xref: /netbsd-src/sys/netinet/tcp_subr.c (revision 1ca5c1b28139779176bd5c13ad7c5f25c0bcd5f8)
1 /*	$NetBSD: tcp_subr.c,v 1.122 2001/11/13 00:32:41 lukem Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38  * Facility, NASA Ames Research Center.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the NetBSD
51  *	Foundation, Inc. and its contributors.
52  * 4. Neither the name of The NetBSD Foundation nor the names of its
53  *    contributors may be used to endorse or promote products derived
54  *    from this software without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66  * POSSIBILITY OF SUCH DAMAGE.
67  */
68 
69 /*
70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71  *	The Regents of the University of California.  All rights reserved.
72  *
73  * Redistribution and use in source and binary forms, with or without
74  * modification, are permitted provided that the following conditions
75  * are met:
76  * 1. Redistributions of source code must retain the above copyright
77  *    notice, this list of conditions and the following disclaimer.
78  * 2. Redistributions in binary form must reproduce the above copyright
79  *    notice, this list of conditions and the following disclaimer in the
80  *    documentation and/or other materials provided with the distribution.
81  * 3. All advertising materials mentioning features or use of this software
82  *    must display the following acknowledgement:
83  *	This product includes software developed by the University of
84  *	California, Berkeley and its contributors.
85  * 4. Neither the name of the University nor the names of its contributors
86  *    may be used to endorse or promote products derived from this software
87  *    without specific prior written permission.
88  *
89  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99  * SUCH DAMAGE.
100  *
101  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
102  */
103 
104 #include <sys/cdefs.h>
105 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.122 2001/11/13 00:32:41 lukem Exp $");
106 
107 #include "opt_inet.h"
108 #include "opt_ipsec.h"
109 #include "opt_tcp_compat_42.h"
110 #include "opt_inet_csum.h"
111 #include "rnd.h"
112 
113 #include <sys/param.h>
114 #include <sys/proc.h>
115 #include <sys/systm.h>
116 #include <sys/malloc.h>
117 #include <sys/mbuf.h>
118 #include <sys/socket.h>
119 #include <sys/socketvar.h>
120 #include <sys/protosw.h>
121 #include <sys/errno.h>
122 #include <sys/kernel.h>
123 #include <sys/pool.h>
124 #if NRND > 0
125 #include <sys/md5.h>
126 #include <sys/rnd.h>
127 #endif
128 
129 #include <net/route.h>
130 #include <net/if.h>
131 
132 #include <netinet/in.h>
133 #include <netinet/in_systm.h>
134 #include <netinet/ip.h>
135 #include <netinet/in_pcb.h>
136 #include <netinet/ip_var.h>
137 #include <netinet/ip_icmp.h>
138 
139 #ifdef INET6
140 #ifndef INET
141 #include <netinet/in.h>
142 #endif
143 #include <netinet/ip6.h>
144 #include <netinet6/in6_pcb.h>
145 #include <netinet6/ip6_var.h>
146 #include <netinet6/in6_var.h>
147 #include <netinet6/ip6protosw.h>
148 #include <netinet/icmp6.h>
149 #endif
150 
151 #include <netinet/tcp.h>
152 #include <netinet/tcp_fsm.h>
153 #include <netinet/tcp_seq.h>
154 #include <netinet/tcp_timer.h>
155 #include <netinet/tcp_var.h>
156 #include <netinet/tcpip.h>
157 
158 #ifdef IPSEC
159 #include <netinet6/ipsec.h>
160 #endif /*IPSEC*/
161 
162 #ifdef INET6
163 struct in6pcb tcb6;
164 #endif
165 
166 /* patchable/settable parameters for tcp */
167 int 	tcp_mssdflt = TCP_MSS;
168 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
169 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
170 #if NRND > 0
171 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
172 #endif
173 int	tcp_do_sack = 1;	/* selective acknowledgement */
174 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
175 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
176 int	tcp_do_newreno = 0;	/* Use the New Reno algorithms */
177 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
178 int	tcp_init_win = 1;
179 int	tcp_mss_ifmtu = 0;
180 #ifdef TCP_COMPAT_42
181 int	tcp_compat_42 = 1;
182 #else
183 int	tcp_compat_42 = 0;
184 #endif
185 int	tcp_rst_ppslim = 100;	/* 100pps */
186 
187 /* tcb hash */
188 #ifndef TCBHASHSIZE
189 #define	TCBHASHSIZE	128
190 #endif
191 int	tcbhashsize = TCBHASHSIZE;
192 
193 /* syn hash parameters */
194 #define	TCP_SYN_HASH_SIZE	293
195 #define	TCP_SYN_BUCKET_SIZE	35
196 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
197 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
198 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
199 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
200 
201 int	tcp_freeq __P((struct tcpcb *));
202 
203 #ifdef INET
204 void	tcp_mtudisc_callback __P((struct in_addr));
205 #endif
206 #ifdef INET6
207 void	tcp6_mtudisc_callback __P((struct in6_addr *));
208 #endif
209 
210 void	tcp_mtudisc __P((struct inpcb *, int));
211 #ifdef INET6
212 void	tcp6_mtudisc __P((struct in6pcb *, int));
213 #endif
214 
215 struct pool tcpcb_pool;
216 
217 #ifdef TCP_CSUM_COUNTERS
218 #include <sys/device.h>
219 
220 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
221     NULL, "tcp", "hwcsum bad");
222 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
223     NULL, "tcp", "hwcsum ok");
224 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
225     NULL, "tcp", "hwcsum data");
226 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
227     NULL, "tcp", "swcsum");
228 #endif /* TCP_CSUM_COUNTERS */
229 
230 /*
231  * Tcp initialization
232  */
233 void
234 tcp_init()
235 {
236 	int hlen;
237 
238 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
239 	    0, NULL, NULL, M_PCB);
240 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
241 #ifdef INET6
242 	tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
243 #endif
244 
245 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
246 #ifdef INET6
247 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
248 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
249 #endif
250 	if (max_protohdr < hlen)
251 		max_protohdr = hlen;
252 	if (max_linkhdr + hlen > MHLEN)
253 		panic("tcp_init");
254 
255 #ifdef INET
256 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
257 #endif
258 #ifdef INET6
259 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
260 #endif
261 
262 	/* Initialize timer state. */
263 	tcp_timer_init();
264 
265 	/* Initialize the compressed state engine. */
266 	syn_cache_init();
267 
268 #ifdef TCP_CSUM_COUNTERS
269 	evcnt_attach_static(&tcp_hwcsum_bad);
270 	evcnt_attach_static(&tcp_hwcsum_ok);
271 	evcnt_attach_static(&tcp_hwcsum_data);
272 	evcnt_attach_static(&tcp_swcsum);
273 #endif /* TCP_CSUM_COUNTERS */
274 }
275 
276 /*
277  * Create template to be used to send tcp packets on a connection.
278  * Call after host entry created, allocates an mbuf and fills
279  * in a skeletal tcp/ip header, minimizing the amount of work
280  * necessary when the connection is used.
