xref: /netbsd-src/sys/netinet/tcp_subr.c (revision 466a16a118933bd295a8a104f095714fadf9cf68)
1 /*	$NetBSD: tcp_subr.c,v 1.233 2008/10/13 19:44:21 pooka Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38  * Facility, NASA Ames Research Center.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59  * POSSIBILITY OF SUCH DAMAGE.
60  */
61 
62 /*
63  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
64  *	The Regents of the University of California.  All rights reserved.
65  *
66  * Redistribution and use in source and binary forms, with or without
67  * modification, are permitted provided that the following conditions
68  * are met:
69  * 1. Redistributions of source code must retain the above copyright
70  *    notice, this list of conditions and the following disclaimer.
71  * 2. Redistributions in binary form must reproduce the above copyright
72  *    notice, this list of conditions and the following disclaimer in the
73  *    documentation and/or other materials provided with the distribution.
74  * 3. Neither the name of the University nor the names of its contributors
75  *    may be used to endorse or promote products derived from this software
76  *    without specific prior written permission.
77  *
78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88  * SUCH DAMAGE.
89  *
90  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
91  */
92 
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.233 2008/10/13 19:44:21 pooka Exp $");
95 
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_tcp_compat_42.h"
99 #include "opt_inet_csum.h"
100 #include "opt_mbuftrace.h"
101 #include "rnd.h"
102 
103 #include <sys/param.h>
104 #include <sys/proc.h>
105 #include <sys/systm.h>
106 #include <sys/malloc.h>
107 #include <sys/mbuf.h>
108 #include <sys/socket.h>
109 #include <sys/socketvar.h>
110 #include <sys/protosw.h>
111 #include <sys/errno.h>
112 #include <sys/kernel.h>
113 #include <sys/pool.h>
114 #if NRND > 0
115 #include <sys/md5.h>
116 #include <sys/rnd.h>
117 #endif
118 
119 #include <net/route.h>
120 #include <net/if.h>
121 
122 #include <netinet/in.h>
123 #include <netinet/in_systm.h>
124 #include <netinet/ip.h>
125 #include <netinet/in_pcb.h>
126 #include <netinet/ip_var.h>
127 #include <netinet/ip_icmp.h>
128 
129 #ifdef INET6
130 #ifndef INET
131 #include <netinet/in.h>
132 #endif
133 #include <netinet/ip6.h>
134 #include <netinet6/in6_pcb.h>
135 #include <netinet6/ip6_var.h>
136 #include <netinet6/in6_var.h>
137 #include <netinet6/ip6protosw.h>
138 #include <netinet/icmp6.h>
139 #include <netinet6/nd6.h>
140 #endif
141 
142 #include <netinet/tcp.h>
143 #include <netinet/tcp_fsm.h>
144 #include <netinet/tcp_seq.h>
145 #include <netinet/tcp_timer.h>
146 #include <netinet/tcp_var.h>
147 #include <netinet/tcp_private.h>
148 #include <netinet/tcp_congctl.h>
149 #include <netinet/tcpip.h>
150 
151 #ifdef IPSEC
152 #include <netinet6/ipsec.h>
153 #include <netkey/key.h>
154 #endif /*IPSEC*/
155 
156 #ifdef FAST_IPSEC
157 #include <netipsec/ipsec.h>
158 #include <netipsec/xform.h>
159 #ifdef INET6
160 #include <netipsec/ipsec6.h>
161 #endif
162  #include <netipsec/key.h>
163 #endif	/* FAST_IPSEC*/
164 
165 
166 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
167 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
168 
169 percpu_t *tcpstat_percpu;
170 
171 /* patchable/settable parameters for tcp */
172 int 	tcp_mssdflt = TCP_MSS;
173 int	tcp_minmss = TCP_MINMSS;
174 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
175 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
176 #if NRND > 0
177 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
178 #endif
179 int	tcp_do_sack = 1;	/* selective acknowledgement */
180 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
181 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
182 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
183 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
184 #ifndef TCP_INIT_WIN
185 #define	TCP_INIT_WIN	0	/* initial slow start window */
186 #endif
187 #ifndef TCP_INIT_WIN_LOCAL
188 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
189 #endif
190 int	tcp_init_win = TCP_INIT_WIN;
191 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
192 int	tcp_mss_ifmtu = 0;
193 #ifdef TCP_COMPAT_42
194 int	tcp_compat_42 = 1;
195 #else
196 int	tcp_compat_42 = 0;
197 #endif
198 int	tcp_rst_ppslim = 100;	/* 100pps */
199 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
200 int	tcp_do_loopback_cksum = 0;
201 int	tcp_do_abc = 1;		/* RFC3465 Appropriate byte counting. */
202 int	tcp_abc_aggressive = 1;	/* 1: L=2*SMSS  0: L=1*SMSS */
203 int	tcp_sack_tp_maxholes = 32;
204 int	tcp_sack_globalmaxholes = 1024;
205 int	tcp_sack_globalholes = 0;
206 int	tcp_ecn_maxretries = 1;
207 
208 /* tcb hash */
209 #ifndef TCBHASHSIZE
210 #define	TCBHASHSIZE	128
211 #endif
212 int	tcbhashsize = TCBHASHSIZE;
213 
214 /* syn hash parameters */
215 #define	TCP_SYN_HASH_SIZE	293
216 #define	TCP_SYN_BUCKET_SIZE	35
217 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
218 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
219 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
220 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
221 
222 int	tcp_freeq(struct tcpcb *);
223 
224 #ifdef INET
225 void	tcp_mtudisc_callback(struct in_addr);
226 #endif
227 #ifdef INET6
228 void	tcp6_mtudisc_callback(struct in6_addr *);
229 #endif
230 
231 #ifdef INET6
232 void	tcp6_mtudisc(struct in6pcb *, int);
233 #endif
234 
235 static struct pool tcpcb_pool;
236 
237 #ifdef TCP_CSUM_COUNTERS
238 #include <sys/device.h>
239 
240 #if defined(INET)
241 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
242     NULL, "tcp", "hwcsum bad");
243 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
244     NULL, "tcp", "hwcsum ok");
245 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
246     NULL, "tcp", "hwcsum data");
247 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
248     NULL, "tcp", "swcsum");
249 
250 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
251 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
252 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
253 EVCNT_ATTACH_STATIC(tcp_swcsum);
254 #endif /* defined(INET) */
255 
256 #if defined(INET6)
257 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
258     NULL, "tcp6", "hwcsum bad");
259 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
260     NULL, "tcp6", "hwcsum ok");
261 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262     NULL, "tcp6", "hwcsum data");
263 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264     NULL, "tcp6", "swcsum");
265 
266 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
267 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
268 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
269 EVCNT_ATTACH_STATIC(tcp6_swcsum);
270 #endif /* defined(INET6) */
271 #endif /* TCP_CSUM_COUNTERS */
272 
273 
274 #ifdef TCP_OUTPUT_COUNTERS
275 #include <sys/device.h>
276 
277 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
278     NULL, "tcp", "output big header");
279 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
280     NULL, "tcp", "output predict hit");
281 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282     NULL, "tcp", "output predict miss");
283 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284     NULL, "tcp", "output copy small");
285 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286     NULL, "tcp", "output copy big");
287 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288     NULL, "tcp", "output reference big");
289 
290 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
291 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
292 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
293 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
294 EVCNT_ATTACH_STATIC(tcp_output_copybig);
295 EVCNT_ATTACH_STATIC(tcp_output_refbig);
296 
297 #endif /* TCP_OUTPUT_COUNTERS */
298 
299 #ifdef TCP_REASS_COUNTERS
300 #include <sys/device.h>
301 
302 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
303     NULL, "tcp_reass", "calls");
304 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
305     &tcp_reass_, "tcp_reass", "insert into empty queue");
306 struct evcnt tcp_reass_iteration[8] = {
307     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
308     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
309     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
310     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
311     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
312     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
315 };
316 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
317     &tcp_reass_, "tcp_reass", "prepend to first");
318 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
319     &tcp_reass_, "tcp_reass", "prepend");
320 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
321     &tcp_reass_, "tcp_reass", "insert");
322 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
323     &tcp_reass_, "tcp_reass", "insert at tail");
324 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
325     &tcp_reass_, "tcp_reass", "append");
326 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
327     &tcp_reass_, "tcp_reass", "append to tail fragment");
328 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
329     &tcp_reass_, "tcp_reass", "overlap at end");
330 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
331     &tcp_reass_, "tcp_reass", "overlap at start");
332 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
333     &tcp_reass_, "tcp_reass", "duplicate segment");
334 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
335     &tcp_reass_, "tcp_reass", "duplicate fragment");
336 
337 EVCNT_ATTACH_STATIC(tcp_reass_);
338 EVCNT_ATTACH_STATIC(tcp_reass_empty);
339 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
340 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
341 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
342 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
343 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
344 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
347 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
348 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
349 EVCNT_ATTACH_STATIC(tcp_reass_insert);
350 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
351 EVCNT_ATTACH_STATIC(tcp_reass_append);
352 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
353 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
354 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
355 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
356 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
357 
358 #endif /* TCP_REASS_COUNTERS */
359 
360 #ifdef MBUFTRACE
361 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
362 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
363 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
364 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
365 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
366 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
367 #endif
368 
369 /*
370  * Tcp initialization
371  */
372 void
373 tcp_init(void)
374 {
375 	int hlen;
376 
377 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
378 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
379 	    NULL, IPL_SOFTNET);
380 
381 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
382 #ifdef INET6
383 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
384 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
385 #endif
386 	if (max_protohdr < hlen)
387 		max_protohdr = hlen;
388 	if (max_linkhdr + hlen > MHLEN)
389 		panic("tcp_init");
390 
391 #ifdef INET
392 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
393 #endif
394 #ifdef INET6
395 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
396 #endif
397 
398 	/* Initialize timer state. */
399 	tcp_timer_init();
400 
401 	/* Initialize the compressed state engine. */
402 	syn_cache_init();
403 
404 	/* Initialize the congestion control algorithms. */
405 	tcp_congctl_init();
406 
407 	/* Initialize the TCPCB template. */
408 	tcp_tcpcb_template();
409 
410 	MOWNER_ATTACH(&tcp_tx_mowner);
411 	MOWNER_ATTACH(&tcp_rx_mowner);
412 	MOWNER_ATTACH(&tcp_reass_mowner);
413 	MOWNER_ATTACH(&tcp_sock_mowner);
414 	MOWNER_ATTACH(&tcp_sock_tx_mowner);
415 	MOWNER_ATTACH(&tcp_sock_rx_mowner);
416 	MOWNER_ATTACH(&tcp_mowner);
417 
418 	tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
419 }
420 
421 /*
422  * Create template to be used to send tcp packets on a connection.
