xref: /netbsd-src/sys/netinet/tcp_subr.c (revision 5f2f42719cd62ff11fd913b40b7ce19f07c4fd25)
1 /*	$NetBSD: tcp_subr.c,v 1.291 2022/09/20 07:19:14 ozaki-r Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38  * Facility, NASA Ames Research Center.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59  * POSSIBILITY OF SUCH DAMAGE.
60  */
61 
62 /*
63  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
64  *	The Regents of the University of California.  All rights reserved.
65  *
66  * Redistribution and use in source and binary forms, with or without
67  * modification, are permitted provided that the following conditions
68  * are met:
69  * 1. Redistributions of source code must retain the above copyright
70  *    notice, this list of conditions and the following disclaimer.
71  * 2. Redistributions in binary form must reproduce the above copyright
72  *    notice, this list of conditions and the following disclaimer in the
73  *    documentation and/or other materials provided with the distribution.
74  * 3. Neither the name of the University nor the names of its contributors
75  *    may be used to endorse or promote products derived from this software
76  *    without specific prior written permission.
77  *
78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88  * SUCH DAMAGE.
89  *
90  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
91  */
92 
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.291 2022/09/20 07:19:14 ozaki-r Exp $");
95 
96 #ifdef _KERNEL_OPT
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_inet_csum.h"
100 #include "opt_mbuftrace.h"
101 #endif
102 
103 #include <sys/param.h>
104 #include <sys/atomic.h>
105 #include <sys/proc.h>
106 #include <sys/systm.h>
107 #include <sys/mbuf.h>
108 #include <sys/once.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/protosw.h>
112 #include <sys/errno.h>
113 #include <sys/kernel.h>
114 #include <sys/pool.h>
115 #include <sys/md5.h>
116 #include <sys/cprng.h>
117 
118 #include <net/route.h>
119 #include <net/if.h>
120 
121 #include <netinet/in.h>
122 #include <netinet/in_systm.h>
123 #include <netinet/ip.h>
124 #include <netinet/in_pcb.h>
125 #include <netinet/ip_var.h>
126 #include <netinet/ip_icmp.h>
127 
128 #ifdef INET6
129 #include <netinet/ip6.h>
130 #include <netinet6/in6_pcb.h>
131 #include <netinet6/ip6_var.h>
132 #include <netinet6/in6_var.h>
133 #include <netinet6/ip6protosw.h>
134 #include <netinet/icmp6.h>
135 #include <netinet6/nd6.h>
136 #endif
137 
138 #include <netinet/tcp.h>
139 #include <netinet/tcp_fsm.h>
140 #include <netinet/tcp_seq.h>
141 #include <netinet/tcp_timer.h>
142 #include <netinet/tcp_var.h>
143 #include <netinet/tcp_vtw.h>
144 #include <netinet/tcp_private.h>
145 #include <netinet/tcp_congctl.h>
146 #include <netinet/tcp_syncache.h>
147 
148 #ifdef IPSEC
149 #include <netipsec/ipsec.h>
150 #ifdef INET6
151 #include <netipsec/ipsec6.h>
152 #endif
153 #include <netipsec/key.h>
154 #endif
155 
156 
157 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
158 u_int32_t tcp_now;		/* slow ticks, for RFC 1323 timestamps */
159 
160 percpu_t *tcpstat_percpu;
161 
162 /* patchable/settable parameters for tcp */
163 int 	tcp_mssdflt = TCP_MSS;
164 int	tcp_minmss = TCP_MINMSS;
165 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
166 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
167 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
168 int	tcp_do_sack = 1;	/* selective acknowledgement */
169 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
170 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
171 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
172 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
173 #ifndef TCP_INIT_WIN
174 #define	TCP_INIT_WIN	4	/* initial slow start window */
175 #endif
176 #ifndef TCP_INIT_WIN_LOCAL
177 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
178 #endif
179 /*
180  * Up to 5 we scale linearly, to reach 3 * 1460; then (iw) * 1460.
181  * This is to simulate current behavior for iw == 4
182  */
183 int tcp_init_win_max[] = {
184 	 1 * 1460,
185 	 1 * 1460,
186 	 2 * 1460,
187 	 2 * 1460,
188 	 3 * 1460,
189 	 5 * 1460,
190 	 6 * 1460,
191 	 7 * 1460,
192 	 8 * 1460,
193 	 9 * 1460,
194 	10 * 1460
195 };
196 int	tcp_init_win = TCP_INIT_WIN;
197 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
198 int	tcp_mss_ifmtu = 0;
199 int	tcp_rst_ppslim = 100;	/* 100pps */
200 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
201 int	tcp_do_loopback_cksum = 0;
202 int	tcp_do_abc = 1;		/* RFC3465 Appropriate byte counting. */
203 int	tcp_abc_aggressive = 1;	/* 1: L=2*SMSS  0: L=1*SMSS */
204 int	tcp_sack_tp_maxholes = 32;
205 int	tcp_sack_globalmaxholes = 1024;
206 int	tcp_sack_globalholes = 0;
207 int	tcp_ecn_maxretries = 1;
208 int	tcp_msl_enable = 1;		/* enable TIME_WAIT truncation	*/
209 int	tcp_msl_loop   = PR_SLOWHZ;	/* MSL for loopback		*/
210 int	tcp_msl_local  = 5 * PR_SLOWHZ;	/* MSL for 'local'		*/
211 int	tcp_msl_remote = TCPTV_MSL;	/* MSL otherwise		*/
212 int	tcp_msl_remote_threshold = TCPTV_SRTTDFLT;	/* RTT threshold */
213 int	tcp_rttlocal = 0;		/* Use RTT to decide who's 'local' */
214 
215 int	tcp4_vtw_enable = 0;		/* 1 to enable */
216 int	tcp6_vtw_enable = 0;		/* 1 to enable */
217 int	tcp_vtw_was_enabled = 0;
218 int	tcp_vtw_entries = 1 << 4;	/* 16 vestigial TIME_WAIT entries */
219 
220 /* tcb hash */
221 #ifndef TCBHASHSIZE
222 #define	TCBHASHSIZE	128
223 #endif
224 int	tcbhashsize = TCBHASHSIZE;
225 
226 int	tcp_freeq(struct tcpcb *);
227 static int	tcp_iss_secret_init(void);
228 
229 static void	tcp_mtudisc_callback(struct in_addr);
230 
231 #ifdef INET6
232 static void	tcp6_mtudisc(struct in6pcb *, int);
233 #endif
234 
235 static struct pool tcpcb_pool;
236 
237 static int tcp_drainwanted;
238 
239 #ifdef TCP_CSUM_COUNTERS
240 #include <sys/device.h>
241 
242 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
243     NULL, "tcp", "hwcsum bad");
244 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
245     NULL, "tcp", "hwcsum ok");
246 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
247     NULL, "tcp", "hwcsum data");
248 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
249     NULL, "tcp", "swcsum");
250 
251 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
252 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
253 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
254 EVCNT_ATTACH_STATIC(tcp_swcsum);
255 
256 #if defined(INET6)
257 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
258     NULL, "tcp6", "hwcsum bad");
259 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
260     NULL, "tcp6", "hwcsum ok");
261 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262     NULL, "tcp6", "hwcsum data");
263 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264     NULL, "tcp6", "swcsum");
265 
266 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
267 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
268 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
269 EVCNT_ATTACH_STATIC(tcp6_swcsum);
270 #endif /* defined(INET6) */
271 #endif /* TCP_CSUM_COUNTERS */
272 
273 
274 #ifdef TCP_OUTPUT_COUNTERS
275 #include <sys/device.h>
276 
277 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
278     NULL, "tcp", "output big header");
279 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
280     NULL, "tcp", "output predict hit");
281 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282     NULL, "tcp", "output predict miss");
283 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284     NULL, "tcp", "output copy small");
285 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286     NULL, "tcp", "output copy big");
287 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288     NULL, "tcp", "output reference big");
289 
290 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
291 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
292 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
293 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
294 EVCNT_ATTACH_STATIC(tcp_output_copybig);
295 EVCNT_ATTACH_STATIC(tcp_output_refbig);
296 
297 #endif /* TCP_OUTPUT_COUNTERS */
298 
299 #ifdef TCP_REASS_COUNTERS
300 #include <sys/device.h>
301 
302 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
303     NULL, "tcp_reass", "calls");
304 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
305     &tcp_reass_, "tcp_reass", "insert into empty queue");
306 struct evcnt tcp_reass_iteration[8] = {
307     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
308     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
309     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
310     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
311     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
312     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
315 };
316 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
317     &tcp_reass_, "tcp_reass", "prepend to first");
318 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
319     &tcp_reass_, "tcp_reass", "prepend");
320 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
321     &tcp_reass_, "tcp_reass", "insert");
322 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
323     &tcp_reass_, "tcp_reass", "insert at tail");
324 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
325     &tcp_reass_, "tcp_reass", "append");
326 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
327     &tcp_reass_, "tcp_reass", "append to tail fragment");
328 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
329     &tcp_reass_, "tcp_reass", "overlap at end");
330 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
331     &tcp_reass_, "tcp_reass", "overlap at start");
332 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
333     &tcp_reass_, "tcp_reass", "duplicate segment");
334 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
335     &tcp_reass_, "tcp_reass", "duplicate fragment");
336 
337 EVCNT_ATTACH_STATIC(tcp_reass_);
338 EVCNT_ATTACH_STATIC(tcp_reass_empty);
339 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
340 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
341 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
342 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
343 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
344 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
347 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
348 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
349 EVCNT_ATTACH_STATIC(tcp_reass_insert);
350 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
351 EVCNT_ATTACH_STATIC(tcp_reass_append);
352 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
353 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
354 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
355 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
356 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
357 
358 #endif /* TCP_REASS_COUNTERS */
359 
360 #ifdef MBUFTRACE
361 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
362 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
363 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
364 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
365 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
366 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
367 #endif
368 
369 static int
370 do_tcpinit(void)
371 {
372 
373 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
374 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
375 	    NULL, IPL_SOFTNET);
376 
377 	tcp_usrreq_init();
378 
379 	/* Initialize timer state. */
380 	tcp_timer_init();
381 
382 	/* Initialize the compressed state engine. */
383 	syn_cache_init();
384 
385 	/* Initialize the congestion control algorithms. */
386 	tcp_congctl_init();
387 
388 	/* Initialize the TCPCB template. */
389 	tcp_tcpcb_template();
390 
391 	/* Initialize reassembly queue */
392 	tcpipqent_init();
393 
394 	/* SACK */
395 	tcp_sack_init();
396 
397 	MOWNER_ATTACH(&tcp_tx_mowner);
398 	MOWNER_ATTACH(&tcp_rx_mowner);
399 	MOWNER_ATTACH(&tcp_reass_mowner);
400 	MOWNER_ATTACH(&tcp_sock_mowner);
401 	MOWNER_ATTACH(&tcp_sock_tx_mowner);
402 	MOWNER_ATTACH(&tcp_sock_rx_mowner);
403 	MOWNER_ATTACH(&tcp_mowner);
404 
405 	tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
406 
407 	vtw_earlyinit();
408 
409 	tcp_slowtimo_init();
410 
411 	return 0;
412 }
413 
414 void
415 tcp_init_common(unsigned basehlen)
416 {
417 	static ONCE_DECL(dotcpinit);
418 	unsigned hlen = basehlen + sizeof(struct tcphdr);
419 	unsigned oldhlen;
420 
421 	if (max_linkhdr + hlen > MHLEN)
422 		panic("tcp_init");
423 	while ((oldhlen = max_protohdr) < hlen)
424 		atomic_cas_uint(&max_protohdr, oldhlen, hlen);
425 
426 	RUN_ONCE(&dotcpinit, do_tcpinit);
427 }
428 
429 /*
430  * Tcp initialization
431  */
432 void
433 tcp_init(void)
434 {
435 
436 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
437 
438 	tcp_init_common(sizeof(struct ip));
439 }
440 
441 /*
442  * Create template to be used to send tcp packets on a connection.
