xref: /netbsd-src/sys/netinet/tcp_subr.c (revision 8ac07aec990b9d2e483062509d0a9fa5b4f57cf2)
1 /*	$NetBSD: tcp_subr.c,v 1.229 2008/04/26 08:13:35 yamt Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38  * Facility, NASA Ames Research Center.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the NetBSD
51  *	Foundation, Inc. and its contributors.
52  * 4. Neither the name of The NetBSD Foundation nor the names of its
53  *    contributors may be used to endorse or promote products derived
54  *    from this software without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66  * POSSIBILITY OF SUCH DAMAGE.
67  */
68 
69 /*
70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71  *	The Regents of the University of California.  All rights reserved.
72  *
73  * Redistribution and use in source and binary forms, with or without
74  * modification, are permitted provided that the following conditions
75  * are met:
76  * 1. Redistributions of source code must retain the above copyright
77  *    notice, this list of conditions and the following disclaimer.
78  * 2. Redistributions in binary form must reproduce the above copyright
79  *    notice, this list of conditions and the following disclaimer in the
80  *    documentation and/or other materials provided with the distribution.
81  * 3. Neither the name of the University nor the names of its contributors
82  *    may be used to endorse or promote products derived from this software
83  *    without specific prior written permission.
84  *
85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95  * SUCH DAMAGE.
96  *
97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
98  */
99 
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.229 2008/04/26 08:13:35 yamt Exp $");
102 
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109 
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125 
126 #include <net/route.h>
127 #include <net/if.h>
128 
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135 
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148 
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcp_private.h>
155 #include <netinet/tcp_congctl.h>
156 #include <netinet/tcpip.h>
157 
158 #ifdef IPSEC
159 #include <netinet6/ipsec.h>
160 #include <netkey/key.h>
161 #endif /*IPSEC*/
162 
163 #ifdef FAST_IPSEC
164 #include <netipsec/ipsec.h>
165 #include <netipsec/xform.h>
166 #ifdef INET6
167 #include <netipsec/ipsec6.h>
168 #endif
169  #include <netipsec/key.h>
170 #endif	/* FAST_IPSEC*/
171 
172 
173 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
174 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
175 
176 percpu_t *tcpstat_percpu;
177 
178 /* patchable/settable parameters for tcp */
179 int 	tcp_mssdflt = TCP_MSS;
180 int	tcp_minmss = TCP_MINMSS;
181 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
182 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
183 #if NRND > 0
184 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
185 #endif
186 int	tcp_do_sack = 1;	/* selective acknowledgement */
187 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
188 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
189 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
190 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
191 #ifndef TCP_INIT_WIN
192 #define	TCP_INIT_WIN	0	/* initial slow start window */
193 #endif
194 #ifndef TCP_INIT_WIN_LOCAL
195 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
196 #endif
197 int	tcp_init_win = TCP_INIT_WIN;
198 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
199 int	tcp_mss_ifmtu = 0;
200 #ifdef TCP_COMPAT_42
201 int	tcp_compat_42 = 1;
202 #else
203 int	tcp_compat_42 = 0;
204 #endif
205 int	tcp_rst_ppslim = 100;	/* 100pps */
206 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
207 int	tcp_do_loopback_cksum = 0;
208 int	tcp_do_abc = 1;		/* RFC3465 Appropriate byte counting. */
209 int	tcp_abc_aggressive = 1;	/* 1: L=2*SMSS  0: L=1*SMSS */
210 int	tcp_sack_tp_maxholes = 32;
211 int	tcp_sack_globalmaxholes = 1024;
212 int	tcp_sack_globalholes = 0;
213 int	tcp_ecn_maxretries = 1;
214 
215 /* tcb hash */
216 #ifndef TCBHASHSIZE
217 #define	TCBHASHSIZE	128
218 #endif
219 int	tcbhashsize = TCBHASHSIZE;
220 
221 /* syn hash parameters */
222 #define	TCP_SYN_HASH_SIZE	293
223 #define	TCP_SYN_BUCKET_SIZE	35
224 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
225 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
226 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
227 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
228 
229 int	tcp_freeq(struct tcpcb *);
230 
231 #ifdef INET
232 void	tcp_mtudisc_callback(struct in_addr);
233 #endif
234 #ifdef INET6
235 void	tcp6_mtudisc_callback(struct in6_addr *);
236 #endif
237 
238 #ifdef INET6
239 void	tcp6_mtudisc(struct in6pcb *, int);
240 #endif
241 
242 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL,
243     IPL_SOFTNET);
244 
245 #ifdef TCP_CSUM_COUNTERS
246 #include <sys/device.h>
247 
248 #if defined(INET)
249 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
250     NULL, "tcp", "hwcsum bad");
251 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
252     NULL, "tcp", "hwcsum ok");
253 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
254     NULL, "tcp", "hwcsum data");
255 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
256     NULL, "tcp", "swcsum");
257 
258 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
259 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
260 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
261 EVCNT_ATTACH_STATIC(tcp_swcsum);
262 #endif /* defined(INET) */
263 
264 #if defined(INET6)
265 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266     NULL, "tcp6", "hwcsum bad");
267 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268     NULL, "tcp6", "hwcsum ok");
269 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
270     NULL, "tcp6", "hwcsum data");
271 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
272     NULL, "tcp6", "swcsum");
273 
274 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
275 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
276 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
277 EVCNT_ATTACH_STATIC(tcp6_swcsum);
278 #endif /* defined(INET6) */
279 #endif /* TCP_CSUM_COUNTERS */
280 
281 
282 #ifdef TCP_OUTPUT_COUNTERS
283 #include <sys/device.h>
284 
285 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286     NULL, "tcp", "output big header");
287 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288     NULL, "tcp", "output predict hit");
289 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
290     NULL, "tcp", "output predict miss");
291 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
292     NULL, "tcp", "output copy small");
293 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
294     NULL, "tcp", "output copy big");
295 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
296     NULL, "tcp", "output reference big");
297 
298 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
299 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
300 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
301 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
302 EVCNT_ATTACH_STATIC(tcp_output_copybig);
303 EVCNT_ATTACH_STATIC(tcp_output_refbig);
304 
305 #endif /* TCP_OUTPUT_COUNTERS */
306 
307 #ifdef TCP_REASS_COUNTERS
308 #include <sys/device.h>
309 
310 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
311     NULL, "tcp_reass", "calls");
312 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
313     &tcp_reass_, "tcp_reass", "insert into empty queue");
314 struct evcnt tcp_reass_iteration[8] = {
315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
316     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
317     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
318     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
319     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
320     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
321     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
322     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
323 };
324 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
325     &tcp_reass_, "tcp_reass", "prepend to first");
326 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
327     &tcp_reass_, "tcp_reass", "prepend");
328 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
329     &tcp_reass_, "tcp_reass", "insert");
330 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
331     &tcp_reass_, "tcp_reass", "insert at tail");
332 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
333     &tcp_reass_, "tcp_reass", "append");
334 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
335     &tcp_reass_, "tcp_reass", "append to tail fragment");
336 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
337     &tcp_reass_, "tcp_reass", "overlap at end");
338 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
339     &tcp_reass_, "tcp_reass", "overlap at start");
340 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
341     &tcp_reass_, "tcp_reass", "duplicate segment");
342 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
343     &tcp_reass_, "tcp_reass", "duplicate fragment");
344 
345 EVCNT_ATTACH_STATIC(tcp_reass_);
346 EVCNT_ATTACH_STATIC(tcp_reass_empty);
347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
349 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
350 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
351 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
352 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
353 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
354 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
355 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
356 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
357 EVCNT_ATTACH_STATIC(tcp_reass_insert);
358 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
359 EVCNT_ATTACH_STATIC(tcp_reass_append);
360 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
361 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
362 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
363 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
364 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
365 
366 #endif /* TCP_REASS_COUNTERS */
367 
368 #ifdef MBUFTRACE
369 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
370 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
371 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
372 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
373 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
374 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
375 #endif
376 
377 /*
378  * Tcp initialization
379  */
380 void
381 tcp_init(void)
382 {
383 	int hlen;
384 
385 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
386 
387 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
388 #ifdef INET6
389 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
390 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
391 #endif
392 	if (max_protohdr < hlen)
393 		max_protohdr = hlen;
394 	if (max_linkhdr + hlen > MHLEN)
395 		panic("tcp_init");
396 
397 #ifdef INET
398 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
399 #endif
400 #ifdef INET6
401 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
402 #endif
403 
404 	/* Initialize timer state. */
405 	tcp_timer_init();
406 
407 	/* Initialize the compressed state engine. */
408 	syn_cache_init();
409 
410 	/* Initialize the congestion control algorithms. */
411 	tcp_congctl_init();
412 
413 	/* Initialize the TCPCB template. */
414 	tcp_tcpcb_template();
415 
416 	MOWNER_ATTACH(&tcp_tx_mowner);
417 	MOWNER_ATTACH(&tcp_rx_mowner);
418 	MOWNER_ATTACH(&tcp_reass_mowner);
419 	MOWNER_ATTACH(&tcp_sock_mowner);
420 	MOWNER_ATTACH(&tcp_sock_tx_mowner);
421 	MOWNER_ATTACH(&tcp_sock_rx_mowner);
422 	MOWNER_ATTACH(&tcp_mowner);
423 
424 	tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
425 }
426 
427 /*
428  * Create template to be used to send tcp packets on a connection.
