xref: /netbsd-src/sys/netinet/tcp_subr.c (revision 17dd36da8292193180754d5047c0926dbb56818c)
1 /*	$NetBSD: tcp_subr.c,v 1.109 2001/03/21 03:35:11 chs Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38  * Facility, NASA Ames Research Center.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the NetBSD
51  *	Foundation, Inc. and its contributors.
52  * 4. Neither the name of The NetBSD Foundation nor the names of its
53  *    contributors may be used to endorse or promote products derived
54  *    from this software without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66  * POSSIBILITY OF SUCH DAMAGE.
67  */
68 
69 /*
70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71  *	The Regents of the University of California.  All rights reserved.
72  *
73  * Redistribution and use in source and binary forms, with or without
74  * modification, are permitted provided that the following conditions
75  * are met:
76  * 1. Redistributions of source code must retain the above copyright
77  *    notice, this list of conditions and the following disclaimer.
78  * 2. Redistributions in binary form must reproduce the above copyright
79  *    notice, this list of conditions and the following disclaimer in the
80  *    documentation and/or other materials provided with the distribution.
81  * 3. All advertising materials mentioning features or use of this software
82  *    must display the following acknowledgement:
83  *	This product includes software developed by the University of
84  *	California, Berkeley and its contributors.
85  * 4. Neither the name of the University nor the names of its contributors
86  *    may be used to endorse or promote products derived from this software
87  *    without specific prior written permission.
88  *
89  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99  * SUCH DAMAGE.
100  *
101  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
102  */
103 
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_tcp_compat_42.h"
107 #include "rnd.h"
108 
109 #include <sys/param.h>
110 #include <sys/proc.h>
111 #include <sys/systm.h>
112 #include <sys/malloc.h>
113 #include <sys/mbuf.h>
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/protosw.h>
117 #include <sys/errno.h>
118 #include <sys/kernel.h>
119 #include <sys/pool.h>
120 #if NRND > 0
121 #include <sys/md5.h>
122 #include <sys/rnd.h>
123 #endif
124 
125 #include <net/route.h>
126 #include <net/if.h>
127 
128 #include <netinet/in.h>
129 #include <netinet/in_systm.h>
130 #include <netinet/ip.h>
131 #include <netinet/in_pcb.h>
132 #include <netinet/ip_var.h>
133 #include <netinet/ip_icmp.h>
134 
135 #ifdef INET6
136 #ifndef INET
137 #include <netinet/in.h>
138 #endif
139 #include <netinet/ip6.h>
140 #include <netinet6/in6_pcb.h>
141 #include <netinet6/ip6_var.h>
142 #include <netinet6/in6_var.h>
143 #include <netinet6/ip6protosw.h>
144 #include <netinet/icmp6.h>
145 #endif
146 
147 #include <netinet/tcp.h>
148 #include <netinet/tcp_fsm.h>
149 #include <netinet/tcp_seq.h>
150 #include <netinet/tcp_timer.h>
151 #include <netinet/tcp_var.h>
152 #include <netinet/tcpip.h>
153 
154 #ifdef IPSEC
155 #include <netinet6/ipsec.h>
156 #endif /*IPSEC*/
157 
158 #ifdef INET6
159 struct in6pcb tcb6;
160 #endif
161 
162 /* patchable/settable parameters for tcp */
163 int 	tcp_mssdflt = TCP_MSS;
164 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
165 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
166 #if NRND > 0
167 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
168 #endif
169 int	tcp_do_sack = 1;	/* selective acknowledgement */
170 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
171 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
172 int	tcp_do_newreno = 0;	/* Use the New Reno algorithms */
173 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
174 int	tcp_init_win = 1;
175 int	tcp_mss_ifmtu = 0;
176 #ifdef TCP_COMPAT_42
177 int	tcp_compat_42 = 1;
178 #else
179 int	tcp_compat_42 = 0;
180 #endif
181 int	tcp_rst_ppslim = 100;	/* 100pps */
182 
183 /* tcb hash */
184 #ifndef TCBHASHSIZE
185 #define	TCBHASHSIZE	128
186 #endif
187 int	tcbhashsize = TCBHASHSIZE;
188 
189 /* syn hash parameters */
190 #define	TCP_SYN_HASH_SIZE	293
191 #define	TCP_SYN_BUCKET_SIZE	35
192 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
193 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
194 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
195 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
196 int	tcp_syn_cache_interval = 1;	/* runs timer twice a second */
197 
198 int	tcp_freeq __P((struct tcpcb *));
199 
200 #ifdef INET
201 void	tcp_mtudisc_callback __P((struct in_addr));
202 #endif
203 #ifdef INET6
204 void	tcp6_mtudisc_callback __P((struct in6_addr *));
205 #endif
206 
207 void	tcp_mtudisc __P((struct inpcb *, int));
208 #ifdef INET6
209 void	tcp6_mtudisc __P((struct in6pcb *, int));
210 #endif
211 
212 struct pool tcpcb_pool;
213 
214 /*
215  * Tcp initialization
216  */
217 void
218 tcp_init()
219 {
220 	int hlen;
221 
222 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
223 	    0, NULL, NULL, M_PCB);
224 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
225 #ifdef INET6
226 	tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
227 #endif
228 	LIST_INIT(&tcp_delacks);
229 
230 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
231 #ifdef INET6
232 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
233 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
234 #endif
235 	if (max_protohdr < hlen)
236 		max_protohdr = hlen;
237 	if (max_linkhdr + hlen > MHLEN)
238 		panic("tcp_init");
239 
240 #ifdef INET
241 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
242 #endif
243 #ifdef INET6
244 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
245 #endif
246 
247 	/* Initialize the compressed state engine. */
248 	syn_cache_init();
249 }
250 
251 /*
252  * Create template to be used to send tcp packets on a connection.