281  */
282 struct mbuf *
283 tcp_template(tp)
284 	struct tcpcb *tp;
285 {
286 	struct inpcb *inp = tp->t_inpcb;
287 #ifdef INET6
288 	struct in6pcb *in6p = tp->t_in6pcb;
289 #endif
290 	struct tcphdr *n;
291 	struct mbuf *m;
292 	int hlen;
293 
294 	switch (tp->t_family) {
295 	case AF_INET:
296 		hlen = sizeof(struct ip);
297 		if (inp)
298 			break;
299 #ifdef INET6
300 		if (in6p) {
301 			/* mapped addr case */
302 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
303 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
304 				break;
305 		}
306 #endif
307 		return NULL;	/*EINVAL*/
308 #ifdef INET6
309 	case AF_INET6:
310 		hlen = sizeof(struct ip6_hdr);
311 		if (in6p) {
312 			/* more sainty check? */
313 			break;
314 		}
315 		return NULL;	/*EINVAL*/
316 #endif
317 	default:
318 		hlen = 0;	/*pacify gcc*/
319 		return NULL;	/*EAFNOSUPPORT*/
320 	}
321 #ifdef DIAGNOSTIC
322 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
323 		panic("mclbytes too small for t_template");
324 #endif
325 	m = tp->t_template;
326 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
327 		;
328 	else {
329 		if (m)
330 			m_freem(m);
331 		m = tp->t_template = NULL;
332 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
333 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
334 			MCLGET(m, M_DONTWAIT);
335 			if ((m->m_flags & M_EXT) == 0) {
336 				m_free(m);
337 				m = NULL;
338 			}
339 		}
340 		if (m == NULL)
341 			return NULL;
342 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
343 	}
344 
345 	bzero(mtod(m, caddr_t), m->m_len);
346 
347 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
348 
349 	switch (tp->t_family) {
350 	case AF_INET:
351 	    {
352 		struct ipovly *ipov;
353 		mtod(m, struct ip *)->ip_v = 4;
354 		ipov = mtod(m, struct ipovly *);
355 		ipov->ih_pr = IPPROTO_TCP;
356 		ipov->ih_len = htons(sizeof(struct tcphdr));
357 		if (inp) {
358 			ipov->ih_src = inp->inp_laddr;
359 			ipov->ih_dst = inp->inp_faddr;
360 		}
361 #ifdef INET6
362 		else if (in6p) {
363 			/* mapped addr case */
364 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
365 				sizeof(ipov->ih_src));
366 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
367 				sizeof(ipov->ih_dst));
368 		}
369 #endif
370 		/*
371 		 * Compute the pseudo-header portion of the checksum
372 		 * now.  We incrementally add in the TCP option and
373 		 * payload lengths later, and then compute the TCP
374 		 * checksum right before the packet is sent off onto
375 		 * the wire.
376 		 */
377 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
378 		    ipov->ih_dst.s_addr,
379 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
380 		break;
381 	    }
382 #ifdef INET6
383 	case AF_INET6:
384 	    {
385 		struct ip6_hdr *ip6;
386 		mtod(m, struct ip *)->ip_v = 6;
387 		ip6 = mtod(m, struct ip6_hdr *);
388 		ip6->ip6_nxt = IPPROTO_TCP;
389 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
390 		ip6->ip6_src = in6p->in6p_laddr;
391 		ip6->ip6_dst = in6p->in6p_faddr;
392 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
393 		if (ip6_auto_flowlabel) {
394 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
395 			ip6->ip6_flow |=
396 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
397 		}
398 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
399 		ip6->ip6_vfc |= IPV6_VERSION;
400 
401 		/*
402 		 * Compute the pseudo-header portion of the checksum
403 		 * now.  We incrementally add in the TCP option and
404 		 * payload lengths later, and then compute the TCP
405 		 * checksum right before the packet is sent off onto
406 		 * the wire.
407 		 */
408 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
409 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
410 		    htonl(IPPROTO_TCP));
411 		break;
412 	    }
413 #endif
414 	}
415 	if (inp) {
416 		n->th_sport = inp->inp_lport;
417 		n->th_dport = inp->inp_fport;
418 	}
419 #ifdef INET6
420 	else if (in6p) {
421 		n->th_sport = in6p->in6p_lport;
422 		n->th_dport = in6p->in6p_fport;
423 	}
424 #endif
425 	n->th_seq = 0;
426 	n->th_ack = 0;
427 	n->th_x2 = 0;
428 	n->th_off = 5;
429 	n->th_flags = 0;
430 	n->th_win = 0;
431 	n->th_urp = 0;
432 	return (m);
433 }
434 
435 /*
436  * Send a single message to the TCP at address specified by
437  * the given TCP/IP header.  If m == 0, then we make a copy
438  * of the tcpiphdr at ti and send directly to the addressed host.
439  * This is used to force keep alive messages out using the TCP
440  * template for a connection tp->t_template.  If flags are given
441  * then we send a message back to the TCP which originated the
442  * segment ti, and discard the mbuf containing it and any other
443  * attached mbufs.
444  *
445  * In any case the ack and sequence number of the transmitted
446  * segment are as specified by the parameters.
447  */
448 int
449 tcp_respond(tp, template, m, th0, ack, seq, flags)
450 	struct tcpcb *tp;
451 	struct mbuf *template;
452 	struct mbuf *m;
453 	struct tcphdr *th0;
454 	tcp_seq ack, seq;
455 	int flags;
456 {
457 	struct route *ro;
458 	int error, tlen, win = 0;
459 	int hlen;
460 	struct ip *ip;
461 #ifdef INET6
462 	struct ip6_hdr *ip6;
463 #endif
464 	int family;	/* family on packet, not inpcb/in6pcb! */
465 	struct tcphdr *th;
466 
467 	if (tp != NULL && (flags & TH_RST) == 0) {
468 #ifdef DIAGNOSTIC
469 		if (tp->t_inpcb && tp->t_in6pcb)
470 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
471 #endif
472 #ifdef INET
473 		if (tp->t_inpcb)
474 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
475 #endif
476 #ifdef INET6
477 		if (tp->t_in6pcb)
478 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
479 #endif
480 	}
481 
482 	ip = NULL;
483 #ifdef INET6
484 	ip6 = NULL;
485 #endif
486 	if (m == 0) {
487 		if (!template)
488 			return EINVAL;
489 
490 		/* get family information from template */
491 		switch (mtod(template, struct ip *)->ip_v) {
492 		case 4:
493 			family = AF_INET;
494 			hlen = sizeof(struct ip);
495 			break;
496 #ifdef INET6
497 		case 6:
498 			family = AF_INET6;
499 			hlen = sizeof(struct ip6_hdr);
500 			break;
501 #endif
502 		default:
503 			return EAFNOSUPPORT;
504 		}
505 
506 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
507 		if (m) {
508 			MCLGET(m, M_DONTWAIT);
509 			if ((m->m_flags & M_EXT) == 0) {
510 				m_free(m);
511 				m = NULL;
512 			}
513 		}
514 		if (m == NULL)
515 			return (ENOBUFS);
516 
517 		if (tcp_compat_42)
518 			tlen = 1;
519 		else
520 			tlen = 0;
521 
522 		m->m_data += max_linkhdr;
523 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
524 			template->m_len);
525 		switch (family) {
526 		case AF_INET:
527 			ip = mtod(m, struct ip *);
528 			th = (struct tcphdr *)(ip + 1);
529 			break;
530 #ifdef INET6
531 		case AF_INET6:
532 			ip6 = mtod(m, struct ip6_hdr *);
533 			th = (struct tcphdr *)(ip6 + 1);
534 			break;
535 #endif
536 #if 0
537 		default:
538 			/* noone will visit here */
539 			m_freem(m);
540 			return EAFNOSUPPORT;
541 #endif
542 		}
543 		flags = TH_ACK;
544 	} else {
545 
546 		if ((m->m_flags & M_PKTHDR) == 0) {
547 #if 0
548 			printf("non PKTHDR to tcp_respond\n");
549 #endif
550 			m_freem(m);
551 			return EINVAL;
552 		}
553 #ifdef DIAGNOSTIC
554 		if (!th0)
555 			panic("th0 == NULL in tcp_respond");
556 #endif
557 
558 		/* get family information from m */
559 		switch (mtod(m, struct ip *)->ip_v) {
560 		case 4:
561 			family = AF_INET;
562 			hlen = sizeof(struct ip);
563 			ip = mtod(m, struct ip *);