429  * Call after host entry created, allocates an mbuf and fills
430  * in a skeletal tcp/ip header, minimizing the amount of work
431  * necessary when the connection is used.
432  */
433 struct mbuf *
434 tcp_template(struct tcpcb *tp)
435 {
436 	struct inpcb *inp = tp->t_inpcb;
437 #ifdef INET6
438 	struct in6pcb *in6p = tp->t_in6pcb;
439 #endif
440 	struct tcphdr *n;
441 	struct mbuf *m;
442 	int hlen;
443 
444 	switch (tp->t_family) {
445 	case AF_INET:
446 		hlen = sizeof(struct ip);
447 		if (inp)
448 			break;
449 #ifdef INET6
450 		if (in6p) {
451 			/* mapped addr case */
452 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
453 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
454 				break;
455 		}
456 #endif
457 		return NULL;	/*EINVAL*/
458 #ifdef INET6
459 	case AF_INET6:
460 		hlen = sizeof(struct ip6_hdr);
461 		if (in6p) {
462 			/* more sainty check? */
463 			break;
464 		}
465 		return NULL;	/*EINVAL*/
466 #endif
467 	default:
468 		hlen = 0;	/*pacify gcc*/
469 		return NULL;	/*EAFNOSUPPORT*/
470 	}
471 #ifdef DIAGNOSTIC
472 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
473 		panic("mclbytes too small for t_template");
474 #endif
475 	m = tp->t_template;
476 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
477 		;
478 	else {
479 		if (m)
480 			m_freem(m);
481 		m = tp->t_template = NULL;
482 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
483 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
484 			MCLGET(m, M_DONTWAIT);
485 			if ((m->m_flags & M_EXT) == 0) {
486 				m_free(m);
487 				m = NULL;
488 			}
489 		}
490 		if (m == NULL)
491 			return NULL;
492 		MCLAIM(m, &tcp_mowner);
493 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
494 	}
495 
496 	bzero(mtod(m, void *), m->m_len);
497 
498 	n = (struct tcphdr *)(mtod(m, char *) + hlen);
499 
500 	switch (tp->t_family) {
501 	case AF_INET:
502 	    {
503 		struct ipovly *ipov;
504 		mtod(m, struct ip *)->ip_v = 4;
505 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
506 		ipov = mtod(m, struct ipovly *);
507 		ipov->ih_pr = IPPROTO_TCP;
508 		ipov->ih_len = htons(sizeof(struct tcphdr));
509 		if (inp) {
510 			ipov->ih_src = inp->inp_laddr;
511 			ipov->ih_dst = inp->inp_faddr;
512 		}
513 #ifdef INET6
514 		else if (in6p) {
515 			/* mapped addr case */
516 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
517 				sizeof(ipov->ih_src));
518 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
519 				sizeof(ipov->ih_dst));
520 		}
521 #endif
522 		/*
523 		 * Compute the pseudo-header portion of the checksum
524 		 * now.  We incrementally add in the TCP option and
525 		 * payload lengths later, and then compute the TCP
526 		 * checksum right before the packet is sent off onto
527 		 * the wire.
528 		 */
529 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
530 		    ipov->ih_dst.s_addr,
531 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
532 		break;
533 	    }
534 #ifdef INET6
535 	case AF_INET6:
536 	    {
537 		struct ip6_hdr *ip6;
538 		mtod(m, struct ip *)->ip_v = 6;
539 		ip6 = mtod(m, struct ip6_hdr *);
540 		ip6->ip6_nxt = IPPROTO_TCP;
541 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
542 		ip6->ip6_src = in6p->in6p_laddr;
543 		ip6->ip6_dst = in6p->in6p_faddr;
544 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
545 		if (ip6_auto_flowlabel) {
546 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
547 			ip6->ip6_flow |=
548 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
549 		}
550 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
551 		ip6->ip6_vfc |= IPV6_VERSION;
552 
553 		/*
554 		 * Compute the pseudo-header portion of the checksum
555 		 * now.  We incrementally add in the TCP option and
556 		 * payload lengths later, and then compute the TCP
557 		 * checksum right before the packet is sent off onto
558 		 * the wire.
559 		 */
560 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
561 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
562 		    htonl(IPPROTO_TCP));
563 		break;
564 	    }
565 #endif
566 	}
567 	if (inp) {
568 		n->th_sport = inp->inp_lport;
569 		n->th_dport = inp->inp_fport;
570 	}
571 #ifdef INET6
572 	else if (in6p) {
573 		n->th_sport = in6p->in6p_lport;
574 		n->th_dport = in6p->in6p_fport;
575 	}
576 #endif
577 	n->th_seq = 0;
578 	n->th_ack = 0;
579 	n->th_x2 = 0;
580 	n->th_off = 5;
581 	n->th_flags = 0;
582 	n->th_win = 0;
583 	n->th_urp = 0;
584 	return (m);
585 }
586 
587 /*
588  * Send a single message to the TCP at address specified by
589  * the given TCP/IP header.  If m == 0, then we make a copy
590  * of the tcpiphdr at ti and send directly to the addressed host.
591  * This is used to force keep alive messages out using the TCP
592  * template for a connection tp->t_template.  If flags are given
593  * then we send a message back to the TCP which originated the
594  * segment ti, and discard the mbuf containing it and any other
595  * attached mbufs.
596  *
597  * In any case the ack and sequence number of the transmitted
598  * segment are as specified by the parameters.
599  */
600 int
601 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
602     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
603 {
604 #ifdef INET6
605 	struct rtentry *rt;
606 #endif
607 	struct route *ro;
608 	int error, tlen, win = 0;
609 	int hlen;
610 	struct ip *ip;
611 #ifdef INET6
612 	struct ip6_hdr *ip6;
613 #endif
614 	int family;	/* family on packet, not inpcb/in6pcb! */
615 	struct tcphdr *th;
616 	struct socket *so;
617 
618 	if (tp != NULL && (flags & TH_RST) == 0) {
619 #ifdef DIAGNOSTIC
620 		if (tp->t_inpcb && tp->t_in6pcb)
621 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
622 #endif
623 #ifdef INET
624 		if (tp->t_inpcb)
625 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
626 #endif
627 #ifdef INET6
628 		if (tp->t_in6pcb)
629 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
630 #endif
631 	}
632 
633 	th = NULL;	/* Quell uninitialized warning */
634 	ip = NULL;
635 #ifdef INET6
636 	ip6 = NULL;
637 #endif
638 	if (m == 0) {
639 		if (!template)
640 			return EINVAL;
641 
642 		/* get family information from template */
643 		switch (mtod(template, struct ip *)->ip_v) {
644 		case 4:
645 			family = AF_INET;
646 			hlen = sizeof(struct ip);
647 			break;
648 #ifdef INET6
649 		case 6:
650 			family = AF_INET6;
651 			hlen = sizeof(struct ip6_hdr);
652 			break;
653 #endif
654 		default:
655 			return EAFNOSUPPORT;
656 		}
657 
658 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
659 		if (m) {
660 			MCLAIM(m, &tcp_tx_mowner);
661 			MCLGET(m, M_DONTWAIT);
662 			if ((m->m_flags & M_EXT) == 0) {
663 				m_free(m);
664 				m = NULL;
665 			}
666 		}
667 		if (m == NULL)
668 			return (ENOBUFS);
669 
670 		if (tcp_compat_42)
671 			tlen = 1;
672 		else
673 			tlen = 0;
674 
675 		m->m_data += max_linkhdr;
676 		bcopy(mtod(template, void *), mtod(m, void *),
677 			template->m_len);
678 		switch (family) {
679 		case AF_INET:
680 			ip = mtod(m, struct ip *);
681 			th = (struct tcphdr *)(ip + 1);
682 			break;
683 #ifdef INET6
684 		case AF_INET6:
685 			ip6 = mtod(m, struct ip6_hdr *);
686 			th = (struct tcphdr *)(ip6 + 1);
687 			break;
688 #endif
689 #if 0
690 		default:
691 			/* noone will visit here */
692 			m_freem(m);
693 			return EAFNOSUPPORT;
694 #endif
695 		}
696 		flags = TH_ACK;
697 	} else {
698 
699 		if ((m->m_flags & M_PKTHDR) == 0) {
700 #if 0
701 			printf("non PKTHDR to tcp_respond\n");
702 #endif
703 			m_freem(m);
704 			return EINVAL;
705 		}
706 #ifdef DIAGNOSTIC
707 		if (!th0)
708 			panic("th0 == NULL in tcp_respond");
709 #endif
710 
711 		/* get family information from m */
712 		switch (mtod(m, struct ip *)->ip_v) {