253  * Call after host entry created, allocates an mbuf and fills
254  * in a skeletal tcp/ip header, minimizing the amount of work
255  * necessary when the connection is used.
256  */
257 struct mbuf *
258 tcp_template(tp)
259 	struct tcpcb *tp;
260 {
261 	struct inpcb *inp = tp->t_inpcb;
262 #ifdef INET6
263 	struct in6pcb *in6p = tp->t_in6pcb;
264 #endif
265 	struct tcphdr *n;
266 	struct mbuf *m;
267 	int hlen;
268 
269 	switch (tp->t_family) {
270 	case AF_INET:
271 		hlen = sizeof(struct ip);
272 		if (inp)
273 			break;
274 #ifdef INET6
275 		if (in6p) {
276 			/* mapped addr case */
277 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
278 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
279 				break;
280 		}
281 #endif
282 		return NULL;	/*EINVAL*/
283 #ifdef INET6
284 	case AF_INET6:
285 		hlen = sizeof(struct ip6_hdr);
286 		if (in6p) {
287 			/* more sainty check? */
288 			break;
289 		}
290 		return NULL;	/*EINVAL*/
291 #endif
292 	default:
293 		hlen = 0;	/*pacify gcc*/
294 		return NULL;	/*EAFNOSUPPORT*/
295 	}
296 #ifdef DIAGNOSTIC
297 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
298 		panic("mclbytes too small for t_template");
299 #endif
300 	m = tp->t_template;
301 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
302 		;
303 	else {
304 		if (m)
305 			m_freem(m);
306 		m = tp->t_template = NULL;
307 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
308 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
309 			MCLGET(m, M_DONTWAIT);
310 			if ((m->m_flags & M_EXT) == 0) {
311 				m_free(m);
312 				m = NULL;
313 			}
314 		}
315 		if (m == NULL)
316 			return NULL;
317 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
318 	}
319 	bzero(mtod(m, caddr_t), m->m_len);
320 	switch (tp->t_family) {
321 	case AF_INET:
322 	    {
323 		struct ipovly *ipov;
324 		mtod(m, struct ip *)->ip_v = 4;
325 		ipov = mtod(m, struct ipovly *);
326 		ipov->ih_pr = IPPROTO_TCP;
327 		ipov->ih_len = htons(sizeof(struct tcphdr));
328 		if (inp) {
329 			ipov->ih_src = inp->inp_laddr;
330 			ipov->ih_dst = inp->inp_faddr;
331 		}
332 #ifdef INET6
333 		else if (in6p) {
334 			/* mapped addr case */
335 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
336 				sizeof(ipov->ih_src));
337 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
338 				sizeof(ipov->ih_dst));
339 		}
340 #endif
341 		break;
342 	    }
343 #ifdef INET6
344 	case AF_INET6:
345 	    {
346 		struct ip6_hdr *ip6;
347 		mtod(m, struct ip *)->ip_v = 6;
348 		ip6 = mtod(m, struct ip6_hdr *);
349 		ip6->ip6_nxt = IPPROTO_TCP;
350 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
351 		ip6->ip6_src = in6p->in6p_laddr;
352 		ip6->ip6_dst = in6p->in6p_faddr;
353 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
354 		if (ip6_auto_flowlabel) {
355 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
356 			ip6->ip6_flow |=
357 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
358 		}
359 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
360 		ip6->ip6_vfc |= IPV6_VERSION;
361 		break;
362 	    }
363 #endif
364 	}
365 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
366 	if (inp) {
367 		n->th_sport = inp->inp_lport;
368 		n->th_dport = inp->inp_fport;
369 	}
370 #ifdef INET6
371 	else if (in6p) {
372 		n->th_sport = in6p->in6p_lport;
373 		n->th_dport = in6p->in6p_fport;
374 	}
375 #endif
376 	n->th_seq = 0;
377 	n->th_ack = 0;
378 	n->th_x2 = 0;
379 	n->th_off = 5;
380 	n->th_flags = 0;
381 	n->th_win = 0;
382 	n->th_sum = 0;
383 	n->th_urp = 0;
384 	return (m);
385 }
386 
387 /*
388  * Send a single message to the TCP at address specified by
389  * the given TCP/IP header.  If m == 0, then we make a copy
390  * of the tcpiphdr at ti and send directly to the addressed host.
391  * This is used to force keep alive messages out using the TCP
392  * template for a connection tp->t_template.  If flags are given
393  * then we send a message back to the TCP which originated the
394  * segment ti, and discard the mbuf containing it and any other
395  * attached mbufs.
396  *
397  * In any case the ack and sequence number of the transmitted
398  * segment are as specified by the parameters.
