xref: /netbsd-src/sys/netinet/tcp_subr.c (revision 7e30e94394d0994ab9534f68a8f91665045c91ce)
1 /*	$NetBSD: tcp_subr.c,v 1.270 2017/03/03 07:13:06 ozaki-r Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38  * Facility, NASA Ames Research Center.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59  * POSSIBILITY OF SUCH DAMAGE.
60  */
61 
62 /*
63  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
64  *	The Regents of the University of California.  All rights reserved.
65  *
66  * Redistribution and use in source and binary forms, with or without
67  * modification, are permitted provided that the following conditions
68  * are met:
69  * 1. Redistributions of source code must retain the above copyright
70  *    notice, this list of conditions and the following disclaimer.
71  * 2. Redistributions in binary form must reproduce the above copyright
72  *    notice, this list of conditions and the following disclaimer in the
73  *    documentation and/or other materials provided with the distribution.
74  * 3. Neither the name of the University nor the names of its contributors
75  *    may be used to endorse or promote products derived from this software
76  *    without specific prior written permission.
77  *
78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88  * SUCH DAMAGE.
89  *
90  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
91  */
92 
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.270 2017/03/03 07:13:06 ozaki-r Exp $");
95 
96 #ifdef _KERNEL_OPT
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_tcp_compat_42.h"
100 #include "opt_inet_csum.h"
101 #include "opt_mbuftrace.h"
102 #endif
103 
104 #include <sys/param.h>
105 #include <sys/atomic.h>
106 #include <sys/proc.h>
107 #include <sys/systm.h>
108 #include <sys/mbuf.h>
109 #include <sys/once.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/protosw.h>
113 #include <sys/errno.h>
114 #include <sys/kernel.h>
115 #include <sys/pool.h>
116 #include <sys/md5.h>
117 #include <sys/cprng.h>
118 
119 #include <net/route.h>
120 #include <net/if.h>
121 
122 #include <netinet/in.h>
123 #include <netinet/in_systm.h>
124 #include <netinet/ip.h>
125 #include <netinet/in_pcb.h>
126 #include <netinet/ip_var.h>
127 #include <netinet/ip_icmp.h>
128 
129 #ifdef INET6
130 #ifndef INET
131 #include <netinet/in.h>
132 #endif
133 #include <netinet/ip6.h>
134 #include <netinet6/in6_pcb.h>
135 #include <netinet6/ip6_var.h>
136 #include <netinet6/in6_var.h>
137 #include <netinet6/ip6protosw.h>
138 #include <netinet/icmp6.h>
139 #include <netinet6/nd6.h>
140 #endif
141 
142 #include <netinet/tcp.h>
143 #include <netinet/tcp_fsm.h>
144 #include <netinet/tcp_seq.h>
145 #include <netinet/tcp_timer.h>
146 #include <netinet/tcp_var.h>
147 #include <netinet/tcp_vtw.h>
148 #include <netinet/tcp_private.h>
149 #include <netinet/tcp_congctl.h>
150 #include <netinet/tcpip.h>
151 
152 #ifdef IPSEC
153 #include <netipsec/ipsec.h>
154 #include <netipsec/xform.h>
155 #ifdef INET6
156 #include <netipsec/ipsec6.h>
157 #endif
158  #include <netipsec/key.h>
159 #endif	/* IPSEC*/
160 
161 
162 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
163 u_int32_t tcp_now;		/* slow ticks, for RFC 1323 timestamps */
164 
165 percpu_t *tcpstat_percpu;
166 
167 /* patchable/settable parameters for tcp */
168 int 	tcp_mssdflt = TCP_MSS;
169 int	tcp_minmss = TCP_MINMSS;
170 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
171 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
172 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
173 int	tcp_do_sack = 1;	/* selective acknowledgement */
174 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
175 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
176 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
177 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
178 #ifndef TCP_INIT_WIN
179 #define	TCP_INIT_WIN	4	/* initial slow start window */
180 #endif
181 #ifndef TCP_INIT_WIN_LOCAL
182 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
183 #endif
184 /*
185  * Up to 5 we scale linearly, to reach 3 * 1460; then (iw) * 1460.
186  * This is to simulate current behavior for iw == 4
187  */
188 int tcp_init_win_max[] = {
189 	 1 * 1460,
190 	 1 * 1460,
191 	 2 * 1460,
192 	 2 * 1460,
193 	 3 * 1460,
194 	 5 * 1460,
195 	 6 * 1460,
196 	 7 * 1460,
197 	 8 * 1460,
198 	 9 * 1460,
199 	10 * 1460
200 };
201 int	tcp_init_win = TCP_INIT_WIN;
202 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
203 int	tcp_mss_ifmtu = 0;
204 #ifdef TCP_COMPAT_42
205 int	tcp_compat_42 = 1;
206 #else
207 int	tcp_compat_42 = 0;
208 #endif
209 int	tcp_rst_ppslim = 100;	/* 100pps */
210 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
211 int	tcp_do_loopback_cksum = 0;
212 int	tcp_do_abc = 1;		/* RFC3465 Appropriate byte counting. */
213 int	tcp_abc_aggressive = 1;	/* 1: L=2*SMSS  0: L=1*SMSS */
214 int	tcp_sack_tp_maxholes = 32;
215 int	tcp_sack_globalmaxholes = 1024;
216 int	tcp_sack_globalholes = 0;
217 int	tcp_ecn_maxretries = 1;
218 int	tcp_msl_enable = 1;		/* enable TIME_WAIT truncation	*/
219 int	tcp_msl_loop   = PR_SLOWHZ;	/* MSL for loopback		*/
220 int	tcp_msl_local  = 5 * PR_SLOWHZ;	/* MSL for 'local'		*/
221 int	tcp_msl_remote = TCPTV_MSL;	/* MSL otherwise		*/
222 int	tcp_msl_remote_threshold = TCPTV_SRTTDFLT;	/* RTT threshold */
223 int	tcp_rttlocal = 0;		/* Use RTT to decide who's 'local' */
224 
225 int	tcp4_vtw_enable = 0;		/* 1 to enable */
226 int	tcp6_vtw_enable = 0;		/* 1 to enable */
227 int	tcp_vtw_was_enabled = 0;
228 int	tcp_vtw_entries = 1 << 4;	/* 16 vestigial TIME_WAIT entries */
229 
230 /* tcb hash */
231 #ifndef TCBHASHSIZE
232 #define	TCBHASHSIZE	128
233 #endif
234 int	tcbhashsize = TCBHASHSIZE;
235 
236 /* syn hash parameters */
237 #define	TCP_SYN_HASH_SIZE	293
238 #define	TCP_SYN_BUCKET_SIZE	35
239 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
240 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
241 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
242 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
243 
244 int	tcp_freeq(struct tcpcb *);
245 static int	tcp_iss_secret_init(void);
246 
247 #ifdef INET
248 static void	tcp_mtudisc_callback(struct in_addr);
249 #endif
250 
251 #ifdef INET6
252 void	tcp6_mtudisc(struct in6pcb *, int);
253 #endif
254 
255 static struct pool tcpcb_pool;
256 
257 static int tcp_drainwanted;
258 
259 #ifdef TCP_CSUM_COUNTERS
260 #include <sys/device.h>
261 
262 #if defined(INET)
263 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264     NULL, "tcp", "hwcsum bad");
265 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266     NULL, "tcp", "hwcsum ok");
267 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268     NULL, "tcp", "hwcsum data");
269 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
270     NULL, "tcp", "swcsum");
271 
272 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
273 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
274 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
275 EVCNT_ATTACH_STATIC(tcp_swcsum);
276 #endif /* defined(INET) */
277 
278 #if defined(INET6)
279 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
280     NULL, "tcp6", "hwcsum bad");
281 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282     NULL, "tcp6", "hwcsum ok");
283 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284     NULL, "tcp6", "hwcsum data");
285 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286     NULL, "tcp6", "swcsum");
287 
288 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
289 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
290 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
291 EVCNT_ATTACH_STATIC(tcp6_swcsum);
292 #endif /* defined(INET6) */
293 #endif /* TCP_CSUM_COUNTERS */
294 
295 
296 #ifdef TCP_OUTPUT_COUNTERS
297 #include <sys/device.h>
298 
299 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
300     NULL, "tcp", "output big header");
301 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
302     NULL, "tcp", "output predict hit");
303 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
304     NULL, "tcp", "output predict miss");
305 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
306     NULL, "tcp", "output copy small");
307 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
308     NULL, "tcp", "output copy big");
309 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
310     NULL, "tcp", "output reference big");
311 
312 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
313 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
314 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
315 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
316 EVCNT_ATTACH_STATIC(tcp_output_copybig);
317 EVCNT_ATTACH_STATIC(tcp_output_refbig);
318 
319 #endif /* TCP_OUTPUT_COUNTERS */
320 
321 #ifdef TCP_REASS_COUNTERS
322 #include <sys/device.h>
323 
324 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
325     NULL, "tcp_reass", "calls");
326 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
327     &tcp_reass_, "tcp_reass", "insert into empty queue");
328 struct evcnt tcp_reass_iteration[8] = {
329     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
330     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
331     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
332     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
333     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
334     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
335     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
