xref: /netbsd-src/sys/netinet/tcp_subr.c (revision c0179c282a5968435315a82f4128c61372c68fc3)
1 /*	$NetBSD: tcp_subr.c,v 1.208 2006/11/16 01:33:45 christos Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38  * Facility, NASA Ames Research Center.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the NetBSD
51  *	Foundation, Inc. and its contributors.
52  * 4. Neither the name of The NetBSD Foundation nor the names of its
53  *    contributors may be used to endorse or promote products derived
54  *    from this software without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66  * POSSIBILITY OF SUCH DAMAGE.
67  */
68 
69 /*
70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71  *	The Regents of the University of California.  All rights reserved.
72  *
73  * Redistribution and use in source and binary forms, with or without
74  * modification, are permitted provided that the following conditions
75  * are met:
76  * 1. Redistributions of source code must retain the above copyright
77  *    notice, this list of conditions and the following disclaimer.
78  * 2. Redistributions in binary form must reproduce the above copyright
79  *    notice, this list of conditions and the following disclaimer in the
80  *    documentation and/or other materials provided with the distribution.
81  * 3. Neither the name of the University nor the names of its contributors
82  *    may be used to endorse or promote products derived from this software
83  *    without specific prior written permission.
84  *
85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95  * SUCH DAMAGE.
96  *
97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
98  */
99 
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.208 2006/11/16 01:33:45 christos Exp $");
102 
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109 
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125 
126 #include <net/route.h>
127 #include <net/if.h>
128 
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135 
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148 
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcp_congctl.h>
155 #include <netinet/tcpip.h>
156 
157 #ifdef IPSEC
158 #include <netinet6/ipsec.h>
159 #include <netkey/key.h>
160 #endif /*IPSEC*/
161 
162 #ifdef FAST_IPSEC
163 #include <netipsec/ipsec.h>
164 #include <netipsec/xform.h>
165 #ifdef INET6
166 #include <netipsec/ipsec6.h>
167 #endif
168  #include <netipsec/key.h>
169 #endif	/* FAST_IPSEC*/
170 
171 
172 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
173 struct	tcpstat tcpstat;	/* tcp statistics */
174 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
175 
176 /* patchable/settable parameters for tcp */
177 int 	tcp_mssdflt = TCP_MSS;
178 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
179 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
180 #if NRND > 0
181 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
182 #endif
183 int	tcp_do_sack = 1;	/* selective acknowledgement */
184 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
185 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
186 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
187 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
188 #ifndef TCP_INIT_WIN
189 #define	TCP_INIT_WIN	0	/* initial slow start window */
190 #endif
191 #ifndef TCP_INIT_WIN_LOCAL
192 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
193 #endif
194 int	tcp_init_win = TCP_INIT_WIN;
195 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
196 int	tcp_mss_ifmtu = 0;
197 #ifdef TCP_COMPAT_42
198 int	tcp_compat_42 = 1;
199 #else
200 int	tcp_compat_42 = 0;
201 #endif
202 int	tcp_rst_ppslim = 100;	/* 100pps */
203 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
204 int	tcp_do_loopback_cksum = 0;
205 int	tcp_do_abc = 1;		/* RFC3465 Appropriate byte counting. */
206 int	tcp_abc_aggressive = 1;	/* 1: L=2*SMSS  0: L=1*SMSS */
207 int	tcp_sack_tp_maxholes = 32;
208 int	tcp_sack_globalmaxholes = 1024;
209 int	tcp_sack_globalholes = 0;
210 int	tcp_ecn_maxretries = 1;
211 
212 /* tcb hash */
213 #ifndef TCBHASHSIZE
214 #define	TCBHASHSIZE	128
215 #endif
216 int	tcbhashsize = TCBHASHSIZE;
217 
218 /* syn hash parameters */
219 #define	TCP_SYN_HASH_SIZE	293
220 #define	TCP_SYN_BUCKET_SIZE	35
221 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
222 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
223 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
224 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
225 
226 int	tcp_freeq(struct tcpcb *);
227 
228 #ifdef INET
229 void	tcp_mtudisc_callback(struct in_addr);
230 #endif
231 #ifdef INET6
232 void	tcp6_mtudisc_callback(struct in6_addr *);
233 #endif
234 
235 #ifdef INET6
236 void	tcp6_mtudisc(struct in6pcb *, int);
237 #endif
238 
239 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
240 
241 #ifdef TCP_CSUM_COUNTERS
242 #include <sys/device.h>
243 
244 #if defined(INET)
245 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
246     NULL, "tcp", "hwcsum bad");
247 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
248     NULL, "tcp", "hwcsum ok");
249 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
250     NULL, "tcp", "hwcsum data");
251 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
252     NULL, "tcp", "swcsum");
253 
254 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
255 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
256 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
257 EVCNT_ATTACH_STATIC(tcp_swcsum);
258 #endif /* defined(INET) */
259 
260 #if defined(INET6)
261 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262     NULL, "tcp6", "hwcsum bad");
263 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264     NULL, "tcp6", "hwcsum ok");
265 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266     NULL, "tcp6", "hwcsum data");
267 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268     NULL, "tcp6", "swcsum");
269 
270 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
271 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
272 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
273 EVCNT_ATTACH_STATIC(tcp6_swcsum);
274 #endif /* defined(INET6) */
275 #endif /* TCP_CSUM_COUNTERS */
276 
277 
278 #ifdef TCP_OUTPUT_COUNTERS
279 #include <sys/device.h>
280 
281 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282     NULL, "tcp", "output big header");
283 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284     NULL, "tcp", "output predict hit");
285 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286     NULL, "tcp", "output predict miss");
287 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288     NULL, "tcp", "output copy small");
289 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
290     NULL, "tcp", "output copy big");
291 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
292     NULL, "tcp", "output reference big");
293 
294 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
295 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
296 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
297 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
298 EVCNT_ATTACH_STATIC(tcp_output_copybig);
299 EVCNT_ATTACH_STATIC(tcp_output_refbig);
300 
301 #endif /* TCP_OUTPUT_COUNTERS */
302 
303 #ifdef TCP_REASS_COUNTERS
304 #include <sys/device.h>
305 
306 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
307     NULL, "tcp_reass", "calls");
308 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
309     &tcp_reass_, "tcp_reass", "insert into empty queue");
310 struct evcnt tcp_reass_iteration[8] = {
311     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
312     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
316     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
317     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
318     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
319 };
320 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
321     &tcp_reass_, "tcp_reass", "prepend to first");
322 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
323     &tcp_reass_, "tcp_reass", "prepend");
324 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
325     &tcp_reass_, "tcp_reass", "insert");
326 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
327     &tcp_reass_, "tcp_reass", "insert at tail");
328 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
329     &tcp_reass_, "tcp_reass", "append");
330 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
331     &tcp_reass_, "tcp_reass", "append to tail fragment");
332 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
333     &tcp_reass_, "tcp_reass", "overlap at end");
334 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
335     &tcp_reass_, "tcp_reass", "overlap at start");
336 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
337     &tcp_reass_, "tcp_reass", "duplicate segment");
338 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
339     &tcp_reass_, "tcp_reass", "duplicate fragment");
340 
341 EVCNT_ATTACH_STATIC(tcp_reass_);
342 EVCNT_ATTACH_STATIC(tcp_reass_empty);
343 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
344 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
349 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
350 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
351 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
352 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
353 EVCNT_ATTACH_STATIC(tcp_reass_insert);
354 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
355 EVCNT_ATTACH_STATIC(tcp_reass_append);
356 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
357 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
358 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
359 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
360 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
361 
362 #endif /* TCP_REASS_COUNTERS */
363 
364 #ifdef MBUFTRACE
365 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
366 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
367 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
368 #endif
369 
370 /*
371  * Tcp initialization
372  */
373 void
374 tcp_init(void)
375 {
376 	int hlen;
377 
378 	/* Initialize the TCPCB template. */
379 	tcp_tcpcb_template();
380 
381 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
382 
383 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
384 #ifdef INET6
385 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
386 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
387 #endif
388 	if (max_protohdr < hlen)
389 		max_protohdr = hlen;
390 	if (max_linkhdr + hlen > MHLEN)
391 		panic("tcp_init");
392 
393 #ifdef INET
394 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
395 #endif
396 #ifdef INET6
397 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
398 #endif
399 
400 	/* Initialize timer state. */
401 	tcp_timer_init();
402 
403 	/* Initialize the compressed state engine. */
404 	syn_cache_init();
405 
406 	/* Initialize the congestion control algorithms. */
407 	tcp_congctl_init();
408 
409 	MOWNER_ATTACH(&tcp_tx_mowner);
410 	MOWNER_ATTACH(&tcp_rx_mowner);
411 	MOWNER_ATTACH(&tcp_mowner);
412 }
413 
414 /*
415  * Create template to be used to send tcp packets on a connection.
