xref: /netbsd-src/sys/netinet/tcp_subr.c (revision ba65fde2d7fefa7d39838fa5fa855e62bd606b5e)
1 /*	$NetBSD: tcp_subr.c,v 1.248 2012/09/08 02:58:13 msaitoh Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38  * Facility, NASA Ames Research Center.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59  * POSSIBILITY OF SUCH DAMAGE.
60  */
61 
62 /*
63  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
64  *	The Regents of the University of California.  All rights reserved.
65  *
66  * Redistribution and use in source and binary forms, with or without
67  * modification, are permitted provided that the following conditions
68  * are met:
69  * 1. Redistributions of source code must retain the above copyright
70  *    notice, this list of conditions and the following disclaimer.
71  * 2. Redistributions in binary form must reproduce the above copyright
72  *    notice, this list of conditions and the following disclaimer in the
73  *    documentation and/or other materials provided with the distribution.
74  * 3. Neither the name of the University nor the names of its contributors
75  *    may be used to endorse or promote products derived from this software
76  *    without specific prior written permission.
77  *
78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88  * SUCH DAMAGE.
89  *
90  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
91  */
92 
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.248 2012/09/08 02:58:13 msaitoh Exp $");
95 
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_tcp_compat_42.h"
99 #include "opt_inet_csum.h"
100 #include "opt_mbuftrace.h"
101 
102 #include <sys/param.h>
103 #include <sys/proc.h>
104 #include <sys/systm.h>
105 #include <sys/malloc.h>
106 #include <sys/mbuf.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/protosw.h>
110 #include <sys/errno.h>
111 #include <sys/kernel.h>
112 #include <sys/pool.h>
113 #include <sys/md5.h>
114 #include <sys/cprng.h>
115 
116 #include <net/route.h>
117 #include <net/if.h>
118 
119 #include <netinet/in.h>
120 #include <netinet/in_systm.h>
121 #include <netinet/ip.h>
122 #include <netinet/in_pcb.h>
123 #include <netinet/ip_var.h>
124 #include <netinet/ip_icmp.h>
125 
126 #ifdef INET6
127 #ifndef INET
128 #include <netinet/in.h>
129 #endif
130 #include <netinet/ip6.h>
131 #include <netinet6/in6_pcb.h>
132 #include <netinet6/ip6_var.h>
133 #include <netinet6/in6_var.h>
134 #include <netinet6/ip6protosw.h>
135 #include <netinet/icmp6.h>
136 #include <netinet6/nd6.h>
137 #endif
138 
139 #include <netinet/tcp.h>
140 #include <netinet/tcp_fsm.h>
141 #include <netinet/tcp_seq.h>
142 #include <netinet/tcp_timer.h>
143 #include <netinet/tcp_var.h>
144 #include <netinet/tcp_vtw.h>
145 #include <netinet/tcp_private.h>
146 #include <netinet/tcp_congctl.h>
147 #include <netinet/tcpip.h>
148 
149 #ifdef FAST_IPSEC
150 #include <netipsec/ipsec.h>
151 #include <netipsec/xform.h>
152 #ifdef INET6
153 #include <netipsec/ipsec6.h>
154 #endif
155  #include <netipsec/key.h>
156 #endif	/* FAST_IPSEC*/
157 
158 
159 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
160 u_int32_t tcp_now;		/* slow ticks, for RFC 1323 timestamps */
161 
162 percpu_t *tcpstat_percpu;
163 
164 /* patchable/settable parameters for tcp */
165 int 	tcp_mssdflt = TCP_MSS;
166 int	tcp_minmss = TCP_MINMSS;
167 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
168 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
169 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
170 int	tcp_do_sack = 1;	/* selective acknowledgement */
171 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
172 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
173 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
174 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
175 #ifndef TCP_INIT_WIN
176 #define	TCP_INIT_WIN	0	/* initial slow start window */
177 #endif
178 #ifndef TCP_INIT_WIN_LOCAL
179 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
180 #endif
181 int	tcp_init_win = TCP_INIT_WIN;
182 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
183 int	tcp_mss_ifmtu = 0;
184 #ifdef TCP_COMPAT_42
185 int	tcp_compat_42 = 1;
186 #else
187 int	tcp_compat_42 = 0;
188 #endif
189 int	tcp_rst_ppslim = 100;	/* 100pps */
190 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
191 int	tcp_do_loopback_cksum = 0;
192 int	tcp_do_abc = 1;		/* RFC3465 Appropriate byte counting. */
193 int	tcp_abc_aggressive = 1;	/* 1: L=2*SMSS  0: L=1*SMSS */
194 int	tcp_sack_tp_maxholes = 32;
195 int	tcp_sack_globalmaxholes = 1024;
196 int	tcp_sack_globalholes = 0;
197 int	tcp_ecn_maxretries = 1;
198 int	tcp_msl_enable = 1;		/* enable TIME_WAIT truncation	*/
199 int	tcp_msl_loop   = PR_SLOWHZ;	/* MSL for loopback		*/
200 int	tcp_msl_local  = 5 * PR_SLOWHZ;	/* MSL for 'local'		*/
201 int	tcp_msl_remote = TCPTV_MSL;	/* MSL otherwise		*/
202 int	tcp_msl_remote_threshold = TCPTV_SRTTDFLT;	/* RTT threshold */
203 int	tcp_rttlocal = 0;		/* Use RTT to decide who's 'local' */
204 
205 int	tcp4_vtw_enable = 0;		/* 1 to enable */
206 int	tcp6_vtw_enable = 0;		/* 1 to enable */
207 int	tcp_vtw_was_enabled = 0;
208 int	tcp_vtw_entries = 1 << 16;	/* 64K vestigial TIME_WAIT entries */
209 
210 /* tcb hash */
211 #ifndef TCBHASHSIZE
212 #define	TCBHASHSIZE	128
213 #endif
214 int	tcbhashsize = TCBHASHSIZE;
215 
216 /* syn hash parameters */
217 #define	TCP_SYN_HASH_SIZE	293
218 #define	TCP_SYN_BUCKET_SIZE	35
219 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
220 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
221 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
222 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
223 
224 int	tcp_freeq(struct tcpcb *);
225 
226 #ifdef INET
227 void	tcp_mtudisc_callback(struct in_addr);
228 #endif
229 #ifdef INET6
230 void	tcp6_mtudisc_callback(struct in6_addr *);
231 #endif
232 
233 #ifdef INET6
234 void	tcp6_mtudisc(struct in6pcb *, int);
235 #endif
236 
237 static struct pool tcpcb_pool;
238 
239 static int tcp_drainwanted;
240 
241 #ifdef TCP_CSUM_COUNTERS
242 #include <sys/device.h>
243 
244 #if defined(INET)
245 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
246     NULL, "tcp", "hwcsum bad");
247 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
248     NULL, "tcp", "hwcsum ok");
249 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
250     NULL, "tcp", "hwcsum data");
251 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
252     NULL, "tcp", "swcsum");
253 
254 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
255 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
256 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
257 EVCNT_ATTACH_STATIC(tcp_swcsum);
258 #endif /* defined(INET) */
259 
260 #if defined(INET6)
261 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262     NULL, "tcp6", "hwcsum bad");
263 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264     NULL, "tcp6", "hwcsum ok");
265 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266     NULL, "tcp6", "hwcsum data");
267 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268     NULL, "tcp6", "swcsum");
269 
270 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
271 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
272 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
273 EVCNT_ATTACH_STATIC(tcp6_swcsum);
274 #endif /* defined(INET6) */
275 #endif /* TCP_CSUM_COUNTERS */
276 
277 
278 #ifdef TCP_OUTPUT_COUNTERS
279 #include <sys/device.h>
280 
281 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282     NULL, "tcp", "output big header");
283 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284     NULL, "tcp", "output predict hit");
285 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286     NULL, "tcp", "output predict miss");
287 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288     NULL, "tcp", "output copy small");
289 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
290     NULL, "tcp", "output copy big");
291 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
292     NULL, "tcp", "output reference big");
293 
294 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
295 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
296 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
297 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
298 EVCNT_ATTACH_STATIC(tcp_output_copybig);
299 EVCNT_ATTACH_STATIC(tcp_output_refbig);
300 
301 #endif /* TCP_OUTPUT_COUNTERS */
302 
303 #ifdef TCP_REASS_COUNTERS
304 #include <sys/device.h>
305 
306 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
307     NULL, "tcp_reass", "calls");
308 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
309     &tcp_reass_, "tcp_reass", "insert into empty queue");
310 struct evcnt tcp_reass_iteration[8] = {
311     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
312     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
316     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
317     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
318     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
319 };
320 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
321     &tcp_reass_, "tcp_reass", "prepend to first");
322 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
323     &tcp_reass_, "tcp_reass", "prepend");
324 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
325     &tcp_reass_, "tcp_reass", "insert");
326 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
327     &tcp_reass_, "tcp_reass", "insert at tail");
328 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
329     &tcp_reass_, "tcp_reass", "append");
330 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
331     &tcp_reass_, "tcp_reass", "append to tail fragment");
332 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
333     &tcp_reass_, "tcp_reass", "overlap at end");
334 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
335     &tcp_reass_, "tcp_reass", "overlap at start");
336 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
337     &tcp_reass_, "tcp_reass", "duplicate segment");
338 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
339     &tcp_reass_, "tcp_reass", "duplicate fragment");
340 
341 EVCNT_ATTACH_STATIC(tcp_reass_);
342 EVCNT_ATTACH_STATIC(tcp_reass_empty);
343 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
344 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
349 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
350 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
351 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
352 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
353 EVCNT_ATTACH_STATIC(tcp_reass_insert);
354 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
355 EVCNT_ATTACH_STATIC(tcp_reass_append);
356 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
357 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
358 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
359 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
360 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
361 
362 #endif /* TCP_REASS_COUNTERS */
363 
364 #ifdef MBUFTRACE
365 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
366 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
367 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
368 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
369 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
370 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
371 #endif
372 
373 /*
374  * Tcp initialization
375  */
376 void
377 tcp_init(void)
378 {
379 	int hlen;
380 
381 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
382 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
383 	    NULL, IPL_SOFTNET);
384 
385 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
386 #ifdef INET6
387 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
388 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
389 #endif
390 	if (max_protohdr < hlen)
391 		max_protohdr = hlen;
392 	if (max_linkhdr + hlen > MHLEN)
393 		panic("tcp_init");
394 
395 #ifdef INET
396 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
397 #endif
398 #ifdef INET6
399 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
400 #endif
401 
402 	tcp_usrreq_init();
403 
404 	/* Initialize timer state. */
405 	tcp_timer_init();
406 
407 	/* Initialize the compressed state engine. */
408 	syn_cache_init();
409 
410 	/* Initialize the congestion control algorithms. */
411 	tcp_congctl_init();
412 
413 	/* Initialize the TCPCB template. */
414 	tcp_tcpcb_template();
415 
416 	/* Initialize reassembly queue */
417 	tcpipqent_init();
418 
419 	/* SACK */
420 	tcp_sack_init();
421 
422 	MOWNER_ATTACH(&tcp_tx_mowner);
423 	MOWNER_ATTACH(&tcp_rx_mowner);
424 	MOWNER_ATTACH(&tcp_reass_mowner);
425 	MOWNER_ATTACH(&tcp_sock_mowner);
426 	MOWNER_ATTACH(&tcp_sock_tx_mowner);
427 	MOWNER_ATTACH(&tcp_sock_rx_mowner);
428 	MOWNER_ATTACH(&tcp_mowner);
429 
430 	tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
431 
432 	vtw_earlyinit();
433 }
434 
435 /*
436  * Create template to be used to send tcp packets on a connection.