443  * Call after host entry created, allocates an mbuf and fills
444  * in a skeletal tcp/ip header, minimizing the amount of work
445  * necessary when the connection is used.
446  */
447 struct mbuf *
448 tcp_template(struct tcpcb *tp)
449 {
450 	struct inpcb *inp = tp->t_inpcb;
451 #ifdef INET6
452 	struct in6pcb *in6p = tp->t_in6pcb;
453 #endif
454 	struct tcphdr *n;
455 	struct mbuf *m;
456 	int hlen;
457 
458 	switch (tp->t_family) {
459 	case AF_INET:
460 		hlen = sizeof(struct ip);
461 		if (inp)
462 			break;
463 #ifdef INET6
464 		if (in6p) {
465 			/* mapped addr case */
466 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
467 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
468 				break;
469 		}
470 #endif
471 		return NULL;	/*EINVAL*/
472 #ifdef INET6
473 	case AF_INET6:
474 		hlen = sizeof(struct ip6_hdr);
475 		if (in6p) {
476 			/* more sainty check? */
477 			break;
478 		}
479 		return NULL;	/*EINVAL*/
480 #endif
481 	default:
482 		return NULL;	/*EAFNOSUPPORT*/
483 	}
484 
485 	KASSERT(hlen + sizeof(struct tcphdr) <= MCLBYTES);
486 
487 	m = tp->t_template;
488 	if (m && m->m_len == hlen + sizeof(struct tcphdr)) {
489 		;
490 	} else {
491 		if (m)
492 			m_freem(m);
493 		m = tp->t_template = NULL;
494 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
495 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
496 			MCLGET(m, M_DONTWAIT);
497 			if ((m->m_flags & M_EXT) == 0) {
498 				m_free(m);
499 				m = NULL;
500 			}
501 		}
502 		if (m == NULL)
503 			return NULL;
504 		MCLAIM(m, &tcp_mowner);
505 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
506 	}
507 
508 	memset(mtod(m, void *), 0, m->m_len);
509 
510 	n = (struct tcphdr *)(mtod(m, char *) + hlen);
511 
512 	switch (tp->t_family) {
513 	case AF_INET:
514 	    {
515 		struct ipovly *ipov;
516 		mtod(m, struct ip *)->ip_v = 4;
517 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
518 		ipov = mtod(m, struct ipovly *);
519 		ipov->ih_pr = IPPROTO_TCP;
520 		ipov->ih_len = htons(sizeof(struct tcphdr));
521 		if (inp) {
522 			ipov->ih_src = inp->inp_laddr;
523 			ipov->ih_dst = inp->inp_faddr;
524 		}
525 #ifdef INET6
526 		else if (in6p) {
527 			/* mapped addr case */
528 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
529 				sizeof(ipov->ih_src));
530 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
531 				sizeof(ipov->ih_dst));
532 		}
533 #endif
534 
535 		/*
536 		 * Compute the pseudo-header portion of the checksum
537 		 * now.  We incrementally add in the TCP option and
538 		 * payload lengths later, and then compute the TCP
539 		 * checksum right before the packet is sent off onto
540 		 * the wire.
541 		 */
542 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
543 		    ipov->ih_dst.s_addr,
544 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
545 		break;
546 	    }
547 #ifdef INET6
548 	case AF_INET6:
549 	    {
550 		struct ip6_hdr *ip6;
551 		mtod(m, struct ip *)->ip_v = 6;
552 		ip6 = mtod(m, struct ip6_hdr *);
553 		ip6->ip6_nxt = IPPROTO_TCP;
554 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
555 		ip6->ip6_src = in6p->in6p_laddr;
556 		ip6->ip6_dst = in6p->in6p_faddr;
557 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
558 		if (ip6_auto_flowlabel) {
559 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
560 			ip6->ip6_flow |=
561 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
562 		}
563 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
564 		ip6->ip6_vfc |= IPV6_VERSION;
565 
566 		/*
567 		 * Compute the pseudo-header portion of the checksum
568 		 * now.  We incrementally add in the TCP option and
569 		 * payload lengths later, and then compute the TCP
570 		 * checksum right before the packet is sent off onto
571 		 * the wire.
572 		 */
573 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
574 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
575 		    htonl(IPPROTO_TCP));
576 		break;
577 	    }
578 #endif
579 	}
580 
581 	if (inp) {
582 		n->th_sport = inp->inp_lport;
583 		n->th_dport = inp->inp_fport;
584 	}
585 #ifdef INET6
586 	else if (in6p) {
587 		n->th_sport = in6p->in6p_lport;
588 		n->th_dport = in6p->in6p_fport;
589 	}
590 #endif
591 
592 	n->th_seq = 0;
593 	n->th_ack = 0;
594 	n->th_x2 = 0;
595 	n->th_off = 5;
596 	n->th_flags = 0;
597 	n->th_win = 0;
598 	n->th_urp = 0;
599 	return m;
600 }
601 
602 /*
603  * Send a single message to the TCP at address specified by
604  * the given TCP/IP header.  If m == 0, then we make a copy
605  * of the tcpiphdr at ti and send directly to the addressed host.
606  * This is used to force keep alive messages out using the TCP
607  * template for a connection tp->t_template.  If flags are given
608  * then we send a message back to the TCP which originated the
609  * segment ti, and discard the mbuf containing it and any other
610  * attached mbufs.
611  *
612  * In any case the ack and sequence number of the transmitted
613  * segment are as specified by the parameters.