416  * Call after host entry created, allocates an mbuf and fills
417  * in a skeletal tcp/ip header, minimizing the amount of work
418  * necessary when the connection is used.
419  */
420 struct mbuf *
421 tcp_template(struct tcpcb *tp)
422 {
423 	struct inpcb *inp = tp->t_inpcb;
424 #ifdef INET6
425 	struct in6pcb *in6p = tp->t_in6pcb;
426 #endif
427 	struct tcphdr *n;
428 	struct mbuf *m;
429 	int hlen;
430 
431 	switch (tp->t_family) {
432 	case AF_INET:
433 		hlen = sizeof(struct ip);
434 		if (inp)
435 			break;
436 #ifdef INET6
437 		if (in6p) {
438 			/* mapped addr case */
439 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
440 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
441 				break;
442 		}
443 #endif
444 		return NULL;	/*EINVAL*/
445 #ifdef INET6
446 	case AF_INET6:
447 		hlen = sizeof(struct ip6_hdr);
448 		if (in6p) {
449 			/* more sainty check? */
450 			break;
451 		}
452 		return NULL;	/*EINVAL*/
453 #endif
454 	default:
455 		hlen = 0;	/*pacify gcc*/
456 		return NULL;	/*EAFNOSUPPORT*/
457 	}
458 #ifdef DIAGNOSTIC
459 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
460 		panic("mclbytes too small for t_template");
461 #endif
462 	m = tp->t_template;
463 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
464 		;
465 	else {
466 		if (m)
467 			m_freem(m);
468 		m = tp->t_template = NULL;
469 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
470 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
471 			MCLGET(m, M_DONTWAIT);
472 			if ((m->m_flags & M_EXT) == 0) {
473 				m_free(m);
474 				m = NULL;
475 			}
476 		}
477 		if (m == NULL)
478 			return NULL;
479 		MCLAIM(m, &tcp_mowner);
480 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
481 	}
482 
483 	bzero(mtod(m, caddr_t), m->m_len);
484 
485 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
486 
487 	switch (tp->t_family) {
488 	case AF_INET:
489 	    {
490 		struct ipovly *ipov;
491 		mtod(m, struct ip *)->ip_v = 4;
492 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
493 		ipov = mtod(m, struct ipovly *);
494 		ipov->ih_pr = IPPROTO_TCP;
495 		ipov->ih_len = htons(sizeof(struct tcphdr));
496 		if (inp) {
497 			ipov->ih_src = inp->inp_laddr;
498 			ipov->ih_dst = inp->inp_faddr;
499 		}
500 #ifdef INET6
501 		else if (in6p) {
502 			/* mapped addr case */
503 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
504 				sizeof(ipov->ih_src));
505 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
506 				sizeof(ipov->ih_dst));
507 		}
508 #endif
509 		/*
510 		 * Compute the pseudo-header portion of the checksum
511 		 * now.  We incrementally add in the TCP option and
512 		 * payload lengths later, and then compute the TCP
513 		 * checksum right before the packet is sent off onto
514 		 * the wire.
515 		 */
516 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
517 		    ipov->ih_dst.s_addr,
518 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
519 		break;
520 	    }
521 #ifdef INET6
522 	case AF_INET6:
523 	    {
524 		struct ip6_hdr *ip6;
525 		mtod(m, struct ip *)->ip_v = 6;
526 		ip6 = mtod(m, struct ip6_hdr *);
527 		ip6->ip6_nxt = IPPROTO_TCP;
528 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
529 		ip6->ip6_src = in6p->in6p_laddr;
530 		ip6->ip6_dst = in6p->in6p_faddr;
531 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
532 		if (ip6_auto_flowlabel) {
533 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
534 			ip6->ip6_flow |=
535 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
536 		}
537 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
538 		ip6->ip6_vfc |= IPV6_VERSION;
539 
540 		/*
541 		 * Compute the pseudo-header portion of the checksum
542 		 * now.  We incrementally add in the TCP option and
543 		 * payload lengths later, and then compute the TCP
544 		 * checksum right before the packet is sent off onto
545 		 * the wire.
546 		 */
547 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
548 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
549 		    htonl(IPPROTO_TCP));
550 		break;
551 	    }
552 #endif
553 	}
554 	if (inp) {
555 		n->th_sport = inp->inp_lport;
556 		n->th_dport = inp->inp_fport;
557 	}
558 #ifdef INET6
559 	else if (in6p) {
560 		n->th_sport = in6p->in6p_lport;
561 		n->th_dport = in6p->in6p_fport;
562 	}
563 #endif
564 	n->th_seq = 0;
565 	n->th_ack = 0;
566 	n->th_x2 = 0;
567 	n->th_off = 5;
568 	n->th_flags = 0;
569 	n->th_win = 0;
570 	n->th_urp = 0;
571 	return (m);
572 }
573 
574 /*
575  * Send a single message to the TCP at address specified by
576  * the given TCP/IP header.  If m == 0, then we make a copy
577  * of the tcpiphdr at ti and send directly to the addressed host.
578  * This is used to force keep alive messages out using the TCP
579  * template for a connection tp->t_template.  If flags are given
580  * then we send a message back to the TCP which originated the
581  * segment ti, and discard the mbuf containing it and any other
582  * attached mbufs.
583  *
584  * In any case the ack and sequence number of the transmitted
585  * segment are as specified by the parameters.
586  */
587 int
588 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
589     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
590 {
591 	struct route *ro;
592 	int error, tlen, win = 0;
593 	int hlen;
594 	struct ip *ip;
595 #ifdef INET6
596 	struct ip6_hdr *ip6;
597 #endif
598 	int family;	/* family on packet, not inpcb/in6pcb! */
599 	struct tcphdr *th;
600 	struct socket *so;
601 
602 	if (tp != NULL && (flags & TH_RST) == 0) {
603 #ifdef DIAGNOSTIC
604 		if (tp->t_inpcb && tp->t_in6pcb)
605 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
606 #endif
607 #ifdef INET
608 		if (tp->t_inpcb)
609 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
610 #endif
611 #ifdef INET6
612 		if (tp->t_in6pcb)
613 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
614 #endif
615 	}
616 
617 	th = NULL;	/* Quell uninitialized warning */
618 	ip = NULL;
619 #ifdef INET6
620 	ip6 = NULL;
621 #endif
622 	if (m == 0) {
623 		if (!template)
624 			return EINVAL;
625 
626 		/* get family information from template */
627 		switch (mtod(template, struct ip *)->ip_v) {
628 		case 4:
629 			family = AF_INET;
630 			hlen = sizeof(struct ip);
631 			break;
632 #ifdef INET6
633 		case 6:
634 			family = AF_INET6;
635 			hlen = sizeof(struct ip6_hdr);
636 			break;
637 #endif
638 		default:
639 			return EAFNOSUPPORT;
640 		}
641 
642 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
643 		if (m) {
644 			MCLAIM(m, &tcp_tx_mowner);
645 			MCLGET(m, M_DONTWAIT);
646 			if ((m->m_flags & M_EXT) == 0) {
647 				m_free(m);
648 				m = NULL;
649 			}
650 		}
651 		if (m == NULL)
652 			return (ENOBUFS);
653 
654 		if (tcp_compat_42)
655 			tlen = 1;
656 		else
657 			tlen = 0;
658 
659 		m->m_data += max_linkhdr;
660 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
661 			template->m_len);
662 		switch (family) {
663 		case AF_INET:
664 			ip = mtod(m, struct ip *);
665 			th = (struct tcphdr *)(ip + 1);
666 			break;
667 #ifdef INET6
668 		case AF_INET6:
669 			ip6 = mtod(m, struct ip6_hdr *);
670 			th = (struct tcphdr *)(ip6 + 1);
671 			break;
672 #endif
673 #if 0
674 		default:
675 			/* noone will visit here */
676 			m_freem(m);
677 			return EAFNOSUPPORT;
678 #endif
679 		}
680 		flags = TH_ACK;
681 	} else {
682 
683 		if ((m->m_flags & M_PKTHDR) == 0) {
684 #if 0
685 			printf("non PKTHDR to tcp_respond\n");
686 #endif
687 			m_freem(m);
688 			return EINVAL;
689 		}
690 #ifdef DIAGNOSTIC
691 		if (!th0)
692 			panic("th0 == NULL in tcp_respond");
693 #endif
694 
695 		/* get family information from m */
696 		switch (mtod(m, struct ip *)->ip_v) {
697 		case 4:
698 			family = AF_INET;