437  * Call after host entry created, allocates an mbuf and fills
438  * in a skeletal tcp/ip header, minimizing the amount of work
439  * necessary when the connection is used.
440  */
441 struct mbuf *
442 tcp_template(struct tcpcb *tp)
443 {
444 	struct inpcb *inp = tp->t_inpcb;
445 #ifdef INET6
446 	struct in6pcb *in6p = tp->t_in6pcb;
447 #endif
448 	struct tcphdr *n;
449 	struct mbuf *m;
450 	int hlen;
451 
452 	switch (tp->t_family) {
453 	case AF_INET:
454 		hlen = sizeof(struct ip);
455 		if (inp)
456 			break;
457 #ifdef INET6
458 		if (in6p) {
459 			/* mapped addr case */
460 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
461 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
462 				break;
463 		}
464 #endif
465 		return NULL;	/*EINVAL*/
466 #ifdef INET6
467 	case AF_INET6:
468 		hlen = sizeof(struct ip6_hdr);
469 		if (in6p) {
470 			/* more sainty check? */
471 			break;
472 		}
473 		return NULL;	/*EINVAL*/
474 #endif
475 	default:
476 		hlen = 0;	/*pacify gcc*/
477 		return NULL;	/*EAFNOSUPPORT*/
478 	}
479 #ifdef DIAGNOSTIC
480 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
481 		panic("mclbytes too small for t_template");
482 #endif
483 	m = tp->t_template;
484 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
485 		;
486 	else {
487 		if (m)
488 			m_freem(m);
489 		m = tp->t_template = NULL;
490 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
491 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
492 			MCLGET(m, M_DONTWAIT);
493 			if ((m->m_flags & M_EXT) == 0) {
494 				m_free(m);
495 				m = NULL;
496 			}
497 		}
498 		if (m == NULL)
499 			return NULL;
500 		MCLAIM(m, &tcp_mowner);
501 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
502 	}
503 
504 	memset(mtod(m, void *), 0, m->m_len);
505 
506 	n = (struct tcphdr *)(mtod(m, char *) + hlen);
507 
508 	switch (tp->t_family) {
509 	case AF_INET:
510 	    {
511 		struct ipovly *ipov;
512 		mtod(m, struct ip *)->ip_v = 4;
513 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
514 		ipov = mtod(m, struct ipovly *);
515 		ipov->ih_pr = IPPROTO_TCP;
516 		ipov->ih_len = htons(sizeof(struct tcphdr));
517 		if (inp) {
518 			ipov->ih_src = inp->inp_laddr;
519 			ipov->ih_dst = inp->inp_faddr;
520 		}
521 #ifdef INET6
522 		else if (in6p) {
523 			/* mapped addr case */
524 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
525 				sizeof(ipov->ih_src));
526 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
527 				sizeof(ipov->ih_dst));
528 		}
529 #endif
530 		/*
531 		 * Compute the pseudo-header portion of the checksum
532 		 * now.  We incrementally add in the TCP option and
533 		 * payload lengths later, and then compute the TCP
534 		 * checksum right before the packet is sent off onto
535 		 * the wire.
536 		 */
537 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
538 		    ipov->ih_dst.s_addr,
539 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
540 		break;
541 	    }
542 #ifdef INET6
543 	case AF_INET6:
544 	    {
545 		struct ip6_hdr *ip6;
546 		mtod(m, struct ip *)->ip_v = 6;
547 		ip6 = mtod(m, struct ip6_hdr *);
548 		ip6->ip6_nxt = IPPROTO_TCP;
549 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
550 		ip6->ip6_src = in6p->in6p_laddr;
551 		ip6->ip6_dst = in6p->in6p_faddr;
552 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
553 		if (ip6_auto_flowlabel) {
554 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
555 			ip6->ip6_flow |=
556 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
557 		}
558 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
559 		ip6->ip6_vfc |= IPV6_VERSION;
560 
561 		/*
562 		 * Compute the pseudo-header portion of the checksum
563 		 * now.  We incrementally add in the TCP option and
564 		 * payload lengths later, and then compute the TCP
565 		 * checksum right before the packet is sent off onto
566 		 * the wire.
567 		 */
568 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
569 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
570 		    htonl(IPPROTO_TCP));
571 		break;
572 	    }
573 #endif
574 	}
575 	if (inp) {
576 		n->th_sport = inp->inp_lport;
577 		n->th_dport = inp->inp_fport;
578 	}
579 #ifdef INET6
580 	else if (in6p) {
581 		n->th_sport = in6p->in6p_lport;
582 		n->th_dport = in6p->in6p_fport;
583 	}
584 #endif
585 	n->th_seq = 0;
586 	n->th_ack = 0;
587 	n->th_x2 = 0;
588 	n->th_off = 5;
589 	n->th_flags = 0;
590 	n->th_win = 0;
591 	n->th_urp = 0;
592 	return (m);
593 }
594 
595 /*
596  * Send a single message to the TCP at address specified by
597  * the given TCP/IP header.  If m == 0, then we make a copy
598  * of the tcpiphdr at ti and send directly to the addressed host.
599  * This is used to force keep alive messages out using the TCP
600  * template for a connection tp->t_template.  If flags are given
601  * then we send a message back to the TCP which originated the
602  * segment ti, and discard the mbuf containing it and any other
603  * attached mbufs.
604  *
605  * In any case the ack and sequence number of the transmitted
606  * segment are as specified by the parameters.
