xref: /netbsd-src/sys/netinet/tcp_subr.c (revision b5677b36047b601b9addaaa494a58ceae82c2a6c)
1 /*	$NetBSD: tcp_subr.c,v 1.236 2009/03/18 16:00:22 cegger Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38  * Facility, NASA Ames Research Center.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59  * POSSIBILITY OF SUCH DAMAGE.
60  */
61 
62 /*
63  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
64  *	The Regents of the University of California.  All rights reserved.
65  *
66  * Redistribution and use in source and binary forms, with or without
67  * modification, are permitted provided that the following conditions
68  * are met:
69  * 1. Redistributions of source code must retain the above copyright
70  *    notice, this list of conditions and the following disclaimer.
71  * 2. Redistributions in binary form must reproduce the above copyright
72  *    notice, this list of conditions and the following disclaimer in the
73  *    documentation and/or other materials provided with the distribution.
74  * 3. Neither the name of the University nor the names of its contributors
75  *    may be used to endorse or promote products derived from this software
76  *    without specific prior written permission.
77  *
78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88  * SUCH DAMAGE.
89  *
90  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
91  */
92 
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.236 2009/03/18 16:00:22 cegger Exp $");
95 
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_tcp_compat_42.h"
99 #include "opt_inet_csum.h"
100 #include "opt_mbuftrace.h"
101 #include "rnd.h"
102 
103 #include <sys/param.h>
104 #include <sys/proc.h>
105 #include <sys/systm.h>
106 #include <sys/malloc.h>
107 #include <sys/mbuf.h>
108 #include <sys/socket.h>
109 #include <sys/socketvar.h>
110 #include <sys/protosw.h>
111 #include <sys/errno.h>
112 #include <sys/kernel.h>
113 #include <sys/pool.h>
114 #if NRND > 0
115 #include <sys/md5.h>
116 #include <sys/rnd.h>
117 #endif
118 
119 #include <net/route.h>
120 #include <net/if.h>
121 
122 #include <netinet/in.h>
123 #include <netinet/in_systm.h>
124 #include <netinet/ip.h>
125 #include <netinet/in_pcb.h>
126 #include <netinet/ip_var.h>
127 #include <netinet/ip_icmp.h>
128 
129 #ifdef INET6
130 #ifndef INET
131 #include <netinet/in.h>
132 #endif
133 #include <netinet/ip6.h>
134 #include <netinet6/in6_pcb.h>
135 #include <netinet6/ip6_var.h>
136 #include <netinet6/in6_var.h>
137 #include <netinet6/ip6protosw.h>
138 #include <netinet/icmp6.h>
139 #include <netinet6/nd6.h>
140 #endif
141 
142 #include <netinet/tcp.h>
143 #include <netinet/tcp_fsm.h>
144 #include <netinet/tcp_seq.h>
145 #include <netinet/tcp_timer.h>
146 #include <netinet/tcp_var.h>
147 #include <netinet/tcp_private.h>
148 #include <netinet/tcp_congctl.h>
149 #include <netinet/tcpip.h>
150 
151 #ifdef IPSEC
152 #include <netinet6/ipsec.h>
153 #include <netkey/key.h>
154 #endif /*IPSEC*/
155 
156 #ifdef FAST_IPSEC
157 #include <netipsec/ipsec.h>
158 #include <netipsec/xform.h>
159 #ifdef INET6
160 #include <netipsec/ipsec6.h>
161 #endif
162  #include <netipsec/key.h>
163 #endif	/* FAST_IPSEC*/
164 
165 
166 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
167 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
168 
169 percpu_t *tcpstat_percpu;
170 
171 /* patchable/settable parameters for tcp */
172 int 	tcp_mssdflt = TCP_MSS;
173 int	tcp_minmss = TCP_MINMSS;
174 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
175 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
176 #if NRND > 0
177 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
178 #endif
179 int	tcp_do_sack = 1;	/* selective acknowledgement */
180 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
181 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
182 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
183 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
184 #ifndef TCP_INIT_WIN
185 #define	TCP_INIT_WIN	0	/* initial slow start window */
186 #endif
187 #ifndef TCP_INIT_WIN_LOCAL
188 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
189 #endif
190 int	tcp_init_win = TCP_INIT_WIN;
191 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
192 int	tcp_mss_ifmtu = 0;
193 #ifdef TCP_COMPAT_42
194 int	tcp_compat_42 = 1;
195 #else
196 int	tcp_compat_42 = 0;
197 #endif
198 int	tcp_rst_ppslim = 100;	/* 100pps */
199 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
200 int	tcp_do_loopback_cksum = 0;
201 int	tcp_do_abc = 1;		/* RFC3465 Appropriate byte counting. */
202 int	tcp_abc_aggressive = 1;	/* 1: L=2*SMSS  0: L=1*SMSS */
203 int	tcp_sack_tp_maxholes = 32;
204 int	tcp_sack_globalmaxholes = 1024;
205 int	tcp_sack_globalholes = 0;
206 int	tcp_ecn_maxretries = 1;
207 
208 /* tcb hash */
209 #ifndef TCBHASHSIZE
210 #define	TCBHASHSIZE	128
211 #endif
212 int	tcbhashsize = TCBHASHSIZE;
213 
214 /* syn hash parameters */
215 #define	TCP_SYN_HASH_SIZE	293
216 #define	TCP_SYN_BUCKET_SIZE	35
217 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
218 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
219 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
220 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
221 
222 int	tcp_freeq(struct tcpcb *);
223 
224 #ifdef INET
225 void	tcp_mtudisc_callback(struct in_addr);
226 #endif
227 #ifdef INET6
228 void	tcp6_mtudisc_callback(struct in6_addr *);
229 #endif
230 
231 #ifdef INET6
232 void	tcp6_mtudisc(struct in6pcb *, int);
233 #endif
234 
235 static struct pool tcpcb_pool;
236 
237 #ifdef TCP_CSUM_COUNTERS
238 #include <sys/device.h>
239 
240 #if defined(INET)
241 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
242     NULL, "tcp", "hwcsum bad");
243 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
244     NULL, "tcp", "hwcsum ok");
245 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
246     NULL, "tcp", "hwcsum data");
247 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
248     NULL, "tcp", "swcsum");
249 
250 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
251 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
252 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
253 EVCNT_ATTACH_STATIC(tcp_swcsum);
254 #endif /* defined(INET) */
255 
256 #if defined(INET6)
257 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
258     NULL, "tcp6", "hwcsum bad");
259 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
260     NULL, "tcp6", "hwcsum ok");
261 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262     NULL, "tcp6", "hwcsum data");
263 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264     NULL, "tcp6", "swcsum");
265 
266 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
267 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
268 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
269 EVCNT_ATTACH_STATIC(tcp6_swcsum);
270 #endif /* defined(INET6) */
271 #endif /* TCP_CSUM_COUNTERS */
272 
273 
274 #ifdef TCP_OUTPUT_COUNTERS
275 #include <sys/device.h>
276 
277 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
278     NULL, "tcp", "output big header");
279 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
280     NULL, "tcp", "output predict hit");
281 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282     NULL, "tcp", "output predict miss");
283 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284     NULL, "tcp", "output copy small");
285 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286     NULL, "tcp", "output copy big");
287 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288     NULL, "tcp", "output reference big");
289 
290 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
291 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
292 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
293 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
294 EVCNT_ATTACH_STATIC(tcp_output_copybig);
295 EVCNT_ATTACH_STATIC(tcp_output_refbig);
296 
297 #endif /* TCP_OUTPUT_COUNTERS */
298 
299 #ifdef TCP_REASS_COUNTERS
300 #include <sys/device.h>
301 
302 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
303     NULL, "tcp_reass", "calls");
304 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
305     &tcp_reass_, "tcp_reass", "insert into empty queue");
306 struct evcnt tcp_reass_iteration[8] = {
307     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
308     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
309     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
310     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
311     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
312     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
315 };
316 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
317     &tcp_reass_, "tcp_reass", "prepend to first");
318 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
319     &tcp_reass_, "tcp_reass", "prepend");
320 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
321     &tcp_reass_, "tcp_reass", "insert");
322 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
323     &tcp_reass_, "tcp_reass", "insert at tail");
324 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
325     &tcp_reass_, "tcp_reass", "append");
326 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
327     &tcp_reass_, "tcp_reass", "append to tail fragment");
328 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
329     &tcp_reass_, "tcp_reass", "overlap at end");
330 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
331     &tcp_reass_, "tcp_reass", "overlap at start");
332 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
333     &tcp_reass_, "tcp_reass", "duplicate segment");
334 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
335     &tcp_reass_, "tcp_reass", "duplicate fragment");
336 
337 EVCNT_ATTACH_STATIC(tcp_reass_);
338 EVCNT_ATTACH_STATIC(tcp_reass_empty);
339 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
340 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
341 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
342 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
343 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
344 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
347 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
348 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
349 EVCNT_ATTACH_STATIC(tcp_reass_insert);
350 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
351 EVCNT_ATTACH_STATIC(tcp_reass_append);
352 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
353 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
354 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
355 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
356 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
357 
358 #endif /* TCP_REASS_COUNTERS */
359 
360 #ifdef MBUFTRACE
361 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
362 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
363 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
364 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
365 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
366 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
367 #endif
368 
369 /*
370  * Tcp initialization
371  */
372 void
373 tcp_init(void)
374 {
375 	int hlen;
376 
377 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
378 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
379 	    NULL, IPL_SOFTNET);
380 
381 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
382 #ifdef INET6
383 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
384 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
385 #endif
386 	if (max_protohdr < hlen)
387 		max_protohdr = hlen;
388 	if (max_linkhdr + hlen > MHLEN)
389 		panic("tcp_init");
390 
391 #ifdef INET
392 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
393 #endif
394 #ifdef INET6
395 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
396 #endif
397 
398 	/* Initialize timer state. */
399 	tcp_timer_init();
400 
401 	/* Initialize the compressed state engine. */
402 	syn_cache_init();
403 
404 	/* Initialize the congestion control algorithms. */
405 	tcp_congctl_init();
406 
407 	/* Initialize the TCPCB template. */
408 	tcp_tcpcb_template();
409 
410 	/* Initialize reassembly queue */
411 	tcpipqent_init();
412 
413 	MOWNER_ATTACH(&tcp_tx_mowner);
414 	MOWNER_ATTACH(&tcp_rx_mowner);
415 	MOWNER_ATTACH(&tcp_reass_mowner);
416 	MOWNER_ATTACH(&tcp_sock_mowner);
417 	MOWNER_ATTACH(&tcp_sock_tx_mowner);
418 	MOWNER_ATTACH(&tcp_sock_rx_mowner);
419 	MOWNER_ATTACH(&tcp_mowner);
420 
421 	tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
422 }
423 
424 /*
425  * Create template to be used to send tcp packets on a connection.