699 			hlen = sizeof(struct ip);
700 			ip = mtod(m, struct ip *);
701 			break;
702 #ifdef INET6
703 		case 6:
704 			family = AF_INET6;
705 			hlen = sizeof(struct ip6_hdr);
706 			ip6 = mtod(m, struct ip6_hdr *);
707 			break;
708 #endif
709 		default:
710 			m_freem(m);
711 			return EAFNOSUPPORT;
712 		}
713 		/* clear h/w csum flags inherited from rx packet */
714 		m->m_pkthdr.csum_flags = 0;
715 
716 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
717 			tlen = sizeof(*th0);
718 		else
719 			tlen = th0->th_off << 2;
720 
721 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
722 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
723 			m->m_len = hlen + tlen;
724 			m_freem(m->m_next);
725 			m->m_next = NULL;
726 		} else {
727 			struct mbuf *n;
728 
729 #ifdef DIAGNOSTIC
730 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
731 				m_freem(m);
732 				return EMSGSIZE;
733 			}
734 #endif
735 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
736 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
737 				MCLGET(n, M_DONTWAIT);
738 				if ((n->m_flags & M_EXT) == 0) {
739 					m_freem(n);
740 					n = NULL;
741 				}
742 			}
743 			if (!n) {
744 				m_freem(m);
745 				return ENOBUFS;
746 			}
747 
748 			MCLAIM(n, &tcp_tx_mowner);
749 			n->m_data += max_linkhdr;
750 			n->m_len = hlen + tlen;
751 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
752 			m_copyback(n, hlen, tlen, (caddr_t)th0);
753 
754 			m_freem(m);
755 			m = n;
756 			n = NULL;
757 		}
758 
759 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
760 		switch (family) {
761 		case AF_INET:
762 			ip = mtod(m, struct ip *);
763 			th = (struct tcphdr *)(ip + 1);
764 			ip->ip_p = IPPROTO_TCP;
765 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
766 			ip->ip_p = IPPROTO_TCP;
767 			break;
768 #ifdef INET6
769 		case AF_INET6:
770 			ip6 = mtod(m, struct ip6_hdr *);
771 			th = (struct tcphdr *)(ip6 + 1);
772 			ip6->ip6_nxt = IPPROTO_TCP;
773 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
774 			ip6->ip6_nxt = IPPROTO_TCP;
775 			break;
776 #endif
777 #if 0
778 		default:
779 			/* noone will visit here */
780 			m_freem(m);
781 			return EAFNOSUPPORT;
782 #endif
783 		}
784 		xchg(th->th_dport, th->th_sport, u_int16_t);
785 #undef xchg
786 		tlen = 0;	/*be friendly with the following code*/
787 	}
788 	th->th_seq = htonl(seq);
789 	th->th_ack = htonl(ack);
790 	th->th_x2 = 0;
791 	if ((flags & TH_SYN) == 0) {
792 		if (tp)
793 			win >>= tp->rcv_scale;
794 		if (win > TCP_MAXWIN)
795 			win = TCP_MAXWIN;
796 		th->th_win = htons((u_int16_t)win);
797 		th->th_off = sizeof (struct tcphdr) >> 2;
798 		tlen += sizeof(*th);
799 	} else
800 		tlen += th->th_off << 2;
801 	m->m_len = hlen + tlen;
802 	m->m_pkthdr.len = hlen + tlen;
803 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
804 	th->th_flags = flags;
805 	th->th_urp = 0;
806 
807 	switch (family) {
808 #ifdef INET
809 	case AF_INET:
810 	    {
811 		struct ipovly *ipov = (struct ipovly *)ip;
812 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
813 		ipov->ih_len = htons((u_int16_t)tlen);
814 
815 		th->th_sum = 0;
816 		th->th_sum = in_cksum(m, hlen + tlen);
817 		ip->ip_len = htons(hlen + tlen);
818 		ip->ip_ttl = ip_defttl;
819 		break;
820 	    }
821 #endif
822 #ifdef INET6
823 	case AF_INET6:
824 	    {
825 		th->th_sum = 0;
826 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
827 				tlen);
828 		ip6->ip6_plen = htons(tlen);
829 		if (tp && tp->t_in6pcb) {
830 			struct ifnet *oifp;
831 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
832 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
833 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
834 		} else
835 			ip6->ip6_hlim = ip6_defhlim;
836 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
837 		if (ip6_auto_flowlabel) {
838 			ip6->ip6_flow |=
839 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
840 		}
841 		break;
842 	    }
843 #endif
844 	}
845 
846 	if (tp && tp->t_inpcb)
847 		so = tp->t_inpcb->inp_socket;
848 #ifdef INET6
849 	else if (tp && tp->t_in6pcb)
850 		so = tp->t_in6pcb->in6p_socket;
851 #endif
852 	else
853 		so = NULL;
854 
855 	if (tp != NULL && tp->t_inpcb != NULL) {
856 		ro = &tp->t_inpcb->inp_route;
857 #ifdef DIAGNOSTIC
858 		if (family != AF_INET)
859 			panic("tcp_respond: address family mismatch");
860 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
861 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
862 			    ntohl(ip->ip_dst.s_addr),
863 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
864 		}
865 #endif
866 	}
867 #ifdef INET6
868 	else if (tp != NULL && tp->t_in6pcb != NULL) {
869 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
870 #ifdef DIAGNOSTIC
871 		if (family == AF_INET) {
872 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
873 				panic("tcp_respond: not mapped addr");
874 			if (bcmp(&ip->ip_dst,
875 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
876 			    sizeof(ip->ip_dst)) != 0) {
877 				panic("tcp_respond: ip_dst != in6p_faddr");
878 			}
879 		} else if (family == AF_INET6) {
880 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
881 			    &tp->t_in6pcb->in6p_faddr))
882 				panic("tcp_respond: ip6_dst != in6p_faddr");
883 		} else
884 			panic("tcp_respond: address family mismatch");
885 #endif
886 	}
887 #endif
888 	else
889 		ro = NULL;
890 
891 	switch (family) {
892 #ifdef INET
893 	case AF_INET:
894 		error = ip_output(m, NULL, ro,
895 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
896 		    (struct ip_moptions *)0, so);
897 		break;
898 #endif
899 #ifdef INET6
900 	case AF_INET6:
901 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
902 		    (struct ip6_moptions *)0, so, NULL);
903 		break;
904 #endif
905 	default:
906 		error = EAFNOSUPPORT;
907 		break;
908 	}
909 
910 	return (error);
911 }
912 
913 /*
914  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
915  * a bunch of members individually, we maintain this template for the
916  * static and mostly-static components of the TCPCB, and copy it into
917  * the new TCPCB instead.
918  */
919 static struct tcpcb tcpcb_template = {
920 	/*
921 	 * If TCP_NTIMERS ever changes, we'll need to update this
922 	 * initializer.
923 	 */
924 	.t_timer = {
925 		CALLOUT_INITIALIZER,
926 		CALLOUT_INITIALIZER,
927 		CALLOUT_INITIALIZER,
928 		CALLOUT_INITIALIZER,
929 	},
930 	.t_delack_ch = CALLOUT_INITIALIZER,
931 
932 	.t_srtt = TCPTV_SRTTBASE,
933 	.t_rttmin = TCPTV_MIN,
934 
935 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
936 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
937 	.snd_numholes = 0,
938 
939 	.t_partialacks = -1,
940 	.t_bytes_acked = 0,
941 };
942 
943 /*
944  * Updates the TCPCB template whenever a parameter that would affect
945  * the template is changed.
946  */
947 void
948 tcp_tcpcb_template(void)
949 {
950 	struct tcpcb *tp = &tcpcb_template;
951 	int flags;
952 
953 	tp->t_peermss = tcp_mssdflt;
954 	tp->t_ourmss = tcp_mssdflt;
955 	tp->t_segsz = tcp_mssdflt;
956 
957 	flags = 0;
958 	if (tcp_do_rfc1323 && tcp_do_win_scale)
959 		flags |= TF_REQ_SCALE;
960 	if (tcp_do_rfc1323 && tcp_do_timestamps)
961 		flags |= TF_REQ_TSTMP;
962 	tp->t_flags = flags;
963 
964 	/*
965 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
966 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
967 	 * reasonable initial retransmit time.
968 	 */
969 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
970 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
971 	    TCPTV_MIN, TCPTV_REXMTMAX);
972 }
973 
974 /*
975  * Create a new TCP control block, making an
976  * empty reassembly queue and hooking it to the argument
977  * protocol control block.