607  */
608 int
609 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
610     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
611 {
612 #ifdef INET6
613 	struct rtentry *rt;
614 #endif
615 	struct route *ro;
616 	int error, tlen, win = 0;
617 	int hlen;
618 	struct ip *ip;
619 #ifdef INET6
620 	struct ip6_hdr *ip6;
621 #endif
622 	int family;	/* family on packet, not inpcb/in6pcb! */
623 	struct tcphdr *th;
624 	struct socket *so;
625 
626 	if (tp != NULL && (flags & TH_RST) == 0) {
627 #ifdef DIAGNOSTIC
628 		if (tp->t_inpcb && tp->t_in6pcb)
629 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
630 #endif
631 #ifdef INET
632 		if (tp->t_inpcb)
633 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
634 #endif
635 #ifdef INET6
636 		if (tp->t_in6pcb)
637 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
638 #endif
639 	}
640 
641 	th = NULL;	/* Quell uninitialized warning */
642 	ip = NULL;
643 #ifdef INET6
644 	ip6 = NULL;
645 #endif
646 	if (m == 0) {
647 		if (!template)
648 			return EINVAL;
649 
650 		/* get family information from template */
651 		switch (mtod(template, struct ip *)->ip_v) {
652 		case 4:
653 			family = AF_INET;
654 			hlen = sizeof(struct ip);
655 			break;
656 #ifdef INET6
657 		case 6:
658 			family = AF_INET6;
659 			hlen = sizeof(struct ip6_hdr);
660 			break;
661 #endif
662 		default:
663 			return EAFNOSUPPORT;
664 		}
665 
666 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
667 		if (m) {
668 			MCLAIM(m, &tcp_tx_mowner);
669 			MCLGET(m, M_DONTWAIT);
670 			if ((m->m_flags & M_EXT) == 0) {
671 				m_free(m);
672 				m = NULL;
673 			}
674 		}
675 		if (m == NULL)
676 			return (ENOBUFS);
677 
678 		if (tcp_compat_42)
679 			tlen = 1;
680 		else
681 			tlen = 0;
682 
683 		m->m_data += max_linkhdr;
684 		bcopy(mtod(template, void *), mtod(m, void *),
685 			template->m_len);
686 		switch (family) {
687 		case AF_INET:
688 			ip = mtod(m, struct ip *);
689 			th = (struct tcphdr *)(ip + 1);
690 			break;
691 #ifdef INET6
692 		case AF_INET6:
693 			ip6 = mtod(m, struct ip6_hdr *);
694 			th = (struct tcphdr *)(ip6 + 1);
695 			break;
696 #endif
697 #if 0
698 		default:
699 			/* noone will visit here */
700 			m_freem(m);
701 			return EAFNOSUPPORT;
702 #endif
703 		}
704 		flags = TH_ACK;
705 	} else {
706 
707 		if ((m->m_flags & M_PKTHDR) == 0) {
708 #if 0
709 			printf("non PKTHDR to tcp_respond\n");
710 #endif
711 			m_freem(m);
712 			return EINVAL;
713 		}
714 #ifdef DIAGNOSTIC
715 		if (!th0)
716 			panic("th0 == NULL in tcp_respond");
717 #endif
718 
719 		/* get family information from m */
720 		switch (mtod(m, struct ip *)->ip_v) {
721 		case 4:
722 			family = AF_INET;
723 			hlen = sizeof(struct ip);
724 			ip = mtod(m, struct ip *);
725 			break;
726 #ifdef INET6
727 		case 6:
728 			family = AF_INET6;
729 			hlen = sizeof(struct ip6_hdr);
730 			ip6 = mtod(m, struct ip6_hdr *);
731 			break;
732 #endif
733 		default:
734 			m_freem(m);
735 			return EAFNOSUPPORT;
736 		}
737 		/* clear h/w csum flags inherited from rx packet */
738 		m->m_pkthdr.csum_flags = 0;
739 
740 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
741 			tlen = sizeof(*th0);
742 		else
743 			tlen = th0->th_off << 2;
744 
745 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
746 		    mtod(m, char *) + hlen == (char *)th0) {
747 			m->m_len = hlen + tlen;
748 			m_freem(m->m_next);
749 			m->m_next = NULL;
750 		} else {
751 			struct mbuf *n;
752 
753 #ifdef DIAGNOSTIC
754 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
755 				m_freem(m);
756 				return EMSGSIZE;
757 			}
758 #endif
759 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
760 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
761 				MCLGET(n, M_DONTWAIT);
762 				if ((n->m_flags & M_EXT) == 0) {
763 					m_freem(n);
764 					n = NULL;
765 				}
766 			}
767 			if (!n) {
768 				m_freem(m);
769 				return ENOBUFS;
770 			}
771 
772 			MCLAIM(n, &tcp_tx_mowner);
773 			n->m_data += max_linkhdr;
774 			n->m_len = hlen + tlen;
775 			m_copyback(n, 0, hlen, mtod(m, void *));
776 			m_copyback(n, hlen, tlen, (void *)th0);
777 
778 			m_freem(m);
779 			m = n;
780 			n = NULL;
781 		}
782 
783 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
784 		switch (family) {
785 		case AF_INET:
786 			ip = mtod(m, struct ip *);
787 			th = (struct tcphdr *)(ip + 1);
788 			ip->ip_p = IPPROTO_TCP;
789 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
790 			ip->ip_p = IPPROTO_TCP;
791 			break;
792 #ifdef INET6
793 		case AF_INET6:
794 			ip6 = mtod(m, struct ip6_hdr *);
795 			th = (struct tcphdr *)(ip6 + 1);
796 			ip6->ip6_nxt = IPPROTO_TCP;
797 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
798 			ip6->ip6_nxt = IPPROTO_TCP;
799 			break;
800 #endif
801 #if 0
802 		default:
803 			/* noone will visit here */
804 			m_freem(m);
805 			return EAFNOSUPPORT;
806 #endif
807 		}
808 		xchg(th->th_dport, th->th_sport, u_int16_t);
809 #undef xchg
810 		tlen = 0;	/*be friendly with the following code*/
811 	}
812 	th->th_seq = htonl(seq);
813 	th->th_ack = htonl(ack);
814 	th->th_x2 = 0;
815 	if ((flags & TH_SYN) == 0) {
816 		if (tp)
817 			win >>= tp->rcv_scale;
818 		if (win > TCP_MAXWIN)
819 			win = TCP_MAXWIN;
820 		th->th_win = htons((u_int16_t)win);
821 		th->th_off = sizeof (struct tcphdr) >> 2;
822 		tlen += sizeof(*th);
823 	} else
824 		tlen += th->th_off << 2;
825 	m->m_len = hlen + tlen;
826 	m->m_pkthdr.len = hlen + tlen;
827 	m->m_pkthdr.rcvif = NULL;
828 	th->th_flags = flags;
829 	th->th_urp = 0;
830 
831 	switch (family) {
832 #ifdef INET
833 	case AF_INET:
834 	    {
835 		struct ipovly *ipov = (struct ipovly *)ip;
836 		memset(ipov->ih_x1, 0, sizeof ipov->ih_x1);
837 		ipov->ih_len = htons((u_int16_t)tlen);
838 
839 		th->th_sum = 0;
840 		th->th_sum = in_cksum(m, hlen + tlen);
841 		ip->ip_len = htons(hlen + tlen);
842 		ip->ip_ttl = ip_defttl;
843 		break;
844 	    }
845 #endif
846 #ifdef INET6
847 	case AF_INET6:
848 	    {
849 		th->th_sum = 0;
850 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
851 				tlen);
852 		ip6->ip6_plen = htons(tlen);
853 		if (tp && tp->t_in6pcb) {
854 			struct ifnet *oifp;
855 			ro = &tp->t_in6pcb->in6p_route;
856 			oifp = (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
857 			                                           : NULL;
858 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
859 		} else
860 			ip6->ip6_hlim = ip6_defhlim;
861 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
862 		if (ip6_auto_flowlabel) {
863 			ip6->ip6_flow |=
864 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
865 		}
866 		break;
867 	    }
868 #endif
869 	}
870 
871 	if (tp && tp->t_inpcb)
872 		so = tp->t_inpcb->inp_socket;
873 #ifdef INET6
874 	else if (tp && tp->t_in6pcb)
875 		so = tp->t_in6pcb->in6p_socket;
876 #endif
877 	else
878 		so = NULL;
879 
880 	if (tp != NULL && tp->t_inpcb != NULL) {
881 		ro = &tp->t_inpcb->inp_route;
882 #ifdef DIAGNOSTIC
883 		if (family != AF_INET)
884 			panic("tcp_respond: address family mismatch");
885 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
886 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
887 			    ntohl(ip->ip_dst.s_addr),
888 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
889 		}
890 #endif
891 	}
892 #ifdef INET6
893 	else if (tp != NULL && tp->t_in6pcb != NULL) {
894 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
895 #ifdef DIAGNOSTIC
896 		if (family == AF_INET) {
897 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
898 				panic("tcp_respond: not mapped addr");
899 			if (memcmp(&ip->ip_dst,
900 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
901 			    sizeof(ip->ip_dst)) != 0) {
902 				panic("tcp_respond: ip_dst != in6p_faddr");
903 			}
904 		} else if (family == AF_INET6) {
905 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
906 			    &tp->t_in6pcb->in6p_faddr))
907 				panic("tcp_respond: ip6_dst != in6p_faddr");
908 		} else
909 			panic("tcp_respond: address family mismatch");
910 #endif
911 	}
912 #endif
913 	else
914 		ro = NULL;
915 
916 	switch (family) {
917 #ifdef INET
918 	case AF_INET:
919 		error = ip_output(m, NULL, ro,
920 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0), NULL, so);
921 		break;
922 #endif
923 #ifdef INET6
924 	case AF_INET6:
925 		error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
926 		break;
927 #endif
928 	default:
929 		error = EAFNOSUPPORT;
930 		break;
931 	}
932 
933 	return (error);
934 }
935 
936 /*
937  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
938  * a bunch of members individually, we maintain this template for the
939  * static and mostly-static components of the TCPCB, and copy it into
940  * the new TCPCB instead.
941  */
942 static struct tcpcb tcpcb_template = {
943 	.t_srtt = TCPTV_SRTTBASE,
944 	.t_rttmin = TCPTV_MIN,
945 
946 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
947 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
948 	.snd_numholes = 0,
949 
950 	.t_partialacks = -1,
951 	.t_bytes_acked = 0,
952 };
953 
954 /*
955  * Updates the TCPCB template whenever a parameter that would affect
956  * the template is changed.
957  */
958 void
959 tcp_tcpcb_template(void)
960 {
961 	struct tcpcb *tp = &tcpcb_template;
962 	int flags;
963 
964 	tp->t_peermss = tcp_mssdflt;
965 	tp->t_ourmss = tcp_mssdflt;
966 	tp->t_segsz = tcp_mssdflt;
967 
968 	flags = 0;
969 	if (tcp_do_rfc1323 && tcp_do_win_scale)
970 		flags |= TF_REQ_SCALE;
971 	if (tcp_do_rfc1323 && tcp_do_timestamps)
972 		flags |= TF_REQ_TSTMP;
973 	tp->t_flags = flags;
974 
975 	/*
976 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
977 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
978 	 * reasonable initial retransmit time.
