCBHASHSIZE;
215 
216 /* syn hash parameters */
217 #define	TCP_SYN_HASH_SIZE	293
218 #define	TCP_SYN_BUCKET_SIZE	35
219 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
220 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
221 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
222 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
223 
224 int	tcp_freeq(struct tcpcb *);
225 
226 #ifdef INET
227 void	tcp_mtudisc_callback(struct in_addr);
228 #endif
229 #ifdef INET6
230 void	tcp6_mtudisc_callback(struct in6_addr *);
231 #endif
232 
233 #ifdef INET6
234 void	tcp6_mtudisc(struct in6pcb *, int);
235 #endif
236 
237 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
238 
239 #ifdef TCP_CSUM_COUNTERS
240 #include <sys/device.h>
241 
242 #if defined(INET)
243 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
244     NULL, "tcp", "hwcsum bad");
245 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
246     NULL, "tcp", "hwcsum ok");
247 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
248     NULL, "tcp", "hwcsum data");
249 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
250     NULL, "tcp", "swcsum");
251 
252 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
253 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
254 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
255 EVCNT_ATTACH_STATIC(tcp_swcsum);
256 #endif /* defined(INET) */
257 
258 #if defined(INET6)
259 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
260     NULL, "tcp6", "hwcsum bad");
261 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262     NULL, "tcp6", "hwcsum ok");
263 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264     NULL, "tcp6", "hwcsum data");
265 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266     NULL, "tcp6", "swcsum");
267 
268 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
269 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
270 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
271 EVCNT_ATTACH_STATIC(tcp6_swcsum);
272 #endif /* defined(INET6) */
273 #endif /* TCP_CSUM_COUNTERS */
274 
275 
276 #ifdef TCP_OUTPUT_COUNTERS
277 #include <sys/device.h>
278 
279 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
280     NULL, "tcp", "output big header");
281 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282     NULL, "tcp", "output predict hit");
283 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284     NULL, "tcp", "output predict miss");
285 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286     NULL, "tcp", "output copy small");
287 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288     NULL, "tcp", "output copy big");
289 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
290     NULL, "tcp", "output reference big");
291 
292 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
293 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
294 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
295 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
296 EVCNT_ATTACH_STATIC(tcp_output_copybig);
297 EVCNT_ATTACH_STATIC(tcp_output_refbig);
298 
299 #endif /* TCP_OUTPUT_COUNTERS */
300 
301 #ifdef TCP_REASS_COUNTERS
302 #include <sys/device.h>
303 
304 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
305     NULL, "tcp_reass", "calls");
306 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
307     &tcp_reass_, "tcp_reass", "insert into empty queue");
308 struct evcnt tcp_reass_iteration[8] = {
309     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
310     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
311     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
312     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
316     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
317 };
318 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
319     &tcp_reass_, "tcp_reass", "prepend to first");
320 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
321     &tcp_reass_, "tcp_reass", "prepend");
322 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
323     &tcp_reass_, "tcp_reass", "insert");
324 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
325     &tcp_reass_, "tcp_reass", "insert at tail");
326 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
327     &tcp_reass_, "tcp_reass", "append");
328 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
329     &tcp_reass_, "tcp_reass", "append to tail fragment");
330 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
331     &tcp_reass_, "tcp_reass", "overlap at end");
332 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
333     &tcp_reass_, "tcp_reass", "overlap at start");
334 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
335     &tcp_reass_, "tcp_reass", "duplicate segment");
336 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
337     &tcp_reass_, "tcp_reass", "duplicate fragment");
338 
339 EVCNT_ATTACH_STATIC(tcp_reass_);
340 EVCNT_ATTACH_STATIC(tcp_reass_empty);
341 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
342 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
343 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
344 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
349 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
350 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
351 EVCNT_ATTACH_STATIC(tcp_reass_insert);
352 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
353 EVCNT_ATTACH_STATIC(tcp_reass_append);
354 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
355 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
356 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
357 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
358 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
359 
360 #endif /* TCP_REASS_COUNTERS */
361 
362 #ifdef MBUFTRACE
363 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
364 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
365 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
366 #endif
367 
368 /*
369  * Tcp initialization
370  */
371 void
372 tcp_init(void)
373 {
374 	int hlen;
375 
376 	/* Initialize the TCPCB template. */
377 	tcp_tcpcb_template();
378 
379 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
380 
381 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
382 #ifdef INET6
383 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
384 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
385 #endif
386 	if (max_protohdr < hlen)
387 		max_protohdr = hlen;
388 	if (max_linkhdr + hlen > MHLEN)
389 		panic("tcp_init");
390 
391 #ifdef INET
392 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
393 #endif
394 #ifdef INET6
395 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
396 #endif
397 
398 	/* Initialize timer state. */
399 	tcp_timer_init();
400 
401 	/* Initialize the compressed state engine. */
402 	syn_cache_init();
403 
404 	/* Initialize the congestion control algorithms. */
405 	tcp_congctl_init();
406 
407 	MOWNER_ATTACH(&tcp_tx_mowner);
408 	MOWNER_ATTACH(&tcp_rx_mowner);
409 	MOWNER_ATTACH(&tcp_mowner);
410 }
411 
412 /*
413  * Create template to be used to send tcp packets on a connection.
414  * Call after host entry created, allocates an mbuf and fills
415  * in a skeletal tcp/ip header, minimizing the amount of work
416  * necessary when the connection is used.
417  */
418 struct mbuf *
419 tcp_template(struct tcpcb *tp)
420 {
421 	struct inpcb *inp = tp->t_inpcb;
422 #ifdef INET6
423 	struct in6pcb *in6p = tp->t_in6pcb;
424 #endif
425 	struct tcphdr *n;
426 	struct mbuf *m;
427 	int hlen;
428 
429 	switch (tp->t_family) {
430 	case AF_INET:
431 		hlen = sizeof(struct ip);
432 		if (inp)
433 			break;
434 #ifdef INET6
435 		if (in6p) {
436 			/* mapped addr case */
437 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
438 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
439 				break;
440 		}
441 #endif
442 		return NULL;	/*EINVAL*/
443 #ifdef INET6
444 	case AF_INET6:
445 		hlen = sizeof(struct ip6_hdr);
446 		if (in6p) {
447 			/* more sainty check? */
448 			break;
449 		}
450 		return NULL;	/*EINVAL*/
451 #endif
452 	default:
453 		hlen = 0;	/*pacify gcc*/
454 		return NULL;	/*EAFNOSUPPORT*/
455 	}
456 #ifdef DIAGNOSTIC
457 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
458 		panic("mclbytes too small for t_template");
459 #endif
460 	m = tp->t_template;
461 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
462 		;
463 	else {
464 		if (m)
465 			m_freem(m);
466 		m = tp->t_template = NULL;
467 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
468 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
469 			MCLGET(m, M_DONTWAIT);
470 			if ((m->m_flags & M_EXT) == 0) {
471 				m_free(m);
472 				m = NULL;
473 			}
474 		}
475 		if (m == NULL)
476 			return NULL;
477 		MCLAIM(m, &tcp_mowner);
478 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
479 	}
480 
481 	bzero(mtod(m, caddr_t), m->m_len);
482 
483 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
484 
485 	switch (tp->t_family) {
486 	case AF_INET:
487 	    {
488 		struct ipovly *ipov;
489 		mtod(m, struct ip *)->ip_v = 4;
490 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
491 		ipov = mtod(m, struct ipovly *);
492 		ipov->ih_pr = IPPROTO_TCP;
493 		ipov->ih_len = htons(sizeof(struct tcphdr));
494 		if (inp) {
495 			ipov->ih_src = inp->inp_laddr;
496 			ipov->ih_dst = inp->inp_faddr;
497 		}
498 #ifdef INET6
499 		else if (in6p) {
500 			/* mapped addr case */
501 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
502 				sizeof(ipov->ih_src));
503 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
504 				sizeof(ipov->ih_dst));
505 		}
506 #endif
507 		/*
508 		 * Compute the pseudo-header portion of the checksum
509 		 * now.  We incrementally add in the TCP option and
510 		 * payload lengths later, and then compute the TCP
511 		 * checksum right before the packet is sent off onto
512 		 * the wire.
