xref: /netbsd-src/sys/netinet/tcp_subr.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: tcp_subr.c,v 1.289 2021/07/31 20:29:37 andvar Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38  * Facility, NASA Ames Research Center.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59  * POSSIBILITY OF SUCH DAMAGE.
60  */
61 
62 /*
63  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
64  *	The Regents of the University of California.  All rights reserved.
65  *
66  * Redistribution and use in source and binary forms, with or without
67  * modification, are permitted provided that the following conditions
68  * are met:
69  * 1. Redistributions of source code must retain the above copyright
70  *    notice, this list of conditions and the following disclaimer.
71  * 2. Redistributions in binary form must reproduce the above copyright
72  *    notice, this list of conditions and the following disclaimer in the
73  *    documentation and/or other materials provided with the distribution.
74  * 3. Neither the name of the University nor the names of its contributors
75  *    may be used to endorse or promote products derived from this software
76  *    without specific prior written permission.
77  *
78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88  * SUCH DAMAGE.
89  *
90  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
91  */
92 
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.289 2021/07/31 20:29:37 andvar Exp $");
95 
96 #ifdef _KERNEL_OPT
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_inet_csum.h"
100 #include "opt_mbuftrace.h"
101 #endif
102 
103 #include <sys/param.h>
104 #include <sys/atomic.h>
105 #include <sys/proc.h>
106 #include <sys/systm.h>
107 #include <sys/mbuf.h>
108 #include <sys/once.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/protosw.h>
112 #include <sys/errno.h>
113 #include <sys/kernel.h>
114 #include <sys/pool.h>
115 #include <sys/md5.h>
116 #include <sys/cprng.h>
117 
118 #include <net/route.h>
119 #include <net/if.h>
120 
121 #include <netinet/in.h>
122 #include <netinet/in_systm.h>
123 #include <netinet/ip.h>
124 #include <netinet/in_pcb.h>
125 #include <netinet/ip_var.h>
126 #include <netinet/ip_icmp.h>
127 
128 #ifdef INET6
129 #include <netinet/ip6.h>
130 #include <netinet6/in6_pcb.h>
131 #include <netinet6/ip6_var.h>
132 #include <netinet6/in6_var.h>
133 #include <netinet6/ip6protosw.h>
134 #include <netinet/icmp6.h>
135 #include <netinet6/nd6.h>
136 #endif
137 
138 #include <netinet/tcp.h>
139 #include <netinet/tcp_fsm.h>
140 #include <netinet/tcp_seq.h>
141 #include <netinet/tcp_timer.h>
142 #include <netinet/tcp_var.h>
143 #include <netinet/tcp_vtw.h>
144 #include <netinet/tcp_private.h>
145 #include <netinet/tcp_congctl.h>
146 
147 #ifdef IPSEC
148 #include <netipsec/ipsec.h>
149 #ifdef INET6
150 #include <netipsec/ipsec6.h>
151 #endif
152 #include <netipsec/key.h>
153 #endif
154 
155 
156 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
157 u_int32_t tcp_now;		/* slow ticks, for RFC 1323 timestamps */
158 
159 percpu_t *tcpstat_percpu;
160 
161 /* patchable/settable parameters for tcp */
162 int 	tcp_mssdflt = TCP_MSS;
163 int	tcp_minmss = TCP_MINMSS;
164 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
165 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
166 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
167 int	tcp_do_sack = 1;	/* selective acknowledgement */
168 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
169 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
170 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
171 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
172 #ifndef TCP_INIT_WIN
173 #define	TCP_INIT_WIN	4	/* initial slow start window */
174 #endif
175 #ifndef TCP_INIT_WIN_LOCAL
176 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
177 #endif
178 /*
179  * Up to 5 we scale linearly, to reach 3 * 1460; then (iw) * 1460.
180  * This is to simulate current behavior for iw == 4
181  */
182 int tcp_init_win_max[] = {
183 	 1 * 1460,
184 	 1 * 1460,
185 	 2 * 1460,
186 	 2 * 1460,
187 	 3 * 1460,
188 	 5 * 1460,
189 	 6 * 1460,
190 	 7 * 1460,
191 	 8 * 1460,
192 	 9 * 1460,
193 	10 * 1460
194 };
195 int	tcp_init_win = TCP_INIT_WIN;
196 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
197 int	tcp_mss_ifmtu = 0;
198 int	tcp_rst_ppslim = 100;	/* 100pps */
199 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
200 int	tcp_do_loopback_cksum = 0;
201 int	tcp_do_abc = 1;		/* RFC3465 Appropriate byte counting. */
202 int	tcp_abc_aggressive = 1;	/* 1: L=2*SMSS  0: L=1*SMSS */
203 int	tcp_sack_tp_maxholes = 32;
204 int	tcp_sack_globalmaxholes = 1024;
205 int	tcp_sack_globalholes = 0;
206 int	tcp_ecn_maxretries = 1;
207 int	tcp_msl_enable = 1;		/* enable TIME_WAIT truncation	*/
208 int	tcp_msl_loop   = PR_SLOWHZ;	/* MSL for loopback		*/
209 int	tcp_msl_local  = 5 * PR_SLOWHZ;	/* MSL for 'local'		*/
210 int	tcp_msl_remote = TCPTV_MSL;	/* MSL otherwise		*/
211 int	tcp_msl_remote_threshold = TCPTV_SRTTDFLT;	/* RTT threshold */
212 int	tcp_rttlocal = 0;		/* Use RTT to decide who's 'local' */
213 
214 int	tcp4_vtw_enable = 0;		/* 1 to enable */
215 int	tcp6_vtw_enable = 0;		/* 1 to enable */
216 int	tcp_vtw_was_enabled = 0;
217 int	tcp_vtw_entries = 1 << 4;	/* 16 vestigial TIME_WAIT entries */
218 
219 /* tcb hash */
220 #ifndef TCBHASHSIZE
221 #define	TCBHASHSIZE	128
222 #endif
223 int	tcbhashsize = TCBHASHSIZE;
224 
225 /* syn hash parameters */
226 #define	TCP_SYN_HASH_SIZE	293
227 #define	TCP_SYN_BUCKET_SIZE	35
228 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
229 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
230 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
231 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
232 
233 int	tcp_freeq(struct tcpcb *);
234 static int	tcp_iss_secret_init(void);
235 
236 static void	tcp_mtudisc_callback(struct in_addr);
237 
238 #ifdef INET6
239 static void	tcp6_mtudisc(struct in6pcb *, int);
240 #endif
241 
242 static struct pool tcpcb_pool;
243 
244 static int tcp_drainwanted;
245 
246 #ifdef TCP_CSUM_COUNTERS
247 #include <sys/device.h>
248 
249 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
250     NULL, "tcp", "hwcsum bad");
251 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
252     NULL, "tcp", "hwcsum ok");
253 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
254     NULL, "tcp", "hwcsum data");
255 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
256     NULL, "tcp", "swcsum");
257 
258 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
259 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
260 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
261 EVCNT_ATTACH_STATIC(tcp_swcsum);
262 
263 #if defined(INET6)
264 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
265     NULL, "tcp6", "hwcsum bad");
266 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
267     NULL, "tcp6", "hwcsum ok");
268 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
269     NULL, "tcp6", "hwcsum data");
270 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
271     NULL, "tcp6", "swcsum");
272 
273 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
274 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
275 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
276 EVCNT_ATTACH_STATIC(tcp6_swcsum);
277 #endif /* defined(INET6) */
278 #endif /* TCP_CSUM_COUNTERS */
279 
280 
281 #ifdef TCP_OUTPUT_COUNTERS
282 #include <sys/device.h>
283 
284 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
285     NULL, "tcp", "output big header");
286 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
287     NULL, "tcp", "output predict hit");
288 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
289     NULL, "tcp", "output predict miss");
290 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
291     NULL, "tcp", "output copy small");
292 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
293     NULL, "tcp", "output copy big");
294 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
295     NULL, "tcp", "output reference big");
296 
297 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
298 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
299 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
300 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
301 EVCNT_ATTACH_STATIC(tcp_output_copybig);
302 EVCNT_ATTACH_STATIC(tcp_output_refbig);
303 
304 #endif /* TCP_OUTPUT_COUNTERS */
305 
306 #ifdef TCP_REASS_COUNTERS
307 #include <sys/device.h>
308 
309 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
310     NULL, "tcp_reass", "calls");
311 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
312     &tcp_reass_, "tcp_reass", "insert into empty queue");
313 struct evcnt tcp_reass_iteration[8] = {
314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
316     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
317     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
318     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
319     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
320     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
321     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
322 };
323 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
324     &tcp_reass_, "tcp_reass", "prepend to first");
325 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
326     &tcp_reass_, "tcp_reass", "prepend");
327 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
328     &tcp_reass_, "tcp_reass", "insert");
329 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
330     &tcp_reass_, "tcp_reass", "insert at tail");
331 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
332     &tcp_reass_, "tcp_reass", "append");
333 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
334     &tcp_reass_, "tcp_reass", "append to tail fragment");
335 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
336     &tcp_reass_, "tcp_reass", "overlap at end");
337 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
338     &tcp_reass_, "tcp_reass", "overlap at start");
339 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
340     &tcp_reass_, "tcp_reass", "duplicate segment");
341 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
342     &tcp_reass_, "tcp_reass", "duplicate fragment");
343 
344 EVCNT_ATTACH_STATIC(tcp_reass_);
345 EVCNT_ATTACH_STATIC(tcp_reass_empty);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
349 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
350 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
351 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
352 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
353 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
354 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
355 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
356 EVCNT_ATTACH_STATIC(tcp_reass_insert);
357 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
358 EVCNT_ATTACH_STATIC(tcp_reass_append);
359 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
360 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
361 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
362 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
363 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
364 
365 #endif /* TCP_REASS_COUNTERS */
366 
367 #ifdef MBUFTRACE
368 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
369 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
370 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
371 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
372 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
373 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
374 #endif
375 
376 static int
377 do_tcpinit(void)
378 {
379 
380 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
381 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
382 	    NULL, IPL_SOFTNET);
383 
384 	tcp_usrreq_init();
385 
386 	/* Initialize timer state. */
387 	tcp_timer_init();
388 
389 	/* Initialize the compressed state engine. */
390 	syn_cache_init();
391 
392 	/* Initialize the congestion control algorithms. */
393 	tcp_congctl_init();
394 
395 	/* Initialize the TCPCB template. */
396 	tcp_tcpcb_template();
397 
398 	/* Initialize reassembly queue */
399 	tcpipqent_init();
400 
401 	/* SACK */
402 	tcp_sack_init();
403 
404 	MOWNER_ATTACH(&tcp_tx_mowner);
405 	MOWNER_ATTACH(&tcp_rx_mowner);
406 	MOWNER_ATTACH(&tcp_reass_mowner);
407 	MOWNER_ATTACH(&tcp_sock_mowner);
408 	MOWNER_ATTACH(&tcp_sock_tx_mowner);
409 	MOWNER_ATTACH(&tcp_sock_rx_mowner);
410 	MOWNER_ATTACH(&tcp_mowner);
411 
412 	tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
413 
414 	vtw_earlyinit();
415 
416 	tcp_slowtimo_init();
417 
418 	return 0;
419 }
420 
421 void
422 tcp_init_common(unsigned basehlen)
423 {
424 	static ONCE_DECL(dotcpinit);
425 	unsigned hlen = basehlen + sizeof(struct tcphdr);
426 	unsigned oldhlen;
427 
428 	if (max_linkhdr + hlen > MHLEN)
429 		panic("tcp_init");
430 	while ((oldhlen = max_protohdr) < hlen)
431 		atomic_cas_uint(&max_protohdr, oldhlen, hlen);
432 
433 	RUN_ONCE(&dotcpinit, do_tcpinit);
434 }
435 
436 /*
437  * Tcp initialization
438  */
439 void
440 tcp_init(void)
441 {
442 
443 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
444 
445 	tcp_init_common(sizeof(struct ip));
446 }
447 
448 /*
449  * Create template to be used to send tcp packets on a connection.