564 			break;
565 #ifdef INET6
566 		case 6:
567 			family = AF_INET6;
568 			hlen = sizeof(struct ip6_hdr);
569 			ip6 = mtod(m, struct ip6_hdr *);
570 			break;
571 #endif
572 		default:
573 			m_freem(m);
574 			return EAFNOSUPPORT;
575 		}
576 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
577 			tlen = sizeof(*th0);
578 		else
579 			tlen = th0->th_off << 2;
580 
581 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
582 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
583 			m->m_len = hlen + tlen;
584 			m_freem(m->m_next);
585 			m->m_next = NULL;
586 		} else {
587 			struct mbuf *n;
588 
589 #ifdef DIAGNOSTIC
590 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
591 				m_freem(m);
592 				return EMSGSIZE;
593 			}
594 #endif
595 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
596 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
597 				MCLGET(n, M_DONTWAIT);
598 				if ((n->m_flags & M_EXT) == 0) {
599 					m_freem(n);
600 					n = NULL;
601 				}
602 			}
603 			if (!n) {
604 				m_freem(m);
605 				return ENOBUFS;
606 			}
607 
608 			n->m_data += max_linkhdr;
609 			n->m_len = hlen + tlen;
610 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
611 			m_copyback(n, hlen, tlen, (caddr_t)th0);
612 
613 			m_freem(m);
614 			m = n;
615 			n = NULL;
616 		}
617 
618 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
619 		switch (family) {
620 		case AF_INET:
621 			ip = mtod(m, struct ip *);
622 			th = (struct tcphdr *)(ip + 1);
623 			ip->ip_p = IPPROTO_TCP;
624 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
625 			ip->ip_p = IPPROTO_TCP;
626 			break;
627 #ifdef INET6
628 		case AF_INET6:
629 			ip6 = mtod(m, struct ip6_hdr *);
630 			th = (struct tcphdr *)(ip6 + 1);
631 			ip6->ip6_nxt = IPPROTO_TCP;
632 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
633 			ip6->ip6_nxt = IPPROTO_TCP;
634 			break;
635 #endif
636 #if 0
637 		default:
638 			/* noone will visit here */
639 			m_freem(m);
640 			return EAFNOSUPPORT;
641 #endif
642 		}
643 		xchg(th->th_dport, th->th_sport, u_int16_t);
644 #undef xchg
645 		tlen = 0;	/*be friendly with the following code*/
646 	}
647 	th->th_seq = htonl(seq);
648 	th->th_ack = htonl(ack);
649 	th->th_x2 = 0;
650 	if ((flags & TH_SYN) == 0) {
651 		if (tp)
652 			win >>= tp->rcv_scale;
653 		if (win > TCP_MAXWIN)
654 			win = TCP_MAXWIN;
655 		th->th_win = htons((u_int16_t)win);
656 		th->th_off = sizeof (struct tcphdr) >> 2;
657 		tlen += sizeof(*th);
658 	} else
659 		tlen += th->th_off << 2;
660 	m->m_len = hlen + tlen;
661 	m->m_pkthdr.len = hlen + tlen;
662 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
663 	th->th_flags = flags;
664 	th->th_urp = 0;
665 
666 	switch (family) {
667 #ifdef INET
668 	case AF_INET:
669 	    {
670 		struct ipovly *ipov = (struct ipovly *)ip;
671 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
672 		ipov->ih_len = htons((u_int16_t)tlen);
673 
674 		th->th_sum = 0;
675 		th->th_sum = in_cksum(m, hlen + tlen);
676 		ip->ip_len = hlen + tlen;	/*will be flipped on output*/
677 		ip->ip_ttl = ip_defttl;
678 		break;
679 	    }
680 #endif
681 #ifdef INET6
682 	case AF_INET6:
683 	    {
684 		th->th_sum = 0;
685 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
686 				tlen);
687 		ip6->ip6_plen = ntohs(tlen);
688 		if (tp && tp->t_in6pcb) {
689 			struct ifnet *oifp;
690 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
691 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
692 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
693 		} else
694 			ip6->ip6_hlim = ip6_defhlim;
695 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
696 		if (ip6_auto_flowlabel) {
697 			ip6->ip6_flow |=
698 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
699 		}
700 		break;
701 	    }
702 #endif
703 	}
704 
705 #ifdef IPSEC
706 	(void)ipsec_setsocket(m, NULL);
707 #endif /*IPSEC*/
708 
709 	if (tp != NULL && tp->t_inpcb != NULL) {
710 		ro = &tp->t_inpcb->inp_route;
711 #ifdef IPSEC
712 		if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
713 			m_freem(m);
714 			return ENOBUFS;
715 		}
716 #endif
717 #ifdef DIAGNOSTIC
718 		if (family != AF_INET)
719 			panic("tcp_respond: address family mismatch");
720 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
721 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
722 			    ntohl(ip->ip_dst.s_addr),
723 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
724 		}
725 #endif
726 	}
727 #ifdef INET6
728 	else if (tp != NULL && tp->t_in6pcb != NULL) {
729 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
730 #ifdef IPSEC
731 		if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
732 			m_freem(m);
733 			return ENOBUFS;
734 		}
735 #endif
736 #ifdef DIAGNOSTIC
737 		if (family == AF_INET) {
738 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
739 				panic("tcp_respond: not mapped addr");
740 			if (bcmp(&ip->ip_dst,
741 					&tp->t_in6pcb->in6p_faddr.s6_addr32[3],
742 					sizeof(ip->ip_dst)) != 0) {
743 				panic("tcp_respond: ip_dst != in6p_faddr");
744 			}
745 		} else if (family == AF_INET6) {
746 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
747 				panic("tcp_respond: ip6_dst != in6p_faddr");
748 		} else
749 			panic("tcp_respond: address family mismatch");
750 #endif
751 	}
752 #endif
753 	else
754 		ro = NULL;
755 
756 	switch (family) {
757 #ifdef INET
758 	case AF_INET:
759 		error = ip_output(m, NULL, ro,
760 		    (ip_mtudisc ? IP_MTUDISC : 0),
761 		    NULL);
762 		break;
763 #endif
764 #ifdef INET6
765 	case AF_INET6:
766 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
767 			NULL);
768 		break;
769 #endif
770 	default:
771 		error = EAFNOSUPPORT;
772 		break;
773 	}
774 
775 	return (error);
776 }
777 
778 /*
779  * Create a new TCP control block, making an
780  * empty reassembly queue and hooking it to the argument
781  * protocol control block.
782  */
783 struct tcpcb *
784 tcp_newtcpcb(family, aux)
785 	int family;	/* selects inpcb, or in6pcb */
786 	void *aux;
787 {
788 	struct tcpcb *tp;
789 	int i;
790 
791 	switch (family) {
792 	case PF_INET:
793 		break;
794 #ifdef INET6
795 	case PF_INET6:
796 		break;
797 #endif
798 	default:
799 		return NULL;
800 	}
801 
802 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
803 	if (tp == NULL)
804 		return (NULL);
805 	bzero((caddr_t)tp, sizeof(struct tcpcb));
806 	LIST_INIT(&tp->segq);
807 	LIST_INIT(&tp->timeq);
808 	tp->t_family = family;		/* may be overridden later on */
809 	tp->t_peermss = tcp_mssdflt;
810 	tp->t_ourmss = tcp_mssdflt;
811 	tp->t_segsz = tcp_mssdflt;
812 	LIST_INIT(&tp->t_sc);
813 
814 	callout_init(&tp->t_delack_ch);
815 	for (i = 0; i < TCPT_NTIMERS; i++)
816 		TCP_TIMER_INIT(tp, i);
817 
818 	tp->t_flags = 0;
819 	if (tcp_do_rfc1323 && tcp_do_win_scale)
820 		tp->t_flags |= TF_REQ_SCALE;
821 	if (tcp_do_rfc1323 && tcp_do_timestamps)
822 		tp->t_flags |= TF_REQ_TSTMP;
823 	if (tcp_do_sack == 2)
824 		tp->t_flags |= TF_WILL_SACK;
825 	else if (tcp_do_sack == 1)
826 		tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
827 	tp->t_flags |= TF_CANT_TXSACK;
828 	switch (family) {
829 	case PF_INET:
830 		tp->t_inpcb = (struct inpcb *)aux;
831 		break;
832 #ifdef INET6
833 	case PF_INET6:
834 		tp->t_in6pcb = (struct in6pcb *)aux;
835 		break;
836 #endif
837 	}
838 	/*
839 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
840 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
841 	 * reasonable initial retransmit time.