399  */
400 int
401 tcp_respond(tp, template, m, th0, ack, seq, flags)
402 	struct tcpcb *tp;
403 	struct mbuf *template;
404 	struct mbuf *m;
405 	struct tcphdr *th0;
406 	tcp_seq ack, seq;
407 	int flags;
408 {
409 	struct route *ro;
410 	int error, tlen, win = 0;
411 	int hlen;
412 	struct ip *ip;
413 #ifdef INET6
414 	struct ip6_hdr *ip6;
415 #endif
416 	int family;	/* family on packet, not inpcb/in6pcb! */
417 	struct tcphdr *th;
418 
419 	if (tp != NULL && (flags & TH_RST) == 0) {
420 #ifdef DIAGNOSTIC
421 		if (tp->t_inpcb && tp->t_in6pcb)
422 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
423 #endif
424 #ifdef INET
425 		if (tp->t_inpcb)
426 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
427 #endif
428 #ifdef INET6
429 		if (tp->t_in6pcb)
430 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
431 #endif
432 	}
433 
434 	ip = NULL;
435 #ifdef INET6
436 	ip6 = NULL;
437 #endif
438 	if (m == 0) {
439 		if (!template)
440 			return EINVAL;
441 
442 		/* get family information from template */
443 		switch (mtod(template, struct ip *)->ip_v) {
444 		case 4:
445 			family = AF_INET;
446 			hlen = sizeof(struct ip);
447 			break;
448 #ifdef INET6
449 		case 6:
450 			family = AF_INET6;
451 			hlen = sizeof(struct ip6_hdr);
452 			break;
453 #endif
454 		default:
455 			return EAFNOSUPPORT;
456 		}
457 
458 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
459 		if (m) {
460 			MCLGET(m, M_DONTWAIT);
461 			if ((m->m_flags & M_EXT) == 0) {
462 				m_free(m);
463 				m = NULL;
464 			}
465 		}
466 		if (m == NULL)
467 			return (ENOBUFS);
468 
469 		if (tcp_compat_42)
470 			tlen = 1;
471 		else
472 			tlen = 0;
473 
474 		m->m_data += max_linkhdr;
475 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
476 			template->m_len);
477 		switch (family) {
478 		case AF_INET:
479 			ip = mtod(m, struct ip *);
480 			th = (struct tcphdr *)(ip + 1);
481 			break;
482 #ifdef INET6
483 		case AF_INET6:
484 			ip6 = mtod(m, struct ip6_hdr *);
485 			th = (struct tcphdr *)(ip6 + 1);
486 			break;
487 #endif
488 #if 0
489 		default:
490 			/* noone will visit here */
491 			m_freem(m);
492 			return EAFNOSUPPORT;
493 #endif
494 		}
495 		flags = TH_ACK;
496 	} else {
497 
498 		if ((m->m_flags & M_PKTHDR) == 0) {
499 #if 0
500 			printf("non PKTHDR to tcp_respond\n");
501 #endif
502 			m_freem(m);
503 			return EINVAL;
504 		}
505 #ifdef DIAGNOSTIC
506 		if (!th0)
507 			panic("th0 == NULL in tcp_respond");
508 #endif
509 
510 		/* get family information from m */
511 		switch (mtod(m, struct ip *)->ip_v) {
512 		case 4:
513 			family = AF_INET;
514 			hlen = sizeof(struct ip);
515 			ip = mtod(m, struct ip *);
516 			break;
517 #ifdef INET6
518 		case 6:
519 			family = AF_INET6;
520 			hlen = sizeof(struct ip6_hdr);
521 			ip6 = mtod(m, struct ip6_hdr *);
522 			break;
523 #endif
524 		default:
525 			m_freem(m);
526 			return EAFNOSUPPORT;
527 		}
528 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
529 			tlen = sizeof(*th0);
530 		else
531 			tlen = th0->th_off << 2;
532 
533 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
534 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
535 			m->m_len = hlen + tlen;
536 			m_freem(m->m_next);
537 			m->m_next = NULL;
538 		} else {
539 			struct mbuf *n;
540 
541 #ifdef DIAGNOSTIC
542 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
543 				m_freem(m);
544 				return EMSGSIZE;
545 			}
546 #endif
547 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
548 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
549 				MCLGET(n, M_DONTWAIT);
550 				if ((n->m_flags & M_EXT) == 0) {
551 					m_freem(n);
552 					n = NULL;
553 				}
554 			}
555 			if (!n) {
556 				m_freem(m);
557 				return ENOBUFS;
558 			}
559 
560 			n->m_data += max_linkhdr;
561 			n->m_len = hlen + tlen;
562 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
563 			m_copyback(n, hlen, tlen, (caddr_t)th0);
564 
565 			m_freem(m);
566 			m = n;
567 			n = NULL;
568 		}
569 
570 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
571 		switch (family) {
572 		case AF_INET:
573 			ip = mtod(m, struct ip *);
574 			th = (struct tcphdr *)(ip + 1);
575 			ip->ip_p = IPPROTO_TCP;
576 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
577 			ip->ip_p = IPPROTO_TCP;
578 			break;
579 #ifdef INET6
580 		case AF_INET6:
581 			ip6 = mtod(m, struct ip6_hdr *);
582 			th = (struct tcphdr *)(ip6 + 1);
583 			ip6->ip6_nxt = IPPROTO_TCP;
584 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
585 			ip6->ip6_nxt = IPPROTO_TCP;
586 			break;
587 #endif
588 #if 0
589 		default:
590 			/* noone will visit here */
591 			m_freem(m);
592 			return EAFNOSUPPORT;
593 #endif
594 		}
595 		xchg(th->th_dport, th->th_sport, u_int16_t);
596 #undef xchg
597 		tlen = 0;	/*be friendly with the following code*/
598 	}
599 	th->th_seq = htonl(seq);
600 	th->th_ack = htonl(ack);
601 	th->th_x2 = 0;
602 	if ((flags & TH_SYN) == 0) {
603 		if (tp)
604 			win >>= tp->rcv_scale;
605 		if (win > TCP_MAXWIN)