450  * Call after host entry created, allocates an mbuf and fills
451  * in a skeletal tcp/ip header, minimizing the amount of work
452  * necessary when the connection is used.
453  */
454 struct mbuf *
455 tcp_template(struct tcpcb *tp)
456 {
457 	struct inpcb *inp = tp->t_inpcb;
458 #ifdef INET6
459 	struct in6pcb *in6p = tp->t_in6pcb;
460 #endif
461 	struct tcphdr *n;
462 	struct mbuf *m;
463 	int hlen;
464 
465 	switch (tp->t_family) {
466 	case AF_INET:
467 		hlen = sizeof(struct ip);
468 		if (inp)
469 			break;
470 #ifdef INET6
471 		if (in6p) {
472 			/* mapped addr case */
473 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
474 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
475 				break;
476 		}
477 #endif
478 		return NULL;	/*EINVAL*/
479 #ifdef INET6
480 	case AF_INET6:
481 		hlen = sizeof(struct ip6_hdr);
482 		if (in6p) {
483 			/* more sainty check? */
484 			break;
485 		}
486 		return NULL;	/*EINVAL*/
487 #endif
488 	default:
489 		return NULL;	/*EAFNOSUPPORT*/
490 	}
491 
492 	KASSERT(hlen + sizeof(struct tcphdr) <= MCLBYTES);
493 
494 	m = tp->t_template;
495 	if (m && m->m_len == hlen + sizeof(struct tcphdr)) {
496 		;
497 	} else {
498 		if (m)
499 			m_freem(m);
500 		m = tp->t_template = NULL;
501 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
502 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
503 			MCLGET(m, M_DONTWAIT);
504 			if ((m->m_flags & M_EXT) == 0) {
505 				m_free(m);
506 				m = NULL;
507 			}
508 		}
509 		if (m == NULL)
510 			return NULL;
511 		MCLAIM(m, &tcp_mowner);
512 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
513 	}
514 
515 	memset(mtod(m, void *), 0, m->m_len);
516 
517 	n = (struct tcphdr *)(mtod(m, char *) + hlen);
518 
519 	switch (tp->t_family) {
520 	case AF_INET:
521 	    {
522 		struct ipovly *ipov;
523 		mtod(m, struct ip *)->ip_v = 4;
524 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
525 		ipov = mtod(m, struct ipovly *);
526 		ipov->ih_pr = IPPROTO_TCP;
527 		ipov->ih_len = htons(sizeof(struct tcphdr));
528 		if (inp) {
529 			ipov->ih_src = inp->inp_laddr;
530 			ipov->ih_dst = inp->inp_faddr;
531 		}
532 #ifdef INET6
533 		else if (in6p) {
534 			/* mapped addr case */
535 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
536 				sizeof(ipov->ih_src));
537 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
538 				sizeof(ipov->ih_dst));
539 		}
540 #endif
541 
542 		/*
543 		 * Compute the pseudo-header portion of the checksum
544 		 * now.  We incrementally add in the TCP option and
545 		 * payload lengths later, and then compute the TCP
546 		 * checksum right before the packet is sent off onto
547 		 * the wire.
548 		 */
549 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
550 		    ipov->ih_dst.s_addr,
551 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
552 		break;
553 	    }
554 #ifdef INET6
555 	case AF_INET6:
556 	    {
557 		struct ip6_hdr *ip6;
558 		mtod(m, struct ip *)->ip_v = 6;
559 		ip6 = mtod(m, struct ip6_hdr *);
560 		ip6->ip6_nxt = IPPROTO_TCP;
561 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
562 		ip6->ip6_src = in6p->in6p_laddr;
563 		ip6->ip6_dst = in6p->in6p_faddr;
564 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
565 		if (ip6_auto_flowlabel) {
566 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
567 			ip6->ip6_flow |=
568 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
569 		}
570 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
571 		ip6->ip6_vfc |= IPV6_VERSION;
572 
573 		/*
574 		 * Compute the pseudo-header portion of the checksum
575 		 * now.  We incrementally add in the TCP option and
576 		 * payload lengths later, and then compute the TCP
577 		 * checksum right before the packet is sent off onto
578 		 * the wire.
579 		 */
580 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
581 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
582 		    htonl(IPPROTO_TCP));
583 		break;
584 	    }
585 #endif
586 	}
587 
588 	if (inp) {
589 		n->th_sport = inp->inp_lport;
590 		n->th_dport = inp->inp_fport;
591 	}
592 #ifdef INET6
593 	else if (in6p) {
594 		n->th_sport = in6p->in6p_lport;
595 		n->th_dport = in6p->in6p_fport;
596 	}
597 #endif
598 
599 	n->th_seq = 0;
600 	n->th_ack = 0;
601 	n->th_x2 = 0;
602 	n->th_off = 5;
603 	n->th_flags = 0;
604 	n->th_win = 0;
605 	n->th_urp = 0;
606 	return m;
607 }
608 
609 /*
610  * Send a single message to the TCP at address specified by
611  * the given TCP/IP header.  If m == 0, then we make a copy
612  * of the tcpiphdr at ti and send directly to the addressed host.
613  * This is used to force keep alive messages out using the TCP
614  * template for a connection tp->t_template.  If flags are given
615  * then we send a message back to the TCP which originated the
616  * segment ti, and discard the mbuf containing it and any other
617  * attached mbufs.
618  *
619  * In any case the ack and sequence number of the transmitted
620  * segment are as specified by the parameters.