336     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
337 };
338 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
339     &tcp_reass_, "tcp_reass", "prepend to first");
340 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
341     &tcp_reass_, "tcp_reass", "prepend");
342 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
343     &tcp_reass_, "tcp_reass", "insert");
344 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
345     &tcp_reass_, "tcp_reass", "insert at tail");
346 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
347     &tcp_reass_, "tcp_reass", "append");
348 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
349     &tcp_reass_, "tcp_reass", "append to tail fragment");
350 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
351     &tcp_reass_, "tcp_reass", "overlap at end");
352 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
353     &tcp_reass_, "tcp_reass", "overlap at start");
354 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
355     &tcp_reass_, "tcp_reass", "duplicate segment");
356 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
357     &tcp_reass_, "tcp_reass", "duplicate fragment");
358 
359 EVCNT_ATTACH_STATIC(tcp_reass_);
360 EVCNT_ATTACH_STATIC(tcp_reass_empty);
361 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
362 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
363 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
364 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
365 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
366 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
367 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
368 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
369 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
370 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
371 EVCNT_ATTACH_STATIC(tcp_reass_insert);
372 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
373 EVCNT_ATTACH_STATIC(tcp_reass_append);
374 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
375 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
376 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
377 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
378 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
379 
380 #endif /* TCP_REASS_COUNTERS */
381 
382 #ifdef MBUFTRACE
383 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
384 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
385 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
386 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
387 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
388 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
389 #endif
390 
391 callout_t tcp_slowtimo_ch;
392 
393 static int
394 do_tcpinit(void)
395 {
396 
397 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
398 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
399 	    NULL, IPL_SOFTNET);
400 
401 	tcp_usrreq_init();
402 
403 	/* Initialize timer state. */
404 	tcp_timer_init();
405 
406 	/* Initialize the compressed state engine. */
407 	syn_cache_init();
408 
409 	/* Initialize the congestion control algorithms. */
410 	tcp_congctl_init();
411 
412 	/* Initialize the TCPCB template. */
413 	tcp_tcpcb_template();
414 
415 	/* Initialize reassembly queue */
416 	tcpipqent_init();
417 
418 	/* SACK */
419 	tcp_sack_init();
420 
421 	MOWNER_ATTACH(&tcp_tx_mowner);
422 	MOWNER_ATTACH(&tcp_rx_mowner);
423 	MOWNER_ATTACH(&tcp_reass_mowner);
424 	MOWNER_ATTACH(&tcp_sock_mowner);
425 	MOWNER_ATTACH(&tcp_sock_tx_mowner);
426 	MOWNER_ATTACH(&tcp_sock_rx_mowner);
427 	MOWNER_ATTACH(&tcp_mowner);
428 
429 	tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
430 
431 	vtw_earlyinit();
432 
433 	callout_init(&tcp_slowtimo_ch, CALLOUT_MPSAFE);
434 	callout_reset(&tcp_slowtimo_ch, 1, tcp_slowtimo, NULL);
435 
436 	return 0;
437 }
438 
439 void
440 tcp_init_common(unsigned basehlen)
441 {
442 	static ONCE_DECL(dotcpinit);
443 	unsigned hlen = basehlen + sizeof(struct tcphdr);
444 	unsigned oldhlen;
445 
446 	if (max_linkhdr + hlen > MHLEN)
447 		panic("tcp_init");
448 	while ((oldhlen = max_protohdr) < hlen)
449 		atomic_cas_uint(&max_protohdr, oldhlen, hlen);
450 
451 	RUN_ONCE(&dotcpinit, do_tcpinit);
452 }
453 
454 /*
455  * Tcp initialization
456  */
457 void
458 tcp_init(void)
459 {
460 
461 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
462 
463 	tcp_init_common(sizeof(struct ip));
464 }
465 
466 /*
467  * Create template to be used to send tcp packets on a connection.
468  * Call after host entry created, allocates an mbuf and fills
469  * in a skeletal tcp/ip header, minimizing the amount of work
470  * necessary when the connection is used.
471  */
472 struct mbuf *
473 tcp_template(struct tcpcb *tp)
474 {
475 	struct inpcb *inp = tp->t_inpcb;
476 #ifdef INET6
477 	struct in6pcb *in6p = tp->t_in6pcb;
478 #endif
479 	struct tcphdr *n;
480 	struct mbuf *m;
481 	int hlen;
482 
483 	switch (tp->t_family) {
484 	case AF_INET:
485 		hlen = sizeof(struct ip);
486 		if (inp)
487 			break;
488 #ifdef INET6
489 		if (in6p) {
490 			/* mapped addr case */
491 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
492 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
493 				break;
494 		}
495 #endif
496 		return NULL;	/*EINVAL*/
497 #ifdef INET6
498 	case AF_INET6:
499 		hlen = sizeof(struct ip6_hdr);
500 		if (in6p) {
501 			/* more sainty check? */
502 			break;
503 		}
504 		return NULL;	/*EINVAL*/
505 #endif
506 	default:
507 		hlen = 0;	/*pacify gcc*/
508 		return NULL;	/*EAFNOSUPPORT*/
509 	}
510 #ifdef DIAGNOSTIC
511 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
512 		panic("mclbytes too small for t_template");
513 #endif
514 	m = tp->t_template;
515 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
516 		;
517 	else {
518 		if (m)
519 			m_freem(m);
520 		m = tp->t_template = NULL;
521 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
522 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
523 			MCLGET(m, M_DONTWAIT);
524 			if ((m->m_flags & M_EXT) == 0) {
525 				m_free(m);
526 				m = NULL;
527 			}
528 		}
529 		if (m == NULL)
530 			return NULL;
531 		MCLAIM(m, &tcp_mowner);
532 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
533 	}
534 
535 	memset(mtod(m, void *), 0, m->m_len);
536 
537 	n = (struct tcphdr *)(mtod(m, char *) + hlen);
538 
539 	switch (tp->t_family) {
540 	case AF_INET:
541 	    {
542 		struct ipovly *ipov;
543 		mtod(m, struct ip *)->ip_v = 4;
544 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
545 		ipov = mtod(m, struct ipovly *);
546 		ipov->ih_pr = IPPROTO_TCP;
547 		ipov->ih_len = htons(sizeof(struct tcphdr));
548 		if (inp) {
549 			ipov->ih_src = inp->inp_laddr;
550 			ipov->ih_dst = inp->inp_faddr;
551 		}
552 #ifdef INET6
553 		else if (in6p) {
554 			/* mapped addr case */
555 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
556 				sizeof(ipov->ih_src));
557 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
558 				sizeof(ipov->ih_dst));
559 		}
560 #endif
561 		/*
562 		 * Compute the pseudo-header portion of the checksum
563 		 * now.  We incrementally add in the TCP option and
564 		 * payload lengths later, and then compute the TCP
565 		 * checksum right before the packet is sent off onto
566 		 * the wire.
567 		 */
568 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
569 		    ipov->ih_dst.s_addr,
570 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
571 		break;
572 	    }
573 #ifdef INET6
574 	case AF_INET6:
575 	    {
576 		struct ip6_hdr *ip6;
577 		mtod(m, struct ip *)->ip_v = 6;
578 		ip6 = mtod(m, struct ip6_hdr *);
579 		ip6->ip6_nxt = IPPROTO_TCP;
580 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
581 		ip6->ip6_src = in6p->in6p_laddr;
582 		ip6->ip6_dst = in6p->in6p_faddr;
583 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
584 		if (ip6_auto_flowlabel) {
585 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
586 			ip6->ip6_flow |=
587 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
588 		}
589 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
590 		ip6->ip6_vfc |= IPV6_VERSION;
591 
592 		/*
593 		 * Compute the pseudo-header portion of the checksum
594 		 * now.  We incrementally add in the TCP option and
595 		 * payload lengths later, and then compute the TCP
596 		 * checksum right before the packet is sent off onto
597 		 * the wire.
598 		 */
599 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
600 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
601 		    htonl(IPPROTO_TCP));
602 		break;
603 	    }
604 #endif
605 	}
606 	if (inp) {
607 		n->th_sport = inp->inp_lport;
608 		n->th_dport = inp->inp_fport;
609 	}
610 #ifdef INET6
611 	else if (in6p) {
612 		n->th_sport = in6p->in6p_lport;
613 		n->th_dport = in6p->in6p_fport;
614 	}
615 #endif
616 	n->th_seq = 0;
617 	n->th_ack = 0;
618 	n->th_x2 = 0;
619 	n->th_off = 5;
620 	n->th_flags = 0;
621 	n->th_win = 0;
622 	n->th_urp = 0;
623 	return (m);
624 }
625 
626 /*
627  * Send a single message to the TCP at address specified by
628  * the given TCP/IP header.  If m == 0, then we make a copy
629  * of the tcpiphdr at ti and send directly to the addressed host.
630  * This is used to force keep alive messages out using the TCP
631  * template for a connection tp->t_template.  If flags are given
632  * then we send a message back to the TCP which originated the
633  * segment ti, and discard the mbuf containing it and any other
634  * attached mbufs.
635  *
636  * In any case the ack and sequence number of the transmitted
637  * segment are as specified by the parameters.