614  */
615 int
616 tcp_respond(struct tcpcb *tp, struct mbuf *mtemplate, struct mbuf *m,
617     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
618 {
619 	struct route *ro;
620 	int error, tlen, win = 0;
621 	int hlen;
622 	struct ip *ip;
623 #ifdef INET6
624 	struct ip6_hdr *ip6;
625 #endif
626 	int family;	/* family on packet, not inpcb/in6pcb! */
627 	struct tcphdr *th;
628 
629 	if (tp != NULL && (flags & TH_RST) == 0) {
630 		KASSERT(!(tp->t_inpcb && tp->t_in6pcb));
631 
632 		if (tp->t_inpcb)
633 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
634 #ifdef INET6
635 		if (tp->t_in6pcb)
636 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
637 #endif
638 	}
639 
640 	th = NULL;	/* Quell uninitialized warning */
641 	ip = NULL;
642 #ifdef INET6
643 	ip6 = NULL;
644 #endif
645 	if (m == NULL) {
646 		if (!mtemplate)
647 			return EINVAL;
648 
649 		/* get family information from template */
650 		switch (mtod(mtemplate, struct ip *)->ip_v) {
651 		case 4:
652 			family = AF_INET;
653 			hlen = sizeof(struct ip);
654 			break;
655 #ifdef INET6
656 		case 6:
657 			family = AF_INET6;
658 			hlen = sizeof(struct ip6_hdr);
659 			break;
660 #endif
661 		default:
662 			return EAFNOSUPPORT;
663 		}
664 
665 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
666 		if (m) {
667 			MCLAIM(m, &tcp_tx_mowner);
668 			MCLGET(m, M_DONTWAIT);
669 			if ((m->m_flags & M_EXT) == 0) {
670 				m_free(m);
671 				m = NULL;
672 			}
673 		}
674 		if (m == NULL)
675 			return ENOBUFS;
676 
677 		tlen = 0;
678 
679 		m->m_data += max_linkhdr;
680 		bcopy(mtod(mtemplate, void *), mtod(m, void *),
681 			mtemplate->m_len);
682 		switch (family) {
683 		case AF_INET:
684 			ip = mtod(m, struct ip *);
685 			th = (struct tcphdr *)(ip + 1);
686 			break;
687 #ifdef INET6
688 		case AF_INET6:
689 			ip6 = mtod(m, struct ip6_hdr *);
690 			th = (struct tcphdr *)(ip6 + 1);
691 			break;
692 #endif
693 		}
694 		flags = TH_ACK;
695 	} else {
696 		if ((m->m_flags & M_PKTHDR) == 0) {
697 			m_freem(m);
698 			return EINVAL;
699 		}
700 		KASSERT(th0 != NULL);
701 
702 		/* get family information from m */
703 		switch (mtod(m, struct ip *)->ip_v) {
704 		case 4:
705 			family = AF_INET;
706 			hlen = sizeof(struct ip);
707 			ip = mtod(m, struct ip *);
708 			break;
709 #ifdef INET6
710 		case 6:
711 			family = AF_INET6;
712 			hlen = sizeof(struct ip6_hdr);
713 			ip6 = mtod(m, struct ip6_hdr *);
714 			break;
715 #endif
716 		default:
717 			m_freem(m);
718 			return EAFNOSUPPORT;
719 		}
720 		/* clear h/w csum flags inherited from rx packet */
721 		m->m_pkthdr.csum_flags = 0;
722 
723 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
724 			tlen = sizeof(*th0);
725 		else
726 			tlen = th0->th_off << 2;
727 
728 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
729 		    mtod(m, char *) + hlen == (char *)th0) {
730 			m->m_len = hlen + tlen;
731 			m_freem(m->m_next);
732 			m->m_next = NULL;
733 		} else {
734 			struct mbuf *n;
735 
736 			KASSERT(max_linkhdr + hlen + tlen <= MCLBYTES);
737 
738 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
739 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
740 				MCLGET(n, M_DONTWAIT);
741 				if ((n->m_flags & M_EXT) == 0) {
742 					m_freem(n);
743 					n = NULL;
744 				}
745 			}
746 			if (!n) {
747 				m_freem(m);
748 				return ENOBUFS;
749 			}
750 
751 			MCLAIM(n, &tcp_tx_mowner);
752 			n->m_data += max_linkhdr;
753 			n->m_len = hlen + tlen;
754 			m_copyback(n, 0, hlen, mtod(m, void *));
755 			m_copyback(n, hlen, tlen, (void *)th0);
756 
757 			m_freem(m);
758 			m = n;
759 			n = NULL;
760 		}
761 
762 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
763 		switch (family) {
764 		case AF_INET:
765 			ip = mtod(m, struct ip *);
766 			th = (struct tcphdr *)(ip + 1);
767 			ip->ip_p = IPPROTO_TCP;
768 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
769 			ip->ip_p = IPPROTO_TCP;
770 			break;
771 #ifdef INET6
772 		case AF_INET6:
773 			ip6 = mtod(m, struct ip6_hdr *);
774 			th = (struct tcphdr *)(ip6 + 1);
775 			ip6->ip6_nxt = IPPROTO_TCP;
776 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
777 			ip6->ip6_nxt = IPPROTO_TCP;
778 			break;
779 #endif
780 		}
781 		xchg(th->th_dport, th->th_sport, u_int16_t);
782 #undef xchg
783 		tlen = 0;	/*be friendly with the following code*/
784 	}
785 	th->th_seq = htonl(seq);
786 	th->th_ack = htonl(ack);
787 	th->th_x2 = 0;
788 	if ((flags & TH_SYN) == 0) {
789 		if (tp)
790 			win >>= tp->rcv_scale;
791 		if (win > TCP_MAXWIN)
792 			win = TCP_MAXWIN;
793 		th->th_win = htons((u_int16_t)win);
794 		th->th_off = sizeof (struct tcphdr) >> 2;
795 		tlen += sizeof(*th);
796 	} else {
797 		tlen += th->th_off << 2;
798 	}
799 	m->m_len = hlen + tlen;
800 	m->m_pkthdr.len = hlen + tlen;
801 	m_reset_rcvif(m);
802 	th->th_flags = flags;
803 	th->th_urp = 0;
804 
805 	switch (family) {
806 	case AF_INET:
807 	    {
808 		struct ipovly *ipov = (struct ipovly *)ip;
809 		memset(ipov->ih_x1, 0, sizeof ipov->ih_x1);
810 		ipov->ih_len = htons((u_int16_t)tlen);
811 
812 		th->th_sum = 0;
813 		th->th_sum = in_cksum(m, hlen + tlen);
814 		ip->ip_len = htons(hlen + tlen);
815 		ip->ip_ttl = ip_defttl;
816 		break;
817 	    }
818 #ifdef INET6
819 	case AF_INET6:
820 	    {
821 		th->th_sum = 0;
822 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
823 		    tlen);
824 		ip6->ip6_plen = htons(tlen);
825 		if (tp && tp->t_in6pcb)
826 			ip6->ip6_hlim = in6_selecthlim_rt(tp->t_in6pcb);
827 		else
828 			ip6->ip6_hlim = ip6_defhlim;
829 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
830 		if (ip6_auto_flowlabel) {
831 			ip6->ip6_flow |=
832 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
833 		}
834 		break;
835 	    }
836 #endif
837 	}
838 
839 	if (tp != NULL && tp->t_inpcb != NULL) {
840 		ro = &tp->t_inpcb->inp_route;
841 		KASSERT(family == AF_INET);
842 		KASSERT(in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr));
843 	}
844 #ifdef INET6
845 	else if (tp != NULL && tp->t_in6pcb != NULL) {
846 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
847 
848 #ifdef DIAGNOSTIC
849 		if (family == AF_INET) {
850 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
851 				panic("tcp_respond: not mapped addr");
852 			if (memcmp(&ip->ip_dst,
853 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
854 			    sizeof(ip->ip_dst)) != 0) {
855 				panic("tcp_respond: ip_dst != in6p_faddr");
856 			}
857 		} else if (family == AF_INET6) {
858 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
859 			    &tp->t_in6pcb->in6p_faddr))
860 				panic("tcp_respond: ip6_dst != in6p_faddr");
861 		} else
862 			panic("tcp_respond: address family mismatch");
863 #endif
864 	}
865 #endif
866 	else
867 		ro = NULL;
868 
869 	switch (family) {
870 	case AF_INET:
871 		error = ip_output(m, NULL, ro,
872 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0), NULL,
873 		    tp ? tp->t_inpcb : NULL);
874 		break;
875 #ifdef INET6
876 	case AF_INET6:
877 		error = ip6_output(m, NULL, ro, 0, NULL,
878 		    tp ? tp->t_in6pcb : NULL, NULL);
879 		break;
880 #endif
881 	default:
882 		error = EAFNOSUPPORT;
883 		break;
884 	}
885 
886 	return error;
887 }
888 
889 /*
890  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
891  * a bunch of members individually, we maintain this template for the
892  * static and mostly-static components of the TCPCB, and copy it into
893  * the new TCPCB instead.
894  */
895 static struct tcpcb tcpcb_template = {
896 	.t_srtt = TCPTV_SRTTBASE,
897 	.t_rttmin = TCPTV_MIN,
898 
899 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
900 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
901 	.snd_numholes = 0,
902 	.snd_cubic_wmax = 0,
903 	.snd_cubic_wmax_last = 0,
904 	.snd_cubic_ctime = 0,
905 
906 	.t_partialacks = -1,
907 	.t_bytes_acked = 0,
908 	.t_sndrexmitpack = 0,
909 	.t_rcvoopack = 0,
910 	.t_sndzerowin = 0,
911 };
912 
913 /*
914  * Updates the TCPCB template whenever a parameter that would affect
915  * the template is changed.
916  */
917 void
918 tcp_tcpcb_template(void)
919 {
920 	struct tcpcb *tp = &tcpcb_template;
921 	int flags;
922 
923 	tp->t_peermss = tcp_mssdflt;
924 	tp->t_ourmss = tcp_mssdflt;
925 	tp->t_segsz = tcp_mssdflt;
926 
927 	flags = 0;
928 	if (tcp_do_rfc1323 && tcp_do_win_scale)
929 		flags |= TF_REQ_SCALE;
930 	if (tcp_do_rfc1323 && tcp_do_timestamps)
931 		flags |= TF_REQ_TSTMP;
932 	tp->t_flags = flags;
933 
934 	/*
935 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
936 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
937 	 * reasonable initial retransmit time.