713 		case 4:
714 			family = AF_INET;
715 			hlen = sizeof(struct ip);
716 			ip = mtod(m, struct ip *);
717 			break;
718 #ifdef INET6
719 		case 6:
720 			family = AF_INET6;
721 			hlen = sizeof(struct ip6_hdr);
722 			ip6 = mtod(m, struct ip6_hdr *);
723 			break;
724 #endif
725 		default:
726 			m_freem(m);
727 			return EAFNOSUPPORT;
728 		}
729 		/* clear h/w csum flags inherited from rx packet */
730 		m->m_pkthdr.csum_flags = 0;
731 
732 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
733 			tlen = sizeof(*th0);
734 		else
735 			tlen = th0->th_off << 2;
736 
737 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
738 		    mtod(m, char *) + hlen == (char *)th0) {
739 			m->m_len = hlen + tlen;
740 			m_freem(m->m_next);
741 			m->m_next = NULL;
742 		} else {
743 			struct mbuf *n;
744 
745 #ifdef DIAGNOSTIC
746 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
747 				m_freem(m);
748 				return EMSGSIZE;
749 			}
750 #endif
751 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
752 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
753 				MCLGET(n, M_DONTWAIT);
754 				if ((n->m_flags & M_EXT) == 0) {
755 					m_freem(n);
756 					n = NULL;
757 				}
758 			}
759 			if (!n) {
760 				m_freem(m);
761 				return ENOBUFS;
762 			}
763 
764 			MCLAIM(n, &tcp_tx_mowner);
765 			n->m_data += max_linkhdr;
766 			n->m_len = hlen + tlen;
767 			m_copyback(n, 0, hlen, mtod(m, void *));
768 			m_copyback(n, hlen, tlen, (void *)th0);
769 
770 			m_freem(m);
771 			m = n;
772 			n = NULL;
773 		}
774 
775 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
776 		switch (family) {
777 		case AF_INET:
778 			ip = mtod(m, struct ip *);
779 			th = (struct tcphdr *)(ip + 1);
780 			ip->ip_p = IPPROTO_TCP;
781 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
782 			ip->ip_p = IPPROTO_TCP;
783 			break;
784 #ifdef INET6
785 		case AF_INET6:
786 			ip6 = mtod(m, struct ip6_hdr *);
787 			th = (struct tcphdr *)(ip6 + 1);
788 			ip6->ip6_nxt = IPPROTO_TCP;
789 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
790 			ip6->ip6_nxt = IPPROTO_TCP;
791 			break;
792 #endif
793 #if 0
794 		default:
795 			/* noone will visit here */
796 			m_freem(m);
797 			return EAFNOSUPPORT;
798 #endif
799 		}
800 		xchg(th->th_dport, th->th_sport, u_int16_t);
801 #undef xchg
802 		tlen = 0;	/*be friendly with the following code*/
803 	}
804 	th->th_seq = htonl(seq);
805 	th->th_ack = htonl(ack);
806 	th->th_x2 = 0;
807 	if ((flags & TH_SYN) == 0) {
808 		if (tp)
809 			win >>= tp->rcv_scale;
810 		if (win > TCP_MAXWIN)
811 			win = TCP_MAXWIN;
812 		th->th_win = htons((u_int16_t)win);
813 		th->th_off = sizeof (struct tcphdr) >> 2;
814 		tlen += sizeof(*th);
815 	} else
816 		tlen += th->th_off << 2;
817 	m->m_len = hlen + tlen;
818 	m->m_pkthdr.len = hlen + tlen;
819 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
820 	th->th_flags = flags;
821 	th->th_urp = 0;
822 
823 	switch (family) {
824 #ifdef INET
825 	case AF_INET:
826 	    {
827 		struct ipovly *ipov = (struct ipovly *)ip;
828 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
829 		ipov->ih_len = htons((u_int16_t)tlen);
830 
831 		th->th_sum = 0;
832 		th->th_sum = in_cksum(m, hlen + tlen);
833 		ip->ip_len = htons(hlen + tlen);
834 		ip->ip_ttl = ip_defttl;
835 		break;
836 	    }
837 #endif
838 #ifdef INET6
839 	case AF_INET6:
840 	    {
841 		th->th_sum = 0;
842 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
843 				tlen);
844 		ip6->ip6_plen = htons(tlen);
845 		if (tp && tp->t_in6pcb) {
846 			struct ifnet *oifp;
847 			ro = &tp->t_in6pcb->in6p_route;
848 			oifp = (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
849 			                                           : NULL;
850 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
851 		} else
852 			ip6->ip6_hlim = ip6_defhlim;
853 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
854 		if (ip6_auto_flowlabel) {
855 			ip6->ip6_flow |=
856 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
857 		}
858 		break;
859 	    }
860 #endif
861 	}
862 
863 	if (tp && tp->t_inpcb)
864 		so = tp->t_inpcb->inp_socket;
865 #ifdef INET6
866 	else if (tp && tp->t_in6pcb)
867 		so = tp->t_in6pcb->in6p_socket;
868 #endif
869 	else
870 		so = NULL;
871 
872 	if (tp != NULL && tp->t_inpcb != NULL) {
873 		ro = &tp->t_inpcb->inp_route;
874 #ifdef DIAGNOSTIC
875 		if (family != AF_INET)
876 			panic("tcp_respond: address family mismatch");
877 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
878 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
879 			    ntohl(ip->ip_dst.s_addr),
880 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
881 		}
882 #endif
883 	}
884 #ifdef INET6
885 	else if (tp != NULL && tp->t_in6pcb != NULL) {
886 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
887 #ifdef DIAGNOSTIC
888 		if (family == AF_INET) {
889 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
890 				panic("tcp_respond: not mapped addr");
891 			if (bcmp(&ip->ip_dst,
892 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
893 			    sizeof(ip->ip_dst)) != 0) {
894 				panic("tcp_respond: ip_dst != in6p_faddr");
895 			}
896 		} else if (family == AF_INET6) {
897 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
898 			    &tp->t_in6pcb->in6p_faddr))
899 				panic("tcp_respond: ip6_dst != in6p_faddr");
900 		} else
901 			panic("tcp_respond: address family mismatch");
902 #endif
903 	}
904 #endif
905 	else
906 		ro = NULL;
907 
908 	switch (family) {
909 #ifdef INET
910 	case AF_INET:
911 		error = ip_output(m, NULL, ro,
912 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
913 		    (struct ip_moptions *)0, so);
914 		break;
915 #endif
916 #ifdef INET6
917 	case AF_INET6:
918 		error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
919 		break;
920 #endif
921 	default:
922 		error = EAFNOSUPPORT;
923 		break;
924 	}
925 
926 	return (error);
927 }
928 
929 /*
930  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
931  * a bunch of members individually, we maintain this template for the
932  * static and mostly-static components of the TCPCB, and copy it into
933  * the new TCPCB instead.
934  */
935 static struct tcpcb tcpcb_template = {
936 	.t_srtt = TCPTV_SRTTBASE,
937 	.t_rttmin = TCPTV_MIN,
938 
939 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
940 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
941 	.snd_numholes = 0,
942 
943 	.t_partialacks = -1,
944 	.t_bytes_acked = 0,
945 };
946 
947 /*
948  * Updates the TCPCB template whenever a parameter that would affect
949  * the template is changed.
950  */
951 void
952 tcp_tcpcb_template(void)
953 {
954 	struct tcpcb *tp = &tcpcb_template;
955 	int flags;
956 
957 	tp->t_peermss = tcp_mssdflt;
958 	tp->t_ourmss = tcp_mssdflt;
959 	tp->t_segsz = tcp_mssdflt;
960 
961 	flags = 0;
962 	if (tcp_do_rfc1323 && tcp_do_win_scale)
963 		flags |= TF_REQ_SCALE;
964 	if (tcp_do_rfc1323 && tcp_do_timestamps)
965 		flags |= TF_REQ_TSTMP;
966 	tp->t_flags = flags;
967 
968 	/*
969 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
970 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
971 	 * reasonable initial retransmit time.
972 	 */
973 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
974 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
975 	    TCPTV_MIN, TCPTV_REXMTMAX);
976 
977 	/* Keep Alive */
978 	tp->t_keepinit = tcp_keepinit;
979 	tp->t_keepidle = tcp_keepidle;
980 	tp->t_keepintvl = tcp_keepintvl;
981 	tp->t_keepcnt = tcp_keepcnt;
982 	tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
983 }
984 
985 /*
986  * Create a new TCP control block, making an
987  * empty reassembly queue and hooking it to the argument
988  * protocol control block.