638  */
639 int
640 tcp_respond(struct tcpcb *tp, struct mbuf *mtemplate, struct mbuf *m,
641     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
642 {
643 	struct route *ro;
644 	int error, tlen, win = 0;
645 	int hlen;
646 	struct ip *ip;
647 #ifdef INET6
648 	struct ip6_hdr *ip6;
649 #endif
650 	int family;	/* family on packet, not inpcb/in6pcb! */
651 	struct tcphdr *th;
652 
653 	if (tp != NULL && (flags & TH_RST) == 0) {
654 #ifdef DIAGNOSTIC
655 		if (tp->t_inpcb && tp->t_in6pcb)
656 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
657 #endif
658 #ifdef INET
659 		if (tp->t_inpcb)
660 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
661 #endif
662 #ifdef INET6
663 		if (tp->t_in6pcb)
664 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
665 #endif
666 	}
667 
668 	th = NULL;	/* Quell uninitialized warning */
669 	ip = NULL;
670 #ifdef INET6
671 	ip6 = NULL;
672 #endif
673 	if (m == 0) {
674 		if (!mtemplate)
675 			return EINVAL;
676 
677 		/* get family information from template */
678 		switch (mtod(mtemplate, struct ip *)->ip_v) {
679 		case 4:
680 			family = AF_INET;
681 			hlen = sizeof(struct ip);
682 			break;
683 #ifdef INET6
684 		case 6:
685 			family = AF_INET6;
686 			hlen = sizeof(struct ip6_hdr);
687 			break;
688 #endif
689 		default:
690 			return EAFNOSUPPORT;
691 		}
692 
693 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
694 		if (m) {
695 			MCLAIM(m, &tcp_tx_mowner);
696 			MCLGET(m, M_DONTWAIT);
697 			if ((m->m_flags & M_EXT) == 0) {
698 				m_free(m);
699 				m = NULL;
700 			}
701 		}
702 		if (m == NULL)
703 			return (ENOBUFS);
704 
705 		if (tcp_compat_42)
706 			tlen = 1;
707 		else
708 			tlen = 0;
709 
710 		m->m_data += max_linkhdr;
711 		bcopy(mtod(mtemplate, void *), mtod(m, void *),
712 			mtemplate->m_len);
713 		switch (family) {
714 		case AF_INET:
715 			ip = mtod(m, struct ip *);
716 			th = (struct tcphdr *)(ip + 1);
717 			break;
718 #ifdef INET6
719 		case AF_INET6:
720 			ip6 = mtod(m, struct ip6_hdr *);
721 			th = (struct tcphdr *)(ip6 + 1);
722 			break;
723 #endif
724 #if 0
725 		default:
726 			/* noone will visit here */
727 			m_freem(m);
728 			return EAFNOSUPPORT;
729 #endif
730 		}
731 		flags = TH_ACK;
732 	} else {
733 
734 		if ((m->m_flags & M_PKTHDR) == 0) {
735 #if 0
736 			printf("non PKTHDR to tcp_respond\n");
737 #endif
738 			m_freem(m);
739 			return EINVAL;
740 		}
741 #ifdef DIAGNOSTIC
742 		if (!th0)
743 			panic("th0 == NULL in tcp_respond");
744 #endif
745 
746 		/* get family information from m */
747 		switch (mtod(m, struct ip *)->ip_v) {
748 		case 4:
749 			family = AF_INET;
750 			hlen = sizeof(struct ip);
751 			ip = mtod(m, struct ip *);
752 			break;
753 #ifdef INET6
754 		case 6:
755 			family = AF_INET6;
756 			hlen = sizeof(struct ip6_hdr);
757 			ip6 = mtod(m, struct ip6_hdr *);
758 			break;
759 #endif
760 		default:
761 			m_freem(m);
762 			return EAFNOSUPPORT;
763 		}
764 		/* clear h/w csum flags inherited from rx packet */
765 		m->m_pkthdr.csum_flags = 0;
766 
767 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
768 			tlen = sizeof(*th0);
769 		else
770 			tlen = th0->th_off << 2;
771 
772 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
773 		    mtod(m, char *) + hlen == (char *)th0) {
774 			m->m_len = hlen + tlen;
775 			m_freem(m->m_next);
776 			m->m_next = NULL;
777 		} else {
778 			struct mbuf *n;
779 
780 #ifdef DIAGNOSTIC
781 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
782 				m_freem(m);
783 				return EMSGSIZE;
784 			}
785 #endif
786 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
787 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
788 				MCLGET(n, M_DONTWAIT);
789 				if ((n->m_flags & M_EXT) == 0) {
790 					m_freem(n);
791 					n = NULL;
792 				}
793 			}
794 			if (!n) {
795 				m_freem(m);
796 				return ENOBUFS;
797 			}
798 
799 			MCLAIM(n, &tcp_tx_mowner);
800 			n->m_data += max_linkhdr;
801 			n->m_len = hlen + tlen;
802 			m_copyback(n, 0, hlen, mtod(m, void *));
803 			m_copyback(n, hlen, tlen, (void *)th0);
804 
805 			m_freem(m);
806 			m = n;
807 			n = NULL;
808 		}
809 
810 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
811 		switch (family) {
812 		case AF_INET:
813 			ip = mtod(m, struct ip *);
814 			th = (struct tcphdr *)(ip + 1);
815 			ip->ip_p = IPPROTO_TCP;
816 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
817 			ip->ip_p = IPPROTO_TCP;
818 			break;
819 #ifdef INET6
820 		case AF_INET6:
821 			ip6 = mtod(m, struct ip6_hdr *);
822 			th = (struct tcphdr *)(ip6 + 1);
823 			ip6->ip6_nxt = IPPROTO_TCP;
824 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
825 			ip6->ip6_nxt = IPPROTO_TCP;
826 			break;
827 #endif
828 #if 0
829 		default:
830 			/* noone will visit here */
831 			m_freem(m);
832 			return EAFNOSUPPORT;
833 #endif
834 		}
835 		xchg(th->th_dport, th->th_sport, u_int16_t);
836 #undef xchg
837 		tlen = 0;	/*be friendly with the following code*/
838 	}
839 	th->th_seq = htonl(seq);
840 	th->th_ack = htonl(ack);
841 	th->th_x2 = 0;
842 	if ((flags & TH_SYN) == 0) {
843 		if (tp)
844 			win >>= tp->rcv_scale;
845 		if (win > TCP_MAXWIN)
846 			win = TCP_MAXWIN;
847 		th->th_win = htons((u_int16_t)win);
848 		th->th_off = sizeof (struct tcphdr) >> 2;
849 		tlen += sizeof(*th);
850 	} else
851 		tlen += th->th_off << 2;
852 	m->m_len = hlen + tlen;
853 	m->m_pkthdr.len = hlen + tlen;
854 	m_reset_rcvif(m);
855 	th->th_flags = flags;
856 	th->th_urp = 0;
857 
858 	switch (family) {
859 #ifdef INET
860 	case AF_INET:
861 	    {
862 		struct ipovly *ipov = (struct ipovly *)ip;
863 		memset(ipov->ih_x1, 0, sizeof ipov->ih_x1);
864 		ipov->ih_len = htons((u_int16_t)tlen);
865 
866 		th->th_sum = 0;
867 		th->th_sum = in_cksum(m, hlen + tlen);
868 		ip->ip_len = htons(hlen + tlen);
869 		ip->ip_ttl = ip_defttl;
870 		break;
871 	    }
872 #endif
873 #ifdef INET6
874 	case AF_INET6:
875 	    {
876 		th->th_sum = 0;
877 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
878 				tlen);
879 		ip6->ip6_plen = htons(tlen);
880 		if (tp && tp->t_in6pcb)
881 			ip6->ip6_hlim = in6_selecthlim_rt(tp->t_in6pcb);
882 		else
883 			ip6->ip6_hlim = ip6_defhlim;
884 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
885 		if (ip6_auto_flowlabel) {
886 			ip6->ip6_flow |=
887 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
888 		}
889 		break;
890 	    }
891 #endif
892 	}
893 
894 	if (tp != NULL && tp->t_inpcb != NULL) {
895 		ro = &tp->t_inpcb->inp_route;
896 #ifdef DIAGNOSTIC
897 		if (family != AF_INET)
898 			panic("tcp_respond: address family mismatch");
899 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
900 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
901 			    ntohl(ip->ip_dst.s_addr),
902 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
903 		}
904 #endif
905 	}
906 #ifdef INET6
907 	else if (tp != NULL && tp->t_in6pcb != NULL) {
908 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
909 #ifdef DIAGNOSTIC
910 		if (family == AF_INET) {
911 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
912 				panic("tcp_respond: not mapped addr");
913 			if (memcmp(&ip->ip_dst,
914 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
915 			    sizeof(ip->ip_dst)) != 0) {
916 				panic("tcp_respond: ip_dst != in6p_faddr");
917 			}
918 		} else if (family == AF_INET6) {
919 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
920 			    &tp->t_in6pcb->in6p_faddr))
921 				panic("tcp_respond: ip6_dst != in6p_faddr");
922 		} else
923 			panic("tcp_respond: address family mismatch");
924 #endif
925 	}
926 #endif
927 	else
928 		ro = NULL;
929 
930 	switch (family) {
931 #ifdef INET
932 	case AF_INET:
933 		error = ip_output(m, NULL, ro,
934 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0), NULL,
935 		    tp ? tp->t_inpcb : NULL);
936 		break;
937 #endif
938 #ifdef INET6
939 	case AF_INET6:
940 		error = ip6_output(m, NULL, ro, 0, NULL,
941 		    tp ? tp->t_in6pcb : NULL, NULL);
942 		break;
943 #endif
944 	default:
945 		error = EAFNOSUPPORT;
946 		break;
947 	}
948 
949 	return (error);
950 }
951 
952 /*
953  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
954  * a bunch of members individually, we maintain this template for the
955  * static and mostly-static components of the TCPCB, and copy it into
956  * the new TCPCB instead.
957  */
958 static struct tcpcb tcpcb_template = {
959 	.t_srtt = TCPTV_SRTTBASE,
960 	.t_rttmin = TCPTV_MIN,
961 
962 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
963 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
964 	.snd_numholes = 0,
965 	.snd_cubic_wmax = 0,
966 	.snd_cubic_wmax_last = 0,
967 	.snd_cubic_ctime = 0,
968 
969 	.t_partialacks = -1,
970 	.t_bytes_acked = 0,
971 	.t_sndrexmitpack = 0,
972 	.t_rcvoopack = 0,
973 	.t_sndzerowin = 0,
974 };
975 
976 /*
977  * Updates the TCPCB template whenever a parameter that would affect
978  * the template is changed.
979  */
980 void
981 tcp_tcpcb_template(void)
982 {
983 	struct tcpcb *tp = &tcpcb_template;
984 	int flags;
985 
986 	tp->t_peermss = tcp_mssdflt;
987 	tp->t_ourmss = tcp_mssdflt;
988 	tp->t_segsz = tcp_mssdflt;
989 
990 	flags = 0;
991 	if (tcp_do_rfc1323 && tcp_do_win_scale)
992 		flags |= TF_REQ_SCALE;
993 	if (tcp_do_rfc1323 && tcp_do_timestamps)
994 		flags |= TF_REQ_TSTMP;
995 	tp->t_flags = flags;
996 
997 	/*
998 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
999 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
1000 	 * reasonable initial retransmit time.