938 	 */
939 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
940 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
941 	    TCPTV_MIN, TCPTV_REXMTMAX);
942 
943 	/* Keep Alive */
944 	tp->t_keepinit = MIN(tcp_keepinit, TCP_TIMER_MAXTICKS);
945 	tp->t_keepidle = MIN(tcp_keepidle, TCP_TIMER_MAXTICKS);
946 	tp->t_keepintvl = MIN(tcp_keepintvl, TCP_TIMER_MAXTICKS);
947 	tp->t_keepcnt = MAX(1, MIN(tcp_keepcnt, TCP_TIMER_MAXTICKS));
948 	tp->t_maxidle = tp->t_keepcnt * MIN(tp->t_keepintvl,
949 	    TCP_TIMER_MAXTICKS/tp->t_keepcnt);
950 
951 	/* MSL */
952 	tp->t_msl = TCPTV_MSL;
953 }
954 
955 /*
956  * Create a new TCP control block, making an
957  * empty reassembly queue and hooking it to the argument
958  * protocol control block.
959  */
960 /* family selects inpcb, or in6pcb */
961 struct tcpcb *
962 tcp_newtcpcb(int family, void *aux)
963 {
964 	struct tcpcb *tp;
965 	int i;
966 
967 	/* XXX Consider using a pool_cache for speed. */
968 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
969 	if (tp == NULL)
970 		return NULL;
971 	memcpy(tp, &tcpcb_template, sizeof(*tp));
972 	TAILQ_INIT(&tp->segq);
973 	TAILQ_INIT(&tp->timeq);
974 	tp->t_family = family;		/* may be overridden later on */
975 	TAILQ_INIT(&tp->snd_holes);
976 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
977 
978 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
979 	for (i = 0; i < TCPT_NTIMERS; i++) {
980 		callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
981 		TCP_TIMER_INIT(tp, i);
982 	}
983 	callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
984 
985 	switch (family) {
986 	case AF_INET:
987 	    {
988 		struct inpcb *inp = (struct inpcb *)aux;
989 
990 		inp->inp_ip.ip_ttl = ip_defttl;
991 		inp->inp_ppcb = (void *)tp;
992 
993 		tp->t_inpcb = inp;
994 		tp->t_mtudisc = ip_mtudisc;
995 		break;
996 	    }
997 #ifdef INET6
998 	case AF_INET6:
999 	    {
1000 		struct in6pcb *in6p = (struct in6pcb *)aux;
1001 
1002 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim_rt(in6p);
1003 		in6p->in6p_ppcb = (void *)tp;
1004 
1005 		tp->t_in6pcb = in6p;
1006 		/* for IPv6, always try to run path MTU discovery */
1007 		tp->t_mtudisc = 1;
1008 		break;
1009 	    }
1010 #endif /* INET6 */
1011 	default:
1012 		for (i = 0; i < TCPT_NTIMERS; i++)
1013 			callout_destroy(&tp->t_timer[i]);
1014 		callout_destroy(&tp->t_delack_ch);
1015 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
1016 		return NULL;
1017 	}
1018 
1019 	/*
1020 	 * Initialize our timebase.  When we send timestamps, we take
1021 	 * the delta from tcp_now -- this means each connection always
1022 	 * gets a timebase of 1, which makes it, among other things,
1023 	 * more difficult to determine how long a system has been up,
1024 	 * and thus how many TCP sequence increments have occurred.
1025 	 *
1026 	 * We start with 1, because 0 doesn't work with linux, which
1027 	 * considers timestamp 0 in a SYN packet as a bug and disables
1028 	 * timestamps.
1029 	 */
1030 	tp->ts_timebase = tcp_now - 1;
1031 
1032 	tcp_congctl_select(tp, tcp_congctl_global_name);
1033 
1034 	return tp;
1035 }
1036 
1037 /*
1038  * Drop a TCP connection, reporting
1039  * the specified error.  If connection is synchronized,
1040  * then send a RST to peer.
1041  */
1042 struct tcpcb *
1043 tcp_drop(struct tcpcb *tp, int errno)
1044 {
1045 	struct socket *so = NULL;
1046 
1047 	KASSERT(!(tp->t_inpcb && tp->t_in6pcb));
1048 
1049 	if (tp->t_inpcb)
1050 		so = tp->t_inpcb->inp_socket;
1051 #ifdef INET6
1052 	if (tp->t_in6pcb)
1053 		so = tp->t_in6pcb->in6p_socket;
1054 #endif
1055 	if (!so)
1056 		return NULL;
1057 
1058 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1059 		tp->t_state = TCPS_CLOSED;
1060 		(void) tcp_output(tp);
1061 		TCP_STATINC(TCP_STAT_DROPS);
1062 	} else
1063 		TCP_STATINC(TCP_STAT_CONNDROPS);
1064 	if (errno == ETIMEDOUT && tp->t_softerror)
1065 		errno = tp->t_softerror;
1066 	so->so_error = errno;
1067 	return (tcp_close(tp));
1068 }
1069 
1070 /*
1071  * Close a TCP control block:
1072  *	discard all space held by the tcp
1073  *	discard internet protocol block
1074  *	wake up any sleepers
1075  */
1076 struct tcpcb *
1077 tcp_close(struct tcpcb *tp)
1078 {
1079 	struct inpcb *inp;
1080 #ifdef INET6
1081 	struct in6pcb *in6p;
1082 #endif
1083 	struct socket *so;
1084 #ifdef RTV_RTT
1085 	struct rtentry *rt = NULL;
1086 #endif
1087 	struct route *ro;
1088 	int j;
1089 
1090 	inp = tp->t_inpcb;
1091 #ifdef INET6
1092 	in6p = tp->t_in6pcb;
1093 #endif
1094 	so = NULL;
1095 	ro = NULL;
1096 	if (inp) {
1097 		so = inp->inp_socket;
1098 		ro = &inp->inp_route;
1099 	}
1100 #ifdef INET6
1101 	else if (in6p) {
1102 		so = in6p->in6p_socket;
1103 		ro = (struct route *)&in6p->in6p_route;
1104 	}
1105 #endif
1106 
1107 #ifdef RTV_RTT
1108 	/*
1109 	 * If we sent enough data to get some meaningful characteristics,
1110 	 * save them in the routing entry.  'Enough' is arbitrarily
1111 	 * defined as the sendpipesize (default 4K) * 16.  This would
1112 	 * give us 16 rtt samples assuming we only get one sample per
1113 	 * window (the usual case on a long haul net).  16 samples is
1114 	 * enough for the srtt filter to converge to within 5% of the correct
1115 	 * value; fewer samples and we could save a very bogus rtt.
1116 	 *
1117 	 * Don't update the default route's characteristics and don't
1118 	 * update anything that the user "locked".
1119 	 */
1120 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1121 	    ro && (rt = rtcache_validate(ro)) != NULL &&
1122 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1123 		u_long i = 0;
1124 
1125 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1126 			i = tp->t_srtt *
1127 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1128 			if (rt->rt_rmx.rmx_rtt && i)
1129 				/*
1130 				 * filter this update to half the old & half
1131 				 * the new values, converting scale.
1132 				 * See route.h and tcp_var.h for a
1133 				 * description of the scaling constants.
1134 				 */
1135 				rt->rt_rmx.rmx_rtt =
1136 				    (rt->rt_rmx.rmx_rtt + i) / 2;
1137 			else
1138 				rt->rt_rmx.rmx_rtt = i;
1139 		}
1140 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1141 			i = tp->t_rttvar *
1142 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1143 			if (rt->rt_rmx.rmx_rttvar && i)
1144 				rt->rt_rmx.rmx_rttvar =
1145 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
1146 			else
1147 				rt->rt_rmx.rmx_rttvar = i;
1148 		}
1149 		/*
1150 		 * update the pipelimit (ssthresh) if it has been updated
1151 		 * already or if a pipesize was specified & the threshold
1152 		 * got below half the pipesize.  I.e., wait for bad news
1153 		 * before we start updating, then update on both good
1154 		 * and bad news.
1155 		 */
1156 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1157 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1158 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1159 			/*
1160 			 * convert the limit from user data bytes to
1161 			 * packets then to packet data bytes.
1162 			 */
1163 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
1164 			if (i < 2)
1165 				i = 2;
1166 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1167 			if (rt->rt_rmx.rmx_ssthresh)
1168 				rt->rt_rmx.rmx_ssthresh =
1169 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1170 			else
1171 				rt->rt_rmx.rmx_ssthresh = i;
1172 		}
1173 	}
1174 	rtcache_unref(rt, ro);
1175 #endif /* RTV_RTT */
1176 	/* free the reassembly queue, if any */
1177 	TCP_REASS_LOCK(tp);
1178 	(void) tcp_freeq(tp);
1179 	TCP_REASS_UNLOCK(tp);
1180 
1181 	/* free the SACK holes list. */
1182 	tcp_free_sackholes(tp);
1183 	tcp_congctl_release(tp);
1184 	syn_cache_cleanup(tp);
1185 
1186 	if (tp->t_template) {
1187 		m_free(tp->t_template);
1188 		tp->t_template = NULL;
1189 	}
1190 
1191 	/*
1192 	 * Detaching the pcb will unlock the socket/tcpcb, and stopping
1193 	 * the timers can also drop the lock.  We need to prevent access
1194 	 * to the tcpcb as it's half torn down.  Flag the pcb as dead
1195 	 * (prevents access by timers) and only then detach it.