979 	 */
980 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
981 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
982 	    TCPTV_MIN, TCPTV_REXMTMAX);
983 
984 	/* Keep Alive */
985 	tp->t_keepinit = tcp_keepinit;
986 	tp->t_keepidle = tcp_keepidle;
987 	tp->t_keepintvl = tcp_keepintvl;
988 	tp->t_keepcnt = tcp_keepcnt;
989 	tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
990 
991 	/* MSL */
992 	tp->t_msl = TCPTV_MSL;
993 }
994 
995 /*
996  * Create a new TCP control block, making an
997  * empty reassembly queue and hooking it to the argument
998  * protocol control block.
999  */
1000 /* family selects inpcb, or in6pcb */
1001 struct tcpcb *
1002 tcp_newtcpcb(int family, void *aux)
1003 {
1004 #ifdef INET6
1005 	struct rtentry *rt;
1006 #endif
1007 	struct tcpcb *tp;
1008 	int i;
1009 
1010 	/* XXX Consider using a pool_cache for speed. */
1011 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
1012 	if (tp == NULL)
1013 		return (NULL);
1014 	memcpy(tp, &tcpcb_template, sizeof(*tp));
1015 	TAILQ_INIT(&tp->segq);
1016 	TAILQ_INIT(&tp->timeq);
1017 	tp->t_family = family;		/* may be overridden later on */
1018 	TAILQ_INIT(&tp->snd_holes);
1019 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
1020 
1021 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
1022 	for (i = 0; i < TCPT_NTIMERS; i++) {
1023 		callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
1024 		TCP_TIMER_INIT(tp, i);
1025 	}
1026 	callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
1027 
1028 	switch (family) {
1029 	case AF_INET:
1030 	    {
1031 		struct inpcb *inp = (struct inpcb *)aux;
1032 
1033 		inp->inp_ip.ip_ttl = ip_defttl;
1034 		inp->inp_ppcb = (void *)tp;
1035 
1036 		tp->t_inpcb = inp;
1037 		tp->t_mtudisc = ip_mtudisc;
1038 		break;
1039 	    }
1040 #ifdef INET6
1041 	case AF_INET6:
1042 	    {
1043 		struct in6pcb *in6p = (struct in6pcb *)aux;
1044 
1045 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1046 			(rt = rtcache_validate(&in6p->in6p_route)) != NULL
1047 			    ? rt->rt_ifp
1048 			    : NULL);
1049 		in6p->in6p_ppcb = (void *)tp;
1050 
1051 		tp->t_in6pcb = in6p;
1052 		/* for IPv6, always try to run path MTU discovery */
1053 		tp->t_mtudisc = 1;
1054 		break;
1055 	    }
1056 #endif /* INET6 */
1057 	default:
1058 		for (i = 0; i < TCPT_NTIMERS; i++)
1059 			callout_destroy(&tp->t_timer[i]);
1060 		callout_destroy(&tp->t_delack_ch);
1061 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
1062 		return (NULL);
1063 	}
1064 
1065 	/*
1066 	 * Initialize our timebase.  When we send timestamps, we take
1067 	 * the delta from tcp_now -- this means each connection always
1068 	 * gets a timebase of 1, which makes it, among other things,
1069 	 * more difficult to determine how long a system has been up,
1070 	 * and thus how many TCP sequence increments have occurred.
1071 	 *
1072 	 * We start with 1, because 0 doesn't work with linux, which
1073 	 * considers timestamp 0 in a SYN packet as a bug and disables
1074 	 * timestamps.
1075 	 */
1076 	tp->ts_timebase = tcp_now - 1;
1077 
1078 	tcp_congctl_select(tp, tcp_congctl_global_name);
1079 
1080 	return (tp);
1081 }
1082 
1083 /*
1084  * Drop a TCP connection, reporting
1085  * the specified error.  If connection is synchronized,
1086  * then send a RST to peer.
1087  */
1088 struct tcpcb *
1089 tcp_drop(struct tcpcb *tp, int errno)
1090 {
1091 	struct socket *so = NULL;
1092 
1093 #ifdef DIAGNOSTIC
1094 	if (tp->t_inpcb && tp->t_in6pcb)
1095 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1096 #endif
1097 #ifdef INET
1098 	if (tp->t_inpcb)
1099 		so = tp->t_inpcb->inp_socket;
1100 #endif
1101 #ifdef INET6
1102 	if (tp->t_in6pcb)
1103 		so = tp->t_in6pcb->in6p_socket;
1104 #endif
1105 	if (!so)
1106 		return NULL;
1107 
1108 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1109 		tp->t_state = TCPS_CLOSED;
1110 		(void) tcp_output(tp);
1111 		TCP_STATINC(TCP_STAT_DROPS);
1112 	} else
1113 		TCP_STATINC(TCP_STAT_CONNDROPS);
1114 	if (errno == ETIMEDOUT && tp->t_softerror)
1115 		errno = tp->t_softerror;
1116 	so->so_error = errno;
1117 	return (tcp_close(tp));
1118 }
1119 
1120 /*
1121  * Close a TCP control block:
1122  *	discard all space held by the tcp
1123  *	discard internet protocol block
1124  *	wake up any sleepers
1125  */
1126 struct tcpcb *
1127 tcp_close(struct tcpcb *tp)
1128 {
1129 	struct inpcb *inp;
1130 #ifdef INET6
1131 	struct in6pcb *in6p;
1132 #endif
1133 	struct socket *so;
1134 #ifdef RTV_RTT
1135 	struct rtentry *rt;
1136 #endif
1137 	struct route *ro;
1138 	int j;
1139 
1140 	inp = tp->t_inpcb;
1141 #ifdef INET6
1142 	in6p = tp->t_in6pcb;
1143 #endif
1144 	so = NULL;
1145 	ro = NULL;
1146 	if (inp) {
1147 		so = inp->inp_socket;
1148 		ro = &inp->inp_route;
1149 	}
1150 #ifdef INET6
1151 	else if (in6p) {
1152 		so = in6p->in6p_socket;
1153 		ro = (struct route *)&in6p->in6p_route;
1154 	}
1155 #endif
1156 
1157 #ifdef RTV_RTT
1158 	/*
1159 	 * If we sent enough data to get some meaningful characteristics,
1160 	 * save them in the routing entry.  'Enough' is arbitrarily
1161 	 * defined as the sendpipesize (default 4K) * 16.  This would
1162 	 * give us 16 rtt samples assuming we only get one sample per
1163 	 * window (the usual case on a long haul net).  16 samples is
1164 	 * enough for the srtt filter to converge to within 5% of the correct
1165 	 * value; fewer samples and we could save a very bogus rtt.
1166 	 *
1167 	 * Don't update the default route's characteristics and don't
1168 	 * update anything that the user "locked".
1169 	 */
1170 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1171 	    ro && (rt = rtcache_validate(ro)) != NULL &&
1172 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1173 		u_long i = 0;
1174 
1175 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1176 			i = tp->t_srtt *
1177 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1178 			if (rt->rt_rmx.rmx_rtt && i)
1179 				/*
1180 				 * filter this update to half the old & half
1181 				 * the new values, converting scale.
1182 				 * See route.h and tcp_var.h for a
1183 				 * description of the scaling constants.
1184 				 */
1185 				rt->rt_rmx.rmx_rtt =
1186 				    (rt->rt_rmx.rmx_rtt + i) / 2;
1187 			else
1188 				rt->rt_rmx.rmx_rtt = i;
1189 		}
1190 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1191 			i = tp->t_rttvar *
1192 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1193 			if (rt->rt_rmx.rmx_rttvar && i)
1194 				rt->rt_rmx.rmx_rttvar =
1195 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
1196 			else
1197 				rt->rt_rmx.rmx_rttvar = i;
1198 		}
1199 		/*
1200 		 * update the pipelimit (ssthresh) if it has been updated
1201 		 * already or if a pipesize was specified & the threshhold
1202 		 * got below half the pipesize.  I.e., wait for bad news
1203 		 * before we start updating, then update on both good
1204 		 * and bad news.
1205 		 */
1206 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1207 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1208 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1209 			/*
1210 			 * convert the limit from user data bytes to
1211 			 * packets then to packet data bytes.
1212 			 */
1213 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
1214 			if (i < 2)
1215 				i = 2;
1216 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1217 			if (rt->rt_rmx.rmx_ssthresh)
1218 				rt->rt_rmx.rmx_ssthresh =
1219 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1220 			else
1221 				rt->rt_rmx.rmx_ssthresh = i;
1222 		}
1223 	}
1224 #endif /* RTV_RTT */
1225 	/* free the reassembly queue, if any */
1226 	TCP_REASS_LOCK(tp);
1227 	(void) tcp_freeq(tp);
1228 	TCP_REASS_UNLOCK(tp);
1229 
1230 	/* free the SACK holes list. */
1231 	tcp_free_sackholes(tp);
1232 	tcp_congctl_release(tp);
1233 	syn_cache_cleanup(tp);
1234 
1235 	if (tp->t_template) {
1236 		m_free(tp->t_template);
1237 		tp->t_template = NULL;
1238 	}
1239 
1240 	/*
1241 	 * Detaching the pcb will unlock the socket/tcpcb, and stopping
1242 	 * the timers can also drop the lock.  We need to prevent access
1243 	 * to the tcpcb as it's half torn down.  Flag the pcb as dead
1244 	 * (prevents access by timers) and only then detach it.