1001 	 */
1002 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
1003 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1004 	    TCPTV_MIN, TCPTV_REXMTMAX);
1005 
1006 	/* Keep Alive */
1007 	tp->t_keepinit = tcp_keepinit;
1008 	tp->t_keepidle = tcp_keepidle;
1009 	tp->t_keepintvl = tcp_keepintvl;
1010 	tp->t_keepcnt = tcp_keepcnt;
1011 	tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
1012 
1013 	/* MSL */
1014 	tp->t_msl = TCPTV_MSL;
1015 }
1016 
1017 /*
1018  * Create a new TCP control block, making an
1019  * empty reassembly queue and hooking it to the argument
1020  * protocol control block.
1021  */
1022 /* family selects inpcb, or in6pcb */
1023 struct tcpcb *
1024 tcp_newtcpcb(int family, void *aux)
1025 {
1026 	struct tcpcb *tp;
1027 	int i;
1028 
1029 	/* XXX Consider using a pool_cache for speed. */
1030 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
1031 	if (tp == NULL)
1032 		return (NULL);
1033 	memcpy(tp, &tcpcb_template, sizeof(*tp));
1034 	TAILQ_INIT(&tp->segq);
1035 	TAILQ_INIT(&tp->timeq);
1036 	tp->t_family = family;		/* may be overridden later on */
1037 	TAILQ_INIT(&tp->snd_holes);
1038 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
1039 
1040 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
1041 	for (i = 0; i < TCPT_NTIMERS; i++) {
1042 		callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
1043 		TCP_TIMER_INIT(tp, i);
1044 	}
1045 	callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
1046 
1047 	switch (family) {
1048 	case AF_INET:
1049 	    {
1050 		struct inpcb *inp = (struct inpcb *)aux;
1051 
1052 		inp->inp_ip.ip_ttl = ip_defttl;
1053 		inp->inp_ppcb = (void *)tp;
1054 
1055 		tp->t_inpcb = inp;
1056 		tp->t_mtudisc = ip_mtudisc;
1057 		break;
1058 	    }
1059 #ifdef INET6
1060 	case AF_INET6:
1061 	    {
1062 		struct in6pcb *in6p = (struct in6pcb *)aux;
1063 
1064 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim_rt(in6p);
1065 		in6p->in6p_ppcb = (void *)tp;
1066 
1067 		tp->t_in6pcb = in6p;
1068 		/* for IPv6, always try to run path MTU discovery */
1069 		tp->t_mtudisc = 1;
1070 		break;
1071 	    }
1072 #endif /* INET6 */
1073 	default:
1074 		for (i = 0; i < TCPT_NTIMERS; i++)
1075 			callout_destroy(&tp->t_timer[i]);
1076 		callout_destroy(&tp->t_delack_ch);
1077 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
1078 		return (NULL);
1079 	}
1080 
1081 	/*
1082 	 * Initialize our timebase.  When we send timestamps, we take
1083 	 * the delta from tcp_now -- this means each connection always
1084 	 * gets a timebase of 1, which makes it, among other things,
1085 	 * more difficult to determine how long a system has been up,
1086 	 * and thus how many TCP sequence increments have occurred.
1087 	 *
1088 	 * We start with 1, because 0 doesn't work with linux, which
1089 	 * considers timestamp 0 in a SYN packet as a bug and disables
1090 	 * timestamps.
1091 	 */
1092 	tp->ts_timebase = tcp_now - 1;
1093 
1094 	tcp_congctl_select(tp, tcp_congctl_global_name);
1095 
1096 	return (tp);
1097 }
1098 
1099 /*
1100  * Drop a TCP connection, reporting
1101  * the specified error.  If connection is synchronized,
1102  * then send a RST to peer.
1103  */
1104 struct tcpcb *
1105 tcp_drop(struct tcpcb *tp, int errno)
1106 {
1107 	struct socket *so = NULL;
1108 
1109 #ifdef DIAGNOSTIC
1110 	if (tp->t_inpcb && tp->t_in6pcb)
1111 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1112 #endif
1113 #ifdef INET
1114 	if (tp->t_inpcb)
1115 		so = tp->t_inpcb->inp_socket;
1116 #endif
1117 #ifdef INET6
1118 	if (tp->t_in6pcb)
1119 		so = tp->t_in6pcb->in6p_socket;
1120 #endif
1121 	if (!so)
1122 		return NULL;
1123 
1124 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1125 		tp->t_state = TCPS_CLOSED;
1126 		(void) tcp_output(tp);
1127 		TCP_STATINC(TCP_STAT_DROPS);
1128 	} else
1129 		TCP_STATINC(TCP_STAT_CONNDROPS);
1130 	if (errno == ETIMEDOUT && tp->t_softerror)
1131 		errno = tp->t_softerror;
1132 	so->so_error = errno;
1133 	return (tcp_close(tp));
1134 }
1135 
1136 /*
1137  * Close a TCP control block:
1138  *	discard all space held by the tcp
1139  *	discard internet protocol block
1140  *	wake up any sleepers
1141  */
1142 struct tcpcb *
1143 tcp_close(struct tcpcb *tp)
1144 {
1145 	struct inpcb *inp;
1146 #ifdef INET6
1147 	struct in6pcb *in6p;
1148 #endif
1149 	struct socket *so;
1150 #ifdef RTV_RTT
1151 	struct rtentry *rt = NULL;
1152 #endif
1153 	struct route *ro;
1154 	int j;
1155 
1156 	inp = tp->t_inpcb;
1157 #ifdef INET6
1158 	in6p = tp->t_in6pcb;
1159 #endif
1160 	so = NULL;
1161 	ro = NULL;
1162 	if (inp) {
1163 		so = inp->inp_socket;
1164 		ro = &inp->inp_route;
1165 	}
1166 #ifdef INET6
1167 	else if (in6p) {
1168 		so = in6p->in6p_socket;
1169 		ro = (struct route *)&in6p->in6p_route;
1170 	}
1171 #endif
1172 
1173 #ifdef RTV_RTT
1174 	/*
1175 	 * If we sent enough data to get some meaningful characteristics,
1176 	 * save them in the routing entry.  'Enough' is arbitrarily
1177 	 * defined as the sendpipesize (default 4K) * 16.  This would
1178 	 * give us 16 rtt samples assuming we only get one sample per
1179 	 * window (the usual case on a long haul net).  16 samples is
1180 	 * enough for the srtt filter to converge to within 5% of the correct
1181 	 * value; fewer samples and we could save a very bogus rtt.
1182 	 *
1183 	 * Don't update the default route's characteristics and don't
1184 	 * update anything that the user "locked".
1185 	 */
1186 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1187 	    ro && (rt = rtcache_validate(ro)) != NULL &&
1188 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1189 		u_long i = 0;
1190 
1191 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1192 			i = tp->t_srtt *
1193 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1194 			if (rt->rt_rmx.rmx_rtt && i)
1195 				/*
1196 				 * filter this update to half the old & half
1197 				 * the new values, converting scale.
1198 				 * See route.h and tcp_var.h for a
1199 				 * description of the scaling constants.
1200 				 */
1201 				rt->rt_rmx.rmx_rtt =
1202 				    (rt->rt_rmx.rmx_rtt + i) / 2;
1203 			else
1204 				rt->rt_rmx.rmx_rtt = i;
1205 		}
1206 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1207 			i = tp->t_rttvar *
1208 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1209 			if (rt->rt_rmx.rmx_rttvar && i)
1210 				rt->rt_rmx.rmx_rttvar =
1211 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
1212 			else
1213 				rt->rt_rmx.rmx_rttvar = i;
1214 		}
1215 		/*
1216 		 * update the pipelimit (ssthresh) if it has been updated
1217 		 * already or if a pipesize was specified & the threshhold
1218 		 * got below half the pipesize.  I.e., wait for bad news
1219 		 * before we start updating, then update on both good
1220 		 * and bad news.
1221 		 */
1222 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1223 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1224 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1225 			/*
1226 			 * convert the limit from user data bytes to
1227 			 * packets then to packet data bytes.
1228 			 */
1229 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
1230 			if (i < 2)
1231 				i = 2;
1232 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1233 			if (rt->rt_rmx.rmx_ssthresh)
1234 				rt->rt_rmx.rmx_ssthresh =
1235 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1236 			else
1237 				rt->rt_rmx.rmx_ssthresh = i;
1238 		}
1239 	}
1240 	rtcache_unref(rt, ro);
1241 #endif /* RTV_RTT */
1242 	/* free the reassembly queue, if any */
1243 	TCP_REASS_LOCK(tp);
1244 	(void) tcp_freeq(tp);
1245 	TCP_REASS_UNLOCK(tp);
1246 
1247 	/* free the SACK holes list. */
1248 	tcp_free_sackholes(tp);
1249 	tcp_congctl_release(tp);
1250 	syn_cache_cleanup(tp);
1251 
1252 	if (tp->t_template) {
1253 		m_free(tp->t_template);
1254 		tp->t_template = NULL;
1255 	}
1256 
1257 	/*
1258 	 * Detaching the pcb will unlock the socket/tcpcb, and stopping
1259 	 * the timers can also drop the lock.  We need to prevent access
1260 	 * to the tcpcb as it's half torn down.  Flag the pcb as dead
1261 	 * (prevents access by timers) and only then detach it.
1262 	 */
1263 	tp->t_flags |= TF_DEAD;
1264 	if (inp) {
1265 		inp->inp_ppcb = 0;
1266 		soisdisconnected(so);
1267 		in_pcbdetach(inp);
1268 	}
1269 #ifdef INET6
1270 	else if (in6p) {
1271 		in6p->in6p_ppcb = 0;
1272 		soisdisconnected(so);
1273 		in6_pcbdetach(in6p);
1274 	}
1275 #endif
1276 	/*
1277 	 * pcb is no longer visble elsewhere, so we can safely release
1278 	 * the lock in callout_halt() if needed.