426  * Call after host entry created, allocates an mbuf and fills
427  * in a skeletal tcp/ip header, minimizing the amount of work
428  * necessary when the connection is used.
429  */
430 struct mbuf *
431 tcp_template(struct tcpcb *tp)
432 {
433 	struct inpcb *inp = tp->t_inpcb;
434 #ifdef INET6
435 	struct in6pcb *in6p = tp->t_in6pcb;
436 #endif
437 	struct tcphdr *n;
438 	struct mbuf *m;
439 	int hlen;
440 
441 	switch (tp->t_family) {
442 	case AF_INET:
443 		hlen = sizeof(struct ip);
444 		if (inp)
445 			break;
446 #ifdef INET6
447 		if (in6p) {
448 			/* mapped addr case */
449 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
450 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
451 				break;
452 		}
453 #endif
454 		return NULL;	/*EINVAL*/
455 #ifdef INET6
456 	case AF_INET6:
457 		hlen = sizeof(struct ip6_hdr);
458 		if (in6p) {
459 			/* more sainty check? */
460 			break;
461 		}
462 		return NULL;	/*EINVAL*/
463 #endif
464 	default:
465 		hlen = 0;	/*pacify gcc*/
466 		return NULL;	/*EAFNOSUPPORT*/
467 	}
468 #ifdef DIAGNOSTIC
469 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
470 		panic("mclbytes too small for t_template");
471 #endif
472 	m = tp->t_template;
473 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
474 		;
475 	else {
476 		if (m)
477 			m_freem(m);
478 		m = tp->t_template = NULL;
479 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
480 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
481 			MCLGET(m, M_DONTWAIT);
482 			if ((m->m_flags & M_EXT) == 0) {
483 				m_free(m);
484 				m = NULL;
485 			}
486 		}
487 		if (m == NULL)
488 			return NULL;
489 		MCLAIM(m, &tcp_mowner);
490 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
491 	}
492 
493 	memset(mtod(m, void *), 0, m->m_len);
494 
495 	n = (struct tcphdr *)(mtod(m, char *) + hlen);
496 
497 	switch (tp->t_family) {
498 	case AF_INET:
499 	    {
500 		struct ipovly *ipov;
501 		mtod(m, struct ip *)->ip_v = 4;
502 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
503 		ipov = mtod(m, struct ipovly *);
504 		ipov->ih_pr = IPPROTO_TCP;
505 		ipov->ih_len = htons(sizeof(struct tcphdr));
506 		if (inp) {
507 			ipov->ih_src = inp->inp_laddr;
508 			ipov->ih_dst = inp->inp_faddr;
509 		}
510 #ifdef INET6
511 		else if (in6p) {
512 			/* mapped addr case */
513 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
514 				sizeof(ipov->ih_src));
515 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
516 				sizeof(ipov->ih_dst));
517 		}
518 #endif
519 		/*
520 		 * Compute the pseudo-header portion of the checksum
521 		 * now.  We incrementally add in the TCP option and
522 		 * payload lengths later, and then compute the TCP
523 		 * checksum right before the packet is sent off onto
524 		 * the wire.
525 		 */
526 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
527 		    ipov->ih_dst.s_addr,
528 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
529 		break;
530 	    }
531 #ifdef INET6
532 	case AF_INET6:
533 	    {
534 		struct ip6_hdr *ip6;
535 		mtod(m, struct ip *)->ip_v = 6;
536 		ip6 = mtod(m, struct ip6_hdr *);
537 		ip6->ip6_nxt = IPPROTO_TCP;
538 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
539 		ip6->ip6_src = in6p->in6p_laddr;
540 		ip6->ip6_dst = in6p->in6p_faddr;
541 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
542 		if (ip6_auto_flowlabel) {
543 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
544 			ip6->ip6_flow |=
545 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
546 		}
547 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
548 		ip6->ip6_vfc |= IPV6_VERSION;
549 
550 		/*
551 		 * Compute the pseudo-header portion of the checksum
552 		 * now.  We incrementally add in the TCP option and
553 		 * payload lengths later, and then compute the TCP
554 		 * checksum right before the packet is sent off onto
555 		 * the wire.
556 		 */
557 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
558 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
559 		    htonl(IPPROTO_TCP));
560 		break;
561 	    }
562 #endif
563 	}
564 	if (inp) {
565 		n->th_sport = inp->inp_lport;
566 		n->th_dport = inp->inp_fport;
567 	}
568 #ifdef INET6
569 	else if (in6p) {
570 		n->th_sport = in6p->in6p_lport;
571 		n->th_dport = in6p->in6p_fport;
572 	}
573 #endif
574 	n->th_seq = 0;
575 	n->th_ack = 0;
576 	n->th_x2 = 0;
577 	n->th_off = 5;
578 	n->th_flags = 0;
579 	n->th_win = 0;
580 	n->th_urp = 0;
581 	return (m);
582 }
583 
584 /*
585  * Send a single message to the TCP at address specified by
586  * the given TCP/IP header.  If m == 0, then we make a copy
587  * of the tcpiphdr at ti and send directly to the addressed host.
588  * This is used to force keep alive messages out using the TCP
589  * template for a connection tp->t_template.  If flags are given
590  * then we send a message back to the TCP which originated the
591  * segment ti, and discard the mbuf containing it and any other
592  * attached mbufs.
593  *
594  * In any case the ack and sequence number of the transmitted
595  * segment are as specified by the parameters.