842 	 */
843 	tp->t_srtt = TCPTV_SRTTBASE;
844 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
845 	tp->t_rttmin = TCPTV_MIN;
846 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
847 	    TCPTV_MIN, TCPTV_REXMTMAX);
848 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
849 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
850 	if (family == AF_INET) {
851 		struct inpcb *inp = (struct inpcb *)aux;
852 		inp->inp_ip.ip_ttl = ip_defttl;
853 		inp->inp_ppcb = (caddr_t)tp;
854 	}
855 #ifdef INET6
856 	else if (family == AF_INET6) {
857 		struct in6pcb *in6p = (struct in6pcb *)aux;
858 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
859 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
860 					       : NULL);
861 		in6p->in6p_ppcb = (caddr_t)tp;
862 	}
863 #endif
864 
865 	/*
866 	 * Initialize our timebase.  When we send timestamps, we take
867 	 * the delta from tcp_now -- this means each connection always
868 	 * gets a timebase of 0, which makes it, among other things,
869 	 * more difficult to determine how long a system has been up,
870 	 * and thus how many TCP sequence increments have occurred.
871 	 */
872 	tp->ts_timebase = tcp_now;
873 
874 	return (tp);
875 }
876 
877 /*
878  * Drop a TCP connection, reporting
879  * the specified error.  If connection is synchronized,
880  * then send a RST to peer.
881  */
882 struct tcpcb *
883 tcp_drop(tp, errno)
884 	struct tcpcb *tp;
885 	int errno;
886 {
887 	struct socket *so = NULL;
888 
889 #ifdef DIAGNOSTIC
890 	if (tp->t_inpcb && tp->t_in6pcb)
891 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
892 #endif
893 #ifdef INET
894 	if (tp->t_inpcb)
895 		so = tp->t_inpcb->inp_socket;
896 #endif
897 #ifdef INET6
898 	if (tp->t_in6pcb)
899 		so = tp->t_in6pcb->in6p_socket;
900 #endif
901 	if (!so)
902 		return NULL;
903 
904 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
905 		tp->t_state = TCPS_CLOSED;
906 		(void) tcp_output(tp);
907 		tcpstat.tcps_drops++;
908 	} else
909 		tcpstat.tcps_conndrops++;
910 	if (errno == ETIMEDOUT && tp->t_softerror)
911 		errno = tp->t_softerror;
912 	so->so_error = errno;
913 	return (tcp_close(tp));
914 }
915 
916 /*
917  * Close a TCP control block:
918  *	discard all space held by the tcp
919  *	discard internet protocol block
920  *	wake up any sleepers
921  */
922 struct tcpcb *
923 tcp_close(tp)
924 	struct tcpcb *tp;
925 {
926 	struct inpcb *inp;
927 #ifdef INET6
928 	struct in6pcb *in6p;
929 #endif
930 	struct socket *so;
931 #ifdef RTV_RTT
932 	struct rtentry *rt;
933 #endif
934 	struct route *ro;
935 
936 	inp = tp->t_inpcb;
937 #ifdef INET6
938 	in6p = tp->t_in6pcb;
939 #endif
940 	so = NULL;
941 	ro = NULL;
942 	if (inp) {
943 		so = inp->inp_socket;
944 		ro = &inp->inp_route;
945 	}
946 #ifdef INET6
947 	else if (in6p) {
948 		so = in6p->in6p_socket;
949 		ro = (struct route *)&in6p->in6p_route;
950 	}
951 #endif
952 
953 #ifdef RTV_RTT
954 	/*
955 	 * If we sent enough data to get some meaningful characteristics,
956 	 * save them in the routing entry.  'Enough' is arbitrarily
957 	 * defined as the sendpipesize (default 4K) * 16.  This would
958 	 * give us 16 rtt samples assuming we only get one sample per
959 	 * window (the usual case on a long haul net).  16 samples is
960 	 * enough for the srtt filter to converge to within 5% of the correct
961 	 * value; fewer samples and we could save a very bogus rtt.
962 	 *
963 	 * Don't update the default route's characteristics and don't
964 	 * update anything that the user "locked".
965 	 */
966 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
967 	    ro && (rt = ro->ro_rt) &&
968 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
969 		u_long i = 0;
970 
971 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
972 			i = tp->t_srtt *
973 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
974 			if (rt->rt_rmx.rmx_rtt && i)
975 				/*
976 				 * filter this update to half the old & half
977 				 * the new values, converting scale.
978 				 * See route.h and tcp_var.h for a
979 				 * description of the scaling constants.
980 				 */
981 				rt->rt_rmx.rmx_rtt =
982 				    (rt->rt_rmx.rmx_rtt + i) / 2;
983 			else
984 				rt->rt_rmx.rmx_rtt = i;
985 		}
986 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
987 			i = tp->t_rttvar *
988 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
989 			if (rt->rt_rmx.rmx_rttvar && i)
990 				rt->rt_rmx.rmx_rttvar =
991 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
992 			else
993 				rt->rt_rmx.rmx_rttvar = i;
994 		}
995 		/*
996 		 * update the pipelimit (ssthresh) if it has been updated
997 		 * already or if a pipesize was specified & the threshhold
998 		 * got below half the pipesize.  I.e., wait for bad news
999 		 * before we start updating, then update on both good
1000 		 * and bad news.
1001 		 */
1002 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1003 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1004 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1005 			/*
1006 			 * convert the limit from user data bytes to
1007 			 * packets then to packet data bytes.
1008 			 */
1009 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
1010 			if (i < 2)
1011 				i = 2;
1012 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1013 			if (rt->rt_rmx.rmx_ssthresh)
1014 				rt->rt_rmx.rmx_ssthresh =
1015 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1016 			else
1017 				rt->rt_rmx.rmx_ssthresh = i;
1018 		}
1019 	}
1020 #endif /* RTV_RTT */
1021 	/* free the reassembly queue, if any */
1022 	TCP_REASS_LOCK(tp);
1023 	(void) tcp_freeq(tp);
1024 	TCP_REASS_UNLOCK(tp);
1025 
1026 	tcp_canceltimers(tp);
1027 	TCP_CLEAR_DELACK(tp);
1028 	syn_cache_cleanup(tp);
1029 
1030 	if (tp->t_template) {
1031 		m_free(tp->t_template);
1032 		tp->t_template = NULL;
1033 	}
1034 	pool_put(&tcpcb_pool, tp);
1035 	if (inp) {
1036 		inp->inp_ppcb = 0;
1037 		soisdisconnected(so);
1038 		in_pcbdetach(inp);
1039 	}
1040 #ifdef INET6
1041 	else if (in6p) {
1042 		in6p->in6p_ppcb = 0;
1043 		soisdisconnected(so);
1044 		in6_pcbdetach(in6p);
1045 	}
1046 #endif
1047 	tcpstat.tcps_closed++;
1048 	return ((struct tcpcb *)0);
1049 }
1050 
1051 int
1052 tcp_freeq(tp)
1053 	struct tcpcb *tp;
1054 {
1055 	struct ipqent *qe;
1056 	int rv = 0;
1057 #ifdef TCPREASS_DEBUG
1058 	int i = 0;
1059 #endif
1060 
1061 	TCP_REASS_LOCK_CHECK(tp);
1062 
1063 	while ((qe = LIST_FIRST(&tp->segq)) != NULL) {
1064 #ifdef TCPREASS_DEBUG
1065 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1066 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1067 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1068 #endif
1069 		LIST_REMOVE(qe, ipqe_q);
1070 		LIST_REMOVE(qe, ipqe_timeq);
1071 		m_freem(qe->ipqe_m);
1072 		pool_put(&ipqent_pool, qe);
1073 		rv = 1;
1074 	}
1075 	return (rv);
1076 }
1077 
1078 /*
1079  * Protocol drain routine.  Called when memory is in short supply.