978  */
979 /* family selects inpcb, or in6pcb */
980 struct tcpcb *
981 tcp_newtcpcb(int family, void *aux)
982 {
983 	struct tcpcb *tp;
984 	int i;
985 
986 	/* XXX Consider using a pool_cache for speed. */
987 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
988 	if (tp == NULL)
989 		return (NULL);
990 	memcpy(tp, &tcpcb_template, sizeof(*tp));
991 	TAILQ_INIT(&tp->segq);
992 	TAILQ_INIT(&tp->timeq);
993 	tp->t_family = family;		/* may be overridden later on */
994 	TAILQ_INIT(&tp->snd_holes);
995 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
996 
997 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
998 	for (i = 0; i < TCPT_NTIMERS; i++)
999 		TCP_TIMER_INIT(tp, i);
1000 
1001 	switch (family) {
1002 	case AF_INET:
1003 	    {
1004 		struct inpcb *inp = (struct inpcb *)aux;
1005 
1006 		inp->inp_ip.ip_ttl = ip_defttl;
1007 		inp->inp_ppcb = (caddr_t)tp;
1008 
1009 		tp->t_inpcb = inp;
1010 		tp->t_mtudisc = ip_mtudisc;
1011 		break;
1012 	    }
1013 #ifdef INET6
1014 	case AF_INET6:
1015 	    {
1016 		struct in6pcb *in6p = (struct in6pcb *)aux;
1017 
1018 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1019 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
1020 					       : NULL);
1021 		in6p->in6p_ppcb = (caddr_t)tp;
1022 
1023 		tp->t_in6pcb = in6p;
1024 		/* for IPv6, always try to run path MTU discovery */
1025 		tp->t_mtudisc = 1;
1026 		break;
1027 	    }
1028 #endif /* INET6 */
1029 	default:
1030 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
1031 		return (NULL);
1032 	}
1033 
1034 	/*
1035 	 * Initialize our timebase.  When we send timestamps, we take
1036 	 * the delta from tcp_now -- this means each connection always
1037 	 * gets a timebase of 0, which makes it, among other things,
1038 	 * more difficult to determine how long a system has been up,
1039 	 * and thus how many TCP sequence increments have occurred.
1040 	 */
1041 	tp->ts_timebase = tcp_now;
1042 
1043 	tp->t_congctl = tcp_congctl_global;
1044 	tp->t_congctl->refcnt++;
1045 
1046 	return (tp);
1047 }
1048 
1049 /*
1050  * Drop a TCP connection, reporting
1051  * the specified error.  If connection is synchronized,
1052  * then send a RST to peer.
1053  */
1054 struct tcpcb *
1055 tcp_drop(struct tcpcb *tp, int errno)
1056 {
1057 	struct socket *so = NULL;
1058 
1059 #ifdef DIAGNOSTIC
1060 	if (tp->t_inpcb && tp->t_in6pcb)
1061 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1062 #endif
1063 #ifdef INET
1064 	if (tp->t_inpcb)
1065 		so = tp->t_inpcb->inp_socket;
1066 #endif
1067 #ifdef INET6
1068 	if (tp->t_in6pcb)
1069 		so = tp->t_in6pcb->in6p_socket;
1070 #endif
1071 	if (!so)
1072 		return NULL;
1073 
1074 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1075 		tp->t_state = TCPS_CLOSED;
1076 		(void) tcp_output(tp);
1077 		tcpstat.tcps_drops++;
1078 	} else
1079 		tcpstat.tcps_conndrops++;
1080 	if (errno == ETIMEDOUT && tp->t_softerror)
1081 		errno = tp->t_softerror;
1082 	so->so_error = errno;
1083 	return (tcp_close(tp));
1084 }
1085 
1086 /*
1087  * Return whether this tcpcb is marked as dead, indicating
1088  * to the calling timer function that no further action should
1089  * be taken, as we are about to release this tcpcb.  The release
1090  * of the storage will be done if this is the last timer running.
1091  *
1092  * This should be called from the callout handler function after
1093  * callout_ack() is done, so that the number of invoking timer
1094  * functions is 0.
1095  */
1096 int
1097 tcp_isdead(struct tcpcb *tp)
1098 {
1099 	int dead = (tp->t_flags & TF_DEAD);
1100 
1101 	if (__predict_false(dead)) {
1102 		if (tcp_timers_invoking(tp) > 0)
1103 				/* not quite there yet -- count separately? */
1104 			return dead;
1105 		tcpstat.tcps_delayed_free++;
1106 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_timer.c */
1107 	}
1108 	return dead;
1109 }
1110 
1111 /*
1112  * Close a TCP control block:
1113  *	discard all space held by the tcp
1114  *	discard internet protocol block
1115  *	wake up any sleepers
1116  */
1117 struct tcpcb *
1118 tcp_close(struct tcpcb *tp)
1119 {
1120 	struct inpcb *inp;
1121 #ifdef INET6
1122 	struct in6pcb *in6p;
1123 #endif
1124 	struct socket *so;
1125 #ifdef RTV_RTT
1126 	struct rtentry *rt;
1127 #endif
1128 	struct route *ro;
1129 
1130 	inp = tp->t_inpcb;
1131 #ifdef INET6
1132 	in6p = tp->t_in6pcb;
1133 #endif
1134 	so = NULL;
1135 	ro = NULL;
1136 	if (inp) {
1137 		so = inp->inp_socket;
1138 		ro = &inp->inp_route;
1139 	}
1140 #ifdef INET6
1141 	else if (in6p) {
1142 		so = in6p->in6p_socket;
1143 		ro = (struct route *)&in6p->in6p_route;
1144 	}
1145 #endif
1146 
1147 #ifdef RTV_RTT
1148 	/*
1149 	 * If we sent enough data to get some meaningful characteristics,
1150 	 * save them in the routing entry.  'Enough' is arbitrarily
1151 	 * defined as the sendpipesize (default 4K) * 16.  This would
1152 	 * give us 16 rtt samples assuming we only get one sample per
1153 	 * window (the usual case on a long haul net).  16 samples is
1154 	 * enough for the srtt filter to converge to within 5% of the correct
1155 	 * value; fewer samples and we could save a very bogus rtt.
1156 	 *
1157 	 * Don't update the default route's characteristics and don't
1158 	 * update anything that the user "locked".
1159 	 */
1160 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1161 	    ro && (rt = ro->ro_rt) &&
1162 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1163 		u_long i = 0;
1164 
1165 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1166 			i = tp->t_srtt *
1167 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1168 			if (rt->rt_rmx.rmx_rtt && i)
1169 				/*
1170 				 * filter this update to half the old & half
1171 				 * the new values, converting scale.
1172 				 * See route.h and tcp_var.h for a
1173 				 * description of the scaling constants.
1174 				 */
1175 				rt->rt_rmx.rmx_rtt =
1176 				    (rt->rt_rmx.rmx_rtt + i) / 2;
1177 			else
1178 				rt->rt_rmx.rmx_rtt = i;
1179 		}
1180 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1181 			i = tp->t_rttvar *
1182 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1183 			if (rt->rt_rmx.rmx_rttvar && i)
1184 				rt->rt_rmx.rmx_rttvar =
1185 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
1186 			else
1187 				rt->rt_rmx.rmx_rttvar = i;
1188 		}
1189 		/*
1190 		 * update the pipelimit (ssthresh) if it has been updated
1191 		 * already or if a pipesize was specified & the threshhold
1192 		 * got below half the pipesize.  I.e., wait for bad news
1193 		 * before we start updating, then update on both good
1194 		 * and bad news.
1195 		 */
1196 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1197 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1198 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1199 			/*
1200 			 * convert the limit from user data bytes to
1201 			 * packets then to packet data bytes.
1202 			 */
1203 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
1204 			if (i < 2)
1205 				i = 2;
1206 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1207 			if (rt->rt_rmx.rmx_ssthresh)
1208 				rt->rt_rmx.rmx_ssthresh =
1209 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1210 			else
1211 				rt->rt_rmx.rmx_ssthresh = i;
1212 		}
1213 	}
1214 #endif /* RTV_RTT */
1215 	/* free the reassembly queue, if any */
1216 	TCP_REASS_LOCK(tp);
1217 	(void) tcp_freeq(tp);
1218 	TCP_REASS_UNLOCK(tp);
1219 
1220 	/* free the SACK holes list. */
1221 	tcp_free_sackholes(tp);
1222 
1223 	tp->t_congctl->refcnt--;
1224 
1225 	tcp_canceltimers(tp);
1226 	TCP_CLEAR_DELACK(tp);
1227 	syn_cache_cleanup(tp);
1228 
1229 	if (tp->t_template) {
1230 		m_free(tp->t_template);
1231 		tp->t_template = NULL;
1232 	}
1233 	if (tcp_timers_invoking(tp))
1234 		tp->t_flags |= TF_DEAD;
1235 	else
1236 		pool_put(&tcpcb_pool, tp);
1237 
1238 	if (inp) {
1239 		inp->inp_ppcb = 0;
1240 		soisdisconnected(so);
1241 		in_pcbdetach(inp);
1242 	}
1243 #ifdef INET6
1244 	else if (in6p) {
1245 		in6p->in6p_ppcb = 0;
1246 		soisdisconnected(so);
1247 		in6_pcbdetach(in6p);
1248 	}
1249 #endif
1250 	tcpstat.tcps_closed++;
1251 	return ((struct tcpcb *)0);
1252 }
1253 
1254 int
1255 tcp_freeq(tp)
1256 	struct tcpcb *tp;
1257 {
1258 	struct ipqent *qe;
1259 	int rv = 0;
1260 #ifdef TCPREASS_DEBUG
1261 	int i = 0;
1262 #endif
1263 
1264 	TCP_REASS_LOCK_CHECK(tp);
1265 
1266 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1267 #ifdef TCPREASS_DEBUG
1268 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1269 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1270 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1271 #endif
1272 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1273 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1274 		m_freem(qe->ipqe_m);
1275 		tcpipqent_free(qe);
1276 		rv = 1;
1277 	}
1278 	tp->t_segqlen = 0;
1279 	KASSERT(TAILQ_EMPTY(&tp->timeq));
1280 	return (rv);
1281 }
1282 
1283 /*
1284  * Protocol drain routine.  Called when memory is in short supply.