596  */
597 int
598 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
599     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
600 {
601 #ifdef INET6
602 	struct rtentry *rt;
603 #endif
604 	struct route *ro;
605 	int error, tlen, win = 0;
606 	int hlen;
607 	struct ip *ip;
608 #ifdef INET6
609 	struct ip6_hdr *ip6;
610 #endif
611 	int family;	/* family on packet, not inpcb/in6pcb! */
612 	struct tcphdr *th;
613 	struct socket *so;
614 
615 	if (tp != NULL && (flags & TH_RST) == 0) {
616 #ifdef DIAGNOSTIC
617 		if (tp->t_inpcb && tp->t_in6pcb)
618 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
619 #endif
620 #ifdef INET
621 		if (tp->t_inpcb)
622 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
623 #endif
624 #ifdef INET6
625 		if (tp->t_in6pcb)
626 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
627 #endif
628 	}
629 
630 	th = NULL;	/* Quell uninitialized warning */
631 	ip = NULL;
632 #ifdef INET6
633 	ip6 = NULL;
634 #endif
635 	if (m == 0) {
636 		if (!template)
637 			return EINVAL;
638 
639 		/* get family information from template */
640 		switch (mtod(template, struct ip *)->ip_v) {
641 		case 4:
642 			family = AF_INET;
643 			hlen = sizeof(struct ip);
644 			break;
645 #ifdef INET6
646 		case 6:
647 			family = AF_INET6;
648 			hlen = sizeof(struct ip6_hdr);
649 			break;
650 #endif
651 		default:
652 			return EAFNOSUPPORT;
653 		}
654 
655 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
656 		if (m) {
657 			MCLAIM(m, &tcp_tx_mowner);
658 			MCLGET(m, M_DONTWAIT);
659 			if ((m->m_flags & M_EXT) == 0) {
660 				m_free(m);
661 				m = NULL;
662 			}
663 		}
664 		if (m == NULL)
665 			return (ENOBUFS);
666 
667 		if (tcp_compat_42)
668 			tlen = 1;
669 		else
670 			tlen = 0;
671 
672 		m->m_data += max_linkhdr;
673 		bcopy(mtod(template, void *), mtod(m, void *),
674 			template->m_len);
675 		switch (family) {
676 		case AF_INET:
677 			ip = mtod(m, struct ip *);
678 			th = (struct tcphdr *)(ip + 1);
679 			break;
680 #ifdef INET6
681 		case AF_INET6:
682 			ip6 = mtod(m, struct ip6_hdr *);
683 			th = (struct tcphdr *)(ip6 + 1);
684 			break;
685 #endif
686 #if 0
687 		default:
688 			/* noone will visit here */
689 			m_freem(m);
690 			return EAFNOSUPPORT;
691 #endif
692 		}
693 		flags = TH_ACK;
694 	} else {
695 
696 		if ((m->m_flags & M_PKTHDR) == 0) {
697 #if 0
698 			printf("non PKTHDR to tcp_respond\n");
699 #endif
700 			m_freem(m);
701 			return EINVAL;
702 		}
703 #ifdef DIAGNOSTIC
704 		if (!th0)
705 			panic("th0 == NULL in tcp_respond");
706 #endif
707 
708 		/* get family information from m */
709 		switch (mtod(m, struct ip *)->ip_v) {
710 		case 4:
711 			family = AF_INET;
712 			hlen = sizeof(struct ip);
713 			ip = mtod(m, struct ip *);
714 			break;
715 #ifdef INET6
716 		case 6:
717 			family = AF_INET6;
718 			hlen = sizeof(struct ip6_hdr);
719 			ip6 = mtod(m, struct ip6_hdr *);
720 			break;
721 #endif
722 		default:
723 			m_freem(m);
724 			return EAFNOSUPPORT;
725 		}
726 		/* clear h/w csum flags inherited from rx packet */
727 		m->m_pkthdr.csum_flags = 0;
728 
729 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
730 			tlen = sizeof(*th0);
731 		else
732 			tlen = th0->th_off << 2;
733 
734 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
735 		    mtod(m, char *) + hlen == (char *)th0) {
736 			m->m_len = hlen + tlen;
737 			m_freem(m->m_next);
738 			m->m_next = NULL;
739 		} else {
740 			struct mbuf *n;
741 
742 #ifdef DIAGNOSTIC
743 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
744 				m_freem(m);
745 				return EMSGSIZE;
746 			}
747 #endif
748 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
749 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
750 				MCLGET(n, M_DONTWAIT);
751 				if ((n->m_flags & M_EXT) == 0) {
752 					m_freem(n);
753 					n = NULL;
754 				}
755 			}
756 			if (!n) {
757 				m_freem(m);
758 				return ENOBUFS;
759 			}
760 
761 			MCLAIM(n, &tcp_tx_mowner);
762 			n->m_data += max_linkhdr;
763 			n->m_len = hlen + tlen;
764 			m_copyback(n, 0, hlen, mtod(m, void *));
765 			m_copyback(n, hlen, tlen, (void *)th0);
766 
767 			m_freem(m);
768 			m = n;
769 			n = NULL;
770 		}
771 
772 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
773 		switch (family) {
774 		case AF_INET:
775 			ip = mtod(m, struct ip *);
776 			th = (struct tcphdr *)(ip + 1);
777 			ip->ip_p = IPPROTO_TCP;
778 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
779 			ip->ip_p = IPPROTO_TCP;
780 			break;
781 #ifdef INET6
782 		case AF_INET6:
783 			ip6 = mtod(m, struct ip6_hdr *);
784 			th = (struct tcphdr *)(ip6 + 1);
785 			ip6->ip6_nxt = IPPROTO_TCP;
786 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
787 			ip6->ip6_nxt = IPPROTO_TCP;
788 			break;
789 #endif
790 #if 0
791 		default:
792 			/* noone will visit here */
793 			m_freem(m);
794 			return EAFNOSUPPORT;
795 #endif
796 		}
797 		xchg(th->th_dport, th->th_sport, u_int16_t);
798 #undef xchg
799 		tlen = 0;	/*be friendly with the following code*/
800 	}
801 	th->th_seq = htonl(seq);
802 	th->th_ack = htonl(ack);
803 	th->th_x2 = 0;
804 	if ((flags & TH_SYN) == 0) {
805 		if (tp)
806 			win >>= tp->rcv_scale;
807 		if (win > TCP_MAXWIN)
808 			win = TCP_MAXWIN;
809 		th->th_win = htons((u_int16_t)win);
810 		th->th_off = sizeof (struct tcphdr) >> 2;
811 		tlen += sizeof(*th);
812 	} else
813 		tlen += th->th_off << 2;
814 	m->m_len = hlen + tlen;
815 	m->m_pkthdr.len = hlen + tlen;
816 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
817 	th->th_flags = flags;
818 	th->th_urp = 0;
819 
820 	switch (family) {
821 #ifdef INET
822 	case AF_INET:
823 	    {
824 		struct ipovly *ipov = (struct ipovly *)ip;
825 		memset(ipov->ih_x1, 0, sizeof ipov->ih_x1);
826 		ipov->ih_len = htons((u_int16_t)tlen);
827 
828 		th->th_sum = 0;
829 		th->th_sum = in_cksum(m, hlen + tlen);
830 		ip->ip_len = htons(hlen + tlen);
831 		ip->ip_ttl = ip_defttl;
832 		break;
833 	    }
834 #endif
835 #ifdef INET6
836 	case AF_INET6:
837 	    {
838 		th->th_sum = 0;
839 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
840 				tlen);
841 		ip6->ip6_plen = htons(tlen);
842 		if (tp && tp->t_in6pcb) {
843 			struct ifnet *oifp;
844 			ro = &tp->t_in6pcb->in6p_route;
845 			oifp = (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
846 			                                           : NULL;
847 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
848 		} else
849 			ip6->ip6_hlim = ip6_defhlim;
850 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
851 		if (ip6_auto_flowlabel) {
852 			ip6->ip6_flow |=
853 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
854 		}
855 		break;
856 	    }
857 #endif
858 	}
859 
860 	if (tp && tp->t_inpcb)
861 		so = tp->t_inpcb->inp_socket;
862 #ifdef INET6
863 	else if (tp && tp->t_in6pcb)
864 		so = tp->t_in6pcb->in6p_socket;
865 #endif
866 	else
867 		so = NULL;
868 
869 	if (tp != NULL && tp->t_inpcb != NULL) {
870 		ro = &tp->t_inpcb->inp_route;
871 #ifdef DIAGNOSTIC
872 		if (family != AF_INET)
873 			panic("tcp_respond: address family mismatch");
874 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
875 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
876 			    ntohl(ip->ip_dst.s_addr),
877 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
878 		}
879 #endif
880 	}
881 #ifdef INET6
882 	else if (tp != NULL && tp->t_in6pcb != NULL) {
883 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
884 #ifdef DIAGNOSTIC
885 		if (family == AF_INET) {
886 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
887 				panic("tcp_respond: not mapped addr");
888 			if (memcmp(&ip->ip_dst,
889 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
890 			    sizeof(ip->ip_dst)) != 0) {
891 				panic("tcp_respond: ip_dst != in6p_faddr");
892 			}
893 		} else if (family == AF_INET6) {
894 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
895 			    &tp->t_in6pcb->in6p_faddr))
896 				panic("tcp_respond: ip6_dst != in6p_faddr");
897 		} else
898 			panic("tcp_respond: address family mismatch");
899 #endif
900 	}
901 #endif
902 	else
903 		ro = NULL;
904 
905 	switch (family) {
906 #ifdef INET
907 	case AF_INET:
908 		error = ip_output(m, NULL, ro,
909 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
910 		    (struct ip_moptions *)0, so);
911 		break;
912 #endif
913 #ifdef INET6
914 	case AF_INET6:
915 		error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
916 		break;
917 #endif
918 	default:
919 		error = EAFNOSUPPORT;
920 		break;
921 	}
922 
923 	return (error);
924 }
925 
926 /*
927  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
928  * a bunch of members individually, we maintain this template for the
929  * static and mostly-static components of the TCPCB, and copy it into
930  * the new TCPCB instead.
931  */
932 static struct tcpcb tcpcb_template = {
933 	.t_srtt = TCPTV_SRTTBASE,
934 	.t_rttmin = TCPTV_MIN,
935 
936 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
937 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
938 	.snd_numholes = 0,
939 
940 	.t_partialacks = -1,
941 	.t_bytes_acked = 0,
942 };
943 
944 /*
945  * Updates the TCPCB template whenever a parameter that would affect
946  * the template is changed.
947  */
948 void
949 tcp_tcpcb_template(void)
950 {
951 	struct tcpcb *tp = &tcpcb_template;
952 	int flags;
953 
954 	tp->t_peermss = tcp_mssdflt;
955 	tp->t_ourmss = tcp_mssdflt;
956 	tp->t_segsz = tcp_mssdflt;
957 
958 	flags = 0;
959 	if (tcp_do_rfc1323 && tcp_do_win_scale)
960 		flags |= TF_REQ_SCALE;
961 	if (tcp_do_rfc1323 && tcp_do_timestamps)
962 		flags |= TF_REQ_TSTMP;
963 	tp->t_flags = flags;
964 
965 	/*
966 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
967 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
968 	 * reasonable initial retransmit time.