1279 	 */
1280 	TCP_STATINC(TCP_STAT_CLOSED);
1281 	for (j = 0; j < TCPT_NTIMERS; j++) {
1282 		callout_halt(&tp->t_timer[j], softnet_lock);
1283 		callout_destroy(&tp->t_timer[j]);
1284 	}
1285 	callout_halt(&tp->t_delack_ch, softnet_lock);
1286 	callout_destroy(&tp->t_delack_ch);
1287 	pool_put(&tcpcb_pool, tp);
1288 
1289 	return NULL;
1290 }
1291 
1292 int
1293 tcp_freeq(struct tcpcb *tp)
1294 {
1295 	struct ipqent *qe;
1296 	int rv = 0;
1297 #ifdef TCPREASS_DEBUG
1298 	int i = 0;
1299 #endif
1300 
1301 	TCP_REASS_LOCK_CHECK(tp);
1302 
1303 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1304 #ifdef TCPREASS_DEBUG
1305 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1306 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1307 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1308 #endif
1309 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1310 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1311 		m_freem(qe->ipqe_m);
1312 		tcpipqent_free(qe);
1313 		rv = 1;
1314 	}
1315 	tp->t_segqlen = 0;
1316 	KASSERT(TAILQ_EMPTY(&tp->timeq));
1317 	return (rv);
1318 }
1319 
1320 void
1321 tcp_fasttimo(void)
1322 {
1323 	if (tcp_drainwanted) {
1324 		tcp_drain();
1325 		tcp_drainwanted = 0;
1326 	}
1327 }
1328 
1329 void
1330 tcp_drainstub(void)
1331 {
1332 	tcp_drainwanted = 1;
1333 }
1334 
1335 /*
1336  * Protocol drain routine.  Called when memory is in short supply.
1337  * Called from pr_fasttimo thus a callout context.
1338  */
1339 void
1340 tcp_drain(void)
1341 {
1342 	struct inpcb_hdr *inph;
1343 	struct tcpcb *tp;
1344 
1345 	mutex_enter(softnet_lock);
1346 	KERNEL_LOCK(1, NULL);
1347 
1348 	/*
1349 	 * Free the sequence queue of all TCP connections.
1350 	 */
1351 	TAILQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1352 		switch (inph->inph_af) {
1353 		case AF_INET:
1354 			tp = intotcpcb((struct inpcb *)inph);
1355 			break;
1356 #ifdef INET6
1357 		case AF_INET6:
1358 			tp = in6totcpcb((struct in6pcb *)inph);
1359 			break;
1360 #endif
1361 		default:
1362 			tp = NULL;
1363 			break;
1364 		}
1365 		if (tp != NULL) {
1366 			/*
1367 			 * We may be called from a device's interrupt
1368 			 * context.  If the tcpcb is already busy,
1369 			 * just bail out now.
1370 			 */
1371 			if (tcp_reass_lock_try(tp) == 0)
1372 				continue;
1373 			if (tcp_freeq(tp))
1374 				TCP_STATINC(TCP_STAT_CONNSDRAINED);
1375 			TCP_REASS_UNLOCK(tp);
1376 		}
1377 	}
1378 
1379 	KERNEL_UNLOCK_ONE(NULL);
1380 	mutex_exit(softnet_lock);
1381 }
1382 
1383 /*
1384  * Notify a tcp user of an asynchronous error;
1385  * store error as soft error, but wake up user
1386  * (for now, won't do anything until can select for soft error).
1387  */
1388 void
1389 tcp_notify(struct inpcb *inp, int error)
1390 {
1391 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1392 	struct socket *so = inp->inp_socket;
1393 
1394 	/*
1395 	 * Ignore some errors if we are hooked up.
1396 	 * If connection hasn't completed, has retransmitted several times,
1397 	 * and receives a second error, give up now.  This is better
1398 	 * than waiting a long time to establish a connection that
1399 	 * can never complete.
1400 	 */
1401 	if (tp->t_state == TCPS_ESTABLISHED &&
1402 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1403 	      error == EHOSTDOWN)) {
1404 		return;
1405 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1406 	    tp->t_rxtshift > 3 && tp->t_softerror)
1407 		so->so_error = error;
1408 	else
1409 		tp->t_softerror = error;
1410 	cv_broadcast(&so->so_cv);
1411 	sorwakeup(so);
1412 	sowwakeup(so);
1413 }
1414 
1415 #ifdef INET6
1416 void
1417 tcp6_notify(struct in6pcb *in6p, int error)
1418 {
1419 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1420 	struct socket *so = in6p->in6p_socket;
1421 
1422 	/*
1423 	 * Ignore some errors if we are hooked up.
1424 	 * If connection hasn't completed, has retransmitted several times,
1425 	 * and receives a second error, give up now.  This is better
1426 	 * than waiting a long time to establish a connection that
1427 	 * can never complete.
1428 	 */
1429 	if (tp->t_state == TCPS_ESTABLISHED &&
1430 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1431 	      error == EHOSTDOWN)) {
1432 		return;
1433 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1434 	    tp->t_rxtshift > 3 && tp->t_softerror)
1435 		so->so_error = error;
1436 	else
1437 		tp->t_softerror = error;
1438 	cv_broadcast(&so->so_cv);
1439 	sorwakeup(so);
1440 	sowwakeup(so);
1441 }
1442 #endif
1443 
1444 #ifdef INET6
1445 void *
1446 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1447 {
1448 	struct tcphdr th;
1449 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
1450 	int nmatch;
1451 	struct ip6_hdr *ip6;
1452 	const struct sockaddr_in6 *sa6_src = NULL;
1453 	const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1454 	struct mbuf *m;
1455 	int off;
1456 
1457 	if (sa->sa_family != AF_INET6 ||
1458 	    sa->sa_len != sizeof(struct sockaddr_in6))
1459 		return NULL;
1460 	if ((unsigned)cmd >= PRC_NCMDS)
1461 		return NULL;
1462 	else if (cmd == PRC_QUENCH) {
1463 		/*
1464 		 * Don't honor ICMP Source Quench messages meant for
1465 		 * TCP connections.
1466 		 */
1467 		return NULL;
1468 	} else if (PRC_IS_REDIRECT(cmd))
1469 		notify = in6_rtchange, d = NULL;
1470 	else if (cmd == PRC_MSGSIZE)
1471 		; /* special code is present, see below */
1472 	else if (cmd == PRC_HOSTDEAD)
1473 		d = NULL;
1474 	else if (inet6ctlerrmap[cmd] == 0)
1475 		return NULL;
1476 
1477 	/* if the parameter is from icmp6, decode it. */
1478 	if (d != NULL) {
1479 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1480 		m = ip6cp->ip6c_m;
1481 		ip6 = ip6cp->ip6c_ip6;
1482 		off = ip6cp->ip6c_off;
1483 		sa6_src = ip6cp->ip6c_src;
1484 	} else {
1485 		m = NULL;
1486 		ip6 = NULL;
1487 		sa6_src = &sa6_any;
1488 		off = 0;
1489 	}
1490 
1491 	if (ip6) {
1492 		/*
1493 		 * XXX: We assume that when ip6 is non NULL,
1494 		 * M and OFF are valid.
1495 		 */
1496 
1497 		/* check if we can safely examine src and dst ports */
1498 		if (m->m_pkthdr.len < off + sizeof(th)) {
1499 			if (cmd == PRC_MSGSIZE)
1500 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1501 			return NULL;
1502 		}
1503 
1504 		memset(&th, 0, sizeof(th));
1505 		m_copydata(m, off, sizeof(th), (void *)&th);
1506 
1507 		if (cmd == PRC_MSGSIZE) {
1508 			int valid = 0;
1509 
1510 			/*
1511 			 * Check to see if we have a valid TCP connection
1512 			 * corresponding to the address in the ICMPv6 message
1513 			 * payload.
1514 			 */
1515 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1516 			    th.th_dport,
1517 			    (const struct in6_addr *)&sa6_src->sin6_addr,
1518 						  th.th_sport, 0, 0))
1519 				valid++;
1520 
1521 			/*
1522 			 * Depending on the value of "valid" and routing table
1523 			 * size (mtudisc_{hi,lo}wat), we will:
1524 			 * - recalcurate the new MTU and create the
1525 			 *   corresponding routing entry, or
1526 			 * - ignore the MTU change notification.
1527 			 */
1528 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1529 
1530 			/*
1531 			 * no need to call in6_pcbnotify, it should have been
1532 			 * called via callback if necessary
1533 			 */
1534 			return NULL;
1535 		}
1536 
1537 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1538 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1539 		if (nmatch == 0 && syn_cache_count &&
1540 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1541 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
1542 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
1543 			syn_cache_unreach((const struct sockaddr *)sa6_src,
1544 					  sa, &th);
1545 	} else {
1546 		(void) in6_pcbnotify(&tcbtable, sa, 0,
1547 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1548 	}
1549 
1550 	return NULL;
1551 }
1552 #endif
1553 
1554 #ifdef INET
1555 /* assumes that ip header and tcp header are contiguous on mbuf */
1556 void *
1557 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1558 {
1559 	struct ip *ip = v;
1560 	struct tcphdr *th;
1561 	struct icmp *icp;
1562 	extern const int inetctlerrmap[];
1563 	void (*notify)(struct inpcb *, int) = tcp_notify;
1564 	int errno;
1565 	int nmatch;
1566 	struct tcpcb *tp;
1567 	u_int mtu;
1568 	tcp_seq seq;
1569 	struct inpcb *inp;
1570 #ifdef INET6
1571 	struct in6pcb *in6p;
1572 	struct in6_addr src6, dst6;
1573 #endif
1574 
1575 	if (sa->sa_family != AF_INET ||
1576 	    sa->sa_len != sizeof(struct sockaddr_in))
1577 		return NULL;
1578 	if ((unsigned)cmd >= PRC_NCMDS)
1579 		return NULL;
1580 	errno = inetctlerrmap[cmd];
1581 	if (cmd == PRC_QUENCH)
1582 		/*
1583 		 * Don't honor ICMP Source Quench messages meant for
1584 		 * TCP connections.