1196 	 */
1197 	tp->t_flags |= TF_DEAD;
1198 	if (inp) {
1199 		inp->inp_ppcb = 0;
1200 		soisdisconnected(so);
1201 		in_pcbdetach(inp);
1202 	}
1203 #ifdef INET6
1204 	else if (in6p) {
1205 		in6p->in6p_ppcb = 0;
1206 		soisdisconnected(so);
1207 		in6_pcbdetach(in6p);
1208 	}
1209 #endif
1210 	/*
1211 	 * pcb is no longer visble elsewhere, so we can safely release
1212 	 * the lock in callout_halt() if needed.
1213 	 */
1214 	TCP_STATINC(TCP_STAT_CLOSED);
1215 	for (j = 0; j < TCPT_NTIMERS; j++) {
1216 		callout_halt(&tp->t_timer[j], softnet_lock);
1217 		callout_destroy(&tp->t_timer[j]);
1218 	}
1219 	callout_halt(&tp->t_delack_ch, softnet_lock);
1220 	callout_destroy(&tp->t_delack_ch);
1221 	pool_put(&tcpcb_pool, tp);
1222 
1223 	return NULL;
1224 }
1225 
1226 int
1227 tcp_freeq(struct tcpcb *tp)
1228 {
1229 	struct ipqent *qe;
1230 	int rv = 0;
1231 
1232 	TCP_REASS_LOCK_CHECK(tp);
1233 
1234 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1235 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1236 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1237 		m_freem(qe->ipqe_m);
1238 		tcpipqent_free(qe);
1239 		rv = 1;
1240 	}
1241 	tp->t_segqlen = 0;
1242 	KASSERT(TAILQ_EMPTY(&tp->timeq));
1243 	return (rv);
1244 }
1245 
1246 void
1247 tcp_fasttimo(void)
1248 {
1249 	if (tcp_drainwanted) {
1250 		tcp_drain();
1251 		tcp_drainwanted = 0;
1252 	}
1253 }
1254 
1255 void
1256 tcp_drainstub(void)
1257 {
1258 	tcp_drainwanted = 1;
1259 }
1260 
1261 /*
1262  * Protocol drain routine.  Called when memory is in short supply.
1263  * Called from pr_fasttimo thus a callout context.
1264  */
1265 void
1266 tcp_drain(void)
1267 {
1268 	struct inpcb_hdr *inph;
1269 	struct tcpcb *tp;
1270 
1271 	mutex_enter(softnet_lock);
1272 	KERNEL_LOCK(1, NULL);
1273 
1274 	/*
1275 	 * Free the sequence queue of all TCP connections.
1276 	 */
1277 	TAILQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1278 		switch (inph->inph_af) {
1279 		case AF_INET:
1280 			tp = intotcpcb((struct inpcb *)inph);
1281 			break;
1282 #ifdef INET6
1283 		case AF_INET6:
1284 			tp = in6totcpcb((struct in6pcb *)inph);
1285 			break;
1286 #endif
1287 		default:
1288 			tp = NULL;
1289 			break;
1290 		}
1291 		if (tp != NULL) {
1292 			/*
1293 			 * If the tcpcb is already busy,
1294 			 * just bail out now.
1295 			 */
1296 			if (tcp_reass_lock_try(tp) == 0)
1297 				continue;
1298 			if (tcp_freeq(tp))
1299 				TCP_STATINC(TCP_STAT_CONNSDRAINED);
1300 			TCP_REASS_UNLOCK(tp);
1301 		}
1302 	}
1303 
1304 	KERNEL_UNLOCK_ONE(NULL);
1305 	mutex_exit(softnet_lock);
1306 }
1307 
1308 /*
1309  * Notify a tcp user of an asynchronous error;
1310  * store error as soft error, but wake up user
1311  * (for now, won't do anything until can select for soft error).
1312  */
1313 void
1314 tcp_notify(struct inpcb *inp, int error)
1315 {
1316 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1317 	struct socket *so = inp->inp_socket;
1318 
1319 	/*
1320 	 * Ignore some errors if we are hooked up.
1321 	 * If connection hasn't completed, has retransmitted several times,
1322 	 * and receives a second error, give up now.  This is better
1323 	 * than waiting a long time to establish a connection that
1324 	 * can never complete.
1325 	 */
1326 	if (tp->t_state == TCPS_ESTABLISHED &&
1327 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1328 	      error == EHOSTDOWN)) {
1329 		return;
1330 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1331 	    tp->t_rxtshift > 3 && tp->t_softerror)
1332 		so->so_error = error;
1333 	else
1334 		tp->t_softerror = error;
1335 	cv_broadcast(&so->so_cv);
1336 	sorwakeup(so);
1337 	sowwakeup(so);
1338 }
1339 
1340 #ifdef INET6
1341 void
1342 tcp6_notify(struct in6pcb *in6p, int error)
1343 {
1344 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1345 	struct socket *so = in6p->in6p_socket;
1346 
1347 	/*
1348 	 * Ignore some errors if we are hooked up.
1349 	 * If connection hasn't completed, has retransmitted several times,
1350 	 * and receives a second error, give up now.  This is better
1351 	 * than waiting a long time to establish a connection that
1352 	 * can never complete.
1353 	 */
1354 	if (tp->t_state == TCPS_ESTABLISHED &&
1355 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1356 	      error == EHOSTDOWN)) {
1357 		return;
1358 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1359 	    tp->t_rxtshift > 3 && tp->t_softerror)
1360 		so->so_error = error;
1361 	else
1362 		tp->t_softerror = error;
1363 	cv_broadcast(&so->so_cv);
1364 	sorwakeup(so);
1365 	sowwakeup(so);
1366 }
1367 #endif
1368 
1369 #ifdef INET6
1370 void *
1371 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1372 {
1373 	struct tcphdr th;
1374 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
1375 	int nmatch;
1376 	struct ip6_hdr *ip6;
1377 	const struct sockaddr_in6 *sa6_src = NULL;
1378 	const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1379 	struct mbuf *m;
1380 	int off;
1381 
1382 	if (sa->sa_family != AF_INET6 ||
1383 	    sa->sa_len != sizeof(struct sockaddr_in6))
1384 		return NULL;
1385 	if ((unsigned)cmd >= PRC_NCMDS)
1386 		return NULL;
1387 	else if (cmd == PRC_QUENCH) {
1388 		/*
1389 		 * Don't honor ICMP Source Quench messages meant for
1390 		 * TCP connections.
1391 		 */
1392 		return NULL;
1393 	} else if (PRC_IS_REDIRECT(cmd))
1394 		notify = in6_rtchange, d = NULL;
1395 	else if (cmd == PRC_MSGSIZE)
1396 		; /* special code is present, see below */
1397 	else if (cmd == PRC_HOSTDEAD)
1398 		d = NULL;
1399 	else if (inet6ctlerrmap[cmd] == 0)
1400 		return NULL;
1401 
1402 	/* if the parameter is from icmp6, decode it. */
1403 	if (d != NULL) {
1404 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1405 		m = ip6cp->ip6c_m;
1406 		ip6 = ip6cp->ip6c_ip6;
1407 		off = ip6cp->ip6c_off;
1408 		sa6_src = ip6cp->ip6c_src;
1409 	} else {
1410 		m = NULL;
1411 		ip6 = NULL;
1412 		sa6_src = &sa6_any;
1413 		off = 0;
1414 	}
1415 
1416 	if (ip6) {
1417 		/* check if we can safely examine src and dst ports */
1418 		if (m->m_pkthdr.len < off + sizeof(th)) {
1419 			if (cmd == PRC_MSGSIZE)
1420 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1421 			return NULL;
1422 		}
1423 
1424 		memset(&th, 0, sizeof(th));
1425 		m_copydata(m, off, sizeof(th), (void *)&th);
1426 
1427 		if (cmd == PRC_MSGSIZE) {
1428 			int valid = 0;
1429 
1430 			/*
1431 			 * Check to see if we have a valid TCP connection
1432 			 * corresponding to the address in the ICMPv6 message
1433 			 * payload.
1434 			 */
1435 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1436 			    th.th_dport,
1437 			    (const struct in6_addr *)&sa6_src->sin6_addr,
1438 						  th.th_sport, 0, 0))
1439 				valid++;
1440 
1441 			/*
1442 			 * Depending on the value of "valid" and routing table
1443 			 * size (mtudisc_{hi,lo}wat), we will:
1444 			 * - recalcurate the new MTU and create the
1445 			 *   corresponding routing entry, or
1446 			 * - ignore the MTU change notification.
1447 			 */
1448 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1449 
1450 			/*
1451 			 * no need to call in6_pcbnotify, it should have been
1452 			 * called via callback if necessary
1453 			 */
1454 			return NULL;
1455 		}
1456 
1457 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1458 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1459 		if (nmatch == 0 && syn_cache_count &&
1460 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1461 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
1462 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
1463 			syn_cache_unreach((const struct sockaddr *)sa6_src,
1464 					  sa, &th);
1465 	} else {
1466 		(void) in6_pcbnotify(&tcbtable, sa, 0,
1467 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1468 	}
1469 
1470 	return NULL;
1471 }
1472 #endif
1473 
1474 /* assumes that ip header and tcp header are contiguous on mbuf */
1475 void *
1476 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1477 {
1478 	struct ip *ip = v;
1479 	struct tcphdr *th;
1480 	struct icmp *icp;
1481 	extern const int inetctlerrmap[];
1482 	void (*notify)(struct inpcb *, int) = tcp_notify;
1483 	int errno;
1484 	int nmatch;
1485 	struct tcpcb *tp;
1486 	u_int mtu;
1487 	tcp_seq seq;
1488 	struct inpcb *inp;
1489 #ifdef INET6
1490 	struct in6pcb *in6p;
1491 	struct in6_addr src6, dst6;
1492 #endif
1493 
1494 	if (sa->sa_family != AF_INET ||
1495 	    sa->sa_len != sizeof(struct sockaddr_in))
1496 		return NULL;
1497 	if ((unsigned)cmd >= PRC_NCMDS)
1498 		return NULL;
1499 	errno = inetctlerrmap[cmd];
1500 	if (cmd == PRC_QUENCH)
1501 		/*
1502 		 * Don't honor ICMP Source Quench messages meant for
1503 		 * TCP connections.