621  */
622 int
623 tcp_respond(struct tcpcb *tp, struct mbuf *mtemplate, struct mbuf *m,
624     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
625 {
626 	struct route *ro;
627 	int error, tlen, win = 0;
628 	int hlen;
629 	struct ip *ip;
630 #ifdef INET6
631 	struct ip6_hdr *ip6;
632 #endif
633 	int family;	/* family on packet, not inpcb/in6pcb! */
634 	struct tcphdr *th;
635 
636 	if (tp != NULL && (flags & TH_RST) == 0) {
637 		KASSERT(!(tp->t_inpcb && tp->t_in6pcb));
638 
639 		if (tp->t_inpcb)
640 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
641 #ifdef INET6
642 		if (tp->t_in6pcb)
643 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
644 #endif
645 	}
646 
647 	th = NULL;	/* Quell uninitialized warning */
648 	ip = NULL;
649 #ifdef INET6
650 	ip6 = NULL;
651 #endif
652 	if (m == NULL) {
653 		if (!mtemplate)
654 			return EINVAL;
655 
656 		/* get family information from template */
657 		switch (mtod(mtemplate, struct ip *)->ip_v) {
658 		case 4:
659 			family = AF_INET;
660 			hlen = sizeof(struct ip);
661 			break;
662 #ifdef INET6
663 		case 6:
664 			family = AF_INET6;
665 			hlen = sizeof(struct ip6_hdr);
666 			break;
667 #endif
668 		default:
669 			return EAFNOSUPPORT;
670 		}
671 
672 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
673 		if (m) {
674 			MCLAIM(m, &tcp_tx_mowner);
675 			MCLGET(m, M_DONTWAIT);
676 			if ((m->m_flags & M_EXT) == 0) {
677 				m_free(m);
678 				m = NULL;
679 			}
680 		}
681 		if (m == NULL)
682 			return ENOBUFS;
683 
684 		tlen = 0;
685 
686 		m->m_data += max_linkhdr;
687 		bcopy(mtod(mtemplate, void *), mtod(m, void *),
688 			mtemplate->m_len);
689 		switch (family) {
690 		case AF_INET:
691 			ip = mtod(m, struct ip *);
692 			th = (struct tcphdr *)(ip + 1);
693 			break;
694 #ifdef INET6
695 		case AF_INET6:
696 			ip6 = mtod(m, struct ip6_hdr *);
697 			th = (struct tcphdr *)(ip6 + 1);
698 			break;
699 #endif
700 		}
701 		flags = TH_ACK;
702 	} else {
703 		if ((m->m_flags & M_PKTHDR) == 0) {
704 			m_freem(m);
705 			return EINVAL;
706 		}
707 		KASSERT(th0 != NULL);
708 
709 		/* get family information from m */
710 		switch (mtod(m, struct ip *)->ip_v) {
711 		case 4:
712 			family = AF_INET;
713 			hlen = sizeof(struct ip);
714 			ip = mtod(m, struct ip *);
715 			break;
716 #ifdef INET6
717 		case 6:
718 			family = AF_INET6;
719 			hlen = sizeof(struct ip6_hdr);
720 			ip6 = mtod(m, struct ip6_hdr *);
721 			break;
722 #endif
723 		default:
724 			m_freem(m);
725 			return EAFNOSUPPORT;
726 		}
727 		/* clear h/w csum flags inherited from rx packet */
728 		m->m_pkthdr.csum_flags = 0;
729 
730 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
731 			tlen = sizeof(*th0);
732 		else
733 			tlen = th0->th_off << 2;
734 
735 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
736 		    mtod(m, char *) + hlen == (char *)th0) {
737 			m->m_len = hlen + tlen;
738 			m_freem(m->m_next);
739 			m->m_next = NULL;
740 		} else {
741 			struct mbuf *n;
742 
743 			KASSERT(max_linkhdr + hlen + tlen <= MCLBYTES);
744 
745 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
746 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
747 				MCLGET(n, M_DONTWAIT);
748 				if ((n->m_flags & M_EXT) == 0) {
749 					m_freem(n);
750 					n = NULL;
751 				}
752 			}
753 			if (!n) {
754 				m_freem(m);
755 				return ENOBUFS;
756 			}
757 
758 			MCLAIM(n, &tcp_tx_mowner);
759 			n->m_data += max_linkhdr;
760 			n->m_len = hlen + tlen;
761 			m_copyback(n, 0, hlen, mtod(m, void *));
762 			m_copyback(n, hlen, tlen, (void *)th0);
763 
764 			m_freem(m);
765 			m = n;
766 			n = NULL;
767 		}
768 
769 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
770 		switch (family) {
771 		case AF_INET:
772 			ip = mtod(m, struct ip *);
773 			th = (struct tcphdr *)(ip + 1);
774 			ip->ip_p = IPPROTO_TCP;
775 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
776 			ip->ip_p = IPPROTO_TCP;
777 			break;
778 #ifdef INET6
779 		case AF_INET6:
780 			ip6 = mtod(m, struct ip6_hdr *);
781 			th = (struct tcphdr *)(ip6 + 1);
782 			ip6->ip6_nxt = IPPROTO_TCP;
783 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
784 			ip6->ip6_nxt = IPPROTO_TCP;
785 			break;
786 #endif
787 		}
788 		xchg(th->th_dport, th->th_sport, u_int16_t);
789 #undef xchg
790 		tlen = 0;	/*be friendly with the following code*/
791 	}
792 	th->th_seq = htonl(seq);
793 	th->th_ack = htonl(ack);
794 	th->th_x2 = 0;
795 	if ((flags & TH_SYN) == 0) {
796 		if (tp)
797 			win >>= tp->rcv_scale;
798 		if (win > TCP_MAXWIN)
799 			win = TCP_MAXWIN;
800 		th->th_win = htons((u_int16_t)win);
801 		th->th_off = sizeof (struct tcphdr) >> 2;
802 		tlen += sizeof(*th);
803 	} else {
804 		tlen += th->th_off << 2;
805 	}
806 	m->m_len = hlen + tlen;
807 	m->m_pkthdr.len = hlen + tlen;
808 	m_reset_rcvif(m);
809 	th->th_flags = flags;
810 	th->th_urp = 0;
811 
812 	switch (family) {
813 	case AF_INET:
814 	    {
815 		struct ipovly *ipov = (struct ipovly *)ip;
816 		memset(ipov->ih_x1, 0, sizeof ipov->ih_x1);
817 		ipov->ih_len = htons((u_int16_t)tlen);
818 
819 		th->th_sum = 0;
820 		th->th_sum = in_cksum(m, hlen + tlen);
821 		ip->ip_len = htons(hlen + tlen);
822 		ip->ip_ttl = ip_defttl;
823 		break;
824 	    }
825 #ifdef INET6
826 	case AF_INET6:
827 	    {
828 		th->th_sum = 0;
829 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
830 		    tlen);
831 		ip6->ip6_plen = htons(tlen);
832 		if (tp && tp->t_in6pcb)
833 			ip6->ip6_hlim = in6_selecthlim_rt(tp->t_in6pcb);
834 		else
835 			ip6->ip6_hlim = ip6_defhlim;
836 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
837 		if (ip6_auto_flowlabel) {
838 			ip6->ip6_flow |=
839 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
840 		}
841 		break;
842 	    }
843 #endif
844 	}
845 
846 	if (tp != NULL && tp->t_inpcb != NULL) {
847 		ro = &tp->t_inpcb->inp_route;
848 		KASSERT(family == AF_INET);
849 		KASSERT(in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr));
850 	}
851 #ifdef INET6
852 	else if (tp != NULL && tp->t_in6pcb != NULL) {
853 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
854 
855 #ifdef DIAGNOSTIC
856 		if (family == AF_INET) {
857 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
858 				panic("tcp_respond: not mapped addr");
859 			if (memcmp(&ip->ip_dst,
860 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
861 			    sizeof(ip->ip_dst)) != 0) {
862 				panic("tcp_respond: ip_dst != in6p_faddr");
863 			}
864 		} else if (family == AF_INET6) {
865 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
866 			    &tp->t_in6pcb->in6p_faddr))
867 				panic("tcp_respond: ip6_dst != in6p_faddr");
868 		} else
869 			panic("tcp_respond: address family mismatch");
870 #endif
871 	}
872 #endif
873 	else
874 		ro = NULL;
875 
876 	switch (family) {
877 	case AF_INET:
878 		error = ip_output(m, NULL, ro,
879 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0), NULL,
880 		    tp ? tp->t_inpcb : NULL);
881 		break;
882 #ifdef INET6
883 	case AF_INET6:
884 		error = ip6_output(m, NULL, ro, 0, NULL,
885 		    tp ? tp->t_in6pcb : NULL, NULL);
886 		break;
887 #endif
888 	default:
889 		error = EAFNOSUPPORT;
890 		break;
891 	}
892 
893 	return error;
894 }
895 
896 /*
897  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
898  * a bunch of members individually, we maintain this template for the
899  * static and mostly-static components of the TCPCB, and copy it into
900  * the new TCPCB instead.
901  */
902 static struct tcpcb tcpcb_template = {
903 	.t_srtt = TCPTV_SRTTBASE,
904 	.t_rttmin = TCPTV_MIN,
905 
906 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
907 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
908 	.snd_numholes = 0,
909 	.snd_cubic_wmax = 0,
910 	.snd_cubic_wmax_last = 0,
911 	.snd_cubic_ctime = 0,
912 
913 	.t_partialacks = -1,
914 	.t_bytes_acked = 0,
915 	.t_sndrexmitpack = 0,
916 	.t_rcvoopack = 0,
917 	.t_sndzerowin = 0,
918 };
919 
920 /*
921  * Updates the TCPCB template whenever a parameter that would affect
922  * the template is changed.
923  */
924 void
925 tcp_tcpcb_template(void)
926 {
927 	struct tcpcb *tp = &tcpcb_template;
928 	int flags;
929 
930 	tp->t_peermss = tcp_mssdflt;
931 	tp->t_ourmss = tcp_mssdflt;
932 	tp->t_segsz = tcp_mssdflt;
933 
934 	flags = 0;
935 	if (tcp_do_rfc1323 && tcp_do_win_scale)
936 		flags |= TF_REQ_SCALE;
937 	if (tcp_do_rfc1323 && tcp_do_timestamps)
938 		flags |= TF_REQ_TSTMP;
939 	tp->t_flags = flags;
940 
941 	/*
942 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
943 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
944 	 * reasonable initial retransmit time.