606 			win = TCP_MAXWIN;
607 		th->th_win = htons((u_int16_t)win);
608 		th->th_off = sizeof (struct tcphdr) >> 2;
609 		tlen += sizeof(*th);
610 	} else
611 		tlen += th->th_off << 2;
612 	m->m_len = hlen + tlen;
613 	m->m_pkthdr.len = hlen + tlen;
614 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
615 	th->th_flags = flags;
616 	th->th_urp = 0;
617 
618 	switch (family) {
619 #ifdef INET
620 	case AF_INET:
621 	    {
622 		struct ipovly *ipov = (struct ipovly *)ip;
623 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
624 		ipov->ih_len = htons((u_int16_t)tlen);
625 
626 		th->th_sum = 0;
627 		th->th_sum = in_cksum(m, hlen + tlen);
628 		ip->ip_len = hlen + tlen;	/*will be flipped on output*/
629 		ip->ip_ttl = ip_defttl;
630 		break;
631 	    }
632 #endif
633 #ifdef INET6
634 	case AF_INET6:
635 	    {
636 		th->th_sum = 0;
637 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
638 				tlen);
639 		ip6->ip6_plen = ntohs(tlen);
640 		if (tp && tp->t_in6pcb) {
641 			struct ifnet *oifp;
642 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
643 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
644 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
645 		} else
646 			ip6->ip6_hlim = ip6_defhlim;
647 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
648 		if (ip6_auto_flowlabel) {
649 			ip6->ip6_flow |=
650 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
651 		}
652 		break;
653 	    }
654 #endif
655 	}
656 
657 #ifdef IPSEC
658 	(void)ipsec_setsocket(m, NULL);
659 #endif /*IPSEC*/
660 
661 	if (tp != NULL && tp->t_inpcb != NULL) {
662 		ro = &tp->t_inpcb->inp_route;
663 #ifdef IPSEC
664 		if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
665 			m_freem(m);
666 			return ENOBUFS;
667 		}
668 #endif
669 #ifdef DIAGNOSTIC
670 		if (family != AF_INET)
671 			panic("tcp_respond: address family mismatch");
672 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
673 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
674 			    ntohl(ip->ip_dst.s_addr),
675 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
676 		}
677 #endif
678 	}
679 #ifdef INET6
680 	else if (tp != NULL && tp->t_in6pcb != NULL) {
681 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
682 #ifdef IPSEC
683 		if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
684 			m_freem(m);
685 			return ENOBUFS;
686 		}
687 #endif
688 #ifdef DIAGNOSTIC
689 		if (family == AF_INET) {
690 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
691 				panic("tcp_respond: not mapped addr");
692 			if (bcmp(&ip->ip_dst,
693 					&tp->t_in6pcb->in6p_faddr.s6_addr32[3],
694 					sizeof(ip->ip_dst)) != 0) {
695 				panic("tcp_respond: ip_dst != in6p_faddr");
696 			}
697 		} else if (family == AF_INET6) {
698 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
699 				panic("tcp_respond: ip6_dst != in6p_faddr");
700 		} else
701 			panic("tcp_respond: address family mismatch");
702 #endif
703 	}
704 #endif
705 	else
706 		ro = NULL;
707 
708 	switch (family) {
709 #ifdef INET
710 	case AF_INET:
711 		error = ip_output(m, NULL, ro,
712 		    (ip_mtudisc ? IP_MTUDISC : 0),
713 		    NULL);
714 		break;
715 #endif
716 #ifdef INET6
717 	case AF_INET6:
718 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
719 			NULL);
720 		break;
721 #endif
722 	default:
723 		error = EAFNOSUPPORT;
724 		break;
725 	}
726 
727 	return (error);
728 }
729 
730 /*
731  * Create a new TCP control block, making an
732  * empty reassembly queue and hooking it to the argument
733  * protocol control block.
734  */
735 struct tcpcb *
736 tcp_newtcpcb(family, aux)
737 	int family;	/* selects inpcb, or in6pcb */
738 	void *aux;
739 {
740 	struct tcpcb *tp;
741 
742 	switch (family) {
743 	case PF_INET:
744 		break;
745 #ifdef INET6
746 	case PF_INET6:
747 		break;
748 #endif
749 	default:
750 		return NULL;
751 	}
752 
753 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
754 	if (tp == NULL)
755 		return (NULL);
756 	bzero((caddr_t)tp, sizeof(struct tcpcb));
757 	LIST_INIT(&tp->segq);
758 	LIST_INIT(&tp->timeq);
759 	tp->t_family = family;		/* may be overridden later on */
760 	tp->t_peermss = tcp_mssdflt;
761 	tp->t_ourmss = tcp_mssdflt;
762 	tp->t_segsz = tcp_mssdflt;
763 	LIST_INIT(&tp->t_sc);
764 
765 	tp->t_flags = 0;
766 	if (tcp_do_rfc1323 && tcp_do_win_scale)
767 		tp->t_flags |= TF_REQ_SCALE;
768 	if (tcp_do_rfc1323 && tcp_do_timestamps)
769 		tp->t_flags |= TF_REQ_TSTMP;
770 	if (tcp_do_sack == 2)
771 		tp->t_flags |= TF_WILL_SACK;
772 	else if (tcp_do_sack == 1)
773 		tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
774 	tp->t_flags |= TF_CANT_TXSACK;
775 	switch (family) {
776 	case PF_INET:
777 		tp->t_inpcb = (struct inpcb *)aux;
778 		break;
779 #ifdef INET6
780 	case PF_INET6:
781 		tp->t_in6pcb = (struct in6pcb *)aux;
782 		break;
783 #endif
784 	}
785 	/*
786 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
787 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
788 	 * reasonable initial retransmit time.