969 	 */
970 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
971 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
972 	    TCPTV_MIN, TCPTV_REXMTMAX);
973 
974 	/* Keep Alive */
975 	tp->t_keepinit = tcp_keepinit;
976 	tp->t_keepidle = tcp_keepidle;
977 	tp->t_keepintvl = tcp_keepintvl;
978 	tp->t_keepcnt = tcp_keepcnt;
979 	tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
980 }
981 
982 /*
983  * Create a new TCP control block, making an
984  * empty reassembly queue and hooking it to the argument
985  * protocol control block.
986  */
987 /* family selects inpcb, or in6pcb */
988 struct tcpcb *
989 tcp_newtcpcb(int family, void *aux)
990 {
991 #ifdef INET6
992 	struct rtentry *rt;
993 #endif
994 	struct tcpcb *tp;
995 	int i;
996 
997 	/* XXX Consider using a pool_cache for speed. */
998 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
999 	if (tp == NULL)
1000 		return (NULL);
1001 	memcpy(tp, &tcpcb_template, sizeof(*tp));
1002 	TAILQ_INIT(&tp->segq);
1003 	TAILQ_INIT(&tp->timeq);
1004 	tp->t_family = family;		/* may be overridden later on */
1005 	TAILQ_INIT(&tp->snd_holes);
1006 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
1007 
1008 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
1009 	for (i = 0; i < TCPT_NTIMERS; i++) {
1010 		callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
1011 		TCP_TIMER_INIT(tp, i);
1012 	}
1013 	callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
1014 
1015 	switch (family) {
1016 	case AF_INET:
1017 	    {
1018 		struct inpcb *inp = (struct inpcb *)aux;
1019 
1020 		inp->inp_ip.ip_ttl = ip_defttl;
1021 		inp->inp_ppcb = (void *)tp;
1022 
1023 		tp->t_inpcb = inp;
1024 		tp->t_mtudisc = ip_mtudisc;
1025 		break;
1026 	    }
1027 #ifdef INET6
1028 	case AF_INET6:
1029 	    {
1030 		struct in6pcb *in6p = (struct in6pcb *)aux;
1031 
1032 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1033 			(rt = rtcache_validate(&in6p->in6p_route)) != NULL
1034 			    ? rt->rt_ifp
1035 			    : NULL);
1036 		in6p->in6p_ppcb = (void *)tp;
1037 
1038 		tp->t_in6pcb = in6p;
1039 		/* for IPv6, always try to run path MTU discovery */
1040 		tp->t_mtudisc = 1;
1041 		break;
1042 	    }
1043 #endif /* INET6 */
1044 	default:
1045 		for (i = 0; i < TCPT_NTIMERS; i++)
1046 			callout_destroy(&tp->t_timer[i]);
1047 		callout_destroy(&tp->t_delack_ch);
1048 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
1049 		return (NULL);
1050 	}
1051 
1052 	/*
1053 	 * Initialize our timebase.  When we send timestamps, we take
1054 	 * the delta from tcp_now -- this means each connection always
1055 	 * gets a timebase of 1, which makes it, among other things,
1056 	 * more difficult to determine how long a system has been up,
1057 	 * and thus how many TCP sequence increments have occurred.
1058 	 *
1059 	 * We start with 1, because 0 doesn't work with linux, which
1060 	 * considers timestamp 0 in a SYN packet as a bug and disables
1061 	 * timestamps.
1062 	 */
1063 	tp->ts_timebase = tcp_now - 1;
1064 
1065 	tcp_congctl_select(tp, tcp_congctl_global_name);
1066 
1067 	return (tp);
1068 }
1069 
1070 /*
1071  * Drop a TCP connection, reporting
1072  * the specified error.  If connection is synchronized,
1073  * then send a RST to peer.
1074  */
1075 struct tcpcb *
1076 tcp_drop(struct tcpcb *tp, int errno)
1077 {
1078 	struct socket *so = NULL;
1079 
1080 #ifdef DIAGNOSTIC
1081 	if (tp->t_inpcb && tp->t_in6pcb)
1082 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1083 #endif
1084 #ifdef INET
1085 	if (tp->t_inpcb)
1086 		so = tp->t_inpcb->inp_socket;
1087 #endif
1088 #ifdef INET6
1089 	if (tp->t_in6pcb)
1090 		so = tp->t_in6pcb->in6p_socket;
1091 #endif
1092 	if (!so)
1093 		return NULL;
1094 
1095 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1096 		tp->t_state = TCPS_CLOSED;
1097 		(void) tcp_output(tp);
1098 		TCP_STATINC(TCP_STAT_DROPS);
1099 	} else
1100 		TCP_STATINC(TCP_STAT_CONNDROPS);
1101 	if (errno == ETIMEDOUT && tp->t_softerror)
1102 		errno = tp->t_softerror;
1103 	so->so_error = errno;
1104 	return (tcp_close(tp));
1105 }
1106 
1107 /*
1108  * Close a TCP control block:
1109  *	discard all space held by the tcp
1110  *	discard internet protocol block
1111  *	wake up any sleepers
1112  */
1113 struct tcpcb *
1114 tcp_close(struct tcpcb *tp)
1115 {
1116 	struct inpcb *inp;
1117 #ifdef INET6
1118 	struct in6pcb *in6p;
1119 #endif
1120 	struct socket *so;
1121 #ifdef RTV_RTT
1122 	struct rtentry *rt;
1123 #endif
1124 	struct route *ro;
1125 	int j;
1126 
1127 	inp = tp->t_inpcb;
1128 #ifdef INET6
1129 	in6p = tp->t_in6pcb;
1130 #endif
1131 	so = NULL;
1132 	ro = NULL;
1133 	if (inp) {
1134 		so = inp->inp_socket;
1135 		ro = &inp->inp_route;
1136 	}
1137 #ifdef INET6
1138 	else if (in6p) {
1139 		so = in6p->in6p_socket;
1140 		ro = (struct route *)&in6p->in6p_route;
1141 	}
1142 #endif
1143 
1144 #ifdef RTV_RTT
1145 	/*
1146 	 * If we sent enough data to get some meaningful characteristics,
1147 	 * save them in the routing entry.  'Enough' is arbitrarily
1148 	 * defined as the sendpipesize (default 4K) * 16.  This would
1149 	 * give us 16 rtt samples assuming we only get one sample per
1150 	 * window (the usual case on a long haul net).  16 samples is
1151 	 * enough for the srtt filter to converge to within 5% of the correct
1152 	 * value; fewer samples and we could save a very bogus rtt.
1153 	 *
1154 	 * Don't update the default route's characteristics and don't
1155 	 * update anything that the user "locked".
1156 	 */
1157 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1158 	    ro && (rt = rtcache_validate(ro)) != NULL &&
1159 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1160 		u_long i = 0;
1161 
1162 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1163 			i = tp->t_srtt *
1164 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1165 			if (rt->rt_rmx.rmx_rtt && i)
1166 				/*
1167 				 * filter this update to half the old & half
1168 				 * the new values, converting scale.
1169 				 * See route.h and tcp_var.h for a
1170 				 * description of the scaling constants.
1171 				 */
1172 				rt->rt_rmx.rmx_rtt =
1173 				    (rt->rt_rmx.rmx_rtt + i) / 2;
1174 			else
1175 				rt->rt_rmx.rmx_rtt = i;
1176 		}
1177 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1178 			i = tp->t_rttvar *
1179 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1180 			if (rt->rt_rmx.rmx_rttvar && i)
1181 				rt->rt_rmx.rmx_rttvar =
1182 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
1183 			else
1184 				rt->rt_rmx.rmx_rttvar = i;
1185 		}
1186 		/*
1187 		 * update the pipelimit (ssthresh) if it has been updated
1188 		 * already or if a pipesize was specified & the threshhold
1189 		 * got below half the pipesize.  I.e., wait for bad news
1190 		 * before we start updating, then update on both good
1191 		 * and bad news.
1192 		 */
1193 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1194 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1195 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1196 			/*
1197 			 * convert the limit from user data bytes to
1198 			 * packets then to packet data bytes.
1199 			 */
1200 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
1201 			if (i < 2)
1202 				i = 2;
1203 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1204 			if (rt->rt_rmx.rmx_ssthresh)
1205 				rt->rt_rmx.rmx_ssthresh =
1206 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1207 			else
1208 				rt->rt_rmx.rmx_ssthresh = i;
1209 		}
1210 	}
1211 #endif /* RTV_RTT */
1212 	/* free the reassembly queue, if any */
1213 	TCP_REASS_LOCK(tp);
1214 	(void) tcp_freeq(tp);
1215 	TCP_REASS_UNLOCK(tp);
1216 
1217 	/* free the SACK holes list. */
1218 	tcp_free_sackholes(tp);
1219 	tcp_congctl_release(tp);
1220 	syn_cache_cleanup(tp);
1221 
1222 	if (tp->t_template) {
1223 		m_free(tp->t_template);
1224 		tp->t_template = NULL;
1225 	}
1226 
1227 	/*
1228 	 * Detaching the pcb will unlock the socket/tcpcb, and stopping
1229 	 * the timers can also drop the lock.  We need to prevent access
1230 	 * to the tcpcb as it's half torn down.  Flag the pcb as dead
1231 	 * (prevents access by timers) and only then detach it.