513 		 */
514 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
515 		    ipov->ih_dst.s_addr,
516 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
517 		break;
518 	    }
519 #ifdef INET6
520 	case AF_INET6:
521 	    {
522 		struct ip6_hdr *ip6;
523 		mtod(m, struct ip *)->ip_v = 6;
524 		ip6 = mtod(m, struct ip6_hdr *);
525 		ip6->ip6_nxt = IPPROTO_TCP;
526 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
527 		ip6->ip6_src = in6p->in6p_laddr;
528 		ip6->ip6_dst = in6p->in6p_faddr;
529 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
530 		if (ip6_auto_flowlabel) {
531 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
532 			ip6->ip6_flow |=
533 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
534 		}
535 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
536 		ip6->ip6_vfc |= IPV6_VERSION;
537 
538 		/*
539 		 * Compute the pseudo-header portion of the checksum
540 		 * now.  We incrementally add in the TCP option and
541 		 * payload lengths later, and then compute the TCP
542 		 * checksum right before the packet is sent off onto
543 		 * the wire.
544 		 */
545 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
546 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
547 		    htonl(IPPROTO_TCP));
548 		break;
549 	    }
550 #endif
551 	}
552 	if (inp) {
553 		n->th_sport = inp->inp_lport;
554 		n->th_dport = inp->inp_fport;
555 	}
556 #ifdef INET6
557 	else if (in6p) {
558 		n->th_sport = in6p->in6p_lport;
559 		n->th_dport = in6p->in6p_fport;
560 	}
561 #endif
562 	n->th_seq = 0;
563 	n->th_ack = 0;
564 	n->th_x2 = 0;
565 	n->th_off = 5;
566 	n->th_flags = 0;
567 	n->th_win = 0;
568 	n->th_urp = 0;
569 	return (m);
570 }
571 
572 /*
573  * Send a single message to the TCP at address specified by
574  * the given TCP/IP header.  If m == 0, then we make a copy
575  * of the tcpiphdr at ti and send directly to the addressed host.
576  * This is used to force keep alive messages out using the TCP
577  * template for a connection tp->t_template.  If flags are given
578  * then we send a message back to the TCP which originated the
579  * segment ti, and discard the mbuf containing it and any other
580  * attached mbufs.
581  *
582  * In any case the ack and sequence number of the transmitted
583  * segment are as specified by the parameters.
584  */
585 int
586 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
587     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
588 {
589 	struct route *ro;
590 	int error, tlen, win = 0;
591 	int hlen;
592 	struct ip *ip;
593 #ifdef INET6
594 	struct ip6_hdr *ip6;
595 #endif
596 	int family;	/* family on packet, not inpcb/in6pcb! */
597 	struct tcphdr *th;
598 	struct socket *so;
599 
600 	if (tp != NULL && (flags & TH_RST) == 0) {
601 #ifdef DIAGNOSTIC
602 		if (tp->t_inpcb && tp->t_in6pcb)
603 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
604 #endif
605 #ifdef INET
606 		if (tp->t_inpcb)
607 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
608 #endif
609 #ifdef INET6
610 		if (tp->t_in6pcb)
611 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
612 #endif
613 	}
614 
615 	th = NULL;	/* Quell uninitialized warning */
616 	ip = NULL;
617 #ifdef INET6
618 	ip6 = NULL;
619 #endif
620 	if (m == 0) {
621 		if (!template)
622 			return EINVAL;
623 
624 		/* get family information from template */
625 		switch (mtod(template, struct ip *)->ip_v) {
626 		case 4:
627 			family = AF_INET;
628 			hlen = sizeof(struct ip);
629 			break;
630 #ifdef INET6
631 		case 6:
632 			family = AF_INET6;
633 			hlen = sizeof(struct ip6_hdr);
634 			break;
635 #endif
636 		default:
637 			return EAFNOSUPPORT;
638 		}
639 
640 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
641 		if (m) {
642 			MCLAIM(m, &tcp_tx_mowner);
643 			MCLGET(m, M_DONTWAIT);
644 			if ((m->m_flags & M_EXT) == 0) {
645 				m_free(m);
646 				m = NULL;
647 			}
648 		}
649 		if (m == NULL)
650 			return (ENOBUFS);
651 
652 		if (tcp_compat_42)
653 			tlen = 1;
654 		else
655 			tlen = 0;
656 
657 		m->m_data += max_linkhdr;
658 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
659 			template->m_len);
660 		switch (family) {
661 		case AF_INET:
662 			ip = mtod(m, struct ip *);
663 			th = (struct tcphdr *)(ip + 1);
664 			break;
665 #ifdef INET6
666 		case AF_INET6:
667 			ip6 = mtod(m, struct ip6_hdr *);
668 			th = (struct tcphdr *)(ip6 + 1);
669 			break;
670 #endif
671 #if 0
672 		default:
673 			/* noone will visit here */
674 			m_freem(m);
675 			return EAFNOSUPPORT;
676 #endif
677 		}
678 		flags = TH_ACK;
679 	} else {
680 
681 		if ((m->m_flags & M_PKTHDR) == 0) {
682 #if 0
683 			printf("non PKTHDR to tcp_respond\n");
684 #endif
685 			m_freem(m);
686 			return EINVAL;
687 		}
688 #ifdef DIAGNOSTIC
689 		if (!th0)
690 			panic("th0 == NULL in tcp_respond");
691 #endif
692 
693 		/* get family information from m */
694 		switch (mtod(m, struct ip *)->ip_v) {
695 		case 4:
696 			family = AF_INET;
697 			hlen = sizeof(struct ip);
698 			ip = mtod(m, struct ip *);
699 			break;
700 #ifdef INET6
701 		case 6:
702 			family = AF_INET6;
703 			hlen = sizeof(struct ip6_hdr);
704 			ip6 = mtod(m, struct ip6_hdr *);
705 			break;
706 #endif
707 		default:
708 			m_freem(m);
709 			return EAFNOSUPPORT;
710 		}
711 		/* clear h/w csum flags inherited from rx packet */
712 		m->m_pkthdr.csum_flags = 0;
713 
714 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
715 			tlen = sizeof(*th0);
716 		else
717 			tlen = th0->th_off << 2;
718 
719 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
720 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
721 			m->m_len = hlen + tlen;
722 			m_freem(m->m_next);
723 			m->m_next = NULL;
724 		} else {
725 			struct mbuf *n;
726 
727 #ifdef DIAGNOSTIC
728 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
729 				m_freem(m);
730 				return EMSGSIZE;
731 			}
732 #endif
733 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
734 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
735 				MCLGET(n, M_DONTWAIT);
736 				if ((n->m_flags & M_EXT) == 0) {
737 					m_freem(n);
738 					n = NULL;
739 				}
740 			}
741 			if (!n) {
742 				m_freem(m);
743 				return ENOBUFS;
744 			}
745 
746 			MCLAIM(n, &tcp_tx_mowner);
747 			n->m_data += max_linkhdr;
748 			n->m_len = hlen + tlen;
749 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
750 			m_copyback(n, hlen, tlen, (caddr_t)th0);
751 
752 			m_freem(m);
753 			m = n;
754 			n = NULL;
755 		}
756 
757 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
758 		switch (family) {
759 		case AF_INET:
760 			ip = mtod(m, struct ip *);
761 			th = (struct tcphdr *)(ip + 1);
762 			ip->ip_p = IPPROTO_TCP;
763 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
764 			ip->ip_p = IPPROTO_TCP;
765 			break;
766 #ifdef INET6
767 		case AF_INET6:
768 			ip6 = mtod(m, struct ip6_hdr *);
769 			th = (struct tcphdr *)(ip6 + 1);
770 			ip6->ip6_nxt = IPPROTO_TCP;
771 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
772 			ip6->ip6_nxt = IPPROTO_TCP;
773 			break;
774 #endif
775 #if 0
776 		default:
777 			/* noone will visit here */
778 			m_freem(m);
779 			return EAFNOSUPPORT;
780 #endif
781 		}
782 		xchg(th->th_dport, th->th_sport, u_int16_t);
783 #undef xchg
784 		tlen = 0;	/*be friendly with the following code*/
785 	}
786 	th->th_seq = htonl(seq);
787 	th->th_ack = htonl(ack);
788 	th->th_x2 = 0;
789 	if ((flags & TH_SYN) == 0) {