789 	 */
790 	tp->t_srtt = TCPTV_SRTTBASE;
791 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
792 	tp->t_rttmin = TCPTV_MIN;
793 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
794 	    TCPTV_MIN, TCPTV_REXMTMAX);
795 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
796 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
797 	if (family == AF_INET) {
798 		struct inpcb *inp = (struct inpcb *)aux;
799 		inp->inp_ip.ip_ttl = ip_defttl;
800 		inp->inp_ppcb = (caddr_t)tp;
801 	}
802 #ifdef INET6
803 	else if (family == AF_INET6) {
804 		struct in6pcb *in6p = (struct in6pcb *)aux;
805 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
806 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
807 					       : NULL);
808 		in6p->in6p_ppcb = (caddr_t)tp;
809 	}
810 #endif
811 
812 	/*
813 	 * Initialize our timebase.  When we send timestamps, we take
814 	 * the delta from tcp_now -- this means each connection always
815 	 * gets a timebase of 0, which makes it, among other things,
816 	 * more difficult to determine how long a system has been up,
817 	 * and thus how many TCP sequence increments have occurred.
818 	 */
819 	tp->ts_timebase = tcp_now;
820 
821 	return (tp);
822 }
823 
824 /*
825  * Drop a TCP connection, reporting
826  * the specified error.  If connection is synchronized,
827  * then send a RST to peer.
828  */
829 struct tcpcb *
830 tcp_drop(tp, errno)
831 	struct tcpcb *tp;
832 	int errno;
833 {
834 	struct socket *so = NULL;
835 
836 #ifdef DIAGNOSTIC
837 	if (tp->t_inpcb && tp->t_in6pcb)
838 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
839 #endif
840 #ifdef INET
841 	if (tp->t_inpcb)
842 		so = tp->t_inpcb->inp_socket;
843 #endif
844 #ifdef INET6
845 	if (tp->t_in6pcb)
846 		so = tp->t_in6pcb->in6p_socket;
847 #endif
848 	if (!so)
849 		return NULL;
850 
851 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
852 		tp->t_state = TCPS_CLOSED;
853 		(void) tcp_output(tp);
854 		tcpstat.tcps_drops++;
855 	} else
856 		tcpstat.tcps_conndrops++;
857 	if (errno == ETIMEDOUT && tp->t_softerror)
858 		errno = tp->t_softerror;
859 	so->so_error = errno;
860 	return (tcp_close(tp));
861 }
862 
863 /*
864  * Close a TCP control block:
865  *	discard all space held by the tcp
866  *	discard internet protocol block
867  *	wake up any sleepers
868  */
869 struct tcpcb *
870 tcp_close(tp)
871 	struct tcpcb *tp;
872 {
873 	struct inpcb *inp;
874 #ifdef INET6
875 	struct in6pcb *in6p;
876 #endif
877 	struct socket *so;
878 #ifdef RTV_RTT
879 	struct rtentry *rt;
880 #endif
881 	struct route *ro;
882 
883 	inp = tp->t_inpcb;
884 #ifdef INET6
885 	in6p = tp->t_in6pcb;
886 #endif
887 	so = NULL;
888 	ro = NULL;
889 	if (inp) {
890 		so = inp->inp_socket;
891 		ro = &inp->inp_route;
892 	}
893 #ifdef INET6
894 	else if (in6p) {
895 		so = in6p->in6p_socket;
896 		ro = (struct route *)&in6p->in6p_route;
897 	}
898 #endif
899 
900 #ifdef RTV_RTT
901 	/*
902 	 * If we sent enough data to get some meaningful characteristics,
903 	 * save them in the routing entry.  'Enough' is arbitrarily
904 	 * defined as the sendpipesize (default 4K) * 16.  This would
905 	 * give us 16 rtt samples assuming we only get one sample per
906 	 * window (the usual case on a long haul net).  16 samples is
907 	 * enough for the srtt filter to converge to within 5% of the correct
908 	 * value; fewer samples and we could save a very bogus rtt.
909 	 *
910 	 * Don't update the default route's characteristics and don't
911 	 * update anything that the user "locked".
912 	 */
913 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
914 	    ro && (rt = ro->ro_rt) &&
915 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
916 		u_long i = 0;
917 
918 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
919 			i = tp->t_srtt *
920 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
921 			if (rt->rt_rmx.rmx_rtt && i)
922 				/*
923 				 * filter this update to half the old & half
924 				 * the new values, converting scale.