1232 	 */
1233 	tp->t_flags |= TF_DEAD;
1234 	if (inp) {
1235 		inp->inp_ppcb = 0;
1236 		soisdisconnected(so);
1237 		in_pcbdetach(inp);
1238 	}
1239 #ifdef INET6
1240 	else if (in6p) {
1241 		in6p->in6p_ppcb = 0;
1242 		soisdisconnected(so);
1243 		in6_pcbdetach(in6p);
1244 	}
1245 #endif
1246 	/*
1247 	 * pcb is no longer visble elsewhere, so we can safely release
1248 	 * the lock in callout_halt() if needed.
1249 	 */
1250 	TCP_STATINC(TCP_STAT_CLOSED);
1251 	for (j = 0; j < TCPT_NTIMERS; j++) {
1252 		callout_halt(&tp->t_timer[j], softnet_lock);
1253 		callout_destroy(&tp->t_timer[j]);
1254 	}
1255 	callout_halt(&tp->t_delack_ch, softnet_lock);
1256 	callout_destroy(&tp->t_delack_ch);
1257 	pool_put(&tcpcb_pool, tp);
1258 
1259 	return ((struct tcpcb *)0);
1260 }
1261 
1262 int
1263 tcp_freeq(struct tcpcb *tp)
1264 {
1265 	struct ipqent *qe;
1266 	int rv = 0;
1267 #ifdef TCPREASS_DEBUG
1268 	int i = 0;
1269 #endif
1270 
1271 	TCP_REASS_LOCK_CHECK(tp);
1272 
1273 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1274 #ifdef TCPREASS_DEBUG
1275 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1276 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1277 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1278 #endif
1279 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1280 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1281 		m_freem(qe->ipqe_m);
1282 		tcpipqent_free(qe);
1283 		rv = 1;
1284 	}
1285 	tp->t_segqlen = 0;
1286 	KASSERT(TAILQ_EMPTY(&tp->timeq));
1287 	return (rv);
1288 }
1289 
1290 /*
1291  * Protocol drain routine.  Called when memory is in short supply.
1292  * Don't acquire softnet_lock as can be called from hardware
1293  * interrupt handler.
1294  */
1295 void
1296 tcp_drain(void)
1297 {
1298 	struct inpcb_hdr *inph;
1299 	struct tcpcb *tp;
1300 
1301 	KERNEL_LOCK(1, NULL);
1302 
1303 	/*
1304 	 * Free the sequence queue of all TCP connections.
1305 	 */
1306 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1307 		switch (inph->inph_af) {
1308 		case AF_INET:
1309 			tp = intotcpcb((struct inpcb *)inph);
1310 			break;
1311 #ifdef INET6
1312 		case AF_INET6:
1313 			tp = in6totcpcb((struct in6pcb *)inph);
1314 			break;
1315 #endif
1316 		default:
1317 			tp = NULL;
1318 			break;
1319 		}
1320 		if (tp != NULL) {
1321 			/*
1322 			 * We may be called from a device's interrupt
1323 			 * context.  If the tcpcb is already busy,
1324 			 * just bail out now.
1325 			 */
1326 			if (tcp_reass_lock_try(tp) == 0)
1327 				continue;
1328 			if (tcp_freeq(tp))
1329 				TCP_STATINC(TCP_STAT_CONNSDRAINED);
1330 			TCP_REASS_UNLOCK(tp);
1331 		}
1332 	}
1333 
1334 	KERNEL_UNLOCK_ONE(NULL);
1335 }
1336 
1337 /*
1338  * Notify a tcp user of an asynchronous error;
1339  * store error as soft error, but wake up user
1340  * (for now, won't do anything until can select for soft error).
1341  */
1342 void
1343 tcp_notify(struct inpcb *inp, int error)
1344 {
1345 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1346 	struct socket *so = inp->inp_socket;
1347 
1348 	/*
1349 	 * Ignore some errors if we are hooked up.
1350 	 * If connection hasn't completed, has retransmitted several times,
1351 	 * and receives a second error, give up now.  This is better
1352 	 * than waiting a long time to establish a connection that
1353 	 * can never complete.
1354 	 */
1355 	if (tp->t_state == TCPS_ESTABLISHED &&
1356 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1357 	      error == EHOSTDOWN)) {
1358 		return;
1359 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1360 	    tp->t_rxtshift > 3 && tp->t_softerror)
1361 		so->so_error = error;
1362 	else
1363 		tp->t_softerror = error;
1364 	cv_broadcast(&so->so_cv);
1365 	sorwakeup(so);
1366 	sowwakeup(so);
1367 }
1368 
1369 #ifdef INET6
1370 void
1371 tcp6_notify(struct in6pcb *in6p, int error)
1372 {
1373 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1374 	struct socket *so = in6p->in6p_socket;
1375 
1376 	/*
1377 	 * Ignore some errors if we are hooked up.
1378 	 * If connection hasn't completed, has retransmitted several times,
1379 	 * and receives a second error, give up now.  This is better
1380 	 * than waiting a long time to establish a connection that
1381 	 * can never complete.
1382 	 */
1383 	if (tp->t_state == TCPS_ESTABLISHED &&
1384 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1385 	      error == EHOSTDOWN)) {
1386 		return;
1387 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1388 	    tp->t_rxtshift > 3 && tp->t_softerror)
1389 		so->so_error = error;
1390 	else
1391 		tp->t_softerror = error;
1392 	cv_broadcast(&so->so_cv);
1393 	sorwakeup(so);
1394 	sowwakeup(so);
1395 }
1396 #endif
1397 
1398 #ifdef INET6
1399 void *
1400 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1401 {
1402 	struct tcphdr th;
1403 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
1404 	int nmatch;
1405 	struct ip6_hdr *ip6;
1406 	const struct sockaddr_in6 *sa6_src = NULL;
1407 	const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1408 	struct mbuf *m;
1409 	int off;
1410 
1411 	if (sa->sa_family != AF_INET6 ||
1412 	    sa->sa_len != sizeof(struct sockaddr_in6))
1413 		return NULL;
1414 	if ((unsigned)cmd >= PRC_NCMDS)
1415 		return NULL;
1416 	else if (cmd == PRC_QUENCH) {
1417 		/*
1418 		 * Don't honor ICMP Source Quench messages meant for
1419 		 * TCP connections.
1420 		 */
1421 		return NULL;
1422 	} else if (PRC_IS_REDIRECT(cmd))
1423 		notify = in6_rtchange, d = NULL;
1424 	else if (cmd == PRC_MSGSIZE)
1425 		; /* special code is present, see below */
1426 	else if (cmd == PRC_HOSTDEAD)
1427 		d = NULL;
1428 	else if (inet6ctlerrmap[cmd] == 0)
1429 		return NULL;
1430 
1431 	/* if the parameter is from icmp6, decode it. */
1432 	if (d != NULL) {
1433 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1434 		m = ip6cp->ip6c_m;
1435 		ip6 = ip6cp->ip6c_ip6;
1436 		off = ip6cp->ip6c_off;
1437 		sa6_src = ip6cp->ip6c_src;
1438 	} else {
1439 		m = NULL;
1440 		ip6 = NULL;
1441 		sa6_src = &sa6_any;
1442 		off = 0;
1443 	}
1444 
1445 	if (ip6) {
1446 		/*
1447 		 * XXX: We assume that when ip6 is non NULL,
1448 		 * M and OFF are valid.
1449 		 */
1450 
1451 		/* check if we can safely examine src and dst ports */
1452 		if (m->m_pkthdr.len < off + sizeof(th)) {
1453 			if (cmd == PRC_MSGSIZE)
1454 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1455 			return NULL;
1456 		}
1457 
1458 		memset(&th, 0, sizeof(th));
1459 		m_copydata(m, off, sizeof(th), (void *)&th);
1460 
1461 		if (cmd == PRC_MSGSIZE) {
1462 			int valid = 0;
1463 
1464 			/*
1465 			 * Check to see if we have a valid TCP connection
1466 			 * corresponding to the address in the ICMPv6 message
1467 			 * payload.
1468 			 */
1469 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1470 			    th.th_dport,
1471 			    (const struct in6_addr *)&sa6_src->sin6_addr,
1472 			    th.th_sport, 0))
1473 				valid++;
1474 
1475 			/*
1476 			 * Depending on the value of "valid" and routing table
1477 			 * size (mtudisc_{hi,lo}wat), we will:
1478 			 * - recalcurate the new MTU and create the
1479 			 *   corresponding routing entry, or
1480 			 * - ignore the MTU change notification.