1285  */
1286 void
1287 tcp_drain(void)
1288 {
1289 	struct inpcb_hdr *inph;
1290 	struct tcpcb *tp;
1291 
1292 	/*
1293 	 * Free the sequence queue of all TCP connections.
1294 	 */
1295 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1296 		switch (inph->inph_af) {
1297 		case AF_INET:
1298 			tp = intotcpcb((struct inpcb *)inph);
1299 			break;
1300 #ifdef INET6
1301 		case AF_INET6:
1302 			tp = in6totcpcb((struct in6pcb *)inph);
1303 			break;
1304 #endif
1305 		default:
1306 			tp = NULL;
1307 			break;
1308 		}
1309 		if (tp != NULL) {
1310 			/*
1311 			 * We may be called from a device's interrupt
1312 			 * context.  If the tcpcb is already busy,
1313 			 * just bail out now.
1314 			 */
1315 			if (tcp_reass_lock_try(tp) == 0)
1316 				continue;
1317 			if (tcp_freeq(tp))
1318 				tcpstat.tcps_connsdrained++;
1319 			TCP_REASS_UNLOCK(tp);
1320 		}
1321 	}
1322 }
1323 
1324 /*
1325  * Notify a tcp user of an asynchronous error;
1326  * store error as soft error, but wake up user
1327  * (for now, won't do anything until can select for soft error).
1328  */
1329 void
1330 tcp_notify(struct inpcb *inp, int error)
1331 {
1332 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1333 	struct socket *so = inp->inp_socket;
1334 
1335 	/*
1336 	 * Ignore some errors if we are hooked up.
1337 	 * If connection hasn't completed, has retransmitted several times,
1338 	 * and receives a second error, give up now.  This is better
1339 	 * than waiting a long time to establish a connection that
1340 	 * can never complete.
1341 	 */
1342 	if (tp->t_state == TCPS_ESTABLISHED &&
1343 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1344 	      error == EHOSTDOWN)) {
1345 		return;
1346 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1347 	    tp->t_rxtshift > 3 && tp->t_softerror)
1348 		so->so_error = error;
1349 	else
1350 		tp->t_softerror = error;
1351 	wakeup((caddr_t) &so->so_timeo);
1352 	sorwakeup(so);
1353 	sowwakeup(so);
1354 }
1355 
1356 #ifdef INET6
1357 void
1358 tcp6_notify(struct in6pcb *in6p, int error)
1359 {
1360 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1361 	struct socket *so = in6p->in6p_socket;
1362 
1363 	/*
1364 	 * Ignore some errors if we are hooked up.
1365 	 * If connection hasn't completed, has retransmitted several times,
1366 	 * and receives a second error, give up now.  This is better
1367 	 * than waiting a long time to establish a connection that
1368 	 * can never complete.
1369 	 */
1370 	if (tp->t_state == TCPS_ESTABLISHED &&
1371 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1372 	      error == EHOSTDOWN)) {
1373 		return;
1374 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1375 	    tp->t_rxtshift > 3 && tp->t_softerror)
1376 		so->so_error = error;
1377 	else
1378 		tp->t_softerror = error;
1379 	wakeup((caddr_t) &so->so_timeo);
1380 	sorwakeup(so);
1381 	sowwakeup(so);
1382 }
1383 #endif
1384 
1385 #ifdef INET6
1386 void
1387 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1388 {
1389 	struct tcphdr th;
1390 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
1391 	int nmatch;
1392 	struct ip6_hdr *ip6;
1393 	const struct sockaddr_in6 *sa6_src = NULL;
1394 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1395 	struct mbuf *m;
1396 	int off;
1397 
1398 	if (sa->sa_family != AF_INET6 ||
1399 	    sa->sa_len != sizeof(struct sockaddr_in6))
1400 		return;
1401 	if ((unsigned)cmd >= PRC_NCMDS)
1402 		return;
1403 	else if (cmd == PRC_QUENCH) {
1404 		/*
1405 		 * Don't honor ICMP Source Quench messages meant for
1406 		 * TCP connections.
1407 		 */
1408 		return;
1409 	} else if (PRC_IS_REDIRECT(cmd))
1410 		notify = in6_rtchange, d = NULL;
1411 	else if (cmd == PRC_MSGSIZE)
1412 		; /* special code is present, see below */
1413 	else if (cmd == PRC_HOSTDEAD)
1414 		d = NULL;
1415 	else if (inet6ctlerrmap[cmd] == 0)
1416 		return;
1417 
1418 	/* if the parameter is from icmp6, decode it. */
1419 	if (d != NULL) {
1420 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1421 		m = ip6cp->ip6c_m;
1422 		ip6 = ip6cp->ip6c_ip6;
1423 		off = ip6cp->ip6c_off;
1424 		sa6_src = ip6cp->ip6c_src;
1425 	} else {
1426 		m = NULL;
1427 		ip6 = NULL;
1428 		sa6_src = &sa6_any;
1429 		off = 0;
1430 	}
1431 
1432 	if (ip6) {
1433 		/*
1434 		 * XXX: We assume that when ip6 is non NULL,
1435 		 * M and OFF are valid.
1436 		 */
1437 
1438 		/* check if we can safely examine src and dst ports */
1439 		if (m->m_pkthdr.len < off + sizeof(th)) {
1440 			if (cmd == PRC_MSGSIZE)
1441 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1442 			return;
1443 		}
1444 
1445 		bzero(&th, sizeof(th));
1446 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
1447 
1448 		if (cmd == PRC_MSGSIZE) {
1449 			int valid = 0;
1450 
1451 			/*
1452 			 * Check to see if we have a valid TCP connection
1453 			 * corresponding to the address in the ICMPv6 message
1454 			 * payload.
1455 			 */
1456 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1457 			    th.th_dport, (const struct in6_addr *)&sa6_src->sin6_addr,
1458 			    th.th_sport, 0))
1459 				valid++;
1460 
1461 			/*
1462 			 * Depending on the value of "valid" and routing table
1463 			 * size (mtudisc_{hi,lo}wat), we will:
1464 			 * - recalcurate the new MTU and create the
1465 			 *   corresponding routing entry, or
1466 			 * - ignore the MTU change notification.
1467 			 */
1468 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1469 
1470 			/*
1471 			 * no need to call in6_pcbnotify, it should have been
1472 			 * called via callback if necessary
1473 			 */
1474 			return;
1475 		}
1476 
1477 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1478 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1479 		if (nmatch == 0 && syn_cache_count &&
1480 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1481 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
1482 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
1483 			syn_cache_unreach((const struct sockaddr *)sa6_src,
1484 					  sa, &th);
1485 	} else {
1486 		(void) in6_pcbnotify(&tcbtable, sa, 0,
1487 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1488 	}
1489 }
1490 #endif
1491 
1492 #ifdef INET
1493 /* assumes that ip header and tcp header are contiguous on mbuf */
1494 void *
1495 tcp_ctlinput(int cmd, struct sockaddr *sa, void *v)
1496 {
1497 	struct ip *ip = v;
1498 	struct tcphdr *th;
1499 	struct icmp *icp;
1500 	extern const int inetctlerrmap[];
1501 	void (*notify)(struct inpcb *, int) = tcp_notify;
1502 	int errno;
1503 	int nmatch;
1504 	struct tcpcb *tp;
1505 	u_int mtu;
1506 	tcp_seq seq;
1507 	struct inpcb *inp;
1508 #ifdef INET6
1509 	struct in6pcb *in6p;
1510 	struct in6_addr src6, dst6;
1511 #endif
1512 
1513 	if (sa->sa_family != AF_INET ||
1514 	    sa->sa_len != sizeof(struct sockaddr_in))
1515 		return NULL;
1516 	if ((unsigned)cmd >= PRC_NCMDS)
1517 		return NULL;
1518 	errno = inetctlerrmap[cmd];
1519 	if (cmd == PRC_QUENCH)
1520 		/*
1521 		 * Don't honor ICMP Source Quench messages meant for
1522 		 * TCP connections.