1504 		 */
1505 		return NULL;
1506 	else if (PRC_IS_REDIRECT(cmd))
1507 		notify = in_rtchange, ip = 0;
1508 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1509 		/*
1510 		 * Check to see if we have a valid TCP connection
1511 		 * corresponding to the address in the ICMP message
1512 		 * payload.
1513 		 *
1514 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1515 		 */
1516 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1517 #ifdef INET6
1518 		in6_in_2_v4mapin6(&ip->ip_src, &src6);
1519 		in6_in_2_v4mapin6(&ip->ip_dst, &dst6);
1520 #endif
1521 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1522 		    th->th_dport, ip->ip_src, th->th_sport, 0)) != NULL)
1523 #ifdef INET6
1524 			in6p = NULL;
1525 #else
1526 			;
1527 #endif
1528 #ifdef INET6
1529 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1530 		    th->th_dport, &src6, th->th_sport, 0, 0)) != NULL)
1531 			;
1532 #endif
1533 		else
1534 			return NULL;
1535 
1536 		/*
1537 		 * Now that we've validated that we are actually communicating
1538 		 * with the host indicated in the ICMP message, locate the
1539 		 * ICMP header, recalculate the new MTU, and create the
1540 		 * corresponding routing entry.
1541 		 */
1542 		icp = (struct icmp *)((char *)ip -
1543 		    offsetof(struct icmp, icmp_ip));
1544 		if (inp) {
1545 			if ((tp = intotcpcb(inp)) == NULL)
1546 				return NULL;
1547 		}
1548 #ifdef INET6
1549 		else if (in6p) {
1550 			if ((tp = in6totcpcb(in6p)) == NULL)
1551 				return NULL;
1552 		}
1553 #endif
1554 		else
1555 			return NULL;
1556 		seq = ntohl(th->th_seq);
1557 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1558 			return NULL;
1559 		/*
1560 		 * If the ICMP message advertises a Next-Hop MTU
1561 		 * equal or larger than the maximum packet size we have
1562 		 * ever sent, drop the message.
1563 		 */
1564 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
1565 		if (mtu >= tp->t_pmtud_mtu_sent)
1566 			return NULL;
1567 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1568 			/*
1569 			 * Calculate new MTU, and create corresponding
1570 			 * route (traditional PMTUD).
1571 			 */
1572 			tp->t_flags &= ~TF_PMTUD_PEND;
1573 			icmp_mtudisc(icp, ip->ip_dst);
1574 		} else {
1575 			/*
1576 			 * Record the information got in the ICMP
1577 			 * message; act on it later.
1578 			 * If we had already recorded an ICMP message,
1579 			 * replace the old one only if the new message
1580 			 * refers to an older TCP segment
1581 			 */
1582 			if (tp->t_flags & TF_PMTUD_PEND) {
1583 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1584 					return NULL;
1585 			} else
1586 				tp->t_flags |= TF_PMTUD_PEND;
1587 			tp->t_pmtud_th_seq = seq;
1588 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1589 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1590 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1591 		}
1592 		return NULL;
1593 	} else if (cmd == PRC_HOSTDEAD)
1594 		ip = 0;
1595 	else if (errno == 0)
1596 		return NULL;
1597 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1598 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1599 		nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1600 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1601 		if (nmatch == 0 && syn_cache_count &&
1602 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
1603 		    inetctlerrmap[cmd] == ENETUNREACH ||
1604 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
1605 			struct sockaddr_in sin;
1606 			memset(&sin, 0, sizeof(sin));
1607 			sin.sin_len = sizeof(sin);
1608 			sin.sin_family = AF_INET;
1609 			sin.sin_port = th->th_sport;
1610 			sin.sin_addr = ip->ip_src;
1611 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1612 		}
1613 
1614 		/* XXX mapped address case */
1615 	} else
1616 		in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1617 		    notify);
1618 	return NULL;
1619 }
1620 
1621 /*
1622  * When a source quench is received, we are being notified of congestion.
1623  * Close the congestion window down to the Loss Window (one segment).
1624  * We will gradually open it again as we proceed.
1625  */
1626 void
1627 tcp_quench(struct inpcb *inp)
1628 {
1629 	struct tcpcb *tp = intotcpcb(inp);
1630 
1631 	if (tp) {
1632 		tp->snd_cwnd = tp->t_segsz;
1633 		tp->t_bytes_acked = 0;
1634 	}
1635 }
1636 
1637 #ifdef INET6
1638 void
1639 tcp6_quench(struct in6pcb *in6p)
1640 {
1641 	struct tcpcb *tp = in6totcpcb(in6p);
1642 
1643 	if (tp) {
1644 		tp->snd_cwnd = tp->t_segsz;
1645 		tp->t_bytes_acked = 0;
1646 	}
1647 }
1648 #endif
1649 
1650 /*
1651  * Path MTU Discovery handlers.
1652  */
1653 void
1654 tcp_mtudisc_callback(struct in_addr faddr)
1655 {
1656 #ifdef INET6
1657 	struct in6_addr in6;
1658 #endif
1659 
1660 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1661 #ifdef INET6
1662 	in6_in_2_v4mapin6(&faddr, &in6);
1663 	tcp6_mtudisc_callback(&in6);
1664 #endif
1665 }
1666 
1667 /*
1668  * On receipt of path MTU corrections, flush old route and replace it
1669  * with the new one.  Retransmit all unacknowledged packets, to ensure
1670  * that all packets will be received.
1671  */
1672 void
1673 tcp_mtudisc(struct inpcb *inp, int errno)
1674 {
1675 	struct tcpcb *tp = intotcpcb(inp);
1676 	struct rtentry *rt;
1677 
1678 	if (tp == NULL)
1679 		return;
1680 
1681 	rt = in_pcbrtentry(inp);
1682 	if (rt != NULL) {
1683 		/*
1684 		 * If this was not a host route, remove and realloc.
1685 		 */
1686 		if ((rt->rt_flags & RTF_HOST) == 0) {
1687 			in_pcbrtentry_unref(rt, inp);
1688 			in_rtchange(inp, errno);
1689 			if ((rt = in_pcbrtentry(inp)) == NULL)
1690 				return;
1691 		}
1692 
1693 		/*
1694 		 * Slow start out of the error condition.  We
1695 		 * use the MTU because we know it's smaller
1696 		 * than the previously transmitted segment.
1697 		 *
1698 		 * Note: This is more conservative than the
1699 		 * suggestion in draft-floyd-incr-init-win-03.
1700 		 */
1701 		if (rt->rt_rmx.rmx_mtu != 0)
1702 			tp->snd_cwnd =
1703 			    TCP_INITIAL_WINDOW(tcp_init_win,
1704 			    rt->rt_rmx.rmx_mtu);
1705 		in_pcbrtentry_unref(rt, inp);
1706 	}
1707 
1708 	/*
1709 	 * Resend unacknowledged packets.
1710 	 */
1711 	tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1712 	tcp_output(tp);
1713 }
1714 
1715 #ifdef INET6
1716 /*
1717  * Path MTU Discovery handlers.
1718  */
1719 void
1720 tcp6_mtudisc_callback(struct in6_addr *faddr)
1721 {
1722 	struct sockaddr_in6 sin6;
1723 
1724 	memset(&sin6, 0, sizeof(sin6));
1725 	sin6.sin6_family = AF_INET6;
1726 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1727 	sin6.sin6_addr = *faddr;
1728 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1729 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1730 }
1731 
1732 void
1733 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1734 {
1735 	struct tcpcb *tp = in6totcpcb(in6p);
1736 	struct rtentry *rt;
1737 
1738 	if (tp == NULL)
1739 		return;
1740 
1741 	rt = in6_pcbrtentry(in6p);
1742 	if (rt != NULL) {
1743 		/*
1744 		 * If this was not a host route, remove and realloc.
1745 		 */
1746 		if ((rt->rt_flags & RTF_HOST) == 0) {
1747 			in6_pcbrtentry_unref(rt, in6p);
1748 			in6_rtchange(in6p, errno);
1749 			rt = in6_pcbrtentry(in6p);
1750 			if (rt == NULL)
1751 				return;
1752 		}
1753 
1754 		/*
1755 		 * Slow start out of the error condition.  We
1756 		 * use the MTU because we know it's smaller
1757 		 * than the previously transmitted segment.
1758 		 *
1759 		 * Note: This is more conservative than the
1760 		 * suggestion in draft-floyd-incr-init-win-03.
1761 		 */
1762 		if (rt->rt_rmx.rmx_mtu != 0) {
1763 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1764 			    rt->rt_rmx.rmx_mtu);
1765 		}
1766 		in6_pcbrtentry_unref(rt, in6p);
1767 	}
1768 
1769 	/*
1770 	 * Resend unacknowledged packets.