1481 			 */
1482 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1483 
1484 			/*
1485 			 * no need to call in6_pcbnotify, it should have been
1486 			 * called via callback if necessary
1487 			 */
1488 			return NULL;
1489 		}
1490 
1491 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1492 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1493 		if (nmatch == 0 && syn_cache_count &&
1494 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1495 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
1496 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
1497 			syn_cache_unreach((const struct sockaddr *)sa6_src,
1498 					  sa, &th);
1499 	} else {
1500 		(void) in6_pcbnotify(&tcbtable, sa, 0,
1501 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1502 	}
1503 
1504 	return NULL;
1505 }
1506 #endif
1507 
1508 #ifdef INET
1509 /* assumes that ip header and tcp header are contiguous on mbuf */
1510 void *
1511 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1512 {
1513 	struct ip *ip = v;
1514 	struct tcphdr *th;
1515 	struct icmp *icp;
1516 	extern const int inetctlerrmap[];
1517 	void (*notify)(struct inpcb *, int) = tcp_notify;
1518 	int errno;
1519 	int nmatch;
1520 	struct tcpcb *tp;
1521 	u_int mtu;
1522 	tcp_seq seq;
1523 	struct inpcb *inp;
1524 #ifdef INET6
1525 	struct in6pcb *in6p;
1526 	struct in6_addr src6, dst6;
1527 #endif
1528 
1529 	if (sa->sa_family != AF_INET ||
1530 	    sa->sa_len != sizeof(struct sockaddr_in))
1531 		return NULL;
1532 	if ((unsigned)cmd >= PRC_NCMDS)
1533 		return NULL;
1534 	errno = inetctlerrmap[cmd];
1535 	if (cmd == PRC_QUENCH)
1536 		/*
1537 		 * Don't honor ICMP Source Quench messages meant for
1538 		 * TCP connections.
1539 		 */
1540 		return NULL;
1541 	else if (PRC_IS_REDIRECT(cmd))
1542 		notify = in_rtchange, ip = 0;
1543 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1544 		/*
1545 		 * Check to see if we have a valid TCP connection
1546 		 * corresponding to the address in the ICMP message
1547 		 * payload.
1548 		 *
1549 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1550 		 */
1551 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1552 #ifdef INET6
1553 		memset(&src6, 0, sizeof(src6));
1554 		memset(&dst6, 0, sizeof(dst6));
1555 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1556 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1557 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1558 #endif
1559 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1560 		    th->th_dport, ip->ip_src, th->th_sport)) != NULL)
1561 #ifdef INET6
1562 			in6p = NULL;
1563 #else
1564 			;
1565 #endif
1566 #ifdef INET6
1567 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1568 		    th->th_dport, &src6, th->th_sport, 0)) != NULL)
1569 			;
1570 #endif
1571 		else
1572 			return NULL;
1573 
1574 		/*
1575 		 * Now that we've validated that we are actually communicating
1576 		 * with the host indicated in the ICMP message, locate the
1577 		 * ICMP header, recalculate the new MTU, and create the
1578 		 * corresponding routing entry.
1579 		 */
1580 		icp = (struct icmp *)((char *)ip -
1581 		    offsetof(struct icmp, icmp_ip));
1582 		if (inp) {
1583 			if ((tp = intotcpcb(inp)) == NULL)
1584 				return NULL;
1585 		}
1586 #ifdef INET6
1587 		else if (in6p) {
1588 			if ((tp = in6totcpcb(in6p)) == NULL)
1589 				return NULL;
1590 		}
1591 #endif
1592 		else
1593 			return NULL;
1594 		seq = ntohl(th->th_seq);
1595 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1596 			return NULL;
1597 		/*
1598 		 * If the ICMP message advertises a Next-Hop MTU
1599 		 * equal or larger than the maximum packet size we have
1600 		 * ever sent, drop the message.
1601 		 */
1602 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
1603 		if (mtu >= tp->t_pmtud_mtu_sent)
1604 			return NULL;
1605 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1606 			/*
1607 			 * Calculate new MTU, and create corresponding
1608 			 * route (traditional PMTUD).
1609 			 */
1610 			tp->t_flags &= ~TF_PMTUD_PEND;
1611 			icmp_mtudisc(icp, ip->ip_dst);
1612 		} else {
1613 			/*
1614 			 * Record the information got in the ICMP
1615 			 * message; act on it later.
1616 			 * If we had already recorded an ICMP message,
1617 			 * replace the old one only if the new message
1618 			 * refers to an older TCP segment
1619 			 */
1620 			if (tp->t_flags & TF_PMTUD_PEND) {
1621 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1622 					return NULL;
1623 			} else
1624 				tp->t_flags |= TF_PMTUD_PEND;
1625 			tp->t_pmtud_th_seq = seq;
1626 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1627 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1628 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1629 		}
1630 		return NULL;
1631 	} else if (cmd == PRC_HOSTDEAD)
1632 		ip = 0;
1633 	else if (errno == 0)
1634 		return NULL;
1635 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1636 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1637 		nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1638 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1639 		if (nmatch == 0 && syn_cache_count &&
1640 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
1641 		    inetctlerrmap[cmd] == ENETUNREACH ||
1642 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
1643 			struct sockaddr_in sin;
1644 			memset(&sin, 0, sizeof(sin));
1645 			sin.sin_len = sizeof(sin);
1646 			sin.sin_family = AF_INET;
1647 			sin.sin_port = th->th_sport;
1648 			sin.sin_addr = ip->ip_src;
1649 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1650 		}
1651 
1652 		/* XXX mapped address case */
1653 	} else
1654 		in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1655 		    notify);
1656 	return NULL;
1657 }
1658 
1659 /*
1660  * When a source quench is received, we are being notified of congestion.
1661  * Close the congestion window down to the Loss Window (one segment).
1662  * We will gradually open it again as we proceed.
1663  */
1664 void
1665 tcp_quench(struct inpcb *inp, int errno)
1666 {
1667 	struct tcpcb *tp = intotcpcb(inp);
1668 
1669 	if (tp) {
1670 		tp->snd_cwnd = tp->t_segsz;
1671 		tp->t_bytes_acked = 0;
1672 	}
1673 }
1674 #endif
1675 
1676 #ifdef INET6
1677 void
1678 tcp6_quench(struct in6pcb *in6p, int errno)
1679 {
1680 	struct tcpcb *tp = in6totcpcb(in6p);
1681 
1682 	if (tp) {
1683 		tp->snd_cwnd = tp->t_segsz;
1684 		tp->t_bytes_acked = 0;
1685 	}
1686 }
1687 #endif
1688 
1689 #ifdef INET
1690 /*
1691  * Path MTU Discovery handlers.
1692  */
1693 void
1694 tcp_mtudisc_callback(struct in_addr faddr)
1695 {
1696 #ifdef INET6
1697 	struct in6_addr in6;
1698 #endif
1699 
1700 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1701 #ifdef INET6
1702 	memset(&in6, 0, sizeof(in6));
1703 	in6.s6_addr16[5] = 0xffff;
1704 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1705 	tcp6_mtudisc_callback(&in6);
1706 #endif
1707 }
1708 
1709 /*
1710  * On receipt of path MTU corrections, flush old route and replace it
1711  * with the new one.  Retransmit all unacknowledged packets, to ensure
1712  * that all packets will be received.
1713  */
1714 void
1715 tcp_mtudisc(struct inpcb *inp, int errno)
1716 {
1717 	struct tcpcb *tp = intotcpcb(inp);
1718 	struct rtentry *rt = in_pcbrtentry(inp);
1719 
1720 	if (tp != 0) {
1721 		if (rt != 0) {
1722 			/*
1723 			 * If this was not a host route, remove and realloc.
1724 			 */
1725 			if ((rt->rt_flags & RTF_HOST) == 0) {
1726 				in_rtchange(inp, errno);
1727 				if ((rt = in_pcbrtentry(inp)) == 0)
1728 					return;
1729 			}
1730 
1731 			/*
1732 			 * Slow start out of the error condition.  We
1733 			 * use the MTU because we know it's smaller
1734 			 * than the previously transmitted segment.
1735 			 *
1736 			 * Note: This is more conservative than the
1737 			 * suggestion in draft-floyd-incr-init-win-03.
1738 			 */
1739 			if (rt->rt_rmx.rmx_mtu != 0)
1740 				tp->snd_cwnd =
1741 				    TCP_INITIAL_WINDOW(tcp_init_win,
1742 				    rt->rt_rmx.rmx_mtu);
1743 		}
1744 
1745 		/*
1746 		 * Resend unacknowledged packets.
1747 		 */
1748 		tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1749 		tcp_output(tp);
1750 	}
1751 }
1752 #endif
1753 
1754 #ifdef INET6
1755 /*
1756  * Path MTU Discovery handlers.
1757  */
1758 void
1759 tcp6_mtudisc_callback(struct in6_addr *faddr)
1760 {
1761 	struct sockaddr_in6 sin6;
1762 
1763 	memset(&sin6, 0, sizeof(sin6));
1764 	sin6.sin6_family = AF_INET6;
1765 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1766 	sin6.sin6_addr = *faddr;
1767 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1768 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1769 }
1770 
1771 void
1772 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1773 {
1774 	struct tcpcb *tp = in6totcpcb(in6p);
1775 	struct rtentry *rt = in6_pcbrtentry(in6p);
1776 
1777 	if (tp != 0) {
1778 		if (rt != 0) {
1779 			/*
1780 			 * If this was not a host route, remove and realloc.
1781 			 */
1782 			if ((rt->rt_flags & RTF_HOST) == 0) {
1783 				in6_rtchange(in6p, errno);
1784 				if ((rt = in6_pcbrtentry(in6p)) == 0)
1785 					return;
1786 			}
1787 
1788 			/*
1789 			 * Slow start out of the error condition.  We
1790 			 * use the MTU because we know it's smaller
1791 			 * than the previously transmitted segment.