1585 		 */
1586 		return NULL;
1587 	else if (PRC_IS_REDIRECT(cmd))
1588 		notify = in_rtchange, ip = 0;
1589 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1590 		/*
1591 		 * Check to see if we have a valid TCP connection
1592 		 * corresponding to the address in the ICMP message
1593 		 * payload.
1594 		 *
1595 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1596 		 */
1597 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1598 #ifdef INET6
1599 		in6_in_2_v4mapin6(&ip->ip_src, &src6);
1600 		in6_in_2_v4mapin6(&ip->ip_dst, &dst6);
1601 #endif
1602 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1603 						th->th_dport, ip->ip_src, th->th_sport, 0)) != NULL)
1604 #ifdef INET6
1605 			in6p = NULL;
1606 #else
1607 			;
1608 #endif
1609 #ifdef INET6
1610 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1611 						       th->th_dport, &src6, th->th_sport, 0, 0)) != NULL)
1612 			;
1613 #endif
1614 		else
1615 			return NULL;
1616 
1617 		/*
1618 		 * Now that we've validated that we are actually communicating
1619 		 * with the host indicated in the ICMP message, locate the
1620 		 * ICMP header, recalculate the new MTU, and create the
1621 		 * corresponding routing entry.
1622 		 */
1623 		icp = (struct icmp *)((char *)ip -
1624 		    offsetof(struct icmp, icmp_ip));
1625 		if (inp) {
1626 			if ((tp = intotcpcb(inp)) == NULL)
1627 				return NULL;
1628 		}
1629 #ifdef INET6
1630 		else if (in6p) {
1631 			if ((tp = in6totcpcb(in6p)) == NULL)
1632 				return NULL;
1633 		}
1634 #endif
1635 		else
1636 			return NULL;
1637 		seq = ntohl(th->th_seq);
1638 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1639 			return NULL;
1640 		/*
1641 		 * If the ICMP message advertises a Next-Hop MTU
1642 		 * equal or larger than the maximum packet size we have
1643 		 * ever sent, drop the message.
1644 		 */
1645 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
1646 		if (mtu >= tp->t_pmtud_mtu_sent)
1647 			return NULL;
1648 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1649 			/*
1650 			 * Calculate new MTU, and create corresponding
1651 			 * route (traditional PMTUD).
1652 			 */
1653 			tp->t_flags &= ~TF_PMTUD_PEND;
1654 			icmp_mtudisc(icp, ip->ip_dst);
1655 		} else {
1656 			/*
1657 			 * Record the information got in the ICMP
1658 			 * message; act on it later.
1659 			 * If we had already recorded an ICMP message,
1660 			 * replace the old one only if the new message
1661 			 * refers to an older TCP segment
1662 			 */
1663 			if (tp->t_flags & TF_PMTUD_PEND) {
1664 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1665 					return NULL;
1666 			} else
1667 				tp->t_flags |= TF_PMTUD_PEND;
1668 			tp->t_pmtud_th_seq = seq;
1669 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1670 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1671 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1672 		}
1673 		return NULL;
1674 	} else if (cmd == PRC_HOSTDEAD)
1675 		ip = 0;
1676 	else if (errno == 0)
1677 		return NULL;
1678 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1679 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1680 		nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1681 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1682 		if (nmatch == 0 && syn_cache_count &&
1683 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
1684 		    inetctlerrmap[cmd] == ENETUNREACH ||
1685 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
1686 			struct sockaddr_in sin;
1687 			memset(&sin, 0, sizeof(sin));
1688 			sin.sin_len = sizeof(sin);
1689 			sin.sin_family = AF_INET;
1690 			sin.sin_port = th->th_sport;
1691 			sin.sin_addr = ip->ip_src;
1692 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1693 		}
1694 
1695 		/* XXX mapped address case */
1696 	} else
1697 		in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1698 		    notify);
1699 	return NULL;
1700 }
1701 
1702 /*
1703  * When a source quench is received, we are being notified of congestion.
1704  * Close the congestion window down to the Loss Window (one segment).
1705  * We will gradually open it again as we proceed.
1706  */
1707 void
1708 tcp_quench(struct inpcb *inp, int errno)
1709 {
1710 	struct tcpcb *tp = intotcpcb(inp);
1711 
1712 	if (tp) {
1713 		tp->snd_cwnd = tp->t_segsz;
1714 		tp->t_bytes_acked = 0;
1715 	}
1716 }
1717 #endif
1718 
1719 #ifdef INET6
1720 void
1721 tcp6_quench(struct in6pcb *in6p, int errno)
1722 {
1723 	struct tcpcb *tp = in6totcpcb(in6p);
1724 
1725 	if (tp) {
1726 		tp->snd_cwnd = tp->t_segsz;
1727 		tp->t_bytes_acked = 0;
1728 	}
1729 }
1730 #endif
1731 
1732 #ifdef INET
1733 /*
1734  * Path MTU Discovery handlers.
1735  */
1736 void
1737 tcp_mtudisc_callback(struct in_addr faddr)
1738 {
1739 #ifdef INET6
1740 	struct in6_addr in6;
1741 #endif
1742 
1743 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1744 #ifdef INET6
1745 	in6_in_2_v4mapin6(&faddr, &in6);
1746 	tcp6_mtudisc_callback(&in6);
1747 #endif
1748 }
1749 
1750 /*
1751  * On receipt of path MTU corrections, flush old route and replace it
1752  * with the new one.  Retransmit all unacknowledged packets, to ensure
1753  * that all packets will be received.
1754  */
1755 void
1756 tcp_mtudisc(struct inpcb *inp, int errno)
1757 {
1758 	struct tcpcb *tp = intotcpcb(inp);
1759 	struct rtentry *rt;
1760 
1761 	if (tp == NULL)
1762 		return;
1763 
1764 	rt = in_pcbrtentry(inp);
1765 	if (rt != NULL) {
1766 		/*
1767 		 * If this was not a host route, remove and realloc.
1768 		 */
1769 		if ((rt->rt_flags & RTF_HOST) == 0) {
1770 			in_pcbrtentry_unref(rt, inp);
1771 			in_rtchange(inp, errno);
1772 			if ((rt = in_pcbrtentry(inp)) == NULL)
1773 				return;
1774 		}
1775 
1776 		/*
1777 		 * Slow start out of the error condition.  We
1778 		 * use the MTU because we know it's smaller
1779 		 * than the previously transmitted segment.
1780 		 *
1781 		 * Note: This is more conservative than the
1782 		 * suggestion in draft-floyd-incr-init-win-03.
1783 		 */
1784 		if (rt->rt_rmx.rmx_mtu != 0)
1785 			tp->snd_cwnd =
1786 			    TCP_INITIAL_WINDOW(tcp_init_win,
1787 			    rt->rt_rmx.rmx_mtu);
1788 		in_pcbrtentry_unref(rt, inp);
1789 	}
1790 
1791 	/*
1792 	 * Resend unacknowledged packets.
1793 	 */
1794 	tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1795 	tcp_output(tp);
1796 }
1797 #endif /* INET */
1798 
1799 #ifdef INET6
1800 /*
1801  * Path MTU Discovery handlers.
1802  */
1803 void
1804 tcp6_mtudisc_callback(struct in6_addr *faddr)
1805 {
1806 	struct sockaddr_in6 sin6;
1807 
1808 	memset(&sin6, 0, sizeof(sin6));
1809 	sin6.sin6_family = AF_INET6;
1810 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1811 	sin6.sin6_addr = *faddr;
1812 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1813 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1814 }
1815 
1816 void
1817 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1818 {
1819 	struct tcpcb *tp = in6totcpcb(in6p);
1820 	struct rtentry *rt;
1821 
1822 	if (tp == NULL)
1823 		return;
1824 
1825 	rt = in6_pcbrtentry(in6p);
1826 	if (rt != NULL) {
1827 		/*
1828 		 * If this was not a host route, remove and realloc.
1829 		 */
1830 		if ((rt->rt_flags & RTF_HOST) == 0) {
1831 			in6_pcbrtentry_unref(rt, in6p);
1832 			in6_rtchange(in6p, errno);
1833 			rt = in6_pcbrtentry(in6p);
1834 			if (rt == NULL)
1835 				return;
1836 		}
1837 
1838 		/*
1839 		 * Slow start out of the error condition.  We
1840 		 * use the MTU because we know it's smaller
1841 		 * than the previously transmitted segment.
1842 		 *
1843 		 * Note: This is more conservative than the
1844 		 * suggestion in draft-floyd-incr-init-win-03.
1845 		 */
1846 		if (rt->rt_rmx.rmx_mtu != 0) {
1847 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1848 			    rt->rt_rmx.rmx_mtu);
1849 		}
1850 		in6_pcbrtentry_unref(rt, in6p);
1851 	}
1852 
1853 	/*
1854 	 * Resend unacknowledged packets.
1855 	 */
1856 	tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1857 	tcp_output(tp);
1858 }
1859 #endif /* INET6 */
1860 
1861 /*
1862  * Compute the MSS to advertise to the peer.  Called only during
1863  * the 3-way handshake.  If we are the server (peer initiated
1864  * connection), we are called with a pointer to the interface
1865  * on which the SYN packet arrived.  If we are the client (we
1866  * initiated connection), we are called with a pointer to the
1867  * interface out which this connection should go.