1080  */
1081 void
1082 tcp_drain()
1083 {
1084 	struct inpcb *inp;
1085 	struct tcpcb *tp;
1086 
1087 	/*
1088 	 * Free the sequence queue of all TCP connections.
1089 	 */
1090 	inp = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
1091 	if (inp)						/* XXX */
1092 	CIRCLEQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue) {
1093 		if ((tp = intotcpcb(inp)) != NULL) {
1094 			/*
1095 			 * We may be called from a device's interrupt
1096 			 * context.  If the tcpcb is already busy,
1097 			 * just bail out now.
1098 			 */
1099 			if (tcp_reass_lock_try(tp) == 0)
1100 				continue;
1101 			if (tcp_freeq(tp))
1102 				tcpstat.tcps_connsdrained++;
1103 			TCP_REASS_UNLOCK(tp);
1104 		}
1105 	}
1106 }
1107 
1108 /*
1109  * Notify a tcp user of an asynchronous error;
1110  * store error as soft error, but wake up user
1111  * (for now, won't do anything until can select for soft error).
1112  */
1113 void
1114 tcp_notify(inp, error)
1115 	struct inpcb *inp;
1116 	int error;
1117 {
1118 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1119 	struct socket *so = inp->inp_socket;
1120 
1121 	/*
1122 	 * Ignore some errors if we are hooked up.
1123 	 * If connection hasn't completed, has retransmitted several times,
1124 	 * and receives a second error, give up now.  This is better
1125 	 * than waiting a long time to establish a connection that
1126 	 * can never complete.
1127 	 */
1128 	if (tp->t_state == TCPS_ESTABLISHED &&
1129 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1130 	      error == EHOSTDOWN)) {
1131 		return;
1132 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1133 	    tp->t_rxtshift > 3 && tp->t_softerror)
1134 		so->so_error = error;
1135 	else
1136 		tp->t_softerror = error;
1137 	wakeup((caddr_t) &so->so_timeo);
1138 	sorwakeup(so);
1139 	sowwakeup(so);
1140 }
1141 
1142 #ifdef INET6
1143 void
1144 tcp6_notify(in6p, error)
1145 	struct in6pcb *in6p;
1146 	int error;
1147 {
1148 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1149 	struct socket *so = in6p->in6p_socket;
1150 
1151 	/*
1152 	 * Ignore some errors if we are hooked up.
1153 	 * If connection hasn't completed, has retransmitted several times,
1154 	 * and receives a second error, give up now.  This is better
1155 	 * than waiting a long time to establish a connection that
1156 	 * can never complete.
1157 	 */
1158 	if (tp->t_state == TCPS_ESTABLISHED &&
1159 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1160 	      error == EHOSTDOWN)) {
1161 		return;
1162 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1163 	    tp->t_rxtshift > 3 && tp->t_softerror)
1164 		so->so_error = error;
1165 	else
1166 		tp->t_softerror = error;
1167 	wakeup((caddr_t) &so->so_timeo);
1168 	sorwakeup(so);
1169 	sowwakeup(so);
1170 }
1171 #endif
1172 
1173 #ifdef INET6
1174 void
1175 tcp6_ctlinput(cmd, sa, d)
1176 	int cmd;
1177 	struct sockaddr *sa;
1178 	void *d;
1179 {
1180 	struct tcphdr th;
1181 	void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1182 	int nmatch;
1183 	struct ip6_hdr *ip6;
1184 	const struct sockaddr_in6 *sa6_src = NULL;
1185 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1186 	struct mbuf *m;
1187 	int off;
1188 
1189 	if (sa->sa_family != AF_INET6 ||
1190 	    sa->sa_len != sizeof(struct sockaddr_in6))
1191 		return;
1192 	if ((unsigned)cmd >= PRC_NCMDS)
1193 		return;
1194 	else if (cmd == PRC_QUENCH) {
1195 		/* XXX there's no PRC_QUENCH in IPv6 */
1196 		notify = tcp6_quench;
1197 	} else if (PRC_IS_REDIRECT(cmd))
1198 		notify = in6_rtchange, d = NULL;
1199 	else if (cmd == PRC_MSGSIZE)
1200 		; /* special code is present, see below */
1201 	else if (cmd == PRC_HOSTDEAD)
1202 		d = NULL;
1203 	else if (inet6ctlerrmap[cmd] == 0)
1204 		return;
1205 
1206 	/* if the parameter is from icmp6, decode it. */
1207 	if (d != NULL) {
1208 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1209 		m = ip6cp->ip6c_m;
1210 		ip6 = ip6cp->ip6c_ip6;
1211 		off = ip6cp->ip6c_off;
1212 		sa6_src = ip6cp->ip6c_src;
1213 	} else {
1214 		m = NULL;
1215 		ip6 = NULL;
1216 		sa6_src = &sa6_any;
1217 	}
1218 
1219 	if (ip6) {
1220 		/*
1221 		 * XXX: We assume that when ip6 is non NULL,
1222 		 * M and OFF are valid.
1223 		 */
1224 
1225 		/* check if we can safely examine src and dst ports */
1226 		if (m->m_pkthdr.len < off + sizeof(th)) {
1227 			if (cmd == PRC_MSGSIZE)
1228 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1229 			return;
1230 		}
1231 
1232 		bzero(&th, sizeof(th));
1233 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
1234 
1235 		if (cmd == PRC_MSGSIZE) {
1236 			int valid = 0;
1237 
1238 			/*
1239 			 * Check to see if we have a valid TCP connection
1240 			 * corresponding to the address in the ICMPv6 message
1241 			 * payload.
1242 			 */
1243 			if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
1244 			    th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1245 			    th.th_sport, 0))
1246 				valid++;
1247 
1248 			/*
1249 			 * Depending on the value of "valid" and routing table
1250 			 * size (mtudisc_{hi,lo}wat), we will:
1251 			 * - recalcurate the new MTU and create the
1252 			 *   corresponding routing entry, or
1253 			 * - ignore the MTU change notification.
1254 			 */
1255 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1256 
1257 			/*
1258 			 * no need to call in6_pcbnotify, it should have been
1259 			 * called via callback if necessary
1260 			 */
1261 			return;
1262 		}
1263 
1264 		nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
1265 		    (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1266 		if (nmatch == 0 && syn_cache_count &&
1267 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1268 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
1269 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
1270 			syn_cache_unreach((struct sockaddr *)sa6_src,
1271 					  sa, &th);
1272 	} else {
1273 		(void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
1274 		    0, cmd, NULL, notify);
1275 	}
1276 }
1277 #endif
1278 
1279 #ifdef INET
1280 /* assumes that ip header and tcp header are contiguous on mbuf */
1281 void *
1282 tcp_ctlinput(cmd, sa, v)
1283 	int cmd;
1284 	struct sockaddr *sa;
1285 	void *v;
1286 {
1287 	struct ip *ip = v;
1288 	struct tcphdr *th;
1289 	struct icmp *icp;
1290 	extern const int inetctlerrmap[];
1291 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1292 	int errno;
1293 	int nmatch;
1294 
1295 	if (sa->sa_family != AF_INET ||
1296 	    sa->sa_len != sizeof(struct sockaddr_in))
1297 		return NULL;
1298 	if ((unsigned)cmd >= PRC_NCMDS)
1299 		return NULL;
1300 	errno = inetctlerrmap[cmd];
1301 	if (cmd == PRC_QUENCH)
1302 		notify = tcp_quench;
1303 	else if (PRC_IS_REDIRECT(cmd))
1304 		notify = in_rtchange, ip = 0;
1305 	else if (cmd == PRC_MSGSIZE && ip_mtudisc && ip && ip->ip_v == 4) {
1306 		/*
1307 		 * Check to see if we have a valid TCP connection
1308 		 * corresponding to the address in the ICMP message
1309 		 * payload.