1792 			 *
1793 			 * Note: This is more conservative than the
1794 			 * suggestion in draft-floyd-incr-init-win-03.
1795 			 */
1796 			if (rt->rt_rmx.rmx_mtu != 0)
1797 				tp->snd_cwnd =
1798 				    TCP_INITIAL_WINDOW(tcp_init_win,
1799 				    rt->rt_rmx.rmx_mtu);
1800 		}
1801 
1802 		/*
1803 		 * Resend unacknowledged packets.
1804 		 */
1805 		tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1806 		tcp_output(tp);
1807 	}
1808 }
1809 #endif /* INET6 */
1810 
1811 /*
1812  * Compute the MSS to advertise to the peer.  Called only during
1813  * the 3-way handshake.  If we are the server (peer initiated
1814  * connection), we are called with a pointer to the interface
1815  * on which the SYN packet arrived.  If we are the client (we
1816  * initiated connection), we are called with a pointer to the
1817  * interface out which this connection should go.
1818  *
1819  * NOTE: Do not subtract IP option/extension header size nor IPsec
1820  * header size from MSS advertisement.  MSS option must hold the maximum
1821  * segment size we can accept, so it must always be:
1822  *	 max(if mtu) - ip header - tcp header
1823  */
1824 u_long
1825 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1826 {
1827 	extern u_long in_maxmtu;
1828 	u_long mss = 0;
1829 	u_long hdrsiz;
1830 
1831 	/*
1832 	 * In order to avoid defeating path MTU discovery on the peer,
1833 	 * we advertise the max MTU of all attached networks as our MSS,
1834 	 * per RFC 1191, section 3.1.
1835 	 *
1836 	 * We provide the option to advertise just the MTU of
1837 	 * the interface on which we hope this connection will
1838 	 * be receiving.  If we are responding to a SYN, we
1839 	 * will have a pretty good idea about this, but when
1840 	 * initiating a connection there is a bit more doubt.
1841 	 *
1842 	 * We also need to ensure that loopback has a large enough
1843 	 * MSS, as the loopback MTU is never included in in_maxmtu.
1844 	 */
1845 
1846 	if (ifp != NULL)
1847 		switch (af) {
1848 		case AF_INET:
1849 			mss = ifp->if_mtu;
1850 			break;
1851 #ifdef INET6
1852 		case AF_INET6:
1853 			mss = IN6_LINKMTU(ifp);
1854 			break;
1855 #endif
1856 		}
1857 
1858 	if (tcp_mss_ifmtu == 0)
1859 		switch (af) {
1860 		case AF_INET:
1861 			mss = max(in_maxmtu, mss);
1862 			break;
1863 #ifdef INET6
1864 		case AF_INET6:
1865 			mss = max(in6_maxmtu, mss);
1866 			break;
1867 #endif
1868 		}
1869 
1870 	switch (af) {
1871 	case AF_INET:
1872 		hdrsiz = sizeof(struct ip);
1873 		break;
1874 #ifdef INET6
1875 	case AF_INET6:
1876 		hdrsiz = sizeof(struct ip6_hdr);
1877 		break;
1878 #endif
1879 	default:
1880 		hdrsiz = 0;
1881 		break;
1882 	}
1883 	hdrsiz += sizeof(struct tcphdr);
1884 	if (mss > hdrsiz)
1885 		mss -= hdrsiz;
1886 
1887 	mss = max(tcp_mssdflt, mss);
1888 	return (mss);
1889 }
1890 
1891 /*
1892  * Set connection variables based on the peer's advertised MSS.
1893  * We are passed the TCPCB for the actual connection.  If we
1894  * are the server, we are called by the compressed state engine
1895  * when the 3-way handshake is complete.  If we are the client,
1896  * we are called when we receive the SYN,ACK from the server.
1897  *
1898  * NOTE: Our advertised MSS value must be initialized in the TCPCB
1899  * before this routine is called!
1900  */
1901 void
1902 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1903 {
1904 	struct socket *so;
1905 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1906 	struct rtentry *rt;
1907 #endif
1908 	u_long bufsize;
1909 	int mss;
1910 
1911 #ifdef DIAGNOSTIC
1912 	if (tp->t_inpcb && tp->t_in6pcb)
1913 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1914 #endif
1915 	so = NULL;
1916 	rt = NULL;
1917 #ifdef INET
1918 	if (tp->t_inpcb) {
1919 		so = tp->t_inpcb->inp_socket;
1920 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1921 		rt = in_pcbrtentry(tp->t_inpcb);
1922 #endif
1923 	}
1924 #endif
1925 #ifdef INET6
1926 	if (tp->t_in6pcb) {
1927 		so = tp->t_in6pcb->in6p_socket;
1928 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1929 		rt = in6_pcbrtentry(tp->t_in6pcb);
1930 #endif
1931 	}
1932 #endif
1933 
1934 	/*
1935 	 * As per RFC1122, use the default MSS value, unless they
1936 	 * sent us an offer.  Do not accept offers less than 256 bytes.
1937 	 */
1938 	mss = tcp_mssdflt;
1939 	if (offer)
1940 		mss = offer;
1941 	mss = max(mss, 256);		/* sanity */
1942 	tp->t_peermss = mss;
1943 	mss -= tcp_optlen(tp);
1944 #ifdef INET
1945 	if (tp->t_inpcb)
1946 		mss -= ip_optlen(tp->t_inpcb);
1947 #endif
1948 #ifdef INET6
1949 	if (tp->t_in6pcb)
1950 		mss -= ip6_optlen(tp->t_in6pcb);
1951 #endif
1952 
1953 	/*
1954 	 * If there's a pipesize, change the socket buffer to that size.
1955 	 * Make the socket buffer an integral number of MSS units.  If
1956 	 * the MSS is larger than the socket buffer, artificially decrease
1957 	 * the MSS.
1958 	 */
1959 #ifdef RTV_SPIPE
1960 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1961 		bufsize = rt->rt_rmx.rmx_sendpipe;
1962 	else
1963 #endif
1964 	{
1965 		KASSERT(so != NULL);
1966 		bufsize = so->so_snd.sb_hiwat;
1967 	}
1968 	if (bufsize < mss)
1969 		mss = bufsize;
1970 	else {
1971 		bufsize = roundup(bufsize, mss);
1972 		if (bufsize > sb_max)
1973 			bufsize = sb_max;
1974 		(void) sbreserve(&so->so_snd, bufsize, so);
1975 	}
1976 	tp->t_segsz = mss;
1977 
1978 #ifdef RTV_SSTHRESH
1979 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1980 		/*
1981 		 * There's some sort of gateway or interface buffer
1982 		 * limit on the path.  Use this to set the slow
1983 		 * start threshold, but set the threshold to no less
1984 		 * than 2 * MSS.
1985 		 */
1986 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1987 	}
1988 #endif
1989 }
1990 
1991 /*
1992  * Processing necessary when a TCP connection is established.
1993  */
1994 void
1995 tcp_established(struct tcpcb *tp)
1996 {
1997 	struct socket *so;
1998 #ifdef RTV_RPIPE
1999 	struct rtentry *rt;
2000 #endif
2001 	u_long bufsize;
2002 
2003 #ifdef DIAGNOSTIC
2004 	if (tp->t_inpcb && tp->t_in6pcb)
2005 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
2006 #endif
2007 	so = NULL;
2008 	rt = NULL;
2009 #ifdef INET
2010 	if (tp->t_inpcb) {
2011 		so = tp->t_inpcb->inp_socket;
2012 #if defined(RTV_RPIPE)
2013 		rt = in_pcbrtentry(tp->t_inpcb);
2014 #endif
2015 	}
2016 #endif
2017 #ifdef INET6
2018 	if (tp->t_in6pcb) {
2019 		so = tp->t_in6pcb->in6p_socket;
2020 #if defined(RTV_RPIPE)
2021 		rt = in6_pcbrtentry(tp->t_in6pcb);
2022 #endif
2023 	}
2024 #endif
2025 
2026 	tp->t_state = TCPS_ESTABLISHED;
2027 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2028 
2029 #ifdef RTV_RPIPE
2030 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2031 		bufsize = rt->rt_rmx.rmx_recvpipe;
2032 	else
2033 #endif
2034 	{
2035 		KASSERT(so != NULL);
2036 		bufsize = so->so_rcv.sb_hiwat;
2037 	}
2038 	if (bufsize > tp->t_ourmss) {
2039 		bufsize = roundup(bufsize, tp->t_ourmss);
2040 		if (bufsize > sb_max)
2041 			bufsize = sb_max;
2042 		(void) sbreserve(&so->so_rcv, bufsize, so);
2043 	}
2044 }
2045 
2046 /*
2047  * Check if there's an initial rtt or rttvar.  Convert from the
2048  * route-table units to scaled multiples of the slow timeout timer.
2049  * Called only during the 3-way handshake.