945 	 */
946 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
947 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
948 	    TCPTV_MIN, TCPTV_REXMTMAX);
949 
950 	/* Keep Alive */
951 	tp->t_keepinit = MIN(tcp_keepinit, TCP_TIMER_MAXTICKS);
952 	tp->t_keepidle = MIN(tcp_keepidle, TCP_TIMER_MAXTICKS);
953 	tp->t_keepintvl = MIN(tcp_keepintvl, TCP_TIMER_MAXTICKS);
954 	tp->t_keepcnt = MAX(1, MIN(tcp_keepcnt, TCP_TIMER_MAXTICKS));
955 	tp->t_maxidle = tp->t_keepcnt * MIN(tp->t_keepintvl,
956 	    TCP_TIMER_MAXTICKS/tp->t_keepcnt);
957 
958 	/* MSL */
959 	tp->t_msl = TCPTV_MSL;
960 }
961 
962 /*
963  * Create a new TCP control block, making an
964  * empty reassembly queue and hooking it to the argument
965  * protocol control block.
966  */
967 /* family selects inpcb, or in6pcb */
968 struct tcpcb *
969 tcp_newtcpcb(int family, void *aux)
970 {
971 	struct tcpcb *tp;
972 	int i;
973 
974 	/* XXX Consider using a pool_cache for speed. */
975 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
976 	if (tp == NULL)
977 		return NULL;
978 	memcpy(tp, &tcpcb_template, sizeof(*tp));
979 	TAILQ_INIT(&tp->segq);
980 	TAILQ_INIT(&tp->timeq);
981 	tp->t_family = family;		/* may be overridden later on */
982 	TAILQ_INIT(&tp->snd_holes);
983 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
984 
985 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
986 	for (i = 0; i < TCPT_NTIMERS; i++) {
987 		callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
988 		TCP_TIMER_INIT(tp, i);
989 	}
990 	callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
991 
992 	switch (family) {
993 	case AF_INET:
994 	    {
995 		struct inpcb *inp = (struct inpcb *)aux;
996 
997 		inp->inp_ip.ip_ttl = ip_defttl;
998 		inp->inp_ppcb = (void *)tp;
999 
1000 		tp->t_inpcb = inp;
1001 		tp->t_mtudisc = ip_mtudisc;
1002 		break;
1003 	    }
1004 #ifdef INET6
1005 	case AF_INET6:
1006 	    {
1007 		struct in6pcb *in6p = (struct in6pcb *)aux;
1008 
1009 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim_rt(in6p);
1010 		in6p->in6p_ppcb = (void *)tp;
1011 
1012 		tp->t_in6pcb = in6p;
1013 		/* for IPv6, always try to run path MTU discovery */
1014 		tp->t_mtudisc = 1;
1015 		break;
1016 	    }
1017 #endif /* INET6 */
1018 	default:
1019 		for (i = 0; i < TCPT_NTIMERS; i++)
1020 			callout_destroy(&tp->t_timer[i]);
1021 		callout_destroy(&tp->t_delack_ch);
1022 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
1023 		return NULL;
1024 	}
1025 
1026 	/*
1027 	 * Initialize our timebase.  When we send timestamps, we take
1028 	 * the delta from tcp_now -- this means each connection always
1029 	 * gets a timebase of 1, which makes it, among other things,
1030 	 * more difficult to determine how long a system has been up,
1031 	 * and thus how many TCP sequence increments have occurred.
1032 	 *
1033 	 * We start with 1, because 0 doesn't work with linux, which
1034 	 * considers timestamp 0 in a SYN packet as a bug and disables
1035 	 * timestamps.
1036 	 */
1037 	tp->ts_timebase = tcp_now - 1;
1038 
1039 	tcp_congctl_select(tp, tcp_congctl_global_name);
1040 
1041 	return tp;
1042 }
1043 
1044 /*
1045  * Drop a TCP connection, reporting
1046  * the specified error.  If connection is synchronized,
1047  * then send a RST to peer.
1048  */
1049 struct tcpcb *
1050 tcp_drop(struct tcpcb *tp, int errno)
1051 {
1052 	struct socket *so = NULL;
1053 
1054 	KASSERT(!(tp->t_inpcb && tp->t_in6pcb));
1055 
1056 	if (tp->t_inpcb)
1057 		so = tp->t_inpcb->inp_socket;
1058 #ifdef INET6
1059 	if (tp->t_in6pcb)
1060 		so = tp->t_in6pcb->in6p_socket;
1061 #endif
1062 	if (!so)
1063 		return NULL;
1064 
1065 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1066 		tp->t_state = TCPS_CLOSED;
1067 		(void) tcp_output(tp);
1068 		TCP_STATINC(TCP_STAT_DROPS);
1069 	} else
1070 		TCP_STATINC(TCP_STAT_CONNDROPS);
1071 	if (errno == ETIMEDOUT && tp->t_softerror)
1072 		errno = tp->t_softerror;
1073 	so->so_error = errno;
1074 	return (tcp_close(tp));
1075 }
1076 
1077 /*
1078  * Close a TCP control block:
1079  *	discard all space held by the tcp
1080  *	discard internet protocol block
1081  *	wake up any sleepers
1082  */
1083 struct tcpcb *
1084 tcp_close(struct tcpcb *tp)
1085 {
1086 	struct inpcb *inp;
1087 #ifdef INET6
1088 	struct in6pcb *in6p;
1089 #endif
1090 	struct socket *so;
1091 #ifdef RTV_RTT
1092 	struct rtentry *rt = NULL;
1093 #endif
1094 	struct route *ro;
1095 	int j;
1096 
1097 	inp = tp->t_inpcb;
1098 #ifdef INET6
1099 	in6p = tp->t_in6pcb;
1100 #endif
1101 	so = NULL;
1102 	ro = NULL;
1103 	if (inp) {
1104 		so = inp->inp_socket;
1105 		ro = &inp->inp_route;
1106 	}
1107 #ifdef INET6
1108 	else if (in6p) {
1109 		so = in6p->in6p_socket;
1110 		ro = (struct route *)&in6p->in6p_route;
1111 	}
1112 #endif
1113 
1114 #ifdef RTV_RTT
1115 	/*
1116 	 * If we sent enough data to get some meaningful characteristics,
1117 	 * save them in the routing entry.  'Enough' is arbitrarily
1118 	 * defined as the sendpipesize (default 4K) * 16.  This would
1119 	 * give us 16 rtt samples assuming we only get one sample per
1120 	 * window (the usual case on a long haul net).  16 samples is
1121 	 * enough for the srtt filter to converge to within 5% of the correct
1122 	 * value; fewer samples and we could save a very bogus rtt.
1123 	 *
1124 	 * Don't update the default route's characteristics and don't
1125 	 * update anything that the user "locked".
1126 	 */
1127 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1128 	    ro && (rt = rtcache_validate(ro)) != NULL &&
1129 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1130 		u_long i = 0;
1131 
1132 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1133 			i = tp->t_srtt *
1134 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1135 			if (rt->rt_rmx.rmx_rtt && i)
1136 				/*
1137 				 * filter this update to half the old & half
1138 				 * the new values, converting scale.
1139 				 * See route.h and tcp_var.h for a
1140 				 * description of the scaling constants.
1141 				 */
1142 				rt->rt_rmx.rmx_rtt =
1143 				    (rt->rt_rmx.rmx_rtt + i) / 2;
1144 			else
1145 				rt->rt_rmx.rmx_rtt = i;
1146 		}
1147 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1148 			i = tp->t_rttvar *
1149 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1150 			if (rt->rt_rmx.rmx_rttvar && i)
1151 				rt->rt_rmx.rmx_rttvar =
1152 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
1153 			else
1154 				rt->rt_rmx.rmx_rttvar = i;
1155 		}
1156 		/*
1157 		 * update the pipelimit (ssthresh) if it has been updated
1158 		 * already or if a pipesize was specified & the threshold
1159 		 * got below half the pipesize.  I.e., wait for bad news
1160 		 * before we start updating, then update on both good
1161 		 * and bad news.
1162 		 */
1163 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1164 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1165 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1166 			/*
1167 			 * convert the limit from user data bytes to
1168 			 * packets then to packet data bytes.
1169 			 */
1170 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
1171 			if (i < 2)
1172 				i = 2;
1173 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1174 			if (rt->rt_rmx.rmx_ssthresh)
1175 				rt->rt_rmx.rmx_ssthresh =
1176 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1177 			else
1178 				rt->rt_rmx.rmx_ssthresh = i;
1179 		}
1180 	}
1181 	rtcache_unref(rt, ro);
1182 #endif /* RTV_RTT */
1183 	/* free the reassembly queue, if any */
1184 	TCP_REASS_LOCK(tp);
1185 	(void) tcp_freeq(tp);
1186 	TCP_REASS_UNLOCK(tp);
1187 
1188 	/* free the SACK holes list. */
1189 	tcp_free_sackholes(tp);
1190 	tcp_congctl_release(tp);
1191 	syn_cache_cleanup(tp);
1192 
1193 	if (tp->t_template) {
1194 		m_free(tp->t_template);
1195 		tp->t_template = NULL;
1196 	}
1197 
1198 	/*
1199 	 * Detaching the pcb will unlock the socket/tcpcb, and stopping
1200 	 * the timers can also drop the lock.  We need to prevent access
1201 	 * to the tcpcb as it's half torn down.  Flag the pcb as dead
1202 	 * (prevents access by timers) and only then detach it.