423  * Call after host entry created, allocates an mbuf and fills
424  * in a skeletal tcp/ip header, minimizing the amount of work
425  * necessary when the connection is used.
426  */
427 struct mbuf *
428 tcp_template(struct tcpcb *tp)
429 {
430 	struct inpcb *inp = tp->t_inpcb;
431 #ifdef INET6
432 	struct in6pcb *in6p = tp->t_in6pcb;
433 #endif
434 	struct tcphdr *n;
435 	struct mbuf *m;
436 	int hlen;
437 
438 	switch (tp->t_family) {
439 	case AF_INET:
440 		hlen = sizeof(struct ip);
441 		if (inp)
442 			break;
443 #ifdef INET6
444 		if (in6p) {
445 			/* mapped addr case */
446 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
447 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
448 				break;
449 		}
450 #endif
451 		return NULL;	/*EINVAL*/
452 #ifdef INET6
453 	case AF_INET6:
454 		hlen = sizeof(struct ip6_hdr);
455 		if (in6p) {
456 			/* more sainty check? */
457 			break;
458 		}
459 		return NULL;	/*EINVAL*/
460 #endif
461 	default:
462 		hlen = 0;	/*pacify gcc*/
463 		return NULL;	/*EAFNOSUPPORT*/
464 	}
465 #ifdef DIAGNOSTIC
466 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
467 		panic("mclbytes too small for t_template");
468 #endif
469 	m = tp->t_template;
470 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
471 		;
472 	else {
473 		if (m)
474 			m_freem(m);
475 		m = tp->t_template = NULL;
476 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
477 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
478 			MCLGET(m, M_DONTWAIT);
479 			if ((m->m_flags & M_EXT) == 0) {
480 				m_free(m);
481 				m = NULL;
482 			}
483 		}
484 		if (m == NULL)
485 			return NULL;
486 		MCLAIM(m, &tcp_mowner);
487 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
488 	}
489 
490 	bzero(mtod(m, void *), m->m_len);
491 
492 	n = (struct tcphdr *)(mtod(m, char *) + hlen);
493 
494 	switch (tp->t_family) {
495 	case AF_INET:
496 	    {
497 		struct ipovly *ipov;
498 		mtod(m, struct ip *)->ip_v = 4;
499 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
500 		ipov = mtod(m, struct ipovly *);
501 		ipov->ih_pr = IPPROTO_TCP;
502 		ipov->ih_len = htons(sizeof(struct tcphdr));
503 		if (inp) {
504 			ipov->ih_src = inp->inp_laddr;
505 			ipov->ih_dst = inp->inp_faddr;
506 		}
507 #ifdef INET6
508 		else if (in6p) {
509 			/* mapped addr case */
510 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
511 				sizeof(ipov->ih_src));
512 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
513 				sizeof(ipov->ih_dst));
514 		}
515 #endif
516 		/*
517 		 * Compute the pseudo-header portion of the checksum
518 		 * now.  We incrementally add in the TCP option and
519 		 * payload lengths later, and then compute the TCP
520 		 * checksum right before the packet is sent off onto
521 		 * the wire.
522 		 */
523 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
524 		    ipov->ih_dst.s_addr,
525 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
526 		break;
527 	    }
528 #ifdef INET6
529 	case AF_INET6:
530 	    {
531 		struct ip6_hdr *ip6;
532 		mtod(m, struct ip *)->ip_v = 6;
533 		ip6 = mtod(m, struct ip6_hdr *);
534 		ip6->ip6_nxt = IPPROTO_TCP;
535 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
536 		ip6->ip6_src = in6p->in6p_laddr;
537 		ip6->ip6_dst = in6p->in6p_faddr;
538 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
539 		if (ip6_auto_flowlabel) {
540 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
541 			ip6->ip6_flow |=
542 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
543 		}
544 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
545 		ip6->ip6_vfc |= IPV6_VERSION;
546 
547 		/*
548 		 * Compute the pseudo-header portion of the checksum
549 		 * now.  We incrementally add in the TCP option and
550 		 * payload lengths later, and then compute the TCP
551 		 * checksum right before the packet is sent off onto
552 		 * the wire.
553 		 */
554 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
555 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
556 		    htonl(IPPROTO_TCP));
557 		break;
558 	    }
559 #endif
560 	}
561 	if (inp) {
562 		n->th_sport = inp->inp_lport;
563 		n->th_dport = inp->inp_fport;
564 	}
565 #ifdef INET6
566 	else if (in6p) {
567 		n->th_sport = in6p->in6p_lport;
568 		n->th_dport = in6p->in6p_fport;
569 	}
570 #endif
571 	n->th_seq = 0;
572 	n->th_ack = 0;
573 	n->th_x2 = 0;
574 	n->th_off = 5;
575 	n->th_flags = 0;
576 	n->th_win = 0;
577 	n->th_urp = 0;
578 	return (m);
579 }
580 
581 /*
582  * Send a single message to the TCP at address specified by
583  * the given TCP/IP header.  If m == 0, then we make a copy
584  * of the tcpiphdr at ti and send directly to the addressed host.
585  * This is used to force keep alive messages out using the TCP
586  * template for a connection tp->t_template.  If flags are given
587  * then we send a message back to the TCP which originated the
588  * segment ti, and discard the mbuf containing it and any other
589  * attached mbufs.
590  *
591  * In any case the ack and sequence number of the transmitted
592  * segment are as specified by the parameters.