1868  *
1869  * NOTE: Do not subtract IP option/extension header size nor IPsec
1870  * header size from MSS advertisement.  MSS option must hold the maximum
1871  * segment size we can accept, so it must always be:
1872  *	 max(if mtu) - ip header - tcp header
1873  */
1874 u_long
1875 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1876 {
1877 	extern u_long in_maxmtu;
1878 	u_long mss = 0;
1879 	u_long hdrsiz;
1880 
1881 	/*
1882 	 * In order to avoid defeating path MTU discovery on the peer,
1883 	 * we advertise the max MTU of all attached networks as our MSS,
1884 	 * per RFC 1191, section 3.1.
1885 	 *
1886 	 * We provide the option to advertise just the MTU of
1887 	 * the interface on which we hope this connection will
1888 	 * be receiving.  If we are responding to a SYN, we
1889 	 * will have a pretty good idea about this, but when
1890 	 * initiating a connection there is a bit more doubt.
1891 	 *
1892 	 * We also need to ensure that loopback has a large enough
1893 	 * MSS, as the loopback MTU is never included in in_maxmtu.
1894 	 */
1895 
1896 	if (ifp != NULL)
1897 		switch (af) {
1898 		case AF_INET:
1899 			mss = ifp->if_mtu;
1900 			break;
1901 #ifdef INET6
1902 		case AF_INET6:
1903 			mss = IN6_LINKMTU(ifp);
1904 			break;
1905 #endif
1906 		}
1907 
1908 	if (tcp_mss_ifmtu == 0)
1909 		switch (af) {
1910 		case AF_INET:
1911 			mss = max(in_maxmtu, mss);
1912 			break;
1913 #ifdef INET6
1914 		case AF_INET6:
1915 			mss = max(in6_maxmtu, mss);
1916 			break;
1917 #endif
1918 		}
1919 
1920 	switch (af) {
1921 	case AF_INET:
1922 		hdrsiz = sizeof(struct ip);
1923 		break;
1924 #ifdef INET6
1925 	case AF_INET6:
1926 		hdrsiz = sizeof(struct ip6_hdr);
1927 		break;
1928 #endif
1929 	default:
1930 		hdrsiz = 0;
1931 		break;
1932 	}
1933 	hdrsiz += sizeof(struct tcphdr);
1934 	if (mss > hdrsiz)
1935 		mss -= hdrsiz;
1936 
1937 	mss = max(tcp_mssdflt, mss);
1938 	return (mss);
1939 }
1940 
1941 /*
1942  * Set connection variables based on the peer's advertised MSS.
1943  * We are passed the TCPCB for the actual connection.  If we
1944  * are the server, we are called by the compressed state engine
1945  * when the 3-way handshake is complete.  If we are the client,
1946  * we are called when we receive the SYN,ACK from the server.
1947  *
1948  * NOTE: Our advertised MSS value must be initialized in the TCPCB
1949  * before this routine is called!
1950  */
1951 void
1952 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1953 {
1954 	struct socket *so;
1955 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1956 	struct rtentry *rt;
1957 #endif
1958 	u_long bufsize;
1959 	int mss;
1960 
1961 #ifdef DIAGNOSTIC
1962 	if (tp->t_inpcb && tp->t_in6pcb)
1963 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1964 #endif
1965 	so = NULL;
1966 	rt = NULL;
1967 #ifdef INET
1968 	if (tp->t_inpcb) {
1969 		so = tp->t_inpcb->inp_socket;
1970 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1971 		rt = in_pcbrtentry(tp->t_inpcb);
1972 #endif
1973 	}
1974 #endif
1975 #ifdef INET6
1976 	if (tp->t_in6pcb) {
1977 		so = tp->t_in6pcb->in6p_socket;
1978 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1979 		rt = in6_pcbrtentry(tp->t_in6pcb);
1980 #endif
1981 	}
1982 #endif
1983 
1984 	/*
1985 	 * As per RFC1122, use the default MSS value, unless they
1986 	 * sent us an offer.  Do not accept offers less than 256 bytes.
1987 	 */
1988 	mss = tcp_mssdflt;
1989 	if (offer)
1990 		mss = offer;
1991 	mss = max(mss, 256);		/* sanity */
1992 	tp->t_peermss = mss;
1993 	mss -= tcp_optlen(tp);
1994 #ifdef INET
1995 	if (tp->t_inpcb)
1996 		mss -= ip_optlen(tp->t_inpcb);
1997 #endif
1998 #ifdef INET6
1999 	if (tp->t_in6pcb)
2000 		mss -= ip6_optlen(tp->t_in6pcb);
2001 #endif
2002 
2003 	/*
2004 	 * If there's a pipesize, change the socket buffer to that size.
2005 	 * Make the socket buffer an integral number of MSS units.  If
2006 	 * the MSS is larger than the socket buffer, artificially decrease
2007 	 * the MSS.
2008 	 */
2009 #ifdef RTV_SPIPE
2010 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
2011 		bufsize = rt->rt_rmx.rmx_sendpipe;
2012 	else
2013 #endif
2014 	{
2015 		KASSERT(so != NULL);
2016 		bufsize = so->so_snd.sb_hiwat;
2017 	}
2018 	if (bufsize < mss)
2019 		mss = bufsize;
2020 	else {
2021 		bufsize = roundup(bufsize, mss);
2022 		if (bufsize > sb_max)
2023 			bufsize = sb_max;
2024 		(void) sbreserve(&so->so_snd, bufsize, so);
2025 	}
2026 	tp->t_segsz = mss;
2027 
2028 #ifdef RTV_SSTHRESH
2029 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
2030 		/*
2031 		 * There's some sort of gateway or interface buffer
2032 		 * limit on the path.  Use this to set the slow
2033 		 * start threshold, but set the threshold to no less
2034 		 * than 2 * MSS.
2035 		 */
2036 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2037 	}
2038 #endif
2039 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
2040 #ifdef INET
2041 	if (tp->t_inpcb)
2042 		in_pcbrtentry_unref(rt, tp->t_inpcb);
2043 #endif
2044 #ifdef INET6
2045 	if (tp->t_in6pcb)
2046 		in6_pcbrtentry_unref(rt, tp->t_in6pcb);
2047 #endif
2048 #endif
2049 }
2050 
2051 /*
2052  * Processing necessary when a TCP connection is established.
2053  */
2054 void
2055 tcp_established(struct tcpcb *tp)
2056 {
2057 	struct socket *so;
2058 #ifdef RTV_RPIPE
2059 	struct rtentry *rt;
2060 #endif
2061 	u_long bufsize;
2062 
2063 #ifdef DIAGNOSTIC
2064 	if (tp->t_inpcb && tp->t_in6pcb)
2065 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
2066 #endif
2067 	so = NULL;
2068 	rt = NULL;
2069 #ifdef INET
2070 	/* This is a while() to reduce the dreadful stairstepping below */
2071 	while (tp->t_inpcb) {
2072 		so = tp->t_inpcb->inp_socket;
2073 #if defined(RTV_RPIPE)
2074 		rt = in_pcbrtentry(tp->t_inpcb);
2075 #endif
2076 		if (__predict_true(tcp_msl_enable)) {
2077 			if (tp->t_inpcb->inp_laddr.s_addr == INADDR_LOOPBACK) {
2078 				tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
2079 				break;
2080 			}
2081 
2082 			if (__predict_false(tcp_rttlocal)) {
2083 				/* This may be adjusted by tcp_input */
2084 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2085 				break;
2086 			}
2087 			if (in_localaddr(tp->t_inpcb->inp_faddr)) {
2088 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2089 				break;
2090 			}
2091 		}
2092 		tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2093 		break;
2094 	}
2095 #endif
2096 #ifdef INET6
2097 	/* The !tp->t_inpcb lets the compiler know it can't be v4 *and* v6 */
2098 	while (!tp->t_inpcb && tp->t_in6pcb) {
2099 		so = tp->t_in6pcb->in6p_socket;
2100 #if defined(RTV_RPIPE)
2101 		rt = in6_pcbrtentry(tp->t_in6pcb);
2102 #endif
2103 		if (__predict_true(tcp_msl_enable)) {
2104 			extern const struct in6_addr in6addr_loopback;
2105 
2106 			if (IN6_ARE_ADDR_EQUAL(&tp->t_in6pcb->in6p_laddr,
2107 					       &in6addr_loopback)) {
2108 				tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
2109 				break;
2110 			}
2111 
2112 			if (__predict_false(tcp_rttlocal)) {
2113 				/* This may be adjusted by tcp_input */
2114 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2115 				break;
2116 			}
2117 			if (in6_localaddr(&tp->t_in6pcb->in6p_faddr)) {
2118 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2119 				break;
2120 			}
2121 		}
2122 		tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2123 		break;
2124 	}
2125 #endif
2126 
2127 	tp->t_state = TCPS_ESTABLISHED;
2128 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2129 
2130 #ifdef RTV_RPIPE
2131 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2132 		bufsize = rt->rt_rmx.rmx_recvpipe;
2133 	else
2134 #endif
2135 	{
2136 		KASSERT(so != NULL);
2137 		bufsize = so->so_rcv.sb_hiwat;
2138 	}
2139 	if (bufsize > tp->t_ourmss) {
2140 		bufsize = roundup(bufsize, tp->t_ourmss);
2141 		if (bufsize > sb_max)
2142 			bufsize = sb_max;
2143 		(void) sbreserve(&so->so_rcv, bufsize, so);
2144 	}
2145 #ifdef RTV_RPIPE
2146 #ifdef INET
2147 	if (tp->t_inpcb)
2148 		in_pcbrtentry_unref(rt, tp->t_inpcb);
2149 #endif
2150 #ifdef INET6
2151 	if (tp->t_in6pcb)
2152 		in6_pcbrtentry_unref(rt, tp->t_in6pcb);
2153 #endif
2154 #endif
2155 }
2156 
2157 /*
2158  * Check if there's an initial rtt or rttvar.  Convert from the
2159  * route-table units to scaled multiples of the slow timeout timer.