1771 	 */
1772 	tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1773 	tcp_output(tp);
1774 }
1775 #endif /* INET6 */
1776 
1777 /*
1778  * Compute the MSS to advertise to the peer.  Called only during
1779  * the 3-way handshake.  If we are the server (peer initiated
1780  * connection), we are called with a pointer to the interface
1781  * on which the SYN packet arrived.  If we are the client (we
1782  * initiated connection), we are called with a pointer to the
1783  * interface out which this connection should go.
1784  *
1785  * NOTE: Do not subtract IP option/extension header size nor IPsec
1786  * header size from MSS advertisement.  MSS option must hold the maximum
1787  * segment size we can accept, so it must always be:
1788  *	 max(if mtu) - ip header - tcp header
1789  */
1790 u_long
1791 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1792 {
1793 	extern u_long in_maxmtu;
1794 	u_long mss = 0;
1795 	u_long hdrsiz;
1796 
1797 	/*
1798 	 * In order to avoid defeating path MTU discovery on the peer,
1799 	 * we advertise the max MTU of all attached networks as our MSS,
1800 	 * per RFC 1191, section 3.1.
1801 	 *
1802 	 * We provide the option to advertise just the MTU of
1803 	 * the interface on which we hope this connection will
1804 	 * be receiving.  If we are responding to a SYN, we
1805 	 * will have a pretty good idea about this, but when
1806 	 * initiating a connection there is a bit more doubt.
1807 	 *
1808 	 * We also need to ensure that loopback has a large enough
1809 	 * MSS, as the loopback MTU is never included in in_maxmtu.
1810 	 */
1811 
1812 	if (ifp != NULL)
1813 		switch (af) {
1814 #ifdef INET6
1815 		case AF_INET6:	/* FALLTHROUGH */
1816 #endif
1817 		case AF_INET:
1818 			mss = ifp->if_mtu;
1819 			break;
1820 		}
1821 
1822 	if (tcp_mss_ifmtu == 0)
1823 		switch (af) {
1824 #ifdef INET6
1825 		case AF_INET6:	/* FALLTHROUGH */
1826 #endif
1827 		case AF_INET:
1828 			mss = uimax(in_maxmtu, mss);
1829 			break;
1830 		}
1831 
1832 	switch (af) {
1833 	case AF_INET:
1834 		hdrsiz = sizeof(struct ip);
1835 		break;
1836 #ifdef INET6
1837 	case AF_INET6:
1838 		hdrsiz = sizeof(struct ip6_hdr);
1839 		break;
1840 #endif
1841 	default:
1842 		hdrsiz = 0;
1843 		break;
1844 	}
1845 	hdrsiz += sizeof(struct tcphdr);
1846 	if (mss > hdrsiz)
1847 		mss -= hdrsiz;
1848 
1849 	mss = uimax(tcp_mssdflt, mss);
1850 	return (mss);
1851 }
1852 
1853 /*
1854  * Set connection variables based on the peer's advertised MSS.
1855  * We are passed the TCPCB for the actual connection.  If we
1856  * are the server, we are called by the compressed state engine
1857  * when the 3-way handshake is complete.  If we are the client,
1858  * we are called when we receive the SYN,ACK from the server.
1859  *
1860  * NOTE: Our advertised MSS value must be initialized in the TCPCB
1861  * before this routine is called!
1862  */
1863 void
1864 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1865 {
1866 	struct socket *so;
1867 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1868 	struct rtentry *rt;
1869 #endif
1870 	u_long bufsize;
1871 	int mss;
1872 
1873 	KASSERT(!(tp->t_inpcb && tp->t_in6pcb));
1874 
1875 	so = NULL;
1876 	rt = NULL;
1877 
1878 	if (tp->t_inpcb) {
1879 		so = tp->t_inpcb->inp_socket;
1880 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1881 		rt = in_pcbrtentry(tp->t_inpcb);
1882 #endif
1883 	}
1884 
1885 #ifdef INET6
1886 	if (tp->t_in6pcb) {
1887 		so = tp->t_in6pcb->in6p_socket;
1888 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1889 		rt = in6_pcbrtentry(tp->t_in6pcb);
1890 #endif
1891 	}
1892 #endif
1893 
1894 	/*
1895 	 * As per RFC1122, use the default MSS value, unless they
1896 	 * sent us an offer.  Do not accept offers less than 256 bytes.
1897 	 */
1898 	mss = tcp_mssdflt;
1899 	if (offer)
1900 		mss = offer;
1901 	mss = uimax(mss, 256);		/* sanity */
1902 	tp->t_peermss = mss;
1903 	mss -= tcp_optlen(tp);
1904 	if (tp->t_inpcb)
1905 		mss -= ip_optlen(tp->t_inpcb);
1906 #ifdef INET6
1907 	if (tp->t_in6pcb)
1908 		mss -= ip6_optlen(tp->t_in6pcb);
1909 #endif
1910 	/*
1911 	 * XXX XXX What if mss goes negative or zero? This can happen if a
1912 	 * socket has large IPv6 options. We crash below.
1913 	 */
1914 
1915 	/*
1916 	 * If there's a pipesize, change the socket buffer to that size.
1917 	 * Make the socket buffer an integral number of MSS units.  If
1918 	 * the MSS is larger than the socket buffer, artificially decrease
1919 	 * the MSS.
1920 	 */
1921 #ifdef RTV_SPIPE
1922 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1923 		bufsize = rt->rt_rmx.rmx_sendpipe;
1924 	else
1925 #endif
1926 	{
1927 		KASSERT(so != NULL);
1928 		bufsize = so->so_snd.sb_hiwat;
1929 	}
1930 	if (bufsize < mss)
1931 		mss = bufsize;
1932 	else {
1933 		bufsize = roundup(bufsize, mss);
1934 		if (bufsize > sb_max)
1935 			bufsize = sb_max;
1936 		(void) sbreserve(&so->so_snd, bufsize, so);
1937 	}
1938 	tp->t_segsz = mss;
1939 
1940 #ifdef RTV_SSTHRESH
1941 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1942 		/*
1943 		 * There's some sort of gateway or interface buffer
1944 		 * limit on the path.  Use this to set the slow
1945 		 * start threshold, but set the threshold to no less
1946 		 * than 2 * MSS.
1947 		 */
1948 		tp->snd_ssthresh = uimax(2 * mss, rt->rt_rmx.rmx_ssthresh);
1949 	}
1950 #endif
1951 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1952 	if (tp->t_inpcb)
1953 		in_pcbrtentry_unref(rt, tp->t_inpcb);
1954 #ifdef INET6
1955 	if (tp->t_in6pcb)
1956 		in6_pcbrtentry_unref(rt, tp->t_in6pcb);
1957 #endif
1958 #endif
1959 }
1960 
1961 /*
1962  * Processing necessary when a TCP connection is established.
1963  */
1964 void
1965 tcp_established(struct tcpcb *tp)
1966 {
1967 	struct socket *so;
1968 #ifdef RTV_RPIPE
1969 	struct rtentry *rt;
1970 #endif
1971 	u_long bufsize;
1972 
1973 	KASSERT(!(tp->t_inpcb && tp->t_in6pcb));
1974 
1975 	so = NULL;
1976 	rt = NULL;
1977 
1978 	/* This is a while() to reduce the dreadful stairstepping below */
1979 	while (tp->t_inpcb) {
1980 		so = tp->t_inpcb->inp_socket;
1981 #if defined(RTV_RPIPE)
1982 		rt = in_pcbrtentry(tp->t_inpcb);
1983 #endif
1984 		if (__predict_true(tcp_msl_enable)) {
1985 			if (tp->t_inpcb->inp_laddr.s_addr == INADDR_LOOPBACK) {
1986 				tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
1987 				break;
1988 			}
1989 
1990 			if (__predict_false(tcp_rttlocal)) {
1991 				/* This may be adjusted by tcp_input */
1992 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
1993 				break;
1994 			}
1995 			if (in_localaddr(tp->t_inpcb->inp_faddr)) {
1996 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
1997 				break;
1998 			}
1999 		}
2000 		tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2001 		break;
2002 	}
2003 
2004 	/* Clamp to a reasonable range.  */
2005 	tp->t_msl = MIN(tp->t_msl, TCP_MAXMSL);
2006 
2007 #ifdef INET6
2008 	/* The !tp->t_inpcb lets the compiler know it can't be v4 *and* v6 */
2009 	while (!tp->t_inpcb && tp->t_in6pcb) {
2010 		so = tp->t_in6pcb->in6p_socket;
2011 #if defined(RTV_RPIPE)
2012 		rt = in6_pcbrtentry(tp->t_in6pcb);
2013 #endif
2014 		if (__predict_true(tcp_msl_enable)) {
2015 			extern const struct in6_addr in6addr_loopback;
2016 
2017 			if (IN6_ARE_ADDR_EQUAL(&tp->t_in6pcb->in6p_laddr,
2018 			    &in6addr_loopback)) {
2019 				tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
2020 				break;
2021 			}
2022 
2023 			if (__predict_false(tcp_rttlocal)) {
2024 				/* This may be adjusted by tcp_input */
2025 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2026 				break;
2027 			}
2028 			if (in6_localaddr(&tp->t_in6pcb->in6p_faddr)) {
2029 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2030 				break;
2031 			}
2032 		}
2033 		tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2034 		break;
2035 	}
2036 
2037 	/* Clamp to a reasonable range.  */
2038 	tp->t_msl = MIN(tp->t_msl, TCP_MAXMSL);
2039 #endif
2040 
2041 	tp->t_state = TCPS_ESTABLISHED;
2042 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2043 
2044 #ifdef RTV_RPIPE
2045 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2046 		bufsize = rt->rt_rmx.rmx_recvpipe;
2047 	else
2048 #endif
2049 	{
2050 		KASSERT(so != NULL);
2051 		bufsize = so->so_rcv.sb_hiwat;
2052 	}
2053 	if (bufsize > tp->t_ourmss) {
2054 		bufsize = roundup(bufsize, tp->t_ourmss);
2055 		if (bufsize > sb_max)
2056 			bufsize = sb_max;
2057 		(void) sbreserve(&so->so_rcv, bufsize, so);
2058 	}
2059 #ifdef RTV_RPIPE
2060 	if (tp->t_inpcb)
2061 		in_pcbrtentry_unref(rt, tp->t_inpcb);
2062 #ifdef INET6
2063 	if (tp->t_in6pcb)
2064 		in6_pcbrtentry_unref(rt, tp->t_in6pcb);
2065 #endif
2066 #endif
2067 }
2068 
2069 /*
2070  * Check if there's an initial rtt or rttvar.  Convert from the
2071  * route-table units to scaled multiples of the slow timeout timer.