593  */
594 int
595 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
596     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
597 {
598 #ifdef INET6
599 	struct rtentry *rt;
600 #endif
601 	struct route *ro;
602 	int error, tlen, win = 0;
603 	int hlen;
604 	struct ip *ip;
605 #ifdef INET6
606 	struct ip6_hdr *ip6;
607 #endif
608 	int family;	/* family on packet, not inpcb/in6pcb! */
609 	struct tcphdr *th;
610 	struct socket *so;
611 
612 	if (tp != NULL && (flags & TH_RST) == 0) {
613 #ifdef DIAGNOSTIC
614 		if (tp->t_inpcb && tp->t_in6pcb)
615 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
616 #endif
617 #ifdef INET
618 		if (tp->t_inpcb)
619 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
620 #endif
621 #ifdef INET6
622 		if (tp->t_in6pcb)
623 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
624 #endif
625 	}
626 
627 	th = NULL;	/* Quell uninitialized warning */
628 	ip = NULL;
629 #ifdef INET6
630 	ip6 = NULL;
631 #endif
632 	if (m == 0) {
633 		if (!template)
634 			return EINVAL;
635 
636 		/* get family information from template */
637 		switch (mtod(template, struct ip *)->ip_v) {
638 		case 4:
639 			family = AF_INET;
640 			hlen = sizeof(struct ip);
641 			break;
642 #ifdef INET6
643 		case 6:
644 			family = AF_INET6;
645 			hlen = sizeof(struct ip6_hdr);
646 			break;
647 #endif
648 		default:
649 			return EAFNOSUPPORT;
650 		}
651 
652 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
653 		if (m) {
654 			MCLAIM(m, &tcp_tx_mowner);
655 			MCLGET(m, M_DONTWAIT);
656 			if ((m->m_flags & M_EXT) == 0) {
657 				m_free(m);
658 				m = NULL;
659 			}
660 		}
661 		if (m == NULL)
662 			return (ENOBUFS);
663 
664 		if (tcp_compat_42)
665 			tlen = 1;
666 		else
667 			tlen = 0;
668 
669 		m->m_data += max_linkhdr;
670 		bcopy(mtod(template, void *), mtod(m, void *),
671 			template->m_len);
672 		switch (family) {
673 		case AF_INET:
674 			ip = mtod(m, struct ip *);
675 			th = (struct tcphdr *)(ip + 1);
676 			break;
677 #ifdef INET6
678 		case AF_INET6:
679 			ip6 = mtod(m, struct ip6_hdr *);
680 			th = (struct tcphdr *)(ip6 + 1);
681 			break;
682 #endif
683 #if 0
684 		default:
685 			/* noone will visit here */
686 			m_freem(m);
687 			return EAFNOSUPPORT;
688 #endif
689 		}
690 		flags = TH_ACK;
691 	} else {
692 
693 		if ((m->m_flags & M_PKTHDR) == 0) {
694 #if 0
695 			printf("non PKTHDR to tcp_respond\n");
696 #endif
697 			m_freem(m);
698 			return EINVAL;
699 		}
700 #ifdef DIAGNOSTIC
701 		if (!th0)
702 			panic("th0 == NULL in tcp_respond");
703 #endif
704 
705 		/* get family information from m */
706 		switch (mtod(m, struct ip *)->ip_v) {
707 		case 4:
708 			family = AF_INET;
709 			hlen = sizeof(struct ip);
710 			ip = mtod(m, struct ip *);
711 			break;
712 #ifdef INET6
713 		case 6:
714 			family = AF_INET6;
715 			hlen = sizeof(struct ip6_hdr);
716 			ip6 = mtod(m, struct ip6_hdr *);
717 			break;
718 #endif
719 		default:
720 			m_freem(m);
721 			return EAFNOSUPPORT;
722 		}
723 		/* clear h/w csum flags inherited from rx packet */
724 		m->m_pkthdr.csum_flags = 0;
725 
726 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
727 			tlen = sizeof(*th0);
728 		else
729 			tlen = th0->th_off << 2;
730 
731 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
732 		    mtod(m, char *) + hlen == (char *)th0) {
733 			m->m_len = hlen + tlen;
734 			m_freem(m->m_next);
735 			m->m_next = NULL;
736 		} else {
737 			struct mbuf *n;
738 
739 #ifdef DIAGNOSTIC
740 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
741 				m_freem(m);
742 				return EMSGSIZE;
743 			}
744 #endif
745 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
746 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
747 				MCLGET(n, M_DONTWAIT);
748 				if ((n->m_flags & M_EXT) == 0) {
749 					m_freem(n);
750 					n = NULL;
751 				}
752 			}
753 			if (!n) {
754 				m_freem(m);
755 				return ENOBUFS;
756 			}
757 
758 			MCLAIM(n, &tcp_tx_mowner);
759 			n->m_data += max_linkhdr;
760 			n->m_len = hlen + tlen;
761 			m_copyback(n, 0, hlen, mtod(m, void *));
762 			m_copyback(n, hlen, tlen, (void *)th0);
763 
764 			m_freem(m);
765 			m = n;
766 			n = NULL;
767 		}
768 
769 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
770 		switch (family) {
771 		case AF_INET:
772 			ip = mtod(m, struct ip *);
773 			th = (struct tcphdr *)(ip + 1);
774 			ip->ip_p = IPPROTO_TCP;
775 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
776 			ip->ip_p = IPPROTO_TCP;
777 			break;
778 #ifdef INET6
779 		case AF_INET6:
780 			ip6 = mtod(m, struct ip6_hdr *);
781 			th = (struct tcphdr *)(ip6 + 1);
782 			ip6->ip6_nxt = IPPROTO_TCP;
783 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
784 			ip6->ip6_nxt = IPPROTO_TCP;
785 			break;
786 #endif
787 #if 0
788 		default:
789 			/* noone will visit here */
790 			m_freem(m);
791 			return EAFNOSUPPORT;
792 #endif
793 		}
794 		xchg(th->th_dport, th->th_sport, u_int16_t);
795 #undef xchg
796 		tlen = 0;	/*be friendly with the following code*/
797 	}
798 	th->th_seq = htonl(seq);
799 	th->th_ack = htonl(ack);
800 	th->th_x2 = 0;
801 	if ((flags & TH_SYN) == 0) {
802 		if (tp)
803 			win >>= tp->rcv_scale;
804 		if (win > TCP_MAXWIN)
805 			win = TCP_MAXWIN;
806 		th->th_win = htons((u_int16_t)win);
807 		th->th_off = sizeof (struct tcphdr) >> 2;
808 		tlen += sizeof(*th);
809 	} else
810 		tlen += th->th_off << 2;
811 	m->m_len = hlen + tlen;
812 	m->m_pkthdr.len = hlen + tlen;
813 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
814 	th->th_flags = flags;
815 	th->th_urp = 0;
816 
817 	switch (family) {
818 #ifdef INET
819 	case AF_INET:
820 	    {
821 		struct ipovly *ipov = (struct ipovly *)ip;
822 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
823 		ipov->ih_len = htons((u_int16_t)tlen);
824 
825 		th->th_sum = 0;
826 		th->th_sum = in_cksum(m, hlen + tlen);
827 		ip->ip_len = htons(hlen + tlen);
828 		ip->ip_ttl = ip_defttl;
829 		break;
830 	    }
831 #endif
832 #ifdef INET6
833 	case AF_INET6:
834 	    {
835 		th->th_sum = 0;
836 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
837 				tlen);
838 		ip6->ip6_plen = htons(tlen);
839 		if (tp && tp->t_in6pcb) {
840 			struct ifnet *oifp;
841 			ro = &tp->t_in6pcb->in6p_route;
842 			oifp = (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
843 			                                           : NULL;
844 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
845 		} else
846 			ip6->ip6_hlim = ip6_defhlim;
847 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
848 		if (ip6_auto_flowlabel) {
849 			ip6->ip6_flow |=
850 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
851 		}
852 		break;
853 	    }
854 #endif
855 	}
856 
857 	if (tp && tp->t_inpcb)
858 		so = tp->t_inpcb->inp_socket;
859 #ifdef INET6
860 	else if (tp && tp->t_in6pcb)
861 		so = tp->t_in6pcb->in6p_socket;
862 #endif
863 	else
864 		so = NULL;
865 
866 	if (tp != NULL && tp->t_inpcb != NULL) {
867 		ro = &tp->t_inpcb->inp_route;
868 #ifdef DIAGNOSTIC
869 		if (family != AF_INET)
870 			panic("tcp_respond: address family mismatch");
871 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
872 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
873 			    ntohl(ip->ip_dst.s_addr),
874 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
875 		}
876 #endif
877 	}
878 #ifdef INET6
879 	else if (tp != NULL && tp->t_in6pcb != NULL) {
880 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
881 #ifdef DIAGNOSTIC
882 		if (family == AF_INET) {
883 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
884 				panic("tcp_respond: not mapped addr");
885 			if (bcmp(&ip->ip_dst,
886 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
887 			    sizeof(ip->ip_dst)) != 0) {
888 				panic("tcp_respond: ip_dst != in6p_faddr");
889 			}
890 		} else if (family == AF_INET6) {
891 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
892 			    &tp->t_in6pcb->in6p_faddr))
893 				panic("tcp_respond: ip6_dst != in6p_faddr");
894 		} else
895 			panic("tcp_respond: address family mismatch");
896 #endif
897 	}
898 #endif
899 	else
900 		ro = NULL;
901 
902 	switch (family) {
903 #ifdef INET
904 	case AF_INET:
905 		error = ip_output(m, NULL, ro,
906 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
907 		    (struct ip_moptions *)0, so);
908 		break;
909 #endif
910 #ifdef INET6
911 	case AF_INET6:
912 		error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
913 		break;
914 #endif
915 	default:
916 		error = EAFNOSUPPORT;
917 		break;
918 	}
919 
920 	return (error);
921 }
922 
923 /*
924  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
925  * a bunch of members individually, we maintain this template for the
926  * static and mostly-static components of the TCPCB, and copy it into
927  * the new TCPCB instead.
928  */
929 static struct tcpcb tcpcb_template = {
930 	.t_srtt = TCPTV_SRTTBASE,
931 	.t_rttmin = TCPTV_MIN,
932 
933 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
934 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
935 	.snd_numholes = 0,
936 
937 	.t_partialacks = -1,
938 	.t_bytes_acked = 0,
939 };
940 
941 /*
942  * Updates the TCPCB template whenever a parameter that would affect
943  * the template is changed.
944  */
945 void
946 tcp_tcpcb_template(void)
947 {
948 	struct tcpcb *tp = &tcpcb_template;
949 	int flags;
950 
951 	tp->t_peermss = tcp_mssdflt;
952 	tp->t_ourmss = tcp_mssdflt;
953 	tp->t_segsz = tcp_mssdflt;
954 
955 	flags = 0;
956 	if (tcp_do_rfc1323 && tcp_do_win_scale)
957 		flags |= TF_REQ_SCALE;
958 	if (tcp_do_rfc1323 && tcp_do_timestamps)
959 		flags |= TF_REQ_TSTMP;
960 	tp->t_flags = flags;
961 
962 	/*
963 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
964 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
965 	 * reasonable initial retransmit time.