1310 		 *
1311 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1312 		 */
1313 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1314 		if (in_pcblookup_connect(&tcbtable,
1315 					 ip->ip_dst, th->th_dport,
1316 					 ip->ip_src, th->th_sport) == NULL)
1317 			return NULL;
1318 
1319 		/*
1320 		 * Now that we've validated that we are actually communicating
1321 		 * with the host indicated in the ICMP message, locate the
1322 		 * ICMP header, recalculate the new MTU, and create the
1323 		 * corresponding routing entry.
1324 		 */
1325 		icp = (struct icmp *)((caddr_t)ip -
1326 		    offsetof(struct icmp, icmp_ip));
1327 		icmp_mtudisc(icp, ip->ip_dst);
1328 
1329 		return NULL;
1330 	} else if (cmd == PRC_HOSTDEAD)
1331 		ip = 0;
1332 	else if (errno == 0)
1333 		return NULL;
1334 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1335 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1336 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1337 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1338 		if (nmatch == 0 && syn_cache_count &&
1339 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
1340 		    inetctlerrmap[cmd] == ENETUNREACH ||
1341 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
1342 			struct sockaddr_in sin;
1343 			bzero(&sin, sizeof(sin));
1344 			sin.sin_len = sizeof(sin);
1345 			sin.sin_family = AF_INET;
1346 			sin.sin_port = th->th_sport;
1347 			sin.sin_addr = ip->ip_src;
1348 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1349 		}
1350 
1351 		/* XXX mapped address case */
1352 	} else
1353 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1354 		    notify);
1355 	return NULL;
1356 }
1357 
1358 /*
1359  * When a source quence is received, we are being notifed of congestion.
1360  * Close the congestion window down to the Loss Window (one segment).
1361  * We will gradually open it again as we proceed.
1362  */
1363 void
1364 tcp_quench(inp, errno)
1365 	struct inpcb *inp;
1366 	int errno;
1367 {
1368 	struct tcpcb *tp = intotcpcb(inp);
1369 
1370 	if (tp)
1371 		tp->snd_cwnd = tp->t_segsz;
1372 }
1373 #endif
1374 
1375 #ifdef INET6
1376 void
1377 tcp6_quench(in6p, errno)
1378 	struct in6pcb *in6p;
1379 	int errno;
1380 {
1381 	struct tcpcb *tp = in6totcpcb(in6p);
1382 
1383 	if (tp)
1384 		tp->snd_cwnd = tp->t_segsz;
1385 }
1386 #endif
1387 
1388 #ifdef INET
1389 /*
1390  * Path MTU Discovery handlers.
1391  */
1392 void
1393 tcp_mtudisc_callback(faddr)
1394 	struct in_addr faddr;
1395 {
1396 
1397 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1398 }
1399 
1400 /*
1401  * On receipt of path MTU corrections, flush old route and replace it
1402  * with the new one.  Retransmit all unacknowledged packets, to ensure
1403  * that all packets will be received.
1404  */
1405 void
1406 tcp_mtudisc(inp, errno)
1407 	struct inpcb *inp;
1408 	int errno;
1409 {
1410 	struct tcpcb *tp = intotcpcb(inp);
1411 	struct rtentry *rt = in_pcbrtentry(inp);
1412 
1413 	if (tp != 0) {
1414 		if (rt != 0) {
1415 			/*
1416 			 * If this was not a host route, remove and realloc.
1417 			 */
1418 			if ((rt->rt_flags & RTF_HOST) == 0) {
1419 				in_rtchange(inp, errno);
1420 				if ((rt = in_pcbrtentry(inp)) == 0)
1421 					return;
1422 			}
1423 
1424 			/*
1425 			 * Slow start out of the error condition.  We
1426 			 * use the MTU because we know it's smaller
1427 			 * than the previously transmitted segment.
1428 			 *
1429 			 * Note: This is more conservative than the
1430 			 * suggestion in draft-floyd-incr-init-win-03.
1431 			 */
1432 			if (rt->rt_rmx.rmx_mtu != 0)
1433 				tp->snd_cwnd =
1434 				    TCP_INITIAL_WINDOW(tcp_init_win,
1435 				    rt->rt_rmx.rmx_mtu);
1436 		}
1437 
1438 		/*
1439 		 * Resend unacknowledged packets.
1440 		 */
1441 		tp->snd_nxt = tp->snd_una;
1442 		tcp_output(tp);
1443 	}
1444 }
1445 #endif
1446 
1447 #ifdef INET6
1448 /*
1449  * Path MTU Discovery handlers.
1450  */
1451 void
1452 tcp6_mtudisc_callback(faddr)
1453 	struct in6_addr *faddr;
1454 {
1455 	struct sockaddr_in6 sin6;
1456 
1457 	bzero(&sin6, sizeof(sin6));
1458 	sin6.sin6_family = AF_INET6;
1459 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1460 	sin6.sin6_addr = *faddr;
1461 	(void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
1462 	    (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1463 }
1464 
1465 void
1466 tcp6_mtudisc(in6p, errno)
1467 	struct in6pcb *in6p;
1468 	int errno;
1469 {
1470 	struct tcpcb *tp = in6totcpcb(in6p);
1471 	struct rtentry *rt = in6_pcbrtentry(in6p);
1472 
1473 	if (tp != 0) {
1474 		if (rt != 0) {
1475 			/*
1476 			 * If this was not a host route, remove and realloc.
1477 			 */
1478 			if ((rt->rt_flags & RTF_HOST) == 0) {
1479 				in6_rtchange(in6p, errno);
1480 				if ((rt = in6_pcbrtentry(in6p)) == 0)
1481 					return;
1482 			}
1483 
1484 			/*
1485 			 * Slow start out of the error condition.  We
1486 			 * use the MTU because we know it's smaller
1487 			 * than the previously transmitted segment.
1488 			 *
1489 			 * Note: This is more conservative than the
1490 			 * suggestion in draft-floyd-incr-init-win-03.
1491 			 */
1492 			if (rt->rt_rmx.rmx_mtu != 0)
1493 				tp->snd_cwnd =
1494 				    TCP_INITIAL_WINDOW(tcp_init_win,
1495 				    rt->rt_rmx.rmx_mtu);
1496 		}
1497 
1498 		/*
1499 		 * Resend unacknowledged packets.
1500 		 */
1501 		tp->snd_nxt = tp->snd_una;
1502 		tcp_output(tp);
1503 	}
1504 }
1505 #endif /* INET6 */
1506 
1507 /*
1508  * Compute the MSS to advertise to the peer.  Called only during
1509  * the 3-way handshake.  If we are the server (peer initiated
1510  * connection), we are called with a pointer to the interface
1511  * on which the SYN packet arrived.  If we are the client (we
1512  * initiated connection), we are called with a pointer to the
1513  * interface out which this connection should go.