2072  * Called only during the 3-way handshake.
2073  */
2074 void
2075 tcp_rmx_rtt(struct tcpcb *tp)
2076 {
2077 #ifdef RTV_RTT
2078 	struct rtentry *rt = NULL;
2079 	int rtt;
2080 
2081 	KASSERT(!(tp->t_inpcb && tp->t_in6pcb));
2082 
2083 	if (tp->t_inpcb)
2084 		rt = in_pcbrtentry(tp->t_inpcb);
2085 #ifdef INET6
2086 	if (tp->t_in6pcb)
2087 		rt = in6_pcbrtentry(tp->t_in6pcb);
2088 #endif
2089 	if (rt == NULL)
2090 		return;
2091 
2092 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2093 		/*
2094 		 * XXX The lock bit for MTU indicates that the value
2095 		 * is also a minimum value; this is subject to time.
2096 		 */
2097 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2098 			TCPT_RANGESET(tp->t_rttmin,
2099 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2100 			    TCPTV_MIN, TCPTV_REXMTMAX);
2101 		tp->t_srtt = rtt /
2102 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2103 		if (rt->rt_rmx.rmx_rttvar) {
2104 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2105 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
2106 				(TCP_RTTVAR_SHIFT + 2));
2107 		} else {
2108 			/* Default variation is +- 1 rtt */
2109 			tp->t_rttvar =
2110 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2111 		}
2112 		TCPT_RANGESET(tp->t_rxtcur,
2113 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2114 		    tp->t_rttmin, TCPTV_REXMTMAX);
2115 	}
2116 	if (tp->t_inpcb)
2117 		in_pcbrtentry_unref(rt, tp->t_inpcb);
2118 #ifdef INET6
2119 	if (tp->t_in6pcb)
2120 		in6_pcbrtentry_unref(rt, tp->t_in6pcb);
2121 #endif
2122 #endif
2123 }
2124 
2125 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
2126 
2127 /*
2128  * Get a new sequence value given a tcp control block
2129  */
2130 tcp_seq
2131 tcp_new_iss(struct tcpcb *tp)
2132 {
2133 
2134 	if (tp->t_inpcb != NULL) {
2135 		return tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2136 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2137 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr));
2138 	}
2139 #ifdef INET6
2140 	if (tp->t_in6pcb != NULL) {
2141 		return tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2142 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2143 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr));
2144 	}
2145 #endif
2146 
2147 	panic("tcp_new_iss: unreachable");
2148 }
2149 
2150 static u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
2151 
2152 /*
2153  * Initialize RFC 1948 ISS Secret
2154  */
2155 static int
2156 tcp_iss_secret_init(void)
2157 {
2158 	cprng_strong(kern_cprng,
2159 	    tcp_iss_secret, sizeof(tcp_iss_secret), 0);
2160 
2161 	return 0;
2162 }
2163 
2164 /*
2165  * This routine actually generates a new TCP initial sequence number.
2166  */
2167 tcp_seq
2168 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2169     size_t addrsz)
2170 {
2171 	tcp_seq tcp_iss;
2172 
2173 	if (tcp_do_rfc1948) {
2174 		MD5_CTX ctx;
2175 		u_int8_t hash[16];	/* XXX MD5 knowledge */
2176 		static ONCE_DECL(tcp_iss_secret_control);
2177 
2178 		/*
2179 		 * If we haven't been here before, initialize our cryptographic
2180 		 * hash secret.
2181 		 */
2182 		RUN_ONCE(&tcp_iss_secret_control, tcp_iss_secret_init);
2183 
2184 		/*
2185 		 * Compute the base value of the ISS.  It is a hash
2186 		 * of (saddr, sport, daddr, dport, secret).
2187 		 */
2188 		MD5Init(&ctx);
2189 
2190 		MD5Update(&ctx, (u_char *) laddr, addrsz);
2191 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2192 
2193 		MD5Update(&ctx, (u_char *) faddr, addrsz);
2194 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2195 
2196 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2197 
2198 		MD5Final(hash, &ctx);
2199 
2200 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2201 
2202 #ifdef TCPISS_DEBUG
2203 		printf("ISS hash 0x%08x, ", tcp_iss);
2204 #endif
2205 	} else {
2206 		/*
2207 		 * Randomize.
2208 		 */
2209 		tcp_iss = cprng_fast32() & TCP_ISS_RANDOM_MASK;
2210 #ifdef TCPISS_DEBUG
2211 		printf("ISS random 0x%08x, ", tcp_iss);
2212 #endif
2213 	}
2214 
2215 	/*
2216 	 * Add the offset in to the computed value.
2217 	 */
2218 	tcp_iss += tcp_iss_seq;
2219 #ifdef TCPISS_DEBUG
2220 	printf("ISS %08x\n", tcp_iss);
2221 #endif
2222 	return tcp_iss;
2223 }
2224 
2225 #if defined(IPSEC)
2226 /* compute ESP/AH header size for TCP, including outer IP header. */
2227 size_t
2228 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2229 {
2230 	struct inpcb *inp;
2231 	size_t hdrsiz;
2232 
2233 	/* XXX mapped addr case (tp->t_in6pcb) */
2234 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2235 		return 0;
2236 	switch (tp->t_family) {
2237 	case AF_INET:
2238 		/* XXX: should use correct direction. */
2239 		hdrsiz = ipsec_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2240 		break;
2241 	default:
2242 		hdrsiz = 0;
2243 		break;
2244 	}
2245 
2246 	return hdrsiz;
2247 }
2248 
2249 #ifdef INET6
2250 size_t
2251 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2252 {
2253 	struct in6pcb *in6p;
2254 	size_t hdrsiz;
2255 
2256 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2257 		return 0;
2258 	switch (tp->t_family) {
2259 	case AF_INET6:
2260 		/* XXX: should use correct direction. */
2261 		hdrsiz = ipsec_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2262 		break;
2263 	case AF_INET:
2264 		/* mapped address case - tricky */
2265 	default:
2266 		hdrsiz = 0;
2267 		break;
2268 	}
2269 
2270 	return hdrsiz;
2271 }
2272 #endif
2273 #endif /*IPSEC*/
2274 
2275 /*
2276  * Determine the length of the TCP options for this connection.
2277  *
2278  * XXX:  What do we do for SACK, when we add that?  Just reserve
2279  *       all of the space?  Otherwise we can't exactly be incrementing
2280  *       cwnd by an amount that varies depending on the amount we last
2281  *       had to SACK!
2282  */
2283 
2284 u_int
2285 tcp_optlen(struct tcpcb *tp)
2286 {
2287 	u_int optlen;
2288 
2289 	optlen = 0;
2290 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2291 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2292 		optlen += TCPOLEN_TSTAMP_APPA;
2293 
2294 #ifdef TCP_SIGNATURE
2295 	if (tp->t_flags & TF_SIGNATURE)
2296 		optlen += TCPOLEN_SIGLEN;
2297 #endif
2298 
2299 	return optlen;
2300 }
2301 
2302 u_int
2303 tcp_hdrsz(struct tcpcb *tp)
2304 {
2305 	u_int hlen;
2306 
2307 	switch (tp->t_family) {
2308 #ifdef INET6
2309 	case AF_INET6:
2310 		hlen = sizeof(struct ip6_hdr);
2311 		break;
2312 #endif
2313 	case AF_INET:
2314 		hlen = sizeof(struct ip);
2315 		break;
2316 	default:
2317 		hlen = 0;
2318 		break;
2319 	}
2320 	hlen += sizeof(struct tcphdr);
2321 
2322 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2323 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2324 		hlen += TCPOLEN_TSTAMP_APPA;
2325 #ifdef TCP_SIGNATURE
2326 	if (tp->t_flags & TF_SIGNATURE)
2327 		hlen += TCPOLEN_SIGLEN;
2328 #endif
2329 	return hlen;
2330 }
2331 
2332 void
2333 tcp_statinc(u_int stat)
2334 {
2335 
2336 	KASSERT(stat < TCP_NSTATS);
2337 	TCP_STATINC(stat);
2338 }
2339 
2340 void
2341 tcp_statadd(u_int stat, uint64_t val)
2342 {
2343 
2344 	KASSERT(stat < TCP_NSTATS);
2345 	TCP_STATADD(stat, val);
2346 }
2347