790 		if (tp)
791 			win >>= tp->rcv_scale;
792 		if (win > TCP_MAXWIN)
793 			win = TCP_MAXWIN;
794 		th->th_win = htons((u_int16_t)win);
795 		th->th_off = sizeof (struct tcphdr) >> 2;
796 		tlen += sizeof(*th);
797 	} else
798 		tlen += th->th_off << 2;
799 	m->m_len = hlen + tlen;
800 	m->m_pkthdr.len = hlen + tlen;
801 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
802 	th->th_flags = flags;
803 	th->th_urp = 0;
804 
805 	switch (family) {
806 #ifdef INET
807 	case AF_INET:
808 	    {
809 		struct ipovly *ipov = (struct ipovly *)ip;
810 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
811 		ipov->ih_len = htons((u_int16_t)tlen);
812 
813 		th->th_sum = 0;
814 		th->th_sum = in_cksum(m, hlen + tlen);
815 		ip->ip_len = htons(hlen + tlen);
816 		ip->ip_ttl = ip_defttl;
817 		break;
818 	    }
819 #endif
820 #ifdef INET6
821 	case AF_INET6:
822 	    {
823 		th->th_sum = 0;
824 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
825 				tlen);
826 		ip6->ip6_plen = htons(tlen);
827 		if (tp && tp->t_in6pcb) {
828 			struct ifnet *oifp;
829 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
830 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
831 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
832 		} else
833 			ip6->ip6_hlim = ip6_defhlim;
834 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
835 		if (ip6_auto_flowlabel) {
836 			ip6->ip6_flow |=
837 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
838 		}
839 		break;
840 	    }
841 #endif
842 	}
843 
844 	if (tp && tp->t_inpcb)
845 		so = tp->t_inpcb->inp_socket;
846 #ifdef INET6
847 	else if (tp && tp->t_in6pcb)
848 		so = tp->t_in6pcb->in6p_socket;
849 #endif
850 	else
851 		so = NULL;
852 
853 	if (tp != NULL && tp->t_inpcb != NULL) {
854 		ro = &tp->t_inpcb->inp_route;
855 #ifdef DIAGNOSTIC
856 		if (family != AF_INET)
857 			panic("tcp_respond: address family mismatch");
858 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
859 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
860 			    ntohl(ip->ip_dst.s_addr),
861 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
862 		}
863 #endif
864 	}
865 #ifdef INET6
866 	else if (tp != NULL && tp->t_in6pcb != NULL) {
867 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
868 #ifdef DIAGNOSTIC
869 		if (family == AF_INET) {
870 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
871 				panic("tcp_respond: not mapped addr");
872 			if (bcmp(&ip->ip_dst,
873 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
874 			    sizeof(ip->ip_dst)) != 0) {
875 				panic("tcp_respond: ip_dst != in6p_faddr");
876 			}
877 		} else if (family == AF_INET6) {
878 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
879 			    &tp->t_in6pcb->in6p_faddr))
880 				panic("tcp_respond: ip6_dst != in6p_faddr");
881 		} else
882 			panic("tcp_respond: address family mismatch");
883 #endif
884 	}
885 #endif
886 	else
887 		ro = NULL;
888 
889 	switch (family) {
890 #ifdef INET
891 	case AF_INET:
892 		error = ip_output(m, NULL, ro,
893 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
894 		    (struct ip_moptions *)0, so);
895 		break;
896 #endif
897 #ifdef INET6
898 	case AF_INET6:
899 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
900 		    (struct ip6_moptions *)0, so, NULL);
901 		break;
902 #endif
903 	default:
904 		error = EAFNOSUPPORT;
905 		break;
906 	}
907 
908 	return (error);
909 }
910 
911 /*
912  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
913  * a bunch of members individually, we maintain this template for the
914  * static and mostly-static components of the TCPCB, and copy it into
915  * the new TCPCB instead.
916  */
917 static struct tcpcb tcpcb_template = {
918 	/*
919 	 * If TCP_NTIMERS ever changes, we'll need to update this
920 	 * initializer.
921 	 */
922 	.t_timer = {
923 		CALLOUT_INITIALIZER,
924 		CALLOUT_INITIALIZER,
925 		CALLOUT_INITIALIZER,
926 		CALLOUT_INITIALIZER,
927 	},
928 	.t_delack_ch = CALLOUT_INITIALIZER,
929 
930 	.t_srtt = TCPTV_SRTTBASE,
931 	.t_rttmin = TCPTV_MIN,
932 
933 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
934 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
935 	.snd_numholes = 0,
936 
937 	.t_partialacks = -1,
938 };
939 
940 /*
941  * Updates the TCPCB template whenever a parameter that would affect
942  * the template is changed.
943  */
944 void
945 tcp_tcpcb_template(void)
946 {
947 	struct tcpcb *tp = &tcpcb_template;
948 	int flags;
949 
950 	tp->t_peermss = tcp_mssdflt;
951 	tp->t_ourmss = tcp_mssdflt;
952 	tp->t_segsz = tcp_mssdflt;
953 
954 	flags = 0;
955 	if (tcp_do_rfc1323 && tcp_do_win_scale)
956 		flags |= TF_REQ_SCALE;
957 	if (tcp_do_rfc1323 && tcp_do_timestamps)
958 		flags |= TF_REQ_TSTMP;
959 	tp->t_flags = flags;
960 
961 	/*
962 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
963 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
964 	 * reasonable initial retransmit time.
965 	 */
966 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
967 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
968 	    TCPTV_MIN, TCPTV_REXMTMAX);
969 }
970 
971 /*
972  * Create a new TCP control block, making an
973  * empty reassembly queue and hooking it to the argument
974  * protocol control block.
975  */
976 /* family selects inpcb, or in6pcb */
977 struct tcpcb *
978 tcp_newtcpcb(int family, void *aux)
979 {
980 	struct tcpcb *tp;
981 	int i;
982 
983 	/* XXX Consider using a pool_cache for speed. */
984 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
985 	if (tp == NULL)
986 		return (NULL);
987 	memcpy(tp, &tcpcb_template, sizeof(*tp));
988 	TAILQ_INIT(&tp->segq);
989 	TAILQ_INIT(&tp->timeq);
990 	tp->t_family = family;		/* may be overridden later on */
991 	TAILQ_INIT(&tp->snd_holes);
992 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
993 
994 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
995 	for (i = 0; i < TCPT_NTIMERS; i++)
996 		TCP_TIMER_INIT(tp, i);
997 
998 	switch (family) {
999 	case AF_INET:
1000 	    {
1001 		struct inpcb *inp = (struct inpcb *)aux;
1002 
1003 		inp->inp_ip.ip_ttl = ip_defttl;
1004 		inp->inp_ppcb = (caddr_t)tp;
1005 
1006 		tp->t_inpcb = inp;
1007 		tp->t_mtudisc = ip_mtudisc;
1008 		break;
1009 	    }
1010 #ifdef INET6
1011 	case AF_INET6:
1012 	    {
1013 		struct in6pcb *in6p = (struct in6pcb *)aux;
1014 
1015 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1016 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
1017 					       : NULL);
1018 		in6p->in6p_ppcb = (caddr_t)tp;
1019 
1020 		tp->t_in6pcb = in6p;
1021 		/* for IPv6, always try to run path MTU discovery */
1022 		tp->t_mtudisc = 1;
1023 		break;
1024 	    }
1025 #endif /* INET6 */
1026 	default:
1027 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
1028 		return (NULL);
1029 	}
1030 
1031 	/*
1032 	 * Initialize our timebase.  When we send timestamps, we take
1033 	 * the delta from tcp_now -- this means each connection always
1034 	 * gets a timebase of 0, which makes it, among other things,
1035 	 * more difficult to determine how long a system has been up,
1036 	 * and thus how many TCP sequence increments have occurred.
1037 	 */
1038 	tp->ts_timebase = tcp_now;
1039 
1040 	tp->t_congctl = tcp_congctl_global;
1041 	tp->t_congctl->refcnt++;
1042 
1043 	return (tp);
1044 }
1045 
1046 /*
1047  * Drop a TCP connection, reporting
1048  * the specified error.  If connection is synchronized,
1049  * then send a RST to peer.