2050  */
2051 void
2052 tcp_rmx_rtt(struct tcpcb *tp)
2053 {
2054 #ifdef RTV_RTT
2055 	struct rtentry *rt = NULL;
2056 	int rtt;
2057 
2058 #ifdef DIAGNOSTIC
2059 	if (tp->t_inpcb && tp->t_in6pcb)
2060 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2061 #endif
2062 #ifdef INET
2063 	if (tp->t_inpcb)
2064 		rt = in_pcbrtentry(tp->t_inpcb);
2065 #endif
2066 #ifdef INET6
2067 	if (tp->t_in6pcb)
2068 		rt = in6_pcbrtentry(tp->t_in6pcb);
2069 #endif
2070 	if (rt == NULL)
2071 		return;
2072 
2073 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2074 		/*
2075 		 * XXX The lock bit for MTU indicates that the value
2076 		 * is also a minimum value; this is subject to time.
2077 		 */
2078 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2079 			TCPT_RANGESET(tp->t_rttmin,
2080 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2081 			    TCPTV_MIN, TCPTV_REXMTMAX);
2082 		tp->t_srtt = rtt /
2083 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2084 		if (rt->rt_rmx.rmx_rttvar) {
2085 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2086 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
2087 				(TCP_RTTVAR_SHIFT + 2));
2088 		} else {
2089 			/* Default variation is +- 1 rtt */
2090 			tp->t_rttvar =
2091 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2092 		}
2093 		TCPT_RANGESET(tp->t_rxtcur,
2094 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2095 		    tp->t_rttmin, TCPTV_REXMTMAX);
2096 	}
2097 #endif
2098 }
2099 
2100 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
2101 #if NRND > 0
2102 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
2103 #endif
2104 
2105 /*
2106  * Get a new sequence value given a tcp control block
2107  */
2108 tcp_seq
2109 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2110 {
2111 
2112 #ifdef INET
2113 	if (tp->t_inpcb != NULL) {
2114 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2115 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2116 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2117 		    addin));
2118 	}
2119 #endif
2120 #ifdef INET6
2121 	if (tp->t_in6pcb != NULL) {
2122 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2123 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2124 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2125 		    addin));
2126 	}
2127 #endif
2128 	/* Not possible. */
2129 	panic("tcp_new_iss");
2130 }
2131 
2132 /*
2133  * This routine actually generates a new TCP initial sequence number.
2134  */
2135 tcp_seq
2136 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2137     size_t addrsz, tcp_seq addin)
2138 {
2139 	tcp_seq tcp_iss;
2140 
2141 #if NRND > 0
2142 	static bool tcp_iss_gotten_secret;
2143 
2144 	/*
2145 	 * If we haven't been here before, initialize our cryptographic
2146 	 * hash secret.
2147 	 */
2148 	if (tcp_iss_gotten_secret == false) {
2149 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2150 		    RND_EXTRACT_ANY);
2151 		tcp_iss_gotten_secret = true;
2152 	}
2153 
2154 	if (tcp_do_rfc1948) {
2155 		MD5_CTX ctx;
2156 		u_int8_t hash[16];	/* XXX MD5 knowledge */
2157 
2158 		/*
2159 		 * Compute the base value of the ISS.  It is a hash
2160 		 * of (saddr, sport, daddr, dport, secret).
2161 		 */
2162 		MD5Init(&ctx);
2163 
2164 		MD5Update(&ctx, (u_char *) laddr, addrsz);
2165 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2166 
2167 		MD5Update(&ctx, (u_char *) faddr, addrsz);
2168 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2169 
2170 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2171 
2172 		MD5Final(hash, &ctx);
2173 
2174 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2175 
2176 		/*
2177 		 * Now increment our "timer", and add it in to
2178 		 * the computed value.
2179 		 *
2180 		 * XXX Use `addin'?
2181 		 * XXX TCP_ISSINCR too large to use?
2182 		 */
2183 		tcp_iss_seq += TCP_ISSINCR;
2184 #ifdef TCPISS_DEBUG
2185 		printf("ISS hash 0x%08x, ", tcp_iss);
2186 #endif
2187 		tcp_iss += tcp_iss_seq + addin;
2188 #ifdef TCPISS_DEBUG
2189 		printf("new ISS 0x%08x\n", tcp_iss);
2190 #endif
2191 	} else
2192 #endif /* NRND > 0 */
2193 	{
2194 		/*
2195 		 * Randomize.
2196 		 */
2197 #if NRND > 0
2198 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2199 #else
2200 		tcp_iss = arc4random();
2201 #endif
2202 
2203 		/*
2204 		 * If we were asked to add some amount to a known value,
2205 		 * we will take a random value obtained above, mask off
2206 		 * the upper bits, and add in the known value.  We also
2207 		 * add in a constant to ensure that we are at least a
2208 		 * certain distance from the original value.
2209 		 *
2210 		 * This is used when an old connection is in timed wait
2211 		 * and we have a new one coming in, for instance.
2212 		 */
2213 		if (addin != 0) {
2214 #ifdef TCPISS_DEBUG
2215 			printf("Random %08x, ", tcp_iss);
2216 #endif
2217 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2218 			tcp_iss += addin + TCP_ISSINCR;
2219 #ifdef TCPISS_DEBUG
2220 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2221 #endif
2222 		} else {
2223 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2224 			tcp_iss += tcp_iss_seq;
2225 			tcp_iss_seq += TCP_ISSINCR;
2226 #ifdef TCPISS_DEBUG
2227 			printf("ISS %08x\n", tcp_iss);
2228 #endif
2229 		}
2230 	}
2231 
2232 	if (tcp_compat_42) {
2233 		/*
2234 		 * Limit it to the positive range for really old TCP
2235 		 * implementations.
2236 		 * Just AND off the top bit instead of checking if
2237 		 * is set first - saves a branch 50% of the time.
2238 		 */
2239 		tcp_iss &= 0x7fffffff;		/* XXX */
2240 	}
2241 
2242 	return (tcp_iss);
2243 }
2244 
2245 #if defined(IPSEC) || defined(FAST_IPSEC)
2246 /* compute ESP/AH header size for TCP, including outer IP header. */
2247 size_t
2248 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2249 {
2250 	struct inpcb *inp;
2251 	size_t hdrsiz;
2252 
2253 	/* XXX mapped addr case (tp->t_in6pcb) */
2254 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2255 		return 0;
2256 	switch (tp->t_family) {
2257 	case AF_INET:
2258 		/* XXX: should use currect direction. */
2259 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2260 		break;
2261 	default:
2262 		hdrsiz = 0;
2263 		break;
2264 	}
2265 
2266 	return hdrsiz;
2267 }
2268 
2269 #ifdef INET6
2270 size_t
2271 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2272 {
2273 	struct in6pcb *in6p;
2274 	size_t hdrsiz;
2275 
2276 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2277 		return 0;
2278 	switch (tp->t_family) {
2279 	case AF_INET6:
2280 		/* XXX: should use currect direction. */
2281 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2282 		break;
2283 	case AF_INET:
2284 		/* mapped address case - tricky */
2285 	default:
2286 		hdrsiz = 0;
2287 		break;
2288 	}
2289 
2290 	return hdrsiz;
2291 }
2292 #endif
2293 #endif /*IPSEC*/
2294 
2295 /*
2296  * Determine the length of the TCP options for this connection.
2297  *
2298  * XXX:  What do we do for SACK, when we add that?  Just reserve
2299  *       all of the space?  Otherwise we can't exactly be incrementing
2300  *       cwnd by an amount that varies depending on the amount we last
2301  *       had to SACK!
2302  */
2303 
2304 u_int
2305 tcp_optlen(struct tcpcb *tp)
2306 {
2307 	u_int optlen;
2308 
2309 	optlen = 0;
2310 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2311 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2312 		optlen += TCPOLEN_TSTAMP_APPA;
2313 
2314 #ifdef TCP_SIGNATURE
2315 	if (tp->t_flags & TF_SIGNATURE)
2316 		optlen += TCPOLEN_SIGNATURE + 2;
2317 #endif /* TCP_SIGNATURE */
2318 
2319 	return optlen;
2320 }
2321 
2322 u_int
2323 tcp_hdrsz(struct tcpcb *tp)
2324 {
2325 	u_int hlen;
2326 
2327 	switch (tp->t_family) {
2328 #ifdef INET6
2329 	case AF_INET6:
2330 		hlen = sizeof(struct ip6_hdr);
2331 		break;
2332 #endif
2333 	case AF_INET:
2334 		hlen = sizeof(struct ip);
2335 		break;
2336 	default:
2337 		hlen = 0;
2338 		break;
2339 	}
2340 	hlen += sizeof(struct tcphdr);
2341 
2342 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2343 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2344 		hlen += TCPOLEN_TSTAMP_APPA;
2345 #ifdef TCP_SIGNATURE
2346 	if (tp->t_flags & TF_SIGNATURE)
2347 		hlen += TCPOLEN_SIGLEN;
2348 #endif
2349 	return hlen;
2350 }
2351 
2352 void
2353 tcp_statinc(u_int stat)
2354 {
2355 
2356 	KASSERT(stat < TCP_NSTATS);
2357 	TCP_STATINC(stat);
2358 }
2359 
2360 void
2361 tcp_statadd(u_int stat, uint64_t val)
2362 {
2363 
2364 	KASSERT(stat < TCP_NSTATS);
2365 	TCP_STATADD(stat, val);
2366 }
2367