989  */
990 /* family selects inpcb, or in6pcb */
991 struct tcpcb *
992 tcp_newtcpcb(int family, void *aux)
993 {
994 #ifdef INET6
995 	struct rtentry *rt;
996 #endif
997 	struct tcpcb *tp;
998 	int i;
999 
1000 	/* XXX Consider using a pool_cache for speed. */
1001 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
1002 	if (tp == NULL)
1003 		return (NULL);
1004 	memcpy(tp, &tcpcb_template, sizeof(*tp));
1005 	TAILQ_INIT(&tp->segq);
1006 	TAILQ_INIT(&tp->timeq);
1007 	tp->t_family = family;		/* may be overridden later on */
1008 	TAILQ_INIT(&tp->snd_holes);
1009 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
1010 
1011 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
1012 	for (i = 0; i < TCPT_NTIMERS; i++) {
1013 		callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
1014 		TCP_TIMER_INIT(tp, i);
1015 	}
1016 	callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
1017 
1018 	switch (family) {
1019 	case AF_INET:
1020 	    {
1021 		struct inpcb *inp = (struct inpcb *)aux;
1022 
1023 		inp->inp_ip.ip_ttl = ip_defttl;
1024 		inp->inp_ppcb = (void *)tp;
1025 
1026 		tp->t_inpcb = inp;
1027 		tp->t_mtudisc = ip_mtudisc;
1028 		break;
1029 	    }
1030 #ifdef INET6
1031 	case AF_INET6:
1032 	    {
1033 		struct in6pcb *in6p = (struct in6pcb *)aux;
1034 
1035 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1036 			(rt = rtcache_validate(&in6p->in6p_route)) != NULL
1037 			    ? rt->rt_ifp
1038 			    : NULL);
1039 		in6p->in6p_ppcb = (void *)tp;
1040 
1041 		tp->t_in6pcb = in6p;
1042 		/* for IPv6, always try to run path MTU discovery */
1043 		tp->t_mtudisc = 1;
1044 		break;
1045 	    }
1046 #endif /* INET6 */
1047 	default:
1048 		for (i = 0; i < TCPT_NTIMERS; i++)
1049 			callout_destroy(&tp->t_timer[i]);
1050 		callout_destroy(&tp->t_delack_ch);
1051 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
1052 		return (NULL);
1053 	}
1054 
1055 	/*
1056 	 * Initialize our timebase.  When we send timestamps, we take
1057 	 * the delta from tcp_now -- this means each connection always
1058 	 * gets a timebase of 1, which makes it, among other things,
1059 	 * more difficult to determine how long a system has been up,
1060 	 * and thus how many TCP sequence increments have occurred.
1061 	 *
1062 	 * We start with 1, because 0 doesn't work with linux, which
1063 	 * considers timestamp 0 in a SYN packet as a bug and disables
1064 	 * timestamps.
1065 	 */
1066 	tp->ts_timebase = tcp_now - 1;
1067 
1068 	tcp_congctl_select(tp, tcp_congctl_global_name);
1069 
1070 	return (tp);
1071 }
1072 
1073 /*
1074  * Drop a TCP connection, reporting
1075  * the specified error.  If connection is synchronized,
1076  * then send a RST to peer.
1077  */
1078 struct tcpcb *
1079 tcp_drop(struct tcpcb *tp, int errno)
1080 {
1081 	struct socket *so = NULL;
1082 
1083 #ifdef DIAGNOSTIC
1084 	if (tp->t_inpcb && tp->t_in6pcb)
1085 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1086 #endif
1087 #ifdef INET
1088 	if (tp->t_inpcb)
1089 		so = tp->t_inpcb->inp_socket;
1090 #endif
1091 #ifdef INET6
1092 	if (tp->t_in6pcb)
1093 		so = tp->t_in6pcb->in6p_socket;
1094 #endif
1095 	if (!so)
1096 		return NULL;
1097 
1098 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1099 		tp->t_state = TCPS_CLOSED;
1100 		(void) tcp_output(tp);
1101 		TCP_STATINC(TCP_STAT_DROPS);
1102 	} else
1103 		TCP_STATINC(TCP_STAT_CONNDROPS);
1104 	if (errno == ETIMEDOUT && tp->t_softerror)
1105 		errno = tp->t_softerror;
1106 	so->so_error = errno;
1107 	return (tcp_close(tp));
1108 }
1109 
1110 /*
1111  * Close a TCP control block:
1112  *	discard all space held by the tcp
1113  *	discard internet protocol block
1114  *	wake up any sleepers
1115  */
1116 struct tcpcb *
1117 tcp_close(struct tcpcb *tp)
1118 {
1119 	struct inpcb *inp;
1120 #ifdef INET6
1121 	struct in6pcb *in6p;
1122 #endif
1123 	struct socket *so;
1124 #ifdef RTV_RTT
1125 	struct rtentry *rt;
1126 #endif
1127 	struct route *ro;
1128 	int j;
1129 
1130 	inp = tp->t_inpcb;
1131 #ifdef INET6
1132 	in6p = tp->t_in6pcb;
1133 #endif
1134 	so = NULL;
1135 	ro = NULL;
1136 	if (inp) {
1137 		so = inp->inp_socket;
1138 		ro = &inp->inp_route;
1139 	}
1140 #ifdef INET6
1141 	else if (in6p) {
1142 		so = in6p->in6p_socket;
1143 		ro = (struct route *)&in6p->in6p_route;
1144 	}
1145 #endif
1146 
1147 #ifdef RTV_RTT
1148 	/*
1149 	 * If we sent enough data to get some meaningful characteristics,
1150 	 * save them in the routing entry.  'Enough' is arbitrarily
1151 	 * defined as the sendpipesize (default 4K) * 16.  This would
1152 	 * give us 16 rtt samples assuming we only get one sample per
1153 	 * window (the usual case on a long haul net).  16 samples is
1154 	 * enough for the srtt filter to converge to within 5% of the correct
1155 	 * value; fewer samples and we could save a very bogus rtt.
1156 	 *
1157 	 * Don't update the default route's characteristics and don't
1158 	 * update anything that the user "locked".
1159 	 */
1160 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1161 	    ro && (rt = rtcache_validate(ro)) != NULL &&
1162 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1163 		u_long i = 0;
1164 
1165 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1166 			i = tp->t_srtt *
1167 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1168 			if (rt->rt_rmx.rmx_rtt && i)
1169 				/*
1170 				 * filter this update to half the old & half
1171 				 * the new values, converting scale.
1172 				 * See route.h and tcp_var.h for a
1173 				 * description of the scaling constants.
1174 				 */
1175 				rt->rt_rmx.rmx_rtt =
1176 				    (rt->rt_rmx.rmx_rtt + i) / 2;
1177 			else
1178 				rt->rt_rmx.rmx_rtt = i;
1179 		}
1180 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1181 			i = tp->t_rttvar *
1182 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1183 			if (rt->rt_rmx.rmx_rttvar && i)
1184 				rt->rt_rmx.rmx_rttvar =
1185 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
1186 			else
1187 				rt->rt_rmx.rmx_rttvar = i;
1188 		}
1189 		/*
1190 		 * update the pipelimit (ssthresh) if it has been updated
1191 		 * already or if a pipesize was specified & the threshhold
1192 		 * got below half the pipesize.  I.e., wait for bad news
1193 		 * before we start updating, then update on both good
1194 		 * and bad news.
1195 		 */
1196 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1197 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1198 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1199 			/*
1200 			 * convert the limit from user data bytes to
1201 			 * packets then to packet data bytes.
1202 			 */
1203 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
1204 			if (i < 2)
1205 				i = 2;
1206 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1207 			if (rt->rt_rmx.rmx_ssthresh)
1208 				rt->rt_rmx.rmx_ssthresh =
1209 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1210 			else
1211 				rt->rt_rmx.rmx_ssthresh = i;
1212 		}
1213 	}
1214 #endif /* RTV_RTT */
1215 	/* free the reassembly queue, if any */
1216 	TCP_REASS_LOCK(tp);
1217 	(void) tcp_freeq(tp);
1218 	TCP_REASS_UNLOCK(tp);
1219 
1220 	/* free the SACK holes list. */
1221 	tcp_free_sackholes(tp);
1222 
1223 	tcp_congctl_release(tp);
1224 
1225 	tcp_canceltimers(tp);
1226 	TCP_CLEAR_DELACK(tp);
1227 	syn_cache_cleanup(tp);
1228 
1229 	if (tp->t_template) {
1230 		m_free(tp->t_template);
1231 		tp->t_template = NULL;
1232 	}
1233 	tp->t_flags |= TF_DEAD;
1234 	for (j = 0; j < TCPT_NTIMERS; j++) {
1235 		callout_halt(&tp->t_timer[j], softnet_lock);
1236 		callout_destroy(&tp->t_timer[j]);
1237 	}
1238 	callout_halt(&tp->t_delack_ch, softnet_lock);
1239 	callout_destroy(&tp->t_delack_ch);
1240 	pool_put(&tcpcb_pool, tp);
1241 
1242 	if (inp) {
1243 		inp->inp_ppcb = 0;
1244 		soisdisconnected(so);
1245 		in_pcbdetach(inp);
1246 	}
1247 #ifdef INET6
1248 	else if (in6p) {
1249 		in6p->in6p_ppcb = 0;
1250 		soisdisconnected(so);
1251 		in6_pcbdetach(in6p);
1252 	}
1253 #endif
1254 	TCP_STATINC(TCP_STAT_CLOSED);
1255 	return ((struct tcpcb *)0);
1256 }
1257 
1258 int
1259 tcp_freeq(struct tcpcb *tp)
1260 {
1261 	struct ipqent *qe;
1262 	int rv = 0;
1263 #ifdef TCPREASS_DEBUG
1264 	int i = 0;
1265 #endif
1266 
1267 	TCP_REASS_LOCK_CHECK(tp);
1268 
1269 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1270 #ifdef TCPREASS_DEBUG
1271 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1272 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1273 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1274 #endif
1275 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1276 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1277 		m_freem(qe->ipqe_m);
1278 		tcpipqent_free(qe);
1279 		rv = 1;
1280 	}
1281 	tp->t_segqlen = 0;
1282 	KASSERT(TAILQ_EMPTY(&tp->timeq));
1283 	return (rv);
1284 }
1285 
1286 /*
1287  * Protocol drain routine.  Called when memory is in short supply.