966 	 */
967 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
968 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
969 	    TCPTV_MIN, TCPTV_REXMTMAX);
970 
971 	/* Keep Alive */
972 	tp->t_keepinit = tcp_keepinit;
973 	tp->t_keepidle = tcp_keepidle;
974 	tp->t_keepintvl = tcp_keepintvl;
975 	tp->t_keepcnt = tcp_keepcnt;
976 	tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
977 }
978 
979 /*
980  * Create a new TCP control block, making an
981  * empty reassembly queue and hooking it to the argument
982  * protocol control block.
983  */
984 /* family selects inpcb, or in6pcb */
985 struct tcpcb *
986 tcp_newtcpcb(int family, void *aux)
987 {
988 #ifdef INET6
989 	struct rtentry *rt;
990 #endif
991 	struct tcpcb *tp;
992 	int i;
993 
994 	/* XXX Consider using a pool_cache for speed. */
995 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
996 	if (tp == NULL)
997 		return (NULL);
998 	memcpy(tp, &tcpcb_template, sizeof(*tp));
999 	TAILQ_INIT(&tp->segq);
1000 	TAILQ_INIT(&tp->timeq);
1001 	tp->t_family = family;		/* may be overridden later on */
1002 	TAILQ_INIT(&tp->snd_holes);
1003 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
1004 
1005 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
1006 	for (i = 0; i < TCPT_NTIMERS; i++) {
1007 		callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
1008 		TCP_TIMER_INIT(tp, i);
1009 	}
1010 	callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
1011 
1012 	switch (family) {
1013 	case AF_INET:
1014 	    {
1015 		struct inpcb *inp = (struct inpcb *)aux;
1016 
1017 		inp->inp_ip.ip_ttl = ip_defttl;
1018 		inp->inp_ppcb = (void *)tp;
1019 
1020 		tp->t_inpcb = inp;
1021 		tp->t_mtudisc = ip_mtudisc;
1022 		break;
1023 	    }
1024 #ifdef INET6
1025 	case AF_INET6:
1026 	    {
1027 		struct in6pcb *in6p = (struct in6pcb *)aux;
1028 
1029 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1030 			(rt = rtcache_validate(&in6p->in6p_route)) != NULL
1031 			    ? rt->rt_ifp
1032 			    : NULL);
1033 		in6p->in6p_ppcb = (void *)tp;
1034 
1035 		tp->t_in6pcb = in6p;
1036 		/* for IPv6, always try to run path MTU discovery */
1037 		tp->t_mtudisc = 1;
1038 		break;
1039 	    }
1040 #endif /* INET6 */
1041 	default:
1042 		for (i = 0; i < TCPT_NTIMERS; i++)
1043 			callout_destroy(&tp->t_timer[i]);
1044 		callout_destroy(&tp->t_delack_ch);
1045 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
1046 		return (NULL);
1047 	}
1048 
1049 	/*
1050 	 * Initialize our timebase.  When we send timestamps, we take
1051 	 * the delta from tcp_now -- this means each connection always
1052 	 * gets a timebase of 1, which makes it, among other things,
1053 	 * more difficult to determine how long a system has been up,
1054 	 * and thus how many TCP sequence increments have occurred.
1055 	 *
1056 	 * We start with 1, because 0 doesn't work with linux, which
1057 	 * considers timestamp 0 in a SYN packet as a bug and disables
1058 	 * timestamps.
1059 	 */
1060 	tp->ts_timebase = tcp_now - 1;
1061 
1062 	tcp_congctl_select(tp, tcp_congctl_global_name);
1063 
1064 	return (tp);
1065 }
1066 
1067 /*
1068  * Drop a TCP connection, reporting
1069  * the specified error.  If connection is synchronized,
1070  * then send a RST to peer.
1071  */
1072 struct tcpcb *
1073 tcp_drop(struct tcpcb *tp, int errno)
1074 {
1075 	struct socket *so = NULL;
1076 
1077 #ifdef DIAGNOSTIC
1078 	if (tp->t_inpcb && tp->t_in6pcb)
1079 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1080 #endif
1081 #ifdef INET
1082 	if (tp->t_inpcb)
1083 		so = tp->t_inpcb->inp_socket;
1084 #endif
1085 #ifdef INET6
1086 	if (tp->t_in6pcb)
1087 		so = tp->t_in6pcb->in6p_socket;
1088 #endif
1089 	if (!so)
1090 		return NULL;
1091 
1092 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1093 		tp->t_state = TCPS_CLOSED;
1094 		(void) tcp_output(tp);
1095 		TCP_STATINC(TCP_STAT_DROPS);
1096 	} else
1097 		TCP_STATINC(TCP_STAT_CONNDROPS);
1098 	if (errno == ETIMEDOUT && tp->t_softerror)
1099 		errno = tp->t_softerror;
1100 	so->so_error = errno;
1101 	return (tcp_close(tp));
1102 }
1103 
1104 /*
1105  * Close a TCP control block:
1106  *	discard all space held by the tcp
1107  *	discard internet protocol block
1108  *	wake up any sleepers
1109  */
1110 struct tcpcb *
1111 tcp_close(struct tcpcb *tp)
1112 {
1113 	struct inpcb *inp;
1114 #ifdef INET6
1115 	struct in6pcb *in6p;
1116 #endif
1117 	struct socket *so;
1118 #ifdef RTV_RTT
1119 	struct rtentry *rt;
1120 #endif
1121 	struct route *ro;
1122 	int j;
1123 
1124 	inp = tp->t_inpcb;
1125 #ifdef INET6
1126 	in6p = tp->t_in6pcb;
1127 #endif
1128 	so = NULL;
1129 	ro = NULL;
1130 	if (inp) {
1131 		so = inp->inp_socket;
1132 		ro = &inp->inp_route;
1133 	}
1134 #ifdef INET6
1135 	else if (in6p) {
1136 		so = in6p->in6p_socket;
1137 		ro = (struct route *)&in6p->in6p_route;
1138 	}
1139 #endif
1140 
1141 #ifdef RTV_RTT
1142 	/*
1143 	 * If we sent enough data to get some meaningful characteristics,
1144 	 * save them in the routing entry.  'Enough' is arbitrarily
1145 	 * defined as the sendpipesize (default 4K) * 16.  This would
1146 	 * give us 16 rtt samples assuming we only get one sample per
1147 	 * window (the usual case on a long haul net).  16 samples is
1148 	 * enough for the srtt filter to converge to within 5% of the correct
1149 	 * value; fewer samples and we could save a very bogus rtt.
1150 	 *
1151 	 * Don't update the default route's characteristics and don't
1152 	 * update anything that the user "locked".
1153 	 */
1154 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1155 	    ro && (rt = rtcache_validate(ro)) != NULL &&
1156 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1157 		u_long i = 0;
1158 
1159 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1160 			i = tp->t_srtt *
1161 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1162 			if (rt->rt_rmx.rmx_rtt && i)
1163 				/*
1164 				 * filter this update to half the old & half
1165 				 * the new values, converting scale.
1166 				 * See route.h and tcp_var.h for a
1167 				 * description of the scaling constants.
1168 				 */
1169 				rt->rt_rmx.rmx_rtt =
1170 				    (rt->rt_rmx.rmx_rtt + i) / 2;
1171 			else
1172 				rt->rt_rmx.rmx_rtt = i;
1173 		}
1174 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1175 			i = tp->t_rttvar *
1176 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1177 			if (rt->rt_rmx.rmx_rttvar && i)
1178 				rt->rt_rmx.rmx_rttvar =
1179 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
1180 			else
1181 				rt->rt_rmx.rmx_rttvar = i;
1182 		}
1183 		/*
1184 		 * update the pipelimit (ssthresh) if it has been updated
1185 		 * already or if a pipesize was specified & the threshhold
1186 		 * got below half the pipesize.  I.e., wait for bad news
1187 		 * before we start updating, then update on both good
1188 		 * and bad news.
1189 		 */
1190 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1191 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1192 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1193 			/*
1194 			 * convert the limit from user data bytes to
1195 			 * packets then to packet data bytes.
1196 			 */
1197 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
1198 			if (i < 2)
1199 				i = 2;
1200 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1201 			if (rt->rt_rmx.rmx_ssthresh)
1202 				rt->rt_rmx.rmx_ssthresh =
1203 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1204 			else
1205 				rt->rt_rmx.rmx_ssthresh = i;
1206 		}
1207 	}
1208 #endif /* RTV_RTT */
1209 	/* free the reassembly queue, if any */
1210 	TCP_REASS_LOCK(tp);
1211 	(void) tcp_freeq(tp);
1212 	TCP_REASS_UNLOCK(tp);
1213 
1214 	/* free the SACK holes list. */
1215 	tcp_free_sackholes(tp);
1216 	tcp_congctl_release(tp);
1217 	syn_cache_cleanup(tp);
1218 
1219 	if (tp->t_template) {
1220 		m_free(tp->t_template);
1221 		tp->t_template = NULL;
1222 	}
1223 
1224 	/*
1225 	 * Detaching the pcb will unlock the socket/tcpcb, and stopping
1226 	 * the timers can also drop the lock.  We need to prevent access
1227 	 * to the tcpcb as it's half torn down.  Flag the pcb as dead
1228 	 * (prevents access by timers) and only then detach it.