1050  */
1051 struct tcpcb *
1052 tcp_drop(struct tcpcb *tp, int errno)
1053 {
1054 	struct socket *so = NULL;
1055 
1056 #ifdef DIAGNOSTIC
1057 	if (tp->t_inpcb && tp->t_in6pcb)
1058 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1059 #endif
1060 #ifdef INET
1061 	if (tp->t_inpcb)
1062 		so = tp->t_inpcb->inp_socket;
1063 #endif
1064 #ifdef INET6
1065 	if (tp->t_in6pcb)
1066 		so = tp->t_in6pcb->in6p_socket;
1067 #endif
1068 	if (!so)
1069 		return NULL;
1070 
1071 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1072 		tp->t_state = TCPS_CLOSED;
1073 		(void) tcp_output(tp);
1074 		tcpstat.tcps_drops++;
1075 	} else
1076 		tcpstat.tcps_conndrops++;
1077 	if (errno == ETIMEDOUT && tp->t_softerror)
1078 		errno = tp->t_softerror;
1079 	so->so_error = errno;
1080 	return (tcp_close(tp));
1081 }
1082 
1083 /*
1084  * Return whether this tcpcb is marked as dead, indicating
1085  * to the calling timer function that no further action should
1086  * be taken, as we are about to release this tcpcb.  The release
1087  * of the storage will be done if this is the last timer running.
1088  *
1089  * This should be called from the callout handler function after
1090  * callout_ack() is done, so that the number of invoking timer
1091  * functions is 0.
1092  */
1093 int
1094 tcp_isdead(struct tcpcb *tp)
1095 {
1096 	int dead = (tp->t_flags & TF_DEAD);
1097 
1098 	if (__predict_false(dead)) {
1099 		if (tcp_timers_invoking(tp) > 0)
1100 				/* not quite there yet -- count separately? */
1101 			return dead;
1102 		tcpstat.tcps_delayed_free++;
1103 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_timer.c */
1104 	}
1105 	return dead;
1106 }
1107 
1108 /*
1109  * Close a TCP control block:
1110  *	discard all space held by the tcp
1111  *	discard internet protocol block
1112  *	wake up any sleepers
1113  */
1114 struct tcpcb *
1115 tcp_close(struct tcpcb *tp)
1116 {
1117 	struct inpcb *inp;
1118 #ifdef INET6
1119 	struct in6pcb *in6p;
1120 #endif
1121 	struct socket *so;
1122 #ifdef RTV_RTT
1123 	struct rtentry *rt;
1124 #endif
1125 	struct route *ro;
1126 
1127 	inp = tp->t_inpcb;
1128 #ifdef INET6
1129 	in6p = tp->t_in6pcb;
1130 #endif
1131 	so = NULL;
1132 	ro = NULL;
1133 	if (inp) {
1134 		so = inp->inp_socket;
1135 		ro = &inp->inp_route;
1136 	}
1137 #ifdef INET6
1138 	else if (in6p) {
1139 		so = in6p->in6p_socket;
1140 		ro = (struct route *)&in6p->in6p_route;
1141 	}
1142 #endif
1143 
1144 #ifdef RTV_RTT
1145 	/*
1146 	 * If we sent enough data to get some meaningful characteristics,
1147 	 * save them in the routing entry.  'Enough' is arbitrarily
1148 	 * defined as the sendpipesize (default 4K) * 16.  This would
1149 	 * give us 16 rtt samples assuming we only get one sample per
1150 	 * window (the usual case on a long haul net).  16 samples is
1151 	 * enough for the srtt filter to converge to within 5% of the correct
1152 	 * value; fewer samples and we could save a very bogus rtt.
1153 	 *
1154 	 * Don't update the default route's characteristics and don't
1155 	 * update anything that the user "locked".
1156 	 */
1157 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1158 	    ro && (rt = ro->ro_rt) &&
1159 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1160 		u_long i = 0;
1161 
1162 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1163 			i = tp->t_srtt *
1164 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1165 			if (rt->rt_rmx.rmx_rtt && i)
1166 				/*
1167 				 * filter this update to half the old & half
1168 				 * the new values, converting scale.
1169 				 * See route.h and tcp_var.h for a
1170 				 * description of the scaling constants.
1171 				 */
1172 				rt->rt_rmx.rmx_rtt =
1173 				    (rt->rt_rmx.rmx_rtt + i) / 2;
1174 			else
1175 				rt->rt_rmx.rmx_rtt = i;
1176 		}
1177 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1178 			i = tp->t_rttvar *
1179 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1180 			if (rt->rt_rmx.rmx_rttvar && i)
1181 				rt->rt_rmx.rmx_rttvar =
1182 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
1183 			else
1184 				rt->rt_rmx.rmx_rttvar = i;
1185 		}
1186 		/*
1187 		 * update the pipelimit (ssthresh) if it has been updated
1188 		 * already or if a pipesize was specified & the threshhold
1189 		 * got below half the pipesize.  I.e., wait for bad news
1190 		 * before we start updating, then update on both good
1191 		 * and bad news.
1192 		 */
1193 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1194 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1195 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1196 			/*
1197 			 * convert the limit from user data bytes to
1198 			 * packets then to packet data bytes.
1199 			 */
1200 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
1201 			if (i < 2)
1202 				i = 2;
1203 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1204 			if (rt->rt_rmx.rmx_ssthresh)
1205 				rt->rt_rmx.rmx_ssthresh =
1206 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1207 			else
1208 				rt->rt_rmx.rmx_ssthresh = i;
1209 		}
1210 	}
1211 #endif /* RTV_RTT */
1212 	/* free the reassembly queue, if any */
1213 	TCP_REASS_LOCK(tp);
1214 	(void) tcp_freeq(tp);
1215 	TCP_REASS_UNLOCK(tp);
1216 
1217 	/* free the SACK holes list. */
1218 	tcp_free_sackholes(tp);
1219 
1220 	tp->t_congctl->refcnt--;
1221 
1222 	tcp_canceltimers(tp);
1223 	TCP_CLEAR_DELACK(tp);
1224 	syn_cache_cleanup(tp);
1225 
1226 	if (tp->t_template) {
1227 		m_free(tp->t_template);
1228 		tp->t_template = NULL;
1229 	}
1230 	if (tcp_timers_invoking(tp))
1231 		tp->t_flags |= TF_DEAD;
1232 	else
1233 		pool_put(&tcpcb_pool, tp);
1234 
1235 	if (inp) {
1236 		inp->inp_ppcb = 0;
1237 		soisdisconnected(so);
1238 		in_pcbdetach(inp);
1239 	}
1240 #ifdef INET6
1241 	else if (in6p) {
1242 		in6p->in6p_ppcb = 0;
1243 		soisdisconnected(so);
1244 		in6_pcbdetach(in6p);
1245 	}
1246 #endif
1247 	tcpstat.tcps_closed++;
1248 	return ((struct tcpcb *)0);
1249 }
1250 
1251 int
1252 tcp_freeq(tp)
1253 	struct tcpcb *tp;
1254 {
1255 	struct ipqent *qe;
1256 	int rv = 0;
1257 #ifdef TCPREASS_DEBUG
1258 	int i = 0;
1259 #endif
1260 
1261 	TCP_REASS_LOCK_CHECK(tp);
1262 
1263 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1264 #ifdef TCPREASS_DEBUG
1265 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1266 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1267 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1268 #endif
1269 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1270 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1271 		m_freem(qe->ipqe_m);
1272 		tcpipqent_free(qe);
1273 		rv = 1;
1274 	}
1275 	tp->t_segqlen = 0;
1276 	KASSERT(TAILQ_EMPTY(&tp->timeq));
1277 	return (rv);
1278 }
1279 
1280 /*
1281  * Protocol drain routine.  Called when memory is in short supply.
1282  */
1283 void
1284 tcp_drain(void)
1285 {
1286 	struct inpcb_hdr *inph;
1287 	struct tcpcb *tp;
1288 
1289 	/*
1290 	 * Free the sequence queue of all TCP connections.
1291 	 */
1292 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1293 		switch (inph->inph_af) {
1294 		case AF_INET:
1295 			tp = intotcpcb((struct inpcb *)inph);
1296 			break;
1297 #ifdef INET6
1298 		case AF_INET6:
1299 			tp = in6totcpcb((struct in6pcb *)inph);
1300 			break;
1301 #endif
1302 		default:
1303 			tp = NULL;
1304 			break;
1305 		}
1306 		if (tp != NULL) {
1307 			/*
1308 			 * We may be called from a device's interrupt
1309 			 * context.  If the tcpcb is already busy,
1310 			 * just bail out now.