1203 	 */
1204 	tp->t_flags |= TF_DEAD;
1205 	if (inp) {
1206 		inp->inp_ppcb = 0;
1207 		soisdisconnected(so);
1208 		in_pcbdetach(inp);
1209 	}
1210 #ifdef INET6
1211 	else if (in6p) {
1212 		in6p->in6p_ppcb = 0;
1213 		soisdisconnected(so);
1214 		in6_pcbdetach(in6p);
1215 	}
1216 #endif
1217 	/*
1218 	 * pcb is no longer visble elsewhere, so we can safely release
1219 	 * the lock in callout_halt() if needed.
1220 	 */
1221 	TCP_STATINC(TCP_STAT_CLOSED);
1222 	for (j = 0; j < TCPT_NTIMERS; j++) {
1223 		callout_halt(&tp->t_timer[j], softnet_lock);
1224 		callout_destroy(&tp->t_timer[j]);
1225 	}
1226 	callout_halt(&tp->t_delack_ch, softnet_lock);
1227 	callout_destroy(&tp->t_delack_ch);
1228 	pool_put(&tcpcb_pool, tp);
1229 
1230 	return NULL;
1231 }
1232 
1233 int
1234 tcp_freeq(struct tcpcb *tp)
1235 {
1236 	struct ipqent *qe;
1237 	int rv = 0;
1238 
1239 	TCP_REASS_LOCK_CHECK(tp);
1240 
1241 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1242 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1243 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1244 		m_freem(qe->ipqe_m);
1245 		tcpipqent_free(qe);
1246 		rv = 1;
1247 	}
1248 	tp->t_segqlen = 0;
1249 	KASSERT(TAILQ_EMPTY(&tp->timeq));
1250 	return (rv);
1251 }
1252 
1253 void
1254 tcp_fasttimo(void)
1255 {
1256 	if (tcp_drainwanted) {
1257 		tcp_drain();
1258 		tcp_drainwanted = 0;
1259 	}
1260 }
1261 
1262 void
1263 tcp_drainstub(void)
1264 {
1265 	tcp_drainwanted = 1;
1266 }
1267 
1268 /*
1269  * Protocol drain routine.  Called when memory is in short supply.
1270  * Called from pr_fasttimo thus a callout context.
1271  */
1272 void
1273 tcp_drain(void)
1274 {
1275 	struct inpcb_hdr *inph;
1276 	struct tcpcb *tp;
1277 
1278 	mutex_enter(softnet_lock);
1279 	KERNEL_LOCK(1, NULL);
1280 
1281 	/*
1282 	 * Free the sequence queue of all TCP connections.
1283 	 */
1284 	TAILQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1285 		switch (inph->inph_af) {
1286 		case AF_INET:
1287 			tp = intotcpcb((struct inpcb *)inph);
1288 			break;
1289 #ifdef INET6
1290 		case AF_INET6:
1291 			tp = in6totcpcb((struct in6pcb *)inph);
1292 			break;
1293 #endif
1294 		default:
1295 			tp = NULL;
1296 			break;
1297 		}
1298 		if (tp != NULL) {
1299 			/*
1300 			 * We may be called from a device's interrupt
1301 			 * context.  If the tcpcb is already busy,
1302 			 * just bail out now.
1303 			 */
1304 			if (tcp_reass_lock_try(tp) == 0)
1305 				continue;
1306 			if (tcp_freeq(tp))
1307 				TCP_STATINC(TCP_STAT_CONNSDRAINED);
1308 			TCP_REASS_UNLOCK(tp);
1309 		}
1310 	}
1311 
1312 	KERNEL_UNLOCK_ONE(NULL);
1313 	mutex_exit(softnet_lock);
1314 }
1315 
1316 /*
1317  * Notify a tcp user of an asynchronous error;
1318  * store error as soft error, but wake up user
1319  * (for now, won't do anything until can select for soft error).
1320  */
1321 void
1322 tcp_notify(struct inpcb *inp, int error)
1323 {
1324 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1325 	struct socket *so = inp->inp_socket;
1326 
1327 	/*
1328 	 * Ignore some errors if we are hooked up.
1329 	 * If connection hasn't completed, has retransmitted several times,
1330 	 * and receives a second error, give up now.  This is better
1331 	 * than waiting a long time to establish a connection that
1332 	 * can never complete.
1333 	 */
1334 	if (tp->t_state == TCPS_ESTABLISHED &&
1335 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1336 	      error == EHOSTDOWN)) {
1337 		return;
1338 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1339 	    tp->t_rxtshift > 3 && tp->t_softerror)
1340 		so->so_error = error;
1341 	else
1342 		tp->t_softerror = error;
1343 	cv_broadcast(&so->so_cv);
1344 	sorwakeup(so);
1345 	sowwakeup(so);
1346 }
1347 
1348 #ifdef INET6
1349 void
1350 tcp6_notify(struct in6pcb *in6p, int error)
1351 {
1352 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1353 	struct socket *so = in6p->in6p_socket;
1354 
1355 	/*
1356 	 * Ignore some errors if we are hooked up.
1357 	 * If connection hasn't completed, has retransmitted several times,
1358 	 * and receives a second error, give up now.  This is better
1359 	 * than waiting a long time to establish a connection that
1360 	 * can never complete.
1361 	 */
1362 	if (tp->t_state == TCPS_ESTABLISHED &&
1363 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1364 	      error == EHOSTDOWN)) {
1365 		return;
1366 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1367 	    tp->t_rxtshift > 3 && tp->t_softerror)
1368 		so->so_error = error;
1369 	else
1370 		tp->t_softerror = error;
1371 	cv_broadcast(&so->so_cv);
1372 	sorwakeup(so);
1373 	sowwakeup(so);
1374 }
1375 #endif
1376 
1377 #ifdef INET6
1378 void *
1379 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1380 {
1381 	struct tcphdr th;
1382 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
1383 	int nmatch;
1384 	struct ip6_hdr *ip6;
1385 	const struct sockaddr_in6 *sa6_src = NULL;
1386 	const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1387 	struct mbuf *m;
1388 	int off;
1389 
1390 	if (sa->sa_family != AF_INET6 ||
1391 	    sa->sa_len != sizeof(struct sockaddr_in6))
1392 		return NULL;
1393 	if ((unsigned)cmd >= PRC_NCMDS)
1394 		return NULL;
1395 	else if (cmd == PRC_QUENCH) {
1396 		/*
1397 		 * Don't honor ICMP Source Quench messages meant for
1398 		 * TCP connections.
1399 		 */
1400 		return NULL;
1401 	} else if (PRC_IS_REDIRECT(cmd))
1402 		notify = in6_rtchange, d = NULL;
1403 	else if (cmd == PRC_MSGSIZE)
1404 		; /* special code is present, see below */
1405 	else if (cmd == PRC_HOSTDEAD)
1406 		d = NULL;
1407 	else if (inet6ctlerrmap[cmd] == 0)
1408 		return NULL;
1409 
1410 	/* if the parameter is from icmp6, decode it. */
1411 	if (d != NULL) {
1412 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1413 		m = ip6cp->ip6c_m;
1414 		ip6 = ip6cp->ip6c_ip6;
1415 		off = ip6cp->ip6c_off;
1416 		sa6_src = ip6cp->ip6c_src;
1417 	} else {
1418 		m = NULL;
1419 		ip6 = NULL;
1420 		sa6_src = &sa6_any;
1421 		off = 0;
1422 	}
1423 
1424 	if (ip6) {
1425 		/* check if we can safely examine src and dst ports */
1426 		if (m->m_pkthdr.len < off + sizeof(th)) {
1427 			if (cmd == PRC_MSGSIZE)
1428 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1429 			return NULL;
1430 		}
1431 
1432 		memset(&th, 0, sizeof(th));
1433 		m_copydata(m, off, sizeof(th), (void *)&th);
1434 
1435 		if (cmd == PRC_MSGSIZE) {
1436 			int valid = 0;
1437 
1438 			/*
1439 			 * Check to see if we have a valid TCP connection
1440 			 * corresponding to the address in the ICMPv6 message
1441 			 * payload.
1442 			 */
1443 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1444 			    th.th_dport,
1445 			    (const struct in6_addr *)&sa6_src->sin6_addr,
1446 						  th.th_sport, 0, 0))
1447 				valid++;
1448 
1449 			/*
1450 			 * Depending on the value of "valid" and routing table
1451 			 * size (mtudisc_{hi,lo}wat), we will:
1452 			 * - recalcurate the new MTU and create the
1453 			 *   corresponding routing entry, or
1454 			 * - ignore the MTU change notification.
1455 			 */
1456 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1457 
1458 			/*
1459 			 * no need to call in6_pcbnotify, it should have been
1460 			 * called via callback if necessary
1461 			 */
1462 			return NULL;
1463 		}
1464 
1465 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1466 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1467 		if (nmatch == 0 && syn_cache_count &&
1468 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1469 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
1470 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
1471 			syn_cache_unreach((const struct sockaddr *)sa6_src,
1472 					  sa, &th);
1473 	} else {
1474 		(void) in6_pcbnotify(&tcbtable, sa, 0,
1475 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1476 	}
1477 
1478 	return NULL;
1479 }
1480 #endif
1481 
1482 /* assumes that ip header and tcp header are contiguous on mbuf */
1483 void *
1484 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1485 {
1486 	struct ip *ip = v;
1487 	struct tcphdr *th;
1488 	struct icmp *icp;
1489 	extern const int inetctlerrmap[];
1490 	void (*notify)(struct inpcb *, int) = tcp_notify;
1491 	int errno;
1492 	int nmatch;
1493 	struct tcpcb *tp;
1494 	u_int mtu;
1495 	tcp_seq seq;
1496 	struct inpcb *inp;
1497 #ifdef INET6
1498 	struct in6pcb *in6p;
1499 	struct in6_addr src6, dst6;
1500 #endif
1501 
1502 	if (sa->sa_family != AF_INET ||
1503 	    sa->sa_len != sizeof(struct sockaddr_in))
1504 		return NULL;
1505 	if ((unsigned)cmd >= PRC_NCMDS)
1506 		return NULL;
1507 	errno = inetctlerrmap[cmd];
1508 	if (cmd == PRC_QUENCH)
1509 		/*
1510 		 * Don't honor ICMP Source Quench messages meant for
1511 		 * TCP connections.