1514  *
1515  * NOTE: Do not subtract IP option/extension header size nor IPsec
1516  * header size from MSS advertisement.  MSS option must hold the maximum
1517  * segment size we can accept, so it must always be:
1518  *	 max(if mtu) - ip header - tcp header
1519  */
1520 u_long
1521 tcp_mss_to_advertise(ifp, af)
1522 	const struct ifnet *ifp;
1523 	int af;
1524 {
1525 	extern u_long in_maxmtu;
1526 	u_long mss = 0;
1527 	u_long hdrsiz;
1528 
1529 	/*
1530 	 * In order to avoid defeating path MTU discovery on the peer,
1531 	 * we advertise the max MTU of all attached networks as our MSS,
1532 	 * per RFC 1191, section 3.1.
1533 	 *
1534 	 * We provide the option to advertise just the MTU of
1535 	 * the interface on which we hope this connection will
1536 	 * be receiving.  If we are responding to a SYN, we
1537 	 * will have a pretty good idea about this, but when
1538 	 * initiating a connection there is a bit more doubt.
1539 	 *
1540 	 * We also need to ensure that loopback has a large enough
1541 	 * MSS, as the loopback MTU is never included in in_maxmtu.
1542 	 */
1543 
1544 	if (ifp != NULL)
1545 		mss = ifp->if_mtu;
1546 
1547 	if (tcp_mss_ifmtu == 0)
1548 		switch (af) {
1549 		case AF_INET:
1550 			mss = max(in_maxmtu, mss);
1551 			break;
1552 #ifdef INET6
1553 		case AF_INET6:
1554 			mss = max(in6_maxmtu, mss);
1555 			break;
1556 #endif
1557 		}
1558 
1559 	switch (af) {
1560 	case AF_INET:
1561 		hdrsiz = sizeof(struct ip);
1562 		break;
1563 #ifdef INET6
1564 	case AF_INET6:
1565 		hdrsiz = sizeof(struct ip6_hdr);
1566 		break;
1567 #endif
1568 	default:
1569 		hdrsiz = 0;
1570 		break;
1571 	}
1572 	hdrsiz += sizeof(struct tcphdr);
1573 	if (mss > hdrsiz)
1574 		mss -= hdrsiz;
1575 
1576 	mss = max(tcp_mssdflt, mss);
1577 	return (mss);
1578 }
1579 
1580 /*
1581  * Set connection variables based on the peer's advertised MSS.
1582  * We are passed the TCPCB for the actual connection.  If we
1583  * are the server, we are called by the compressed state engine
1584  * when the 3-way handshake is complete.  If we are the client,
1585  * we are called when we receive the SYN,ACK from the server.
1586  *
1587  * NOTE: Our advertised MSS value must be initialized in the TCPCB
1588  * before this routine is called!
1589  */
1590 void
1591 tcp_mss_from_peer(tp, offer)
1592 	struct tcpcb *tp;
1593 	int offer;
1594 {
1595 	struct socket *so;
1596 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1597 	struct rtentry *rt;
1598 #endif
1599 	u_long bufsize;
1600 	int mss;
1601 
1602 #ifdef DIAGNOSTIC
1603 	if (tp->t_inpcb && tp->t_in6pcb)
1604 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1605 #endif
1606 	so = NULL;
1607 	rt = NULL;
1608 #ifdef INET
1609 	if (tp->t_inpcb) {
1610 		so = tp->t_inpcb->inp_socket;
1611 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1612 		rt = in_pcbrtentry(tp->t_inpcb);
1613 #endif
1614 	}
1615 #endif
1616 #ifdef INET6
1617 	if (tp->t_in6pcb) {
1618 		so = tp->t_in6pcb->in6p_socket;
1619 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1620 		rt = in6_pcbrtentry(tp->t_in6pcb);
1621 #endif
1622 	}
1623 #endif
1624 
1625 	/*
1626 	 * As per RFC1122, use the default MSS value, unless they
1627 	 * sent us an offer.  Do not accept offers less than 32 bytes.
1628 	 */
1629 	mss = tcp_mssdflt;
1630 	if (offer)
1631 		mss = offer;
1632 	mss = max(mss, 32);		/* sanity */
1633 	tp->t_peermss = mss;
1634 	mss -= tcp_optlen(tp);
1635 #ifdef INET
1636 	if (tp->t_inpcb)
1637 		mss -= ip_optlen(tp->t_inpcb);
1638 #endif
1639 #ifdef INET6
1640 	if (tp->t_in6pcb)
1641 		mss -= ip6_optlen(tp->t_in6pcb);
1642 #endif
1643 
1644 	/*
1645 	 * If there's a pipesize, change the socket buffer to that size.
1646 	 * Make the socket buffer an integral number of MSS units.  If
1647 	 * the MSS is larger than the socket buffer, artificially decrease
1648 	 * the MSS.
1649 	 */
1650 #ifdef RTV_SPIPE
1651 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1652 		bufsize = rt->rt_rmx.rmx_sendpipe;
1653 	else
1654 #endif
1655 		bufsize = so->so_snd.sb_hiwat;
1656 	if (bufsize < mss)
1657 		mss = bufsize;
1658 	else {
1659 		bufsize = roundup(bufsize, mss);
1660 		if (bufsize > sb_max)
1661 			bufsize = sb_max;
1662 		(void) sbreserve(&so->so_snd, bufsize);
1663 	}
1664 	tp->t_segsz = mss;
1665 
1666 #ifdef RTV_SSTHRESH
1667 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1668 		/*
1669 		 * There's some sort of gateway or interface buffer
1670 		 * limit on the path.  Use this to set the slow
1671 		 * start threshold, but set the threshold to no less
1672 		 * than 2 * MSS.
1673 		 */
1674 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1675 	}
1676 #endif
1677 }
1678 
1679 /*
1680  * Processing necessary when a TCP connection is established.
1681  */
1682 void
1683 tcp_established(tp)
1684 	struct tcpcb *tp;
1685 {
1686 	struct socket *so;
1687 #ifdef RTV_RPIPE
1688 	struct rtentry *rt;
1689 #endif
1690 	u_long bufsize;
1691 
1692 #ifdef DIAGNOSTIC
1693 	if (tp->t_inpcb && tp->t_in6pcb)
1694 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
1695 #endif
1696 	so = NULL;
1697 	rt = NULL;
1698 #ifdef INET
1699 	if (tp->t_inpcb) {
1700 		so = tp->t_inpcb->inp_socket;
1701 #if defined(RTV_RPIPE)
1702 		rt = in_pcbrtentry(tp->t_inpcb);
1703 #endif
1704 	}
1705 #endif
1706 #ifdef INET6
1707 	if (tp->t_in6pcb) {
1708 		so = tp->t_in6pcb->in6p_socket;
1709 #if defined(RTV_RPIPE)
1710 		rt = in6_pcbrtentry(tp->t_in6pcb);
1711 #endif
1712 	}
1713 #endif
1714 
1715 	tp->t_state = TCPS_ESTABLISHED;
1716 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1717 
1718 #ifdef RTV_RPIPE
1719 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1720 		bufsize = rt->rt_rmx.rmx_recvpipe;
1721 	else
1722 #endif
1723 		bufsize = so->so_rcv.sb_hiwat;
1724 	if (bufsize > tp->t_ourmss) {
1725 		bufsize = roundup(bufsize, tp->t_ourmss);
1726 		if (bufsize > sb_max)
1727 			bufsize = sb_max;
1728 		(void) sbreserve(&so->so_rcv, bufsize);
1729 	}
1730 }
1731 
1732 /*
1733  * Check if there's an initial rtt or rttvar.  Convert from the
1734  * route-table units to scaled multiples of the slow timeout timer.
1735  * Called only during the 3-way handshake.