1311 			 */
1312 			if (tcp_reass_lock_try(tp) == 0)
1313 				continue;
1314 			if (tcp_freeq(tp))
1315 				tcpstat.tcps_connsdrained++;
1316 			TCP_REASS_UNLOCK(tp);
1317 		}
1318 	}
1319 }
1320 
1321 /*
1322  * Notify a tcp user of an asynchronous error;
1323  * store error as soft error, but wake up user
1324  * (for now, won't do anything until can select for soft error).
1325  */
1326 void
1327 tcp_notify(struct inpcb *inp, int error)
1328 {
1329 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1330 	struct socket *so = inp->inp_socket;
1331 
1332 	/*
1333 	 * Ignore some errors if we are hooked up.
1334 	 * If connection hasn't completed, has retransmitted several times,
1335 	 * and receives a second error, give up now.  This is better
1336 	 * than waiting a long time to establish a connection that
1337 	 * can never complete.
1338 	 */
1339 	if (tp->t_state == TCPS_ESTABLISHED &&
1340 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1341 	      error == EHOSTDOWN)) {
1342 		return;
1343 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1344 	    tp->t_rxtshift > 3 && tp->t_softerror)
1345 		so->so_error = error;
1346 	else
1347 		tp->t_softerror = error;
1348 	wakeup((caddr_t) &so->so_timeo);
1349 	sorwakeup(so);
1350 	sowwakeup(so);
1351 }
1352 
1353 #ifdef INET6
1354 void
1355 tcp6_notify(struct in6pcb *in6p, int error)
1356 {
1357 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1358 	struct socket *so = in6p->in6p_socket;
1359 
1360 	/*
1361 	 * Ignore some errors if we are hooked up.
1362 	 * If connection hasn't completed, has retransmitted several times,
1363 	 * and receives a second error, give up now.  This is better
1364 	 * than waiting a long time to establish a connection that
1365 	 * can never complete.
1366 	 */
1367 	if (tp->t_state == TCPS_ESTABLISHED &&
1368 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1369 	      error == EHOSTDOWN)) {
1370 		return;
1371 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1372 	    tp->t_rxtshift > 3 && tp->t_softerror)
1373 		so->so_error = error;
1374 	else
1375 		tp->t_softerror = error;
1376 	wakeup((caddr_t) &so->so_timeo);
1377 	sorwakeup(so);
1378 	sowwakeup(so);
1379 }
1380 #endif
1381 
1382 #ifdef INET6
1383 void
1384 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1385 {
1386 	struct tcphdr th;
1387 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
1388 	int nmatch;
1389 	struct ip6_hdr *ip6;
1390 	const struct sockaddr_in6 *sa6_src = NULL;
1391 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1392 	struct mbuf *m;
1393 	int off;
1394 
1395 	if (sa->sa_family != AF_INET6 ||
1396 	    sa->sa_len != sizeof(struct sockaddr_in6))
1397 		return;
1398 	if ((unsigned)cmd >= PRC_NCMDS)
1399 		return;
1400 	else if (cmd == PRC_QUENCH) {
1401 		/*
1402 		 * Don't honor ICMP Source Quench messages meant for
1403 		 * TCP connections.
1404 		 */
1405 		return;
1406 	} else if (PRC_IS_REDIRECT(cmd))
1407 		notify = in6_rtchange, d = NULL;
1408 	else if (cmd == PRC_MSGSIZE)
1409 		; /* special code is present, see below */
1410 	else if (cmd == PRC_HOSTDEAD)
1411 		d = NULL;
1412 	else if (inet6ctlerrmap[cmd] == 0)
1413 		return;
1414 
1415 	/* if the parameter is from icmp6, decode it. */
1416 	if (d != NULL) {
1417 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1418 		m = ip6cp->ip6c_m;
1419 		ip6 = ip6cp->ip6c_ip6;
1420 		off = ip6cp->ip6c_off;
1421 		sa6_src = ip6cp->ip6c_src;
1422 	} else {
1423 		m = NULL;
1424 		ip6 = NULL;
1425 		sa6_src = &sa6_any;
1426 		off = 0;
1427 	}
1428 
1429 	if (ip6) {
1430 		/*
1431 		 * XXX: We assume that when ip6 is non NULL,
1432 		 * M and OFF are valid.
1433 		 */
1434 
1435 		/* check if we can safely examine src and dst ports */
1436 		if (m->m_pkthdr.len < off + sizeof(th)) {
1437 			if (cmd == PRC_MSGSIZE)
1438 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1439 			return;
1440 		}
1441 
1442 		bzero(&th, sizeof(th));
1443 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
1444 
1445 		if (cmd == PRC_MSGSIZE) {
1446 			int valid = 0;
1447 
1448 			/*
1449 			 * Check to see if we have a valid TCP connection
1450 			 * corresponding to the address in the ICMPv6 message
1451 			 * payload.
1452 			 */
1453 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1454 			    th.th_dport, (const struct in6_addr *)&sa6_src->sin6_addr,
1455 			    th.th_sport, 0))
1456 				valid++;
1457 
1458 			/*
1459 			 * Depending on the value of "valid" and routing table
1460 			 * size (mtudisc_{hi,lo}wat), we will:
1461 			 * - recalcurate the new MTU and create the
1462 			 *   corresponding routing entry, or
1463 			 * - ignore the MTU change notification.
1464 			 */
1465 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1466 
1467 			/*
1468 			 * no need to call in6_pcbnotify, it should have been
1469 			 * called via callback if necessary
1470 			 */
1471 			return;
1472 		}
1473 
1474 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1475 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1476 		if (nmatch == 0 && syn_cache_count &&
1477 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1478 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
1479 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
1480 			syn_cache_unreach((const struct sockaddr *)sa6_src,
1481 					  sa, &th);
1482 	} else {
1483 		(void) in6_pcbnotify(&tcbtable, sa, 0,
1484 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1485 	}
1486 }
1487 #endif
1488 
1489 #ifdef INET
1490 /* assumes that ip header and tcp header are contiguous on mbuf */
1491 void *
1492 tcp_ctlinput(int cmd, struct sockaddr *sa, void *v)
1493 {
1494 	struct ip *ip = v;
1495 	struct tcphdr *th;
1496 	struct icmp *icp;
1497 	extern const int inetctlerrmap[];
1498 	void (*notify)(struct inpcb *, int) = tcp_notify;
1499 	int errno;
1500 	int nmatch;
1501 	struct tcpcb *tp;
1502 	u_int mtu;
1503 	tcp_seq seq;
1504 	struct inpcb *inp;
1505 #ifdef INET6
1506 	struct in6pcb *in6p;
1507 	struct in6_addr src6, dst6;
1508 #endif
1509 
1510 	if (sa->sa_family != AF_INET ||
1511 	    sa->sa_len != sizeof(struct sockaddr_in))
1512 		return NULL;
1513 	if ((unsigned)cmd >= PRC_NCMDS)
1514 		return NULL;
1515 	errno = inetctlerrmap[cmd];
1516 	if (cmd == PRC_QUENCH)
1517 		/*
1518 		 * Don't honor ICMP Source Quench messages meant for
1519 		 * TCP connections.
1520 		 */
1521 		return NULL;
1522 	else if (PRC_IS_REDIRECT(cmd))
1523 		notify = in_rtchange, ip = 0;
1524 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1525 		/*
1526 		 * Check to see if we have a valid TCP connection
1527 		 * corresponding to the address in the ICMP message
1528 		 * payload.
1529 		 *
1530 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1531 		 */
1532 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1533 #ifdef INET6
1534 		memset(&src6, 0, sizeof(src6));
1535 		memset(&dst6, 0, sizeof(dst6));
1536 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1537 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1538 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1539 #endif
1540 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1541 		    th->th_dport, ip->ip_src, th->th_sport)) != NULL)
1542 #ifdef INET6
1543 			in6p = NULL;
1544 #else
1545 			;
1546 #endif
1547 #ifdef INET6
1548 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1549 		    th->th_dport, &src6, th->th_sport, 0)) != NULL)
1550 			;
1551 #endif
1552 		else
1553 			return NULL;
1554 
1555 		/*
1556 		 * Now that we've validated that we are actually communicating
1557 		 * with the host indicated in the ICMP message, locate the
1558 		 * ICMP header, recalculate the new MTU, and create the
1559 		 * corresponding routing entry.