925 				 * See route.h and tcp_var.h for a
926 				 * description of the scaling constants.
927 				 */
928 				rt->rt_rmx.rmx_rtt =
929 				    (rt->rt_rmx.rmx_rtt + i) / 2;
930 			else
931 				rt->rt_rmx.rmx_rtt = i;
932 		}
933 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
934 			i = tp->t_rttvar *
935 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
936 			if (rt->rt_rmx.rmx_rttvar && i)
937 				rt->rt_rmx.rmx_rttvar =
938 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
939 			else
940 				rt->rt_rmx.rmx_rttvar = i;
941 		}
942 		/*
943 		 * update the pipelimit (ssthresh) if it has been updated
944 		 * already or if a pipesize was specified & the threshhold
945 		 * got below half the pipesize.  I.e., wait for bad news
946 		 * before we start updating, then update on both good
947 		 * and bad news.
948 		 */
949 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
950 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
951 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
952 			/*
953 			 * convert the limit from user data bytes to
954 			 * packets then to packet data bytes.
955 			 */
956 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
957 			if (i < 2)
958 				i = 2;
959 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
960 			if (rt->rt_rmx.rmx_ssthresh)
961 				rt->rt_rmx.rmx_ssthresh =
962 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
963 			else
964 				rt->rt_rmx.rmx_ssthresh = i;
965 		}
966 	}
967 #endif /* RTV_RTT */
968 	/* free the reassembly queue, if any */
969 	TCP_REASS_LOCK(tp);
970 	(void) tcp_freeq(tp);
971 	TCP_REASS_UNLOCK(tp);
972 
973 	TCP_CLEAR_DELACK(tp);
974 	syn_cache_cleanup(tp);
975 
976 	if (tp->t_template) {
977 		m_free(tp->t_template);
978 		tp->t_template = NULL;
979 	}
980 	pool_put(&tcpcb_pool, tp);
981 	if (inp) {
982 		inp->inp_ppcb = 0;
983 		soisdisconnected(so);
984 		in_pcbdetach(inp);
985 	}
986 #ifdef INET6
987 	else if (in6p) {
988 		in6p->in6p_ppcb = 0;
989 		soisdisconnected(so);
990 		in6_pcbdetach(in6p);
991 	}
992 #endif
993 	tcpstat.tcps_closed++;
994 	return ((struct tcpcb *)0);
995 }
996 
997 int
998 tcp_freeq(tp)
999 	struct tcpcb *tp;
1000 {
1001 	struct ipqent *qe;
1002 	int rv = 0;
1003 #ifdef TCPREASS_DEBUG
1004 	int i = 0;
1005 #endif
1006 
1007 	TCP_REASS_LOCK_CHECK(tp);
1008 
1009 	while ((qe = tp->segq.lh_first) != NULL) {
1010 #ifdef TCPREASS_DEBUG
1011 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1012 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1013 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1014 #endif
1015 		LIST_REMOVE(qe, ipqe_q);
1016 		LIST_REMOVE(qe, ipqe_timeq);
1017 		m_freem(qe->ipqe_m);
1018 		pool_put(&ipqent_pool, qe);
1019 		rv = 1;
1020 	}
1021 	return (rv);
1022 }
1023 
1024 /*
1025  * Protocol drain routine.  Called when memory is in short supply.
1026  */
1027 void
1028 tcp_drain()
1029 {
1030 	struct inpcb *inp;
1031 	struct tcpcb *tp;
1032 
1033 	/*
1034 	 * Free the sequence queue of all TCP connections.
1035 	 */
1036 	inp = tcbtable.inpt_queue.cqh_first;
1037 	if (inp)						/* XXX */
1038 	for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
1039 	    inp = inp->inp_queue.cqe_next) {
1040 		if ((tp = intotcpcb(inp)) != NULL) {
1041 			/*
1042 			 * We may be called from a device's interrupt
1043 			 * context.  If the tcpcb is already busy,
1044 			 * just bail out now.
1045 			 */
1046 			if (tcp_reass_lock_try(tp) == 0)
1047 				continue;
1048 			if (tcp_freeq(tp))
1049 				tcpstat.tcps_connsdrained++;
1050 			TCP_REASS_UNLOCK(tp);
1051 		}
1052 	}
1053 }
1054 
1055 /*
1056  * Notify a tcp user of an asynchronous error;
1057  * store error as soft error, but wake up user
1058  * (for now, won't do anything until can select for soft error).
1059  */
1060 void
1061 tcp_notify(inp, error)
1062 	struct inpcb *inp;
1063 	int error;
1064 {
1065 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1066 	struct socket *so = inp->inp_socket;
1067 
1068 	/*
1069 	 * Ignore some errors if we are hooked up.
1070 	 * If connection hasn't completed, has retransmitted several times,
1071 	 * and receives a second error, give up now.  This is better
1072 	 * than waiting a long time to establish a connection that
1073 	 * can never complete.
1074 	 */
1075 	if (tp->t_state == TCPS_ESTABLISHED &&
1076 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1077 	      error == EHOSTDOWN)) {
1078 		return;
1079 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1080 	    tp->t_rxtshift > 3 && tp->t_softerror)
1081 		so->so_error = error;
1082 	else
1083 		tp->t_softerror = error;
1084 	wakeup((caddr_t) &so->so_timeo);
1085 	sorwakeup(so);
1086 	sowwakeup(so);
1087 }
1088 
1089 #ifdef INET6
1090 void
1091 tcp6_notify(in6p, error)
1092 	struct in6pcb *in6p;
1093 	int error;
1094 {
1095 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1096 	struct socket *so = in6p->in6p_socket;
1097 
1098 	/*
1099 	 * Ignore some errors if we are hooked up.