1245 	 */
1246 	tp->t_flags |= TF_DEAD;
1247 	if (inp) {
1248 		inp->inp_ppcb = 0;
1249 		soisdisconnected(so);
1250 		in_pcbdetach(inp);
1251 	}
1252 #ifdef INET6
1253 	else if (in6p) {
1254 		in6p->in6p_ppcb = 0;
1255 		soisdisconnected(so);
1256 		in6_pcbdetach(in6p);
1257 	}
1258 #endif
1259 	/*
1260 	 * pcb is no longer visble elsewhere, so we can safely release
1261 	 * the lock in callout_halt() if needed.
1262 	 */
1263 	TCP_STATINC(TCP_STAT_CLOSED);
1264 	for (j = 0; j < TCPT_NTIMERS; j++) {
1265 		callout_halt(&tp->t_timer[j], softnet_lock);
1266 		callout_destroy(&tp->t_timer[j]);
1267 	}
1268 	callout_halt(&tp->t_delack_ch, softnet_lock);
1269 	callout_destroy(&tp->t_delack_ch);
1270 	pool_put(&tcpcb_pool, tp);
1271 
1272 	return NULL;
1273 }
1274 
1275 int
1276 tcp_freeq(struct tcpcb *tp)
1277 {
1278 	struct ipqent *qe;
1279 	int rv = 0;
1280 #ifdef TCPREASS_DEBUG
1281 	int i = 0;
1282 #endif
1283 
1284 	TCP_REASS_LOCK_CHECK(tp);
1285 
1286 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1287 #ifdef TCPREASS_DEBUG
1288 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1289 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1290 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1291 #endif
1292 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1293 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1294 		m_freem(qe->ipqe_m);
1295 		tcpipqent_free(qe);
1296 		rv = 1;
1297 	}
1298 	tp->t_segqlen = 0;
1299 	KASSERT(TAILQ_EMPTY(&tp->timeq));
1300 	return (rv);
1301 }
1302 
1303 void
1304 tcp_fasttimo(void)
1305 {
1306 	if (tcp_drainwanted) {
1307 		tcp_drain();
1308 		tcp_drainwanted = 0;
1309 	}
1310 }
1311 
1312 void
1313 tcp_drainstub(void)
1314 {
1315 	tcp_drainwanted = 1;
1316 }
1317 
1318 /*
1319  * Protocol drain routine.  Called when memory is in short supply.
1320  * Called from pr_fasttimo thus a callout context.
1321  */
1322 void
1323 tcp_drain(void)
1324 {
1325 	struct inpcb_hdr *inph;
1326 	struct tcpcb *tp;
1327 
1328 	mutex_enter(softnet_lock);
1329 	KERNEL_LOCK(1, NULL);
1330 
1331 	/*
1332 	 * Free the sequence queue of all TCP connections.
1333 	 */
1334 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1335 		switch (inph->inph_af) {
1336 		case AF_INET:
1337 			tp = intotcpcb((struct inpcb *)inph);
1338 			break;
1339 #ifdef INET6
1340 		case AF_INET6:
1341 			tp = in6totcpcb((struct in6pcb *)inph);
1342 			break;
1343 #endif
1344 		default:
1345 			tp = NULL;
1346 			break;
1347 		}
1348 		if (tp != NULL) {
1349 			/*
1350 			 * We may be called from a device's interrupt
1351 			 * context.  If the tcpcb is already busy,
1352 			 * just bail out now.
1353 			 */
1354 			if (tcp_reass_lock_try(tp) == 0)
1355 				continue;
1356 			if (tcp_freeq(tp))
1357 				TCP_STATINC(TCP_STAT_CONNSDRAINED);
1358 			TCP_REASS_UNLOCK(tp);
1359 		}
1360 	}
1361 
1362 	KERNEL_UNLOCK_ONE(NULL);
1363 	mutex_exit(softnet_lock);
1364 }
1365 
1366 /*
1367  * Notify a tcp user of an asynchronous error;
1368  * store error as soft error, but wake up user
1369  * (for now, won't do anything until can select for soft error).
1370  */
1371 void
1372 tcp_notify(struct inpcb *inp, int error)
1373 {
1374 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1375 	struct socket *so = inp->inp_socket;
1376 
1377 	/*
1378 	 * Ignore some errors if we are hooked up.
1379 	 * If connection hasn't completed, has retransmitted several times,
1380 	 * and receives a second error, give up now.  This is better
1381 	 * than waiting a long time to establish a connection that
1382 	 * can never complete.
1383 	 */
1384 	if (tp->t_state == TCPS_ESTABLISHED &&
1385 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1386 	      error == EHOSTDOWN)) {
1387 		return;
1388 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1389 	    tp->t_rxtshift > 3 && tp->t_softerror)
1390 		so->so_error = error;
1391 	else
1392 		tp->t_softerror = error;
1393 	cv_broadcast(&so->so_cv);
1394 	sorwakeup(so);
1395 	sowwakeup(so);
1396 }
1397 
1398 #ifdef INET6
1399 void
1400 tcp6_notify(struct in6pcb *in6p, int error)
1401 {
1402 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1403 	struct socket *so = in6p->in6p_socket;
1404 
1405 	/*
1406 	 * Ignore some errors if we are hooked up.
1407 	 * If connection hasn't completed, has retransmitted several times,
1408 	 * and receives a second error, give up now.  This is better
1409 	 * than waiting a long time to establish a connection that
1410 	 * can never complete.
1411 	 */
1412 	if (tp->t_state == TCPS_ESTABLISHED &&
1413 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1414 	      error == EHOSTDOWN)) {
1415 		return;
1416 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1417 	    tp->t_rxtshift > 3 && tp->t_softerror)
1418 		so->so_error = error;
1419 	else
1420 		tp->t_softerror = error;
1421 	cv_broadcast(&so->so_cv);
1422 	sorwakeup(so);
1423 	sowwakeup(so);
1424 }
1425 #endif
1426 
1427 #ifdef INET6
1428 void *
1429 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1430 {
1431 	struct tcphdr th;
1432 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
1433 	int nmatch;
1434 	struct ip6_hdr *ip6;
1435 	const struct sockaddr_in6 *sa6_src = NULL;
1436 	const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1437 	struct mbuf *m;
1438 	int off;
1439 
1440 	if (sa->sa_family != AF_INET6 ||
1441 	    sa->sa_len != sizeof(struct sockaddr_in6))
1442 		return NULL;
1443 	if ((unsigned)cmd >= PRC_NCMDS)
1444 		return NULL;
1445 	else if (cmd == PRC_QUENCH) {
1446 		/*
1447 		 * Don't honor ICMP Source Quench messages meant for
1448 		 * TCP connections.
1449 		 */
1450 		return NULL;
1451 	} else if (PRC_IS_REDIRECT(cmd))
1452 		notify = in6_rtchange, d = NULL;
1453 	else if (cmd == PRC_MSGSIZE)
1454 		; /* special code is present, see below */
1455 	else if (cmd == PRC_HOSTDEAD)
1456 		d = NULL;
1457 	else if (inet6ctlerrmap[cmd] == 0)
1458 		return NULL;
1459 
1460 	/* if the parameter is from icmp6, decode it. */
1461 	if (d != NULL) {
1462 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1463 		m = ip6cp->ip6c_m;
1464 		ip6 = ip6cp->ip6c_ip6;
1465 		off = ip6cp->ip6c_off;
1466 		sa6_src = ip6cp->ip6c_src;
1467 	} else {
1468 		m = NULL;
1469 		ip6 = NULL;
1470 		sa6_src = &sa6_any;
1471 		off = 0;
1472 	}
1473 
1474 	if (ip6) {
1475 		/*
1476 		 * XXX: We assume that when ip6 is non NULL,
1477 		 * M and OFF are valid.
1478 		 */
1479 
1480 		/* check if we can safely examine src and dst ports */
1481 		if (m->m_pkthdr.len < off + sizeof(th)) {
1482 			if (cmd == PRC_MSGSIZE)
1483 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1484 			return NULL;
1485 		}
1486 
1487 		memset(&th, 0, sizeof(th));
1488 		m_copydata(m, off, sizeof(th), (void *)&th);
1489 
1490 		if (cmd == PRC_MSGSIZE) {
1491 			int valid = 0;
1492 
1493 			/*
1494 			 * Check to see if we have a valid TCP connection
1495 			 * corresponding to the address in the ICMPv6 message
1496 			 * payload.
1497 			 */
1498 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1499 			    th.th_dport,
1500 			    (const struct in6_addr *)&sa6_src->sin6_addr,
1501 						  th.th_sport, 0, 0))
1502 				valid++;
1503 
1504 			/*
1505 			 * Depending on the value of "valid" and routing table
1506 			 * size (mtudisc_{hi,lo}wat), we will:
1507 			 * - recalcurate the new MTU and create the
1508 			 *   corresponding routing entry, or
1509 			 * - ignore the MTU change notification.
1510 			 */
1511 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1512 
1513 			/*
1514 			 * no need to call in6_pcbnotify, it should have been
1515 			 * called via callback if necessary
1516 			 */
1517 			return NULL;
1518 		}
1519 
1520 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1521 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1522 		if (nmatch == 0 && syn_cache_count &&
1523 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1524 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
1525 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
1526 			syn_cache_unreach((const struct sockaddr *)sa6_src,
1527 					  sa, &th);
1528 	} else {
1529 		(void) in6_pcbnotify(&tcbtable, sa, 0,
1530 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1531 	}
1532 
1533 	return NULL;
1534 }
1535 #endif
1536 
1537 #ifdef INET
1538 /* assumes that ip header and tcp header are contiguous on mbuf */
1539 void *
1540 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1541 {
1542 	struct ip *ip = v;
1543 	struct tcphdr *th;
1544 	struct icmp *icp;
1545 	extern const int inetctlerrmap[];
1546 	void (*notify)(struct inpcb *, int) = tcp_notify;
1547 	int errno;
1548 	int nmatch;
1549 	struct tcpcb *tp;
1550 	u_int mtu;
1551 	tcp_seq seq;
1552 	struct inpcb *inp;
1553 #ifdef INET6
1554 	struct in6pcb *in6p;
1555 	struct in6_addr src6, dst6;
1556 #endif
1557 
1558 	if (sa->sa_family != AF_INET ||
1559 	    sa->sa_len != sizeof(struct sockaddr_in))
1560 		return NULL;
1561 	if ((unsigned)cmd >= PRC_NCMDS)
1562 		return NULL;
1563 	errno = inetctlerrmap[cmd];
1564 	if (cmd == PRC_QUENCH)
1565 		/*
1566 		 * Don't honor ICMP Source Quench messages meant for
1567 		 * TCP connections.