1560 		 */
1561 		icp = (struct icmp *)((caddr_t)ip -
1562 		    offsetof(struct icmp, icmp_ip));
1563 		if (inp) {
1564 			if ((tp = intotcpcb(inp)) == NULL)
1565 				return NULL;
1566 		}
1567 #ifdef INET6
1568 		else if (in6p) {
1569 			if ((tp = in6totcpcb(in6p)) == NULL)
1570 				return NULL;
1571 		}
1572 #endif
1573 		else
1574 			return NULL;
1575 		seq = ntohl(th->th_seq);
1576 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1577 			return NULL;
1578 		/*
1579 		 * If the ICMP message advertises a Next-Hop MTU
1580 		 * equal or larger than the maximum packet size we have
1581 		 * ever sent, drop the message.
1582 		 */
1583 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
1584 		if (mtu >= tp->t_pmtud_mtu_sent)
1585 			return NULL;
1586 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1587 			/*
1588 			 * Calculate new MTU, and create corresponding
1589 			 * route (traditional PMTUD).
1590 			 */
1591 			tp->t_flags &= ~TF_PMTUD_PEND;
1592 			icmp_mtudisc(icp, ip->ip_dst);
1593 		} else {
1594 			/*
1595 			 * Record the information got in the ICMP
1596 			 * message; act on it later.
1597 			 * If we had already recorded an ICMP message,
1598 			 * replace the old one only if the new message
1599 			 * refers to an older TCP segment
1600 			 */
1601 			if (tp->t_flags & TF_PMTUD_PEND) {
1602 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1603 					return NULL;
1604 			} else
1605 				tp->t_flags |= TF_PMTUD_PEND;
1606 			tp->t_pmtud_th_seq = seq;
1607 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1608 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1609 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1610 		}
1611 		return NULL;
1612 	} else if (cmd == PRC_HOSTDEAD)
1613 		ip = 0;
1614 	else if (errno == 0)
1615 		return NULL;
1616 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1617 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1618 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1619 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1620 		if (nmatch == 0 && syn_cache_count &&
1621 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
1622 		    inetctlerrmap[cmd] == ENETUNREACH ||
1623 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
1624 			struct sockaddr_in sin;
1625 			bzero(&sin, sizeof(sin));
1626 			sin.sin_len = sizeof(sin);
1627 			sin.sin_family = AF_INET;
1628 			sin.sin_port = th->th_sport;
1629 			sin.sin_addr = ip->ip_src;
1630 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1631 		}
1632 
1633 		/* XXX mapped address case */
1634 	} else
1635 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1636 		    notify);
1637 	return NULL;
1638 }
1639 
1640 /*
1641  * When a source quench is received, we are being notified of congestion.
1642  * Close the congestion window down to the Loss Window (one segment).
1643  * We will gradually open it again as we proceed.
1644  */
1645 void
1646 tcp_quench(struct inpcb *inp, int errno __unused)
1647 {
1648 	struct tcpcb *tp = intotcpcb(inp);
1649 
1650 	if (tp)
1651 		tp->snd_cwnd = tp->t_segsz;
1652 }
1653 #endif
1654 
1655 #ifdef INET6
1656 void
1657 tcp6_quench(struct in6pcb *in6p, int errno __unused)
1658 {
1659 	struct tcpcb *tp = in6totcpcb(in6p);
1660 
1661 	if (tp)
1662 		tp->snd_cwnd = tp->t_segsz;
1663 }
1664 #endif
1665 
1666 #ifdef INET
1667 /*
1668  * Path MTU Discovery handlers.
1669  */
1670 void
1671 tcp_mtudisc_callback(struct in_addr faddr)
1672 {
1673 #ifdef INET6
1674 	struct in6_addr in6;
1675 #endif
1676 
1677 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1678 #ifdef INET6
1679 	memset(&in6, 0, sizeof(in6));
1680 	in6.s6_addr16[5] = 0xffff;
1681 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1682 	tcp6_mtudisc_callback(&in6);
1683 #endif
1684 }
1685 
1686 /*
1687  * On receipt of path MTU corrections, flush old route and replace it
1688  * with the new one.  Retransmit all unacknowledged packets, to ensure
1689  * that all packets will be received.
1690  */
1691 void
1692 tcp_mtudisc(struct inpcb *inp, int errno)
1693 {
1694 	struct tcpcb *tp = intotcpcb(inp);
1695 	struct rtentry *rt = in_pcbrtentry(inp);
1696 
1697 	if (tp != 0) {
1698 		if (rt != 0) {
1699 			/*
1700 			 * If this was not a host route, remove and realloc.
1701 			 */
1702 			if ((rt->rt_flags & RTF_HOST) == 0) {
1703 				in_rtchange(inp, errno);
1704 				if ((rt = in_pcbrtentry(inp)) == 0)
1705 					return;
1706 			}
1707 
1708 			/*
1709 			 * Slow start out of the error condition.  We
1710 			 * use the MTU because we know it's smaller
1711 			 * than the previously transmitted segment.
1712 			 *
1713 			 * Note: This is more conservative than the
1714 			 * suggestion in draft-floyd-incr-init-win-03.
1715 			 */
1716 			if (rt->rt_rmx.rmx_mtu != 0)
1717 				tp->snd_cwnd =
1718 				    TCP_INITIAL_WINDOW(tcp_init_win,
1719 				    rt->rt_rmx.rmx_mtu);
1720 		}
1721 
1722 		/*
1723 		 * Resend unacknowledged packets.
1724 		 */
1725 		tp->snd_nxt = tp->snd_una;
1726 		tcp_output(tp);
1727 	}
1728 }
1729 #endif
1730 
1731 #ifdef INET6
1732 /*
1733  * Path MTU Discovery handlers.
1734  */
1735 void
1736 tcp6_mtudisc_callback(struct in6_addr *faddr)
1737 {
1738 	struct sockaddr_in6 sin6;
1739 
1740 	bzero(&sin6, sizeof(sin6));
1741 	sin6.sin6_family = AF_INET6;
1742 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1743 	sin6.sin6_addr = *faddr;
1744 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1745 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1746 }
1747 
1748 void
1749 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1750 {
1751 	struct tcpcb *tp = in6totcpcb(in6p);
1752 	struct rtentry *rt = in6_pcbrtentry(in6p);
1753 
1754 	if (tp != 0) {
1755 		if (rt != 0) {
1756 			/*
1757 			 * If this was not a host route, remove and realloc.
1758 			 */
1759 			if ((rt->rt_flags & RTF_HOST) == 0) {
1760 				in6_rtchange(in6p, errno);
1761 				if ((rt = in6_pcbrtentry(in6p)) == 0)
1762 					return;
1763 			}
1764 
1765 			/*
1766 			 * Slow start out of the error condition.  We
1767 			 * use the MTU because we know it's smaller
1768 			 * than the previously transmitted segment.
1769 			 *
1770 			 * Note: This is more conservative than the
1771 			 * suggestion in draft-floyd-incr-init-win-03.
1772 			 */
1773 			if (rt->rt_rmx.rmx_mtu != 0)
1774 				tp->snd_cwnd =
1775 				    TCP_INITIAL_WINDOW(tcp_init_win,
1776 				    rt->rt_rmx.rmx_mtu);
1777 		}
1778 
1779 		/*
1780 		 * Resend unacknowledged packets.
1781 		 */
1782 		tp->snd_nxt = tp->snd_una;
1783 		tcp_output(tp);
1784 	}
1785 }
1786 #endif /* INET6 */
1787 
1788 /*
1789  * Compute the MSS to advertise to the peer.  Called only during
1790  * the 3-way handshake.  If we are the server (peer initiated
1791  * connection), we are called with a pointer to the interface
1792  * on which the SYN packet arrived.  If we are the client (we
1793  * initiated connection), we are called with a pointer to the
1794  * interface out which this connection should go.
1795  *
1796  * NOTE: Do not subtract IP option/extension header size nor IPsec
1797  * header size from MSS advertisement.  MSS option must hold the maximum
1798  * segment size we can accept, so it must always be:
1799  *	 max(if mtu) - ip header - tcp header
1800  */
1801 u_long
1802 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1803 {
1804 	extern u_long in_maxmtu;
1805 	u_long mss = 0;
1806 	u_long hdrsiz;
1807 
1808 	/*
1809 	 * In order to avoid defeating path MTU discovery on the peer,
1810 	 * we advertise the max MTU of all attached networks as our MSS,
1811 	 * per RFC 1191, section 3.1.