1100 	 * If connection hasn't completed, has retransmitted several times,
1101 	 * and receives a second error, give up now.  This is better
1102 	 * than waiting a long time to establish a connection that
1103 	 * can never complete.
1104 	 */
1105 	if (tp->t_state == TCPS_ESTABLISHED &&
1106 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1107 	      error == EHOSTDOWN)) {
1108 		return;
1109 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1110 	    tp->t_rxtshift > 3 && tp->t_softerror)
1111 		so->so_error = error;
1112 	else
1113 		tp->t_softerror = error;
1114 	wakeup((caddr_t) &so->so_timeo);
1115 	sorwakeup(so);
1116 	sowwakeup(so);
1117 }
1118 #endif
1119 
1120 #ifdef INET6
1121 void
1122 tcp6_ctlinput(cmd, sa, d)
1123 	int cmd;
1124 	struct sockaddr *sa;
1125 	void *d;
1126 {
1127 	struct tcphdr th;
1128 	void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1129 	int nmatch;
1130 	struct ip6_hdr *ip6;
1131 	const struct sockaddr_in6 *sa6_src = NULL;
1132 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1133 	struct mbuf *m;
1134 	int off;
1135 
1136 	if (sa->sa_family != AF_INET6 ||
1137 	    sa->sa_len != sizeof(struct sockaddr_in6))
1138 		return;
1139 	if ((unsigned)cmd >= PRC_NCMDS)
1140 		return;
1141 	else if (cmd == PRC_QUENCH) {
1142 		/* XXX there's no PRC_QUENCH in IPv6 */
1143 		notify = tcp6_quench;
1144 	} else if (PRC_IS_REDIRECT(cmd))
1145 		notify = in6_rtchange, d = NULL;
1146 	else if (cmd == PRC_MSGSIZE)
1147 		; /* special code is present, see below */
1148 	else if (cmd == PRC_HOSTDEAD)
1149 		d = NULL;
1150 	else if (inet6ctlerrmap[cmd] == 0)
1151 		return;
1152 
1153 	/* if the parameter is from icmp6, decode it. */
1154 	if (d != NULL) {
1155 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1156 		m = ip6cp->ip6c_m;
1157 		ip6 = ip6cp->ip6c_ip6;
1158 		off = ip6cp->ip6c_off;
1159 		sa6_src = ip6cp->ip6c_src;
1160 	} else {
1161 		m = NULL;
1162 		ip6 = NULL;
1163 		sa6_src = &sa6_any;
1164 	}
1165 
1166 	if (ip6) {
1167 		/*
1168 		 * XXX: We assume that when ip6 is non NULL,
1169 		 * M and OFF are valid.
1170 		 */
1171 
1172 		/* check if we can safely examine src and dst ports */
1173 		if (m->m_pkthdr.len < off + sizeof(th))
1174 			return;
1175 
1176 		bzero(&th, sizeof(th));
1177 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
1178 
1179 		if (cmd == PRC_MSGSIZE) {
1180 			int valid = 0;
1181 
1182 			/*
1183 			 * Check to see if we have a valid TCP connection
1184 			 * corresponding to the address in the ICMPv6 message
1185 			 * payload.
1186 			 */
1187 			if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
1188 			    th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1189 			    th.th_sport, 0))
1190 				valid++;
1191 
1192 			/*
1193 			 * Depending on the value of "valid" and routing table
1194 			 * size (mtudisc_{hi,lo}wat), we will:
1195 			 * - recalcurate the new MTU and create the
1196 			 *   corresponding routing entry, or
1197 			 * - ignore the MTU change notification.
1198 			 */
1199 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1200 
1201 			/*
1202 			 * no need to call in6_pcbnotify, it should have been
1203 			 * called via callback if necessary
1204 			 */
1205 			return;
1206 		}
1207 
1208 		nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
1209 		    (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1210 		if (nmatch == 0 && syn_cache_count &&
1211 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1212 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
1213 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
1214 			syn_cache_unreach((struct sockaddr *)sa6_src,
1215 					  sa, &th);
1216 	} else {
1217 		(void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
1218 		    0, cmd, NULL, notify);
1219 	}
1220 }
1221 #endif
1222 
1223 #ifdef INET
1224 /* assumes that ip header and tcp header are contiguous on mbuf */
1225 void *
1226 tcp_ctlinput(cmd, sa, v)
1227 	int cmd;
1228 	struct sockaddr *sa;
1229 	void *v;
1230 {
1231 	struct ip *ip = v;
1232 	struct tcphdr *th;
1233 	struct icmp *icp;
1234 	extern int inetctlerrmap[];
1235 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1236 	int errno;
1237 	int nmatch;
1238 
1239 	if (sa->sa_family != AF_INET ||
1240 	    sa->sa_len != sizeof(struct sockaddr_in))
1241 		return NULL;
1242 	if ((unsigned)cmd >= PRC_NCMDS)
1243 		return NULL;
1244 	errno = inetctlerrmap[cmd];
1245 	if (cmd == PRC_QUENCH)
1246 		notify = tcp_quench;
1247 	else if (PRC_IS_REDIRECT(cmd))
1248 		notify = in_rtchange, ip = 0;
1249 	else if (cmd == PRC_MSGSIZE && ip_mtudisc && ip && ip->ip_v == 4) {
1250 		/*
1251 		 * Check to see if we have a valid TCP connection
1252 		 * corresponding to the address in the ICMP message
1253 		 * payload.