1288  */
1289 void
1290 tcp_drain(void)
1291 {
1292 	struct inpcb_hdr *inph;
1293 	struct tcpcb *tp;
1294 
1295 	mutex_enter(softnet_lock);
1296 	KERNEL_LOCK(1, NULL);
1297 
1298 	/*
1299 	 * Free the sequence queue of all TCP connections.
1300 	 */
1301 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1302 		switch (inph->inph_af) {
1303 		case AF_INET:
1304 			tp = intotcpcb((struct inpcb *)inph);
1305 			break;
1306 #ifdef INET6
1307 		case AF_INET6:
1308 			tp = in6totcpcb((struct in6pcb *)inph);
1309 			break;
1310 #endif
1311 		default:
1312 			tp = NULL;
1313 			break;
1314 		}
1315 		if (tp != NULL) {
1316 			/*
1317 			 * We may be called from a device's interrupt
1318 			 * context.  If the tcpcb is already busy,
1319 			 * just bail out now.
1320 			 */
1321 			if (tcp_reass_lock_try(tp) == 0)
1322 				continue;
1323 			if (tcp_freeq(tp))
1324 				TCP_STATINC(TCP_STAT_CONNSDRAINED);
1325 			TCP_REASS_UNLOCK(tp);
1326 		}
1327 	}
1328 
1329 	KERNEL_UNLOCK_ONE(NULL);
1330 	mutex_exit(softnet_lock);
1331 }
1332 
1333 /*
1334  * Notify a tcp user of an asynchronous error;
1335  * store error as soft error, but wake up user
1336  * (for now, won't do anything until can select for soft error).
1337  */
1338 void
1339 tcp_notify(struct inpcb *inp, int error)
1340 {
1341 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1342 	struct socket *so = inp->inp_socket;
1343 
1344 	/*
1345 	 * Ignore some errors if we are hooked up.
1346 	 * If connection hasn't completed, has retransmitted several times,
1347 	 * and receives a second error, give up now.  This is better
1348 	 * than waiting a long time to establish a connection that
1349 	 * can never complete.
1350 	 */
1351 	if (tp->t_state == TCPS_ESTABLISHED &&
1352 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1353 	      error == EHOSTDOWN)) {
1354 		return;
1355 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1356 	    tp->t_rxtshift > 3 && tp->t_softerror)
1357 		so->so_error = error;
1358 	else
1359 		tp->t_softerror = error;
1360 	cv_broadcast(&so->so_cv);
1361 	sorwakeup(so);
1362 	sowwakeup(so);
1363 }
1364 
1365 #ifdef INET6
1366 void
1367 tcp6_notify(struct in6pcb *in6p, int error)
1368 {
1369 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1370 	struct socket *so = in6p->in6p_socket;
1371 
1372 	/*
1373 	 * Ignore some errors if we are hooked up.
1374 	 * If connection hasn't completed, has retransmitted several times,
1375 	 * and receives a second error, give up now.  This is better
1376 	 * than waiting a long time to establish a connection that
1377 	 * can never complete.
1378 	 */
1379 	if (tp->t_state == TCPS_ESTABLISHED &&
1380 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1381 	      error == EHOSTDOWN)) {
1382 		return;
1383 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1384 	    tp->t_rxtshift > 3 && tp->t_softerror)
1385 		so->so_error = error;
1386 	else
1387 		tp->t_softerror = error;
1388 	cv_broadcast(&so->so_cv);
1389 	sorwakeup(so);
1390 	sowwakeup(so);
1391 }
1392 #endif
1393 
1394 #ifdef INET6
1395 void *
1396 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1397 {
1398 	struct tcphdr th;
1399 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
1400 	int nmatch;
1401 	struct ip6_hdr *ip6;
1402 	const struct sockaddr_in6 *sa6_src = NULL;
1403 	const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1404 	struct mbuf *m;
1405 	int off;
1406 
1407 	if (sa->sa_family != AF_INET6 ||
1408 	    sa->sa_len != sizeof(struct sockaddr_in6))
1409 		return NULL;
1410 	if ((unsigned)cmd >= PRC_NCMDS)
1411 		return NULL;
1412 	else if (cmd == PRC_QUENCH) {
1413 		/*
1414 		 * Don't honor ICMP Source Quench messages meant for
1415 		 * TCP connections.
1416 		 */
1417 		return NULL;
1418 	} else if (PRC_IS_REDIRECT(cmd))
1419 		notify = in6_rtchange, d = NULL;
1420 	else if (cmd == PRC_MSGSIZE)
1421 		; /* special code is present, see below */
1422 	else if (cmd == PRC_HOSTDEAD)
1423 		d = NULL;
1424 	else if (inet6ctlerrmap[cmd] == 0)
1425 		return NULL;
1426 
1427 	/* if the parameter is from icmp6, decode it. */
1428 	if (d != NULL) {
1429 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1430 		m = ip6cp->ip6c_m;
1431 		ip6 = ip6cp->ip6c_ip6;
1432 		off = ip6cp->ip6c_off;
1433 		sa6_src = ip6cp->ip6c_src;
1434 	} else {
1435 		m = NULL;
1436 		ip6 = NULL;
1437 		sa6_src = &sa6_any;
1438 		off = 0;
1439 	}
1440 
1441 	if (ip6) {
1442 		/*
1443 		 * XXX: We assume that when ip6 is non NULL,
1444 		 * M and OFF are valid.
1445 		 */
1446 
1447 		/* check if we can safely examine src and dst ports */
1448 		if (m->m_pkthdr.len < off + sizeof(th)) {
1449 			if (cmd == PRC_MSGSIZE)
1450 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1451 			return NULL;
1452 		}
1453 
1454 		bzero(&th, sizeof(th));
1455 		m_copydata(m, off, sizeof(th), (void *)&th);
1456 
1457 		if (cmd == PRC_MSGSIZE) {
1458 			int valid = 0;
1459 
1460 			/*
1461 			 * Check to see if we have a valid TCP connection
1462 			 * corresponding to the address in the ICMPv6 message
1463 			 * payload.
1464 			 */
1465 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1466 			    th.th_dport,
1467 			    (const struct in6_addr *)&sa6_src->sin6_addr,
1468 			    th.th_sport, 0))
1469 				valid++;
1470 
1471 			/*
1472 			 * Depending on the value of "valid" and routing table
1473 			 * size (mtudisc_{hi,lo}wat), we will:
1474 			 * - recalcurate the new MTU and create the
1475 			 *   corresponding routing entry, or
1476 			 * - ignore the MTU change notification.
1477 			 */
1478 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1479 
1480 			/*
1481 			 * no need to call in6_pcbnotify, it should have been
1482 			 * called via callback if necessary
1483 			 */
1484 			return NULL;
1485 		}
1486 
1487 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1488 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1489 		if (nmatch == 0 && syn_cache_count &&
1490 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1491 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
1492 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
1493 			syn_cache_unreach((const struct sockaddr *)sa6_src,
1494 					  sa, &th);
1495 	} else {
1496 		(void) in6_pcbnotify(&tcbtable, sa, 0,
1497 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1498 	}
1499 
1500 	return NULL;
1501 }
1502 #endif
1503 
1504 #ifdef INET
1505 /* assumes that ip header and tcp header are contiguous on mbuf */
1506 void *
1507 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1508 {
1509 	struct ip *ip = v;
1510 	struct tcphdr *th;
1511 	struct icmp *icp;
1512 	extern const int inetctlerrmap[];
1513 	void (*notify)(struct inpcb *, int) = tcp_notify;
1514 	int errno;
1515 	int nmatch;
1516 	struct tcpcb *tp;
1517 	u_int mtu;
1518 	tcp_seq seq;
1519 	struct inpcb *inp;
1520 #ifdef INET6
1521 	struct in6pcb *in6p;
1522 	struct in6_addr src6, dst6;
1523 #endif
1524 
1525 	if (sa->sa_family != AF_INET ||
1526 	    sa->sa_len != sizeof(struct sockaddr_in))
1527 		return NULL;
1528 	if ((unsigned)cmd >= PRC_NCMDS)
1529 		return NULL;
1530 	errno = inetctlerrmap[cmd];
1531 	if (cmd == PRC_QUENCH)
1532 		/*
1533 		 * Don't honor ICMP Source Quench messages meant for
1534 		 * TCP connections.