1568 		 */
1569 		return NULL;
1570 	else if (PRC_IS_REDIRECT(cmd))
1571 		notify = in_rtchange, ip = 0;
1572 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1573 		/*
1574 		 * Check to see if we have a valid TCP connection
1575 		 * corresponding to the address in the ICMP message
1576 		 * payload.
1577 		 *
1578 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1579 		 */
1580 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1581 #ifdef INET6
1582 		memset(&src6, 0, sizeof(src6));
1583 		memset(&dst6, 0, sizeof(dst6));
1584 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1585 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1586 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1587 #endif
1588 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1589 						th->th_dport, ip->ip_src, th->th_sport, 0)) != NULL)
1590 #ifdef INET6
1591 			in6p = NULL;
1592 #else
1593 			;
1594 #endif
1595 #ifdef INET6
1596 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1597 						       th->th_dport, &src6, th->th_sport, 0, 0)) != NULL)
1598 			;
1599 #endif
1600 		else
1601 			return NULL;
1602 
1603 		/*
1604 		 * Now that we've validated that we are actually communicating
1605 		 * with the host indicated in the ICMP message, locate the
1606 		 * ICMP header, recalculate the new MTU, and create the
1607 		 * corresponding routing entry.
1608 		 */
1609 		icp = (struct icmp *)((char *)ip -
1610 		    offsetof(struct icmp, icmp_ip));
1611 		if (inp) {
1612 			if ((tp = intotcpcb(inp)) == NULL)
1613 				return NULL;
1614 		}
1615 #ifdef INET6
1616 		else if (in6p) {
1617 			if ((tp = in6totcpcb(in6p)) == NULL)
1618 				return NULL;
1619 		}
1620 #endif
1621 		else
1622 			return NULL;
1623 		seq = ntohl(th->th_seq);
1624 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1625 			return NULL;
1626 		/*
1627 		 * If the ICMP message advertises a Next-Hop MTU
1628 		 * equal or larger than the maximum packet size we have
1629 		 * ever sent, drop the message.
1630 		 */
1631 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
1632 		if (mtu >= tp->t_pmtud_mtu_sent)
1633 			return NULL;
1634 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1635 			/*
1636 			 * Calculate new MTU, and create corresponding
1637 			 * route (traditional PMTUD).
1638 			 */
1639 			tp->t_flags &= ~TF_PMTUD_PEND;
1640 			icmp_mtudisc(icp, ip->ip_dst);
1641 		} else {
1642 			/*
1643 			 * Record the information got in the ICMP
1644 			 * message; act on it later.
1645 			 * If we had already recorded an ICMP message,
1646 			 * replace the old one only if the new message
1647 			 * refers to an older TCP segment
1648 			 */
1649 			if (tp->t_flags & TF_PMTUD_PEND) {
1650 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1651 					return NULL;
1652 			} else
1653 				tp->t_flags |= TF_PMTUD_PEND;
1654 			tp->t_pmtud_th_seq = seq;
1655 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1656 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1657 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1658 		}
1659 		return NULL;
1660 	} else if (cmd == PRC_HOSTDEAD)
1661 		ip = 0;
1662 	else if (errno == 0)
1663 		return NULL;
1664 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1665 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1666 		nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1667 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1668 		if (nmatch == 0 && syn_cache_count &&
1669 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
1670 		    inetctlerrmap[cmd] == ENETUNREACH ||
1671 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
1672 			struct sockaddr_in sin;
1673 			memset(&sin, 0, sizeof(sin));
1674 			sin.sin_len = sizeof(sin);
1675 			sin.sin_family = AF_INET;
1676 			sin.sin_port = th->th_sport;
1677 			sin.sin_addr = ip->ip_src;
1678 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1679 		}
1680 
1681 		/* XXX mapped address case */
1682 	} else
1683 		in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1684 		    notify);
1685 	return NULL;
1686 }
1687 
1688 /*
1689  * When a source quench is received, we are being notified of congestion.
1690  * Close the congestion window down to the Loss Window (one segment).
1691  * We will gradually open it again as we proceed.
1692  */
1693 void
1694 tcp_quench(struct inpcb *inp, int errno)
1695 {
1696 	struct tcpcb *tp = intotcpcb(inp);
1697 
1698 	if (tp) {
1699 		tp->snd_cwnd = tp->t_segsz;
1700 		tp->t_bytes_acked = 0;
1701 	}
1702 }
1703 #endif
1704 
1705 #ifdef INET6
1706 void
1707 tcp6_quench(struct in6pcb *in6p, int errno)
1708 {
1709 	struct tcpcb *tp = in6totcpcb(in6p);
1710 
1711 	if (tp) {
1712 		tp->snd_cwnd = tp->t_segsz;
1713 		tp->t_bytes_acked = 0;
1714 	}
1715 }
1716 #endif
1717 
1718 #ifdef INET
1719 /*
1720  * Path MTU Discovery handlers.
1721  */
1722 void
1723 tcp_mtudisc_callback(struct in_addr faddr)
1724 {
1725 #ifdef INET6
1726 	struct in6_addr in6;
1727 #endif
1728 
1729 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1730 #ifdef INET6
1731 	memset(&in6, 0, sizeof(in6));
1732 	in6.s6_addr16[5] = 0xffff;
1733 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1734 	tcp6_mtudisc_callback(&in6);
1735 #endif
1736 }
1737 
1738 /*
1739  * On receipt of path MTU corrections, flush old route and replace it
1740  * with the new one.  Retransmit all unacknowledged packets, to ensure
1741  * that all packets will be received.
1742  */
1743 void
1744 tcp_mtudisc(struct inpcb *inp, int errno)
1745 {
1746 	struct tcpcb *tp = intotcpcb(inp);
1747 	struct rtentry *rt = in_pcbrtentry(inp);
1748 
1749 	if (tp != 0) {
1750 		if (rt != 0) {
1751 			/*
1752 			 * If this was not a host route, remove and realloc.
1753 			 */
1754 			if ((rt->rt_flags & RTF_HOST) == 0) {
1755 				in_rtchange(inp, errno);
1756 				if ((rt = in_pcbrtentry(inp)) == 0)
1757 					return;
1758 			}
1759 
1760 			/*
1761 			 * Slow start out of the error condition.  We
1762 			 * use the MTU because we know it's smaller
1763 			 * than the previously transmitted segment.
1764 			 *
1765 			 * Note: This is more conservative than the
1766 			 * suggestion in draft-floyd-incr-init-win-03.
1767 			 */
1768 			if (rt->rt_rmx.rmx_mtu != 0)
1769 				tp->snd_cwnd =
1770 				    TCP_INITIAL_WINDOW(tcp_init_win,
1771 				    rt->rt_rmx.rmx_mtu);
1772 		}
1773 
1774 		/*
1775 		 * Resend unacknowledged packets.
1776 		 */
1777 		tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1778 		tcp_output(tp);
1779 	}
1780 }
1781 #endif
1782 
1783 #ifdef INET6
1784 /*
1785  * Path MTU Discovery handlers.
1786  */
1787 void
1788 tcp6_mtudisc_callback(struct in6_addr *faddr)
1789 {
1790 	struct sockaddr_in6 sin6;
1791 
1792 	memset(&sin6, 0, sizeof(sin6));
1793 	sin6.sin6_family = AF_INET6;
1794 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1795 	sin6.sin6_addr = *faddr;
1796 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1797 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1798 }
1799 
1800 void
1801 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1802 {
1803 	struct tcpcb *tp = in6totcpcb(in6p);
1804 	struct rtentry *rt = in6_pcbrtentry(in6p);
1805 
1806 	if (tp != 0) {
1807 		if (rt != 0) {
1808 			/*
1809 			 * If this was not a host route, remove and realloc.
1810 			 */
1811 			if ((rt->rt_flags & RTF_HOST) == 0) {
1812 				in6_rtchange(in6p, errno);
1813 				if ((rt = in6_pcbrtentry(in6p)) == 0)
1814 					return;
1815 			}
1816 
1817 			/*
1818 			 * Slow start out of the error condition.  We
1819 			 * use the MTU because we know it's smaller
1820 			 * than the previously transmitted segment.
1821 			 *
1822 			 * Note: This is more conservative than the
1823 			 * suggestion in draft-floyd-incr-init-win-03.
1824 			 */
1825 			if (rt->rt_rmx.rmx_mtu != 0)
1826 				tp->snd_cwnd =
1827 				    TCP_INITIAL_WINDOW(tcp_init_win,
1828 				    rt->rt_rmx.rmx_mtu);
1829 		}
1830 
1831 		/*
1832 		 * Resend unacknowledged packets.