1229 	 */
1230 	tp->t_flags |= TF_DEAD;
1231 	if (inp) {
1232 		inp->inp_ppcb = 0;
1233 		soisdisconnected(so);
1234 		in_pcbdetach(inp);
1235 	}
1236 #ifdef INET6
1237 	else if (in6p) {
1238 		in6p->in6p_ppcb = 0;
1239 		soisdisconnected(so);
1240 		in6_pcbdetach(in6p);
1241 	}
1242 #endif
1243 	/*
1244 	 * pcb is no longer visble elsewhere, so we can safely release
1245 	 * the lock in callout_halt() if needed.
1246 	 */
1247 	TCP_STATINC(TCP_STAT_CLOSED);
1248 	for (j = 0; j < TCPT_NTIMERS; j++) {
1249 		callout_halt(&tp->t_timer[j], softnet_lock);
1250 		callout_destroy(&tp->t_timer[j]);
1251 	}
1252 	callout_halt(&tp->t_delack_ch, softnet_lock);
1253 	callout_destroy(&tp->t_delack_ch);
1254 	pool_put(&tcpcb_pool, tp);
1255 
1256 	return ((struct tcpcb *)0);
1257 }
1258 
1259 int
1260 tcp_freeq(struct tcpcb *tp)
1261 {
1262 	struct ipqent *qe;
1263 	int rv = 0;
1264 #ifdef TCPREASS_DEBUG
1265 	int i = 0;
1266 #endif
1267 
1268 	TCP_REASS_LOCK_CHECK(tp);
1269 
1270 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1271 #ifdef TCPREASS_DEBUG
1272 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1273 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1274 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1275 #endif
1276 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1277 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1278 		m_freem(qe->ipqe_m);
1279 		tcpipqent_free(qe);
1280 		rv = 1;
1281 	}
1282 	tp->t_segqlen = 0;
1283 	KASSERT(TAILQ_EMPTY(&tp->timeq));
1284 	return (rv);
1285 }
1286 
1287 /*
1288  * Protocol drain routine.  Called when memory is in short supply.
1289  * Don't acquire softnet_lock as can be called from hardware
1290  * interrupt handler.
1291  */
1292 void
1293 tcp_drain(void)
1294 {
1295 	struct inpcb_hdr *inph;
1296 	struct tcpcb *tp;
1297 
1298 	KERNEL_LOCK(1, NULL);
1299 
1300 	/*
1301 	 * Free the sequence queue of all TCP connections.
1302 	 */
1303 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1304 		switch (inph->inph_af) {
1305 		case AF_INET:
1306 			tp = intotcpcb((struct inpcb *)inph);
1307 			break;
1308 #ifdef INET6
1309 		case AF_INET6:
1310 			tp = in6totcpcb((struct in6pcb *)inph);
1311 			break;
1312 #endif
1313 		default:
1314 			tp = NULL;
1315 			break;
1316 		}
1317 		if (tp != NULL) {
1318 			/*
1319 			 * We may be called from a device's interrupt
1320 			 * context.  If the tcpcb is already busy,
1321 			 * just bail out now.
1322 			 */
1323 			if (tcp_reass_lock_try(tp) == 0)
1324 				continue;
1325 			if (tcp_freeq(tp))
1326 				TCP_STATINC(TCP_STAT_CONNSDRAINED);
1327 			TCP_REASS_UNLOCK(tp);
1328 		}
1329 	}
1330 
1331 	KERNEL_UNLOCK_ONE(NULL);
1332 }
1333 
1334 /*
1335  * Notify a tcp user of an asynchronous error;
1336  * store error as soft error, but wake up user
1337  * (for now, won't do anything until can select for soft error).
1338  */
1339 void
1340 tcp_notify(struct inpcb *inp, int error)
1341 {
1342 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1343 	struct socket *so = inp->inp_socket;
1344 
1345 	/*
1346 	 * Ignore some errors if we are hooked up.
1347 	 * If connection hasn't completed, has retransmitted several times,
1348 	 * and receives a second error, give up now.  This is better
1349 	 * than waiting a long time to establish a connection that
1350 	 * can never complete.
1351 	 */
1352 	if (tp->t_state == TCPS_ESTABLISHED &&
1353 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1354 	      error == EHOSTDOWN)) {
1355 		return;
1356 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1357 	    tp->t_rxtshift > 3 && tp->t_softerror)
1358 		so->so_error = error;
1359 	else
1360 		tp->t_softerror = error;
1361 	cv_broadcast(&so->so_cv);
1362 	sorwakeup(so);
1363 	sowwakeup(so);
1364 }
1365 
1366 #ifdef INET6
1367 void
1368 tcp6_notify(struct in6pcb *in6p, int error)
1369 {
1370 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1371 	struct socket *so = in6p->in6p_socket;
1372 
1373 	/*
1374 	 * Ignore some errors if we are hooked up.
1375 	 * If connection hasn't completed, has retransmitted several times,
1376 	 * and receives a second error, give up now.  This is better
1377 	 * than waiting a long time to establish a connection that
1378 	 * can never complete.
1379 	 */
1380 	if (tp->t_state == TCPS_ESTABLISHED &&
1381 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1382 	      error == EHOSTDOWN)) {
1383 		return;
1384 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1385 	    tp->t_rxtshift > 3 && tp->t_softerror)
1386 		so->so_error = error;
1387 	else
1388 		tp->t_softerror = error;
1389 	cv_broadcast(&so->so_cv);
1390 	sorwakeup(so);
1391 	sowwakeup(so);
1392 }
1393 #endif
1394 
1395 #ifdef INET6
1396 void *
1397 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1398 {
1399 	struct tcphdr th;
1400 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
1401 	int nmatch;
1402 	struct ip6_hdr *ip6;
1403 	const struct sockaddr_in6 *sa6_src = NULL;
1404 	const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1405 	struct mbuf *m;
1406 	int off;
1407 
1408 	if (sa->sa_family != AF_INET6 ||
1409 	    sa->sa_len != sizeof(struct sockaddr_in6))
1410 		return NULL;
1411 	if ((unsigned)cmd >= PRC_NCMDS)
1412 		return NULL;
1413 	else if (cmd == PRC_QUENCH) {
1414 		/*
1415 		 * Don't honor ICMP Source Quench messages meant for
1416 		 * TCP connections.
1417 		 */
1418 		return NULL;
1419 	} else if (PRC_IS_REDIRECT(cmd))
1420 		notify = in6_rtchange, d = NULL;
1421 	else if (cmd == PRC_MSGSIZE)
1422 		; /* special code is present, see below */
1423 	else if (cmd == PRC_HOSTDEAD)
1424 		d = NULL;
1425 	else if (inet6ctlerrmap[cmd] == 0)
1426 		return NULL;
1427 
1428 	/* if the parameter is from icmp6, decode it. */
1429 	if (d != NULL) {
1430 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1431 		m = ip6cp->ip6c_m;
1432 		ip6 = ip6cp->ip6c_ip6;
1433 		off = ip6cp->ip6c_off;
1434 		sa6_src = ip6cp->ip6c_src;
1435 	} else {
1436 		m = NULL;
1437 		ip6 = NULL;
1438 		sa6_src = &sa6_any;
1439 		off = 0;
1440 	}
1441 
1442 	if (ip6) {
1443 		/*
1444 		 * XXX: We assume that when ip6 is non NULL,
1445 		 * M and OFF are valid.
1446 		 */
1447 
1448 		/* check if we can safely examine src and dst ports */
1449 		if (m->m_pkthdr.len < off + sizeof(th)) {
1450 			if (cmd == PRC_MSGSIZE)
1451 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1452 			return NULL;
1453 		}
1454 
1455 		bzero(&th, sizeof(th));
1456 		m_copydata(m, off, sizeof(th), (void *)&th);
1457 
1458 		if (cmd == PRC_MSGSIZE) {
1459 			int valid = 0;
1460 
1461 			/*
1462 			 * Check to see if we have a valid TCP connection
1463 			 * corresponding to the address in the ICMPv6 message
1464 			 * payload.
1465 			 */
1466 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1467 			    th.th_dport,
1468 			    (const struct in6_addr *)&sa6_src->sin6_addr,
1469 			    th.th_sport, 0))
1470 				valid++;
1471 
1472 			/*
1473 			 * Depending on the value of "valid" and routing table
1474 			 * size (mtudisc_{hi,lo}wat), we will:
1475 			 * - recalcurate the new MTU and create the
1476 			 *   corresponding routing entry, or
1477 			 * - ignore the MTU change notification.