1736  */
1737 void
1738 tcp_rmx_rtt(tp)
1739 	struct tcpcb *tp;
1740 {
1741 #ifdef RTV_RTT
1742 	struct rtentry *rt = NULL;
1743 	int rtt;
1744 
1745 #ifdef DIAGNOSTIC
1746 	if (tp->t_inpcb && tp->t_in6pcb)
1747 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1748 #endif
1749 #ifdef INET
1750 	if (tp->t_inpcb)
1751 		rt = in_pcbrtentry(tp->t_inpcb);
1752 #endif
1753 #ifdef INET6
1754 	if (tp->t_in6pcb)
1755 		rt = in6_pcbrtentry(tp->t_in6pcb);
1756 #endif
1757 	if (rt == NULL)
1758 		return;
1759 
1760 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1761 		/*
1762 		 * XXX The lock bit for MTU indicates that the value
1763 		 * is also a minimum value; this is subject to time.
1764 		 */
1765 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
1766 			TCPT_RANGESET(tp->t_rttmin,
1767 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1768 			    TCPTV_MIN, TCPTV_REXMTMAX);
1769 		tp->t_srtt = rtt /
1770 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1771 		if (rt->rt_rmx.rmx_rttvar) {
1772 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1773 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
1774 				(TCP_RTTVAR_SHIFT + 2));
1775 		} else {
1776 			/* Default variation is +- 1 rtt */
1777 			tp->t_rttvar =
1778 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1779 		}
1780 		TCPT_RANGESET(tp->t_rxtcur,
1781 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1782 		    tp->t_rttmin, TCPTV_REXMTMAX);
1783 	}
1784 #endif
1785 }
1786 
1787 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
1788 #if NRND > 0
1789 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
1790 #endif
1791 
1792 /*
1793  * Get a new sequence value given a tcp control block
1794  */
1795 tcp_seq
1796 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
1797 {
1798 
1799 #ifdef INET
1800 	if (tp->t_inpcb != NULL) {
1801 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
1802 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
1803 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
1804 		    addin));
1805 	}
1806 #endif
1807 #ifdef INET6
1808 	if (tp->t_in6pcb != NULL) {
1809 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
1810 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
1811 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
1812 		    addin));
1813 	}
1814 #endif
1815 	/* Not possible. */
1816 	panic("tcp_new_iss");
1817 }
1818 
1819 /*
1820  * This routine actually generates a new TCP initial sequence number.
1821  */
1822 tcp_seq
1823 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
1824     size_t addrsz, tcp_seq addin)
1825 {
1826 	tcp_seq tcp_iss;
1827 
1828 #if NRND > 0
1829 	static int beenhere;
1830 
1831 	/*
1832 	 * If we haven't been here before, initialize our cryptographic
1833 	 * hash secret.
1834 	 */
1835 	if (beenhere == 0) {
1836 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
1837 		    RND_EXTRACT_ANY);
1838 		beenhere = 1;
1839 	}
1840 
1841 	if (tcp_do_rfc1948) {
1842 		MD5_CTX ctx;
1843 		u_int8_t hash[16];	/* XXX MD5 knowledge */
1844 
1845 		/*
1846 		 * Compute the base value of the ISS.  It is a hash
1847 		 * of (saddr, sport, daddr, dport, secret).
1848 		 */
1849 		MD5Init(&ctx);
1850 
1851 		MD5Update(&ctx, (u_char *) laddr, addrsz);
1852 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
1853 
1854 		MD5Update(&ctx, (u_char *) faddr, addrsz);
1855 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
1856 
1857 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
1858 
1859 		MD5Final(hash, &ctx);
1860 
1861 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
1862 
1863 		/*
1864 		 * Now increment our "timer", and add it in to
1865 		 * the computed value.
1866 		 *
1867 		 * XXX Use `addin'?
1868 		 * XXX TCP_ISSINCR too large to use?
1869 		 */
1870 		tcp_iss_seq += TCP_ISSINCR;
1871 #ifdef TCPISS_DEBUG
1872 		printf("ISS hash 0x%08x, ", tcp_iss);
1873 #endif
1874 		tcp_iss += tcp_iss_seq + addin;
1875 #ifdef TCPISS_DEBUG
1876 		printf("new ISS 0x%08x\n", tcp_iss);
1877 #endif
1878 	} else
1879 #endif /* NRND > 0 */
1880 	{
1881 		/*
1882 		 * Randomize.
1883 		 */
1884 #if NRND > 0
1885 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
1886 #else
1887 		tcp_iss = random();
1888 #endif
1889 
1890 		/*
1891 		 * If we were asked to add some amount to a known value,
1892 		 * we will take a random value obtained above, mask off
1893 		 * the upper bits, and add in the known value.  We also
1894 		 * add in a constant to ensure that we are at least a
1895 		 * certain distance from the original value.
1896 		 *
1897 		 * This is used when an old connection is in timed wait
1898 		 * and we have a new one coming in, for instance.
1899 		 */
1900 		if (addin != 0) {
1901 #ifdef TCPISS_DEBUG
1902 			printf("Random %08x, ", tcp_iss);
1903 #endif
1904 			tcp_iss &= TCP_ISS_RANDOM_MASK;
1905 			tcp_iss += addin + TCP_ISSINCR;
1906 #ifdef TCPISS_DEBUG
1907 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
1908 #endif
1909 		} else {
1910 			tcp_iss &= TCP_ISS_RANDOM_MASK;
1911 			tcp_iss += tcp_iss_seq;
1912 			tcp_iss_seq += TCP_ISSINCR;
1913 #ifdef TCPISS_DEBUG
1914 			printf("ISS %08x\n", tcp_iss);
1915 #endif
1916 		}
1917 	}
1918 
1919 	if (tcp_compat_42) {
1920 		/*
1921 		 * Limit it to the positive range for really old TCP
1922 		 * implementations.
1923 		 */
1924 		if (tcp_iss >= 0x80000000)
1925 			tcp_iss &= 0x7fffffff;		/* XXX */
1926 	}
1927 
1928 	return (tcp_iss);
1929 }
1930 
1931 #ifdef IPSEC
1932 /* compute ESP/AH header size for TCP, including outer IP header. */
1933 size_t
1934 ipsec4_hdrsiz_tcp(tp)
1935 	struct tcpcb *tp;
1936 {
1937 	struct inpcb *inp;
1938 	size_t hdrsiz;
1939 
1940 	/* XXX mapped addr case (tp->t_in6pcb) */
1941 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
1942 		return 0;
1943 	switch (tp->t_family) {
1944 	case AF_INET:
1945 		/* XXX: should use currect direction. */
1946 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
1947 		break;
1948 	default:
1949 		hdrsiz = 0;
1950 		break;
1951 	}
1952 
1953 	return hdrsiz;
1954 }
1955 
1956 #ifdef INET6
1957 size_t
1958 ipsec6_hdrsiz_tcp(tp)
1959 	struct tcpcb *tp;
1960 {
1961 	struct in6pcb *in6p;
1962 	size_t hdrsiz;
1963 
1964 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
1965 		return 0;
1966 	switch (tp->t_family) {
1967 	case AF_INET6:
1968 		/* XXX: should use currect direction. */
1969 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
1970 		break;
1971 	case AF_INET:
1972 		/* mapped address case - tricky */
1973 	default:
1974 		hdrsiz = 0;
1975 		break;
1976 	}
1977 
1978 	return hdrsiz;
1979 }
1980 #endif
1981 #endif /*IPSEC*/
1982 
1983 /*
1984  * Determine the length of the TCP options for this connection.
1985  *
1986  * XXX:  What do we do for SACK, when we add that?  Just reserve
1987  *       all of the space?  Otherwise we can't exactly be incrementing
1988  *       cwnd by an amount that varies depending on the amount we last
1989  *       had to SACK!
1990  */
1991 
1992 u_int
1993 tcp_optlen(tp)
1994 	struct tcpcb *tp;
1995 {
1996 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1997 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1998 		return TCPOLEN_TSTAMP_APPA;
1999 	else
2000 		return 0;
2001 }
2002