1512 		 */
1513 		return NULL;
1514 	else if (PRC_IS_REDIRECT(cmd))
1515 		notify = in_rtchange, ip = 0;
1516 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1517 		/*
1518 		 * Check to see if we have a valid TCP connection
1519 		 * corresponding to the address in the ICMP message
1520 		 * payload.
1521 		 *
1522 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1523 		 */
1524 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1525 #ifdef INET6
1526 		in6_in_2_v4mapin6(&ip->ip_src, &src6);
1527 		in6_in_2_v4mapin6(&ip->ip_dst, &dst6);
1528 #endif
1529 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1530 		    th->th_dport, ip->ip_src, th->th_sport, 0)) != NULL)
1531 #ifdef INET6
1532 			in6p = NULL;
1533 #else
1534 			;
1535 #endif
1536 #ifdef INET6
1537 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1538 		    th->th_dport, &src6, th->th_sport, 0, 0)) != NULL)
1539 			;
1540 #endif
1541 		else
1542 			return NULL;
1543 
1544 		/*
1545 		 * Now that we've validated that we are actually communicating
1546 		 * with the host indicated in the ICMP message, locate the
1547 		 * ICMP header, recalculate the new MTU, and create the
1548 		 * corresponding routing entry.
1549 		 */
1550 		icp = (struct icmp *)((char *)ip -
1551 		    offsetof(struct icmp, icmp_ip));
1552 		if (inp) {
1553 			if ((tp = intotcpcb(inp)) == NULL)
1554 				return NULL;
1555 		}
1556 #ifdef INET6
1557 		else if (in6p) {
1558 			if ((tp = in6totcpcb(in6p)) == NULL)
1559 				return NULL;
1560 		}
1561 #endif
1562 		else
1563 			return NULL;
1564 		seq = ntohl(th->th_seq);
1565 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1566 			return NULL;
1567 		/*
1568 		 * If the ICMP message advertises a Next-Hop MTU
1569 		 * equal or larger than the maximum packet size we have
1570 		 * ever sent, drop the message.
1571 		 */
1572 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
1573 		if (mtu >= tp->t_pmtud_mtu_sent)
1574 			return NULL;
1575 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1576 			/*
1577 			 * Calculate new MTU, and create corresponding
1578 			 * route (traditional PMTUD).
1579 			 */
1580 			tp->t_flags &= ~TF_PMTUD_PEND;
1581 			icmp_mtudisc(icp, ip->ip_dst);
1582 		} else {
1583 			/*
1584 			 * Record the information got in the ICMP
1585 			 * message; act on it later.
1586 			 * If we had already recorded an ICMP message,
1587 			 * replace the old one only if the new message
1588 			 * refers to an older TCP segment
1589 			 */
1590 			if (tp->t_flags & TF_PMTUD_PEND) {
1591 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1592 					return NULL;
1593 			} else
1594 				tp->t_flags |= TF_PMTUD_PEND;
1595 			tp->t_pmtud_th_seq = seq;
1596 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1597 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1598 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1599 		}
1600 		return NULL;
1601 	} else if (cmd == PRC_HOSTDEAD)
1602 		ip = 0;
1603 	else if (errno == 0)
1604 		return NULL;
1605 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1606 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1607 		nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1608 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1609 		if (nmatch == 0 && syn_cache_count &&
1610 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
1611 		    inetctlerrmap[cmd] == ENETUNREACH ||
1612 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
1613 			struct sockaddr_in sin;
1614 			memset(&sin, 0, sizeof(sin));
1615 			sin.sin_len = sizeof(sin);
1616 			sin.sin_family = AF_INET;
1617 			sin.sin_port = th->th_sport;
1618 			sin.sin_addr = ip->ip_src;
1619 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1620 		}
1621 
1622 		/* XXX mapped address case */
1623 	} else
1624 		in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1625 		    notify);
1626 	return NULL;
1627 }
1628 
1629 /*
1630  * When a source quench is received, we are being notified of congestion.
1631  * Close the congestion window down to the Loss Window (one segment).
1632  * We will gradually open it again as we proceed.
1633  */
1634 void
1635 tcp_quench(struct inpcb *inp)
1636 {
1637 	struct tcpcb *tp = intotcpcb(inp);
1638 
1639 	if (tp) {
1640 		tp->snd_cwnd = tp->t_segsz;
1641 		tp->t_bytes_acked = 0;
1642 	}
1643 }
1644 
1645 #ifdef INET6
1646 void
1647 tcp6_quench(struct in6pcb *in6p)
1648 {
1649 	struct tcpcb *tp = in6totcpcb(in6p);
1650 
1651 	if (tp) {
1652 		tp->snd_cwnd = tp->t_segsz;
1653 		tp->t_bytes_acked = 0;
1654 	}
1655 }
1656 #endif
1657 
1658 /*
1659  * Path MTU Discovery handlers.
1660  */
1661 void
1662 tcp_mtudisc_callback(struct in_addr faddr)
1663 {
1664 #ifdef INET6
1665 	struct in6_addr in6;
1666 #endif
1667 
1668 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1669 #ifdef INET6
1670 	in6_in_2_v4mapin6(&faddr, &in6);
1671 	tcp6_mtudisc_callback(&in6);
1672 #endif
1673 }
1674 
1675 /*
1676  * On receipt of path MTU corrections, flush old route and replace it
1677  * with the new one.  Retransmit all unacknowledged packets, to ensure
1678  * that all packets will be received.
1679  */
1680 void
1681 tcp_mtudisc(struct inpcb *inp, int errno)
1682 {
1683 	struct tcpcb *tp = intotcpcb(inp);
1684 	struct rtentry *rt;
1685 
1686 	if (tp == NULL)
1687 		return;
1688 
1689 	rt = in_pcbrtentry(inp);
1690 	if (rt != NULL) {
1691 		/*
1692 		 * If this was not a host route, remove and realloc.
1693 		 */
1694 		if ((rt->rt_flags & RTF_HOST) == 0) {
1695 			in_pcbrtentry_unref(rt, inp);
1696 			in_rtchange(inp, errno);
1697 			if ((rt = in_pcbrtentry(inp)) == NULL)
1698 				return;
1699 		}
1700 
1701 		/*
1702 		 * Slow start out of the error condition.  We
1703 		 * use the MTU because we know it's smaller
1704 		 * than the previously transmitted segment.
1705 		 *
1706 		 * Note: This is more conservative than the
1707 		 * suggestion in draft-floyd-incr-init-win-03.
1708 		 */
1709 		if (rt->rt_rmx.rmx_mtu != 0)
1710 			tp->snd_cwnd =
1711 			    TCP_INITIAL_WINDOW(tcp_init_win,
1712 			    rt->rt_rmx.rmx_mtu);
1713 		in_pcbrtentry_unref(rt, inp);
1714 	}
1715 
1716 	/*
1717 	 * Resend unacknowledged packets.
1718 	 */
1719 	tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1720 	tcp_output(tp);
1721 }
1722 
1723 #ifdef INET6
1724 /*
1725  * Path MTU Discovery handlers.
1726  */
1727 void
1728 tcp6_mtudisc_callback(struct in6_addr *faddr)
1729 {
1730 	struct sockaddr_in6 sin6;
1731 
1732 	memset(&sin6, 0, sizeof(sin6));
1733 	sin6.sin6_family = AF_INET6;
1734 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1735 	sin6.sin6_addr = *faddr;
1736 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1737 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1738 }
1739 
1740 void
1741 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1742 {
1743 	struct tcpcb *tp = in6totcpcb(in6p);
1744 	struct rtentry *rt;
1745 
1746 	if (tp == NULL)
1747 		return;
1748 
1749 	rt = in6_pcbrtentry(in6p);
1750 	if (rt != NULL) {
1751 		/*
1752 		 * If this was not a host route, remove and realloc.
1753 		 */
1754 		if ((rt->rt_flags & RTF_HOST) == 0) {
1755 			in6_pcbrtentry_unref(rt, in6p);
1756 			in6_rtchange(in6p, errno);
1757 			rt = in6_pcbrtentry(in6p);
1758 			if (rt == NULL)
1759 				return;
1760 		}
1761 
1762 		/*
1763 		 * Slow start out of the error condition.  We
1764 		 * use the MTU because we know it's smaller
1765 		 * than the previously transmitted segment.
1766 		 *
1767 		 * Note: This is more conservative than the
1768 		 * suggestion in draft-floyd-incr-init-win-03.
1769 		 */
1770 		if (rt->rt_rmx.rmx_mtu != 0) {
1771 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1772 			    rt->rt_rmx.rmx_mtu);
1773 		}
1774 		in6_pcbrtentry_unref(rt, in6p);
1775 	}
1776 
1777 	/*
1778 	 * Resend unacknowledged packets.