1523 		 */
1524 		return NULL;
1525 	else if (PRC_IS_REDIRECT(cmd))
1526 		notify = in_rtchange, ip = 0;
1527 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1528 		/*
1529 		 * Check to see if we have a valid TCP connection
1530 		 * corresponding to the address in the ICMP message
1531 		 * payload.
1532 		 *
1533 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1534 		 */
1535 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1536 #ifdef INET6
1537 		memset(&src6, 0, sizeof(src6));
1538 		memset(&dst6, 0, sizeof(dst6));
1539 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1540 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1541 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1542 #endif
1543 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1544 		    th->th_dport, ip->ip_src, th->th_sport)) != NULL)
1545 #ifdef INET6
1546 			in6p = NULL;
1547 #else
1548 			;
1549 #endif
1550 #ifdef INET6
1551 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1552 		    th->th_dport, &src6, th->th_sport, 0)) != NULL)
1553 			;
1554 #endif
1555 		else
1556 			return NULL;
1557 
1558 		/*
1559 		 * Now that we've validated that we are actually communicating
1560 		 * with the host indicated in the ICMP message, locate the
1561 		 * ICMP header, recalculate the new MTU, and create the
1562 		 * corresponding routing entry.
1563 		 */
1564 		icp = (struct icmp *)((caddr_t)ip -
1565 		    offsetof(struct icmp, icmp_ip));
1566 		if (inp) {
1567 			if ((tp = intotcpcb(inp)) == NULL)
1568 				return NULL;
1569 		}
1570 #ifdef INET6
1571 		else if (in6p) {
1572 			if ((tp = in6totcpcb(in6p)) == NULL)
1573 				return NULL;
1574 		}
1575 #endif
1576 		else
1577 			return NULL;
1578 		seq = ntohl(th->th_seq);
1579 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1580 			return NULL;
1581 		/*
1582 		 * If the ICMP message advertises a Next-Hop MTU
1583 		 * equal or larger than the maximum packet size we have
1584 		 * ever sent, drop the message.
1585 		 */
1586 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
1587 		if (mtu >= tp->t_pmtud_mtu_sent)
1588 			return NULL;
1589 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1590 			/*
1591 			 * Calculate new MTU, and create corresponding
1592 			 * route (traditional PMTUD).
1593 			 */
1594 			tp->t_flags &= ~TF_PMTUD_PEND;
1595 			icmp_mtudisc(icp, ip->ip_dst);
1596 		} else {
1597 			/*
1598 			 * Record the information got in the ICMP
1599 			 * message; act on it later.
1600 			 * If we had already recorded an ICMP message,
1601 			 * replace the old one only if the new message
1602 			 * refers to an older TCP segment
1603 			 */
1604 			if (tp->t_flags & TF_PMTUD_PEND) {
1605 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1606 					return NULL;
1607 			} else
1608 				tp->t_flags |= TF_PMTUD_PEND;
1609 			tp->t_pmtud_th_seq = seq;
1610 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1611 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1612 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1613 		}
1614 		return NULL;
1615 	} else if (cmd == PRC_HOSTDEAD)
1616 		ip = 0;
1617 	else if (errno == 0)
1618 		return NULL;
1619 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1620 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1621 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1622 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1623 		if (nmatch == 0 && syn_cache_count &&
1624 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
1625 		    inetctlerrmap[cmd] == ENETUNREACH ||
1626 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
1627 			struct sockaddr_in sin;
1628 			bzero(&sin, sizeof(sin));
1629 			sin.sin_len = sizeof(sin);
1630 			sin.sin_family = AF_INET;
1631 			sin.sin_port = th->th_sport;
1632 			sin.sin_addr = ip->ip_src;
1633 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1634 		}
1635 
1636 		/* XXX mapped address case */
1637 	} else
1638 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1639 		    notify);
1640 	return NULL;
1641 }
1642 
1643 /*
1644  * When a source quench is received, we are being notified of congestion.
1645  * Close the congestion window down to the Loss Window (one segment).
1646  * We will gradually open it again as we proceed.
1647  */
1648 void
1649 tcp_quench(struct inpcb *inp, int errno)
1650 {
1651 	struct tcpcb *tp = intotcpcb(inp);
1652 
1653 	if (tp) {
1654 		tp->snd_cwnd = tp->t_segsz;
1655 		tp->t_bytes_acked = 0;
1656 	}
1657 }
1658 #endif
1659 
1660 #ifdef INET6
1661 void
1662 tcp6_quench(struct in6pcb *in6p, int errno)
1663 {
1664 	struct tcpcb *tp = in6totcpcb(in6p);
1665 
1666 	if (tp) {
1667 		tp->snd_cwnd = tp->t_segsz;
1668 		tp->t_bytes_acked = 0;
1669 	}
1670 }
1671 #endif
1672 
1673 #ifdef INET
1674 /*
1675  * Path MTU Discovery handlers.
1676  */
1677 void
1678 tcp_mtudisc_callback(struct in_addr faddr)
1679 {
1680 #ifdef INET6
1681 	struct in6_addr in6;
1682 #endif
1683 
1684 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1685 #ifdef INET6
1686 	memset(&in6, 0, sizeof(in6));
1687 	in6.s6_addr16[5] = 0xffff;
1688 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1689 	tcp6_mtudisc_callback(&in6);
1690 #endif
1691 }
1692 
1693 /*
1694  * On receipt of path MTU corrections, flush old route and replace it
1695  * with the new one.  Retransmit all unacknowledged packets, to ensure
1696  * that all packets will be received.
1697  */
1698 void
1699 tcp_mtudisc(struct inpcb *inp, int errno)
1700 {
1701 	struct tcpcb *tp = intotcpcb(inp);
1702 	struct rtentry *rt = in_pcbrtentry(inp);
1703 
1704 	if (tp != 0) {
1705 		if (rt != 0) {
1706 			/*
1707 			 * If this was not a host route, remove and realloc.
1708 			 */
1709 			if ((rt->rt_flags & RTF_HOST) == 0) {
1710 				in_rtchange(inp, errno);
1711 				if ((rt = in_pcbrtentry(inp)) == 0)
1712 					return;
1713 			}
1714 
1715 			/*
1716 			 * Slow start out of the error condition.  We
1717 			 * use the MTU because we know it's smaller
1718 			 * than the previously transmitted segment.
1719 			 *
1720 			 * Note: This is more conservative than the
1721 			 * suggestion in draft-floyd-incr-init-win-03.
1722 			 */
1723 			if (rt->rt_rmx.rmx_mtu != 0)
1724 				tp->snd_cwnd =
1725 				    TCP_INITIAL_WINDOW(tcp_init_win,
1726 				    rt->rt_rmx.rmx_mtu);
1727 		}
1728 
1729 		/*
1730 		 * Resend unacknowledged packets.
1731 		 */
1732 		tp->snd_nxt = tp->snd_una;
1733 		tcp_output(tp);
1734 	}
1735 }
1736 #endif
1737 
1738 #ifdef INET6
1739 /*
1740  * Path MTU Discovery handlers.
1741  */
1742 void
1743 tcp6_mtudisc_callback(struct in6_addr *faddr)
1744 {
1745 	struct sockaddr_in6 sin6;
1746 
1747 	bzero(&sin6, sizeof(sin6));
1748 	sin6.sin6_family = AF_INET6;
1749 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1750 	sin6.sin6_addr = *faddr;
1751 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1752 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1753 }
1754 
1755 void
1756 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1757 {
1758 	struct tcpcb *tp = in6totcpcb(in6p);
1759 	struct rtentry *rt = in6_pcbrtentry(in6p);
1760 
1761 	if (tp != 0) {
1762 		if (rt != 0) {
1763 			/*
1764 			 * If this was not a host route, remove and realloc.
1765 			 */
1766 			if ((rt->rt_flags & RTF_HOST) == 0) {
1767 				in6_rtchange(in6p, errno);
1768 				if ((rt = in6_pcbrtentry(in6p)) == 0)
1769 					return;
1770 			}
1771 
1772 			/*
1773 			 * Slow start out of the error condition.  We
1774 			 * use the MTU because we know it's smaller
1775 			 * than the previously transmitted segment.
1776 			 *
1777 			 * Note: This is more conservative than the
1778 			 * suggestion in draft-floyd-incr-init-win-03.
1779 			 */
1780 			if (rt->rt_rmx.rmx_mtu != 0)
1781 				tp->snd_cwnd =
1782 				    TCP_INITIAL_WINDOW(tcp_init_win,
1783 				    rt->rt_rmx.rmx_mtu);
1784 		}
1785 
1786 		/*
1787 		 * Resend unacknowledged packets.