1535 		 */
1536 		return NULL;
1537 	else if (PRC_IS_REDIRECT(cmd))
1538 		notify = in_rtchange, ip = 0;
1539 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1540 		/*
1541 		 * Check to see if we have a valid TCP connection
1542 		 * corresponding to the address in the ICMP message
1543 		 * payload.
1544 		 *
1545 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1546 		 */
1547 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1548 #ifdef INET6
1549 		memset(&src6, 0, sizeof(src6));
1550 		memset(&dst6, 0, sizeof(dst6));
1551 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1552 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1553 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1554 #endif
1555 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1556 		    th->th_dport, ip->ip_src, th->th_sport)) != NULL)
1557 #ifdef INET6
1558 			in6p = NULL;
1559 #else
1560 			;
1561 #endif
1562 #ifdef INET6
1563 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1564 		    th->th_dport, &src6, th->th_sport, 0)) != NULL)
1565 			;
1566 #endif
1567 		else
1568 			return NULL;
1569 
1570 		/*
1571 		 * Now that we've validated that we are actually communicating
1572 		 * with the host indicated in the ICMP message, locate the
1573 		 * ICMP header, recalculate the new MTU, and create the
1574 		 * corresponding routing entry.
1575 		 */
1576 		icp = (struct icmp *)((char *)ip -
1577 		    offsetof(struct icmp, icmp_ip));
1578 		if (inp) {
1579 			if ((tp = intotcpcb(inp)) == NULL)
1580 				return NULL;
1581 		}
1582 #ifdef INET6
1583 		else if (in6p) {
1584 			if ((tp = in6totcpcb(in6p)) == NULL)
1585 				return NULL;
1586 		}
1587 #endif
1588 		else
1589 			return NULL;
1590 		seq = ntohl(th->th_seq);
1591 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1592 			return NULL;
1593 		/*
1594 		 * If the ICMP message advertises a Next-Hop MTU
1595 		 * equal or larger than the maximum packet size we have
1596 		 * ever sent, drop the message.
1597 		 */
1598 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
1599 		if (mtu >= tp->t_pmtud_mtu_sent)
1600 			return NULL;
1601 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1602 			/*
1603 			 * Calculate new MTU, and create corresponding
1604 			 * route (traditional PMTUD).
1605 			 */
1606 			tp->t_flags &= ~TF_PMTUD_PEND;
1607 			icmp_mtudisc(icp, ip->ip_dst);
1608 		} else {
1609 			/*
1610 			 * Record the information got in the ICMP
1611 			 * message; act on it later.
1612 			 * If we had already recorded an ICMP message,
1613 			 * replace the old one only if the new message
1614 			 * refers to an older TCP segment
1615 			 */
1616 			if (tp->t_flags & TF_PMTUD_PEND) {
1617 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1618 					return NULL;
1619 			} else
1620 				tp->t_flags |= TF_PMTUD_PEND;
1621 			tp->t_pmtud_th_seq = seq;
1622 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1623 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1624 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1625 		}
1626 		return NULL;
1627 	} else if (cmd == PRC_HOSTDEAD)
1628 		ip = 0;
1629 	else if (errno == 0)
1630 		return NULL;
1631 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1632 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1633 		nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1634 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1635 		if (nmatch == 0 && syn_cache_count &&
1636 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
1637 		    inetctlerrmap[cmd] == ENETUNREACH ||
1638 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
1639 			struct sockaddr_in sin;
1640 			bzero(&sin, sizeof(sin));
1641 			sin.sin_len = sizeof(sin);
1642 			sin.sin_family = AF_INET;
1643 			sin.sin_port = th->th_sport;
1644 			sin.sin_addr = ip->ip_src;
1645 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1646 		}
1647 
1648 		/* XXX mapped address case */
1649 	} else
1650 		in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1651 		    notify);
1652 	return NULL;
1653 }
1654 
1655 /*
1656  * When a source quench is received, we are being notified of congestion.
1657  * Close the congestion window down to the Loss Window (one segment).
1658  * We will gradually open it again as we proceed.
1659  */
1660 void
1661 tcp_quench(struct inpcb *inp, int errno)
1662 {
1663 	struct tcpcb *tp = intotcpcb(inp);
1664 
1665 	if (tp) {
1666 		tp->snd_cwnd = tp->t_segsz;
1667 		tp->t_bytes_acked = 0;
1668 	}
1669 }
1670 #endif
1671 
1672 #ifdef INET6
1673 void
1674 tcp6_quench(struct in6pcb *in6p, int errno)
1675 {
1676 	struct tcpcb *tp = in6totcpcb(in6p);
1677 
1678 	if (tp) {
1679 		tp->snd_cwnd = tp->t_segsz;
1680 		tp->t_bytes_acked = 0;
1681 	}
1682 }
1683 #endif
1684 
1685 #ifdef INET
1686 /*
1687  * Path MTU Discovery handlers.
1688  */
1689 void
1690 tcp_mtudisc_callback(struct in_addr faddr)
1691 {
1692 #ifdef INET6
1693 	struct in6_addr in6;
1694 #endif
1695 
1696 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1697 #ifdef INET6
1698 	memset(&in6, 0, sizeof(in6));
1699 	in6.s6_addr16[5] = 0xffff;
1700 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1701 	tcp6_mtudisc_callback(&in6);
1702 #endif
1703 }
1704 
1705 /*
1706  * On receipt of path MTU corrections, flush old route and replace it
1707  * with the new one.  Retransmit all unacknowledged packets, to ensure
1708  * that all packets will be received.
1709  */
1710 void
1711 tcp_mtudisc(struct inpcb *inp, int errno)
1712 {
1713 	struct tcpcb *tp = intotcpcb(inp);
1714 	struct rtentry *rt = in_pcbrtentry(inp);
1715 
1716 	if (tp != 0) {
1717 		if (rt != 0) {
1718 			/*
1719 			 * If this was not a host route, remove and realloc.
1720 			 */
1721 			if ((rt->rt_flags & RTF_HOST) == 0) {
1722 				in_rtchange(inp, errno);
1723 				if ((rt = in_pcbrtentry(inp)) == 0)
1724 					return;
1725 			}
1726 
1727 			/*
1728 			 * Slow start out of the error condition.  We
1729 			 * use the MTU because we know it's smaller
1730 			 * than the previously transmitted segment.
1731 			 *
1732 			 * Note: This is more conservative than the
1733 			 * suggestion in draft-floyd-incr-init-win-03.
1734 			 */
1735 			if (rt->rt_rmx.rmx_mtu != 0)
1736 				tp->snd_cwnd =
1737 				    TCP_INITIAL_WINDOW(tcp_init_win,
1738 				    rt->rt_rmx.rmx_mtu);
1739 		}
1740 
1741 		/*
1742 		 * Resend unacknowledged packets.
1743 		 */
1744 		tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1745 		tcp_output(tp);
1746 	}
1747 }
1748 #endif
1749 
1750 #ifdef INET6
1751 /*
1752  * Path MTU Discovery handlers.
1753  */
1754 void
1755 tcp6_mtudisc_callback(struct in6_addr *faddr)
1756 {
1757 	struct sockaddr_in6 sin6;
1758 
1759 	bzero(&sin6, sizeof(sin6));
1760 	sin6.sin6_family = AF_INET6;
1761 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1762 	sin6.sin6_addr = *faddr;
1763 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1764 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1765 }
1766 
1767 void
1768 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1769 {
1770 	struct tcpcb *tp = in6totcpcb(in6p);
1771 	struct rtentry *rt = in6_pcbrtentry(in6p);
1772 
1773 	if (tp != 0) {
1774 		if (rt != 0) {
1775 			/*
1776 			 * If this was not a host route, remove and realloc.
1777 			 */
1778 			if ((rt->rt_flags & RTF_HOST) == 0) {
1779 				in6_rtchange(in6p, errno);
1780 				if ((rt = in6_pcbrtentry(in6p)) == 0)
1781 					return;
1782 			}
1783 
1784 			/*
1785 			 * Slow start out of the error condition.  We
1786 			 * use the MTU because we know it's smaller
1787 			 * than the previously transmitted segment.
1788 			 *
1789 			 * Note: This is more conservative than the
1790 			 * suggestion in draft-floyd-incr-init-win-03.
1791 			 */
1792 			if (rt->rt_rmx.rmx_mtu != 0)
1793 				tp->snd_cwnd =
1794 				    TCP_INITIAL_WINDOW(tcp_init_win,
1795 				    rt->rt_rmx.rmx_mtu);
1796 		}
1797 
1798 		/*
1799 		 * Resend unacknowledged packets.