1833 		 */
1834 		tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1835 		tcp_output(tp);
1836 	}
1837 }
1838 #endif /* INET6 */
1839 
1840 /*
1841  * Compute the MSS to advertise to the peer.  Called only during
1842  * the 3-way handshake.  If we are the server (peer initiated
1843  * connection), we are called with a pointer to the interface
1844  * on which the SYN packet arrived.  If we are the client (we
1845  * initiated connection), we are called with a pointer to the
1846  * interface out which this connection should go.
1847  *
1848  * NOTE: Do not subtract IP option/extension header size nor IPsec
1849  * header size from MSS advertisement.  MSS option must hold the maximum
1850  * segment size we can accept, so it must always be:
1851  *	 max(if mtu) - ip header - tcp header
1852  */
1853 u_long
1854 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1855 {
1856 	extern u_long in_maxmtu;
1857 	u_long mss = 0;
1858 	u_long hdrsiz;
1859 
1860 	/*
1861 	 * In order to avoid defeating path MTU discovery on the peer,
1862 	 * we advertise the max MTU of all attached networks as our MSS,
1863 	 * per RFC 1191, section 3.1.
1864 	 *
1865 	 * We provide the option to advertise just the MTU of
1866 	 * the interface on which we hope this connection will
1867 	 * be receiving.  If we are responding to a SYN, we
1868 	 * will have a pretty good idea about this, but when
1869 	 * initiating a connection there is a bit more doubt.
1870 	 *
1871 	 * We also need to ensure that loopback has a large enough
1872 	 * MSS, as the loopback MTU is never included in in_maxmtu.
1873 	 */
1874 
1875 	if (ifp != NULL)
1876 		switch (af) {
1877 		case AF_INET:
1878 			mss = ifp->if_mtu;
1879 			break;
1880 #ifdef INET6
1881 		case AF_INET6:
1882 			mss = IN6_LINKMTU(ifp);
1883 			break;
1884 #endif
1885 		}
1886 
1887 	if (tcp_mss_ifmtu == 0)
1888 		switch (af) {
1889 		case AF_INET:
1890 			mss = max(in_maxmtu, mss);
1891 			break;
1892 #ifdef INET6
1893 		case AF_INET6:
1894 			mss = max(in6_maxmtu, mss);
1895 			break;
1896 #endif
1897 		}
1898 
1899 	switch (af) {
1900 	case AF_INET:
1901 		hdrsiz = sizeof(struct ip);
1902 		break;
1903 #ifdef INET6
1904 	case AF_INET6:
1905 		hdrsiz = sizeof(struct ip6_hdr);
1906 		break;
1907 #endif
1908 	default:
1909 		hdrsiz = 0;
1910 		break;
1911 	}
1912 	hdrsiz += sizeof(struct tcphdr);
1913 	if (mss > hdrsiz)
1914 		mss -= hdrsiz;
1915 
1916 	mss = max(tcp_mssdflt, mss);
1917 	return (mss);
1918 }
1919 
1920 /*
1921  * Set connection variables based on the peer's advertised MSS.
1922  * We are passed the TCPCB for the actual connection.  If we
1923  * are the server, we are called by the compressed state engine
1924  * when the 3-way handshake is complete.  If we are the client,
1925  * we are called when we receive the SYN,ACK from the server.
1926  *
1927  * NOTE: Our advertised MSS value must be initialized in the TCPCB
1928  * before this routine is called!
1929  */
1930 void
1931 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1932 {
1933 	struct socket *so;
1934 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1935 	struct rtentry *rt;
1936 #endif
1937 	u_long bufsize;
1938 	int mss;
1939 
1940 #ifdef DIAGNOSTIC
1941 	if (tp->t_inpcb && tp->t_in6pcb)
1942 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1943 #endif
1944 	so = NULL;
1945 	rt = NULL;
1946 #ifdef INET
1947 	if (tp->t_inpcb) {
1948 		so = tp->t_inpcb->inp_socket;
1949 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1950 		rt = in_pcbrtentry(tp->t_inpcb);
1951 #endif
1952 	}
1953 #endif
1954 #ifdef INET6
1955 	if (tp->t_in6pcb) {
1956 		so = tp->t_in6pcb->in6p_socket;
1957 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1958 		rt = in6_pcbrtentry(tp->t_in6pcb);
1959 #endif
1960 	}
1961 #endif
1962 
1963 	/*
1964 	 * As per RFC1122, use the default MSS value, unless they
1965 	 * sent us an offer.  Do not accept offers less than 256 bytes.
1966 	 */
1967 	mss = tcp_mssdflt;
1968 	if (offer)
1969 		mss = offer;
1970 	mss = max(mss, 256);		/* sanity */
1971 	tp->t_peermss = mss;
1972 	mss -= tcp_optlen(tp);
1973 #ifdef INET
1974 	if (tp->t_inpcb)
1975 		mss -= ip_optlen(tp->t_inpcb);
1976 #endif
1977 #ifdef INET6
1978 	if (tp->t_in6pcb)
1979 		mss -= ip6_optlen(tp->t_in6pcb);
1980 #endif
1981 
1982 	/*
1983 	 * If there's a pipesize, change the socket buffer to that size.
1984 	 * Make the socket buffer an integral number of MSS units.  If
1985 	 * the MSS is larger than the socket buffer, artificially decrease
1986 	 * the MSS.
1987 	 */
1988 #ifdef RTV_SPIPE
1989 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1990 		bufsize = rt->rt_rmx.rmx_sendpipe;
1991 	else
1992 #endif
1993 	{
1994 		KASSERT(so != NULL);
1995 		bufsize = so->so_snd.sb_hiwat;
1996 	}
1997 	if (bufsize < mss)
1998 		mss = bufsize;
1999 	else {
2000 		bufsize = roundup(bufsize, mss);
2001 		if (bufsize > sb_max)
2002 			bufsize = sb_max;
2003 		(void) sbreserve(&so->so_snd, bufsize, so);
2004 	}
2005 	tp->t_segsz = mss;
2006 
2007 #ifdef RTV_SSTHRESH
2008 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
2009 		/*
2010 		 * There's some sort of gateway or interface buffer
2011 		 * limit on the path.  Use this to set the slow
2012 		 * start threshold, but set the threshold to no less
2013 		 * than 2 * MSS.
2014 		 */
2015 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2016 	}
2017 #endif
2018 }
2019 
2020 /*
2021  * Processing necessary when a TCP connection is established.
2022  */
2023 void
2024 tcp_established(struct tcpcb *tp)
2025 {
2026 	struct socket *so;
2027 #ifdef RTV_RPIPE
2028 	struct rtentry *rt;
2029 #endif
2030 	u_long bufsize;
2031 
2032 #ifdef DIAGNOSTIC
2033 	if (tp->t_inpcb && tp->t_in6pcb)
2034 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
2035 #endif
2036 	so = NULL;
2037 	rt = NULL;
2038 #ifdef INET
2039 	/* This is a while() to reduce the dreadful stairstepping below */
2040 	while (tp->t_inpcb) {
2041 		so = tp->t_inpcb->inp_socket;
2042 #if defined(RTV_RPIPE)
2043 		rt = in_pcbrtentry(tp->t_inpcb);
2044 #endif
2045 		if (__predict_true(tcp_msl_enable)) {
2046 			if (tp->t_inpcb->inp_laddr.s_addr == INADDR_LOOPBACK) {
2047 				tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
2048 				break;
2049 			}
2050 
2051 			if (__predict_false(tcp_rttlocal)) {
2052 				/* This may be adjusted by tcp_input */
2053 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2054 				break;
2055 			}
2056 			if (in_localaddr(tp->t_inpcb->inp_faddr)) {
2057 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2058 				break;
2059 			}
2060 		}
2061 		tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2062 		break;
2063 	}
2064 #endif
2065 #ifdef INET6
2066 	/* The !tp->t_inpcb lets the compiler know it can't be v4 *and* v6 */
2067 	while (!tp->t_inpcb && tp->t_in6pcb) {
2068 		so = tp->t_in6pcb->in6p_socket;
2069 #if defined(RTV_RPIPE)
2070 		rt = in6_pcbrtentry(tp->t_in6pcb);
2071 #endif
2072 		if (__predict_true(tcp_msl_enable)) {
2073 			extern const struct in6_addr in6addr_loopback;
2074 
2075 			if (IN6_ARE_ADDR_EQUAL(&tp->t_in6pcb->in6p_laddr,
2076 					       &in6addr_loopback)) {
2077 				tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
2078 				break;
2079 			}
2080 
2081 			if (__predict_false(tcp_rttlocal)) {
2082 				/* This may be adjusted by tcp_input */
2083 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2084 				break;
2085 			}
2086 			if (in6_localaddr(&tp->t_in6pcb->in6p_faddr)) {
2087 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2088 				break;
2089 			}
2090 		}
2091 		tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2092 		break;
2093 	}
2094 #endif
2095 
2096 	tp->t_state = TCPS_ESTABLISHED;
2097 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2098 
2099 #ifdef RTV_RPIPE
2100 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2101 		bufsize = rt->rt_rmx.rmx_recvpipe;
2102 	else
2103 #endif
2104 	{
2105 		KASSERT(so != NULL);
2106 		bufsize = so->so_rcv.sb_hiwat;
2107 	}
2108 	if (bufsize > tp->t_ourmss) {
2109 		bufsize = roundup(bufsize, tp->t_ourmss);
2110 		if (bufsize > sb_max)
2111 			bufsize = sb_max;
2112 		(void) sbreserve(&so->so_rcv, bufsize, so);
2113 	}
2114 }
2115 
2116 /*
2117  * Check if there's an initial rtt or rttvar.  Convert from the
2118  * route-table units to scaled multiples of the slow timeout timer.