1478 			 */
1479 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1480 
1481 			/*
1482 			 * no need to call in6_pcbnotify, it should have been
1483 			 * called via callback if necessary
1484 			 */
1485 			return NULL;
1486 		}
1487 
1488 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1489 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1490 		if (nmatch == 0 && syn_cache_count &&
1491 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1492 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
1493 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
1494 			syn_cache_unreach((const struct sockaddr *)sa6_src,
1495 					  sa, &th);
1496 	} else {
1497 		(void) in6_pcbnotify(&tcbtable, sa, 0,
1498 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1499 	}
1500 
1501 	return NULL;
1502 }
1503 #endif
1504 
1505 #ifdef INET
1506 /* assumes that ip header and tcp header are contiguous on mbuf */
1507 void *
1508 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1509 {
1510 	struct ip *ip = v;
1511 	struct tcphdr *th;
1512 	struct icmp *icp;
1513 	extern const int inetctlerrmap[];
1514 	void (*notify)(struct inpcb *, int) = tcp_notify;
1515 	int errno;
1516 	int nmatch;
1517 	struct tcpcb *tp;
1518 	u_int mtu;
1519 	tcp_seq seq;
1520 	struct inpcb *inp;
1521 #ifdef INET6
1522 	struct in6pcb *in6p;
1523 	struct in6_addr src6, dst6;
1524 #endif
1525 
1526 	if (sa->sa_family != AF_INET ||
1527 	    sa->sa_len != sizeof(struct sockaddr_in))
1528 		return NULL;
1529 	if ((unsigned)cmd >= PRC_NCMDS)
1530 		return NULL;
1531 	errno = inetctlerrmap[cmd];
1532 	if (cmd == PRC_QUENCH)
1533 		/*
1534 		 * Don't honor ICMP Source Quench messages meant for
1535 		 * TCP connections.
1536 		 */
1537 		return NULL;
1538 	else if (PRC_IS_REDIRECT(cmd))
1539 		notify = in_rtchange, ip = 0;
1540 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1541 		/*
1542 		 * Check to see if we have a valid TCP connection
1543 		 * corresponding to the address in the ICMP message
1544 		 * payload.
1545 		 *
1546 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1547 		 */
1548 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1549 #ifdef INET6
1550 		memset(&src6, 0, sizeof(src6));
1551 		memset(&dst6, 0, sizeof(dst6));
1552 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1553 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1554 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1555 #endif
1556 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1557 		    th->th_dport, ip->ip_src, th->th_sport)) != NULL)
1558 #ifdef INET6
1559 			in6p = NULL;
1560 #else
1561 			;
1562 #endif
1563 #ifdef INET6
1564 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1565 		    th->th_dport, &src6, th->th_sport, 0)) != NULL)
1566 			;
1567 #endif
1568 		else
1569 			return NULL;
1570 
1571 		/*
1572 		 * Now that we've validated that we are actually communicating
1573 		 * with the host indicated in the ICMP message, locate the
1574 		 * ICMP header, recalculate the new MTU, and create the
1575 		 * corresponding routing entry.
1576 		 */
1577 		icp = (struct icmp *)((char *)ip -
1578 		    offsetof(struct icmp, icmp_ip));
1579 		if (inp) {
1580 			if ((tp = intotcpcb(inp)) == NULL)
1581 				return NULL;
1582 		}
1583 #ifdef INET6
1584 		else if (in6p) {
1585 			if ((tp = in6totcpcb(in6p)) == NULL)
1586 				return NULL;
1587 		}
1588 #endif
1589 		else
1590 			return NULL;
1591 		seq = ntohl(th->th_seq);
1592 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1593 			return NULL;
1594 		/*
1595 		 * If the ICMP message advertises a Next-Hop MTU
1596 		 * equal or larger than the maximum packet size we have
1597 		 * ever sent, drop the message.
1598 		 */
1599 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
1600 		if (mtu >= tp->t_pmtud_mtu_sent)
1601 			return NULL;
1602 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1603 			/*
1604 			 * Calculate new MTU, and create corresponding
1605 			 * route (traditional PMTUD).
1606 			 */
1607 			tp->t_flags &= ~TF_PMTUD_PEND;
1608 			icmp_mtudisc(icp, ip->ip_dst);
1609 		} else {
1610 			/*
1611 			 * Record the information got in the ICMP
1612 			 * message; act on it later.
1613 			 * If we had already recorded an ICMP message,
1614 			 * replace the old one only if the new message
1615 			 * refers to an older TCP segment
1616 			 */
1617 			if (tp->t_flags & TF_PMTUD_PEND) {
1618 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1619 					return NULL;
1620 			} else
1621 				tp->t_flags |= TF_PMTUD_PEND;
1622 			tp->t_pmtud_th_seq = seq;
1623 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1624 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1625 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1626 		}
1627 		return NULL;
1628 	} else if (cmd == PRC_HOSTDEAD)
1629 		ip = 0;
1630 	else if (errno == 0)
1631 		return NULL;
1632 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1633 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1634 		nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1635 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1636 		if (nmatch == 0 && syn_cache_count &&
1637 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
1638 		    inetctlerrmap[cmd] == ENETUNREACH ||
1639 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
1640 			struct sockaddr_in sin;
1641 			bzero(&sin, sizeof(sin));
1642 			sin.sin_len = sizeof(sin);
1643 			sin.sin_family = AF_INET;
1644 			sin.sin_port = th->th_sport;
1645 			sin.sin_addr = ip->ip_src;
1646 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1647 		}
1648 
1649 		/* XXX mapped address case */
1650 	} else
1651 		in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1652 		    notify);
1653 	return NULL;
1654 }
1655 
1656 /*
1657  * When a source quench is received, we are being notified of congestion.
1658  * Close the congestion window down to the Loss Window (one segment).
1659  * We will gradually open it again as we proceed.
1660  */
1661 void
1662 tcp_quench(struct inpcb *inp, int errno)
1663 {
1664 	struct tcpcb *tp = intotcpcb(inp);
1665 
1666 	if (tp) {
1667 		tp->snd_cwnd = tp->t_segsz;
1668 		tp->t_bytes_acked = 0;
1669 	}
1670 }
1671 #endif
1672 
1673 #ifdef INET6
1674 void
1675 tcp6_quench(struct in6pcb *in6p, int errno)
1676 {
1677 	struct tcpcb *tp = in6totcpcb(in6p);
1678 
1679 	if (tp) {
1680 		tp->snd_cwnd = tp->t_segsz;
1681 		tp->t_bytes_acked = 0;
1682 	}
1683 }
1684 #endif
1685 
1686 #ifdef INET
1687 /*
1688  * Path MTU Discovery handlers.
1689  */
1690 void
1691 tcp_mtudisc_callback(struct in_addr faddr)
1692 {
1693 #ifdef INET6
1694 	struct in6_addr in6;
1695 #endif
1696 
1697 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1698 #ifdef INET6
1699 	memset(&in6, 0, sizeof(in6));
1700 	in6.s6_addr16[5] = 0xffff;
1701 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1702 	tcp6_mtudisc_callback(&in6);
1703 #endif
1704 }
1705 
1706 /*
1707  * On receipt of path MTU corrections, flush old route and replace it
1708  * with the new one.  Retransmit all unacknowledged packets, to ensure
1709  * that all packets will be received.
1710  */
1711 void
1712 tcp_mtudisc(struct inpcb *inp, int errno)
1713 {
1714 	struct tcpcb *tp = intotcpcb(inp);
1715 	struct rtentry *rt = in_pcbrtentry(inp);
1716 
1717 	if (tp != 0) {
1718 		if (rt != 0) {
1719 			/*
1720 			 * If this was not a host route, remove and realloc.
1721 			 */
1722 			if ((rt->rt_flags & RTF_HOST) == 0) {
1723 				in_rtchange(inp, errno);
1724 				if ((rt = in_pcbrtentry(inp)) == 0)
1725 					return;
1726 			}
1727 
1728 			/*
1729 			 * Slow start out of the error condition.  We
1730 			 * use the MTU because we know it's smaller
1731 			 * than the previously transmitted segment.
1732 			 *
1733 			 * Note: This is more conservative than the
1734 			 * suggestion in draft-floyd-incr-init-win-03.
1735 			 */
1736 			if (rt->rt_rmx.rmx_mtu != 0)
1737 				tp->snd_cwnd =
1738 				    TCP_INITIAL_WINDOW(tcp_init_win,
1739 				    rt->rt_rmx.rmx_mtu);
1740 		}
1741 
1742 		/*
1743 		 * Resend unacknowledged packets.
1744 		 */
1745 		tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1746 		tcp_output(tp);
1747 	}
1748 }
1749 #endif
1750 
1751 #ifdef INET6
1752 /*
1753  * Path MTU Discovery handlers.
1754  */
1755 void
1756 tcp6_mtudisc_callback(struct in6_addr *faddr)
1757 {
1758 	struct sockaddr_in6 sin6;
1759 
1760 	bzero(&sin6, sizeof(sin6));
1761 	sin6.sin6_family = AF_INET6;
1762 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1763 	sin6.sin6_addr = *faddr;
1764 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1765 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1766 }
1767 
1768 void
1769 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1770 {
1771 	struct tcpcb *tp = in6totcpcb(in6p);
1772 	struct rtentry *rt = in6_pcbrtentry(in6p);
1773 
1774 	if (tp != 0) {
1775 		if (rt != 0) {
1776 			/*
1777 			 * If this was not a host route, remove and realloc.
1778 			 */
1779 			if ((rt->rt_flags & RTF_HOST) == 0) {
1780 				in6_rtchange(in6p, errno);
1781 				if ((rt = in6_pcbrtentry(in6p)) == 0)
1782 					return;
1783 			}
1784 
1785 			/*
1786 			 * Slow start out of the error condition.  We
1787 			 * use the MTU because we know it's smaller
1788 			 * than the previously transmitted segment.