1800 		 */
1801 		tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1802 		tcp_output(tp);
1803 	}
1804 }
1805 #endif /* INET6 */
1806 
1807 /*
1808  * Compute the MSS to advertise to the peer.  Called only during
1809  * the 3-way handshake.  If we are the server (peer initiated
1810  * connection), we are called with a pointer to the interface
1811  * on which the SYN packet arrived.  If we are the client (we
1812  * initiated connection), we are called with a pointer to the
1813  * interface out which this connection should go.
1814  *
1815  * NOTE: Do not subtract IP option/extension header size nor IPsec
1816  * header size from MSS advertisement.  MSS option must hold the maximum
1817  * segment size we can accept, so it must always be:
1818  *	 max(if mtu) - ip header - tcp header
1819  */
1820 u_long
1821 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1822 {
1823 	extern u_long in_maxmtu;
1824 	u_long mss = 0;
1825 	u_long hdrsiz;
1826 
1827 	/*
1828 	 * In order to avoid defeating path MTU discovery on the peer,
1829 	 * we advertise the max MTU of all attached networks as our MSS,
1830 	 * per RFC 1191, section 3.1.
1831 	 *
1832 	 * We provide the option to advertise just the MTU of
1833 	 * the interface on which we hope this connection will
1834 	 * be receiving.  If we are responding to a SYN, we
1835 	 * will have a pretty good idea about this, but when
1836 	 * initiating a connection there is a bit more doubt.
1837 	 *
1838 	 * We also need to ensure that loopback has a large enough
1839 	 * MSS, as the loopback MTU is never included in in_maxmtu.
1840 	 */
1841 
1842 	if (ifp != NULL)
1843 		switch (af) {
1844 		case AF_INET:
1845 			mss = ifp->if_mtu;
1846 			break;
1847 #ifdef INET6
1848 		case AF_INET6:
1849 			mss = IN6_LINKMTU(ifp);
1850 			break;
1851 #endif
1852 		}
1853 
1854 	if (tcp_mss_ifmtu == 0)
1855 		switch (af) {
1856 		case AF_INET:
1857 			mss = max(in_maxmtu, mss);
1858 			break;
1859 #ifdef INET6
1860 		case AF_INET6:
1861 			mss = max(in6_maxmtu, mss);
1862 			break;
1863 #endif
1864 		}
1865 
1866 	switch (af) {
1867 	case AF_INET:
1868 		hdrsiz = sizeof(struct ip);
1869 		break;
1870 #ifdef INET6
1871 	case AF_INET6:
1872 		hdrsiz = sizeof(struct ip6_hdr);
1873 		break;
1874 #endif
1875 	default:
1876 		hdrsiz = 0;
1877 		break;
1878 	}
1879 	hdrsiz += sizeof(struct tcphdr);
1880 	if (mss > hdrsiz)
1881 		mss -= hdrsiz;
1882 
1883 	mss = max(tcp_mssdflt, mss);
1884 	return (mss);
1885 }
1886 
1887 /*
1888  * Set connection variables based on the peer's advertised MSS.
1889  * We are passed the TCPCB for the actual connection.  If we
1890  * are the server, we are called by the compressed state engine
1891  * when the 3-way handshake is complete.  If we are the client,
1892  * we are called when we receive the SYN,ACK from the server.
1893  *
1894  * NOTE: Our advertised MSS value must be initialized in the TCPCB
1895  * before this routine is called!
1896  */
1897 void
1898 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1899 {
1900 	struct socket *so;
1901 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1902 	struct rtentry *rt;
1903 #endif
1904 	u_long bufsize;
1905 	int mss;
1906 
1907 #ifdef DIAGNOSTIC
1908 	if (tp->t_inpcb && tp->t_in6pcb)
1909 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1910 #endif
1911 	so = NULL;
1912 	rt = NULL;
1913 #ifdef INET
1914 	if (tp->t_inpcb) {
1915 		so = tp->t_inpcb->inp_socket;
1916 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1917 		rt = in_pcbrtentry(tp->t_inpcb);
1918 #endif
1919 	}
1920 #endif
1921 #ifdef INET6
1922 	if (tp->t_in6pcb) {
1923 		so = tp->t_in6pcb->in6p_socket;
1924 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1925 		rt = in6_pcbrtentry(tp->t_in6pcb);
1926 #endif
1927 	}
1928 #endif
1929 
1930 	/*
1931 	 * As per RFC1122, use the default MSS value, unless they
1932 	 * sent us an offer.  Do not accept offers less than 256 bytes.
1933 	 */
1934 	mss = tcp_mssdflt;
1935 	if (offer)
1936 		mss = offer;
1937 	mss = max(mss, 256);		/* sanity */
1938 	tp->t_peermss = mss;
1939 	mss -= tcp_optlen(tp);
1940 #ifdef INET
1941 	if (tp->t_inpcb)
1942 		mss -= ip_optlen(tp->t_inpcb);
1943 #endif
1944 #ifdef INET6
1945 	if (tp->t_in6pcb)
1946 		mss -= ip6_optlen(tp->t_in6pcb);
1947 #endif
1948 
1949 	/*
1950 	 * If there's a pipesize, change the socket buffer to that size.
1951 	 * Make the socket buffer an integral number of MSS units.  If
1952 	 * the MSS is larger than the socket buffer, artificially decrease
1953 	 * the MSS.
1954 	 */
1955 #ifdef RTV_SPIPE
1956 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1957 		bufsize = rt->rt_rmx.rmx_sendpipe;
1958 	else
1959 #endif
1960 	{
1961 		KASSERT(so != NULL);
1962 		bufsize = so->so_snd.sb_hiwat;
1963 	}
1964 	if (bufsize < mss)
1965 		mss = bufsize;
1966 	else {
1967 		bufsize = roundup(bufsize, mss);
1968 		if (bufsize > sb_max)
1969 			bufsize = sb_max;
1970 		(void) sbreserve(&so->so_snd, bufsize, so);
1971 	}
1972 	tp->t_segsz = mss;
1973 
1974 #ifdef RTV_SSTHRESH
1975 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1976 		/*
1977 		 * There's some sort of gateway or interface buffer
1978 		 * limit on the path.  Use this to set the slow
1979 		 * start threshold, but set the threshold to no less
1980 		 * than 2 * MSS.
1981 		 */
1982 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1983 	}
1984 #endif
1985 }
1986 
1987 /*
1988  * Processing necessary when a TCP connection is established.
1989  */
1990 void
1991 tcp_established(struct tcpcb *tp)
1992 {
1993 	struct socket *so;
1994 #ifdef RTV_RPIPE
1995 	struct rtentry *rt;
1996 #endif
1997 	u_long bufsize;
1998 
1999 #ifdef DIAGNOSTIC
2000 	if (tp->t_inpcb && tp->t_in6pcb)
2001 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
2002 #endif
2003 	so = NULL;
2004 	rt = NULL;
2005 #ifdef INET
2006 	if (tp->t_inpcb) {
2007 		so = tp->t_inpcb->inp_socket;
2008 #if defined(RTV_RPIPE)
2009 		rt = in_pcbrtentry(tp->t_inpcb);
2010 #endif
2011 	}
2012 #endif
2013 #ifdef INET6
2014 	if (tp->t_in6pcb) {
2015 		so = tp->t_in6pcb->in6p_socket;
2016 #if defined(RTV_RPIPE)
2017 		rt = in6_pcbrtentry(tp->t_in6pcb);
2018 #endif
2019 	}
2020 #endif
2021 
2022 	tp->t_state = TCPS_ESTABLISHED;
2023 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2024 
2025 #ifdef RTV_RPIPE
2026 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2027 		bufsize = rt->rt_rmx.rmx_recvpipe;
2028 	else
2029 #endif
2030 	{
2031 		KASSERT(so != NULL);
2032 		bufsize = so->so_rcv.sb_hiwat;
2033 	}
2034 	if (bufsize > tp->t_ourmss) {
2035 		bufsize = roundup(bufsize, tp->t_ourmss);
2036 		if (bufsize > sb_max)
2037 			bufsize = sb_max;
2038 		(void) sbreserve(&so->so_rcv, bufsize, so);
2039 	}
2040 }
2041 
2042 /*
2043  * Check if there's an initial rtt or rttvar.  Convert from the
2044  * route-table units to scaled multiples of the slow timeout timer.
2045  * Called only during the 3-way handshake.
2046  */
2047 void
2048 tcp_rmx_rtt(struct tcpcb *tp)
2049 {
2050 #ifdef RTV_RTT
2051 	struct rtentry *rt = NULL;
2052 	int rtt;
2053 
2054 #ifdef DIAGNOSTIC
2055 	if (tp->t_inpcb && tp->t_in6pcb)
2056 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2057 #endif
2058 #ifdef INET
2059 	if (tp->t_inpcb)
2060 		rt = in_pcbrtentry(tp->t_inpcb);
2061 #endif
2062 #ifdef INET6
2063 	if (tp->t_in6pcb)
2064 		rt = in6_pcbrtentry(tp->t_in6pcb);
2065 #endif
2066 	if (rt == NULL)
2067 		return;
2068 
2069 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2070 		/*
2071 		 * XXX The lock bit for MTU indicates that the value
2072 		 * is also a minimum value; this is subject to time.