1788 		 */
1789 		tp->snd_nxt = tp->snd_una;
1790 		tcp_output(tp);
1791 	}
1792 }
1793 #endif /* INET6 */
1794 
1795 /*
1796  * Compute the MSS to advertise to the peer.  Called only during
1797  * the 3-way handshake.  If we are the server (peer initiated
1798  * connection), we are called with a pointer to the interface
1799  * on which the SYN packet arrived.  If we are the client (we
1800  * initiated connection), we are called with a pointer to the
1801  * interface out which this connection should go.
1802  *
1803  * NOTE: Do not subtract IP option/extension header size nor IPsec
1804  * header size from MSS advertisement.  MSS option must hold the maximum
1805  * segment size we can accept, so it must always be:
1806  *	 max(if mtu) - ip header - tcp header
1807  */
1808 u_long
1809 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1810 {
1811 	extern u_long in_maxmtu;
1812 	u_long mss = 0;
1813 	u_long hdrsiz;
1814 
1815 	/*
1816 	 * In order to avoid defeating path MTU discovery on the peer,
1817 	 * we advertise the max MTU of all attached networks as our MSS,
1818 	 * per RFC 1191, section 3.1.
1819 	 *
1820 	 * We provide the option to advertise just the MTU of
1821 	 * the interface on which we hope this connection will
1822 	 * be receiving.  If we are responding to a SYN, we
1823 	 * will have a pretty good idea about this, but when
1824 	 * initiating a connection there is a bit more doubt.
1825 	 *
1826 	 * We also need to ensure that loopback has a large enough
1827 	 * MSS, as the loopback MTU is never included in in_maxmtu.
1828 	 */
1829 
1830 	if (ifp != NULL)
1831 		switch (af) {
1832 		case AF_INET:
1833 			mss = ifp->if_mtu;
1834 			break;
1835 #ifdef INET6
1836 		case AF_INET6:
1837 			mss = IN6_LINKMTU(ifp);
1838 			break;
1839 #endif
1840 		}
1841 
1842 	if (tcp_mss_ifmtu == 0)
1843 		switch (af) {
1844 		case AF_INET:
1845 			mss = max(in_maxmtu, mss);
1846 			break;
1847 #ifdef INET6
1848 		case AF_INET6:
1849 			mss = max(in6_maxmtu, mss);
1850 			break;
1851 #endif
1852 		}
1853 
1854 	switch (af) {
1855 	case AF_INET:
1856 		hdrsiz = sizeof(struct ip);
1857 		break;
1858 #ifdef INET6
1859 	case AF_INET6:
1860 		hdrsiz = sizeof(struct ip6_hdr);
1861 		break;
1862 #endif
1863 	default:
1864 		hdrsiz = 0;
1865 		break;
1866 	}
1867 	hdrsiz += sizeof(struct tcphdr);
1868 	if (mss > hdrsiz)
1869 		mss -= hdrsiz;
1870 
1871 	mss = max(tcp_mssdflt, mss);
1872 	return (mss);
1873 }
1874 
1875 /*
1876  * Set connection variables based on the peer's advertised MSS.
1877  * We are passed the TCPCB for the actual connection.  If we
1878  * are the server, we are called by the compressed state engine
1879  * when the 3-way handshake is complete.  If we are the client,
1880  * we are called when we receive the SYN,ACK from the server.
1881  *
1882  * NOTE: Our advertised MSS value must be initialized in the TCPCB
1883  * before this routine is called!
1884  */
1885 void
1886 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1887 {
1888 	struct socket *so;
1889 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1890 	struct rtentry *rt;
1891 #endif
1892 	u_long bufsize;
1893 	int mss;
1894 
1895 #ifdef DIAGNOSTIC
1896 	if (tp->t_inpcb && tp->t_in6pcb)
1897 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1898 #endif
1899 	so = NULL;
1900 	rt = NULL;
1901 #ifdef INET
1902 	if (tp->t_inpcb) {
1903 		so = tp->t_inpcb->inp_socket;
1904 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1905 		rt = in_pcbrtentry(tp->t_inpcb);
1906 #endif
1907 	}
1908 #endif
1909 #ifdef INET6
1910 	if (tp->t_in6pcb) {
1911 		so = tp->t_in6pcb->in6p_socket;
1912 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1913 		rt = in6_pcbrtentry(tp->t_in6pcb);
1914 #endif
1915 	}
1916 #endif
1917 
1918 	/*
1919 	 * As per RFC1122, use the default MSS value, unless they
1920 	 * sent us an offer.  Do not accept offers less than 256 bytes.
1921 	 */
1922 	mss = tcp_mssdflt;
1923 	if (offer)
1924 		mss = offer;
1925 	mss = max(mss, 256);		/* sanity */
1926 	tp->t_peermss = mss;
1927 	mss -= tcp_optlen(tp);
1928 #ifdef INET
1929 	if (tp->t_inpcb)
1930 		mss -= ip_optlen(tp->t_inpcb);
1931 #endif
1932 #ifdef INET6
1933 	if (tp->t_in6pcb)
1934 		mss -= ip6_optlen(tp->t_in6pcb);
1935 #endif
1936 
1937 	/*
1938 	 * If there's a pipesize, change the socket buffer to that size.
1939 	 * Make the socket buffer an integral number of MSS units.  If
1940 	 * the MSS is larger than the socket buffer, artificially decrease
1941 	 * the MSS.
1942 	 */
1943 #ifdef RTV_SPIPE
1944 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1945 		bufsize = rt->rt_rmx.rmx_sendpipe;
1946 	else
1947 #endif
1948 	{
1949 		KASSERT(so != NULL);
1950 		bufsize = so->so_snd.sb_hiwat;
1951 	}
1952 	if (bufsize < mss)
1953 		mss = bufsize;
1954 	else {
1955 		bufsize = roundup(bufsize, mss);
1956 		if (bufsize > sb_max)
1957 			bufsize = sb_max;
1958 		(void) sbreserve(&so->so_snd, bufsize, so);
1959 	}
1960 	tp->t_segsz = mss;
1961 
1962 #ifdef RTV_SSTHRESH
1963 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1964 		/*
1965 		 * There's some sort of gateway or interface buffer
1966 		 * limit on the path.  Use this to set the slow
1967 		 * start threshold, but set the threshold to no less
1968 		 * than 2 * MSS.
1969 		 */
1970 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1971 	}
1972 #endif
1973 }
1974 
1975 /*
1976  * Processing necessary when a TCP connection is established.
1977  */
1978 void
1979 tcp_established(struct tcpcb *tp)
1980 {
1981 	struct socket *so;
1982 #ifdef RTV_RPIPE
1983 	struct rtentry *rt;
1984 #endif
1985 	u_long bufsize;
1986 
1987 #ifdef DIAGNOSTIC
1988 	if (tp->t_inpcb && tp->t_in6pcb)
1989 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
1990 #endif
1991 	so = NULL;
1992 	rt = NULL;
1993 #ifdef INET
1994 	if (tp->t_inpcb) {
1995 		so = tp->t_inpcb->inp_socket;
1996 #if defined(RTV_RPIPE)
1997 		rt = in_pcbrtentry(tp->t_inpcb);
1998 #endif
1999 	}
2000 #endif
2001 #ifdef INET6
2002 	if (tp->t_in6pcb) {
2003 		so = tp->t_in6pcb->in6p_socket;
2004 #if defined(RTV_RPIPE)
2005 		rt = in6_pcbrtentry(tp->t_in6pcb);
2006 #endif
2007 	}
2008 #endif
2009 
2010 	tp->t_state = TCPS_ESTABLISHED;
2011 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
2012 
2013 #ifdef RTV_RPIPE
2014 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2015 		bufsize = rt->rt_rmx.rmx_recvpipe;
2016 	else
2017 #endif
2018 	{
2019 		KASSERT(so != NULL);
2020 		bufsize = so->so_rcv.sb_hiwat;
2021 	}
2022 	if (bufsize > tp->t_ourmss) {
2023 		bufsize = roundup(bufsize, tp->t_ourmss);
2024 		if (bufsize > sb_max)
2025 			bufsize = sb_max;
2026 		(void) sbreserve(&so->so_rcv, bufsize, so);
2027 	}
2028 }
2029 
2030 /*
2031  * Check if there's an initial rtt or rttvar.  Convert from the
2032  * route-table units to scaled multiples of the slow timeout timer.
2033  * Called only during the 3-way handshake.