1779 	 */
1780 	tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1781 	tcp_output(tp);
1782 }
1783 #endif /* INET6 */
1784 
1785 /*
1786  * Compute the MSS to advertise to the peer.  Called only during
1787  * the 3-way handshake.  If we are the server (peer initiated
1788  * connection), we are called with a pointer to the interface
1789  * on which the SYN packet arrived.  If we are the client (we
1790  * initiated connection), we are called with a pointer to the
1791  * interface out which this connection should go.
1792  *
1793  * NOTE: Do not subtract IP option/extension header size nor IPsec
1794  * header size from MSS advertisement.  MSS option must hold the maximum
1795  * segment size we can accept, so it must always be:
1796  *	 max(if mtu) - ip header - tcp header
1797  */
1798 u_long
1799 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1800 {
1801 	extern u_long in_maxmtu;
1802 	u_long mss = 0;
1803 	u_long hdrsiz;
1804 
1805 	/*
1806 	 * In order to avoid defeating path MTU discovery on the peer,
1807 	 * we advertise the max MTU of all attached networks as our MSS,
1808 	 * per RFC 1191, section 3.1.
1809 	 *
1810 	 * We provide the option to advertise just the MTU of
1811 	 * the interface on which we hope this connection will
1812 	 * be receiving.  If we are responding to a SYN, we
1813 	 * will have a pretty good idea about this, but when
1814 	 * initiating a connection there is a bit more doubt.
1815 	 *
1816 	 * We also need to ensure that loopback has a large enough
1817 	 * MSS, as the loopback MTU is never included in in_maxmtu.
1818 	 */
1819 
1820 	if (ifp != NULL)
1821 		switch (af) {
1822 #ifdef INET6
1823 		case AF_INET6:	/* FALLTHROUGH */
1824 #endif
1825 		case AF_INET:
1826 			mss = ifp->if_mtu;
1827 			break;
1828 		}
1829 
1830 	if (tcp_mss_ifmtu == 0)
1831 		switch (af) {
1832 #ifdef INET6
1833 		case AF_INET6:	/* FALLTHROUGH */
1834 #endif
1835 		case AF_INET:
1836 			mss = uimax(in_maxmtu, mss);
1837 			break;
1838 		}
1839 
1840 	switch (af) {
1841 	case AF_INET:
1842 		hdrsiz = sizeof(struct ip);
1843 		break;
1844 #ifdef INET6
1845 	case AF_INET6:
1846 		hdrsiz = sizeof(struct ip6_hdr);
1847 		break;
1848 #endif
1849 	default:
1850 		hdrsiz = 0;
1851 		break;
1852 	}
1853 	hdrsiz += sizeof(struct tcphdr);
1854 	if (mss > hdrsiz)
1855 		mss -= hdrsiz;
1856 
1857 	mss = uimax(tcp_mssdflt, mss);
1858 	return (mss);
1859 }
1860 
1861 /*
1862  * Set connection variables based on the peer's advertised MSS.
1863  * We are passed the TCPCB for the actual connection.  If we
1864  * are the server, we are called by the compressed state engine
1865  * when the 3-way handshake is complete.  If we are the client,
1866  * we are called when we receive the SYN,ACK from the server.
1867  *
1868  * NOTE: Our advertised MSS value must be initialized in the TCPCB
1869  * before this routine is called!
1870  */
1871 void
1872 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1873 {
1874 	struct socket *so;
1875 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1876 	struct rtentry *rt;
1877 #endif
1878 	u_long bufsize;
1879 	int mss;
1880 
1881 	KASSERT(!(tp->t_inpcb && tp->t_in6pcb));
1882 
1883 	so = NULL;
1884 	rt = NULL;
1885 
1886 	if (tp->t_inpcb) {
1887 		so = tp->t_inpcb->inp_socket;
1888 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1889 		rt = in_pcbrtentry(tp->t_inpcb);
1890 #endif
1891 	}
1892 
1893 #ifdef INET6
1894 	if (tp->t_in6pcb) {
1895 		so = tp->t_in6pcb->in6p_socket;
1896 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1897 		rt = in6_pcbrtentry(tp->t_in6pcb);
1898 #endif
1899 	}
1900 #endif
1901 
1902 	/*
1903 	 * As per RFC1122, use the default MSS value, unless they
1904 	 * sent us an offer.  Do not accept offers less than 256 bytes.
1905 	 */
1906 	mss = tcp_mssdflt;
1907 	if (offer)
1908 		mss = offer;
1909 	mss = uimax(mss, 256);		/* sanity */
1910 	tp->t_peermss = mss;
1911 	mss -= tcp_optlen(tp);
1912 	if (tp->t_inpcb)
1913 		mss -= ip_optlen(tp->t_inpcb);
1914 #ifdef INET6
1915 	if (tp->t_in6pcb)
1916 		mss -= ip6_optlen(tp->t_in6pcb);
1917 #endif
1918 	/*
1919 	 * XXX XXX What if mss goes negative or zero? This can happen if a
1920 	 * socket has large IPv6 options. We crash below.
1921 	 */
1922 
1923 	/*
1924 	 * If there's a pipesize, change the socket buffer to that size.
1925 	 * Make the socket buffer an integral number of MSS units.  If
1926 	 * the MSS is larger than the socket buffer, artificially decrease
1927 	 * the MSS.
1928 	 */
1929 #ifdef RTV_SPIPE
1930 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1931 		bufsize = rt->rt_rmx.rmx_sendpipe;
1932 	else
1933 #endif
1934 	{
1935 		KASSERT(so != NULL);
1936 		bufsize = so->so_snd.sb_hiwat;
1937 	}
1938 	if (bufsize < mss)
1939 		mss = bufsize;
1940 	else {
1941 		bufsize = roundup(bufsize, mss);
1942 		if (bufsize > sb_max)
1943 			bufsize = sb_max;
1944 		(void) sbreserve(&so->so_snd, bufsize, so);
1945 	}
1946 	tp->t_segsz = mss;
1947 
1948 #ifdef RTV_SSTHRESH
1949 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1950 		/*
1951 		 * There's some sort of gateway or interface buffer
1952 		 * limit on the path.  Use this to set the slow
1953 		 * start threshold, but set the threshold to no less
1954 		 * than 2 * MSS.
1955 		 */
1956 		tp->snd_ssthresh = uimax(2 * mss, rt->rt_rmx.rmx_ssthresh);
1957 	}
1958 #endif
1959 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1960 	if (tp->t_inpcb)
1961 		in_pcbrtentry_unref(rt, tp->t_inpcb);
1962 #ifdef INET6
1963 	if (tp->t_in6pcb)
1964 		in6_pcbrtentry_unref(rt, tp->t_in6pcb);
1965 #endif
1966 #endif
1967 }
1968 
1969 /*
1970  * Processing necessary when a TCP connection is established.
1971  */
1972 void
1973 tcp_established(struct tcpcb *tp)
1974 {
1975 	struct socket *so;
1976 #ifdef RTV_RPIPE
1977 	struct rtentry *rt;
1978 #endif
1979 	u_long bufsize;
1980 
1981 	KASSERT(!(tp->t_inpcb && tp->t_in6pcb));
1982 
1983 	so = NULL;
1984 	rt = NULL;
1985 
1986 	/* This is a while() to reduce the dreadful stairstepping below */
1987 	while (tp->t_inpcb) {
1988 		so = tp->t_inpcb->inp_socket;
1989 #if defined(RTV_RPIPE)
1990 		rt = in_pcbrtentry(tp->t_inpcb);
1991 #endif
1992 		if (__predict_true(tcp_msl_enable)) {
1993 			if (tp->t_inpcb->inp_laddr.s_addr == INADDR_LOOPBACK) {
1994 				tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
1995 				break;
1996 			}
1997 
1998 			if (__predict_false(tcp_rttlocal)) {
1999 				/* This may be adjusted by tcp_input */
2000 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2001 				break;
2002 			}
2003 			if (in_localaddr(tp->t_inpcb->inp_faddr)) {
2004 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2005 				break;
2006 			}
2007 		}
2008 		tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2009 		break;
2010 	}
2011 
2012 	/* Clamp to a reasonable range.  */
2013 	tp->t_msl = MIN(tp->t_msl, TCP_MAXMSL);
2014 
2015 #ifdef INET6
2016 	/* The !tp->t_inpcb lets the compiler know it can't be v4 *and* v6 */
2017 	while (!tp->t_inpcb && tp->t_in6pcb) {
2018 		so = tp->t_in6pcb->in6p_socket;
2019 #if defined(RTV_RPIPE)
2020 		rt = in6_pcbrtentry(tp->t_in6pcb);
2021 #endif
2022 		if (__predict_true(tcp_msl_enable)) {
2023 			extern const struct in6_addr in6addr_loopback;
2024 
2025 			if (IN6_ARE_ADDR_EQUAL(&tp->t_in6pcb->in6p_laddr,
2026 			    &in6addr_loopback)) {
2027 				tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
2028 				break;
2029 			}
2030 
2031 			if (__predict_false(tcp_rttlocal)) {
2032 				/* This may be adjusted by tcp_input */
2033 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2034 				break;
2035 			}
2036 			if (in6_localaddr(&tp->t_in6pcb->in6p_faddr)) {
2037 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2038 				break;
2039 			}
2040 		}
2041 		tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2042 		break;
2043 	}
2044 
2045 	/* Clamp to a reasonable range.  */
2046 	tp->t_msl = MIN(tp->t_msl, TCP_MAXMSL);
2047 #endif
2048 
2049 	tp->t_state = TCPS_ESTABLISHED;
2050 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2051 
2052 #ifdef RTV_RPIPE
2053 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2054 		bufsize = rt->rt_rmx.rmx_recvpipe;
2055 	else
2056 #endif
2057 	{
2058 		KASSERT(so != NULL);
2059 		bufsize = so->so_rcv.sb_hiwat;
2060 	}
2061 	if (bufsize > tp->t_ourmss) {
2062 		bufsize = roundup(bufsize, tp->t_ourmss);
2063 		if (bufsize > sb_max)
2064 			bufsize = sb_max;
2065 		(void) sbreserve(&so->so_rcv, bufsize, so);
2066 	}
2067 #ifdef RTV_RPIPE
2068 	if (tp->t_inpcb)
2069 		in_pcbrtentry_unref(rt, tp->t_inpcb);
2070 #ifdef INET6
2071 	if (tp->t_in6pcb)
2072 		in6_pcbrtentry_unref(rt, tp->t_in6pcb);
2073 #endif
2074 #endif
2075 }
2076 
2077 /*
2078  * Check if there's an initial rtt or rttvar.  Convert from the
2079  * route-table units to scaled multiples of the slow timeout timer.