2073 		 */
2074 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2075 			TCPT_RANGESET(tp->t_rttmin,
2076 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2077 			    TCPTV_MIN, TCPTV_REXMTMAX);
2078 		tp->t_srtt = rtt /
2079 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2080 		if (rt->rt_rmx.rmx_rttvar) {
2081 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2082 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
2083 				(TCP_RTTVAR_SHIFT + 2));
2084 		} else {
2085 			/* Default variation is +- 1 rtt */
2086 			tp->t_rttvar =
2087 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2088 		}
2089 		TCPT_RANGESET(tp->t_rxtcur,
2090 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2091 		    tp->t_rttmin, TCPTV_REXMTMAX);
2092 	}
2093 #endif
2094 }
2095 
2096 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
2097 #if NRND > 0
2098 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
2099 #endif
2100 
2101 /*
2102  * Get a new sequence value given a tcp control block
2103  */
2104 tcp_seq
2105 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2106 {
2107 
2108 #ifdef INET
2109 	if (tp->t_inpcb != NULL) {
2110 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2111 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2112 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2113 		    addin));
2114 	}
2115 #endif
2116 #ifdef INET6
2117 	if (tp->t_in6pcb != NULL) {
2118 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2119 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2120 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2121 		    addin));
2122 	}
2123 #endif
2124 	/* Not possible. */
2125 	panic("tcp_new_iss");
2126 }
2127 
2128 /*
2129  * This routine actually generates a new TCP initial sequence number.
2130  */
2131 tcp_seq
2132 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2133     size_t addrsz, tcp_seq addin)
2134 {
2135 	tcp_seq tcp_iss;
2136 
2137 #if NRND > 0
2138 	static bool tcp_iss_gotten_secret;
2139 
2140 	/*
2141 	 * If we haven't been here before, initialize our cryptographic
2142 	 * hash secret.
2143 	 */
2144 	if (tcp_iss_gotten_secret == false) {
2145 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2146 		    RND_EXTRACT_ANY);
2147 		tcp_iss_gotten_secret = true;
2148 	}
2149 
2150 	if (tcp_do_rfc1948) {
2151 		MD5_CTX ctx;
2152 		u_int8_t hash[16];	/* XXX MD5 knowledge */
2153 
2154 		/*
2155 		 * Compute the base value of the ISS.  It is a hash
2156 		 * of (saddr, sport, daddr, dport, secret).
2157 		 */
2158 		MD5Init(&ctx);
2159 
2160 		MD5Update(&ctx, (u_char *) laddr, addrsz);
2161 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2162 
2163 		MD5Update(&ctx, (u_char *) faddr, addrsz);
2164 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2165 
2166 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2167 
2168 		MD5Final(hash, &ctx);
2169 
2170 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2171 
2172 		/*
2173 		 * Now increment our "timer", and add it in to
2174 		 * the computed value.
2175 		 *
2176 		 * XXX Use `addin'?
2177 		 * XXX TCP_ISSINCR too large to use?
2178 		 */
2179 		tcp_iss_seq += TCP_ISSINCR;
2180 #ifdef TCPISS_DEBUG
2181 		printf("ISS hash 0x%08x, ", tcp_iss);
2182 #endif
2183 		tcp_iss += tcp_iss_seq + addin;
2184 #ifdef TCPISS_DEBUG
2185 		printf("new ISS 0x%08x\n", tcp_iss);
2186 #endif
2187 	} else
2188 #endif /* NRND > 0 */
2189 	{
2190 		/*
2191 		 * Randomize.
2192 		 */
2193 #if NRND > 0
2194 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2195 #else
2196 		tcp_iss = arc4random();
2197 #endif
2198 
2199 		/*
2200 		 * If we were asked to add some amount to a known value,
2201 		 * we will take a random value obtained above, mask off
2202 		 * the upper bits, and add in the known value.  We also
2203 		 * add in a constant to ensure that we are at least a
2204 		 * certain distance from the original value.
2205 		 *
2206 		 * This is used when an old connection is in timed wait
2207 		 * and we have a new one coming in, for instance.
2208 		 */
2209 		if (addin != 0) {
2210 #ifdef TCPISS_DEBUG
2211 			printf("Random %08x, ", tcp_iss);
2212 #endif
2213 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2214 			tcp_iss += addin + TCP_ISSINCR;
2215 #ifdef TCPISS_DEBUG
2216 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2217 #endif
2218 		} else {
2219 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2220 			tcp_iss += tcp_iss_seq;
2221 			tcp_iss_seq += TCP_ISSINCR;
2222 #ifdef TCPISS_DEBUG
2223 			printf("ISS %08x\n", tcp_iss);
2224 #endif
2225 		}
2226 	}
2227 
2228 	if (tcp_compat_42) {
2229 		/*
2230 		 * Limit it to the positive range for really old TCP
2231 		 * implementations.
2232 		 * Just AND off the top bit instead of checking if
2233 		 * is set first - saves a branch 50% of the time.
2234 		 */
2235 		tcp_iss &= 0x7fffffff;		/* XXX */
2236 	}
2237 
2238 	return (tcp_iss);
2239 }
2240 
2241 #if defined(IPSEC) || defined(FAST_IPSEC)
2242 /* compute ESP/AH header size for TCP, including outer IP header. */
2243 size_t
2244 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2245 {
2246 	struct inpcb *inp;
2247 	size_t hdrsiz;
2248 
2249 	/* XXX mapped addr case (tp->t_in6pcb) */
2250 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2251 		return 0;
2252 	switch (tp->t_family) {
2253 	case AF_INET:
2254 		/* XXX: should use currect direction. */
2255 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2256 		break;
2257 	default:
2258 		hdrsiz = 0;
2259 		break;
2260 	}
2261 
2262 	return hdrsiz;
2263 }
2264 
2265 #ifdef INET6
2266 size_t
2267 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2268 {
2269 	struct in6pcb *in6p;
2270 	size_t hdrsiz;
2271 
2272 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2273 		return 0;
2274 	switch (tp->t_family) {
2275 	case AF_INET6:
2276 		/* XXX: should use currect direction. */
2277 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2278 		break;
2279 	case AF_INET:
2280 		/* mapped address case - tricky */
2281 	default:
2282 		hdrsiz = 0;
2283 		break;
2284 	}
2285 
2286 	return hdrsiz;
2287 }
2288 #endif
2289 #endif /*IPSEC*/
2290 
2291 /*
2292  * Determine the length of the TCP options for this connection.
2293  *
2294  * XXX:  What do we do for SACK, when we add that?  Just reserve
2295  *       all of the space?  Otherwise we can't exactly be incrementing
2296  *       cwnd by an amount that varies depending on the amount we last
2297  *       had to SACK!
2298  */
2299 
2300 u_int
2301 tcp_optlen(struct tcpcb *tp)
2302 {
2303 	u_int optlen;
2304 
2305 	optlen = 0;
2306 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2307 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2308 		optlen += TCPOLEN_TSTAMP_APPA;
2309 
2310 #ifdef TCP_SIGNATURE
2311 	if (tp->t_flags & TF_SIGNATURE)
2312 		optlen += TCPOLEN_SIGNATURE + 2;
2313 #endif /* TCP_SIGNATURE */
2314 
2315 	return optlen;
2316 }
2317 
2318 u_int
2319 tcp_hdrsz(struct tcpcb *tp)
2320 {
2321 	u_int hlen;
2322 
2323 	switch (tp->t_family) {
2324 #ifdef INET6
2325 	case AF_INET6:
2326 		hlen = sizeof(struct ip6_hdr);
2327 		break;
2328 #endif
2329 	case AF_INET:
2330 		hlen = sizeof(struct ip);
2331 		break;
2332 	default:
2333 		hlen = 0;
2334 		break;
2335 	}
2336 	hlen += sizeof(struct tcphdr);
2337 
2338 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2339 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2340 		hlen += TCPOLEN_TSTAMP_APPA;
2341 #ifdef TCP_SIGNATURE
2342 	if (tp->t_flags & TF_SIGNATURE)
2343 		hlen += TCPOLEN_SIGLEN;
2344 #endif
2345 	return hlen;
2346 }
2347 
2348 void
2349 tcp_statinc(u_int stat)
2350 {
2351 
2352 	KASSERT(stat < TCP_NSTATS);
2353 	TCP_STATINC(stat);
2354 }
2355 
2356 void
2357 tcp_statadd(u_int stat, uint64_t val)
2358 {
2359 
2360 	KASSERT(stat < TCP_NSTATS);
2361 	TCP_STATADD(stat, val);
2362 }
2363