2160  * Called only during the 3-way handshake.
2161  */
2162 void
2163 tcp_rmx_rtt(struct tcpcb *tp)
2164 {
2165 #ifdef RTV_RTT
2166 	struct rtentry *rt = NULL;
2167 	int rtt;
2168 
2169 #ifdef DIAGNOSTIC
2170 	if (tp->t_inpcb && tp->t_in6pcb)
2171 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2172 #endif
2173 #ifdef INET
2174 	if (tp->t_inpcb)
2175 		rt = in_pcbrtentry(tp->t_inpcb);
2176 #endif
2177 #ifdef INET6
2178 	if (tp->t_in6pcb)
2179 		rt = in6_pcbrtentry(tp->t_in6pcb);
2180 #endif
2181 	if (rt == NULL)
2182 		return;
2183 
2184 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2185 		/*
2186 		 * XXX The lock bit for MTU indicates that the value
2187 		 * is also a minimum value; this is subject to time.
2188 		 */
2189 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2190 			TCPT_RANGESET(tp->t_rttmin,
2191 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2192 			    TCPTV_MIN, TCPTV_REXMTMAX);
2193 		tp->t_srtt = rtt /
2194 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2195 		if (rt->rt_rmx.rmx_rttvar) {
2196 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2197 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
2198 				(TCP_RTTVAR_SHIFT + 2));
2199 		} else {
2200 			/* Default variation is +- 1 rtt */
2201 			tp->t_rttvar =
2202 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2203 		}
2204 		TCPT_RANGESET(tp->t_rxtcur,
2205 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2206 		    tp->t_rttmin, TCPTV_REXMTMAX);
2207 	}
2208 #ifdef INET
2209 	if (tp->t_inpcb)
2210 		in_pcbrtentry_unref(rt, tp->t_inpcb);
2211 #endif
2212 #ifdef INET6
2213 	if (tp->t_in6pcb)
2214 		in6_pcbrtentry_unref(rt, tp->t_in6pcb);
2215 #endif
2216 #endif
2217 }
2218 
2219 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
2220 
2221 /*
2222  * Get a new sequence value given a tcp control block
2223  */
2224 tcp_seq
2225 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2226 {
2227 
2228 #ifdef INET
2229 	if (tp->t_inpcb != NULL) {
2230 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2231 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2232 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2233 		    addin));
2234 	}
2235 #endif
2236 #ifdef INET6
2237 	if (tp->t_in6pcb != NULL) {
2238 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2239 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2240 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2241 		    addin));
2242 	}
2243 #endif
2244 	/* Not possible. */
2245 	panic("tcp_new_iss");
2246 }
2247 
2248 static u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
2249 
2250 /*
2251  * Initialize RFC 1948 ISS Secret
2252  */
2253 static int
2254 tcp_iss_secret_init(void)
2255 {
2256 	cprng_strong(kern_cprng,
2257 	    tcp_iss_secret, sizeof(tcp_iss_secret), 0);
2258 
2259 	return 0;
2260 }
2261 
2262 /*
2263  * This routine actually generates a new TCP initial sequence number.
2264  */
2265 tcp_seq
2266 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2267     size_t addrsz, tcp_seq addin)
2268 {
2269 	tcp_seq tcp_iss;
2270 
2271 	if (tcp_do_rfc1948) {
2272 		MD5_CTX ctx;
2273 		u_int8_t hash[16];	/* XXX MD5 knowledge */
2274 		static ONCE_DECL(tcp_iss_secret_control);
2275 
2276 		/*
2277 		 * If we haven't been here before, initialize our cryptographic
2278 		 * hash secret.
2279 		 */
2280 		RUN_ONCE(&tcp_iss_secret_control, tcp_iss_secret_init);
2281 
2282 		/*
2283 		 * Compute the base value of the ISS.  It is a hash
2284 		 * of (saddr, sport, daddr, dport, secret).
2285 		 */
2286 		MD5Init(&ctx);
2287 
2288 		MD5Update(&ctx, (u_char *) laddr, addrsz);
2289 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2290 
2291 		MD5Update(&ctx, (u_char *) faddr, addrsz);
2292 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2293 
2294 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2295 
2296 		MD5Final(hash, &ctx);
2297 
2298 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2299 
2300 		/*
2301 		 * Now increment our "timer", and add it in to
2302 		 * the computed value.
2303 		 *
2304 		 * XXX Use `addin'?
2305 		 * XXX TCP_ISSINCR too large to use?
2306 		 */
2307 		tcp_iss_seq += TCP_ISSINCR;
2308 #ifdef TCPISS_DEBUG
2309 		printf("ISS hash 0x%08x, ", tcp_iss);
2310 #endif
2311 		tcp_iss += tcp_iss_seq + addin;
2312 #ifdef TCPISS_DEBUG
2313 		printf("new ISS 0x%08x\n", tcp_iss);
2314 #endif
2315 	} else {
2316 		/*
2317 		 * Randomize.
2318 		 */
2319 		tcp_iss = cprng_fast32();
2320 
2321 		/*
2322 		 * If we were asked to add some amount to a known value,
2323 		 * we will take a random value obtained above, mask off
2324 		 * the upper bits, and add in the known value.  We also
2325 		 * add in a constant to ensure that we are at least a
2326 		 * certain distance from the original value.
2327 		 *
2328 		 * This is used when an old connection is in timed wait
2329 		 * and we have a new one coming in, for instance.
2330 		 */
2331 		if (addin != 0) {
2332 #ifdef TCPISS_DEBUG
2333 			printf("Random %08x, ", tcp_iss);
2334 #endif
2335 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2336 			tcp_iss += addin + TCP_ISSINCR;
2337 #ifdef TCPISS_DEBUG
2338 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2339 #endif
2340 		} else {
2341 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2342 			tcp_iss += tcp_iss_seq;
2343 			tcp_iss_seq += TCP_ISSINCR;
2344 #ifdef TCPISS_DEBUG
2345 			printf("ISS %08x\n", tcp_iss);
2346 #endif
2347 		}
2348 	}
2349 
2350 	if (tcp_compat_42) {
2351 		/*
2352 		 * Limit it to the positive range for really old TCP
2353 		 * implementations.
2354 		 * Just AND off the top bit instead of checking if
2355 		 * is set first - saves a branch 50% of the time.
2356 		 */
2357 		tcp_iss &= 0x7fffffff;		/* XXX */
2358 	}
2359 
2360 	return (tcp_iss);
2361 }
2362 
2363 #if defined(IPSEC)
2364 /* compute ESP/AH header size for TCP, including outer IP header. */
2365 size_t
2366 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2367 {
2368 	struct inpcb *inp;
2369 	size_t hdrsiz;
2370 
2371 	/* XXX mapped addr case (tp->t_in6pcb) */
2372 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2373 		return 0;
2374 	switch (tp->t_family) {
2375 	case AF_INET:
2376 		/* XXX: should use currect direction. */
2377 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2378 		break;
2379 	default:
2380 		hdrsiz = 0;
2381 		break;
2382 	}
2383 
2384 	return hdrsiz;
2385 }
2386 
2387 #ifdef INET6
2388 size_t
2389 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2390 {
2391 	struct in6pcb *in6p;
2392 	size_t hdrsiz;
2393 
2394 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2395 		return 0;
2396 	switch (tp->t_family) {
2397 	case AF_INET6:
2398 		/* XXX: should use currect direction. */
2399 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2400 		break;
2401 	case AF_INET:
2402 		/* mapped address case - tricky */
2403 	default:
2404 		hdrsiz = 0;
2405 		break;
2406 	}
2407 
2408 	return hdrsiz;
2409 }
2410 #endif
2411 #endif /*IPSEC*/
2412 
2413 /*
2414  * Determine the length of the TCP options for this connection.
2415  *
2416  * XXX:  What do we do for SACK, when we add that?  Just reserve
2417  *       all of the space?  Otherwise we can't exactly be incrementing
2418  *       cwnd by an amount that varies depending on the amount we last
2419  *       had to SACK!
2420  */
2421 
2422 u_int
2423 tcp_optlen(struct tcpcb *tp)
2424 {
2425 	u_int optlen;
2426 
2427 	optlen = 0;
2428 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2429 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2430 		optlen += TCPOLEN_TSTAMP_APPA;
2431 
2432 #ifdef TCP_SIGNATURE
2433 	if (tp->t_flags & TF_SIGNATURE)
2434 		optlen += TCPOLEN_SIGLEN;
2435 #endif /* TCP_SIGNATURE */
2436 
2437 	return optlen;
2438 }
2439 
2440 u_int
2441 tcp_hdrsz(struct tcpcb *tp)
2442 {
2443 	u_int hlen;
2444 
2445 	switch (tp->t_family) {
2446 #ifdef INET6
2447 	case AF_INET6:
2448 		hlen = sizeof(struct ip6_hdr);
2449 		break;
2450 #endif
2451 	case AF_INET:
2452 		hlen = sizeof(struct ip);
2453 		break;
2454 	default:
2455 		hlen = 0;
2456 		break;
2457 	}
2458 	hlen += sizeof(struct tcphdr);
2459 
2460 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2461 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2462 		hlen += TCPOLEN_TSTAMP_APPA;
2463 #ifdef TCP_SIGNATURE
2464 	if (tp->t_flags & TF_SIGNATURE)
2465 		hlen += TCPOLEN_SIGLEN;
2466 #endif
2467 	return hlen;
2468 }
2469 
2470 void
2471 tcp_statinc(u_int stat)
2472 {
2473 
2474 	KASSERT(stat < TCP_NSTATS);
2475 	TCP_STATINC(stat);
2476 }
2477 
2478 void
2479 tcp_statadd(u_int stat, uint64_t val)
2480 {
2481 
2482 	KASSERT(stat < TCP_NSTATS);
2483 	TCP_STATADD(stat, val);
2484 }
2485