1812 	 *
1813 	 * We provide the option to advertise just the MTU of
1814 	 * the interface on which we hope this connection will
1815 	 * be receiving.  If we are responding to a SYN, we
1816 	 * will have a pretty good idea about this, but when
1817 	 * initiating a connection there is a bit more doubt.
1818 	 *
1819 	 * We also need to ensure that loopback has a large enough
1820 	 * MSS, as the loopback MTU is never included in in_maxmtu.
1821 	 */
1822 
1823 	if (ifp != NULL)
1824 		switch (af) {
1825 		case AF_INET:
1826 			mss = ifp->if_mtu;
1827 			break;
1828 #ifdef INET6
1829 		case AF_INET6:
1830 			mss = IN6_LINKMTU(ifp);
1831 			break;
1832 #endif
1833 		}
1834 
1835 	if (tcp_mss_ifmtu == 0)
1836 		switch (af) {
1837 		case AF_INET:
1838 			mss = max(in_maxmtu, mss);
1839 			break;
1840 #ifdef INET6
1841 		case AF_INET6:
1842 			mss = max(in6_maxmtu, mss);
1843 			break;
1844 #endif
1845 		}
1846 
1847 	switch (af) {
1848 	case AF_INET:
1849 		hdrsiz = sizeof(struct ip);
1850 		break;
1851 #ifdef INET6
1852 	case AF_INET6:
1853 		hdrsiz = sizeof(struct ip6_hdr);
1854 		break;
1855 #endif
1856 	default:
1857 		hdrsiz = 0;
1858 		break;
1859 	}
1860 	hdrsiz += sizeof(struct tcphdr);
1861 	if (mss > hdrsiz)
1862 		mss -= hdrsiz;
1863 
1864 	mss = max(tcp_mssdflt, mss);
1865 	return (mss);
1866 }
1867 
1868 /*
1869  * Set connection variables based on the peer's advertised MSS.
1870  * We are passed the TCPCB for the actual connection.  If we
1871  * are the server, we are called by the compressed state engine
1872  * when the 3-way handshake is complete.  If we are the client,
1873  * we are called when we receive the SYN,ACK from the server.
1874  *
1875  * NOTE: Our advertised MSS value must be initialized in the TCPCB
1876  * before this routine is called!
1877  */
1878 void
1879 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1880 {
1881 	struct socket *so;
1882 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1883 	struct rtentry *rt;
1884 #endif
1885 	u_long bufsize;
1886 	int mss;
1887 
1888 #ifdef DIAGNOSTIC
1889 	if (tp->t_inpcb && tp->t_in6pcb)
1890 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1891 #endif
1892 	so = NULL;
1893 	rt = NULL;
1894 #ifdef INET
1895 	if (tp->t_inpcb) {
1896 		so = tp->t_inpcb->inp_socket;
1897 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1898 		rt = in_pcbrtentry(tp->t_inpcb);
1899 #endif
1900 	}
1901 #endif
1902 #ifdef INET6
1903 	if (tp->t_in6pcb) {
1904 		so = tp->t_in6pcb->in6p_socket;
1905 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1906 		rt = in6_pcbrtentry(tp->t_in6pcb);
1907 #endif
1908 	}
1909 #endif
1910 
1911 	/*
1912 	 * As per RFC1122, use the default MSS value, unless they
1913 	 * sent us an offer.  Do not accept offers less than 256 bytes.
1914 	 */
1915 	mss = tcp_mssdflt;
1916 	if (offer)
1917 		mss = offer;
1918 	mss = max(mss, 256);		/* sanity */
1919 	tp->t_peermss = mss;
1920 	mss -= tcp_optlen(tp);
1921 #ifdef INET
1922 	if (tp->t_inpcb)
1923 		mss -= ip_optlen(tp->t_inpcb);
1924 #endif
1925 #ifdef INET6
1926 	if (tp->t_in6pcb)
1927 		mss -= ip6_optlen(tp->t_in6pcb);
1928 #endif
1929 
1930 	/*
1931 	 * If there's a pipesize, change the socket buffer to that size.
1932 	 * Make the socket buffer an integral number of MSS units.  If
1933 	 * the MSS is larger than the socket buffer, artificially decrease
1934 	 * the MSS.
1935 	 */
1936 #ifdef RTV_SPIPE
1937 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1938 		bufsize = rt->rt_rmx.rmx_sendpipe;
1939 	else
1940 #endif
1941 	{
1942 		KASSERT(so != NULL);
1943 		bufsize = so->so_snd.sb_hiwat;
1944 	}
1945 	if (bufsize < mss)
1946 		mss = bufsize;
1947 	else {
1948 		bufsize = roundup(bufsize, mss);
1949 		if (bufsize > sb_max)
1950 			bufsize = sb_max;
1951 		(void) sbreserve(&so->so_snd, bufsize, so);
1952 	}
1953 	tp->t_segsz = mss;
1954 
1955 #ifdef RTV_SSTHRESH
1956 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1957 		/*
1958 		 * There's some sort of gateway or interface buffer
1959 		 * limit on the path.  Use this to set the slow
1960 		 * start threshold, but set the threshold to no less
1961 		 * than 2 * MSS.
1962 		 */
1963 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1964 	}
1965 #endif
1966 }
1967 
1968 /*
1969  * Processing necessary when a TCP connection is established.
1970  */
1971 void
1972 tcp_established(struct tcpcb *tp)
1973 {
1974 	struct socket *so;
1975 #ifdef RTV_RPIPE
1976 	struct rtentry *rt;
1977 #endif
1978 	u_long bufsize;
1979 
1980 #ifdef DIAGNOSTIC
1981 	if (tp->t_inpcb && tp->t_in6pcb)
1982 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
1983 #endif
1984 	so = NULL;
1985 	rt = NULL;
1986 #ifdef INET
1987 	if (tp->t_inpcb) {
1988 		so = tp->t_inpcb->inp_socket;
1989 #if defined(RTV_RPIPE)
1990 		rt = in_pcbrtentry(tp->t_inpcb);
1991 #endif
1992 	}
1993 #endif
1994 #ifdef INET6
1995 	if (tp->t_in6pcb) {
1996 		so = tp->t_in6pcb->in6p_socket;
1997 #if defined(RTV_RPIPE)
1998 		rt = in6_pcbrtentry(tp->t_in6pcb);
1999 #endif
2000 	}
2001 #endif
2002 
2003 	tp->t_state = TCPS_ESTABLISHED;
2004 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
2005 
2006 #ifdef RTV_RPIPE
2007 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2008 		bufsize = rt->rt_rmx.rmx_recvpipe;
2009 	else
2010 #endif
2011 	{
2012 		KASSERT(so != NULL);
2013 		bufsize = so->so_rcv.sb_hiwat;
2014 	}
2015 	if (bufsize > tp->t_ourmss) {
2016 		bufsize = roundup(bufsize, tp->t_ourmss);
2017 		if (bufsize > sb_max)
2018 			bufsize = sb_max;
2019 		(void) sbreserve(&so->so_rcv, bufsize, so);
2020 	}
2021 }
2022 
2023 /*
2024  * Check if there's an initial rtt or rttvar.  Convert from the
2025  * route-table units to scaled multiples of the slow timeout timer.
2026  * Called only during the 3-way handshake.
2027  */
2028 void
2029 tcp_rmx_rtt(struct tcpcb *tp)
2030 {
2031 #ifdef RTV_RTT
2032 	struct rtentry *rt = NULL;
2033 	int rtt;
2034 
2035 #ifdef DIAGNOSTIC
2036 	if (tp->t_inpcb && tp->t_in6pcb)
2037 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2038 #endif
2039 #ifdef INET
2040 	if (tp->t_inpcb)
2041 		rt = in_pcbrtentry(tp->t_inpcb);
2042 #endif
2043 #ifdef INET6
2044 	if (tp->t_in6pcb)
2045 		rt = in6_pcbrtentry(tp->t_in6pcb);
2046 #endif
2047 	if (rt == NULL)
2048 		return;
2049 
2050 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2051 		/*
2052 		 * XXX The lock bit for MTU indicates that the value
2053 		 * is also a minimum value; this is subject to time.