2080  * Called only during the 3-way handshake.
2081  */
2082 void
2083 tcp_rmx_rtt(struct tcpcb *tp)
2084 {
2085 #ifdef RTV_RTT
2086 	struct rtentry *rt = NULL;
2087 	int rtt;
2088 
2089 	KASSERT(!(tp->t_inpcb && tp->t_in6pcb));
2090 
2091 	if (tp->t_inpcb)
2092 		rt = in_pcbrtentry(tp->t_inpcb);
2093 #ifdef INET6
2094 	if (tp->t_in6pcb)
2095 		rt = in6_pcbrtentry(tp->t_in6pcb);
2096 #endif
2097 	if (rt == NULL)
2098 		return;
2099 
2100 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2101 		/*
2102 		 * XXX The lock bit for MTU indicates that the value
2103 		 * is also a minimum value; this is subject to time.
2104 		 */
2105 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2106 			TCPT_RANGESET(tp->t_rttmin,
2107 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2108 			    TCPTV_MIN, TCPTV_REXMTMAX);
2109 		tp->t_srtt = rtt /
2110 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2111 		if (rt->rt_rmx.rmx_rttvar) {
2112 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2113 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
2114 				(TCP_RTTVAR_SHIFT + 2));
2115 		} else {
2116 			/* Default variation is +- 1 rtt */
2117 			tp->t_rttvar =
2118 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2119 		}
2120 		TCPT_RANGESET(tp->t_rxtcur,
2121 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2122 		    tp->t_rttmin, TCPTV_REXMTMAX);
2123 	}
2124 	if (tp->t_inpcb)
2125 		in_pcbrtentry_unref(rt, tp->t_inpcb);
2126 #ifdef INET6
2127 	if (tp->t_in6pcb)
2128 		in6_pcbrtentry_unref(rt, tp->t_in6pcb);
2129 #endif
2130 #endif
2131 }
2132 
2133 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
2134 
2135 /*
2136  * Get a new sequence value given a tcp control block
2137  */
2138 tcp_seq
2139 tcp_new_iss(struct tcpcb *tp)
2140 {
2141 
2142 	if (tp->t_inpcb != NULL) {
2143 		return tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2144 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2145 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr));
2146 	}
2147 #ifdef INET6
2148 	if (tp->t_in6pcb != NULL) {
2149 		return tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2150 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2151 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr));
2152 	}
2153 #endif
2154 
2155 	panic("tcp_new_iss: unreachable");
2156 }
2157 
2158 static u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
2159 
2160 /*
2161  * Initialize RFC 1948 ISS Secret
2162  */
2163 static int
2164 tcp_iss_secret_init(void)
2165 {
2166 	cprng_strong(kern_cprng,
2167 	    tcp_iss_secret, sizeof(tcp_iss_secret), 0);
2168 
2169 	return 0;
2170 }
2171 
2172 /*
2173  * This routine actually generates a new TCP initial sequence number.
2174  */
2175 tcp_seq
2176 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2177     size_t addrsz)
2178 {
2179 	tcp_seq tcp_iss;
2180 
2181 	if (tcp_do_rfc1948) {
2182 		MD5_CTX ctx;
2183 		u_int8_t hash[16];	/* XXX MD5 knowledge */
2184 		static ONCE_DECL(tcp_iss_secret_control);
2185 
2186 		/*
2187 		 * If we haven't been here before, initialize our cryptographic
2188 		 * hash secret.
2189 		 */
2190 		RUN_ONCE(&tcp_iss_secret_control, tcp_iss_secret_init);
2191 
2192 		/*
2193 		 * Compute the base value of the ISS.  It is a hash
2194 		 * of (saddr, sport, daddr, dport, secret).
2195 		 */
2196 		MD5Init(&ctx);
2197 
2198 		MD5Update(&ctx, (u_char *) laddr, addrsz);
2199 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2200 
2201 		MD5Update(&ctx, (u_char *) faddr, addrsz);
2202 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2203 
2204 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2205 
2206 		MD5Final(hash, &ctx);
2207 
2208 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2209 
2210 #ifdef TCPISS_DEBUG
2211 		printf("ISS hash 0x%08x, ", tcp_iss);
2212 #endif
2213 	} else {
2214 		/*
2215 		 * Randomize.
2216 		 */
2217 		tcp_iss = cprng_fast32() & TCP_ISS_RANDOM_MASK;
2218 #ifdef TCPISS_DEBUG
2219 		printf("ISS random 0x%08x, ", tcp_iss);
2220 #endif
2221 	}
2222 
2223 	/*
2224 	 * Add the offset in to the computed value.
2225 	 */
2226 	tcp_iss += tcp_iss_seq;
2227 #ifdef TCPISS_DEBUG
2228 	printf("ISS %08x\n", tcp_iss);
2229 #endif
2230 	return tcp_iss;
2231 }
2232 
2233 #if defined(IPSEC)
2234 /* compute ESP/AH header size for TCP, including outer IP header. */
2235 size_t
2236 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2237 {
2238 	struct inpcb *inp;
2239 	size_t hdrsiz;
2240 
2241 	/* XXX mapped addr case (tp->t_in6pcb) */
2242 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2243 		return 0;
2244 	switch (tp->t_family) {
2245 	case AF_INET:
2246 		/* XXX: should use correct direction. */
2247 		hdrsiz = ipsec_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2248 		break;
2249 	default:
2250 		hdrsiz = 0;
2251 		break;
2252 	}
2253 
2254 	return hdrsiz;
2255 }
2256 
2257 #ifdef INET6
2258 size_t
2259 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2260 {
2261 	struct in6pcb *in6p;
2262 	size_t hdrsiz;
2263 
2264 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2265 		return 0;
2266 	switch (tp->t_family) {
2267 	case AF_INET6:
2268 		/* XXX: should use correct direction. */
2269 		hdrsiz = ipsec_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2270 		break;
2271 	case AF_INET:
2272 		/* mapped address case - tricky */
2273 	default:
2274 		hdrsiz = 0;
2275 		break;
2276 	}
2277 
2278 	return hdrsiz;
2279 }
2280 #endif
2281 #endif /*IPSEC*/
2282 
2283 /*
2284  * Determine the length of the TCP options for this connection.
2285  *
2286  * XXX:  What do we do for SACK, when we add that?  Just reserve
2287  *       all of the space?  Otherwise we can't exactly be incrementing
2288  *       cwnd by an amount that varies depending on the amount we last
2289  *       had to SACK!
2290  */
2291 
2292 u_int
2293 tcp_optlen(struct tcpcb *tp)
2294 {
2295 	u_int optlen;
2296 
2297 	optlen = 0;
2298 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2299 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2300 		optlen += TCPOLEN_TSTAMP_APPA;
2301 
2302 #ifdef TCP_SIGNATURE
2303 	if (tp->t_flags & TF_SIGNATURE)
2304 		optlen += TCPOLEN_SIGLEN;
2305 #endif
2306 
2307 	return optlen;
2308 }
2309 
2310 u_int
2311 tcp_hdrsz(struct tcpcb *tp)
2312 {
2313 	u_int hlen;
2314 
2315 	switch (tp->t_family) {
2316 #ifdef INET6
2317 	case AF_INET6:
2318 		hlen = sizeof(struct ip6_hdr);
2319 		break;
2320 #endif
2321 	case AF_INET:
2322 		hlen = sizeof(struct ip);
2323 		break;
2324 	default:
2325 		hlen = 0;
2326 		break;
2327 	}
2328 	hlen += sizeof(struct tcphdr);
2329 
2330 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2331 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2332 		hlen += TCPOLEN_TSTAMP_APPA;
2333 #ifdef TCP_SIGNATURE
2334 	if (tp->t_flags & TF_SIGNATURE)
2335 		hlen += TCPOLEN_SIGLEN;
2336 #endif
2337 	return hlen;
2338 }
2339 
2340 void
2341 tcp_statinc(u_int stat)
2342 {
2343 
2344 	KASSERT(stat < TCP_NSTATS);
2345 	TCP_STATINC(stat);
2346 }
2347 
2348 void
2349 tcp_statadd(u_int stat, uint64_t val)
2350 {
2351 
2352 	KASSERT(stat < TCP_NSTATS);
2353 	TCP_STATADD(stat, val);
2354 }
2355