2119  * Called only during the 3-way handshake.
2120  */
2121 void
2122 tcp_rmx_rtt(struct tcpcb *tp)
2123 {
2124 #ifdef RTV_RTT
2125 	struct rtentry *rt = NULL;
2126 	int rtt;
2127 
2128 #ifdef DIAGNOSTIC
2129 	if (tp->t_inpcb && tp->t_in6pcb)
2130 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2131 #endif
2132 #ifdef INET
2133 	if (tp->t_inpcb)
2134 		rt = in_pcbrtentry(tp->t_inpcb);
2135 #endif
2136 #ifdef INET6
2137 	if (tp->t_in6pcb)
2138 		rt = in6_pcbrtentry(tp->t_in6pcb);
2139 #endif
2140 	if (rt == NULL)
2141 		return;
2142 
2143 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2144 		/*
2145 		 * XXX The lock bit for MTU indicates that the value
2146 		 * is also a minimum value; this is subject to time.
2147 		 */
2148 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2149 			TCPT_RANGESET(tp->t_rttmin,
2150 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2151 			    TCPTV_MIN, TCPTV_REXMTMAX);
2152 		tp->t_srtt = rtt /
2153 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2154 		if (rt->rt_rmx.rmx_rttvar) {
2155 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2156 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
2157 				(TCP_RTTVAR_SHIFT + 2));
2158 		} else {
2159 			/* Default variation is +- 1 rtt */
2160 			tp->t_rttvar =
2161 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2162 		}
2163 		TCPT_RANGESET(tp->t_rxtcur,
2164 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2165 		    tp->t_rttmin, TCPTV_REXMTMAX);
2166 	}
2167 #endif
2168 }
2169 
2170 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
2171 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
2172 
2173 /*
2174  * Get a new sequence value given a tcp control block
2175  */
2176 tcp_seq
2177 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2178 {
2179 
2180 #ifdef INET
2181 	if (tp->t_inpcb != NULL) {
2182 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2183 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2184 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2185 		    addin));
2186 	}
2187 #endif
2188 #ifdef INET6
2189 	if (tp->t_in6pcb != NULL) {
2190 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2191 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2192 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2193 		    addin));
2194 	}
2195 #endif
2196 	/* Not possible. */
2197 	panic("tcp_new_iss");
2198 }
2199 
2200 /*
2201  * This routine actually generates a new TCP initial sequence number.
2202  */
2203 tcp_seq
2204 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2205     size_t addrsz, tcp_seq addin)
2206 {
2207 	tcp_seq tcp_iss;
2208 
2209 	static bool tcp_iss_gotten_secret;
2210 
2211 	/*
2212 	 * If we haven't been here before, initialize our cryptographic
2213 	 * hash secret.
2214 	 */
2215 	if (tcp_iss_gotten_secret == false) {
2216 		cprng_strong(kern_cprng,
2217 			     tcp_iss_secret, sizeof(tcp_iss_secret), FASYNC);
2218 		tcp_iss_gotten_secret = true;
2219 	}
2220 
2221 	if (tcp_do_rfc1948) {
2222 		MD5_CTX ctx;
2223 		u_int8_t hash[16];	/* XXX MD5 knowledge */
2224 
2225 		/*
2226 		 * Compute the base value of the ISS.  It is a hash
2227 		 * of (saddr, sport, daddr, dport, secret).
2228 		 */
2229 		MD5Init(&ctx);
2230 
2231 		MD5Update(&ctx, (u_char *) laddr, addrsz);
2232 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2233 
2234 		MD5Update(&ctx, (u_char *) faddr, addrsz);
2235 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2236 
2237 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2238 
2239 		MD5Final(hash, &ctx);
2240 
2241 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2242 
2243 		/*
2244 		 * Now increment our "timer", and add it in to
2245 		 * the computed value.
2246 		 *
2247 		 * XXX Use `addin'?
2248 		 * XXX TCP_ISSINCR too large to use?
2249 		 */
2250 		tcp_iss_seq += TCP_ISSINCR;
2251 #ifdef TCPISS_DEBUG
2252 		printf("ISS hash 0x%08x, ", tcp_iss);
2253 #endif
2254 		tcp_iss += tcp_iss_seq + addin;
2255 #ifdef TCPISS_DEBUG
2256 		printf("new ISS 0x%08x\n", tcp_iss);
2257 #endif
2258 	} else {
2259 		/*
2260 		 * Randomize.
2261 		 */
2262 		tcp_iss = cprng_fast32();
2263 
2264 		/*
2265 		 * If we were asked to add some amount to a known value,
2266 		 * we will take a random value obtained above, mask off
2267 		 * the upper bits, and add in the known value.  We also
2268 		 * add in a constant to ensure that we are at least a
2269 		 * certain distance from the original value.
2270 		 *
2271 		 * This is used when an old connection is in timed wait
2272 		 * and we have a new one coming in, for instance.
2273 		 */
2274 		if (addin != 0) {
2275 #ifdef TCPISS_DEBUG
2276 			printf("Random %08x, ", tcp_iss);
2277 #endif
2278 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2279 			tcp_iss += addin + TCP_ISSINCR;
2280 #ifdef TCPISS_DEBUG
2281 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2282 #endif
2283 		} else {
2284 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2285 			tcp_iss += tcp_iss_seq;
2286 			tcp_iss_seq += TCP_ISSINCR;
2287 #ifdef TCPISS_DEBUG
2288 			printf("ISS %08x\n", tcp_iss);
2289 #endif
2290 		}
2291 	}
2292 
2293 	if (tcp_compat_42) {
2294 		/*
2295 		 * Limit it to the positive range for really old TCP
2296 		 * implementations.
2297 		 * Just AND off the top bit instead of checking if
2298 		 * is set first - saves a branch 50% of the time.
2299 		 */
2300 		tcp_iss &= 0x7fffffff;		/* XXX */
2301 	}
2302 
2303 	return (tcp_iss);
2304 }
2305 
2306 #if defined(FAST_IPSEC)
2307 /* compute ESP/AH header size for TCP, including outer IP header. */
2308 size_t
2309 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2310 {
2311 	struct inpcb *inp;
2312 	size_t hdrsiz;
2313 
2314 	/* XXX mapped addr case (tp->t_in6pcb) */
2315 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2316 		return 0;
2317 	switch (tp->t_family) {
2318 	case AF_INET:
2319 		/* XXX: should use currect direction. */
2320 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2321 		break;
2322 	default:
2323 		hdrsiz = 0;
2324 		break;
2325 	}
2326 
2327 	return hdrsiz;
2328 }
2329 
2330 #ifdef INET6
2331 size_t
2332 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2333 {
2334 	struct in6pcb *in6p;
2335 	size_t hdrsiz;
2336 
2337 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2338 		return 0;
2339 	switch (tp->t_family) {
2340 	case AF_INET6:
2341 		/* XXX: should use currect direction. */
2342 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2343 		break;
2344 	case AF_INET:
2345 		/* mapped address case - tricky */
2346 	default:
2347 		hdrsiz = 0;
2348 		break;
2349 	}
2350 
2351 	return hdrsiz;
2352 }
2353 #endif
2354 #endif /*IPSEC*/
2355 
2356 /*
2357  * Determine the length of the TCP options for this connection.
2358  *
2359  * XXX:  What do we do for SACK, when we add that?  Just reserve
2360  *       all of the space?  Otherwise we can't exactly be incrementing
2361  *       cwnd by an amount that varies depending on the amount we last
2362  *       had to SACK!
2363  */
2364 
2365 u_int
2366 tcp_optlen(struct tcpcb *tp)
2367 {
2368 	u_int optlen;
2369 
2370 	optlen = 0;
2371 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2372 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2373 		optlen += TCPOLEN_TSTAMP_APPA;
2374 
2375 #ifdef TCP_SIGNATURE
2376 	if (tp->t_flags & TF_SIGNATURE)
2377 		optlen += TCPOLEN_SIGNATURE + 2;
2378 #endif /* TCP_SIGNATURE */
2379 
2380 	return optlen;
2381 }
2382 
2383 u_int
2384 tcp_hdrsz(struct tcpcb *tp)
2385 {
2386 	u_int hlen;
2387 
2388 	switch (tp->t_family) {
2389 #ifdef INET6
2390 	case AF_INET6:
2391 		hlen = sizeof(struct ip6_hdr);
2392 		break;
2393 #endif
2394 	case AF_INET:
2395 		hlen = sizeof(struct ip);
2396 		break;
2397 	default:
2398 		hlen = 0;
2399 		break;
2400 	}
2401 	hlen += sizeof(struct tcphdr);
2402 
2403 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2404 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2405 		hlen += TCPOLEN_TSTAMP_APPA;
2406 #ifdef TCP_SIGNATURE
2407 	if (tp->t_flags & TF_SIGNATURE)
2408 		hlen += TCPOLEN_SIGLEN;
2409 #endif
2410 	return hlen;
2411 }
2412 
2413 void
2414 tcp_statinc(u_int stat)
2415 {
2416 
2417 	KASSERT(stat < TCP_NSTATS);
2418 	TCP_STATINC(stat);
2419 }
2420 
2421 void
2422 tcp_statadd(u_int stat, uint64_t val)
2423 {
2424 
2425 	KASSERT(stat < TCP_NSTATS);
2426 	TCP_STATADD(stat, val);
2427 }
2428