2054 		 */
2055 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2056 			TCPT_RANGESET(tp->t_rttmin,
2057 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2058 			    TCPTV_MIN, TCPTV_REXMTMAX);
2059 		tp->t_srtt = rtt /
2060 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2061 		if (rt->rt_rmx.rmx_rttvar) {
2062 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2063 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
2064 				(TCP_RTTVAR_SHIFT + 2));
2065 		} else {
2066 			/* Default variation is +- 1 rtt */
2067 			tp->t_rttvar =
2068 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2069 		}
2070 		TCPT_RANGESET(tp->t_rxtcur,
2071 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2072 		    tp->t_rttmin, TCPTV_REXMTMAX);
2073 	}
2074 #endif
2075 }
2076 
2077 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
2078 #if NRND > 0
2079 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
2080 #endif
2081 
2082 /*
2083  * Get a new sequence value given a tcp control block
2084  */
2085 tcp_seq
2086 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2087 {
2088 
2089 #ifdef INET
2090 	if (tp->t_inpcb != NULL) {
2091 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2092 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2093 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2094 		    addin));
2095 	}
2096 #endif
2097 #ifdef INET6
2098 	if (tp->t_in6pcb != NULL) {
2099 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2100 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2101 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2102 		    addin));
2103 	}
2104 #endif
2105 	/* Not possible. */
2106 	panic("tcp_new_iss");
2107 }
2108 
2109 /*
2110  * This routine actually generates a new TCP initial sequence number.
2111  */
2112 tcp_seq
2113 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2114     size_t addrsz, tcp_seq addin)
2115 {
2116 	tcp_seq tcp_iss;
2117 
2118 #if NRND > 0
2119 	static int beenhere;
2120 
2121 	/*
2122 	 * If we haven't been here before, initialize our cryptographic
2123 	 * hash secret.
2124 	 */
2125 	if (beenhere == 0) {
2126 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2127 		    RND_EXTRACT_ANY);
2128 		beenhere = 1;
2129 	}
2130 
2131 	if (tcp_do_rfc1948) {
2132 		MD5_CTX ctx;
2133 		u_int8_t hash[16];	/* XXX MD5 knowledge */
2134 
2135 		/*
2136 		 * Compute the base value of the ISS.  It is a hash
2137 		 * of (saddr, sport, daddr, dport, secret).
2138 		 */
2139 		MD5Init(&ctx);
2140 
2141 		MD5Update(&ctx, (u_char *) laddr, addrsz);
2142 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2143 
2144 		MD5Update(&ctx, (u_char *) faddr, addrsz);
2145 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2146 
2147 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2148 
2149 		MD5Final(hash, &ctx);
2150 
2151 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2152 
2153 		/*
2154 		 * Now increment our "timer", and add it in to
2155 		 * the computed value.
2156 		 *
2157 		 * XXX Use `addin'?
2158 		 * XXX TCP_ISSINCR too large to use?
2159 		 */
2160 		tcp_iss_seq += TCP_ISSINCR;
2161 #ifdef TCPISS_DEBUG
2162 		printf("ISS hash 0x%08x, ", tcp_iss);
2163 #endif
2164 		tcp_iss += tcp_iss_seq + addin;
2165 #ifdef TCPISS_DEBUG
2166 		printf("new ISS 0x%08x\n", tcp_iss);
2167 #endif
2168 	} else
2169 #else
2170 		 /* for -Wunused */
2171 		do { if (&laddr) {} } while (/* CONSTCOND */ 0);
2172 		do { if (&faddr) {} } while (/* CONSTCOND */ 0);
2173 		do { if (&lport) {} } while (/* CONSTCOND */ 0);
2174 		do { if (&fport) {} } while (/* CONSTCOND */ 0);
2175 		do { if (&addrsz) {} } while (/* CONSTCOND */ 0);
2176 #endif /* NRND > 0 */
2177 	{
2178 		/*
2179 		 * Randomize.
2180 		 */
2181 #if NRND > 0
2182 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2183 #else
2184 		tcp_iss = arc4random();
2185 #endif
2186 
2187 		/*
2188 		 * If we were asked to add some amount to a known value,
2189 		 * we will take a random value obtained above, mask off
2190 		 * the upper bits, and add in the known value.  We also
2191 		 * add in a constant to ensure that we are at least a
2192 		 * certain distance from the original value.
2193 		 *
2194 		 * This is used when an old connection is in timed wait
2195 		 * and we have a new one coming in, for instance.
2196 		 */
2197 		if (addin != 0) {
2198 #ifdef TCPISS_DEBUG
2199 			printf("Random %08x, ", tcp_iss);
2200 #endif
2201 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2202 			tcp_iss += addin + TCP_ISSINCR;
2203 #ifdef TCPISS_DEBUG
2204 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2205 #endif
2206 		} else {
2207 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2208 			tcp_iss += tcp_iss_seq;
2209 			tcp_iss_seq += TCP_ISSINCR;
2210 #ifdef TCPISS_DEBUG
2211 			printf("ISS %08x\n", tcp_iss);
2212 #endif
2213 		}
2214 	}
2215 
2216 	if (tcp_compat_42) {
2217 		/*
2218 		 * Limit it to the positive range for really old TCP
2219 		 * implementations.
2220 		 * Just AND off the top bit instead of checking if
2221 		 * is set first - saves a branch 50% of the time.
2222 		 */
2223 		tcp_iss &= 0x7fffffff;		/* XXX */
2224 	}
2225 
2226 	return (tcp_iss);
2227 }
2228 
2229 #if defined(IPSEC) || defined(FAST_IPSEC)
2230 /* compute ESP/AH header size for TCP, including outer IP header. */
2231 size_t
2232 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2233 {
2234 	struct inpcb *inp;
2235 	size_t hdrsiz;
2236 
2237 	/* XXX mapped addr case (tp->t_in6pcb) */
2238 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2239 		return 0;
2240 	switch (tp->t_family) {
2241 	case AF_INET:
2242 		/* XXX: should use currect direction. */
2243 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2244 		break;
2245 	default:
2246 		hdrsiz = 0;
2247 		break;
2248 	}
2249 
2250 	return hdrsiz;
2251 }
2252 
2253 #ifdef INET6
2254 size_t
2255 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2256 {
2257 	struct in6pcb *in6p;
2258 	size_t hdrsiz;
2259 
2260 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2261 		return 0;
2262 	switch (tp->t_family) {
2263 	case AF_INET6:
2264 		/* XXX: should use currect direction. */
2265 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2266 		break;
2267 	case AF_INET:
2268 		/* mapped address case - tricky */
2269 	default:
2270 		hdrsiz = 0;
2271 		break;
2272 	}
2273 
2274 	return hdrsiz;
2275 }
2276 #endif
2277 #endif /*IPSEC*/
2278 
2279 /*
2280  * Determine the length of the TCP options for this connection.
2281  *
2282  * XXX:  What do we do for SACK, when we add that?  Just reserve
2283  *       all of the space?  Otherwise we can't exactly be incrementing
2284  *       cwnd by an amount that varies depending on the amount we last
2285  *       had to SACK!
2286  */
2287 
2288 u_int
2289 tcp_optlen(struct tcpcb *tp)
2290 {
2291 	u_int optlen;
2292 
2293 	optlen = 0;
2294 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2295 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2296 		optlen += TCPOLEN_TSTAMP_APPA;
2297 
2298 #ifdef TCP_SIGNATURE
2299 #if defined(INET6) && defined(FAST_IPSEC)
2300 	if (tp->t_family == AF_INET)
2301 #endif
2302 	if (tp->t_flags & TF_SIGNATURE)
2303 		optlen += TCPOLEN_SIGNATURE + 2;
2304 #endif /* TCP_SIGNATURE */
2305 
2306 	return optlen;
2307 }
2308 
2309 u_int
2310 tcp_hdrsz(struct tcpcb *tp)
2311 {
2312 	u_int hlen;
2313 
2314 	switch (tp->t_family) {
2315 #ifdef INET6
2316 	case AF_INET6:
2317 		hlen = sizeof(struct ip6_hdr);
2318 		break;
2319 #endif
2320 	case AF_INET:
2321 		hlen = sizeof(struct ip);
2322 		break;
2323 	default:
2324 		hlen = 0;
2325 		break;
2326 	}
2327 	hlen += sizeof(struct tcphdr);
2328 
2329 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2330 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2331 		hlen += TCPOLEN_TSTAMP_APPA;
2332 #ifdef TCP_SIGNATURE
2333 	if (tp->t_flags & TF_SIGNATURE)
2334 		hlen += TCPOLEN_SIGLEN;
2335 #endif
2336 	return hlen;
2337 }
2338