1789 			 *
1790 			 * Note: This is more conservative than the
1791 			 * suggestion in draft-floyd-incr-init-win-03.
1792 			 */
1793 			if (rt->rt_rmx.rmx_mtu != 0)
1794 				tp->snd_cwnd =
1795 				    TCP_INITIAL_WINDOW(tcp_init_win,
1796 				    rt->rt_rmx.rmx_mtu);
1797 		}
1798 
1799 		/*
1800 		 * Resend unacknowledged packets.
1801 		 */
1802 		tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1803 		tcp_output(tp);
1804 	}
1805 }
1806 #endif /* INET6 */
1807 
1808 /*
1809  * Compute the MSS to advertise to the peer.  Called only during
1810  * the 3-way handshake.  If we are the server (peer initiated
1811  * connection), we are called with a pointer to the interface
1812  * on which the SYN packet arrived.  If we are the client (we
1813  * initiated connection), we are called with a pointer to the
1814  * interface out which this connection should go.
1815  *
1816  * NOTE: Do not subtract IP option/extension header size nor IPsec
1817  * header size from MSS advertisement.  MSS option must hold the maximum
1818  * segment size we can accept, so it must always be:
1819  *	 max(if mtu) - ip header - tcp header
1820  */
1821 u_long
1822 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1823 {
1824 	extern u_long in_maxmtu;
1825 	u_long mss = 0;
1826 	u_long hdrsiz;
1827 
1828 	/*
1829 	 * In order to avoid defeating path MTU discovery on the peer,
1830 	 * we advertise the max MTU of all attached networks as our MSS,
1831 	 * per RFC 1191, section 3.1.
1832 	 *
1833 	 * We provide the option to advertise just the MTU of
1834 	 * the interface on which we hope this connection will
1835 	 * be receiving.  If we are responding to a SYN, we
1836 	 * will have a pretty good idea about this, but when
1837 	 * initiating a connection there is a bit more doubt.
1838 	 *
1839 	 * We also need to ensure that loopback has a large enough
1840 	 * MSS, as the loopback MTU is never included in in_maxmtu.
1841 	 */
1842 
1843 	if (ifp != NULL)
1844 		switch (af) {
1845 		case AF_INET:
1846 			mss = ifp->if_mtu;
1847 			break;
1848 #ifdef INET6
1849 		case AF_INET6:
1850 			mss = IN6_LINKMTU(ifp);
1851 			break;
1852 #endif
1853 		}
1854 
1855 	if (tcp_mss_ifmtu == 0)
1856 		switch (af) {
1857 		case AF_INET:
1858 			mss = max(in_maxmtu, mss);
1859 			break;
1860 #ifdef INET6
1861 		case AF_INET6:
1862 			mss = max(in6_maxmtu, mss);
1863 			break;
1864 #endif
1865 		}
1866 
1867 	switch (af) {
1868 	case AF_INET:
1869 		hdrsiz = sizeof(struct ip);
1870 		break;
1871 #ifdef INET6
1872 	case AF_INET6:
1873 		hdrsiz = sizeof(struct ip6_hdr);
1874 		break;
1875 #endif
1876 	default:
1877 		hdrsiz = 0;
1878 		break;
1879 	}
1880 	hdrsiz += sizeof(struct tcphdr);
1881 	if (mss > hdrsiz)
1882 		mss -= hdrsiz;
1883 
1884 	mss = max(tcp_mssdflt, mss);
1885 	return (mss);
1886 }
1887 
1888 /*
1889  * Set connection variables based on the peer's advertised MSS.
1890  * We are passed the TCPCB for the actual connection.  If we
1891  * are the server, we are called by the compressed state engine
1892  * when the 3-way handshake is complete.  If we are the client,
1893  * we are called when we receive the SYN,ACK from the server.
1894  *
1895  * NOTE: Our advertised MSS value must be initialized in the TCPCB
1896  * before this routine is called!
1897  */
1898 void
1899 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1900 {
1901 	struct socket *so;
1902 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1903 	struct rtentry *rt;
1904 #endif
1905 	u_long bufsize;
1906 	int mss;
1907 
1908 #ifdef DIAGNOSTIC
1909 	if (tp->t_inpcb && tp->t_in6pcb)
1910 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1911 #endif
1912 	so = NULL;
1913 	rt = NULL;
1914 #ifdef INET
1915 	if (tp->t_inpcb) {
1916 		so = tp->t_inpcb->inp_socket;
1917 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1918 		rt = in_pcbrtentry(tp->t_inpcb);
1919 #endif
1920 	}
1921 #endif
1922 #ifdef INET6
1923 	if (tp->t_in6pcb) {
1924 		so = tp->t_in6pcb->in6p_socket;
1925 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1926 		rt = in6_pcbrtentry(tp->t_in6pcb);
1927 #endif
1928 	}
1929 #endif
1930 
1931 	/*
1932 	 * As per RFC1122, use the default MSS value, unless they
1933 	 * sent us an offer.  Do not accept offers less than 256 bytes.
1934 	 */
1935 	mss = tcp_mssdflt;
1936 	if (offer)
1937 		mss = offer;
1938 	mss = max(mss, 256);		/* sanity */
1939 	tp->t_peermss = mss;
1940 	mss -= tcp_optlen(tp);
1941 #ifdef INET
1942 	if (tp->t_inpcb)
1943 		mss -= ip_optlen(tp->t_inpcb);
1944 #endif
1945 #ifdef INET6
1946 	if (tp->t_in6pcb)
1947 		mss -= ip6_optlen(tp->t_in6pcb);
1948 #endif
1949 
1950 	/*
1951 	 * If there's a pipesize, change the socket buffer to that size.
1952 	 * Make the socket buffer an integral number of MSS units.  If
1953 	 * the MSS is larger than the socket buffer, artificially decrease
1954 	 * the MSS.
1955 	 */
1956 #ifdef RTV_SPIPE
1957 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1958 		bufsize = rt->rt_rmx.rmx_sendpipe;
1959 	else
1960 #endif
1961 	{
1962 		KASSERT(so != NULL);
1963 		bufsize = so->so_snd.sb_hiwat;
1964 	}
1965 	if (bufsize < mss)
1966 		mss = bufsize;
1967 	else {
1968 		bufsize = roundup(bufsize, mss);
1969 		if (bufsize > sb_max)
1970 			bufsize = sb_max;
1971 		(void) sbreserve(&so->so_snd, bufsize, so);
1972 	}
1973 	tp->t_segsz = mss;
1974 
1975 #ifdef RTV_SSTHRESH
1976 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1977 		/*
1978 		 * There's some sort of gateway or interface buffer
1979 		 * limit on the path.  Use this to set the slow
1980 		 * start threshold, but set the threshold to no less
1981 		 * than 2 * MSS.
1982 		 */
1983 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1984 	}
1985 #endif
1986 }
1987 
1988 /*
1989  * Processing necessary when a TCP connection is established.
1990  */
1991 void
1992 tcp_established(struct tcpcb *tp)
1993 {
1994 	struct socket *so;
1995 #ifdef RTV_RPIPE
1996 	struct rtentry *rt;
1997 #endif
1998 	u_long bufsize;
1999 
2000 #ifdef DIAGNOSTIC
2001 	if (tp->t_inpcb && tp->t_in6pcb)
2002 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
2003 #endif
2004 	so = NULL;
2005 	rt = NULL;
2006 #ifdef INET
2007 	if (tp->t_inpcb) {
2008 		so = tp->t_inpcb->inp_socket;
2009 #if defined(RTV_RPIPE)
2010 		rt = in_pcbrtentry(tp->t_inpcb);
2011 #endif
2012 	}
2013 #endif
2014 #ifdef INET6
2015 	if (tp->t_in6pcb) {
2016 		so = tp->t_in6pcb->in6p_socket;
2017 #if defined(RTV_RPIPE)
2018 		rt = in6_pcbrtentry(tp->t_in6pcb);
2019 #endif
2020 	}
2021 #endif
2022 
2023 	tp->t_state = TCPS_ESTABLISHED;
2024 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2025 
2026 #ifdef RTV_RPIPE
2027 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2028 		bufsize = rt->rt_rmx.rmx_recvpipe;
2029 	else
2030 #endif
2031 	{
2032 		KASSERT(so != NULL);
2033 		bufsize = so->so_rcv.sb_hiwat;
2034 	}
2035 	if (bufsize > tp->t_ourmss) {
2036 		bufsize = roundup(bufsize, tp->t_ourmss);
2037 		if (bufsize > sb_max)
2038 			bufsize = sb_max;
2039 		(void) sbreserve(&so->so_rcv, bufsize, so);
2040 	}
2041 }
2042 
2043 /*
2044  * Check if there's an initial rtt or rttvar.  Convert from the
2045  * route-table units to scaled multiples of the slow timeout timer.
2046  * Called only during the 3-way handshake.