2034  */
2035 void
2036 tcp_rmx_rtt(struct tcpcb *tp)
2037 {
2038 #ifdef RTV_RTT
2039 	struct rtentry *rt = NULL;
2040 	int rtt;
2041 
2042 #ifdef DIAGNOSTIC
2043 	if (tp->t_inpcb && tp->t_in6pcb)
2044 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2045 #endif
2046 #ifdef INET
2047 	if (tp->t_inpcb)
2048 		rt = in_pcbrtentry(tp->t_inpcb);
2049 #endif
2050 #ifdef INET6
2051 	if (tp->t_in6pcb)
2052 		rt = in6_pcbrtentry(tp->t_in6pcb);
2053 #endif
2054 	if (rt == NULL)
2055 		return;
2056 
2057 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2058 		/*
2059 		 * XXX The lock bit for MTU indicates that the value
2060 		 * is also a minimum value; this is subject to time.
2061 		 */
2062 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2063 			TCPT_RANGESET(tp->t_rttmin,
2064 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2065 			    TCPTV_MIN, TCPTV_REXMTMAX);
2066 		tp->t_srtt = rtt /
2067 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2068 		if (rt->rt_rmx.rmx_rttvar) {
2069 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2070 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
2071 				(TCP_RTTVAR_SHIFT + 2));
2072 		} else {
2073 			/* Default variation is +- 1 rtt */
2074 			tp->t_rttvar =
2075 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2076 		}
2077 		TCPT_RANGESET(tp->t_rxtcur,
2078 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2079 		    tp->t_rttmin, TCPTV_REXMTMAX);
2080 	}
2081 #endif
2082 }
2083 
2084 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
2085 #if NRND > 0
2086 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
2087 #endif
2088 
2089 /*
2090  * Get a new sequence value given a tcp control block
2091  */
2092 tcp_seq
2093 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2094 {
2095 
2096 #ifdef INET
2097 	if (tp->t_inpcb != NULL) {
2098 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2099 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2100 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2101 		    addin));
2102 	}
2103 #endif
2104 #ifdef INET6
2105 	if (tp->t_in6pcb != NULL) {
2106 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2107 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2108 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2109 		    addin));
2110 	}
2111 #endif
2112 	/* Not possible. */
2113 	panic("tcp_new_iss");
2114 }
2115 
2116 /*
2117  * This routine actually generates a new TCP initial sequence number.
2118  */
2119 tcp_seq
2120 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2121     size_t addrsz, tcp_seq addin)
2122 {
2123 	tcp_seq tcp_iss;
2124 
2125 #if NRND > 0
2126 	static int beenhere;
2127 
2128 	/*
2129 	 * If we haven't been here before, initialize our cryptographic
2130 	 * hash secret.
2131 	 */
2132 	if (beenhere == 0) {
2133 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2134 		    RND_EXTRACT_ANY);
2135 		beenhere = 1;
2136 	}
2137 
2138 	if (tcp_do_rfc1948) {
2139 		MD5_CTX ctx;
2140 		u_int8_t hash[16];	/* XXX MD5 knowledge */
2141 
2142 		/*
2143 		 * Compute the base value of the ISS.  It is a hash
2144 		 * of (saddr, sport, daddr, dport, secret).
2145 		 */
2146 		MD5Init(&ctx);
2147 
2148 		MD5Update(&ctx, (u_char *) laddr, addrsz);
2149 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2150 
2151 		MD5Update(&ctx, (u_char *) faddr, addrsz);
2152 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2153 
2154 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2155 
2156 		MD5Final(hash, &ctx);
2157 
2158 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2159 
2160 		/*
2161 		 * Now increment our "timer", and add it in to
2162 		 * the computed value.
2163 		 *
2164 		 * XXX Use `addin'?
2165 		 * XXX TCP_ISSINCR too large to use?
2166 		 */
2167 		tcp_iss_seq += TCP_ISSINCR;
2168 #ifdef TCPISS_DEBUG
2169 		printf("ISS hash 0x%08x, ", tcp_iss);
2170 #endif
2171 		tcp_iss += tcp_iss_seq + addin;
2172 #ifdef TCPISS_DEBUG
2173 		printf("new ISS 0x%08x\n", tcp_iss);
2174 #endif
2175 	} else
2176 #endif /* NRND > 0 */
2177 	{
2178 		/*
2179 		 * Randomize.
2180 		 */
2181 #if NRND > 0
2182 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2183 #else
2184 		tcp_iss = arc4random();
2185 #endif
2186 
2187 		/*
2188 		 * If we were asked to add some amount to a known value,
2189 		 * we will take a random value obtained above, mask off
2190 		 * the upper bits, and add in the known value.  We also
2191 		 * add in a constant to ensure that we are at least a
2192 		 * certain distance from the original value.
2193 		 *
2194 		 * This is used when an old connection is in timed wait
2195 		 * and we have a new one coming in, for instance.
2196 		 */
2197 		if (addin != 0) {
2198 #ifdef TCPISS_DEBUG
2199 			printf("Random %08x, ", tcp_iss);
2200 #endif
2201 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2202 			tcp_iss += addin + TCP_ISSINCR;
2203 #ifdef TCPISS_DEBUG
2204 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2205 #endif
2206 		} else {
2207 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2208 			tcp_iss += tcp_iss_seq;
2209 			tcp_iss_seq += TCP_ISSINCR;
2210 #ifdef TCPISS_DEBUG
2211 			printf("ISS %08x\n", tcp_iss);
2212 #endif
2213 		}
2214 	}
2215 
2216 	if (tcp_compat_42) {
2217 		/*
2218 		 * Limit it to the positive range for really old TCP
2219 		 * implementations.
2220 		 * Just AND off the top bit instead of checking if
2221 		 * is set first - saves a branch 50% of the time.
2222 		 */
2223 		tcp_iss &= 0x7fffffff;		/* XXX */
2224 	}
2225 
2226 	return (tcp_iss);
2227 }
2228 
2229 #if defined(IPSEC) || defined(FAST_IPSEC)
2230 /* compute ESP/AH header size for TCP, including outer IP header. */
2231 size_t
2232 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2233 {
2234 	struct inpcb *inp;
2235 	size_t hdrsiz;
2236 
2237 	/* XXX mapped addr case (tp->t_in6pcb) */
2238 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2239 		return 0;
2240 	switch (tp->t_family) {
2241 	case AF_INET:
2242 		/* XXX: should use currect direction. */
2243 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2244 		break;
2245 	default:
2246 		hdrsiz = 0;
2247 		break;
2248 	}
2249 
2250 	return hdrsiz;
2251 }
2252 
2253 #ifdef INET6
2254 size_t
2255 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2256 {
2257 	struct in6pcb *in6p;
2258 	size_t hdrsiz;
2259 
2260 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2261 		return 0;
2262 	switch (tp->t_family) {
2263 	case AF_INET6:
2264 		/* XXX: should use currect direction. */
2265 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2266 		break;
2267 	case AF_INET:
2268 		/* mapped address case - tricky */
2269 	default:
2270 		hdrsiz = 0;
2271 		break;
2272 	}
2273 
2274 	return hdrsiz;
2275 }
2276 #endif
2277 #endif /*IPSEC*/
2278 
2279 /*
2280  * Determine the length of the TCP options for this connection.
2281  *
2282  * XXX:  What do we do for SACK, when we add that?  Just reserve
2283  *       all of the space?  Otherwise we can't exactly be incrementing
2284  *       cwnd by an amount that varies depending on the amount we last
2285  *       had to SACK!
2286  */
2287 
2288 u_int
2289 tcp_optlen(struct tcpcb *tp)
2290 {
2291 	u_int optlen;
2292 
2293 	optlen = 0;
2294 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2295 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2296 		optlen += TCPOLEN_TSTAMP_APPA;
2297 
2298 #ifdef TCP_SIGNATURE
2299 #if defined(INET6) && defined(FAST_IPSEC)
2300 	if (tp->t_family == AF_INET)
2301 #endif
2302 	if (tp->t_flags & TF_SIGNATURE)
2303 		optlen += TCPOLEN_SIGNATURE + 2;
2304 #endif /* TCP_SIGNATURE */
2305 
2306 	return optlen;
2307 }
2308 
2309 u_int
2310 tcp_hdrsz(struct tcpcb *tp)
2311 {
2312 	u_int hlen;
2313 
2314 	switch (tp->t_family) {
2315 #ifdef INET6
2316 	case AF_INET6:
2317 		hlen = sizeof(struct ip6_hdr);
2318 		break;
2319 #endif
2320 	case AF_INET:
2321 		hlen = sizeof(struct ip);
2322 		break;
2323 	default:
2324 		hlen = 0;
2325 		break;
2326 	}
2327 	hlen += sizeof(struct tcphdr);
2328 
2329 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2330 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2331 		hlen += TCPOLEN_TSTAMP_APPA;
2332 #ifdef TCP_SIGNATURE
2333 	if (tp->t_flags & TF_SIGNATURE)
2334 		hlen += TCPOLEN_SIGLEN;
2335 #endif
2336 	return hlen;
2337 }
2338