2047  */
2048 void
2049 tcp_rmx_rtt(struct tcpcb *tp)
2050 {
2051 #ifdef RTV_RTT
2052 	struct rtentry *rt = NULL;
2053 	int rtt;
2054 
2055 #ifdef DIAGNOSTIC
2056 	if (tp->t_inpcb && tp->t_in6pcb)
2057 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2058 #endif
2059 #ifdef INET
2060 	if (tp->t_inpcb)
2061 		rt = in_pcbrtentry(tp->t_inpcb);
2062 #endif
2063 #ifdef INET6
2064 	if (tp->t_in6pcb)
2065 		rt = in6_pcbrtentry(tp->t_in6pcb);
2066 #endif
2067 	if (rt == NULL)
2068 		return;
2069 
2070 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2071 		/*
2072 		 * XXX The lock bit for MTU indicates that the value
2073 		 * is also a minimum value; this is subject to time.
2074 		 */
2075 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2076 			TCPT_RANGESET(tp->t_rttmin,
2077 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2078 			    TCPTV_MIN, TCPTV_REXMTMAX);
2079 		tp->t_srtt = rtt /
2080 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2081 		if (rt->rt_rmx.rmx_rttvar) {
2082 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2083 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
2084 				(TCP_RTTVAR_SHIFT + 2));
2085 		} else {
2086 			/* Default variation is +- 1 rtt */
2087 			tp->t_rttvar =
2088 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2089 		}
2090 		TCPT_RANGESET(tp->t_rxtcur,
2091 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2092 		    tp->t_rttmin, TCPTV_REXMTMAX);
2093 	}
2094 #endif
2095 }
2096 
2097 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
2098 #if NRND > 0
2099 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
2100 #endif
2101 
2102 /*
2103  * Get a new sequence value given a tcp control block
2104  */
2105 tcp_seq
2106 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2107 {
2108 
2109 #ifdef INET
2110 	if (tp->t_inpcb != NULL) {
2111 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2112 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2113 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2114 		    addin));
2115 	}
2116 #endif
2117 #ifdef INET6
2118 	if (tp->t_in6pcb != NULL) {
2119 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2120 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2121 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2122 		    addin));
2123 	}
2124 #endif
2125 	/* Not possible. */
2126 	panic("tcp_new_iss");
2127 }
2128 
2129 /*
2130  * This routine actually generates a new TCP initial sequence number.
2131  */
2132 tcp_seq
2133 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2134     size_t addrsz, tcp_seq addin)
2135 {
2136 	tcp_seq tcp_iss;
2137 
2138 #if NRND > 0
2139 	static bool tcp_iss_gotten_secret;
2140 
2141 	/*
2142 	 * If we haven't been here before, initialize our cryptographic
2143 	 * hash secret.
2144 	 */
2145 	if (tcp_iss_gotten_secret == false) {
2146 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2147 		    RND_EXTRACT_ANY);
2148 		tcp_iss_gotten_secret = true;
2149 	}
2150 
2151 	if (tcp_do_rfc1948) {
2152 		MD5_CTX ctx;
2153 		u_int8_t hash[16];	/* XXX MD5 knowledge */
2154 
2155 		/*
2156 		 * Compute the base value of the ISS.  It is a hash
2157 		 * of (saddr, sport, daddr, dport, secret).
2158 		 */
2159 		MD5Init(&ctx);
2160 
2161 		MD5Update(&ctx, (u_char *) laddr, addrsz);
2162 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2163 
2164 		MD5Update(&ctx, (u_char *) faddr, addrsz);
2165 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2166 
2167 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2168 
2169 		MD5Final(hash, &ctx);
2170 
2171 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2172 
2173 		/*
2174 		 * Now increment our "timer", and add it in to
2175 		 * the computed value.
2176 		 *
2177 		 * XXX Use `addin'?
2178 		 * XXX TCP_ISSINCR too large to use?
2179 		 */
2180 		tcp_iss_seq += TCP_ISSINCR;
2181 #ifdef TCPISS_DEBUG
2182 		printf("ISS hash 0x%08x, ", tcp_iss);
2183 #endif
2184 		tcp_iss += tcp_iss_seq + addin;
2185 #ifdef TCPISS_DEBUG
2186 		printf("new ISS 0x%08x\n", tcp_iss);
2187 #endif
2188 	} else
2189 #endif /* NRND > 0 */
2190 	{
2191 		/*
2192 		 * Randomize.
2193 		 */
2194 #if NRND > 0
2195 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2196 #else
2197 		tcp_iss = arc4random();
2198 #endif
2199 
2200 		/*
2201 		 * If we were asked to add some amount to a known value,
2202 		 * we will take a random value obtained above, mask off
2203 		 * the upper bits, and add in the known value.  We also
2204 		 * add in a constant to ensure that we are at least a
2205 		 * certain distance from the original value.
2206 		 *
2207 		 * This is used when an old connection is in timed wait
2208 		 * and we have a new one coming in, for instance.
2209 		 */
2210 		if (addin != 0) {
2211 #ifdef TCPISS_DEBUG
2212 			printf("Random %08x, ", tcp_iss);
2213 #endif
2214 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2215 			tcp_iss += addin + TCP_ISSINCR;
2216 #ifdef TCPISS_DEBUG
2217 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2218 #endif
2219 		} else {
2220 			tcp_iss &= TCP_ISS_RANDOM_MASK;
2221 			tcp_iss += tcp_iss_seq;
2222 			tcp_iss_seq += TCP_ISSINCR;
2223 #ifdef TCPISS_DEBUG
2224 			printf("ISS %08x\n", tcp_iss);
2225 #endif
2226 		}
2227 	}
2228 
2229 	if (tcp_compat_42) {
2230 		/*
2231 		 * Limit it to the positive range for really old TCP
2232 		 * implementations.
2233 		 * Just AND off the top bit instead of checking if
2234 		 * is set first - saves a branch 50% of the time.
2235 		 */
2236 		tcp_iss &= 0x7fffffff;		/* XXX */
2237 	}
2238 
2239 	return (tcp_iss);
2240 }
2241 
2242 #if defined(IPSEC) || defined(FAST_IPSEC)
2243 /* compute ESP/AH header size for TCP, including outer IP header. */
2244 size_t
2245 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2246 {
2247 	struct inpcb *inp;
2248 	size_t hdrsiz;
2249 
2250 	/* XXX mapped addr case (tp->t_in6pcb) */
2251 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2252 		return 0;
2253 	switch (tp->t_family) {
2254 	case AF_INET:
2255 		/* XXX: should use currect direction. */
2256 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2257 		break;
2258 	default:
2259 		hdrsiz = 0;
2260 		break;
2261 	}
2262 
2263 	return hdrsiz;
2264 }
2265 
2266 #ifdef INET6
2267 size_t
2268 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2269 {
2270 	struct in6pcb *in6p;
2271 	size_t hdrsiz;
2272 
2273 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2274 		return 0;
2275 	switch (tp->t_family) {
2276 	case AF_INET6:
2277 		/* XXX: should use currect direction. */
2278 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2279 		break;
2280 	case AF_INET:
2281 		/* mapped address case - tricky */
2282 	default:
2283 		hdrsiz = 0;
2284 		break;
2285 	}
2286 
2287 	return hdrsiz;
2288 }
2289 #endif
2290 #endif /*IPSEC*/
2291 
2292 /*
2293  * Determine the length of the TCP options for this connection.
2294  *
2295  * XXX:  What do we do for SACK, when we add that?  Just reserve
2296  *       all of the space?  Otherwise we can't exactly be incrementing
2297  *       cwnd by an amount that varies depending on the amount we last
2298  *       had to SACK!
2299  */
2300 
2301 u_int
2302 tcp_optlen(struct tcpcb *tp)
2303 {
2304 	u_int optlen;
2305 
2306 	optlen = 0;
2307 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2308 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2309 		optlen += TCPOLEN_TSTAMP_APPA;
2310 
2311 #ifdef TCP_SIGNATURE
2312 	if (tp->t_flags & TF_SIGNATURE)
2313 		optlen += TCPOLEN_SIGNATURE + 2;
2314 #endif /* TCP_SIGNATURE */
2315 
2316 	return optlen;
2317 }
2318 
2319 u_int
2320 tcp_hdrsz(struct tcpcb *tp)
2321 {
2322 	u_int hlen;
2323 
2324 	switch (tp->t_family) {
2325 #ifdef INET6
2326 	case AF_INET6:
2327 		hlen = sizeof(struct ip6_hdr);
2328 		break;
2329 #endif
2330 	case AF_INET:
2331 		hlen = sizeof(struct ip);
2332 		break;
2333 	default:
2334 		hlen = 0;
2335 		break;
2336 	}
2337 	hlen += sizeof(struct tcphdr);
2338 
2339 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2340 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2341 		hlen += TCPOLEN_TSTAMP_APPA;
2342 #ifdef TCP_SIGNATURE
2343 	if (tp->t_flags & TF_SIGNATURE)
2344 		hlen += TCPOLEN_SIGLEN;
2345 #endif
2346 	return hlen;
2347 }
2348 
2349 void
2350 tcp_statinc(u_int stat)
2351 {
2352 
2353 	KASSERT(stat < TCP_NSTATS);
2354 	TCP_STATINC(stat);
2355 }
2356 
2357 void
2358 tcp_statadd(u_int stat, uint64_t val)
2359 {
2360 
2361 	KASSERT(stat < TCP_NSTATS);
2362 	TCP_STATADD(stat, val);
2363 }
2364