1254 		 */
1255 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1256 		if (in_pcblookup_connect(&tcbtable,
1257 					 ip->ip_dst, th->th_dport,
1258 					 ip->ip_src, th->th_sport) == NULL)
1259 			return NULL;
1260 
1261 		/*
1262 		 * Now that we've validated that we are actually communicating
1263 		 * with the host indicated in the ICMP message, locate the
1264 		 * ICMP header, recalculate the new MTU, and create the
1265 		 * corresponding routing entry.
1266 		 */
1267 		icp = (struct icmp *)((caddr_t)ip -
1268 		    offsetof(struct icmp, icmp_ip));
1269 		icmp_mtudisc(icp, ip->ip_dst);
1270 
1271 		return NULL;
1272 	} else if (cmd == PRC_HOSTDEAD)
1273 		ip = 0;
1274 	else if (errno == 0)
1275 		return NULL;
1276 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1277 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1278 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1279 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1280 		if (nmatch == 0 && syn_cache_count &&
1281 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
1282 		    inetctlerrmap[cmd] == ENETUNREACH ||
1283 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
1284 			struct sockaddr_in sin;
1285 			bzero(&sin, sizeof(sin));
1286 			sin.sin_len = sizeof(sin);
1287 			sin.sin_family = AF_INET;
1288 			sin.sin_port = th->th_sport;
1289 			sin.sin_addr = ip->ip_src;
1290 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1291 		}
1292 
1293 		/* XXX mapped address case */
1294 	} else
1295 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1296 		    notify);
1297 	return NULL;
1298 }
1299 
1300 /*
1301  * When a source quence is received, we are being notifed of congestion.
1302  * Close the congestion window down to the Loss Window (one segment).
1303  * We will gradually open it again as we proceed.
1304  */
1305 void
1306 tcp_quench(inp, errno)
1307 	struct inpcb *inp;
1308 	int errno;
1309 {
1310 	struct tcpcb *tp = intotcpcb(inp);
1311 
1312 	if (tp)
1313 		tp->snd_cwnd = tp->t_segsz;
1314 }
1315 #endif
1316 
1317 #ifdef INET6
1318 void
1319 tcp6_quench(in6p, errno)
1320 	struct in6pcb *in6p;
1321 	int errno;
1322 {
1323 	struct tcpcb *tp = in6totcpcb(in6p);
1324 
1325 	if (tp)
1326 		tp->snd_cwnd = tp->t_segsz;
1327 }
1328 #endif
1329 
1330 #ifdef INET
1331 /*
1332  * Path MTU Discovery handlers.
1333  */
1334 void
1335 tcp_mtudisc_callback(faddr)
1336 	struct in_addr faddr;
1337 {
1338 
1339 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1340 }
1341 
1342 /*
1343  * On receipt of path MTU corrections, flush old route and replace it
1344  * with the new one.  Retransmit all unacknowledged packets, to ensure
1345  * that all packets will be received.
1346  */
1347 void
1348 tcp_mtudisc(inp, errno)
1349 	struct inpcb *inp;
1350 	int errno;
1351 {
1352 	struct tcpcb *tp = intotcpcb(inp);
1353 	struct rtentry *rt = in_pcbrtentry(inp);
1354 
1355 	if (tp != 0) {
1356 		if (rt != 0) {
1357 			/*
1358 			 * If this was not a host route, remove and realloc.
1359 			 */
1360 			if ((rt->rt_flags & RTF_HOST) == 0) {
1361 				in_rtchange(inp, errno);
1362 				if ((rt = in_pcbrtentry(inp)) == 0)
1363 					return;
1364 			}
1365 
1366 			/*
1367 			 * Slow start out of the error condition.  We
1368 			 * use the MTU because we know it's smaller
1369 			 * than the previously transmitted segment.
1370 			 *
1371 			 * Note: This is more conservative than the
1372 			 * suggestion in draft-floyd-incr-init-win-03.
1373 			 */
1374 			if (rt->rt_rmx.rmx_mtu != 0)
1375 				tp->snd_cwnd =
1376 				    TCP_INITIAL_WINDOW(tcp_init_win,
1377 				    rt->rt_rmx.rmx_mtu);
1378 		}
1379 
1380 		/*
1381 		 * Resend unacknowledged packets.
1382 		 */
1383 		tp->snd_nxt = tp->snd_una;
1384 		tcp_output(tp);
1385 	}
1386 }
1387 #endif
1388 
1389 #ifdef INET6
1390 /*
1391  * Path MTU Discovery handlers.
1392  */
1393 void
1394 tcp6_mtudisc_callback(faddr)
1395 	struct in6_addr *faddr;
1396 {
1397 	struct sockaddr_in6 sin6;
1398 
1399 	bzero(&sin6, sizeof(sin6));
1400 	sin6.sin6_family = AF_INET6;
1401 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1402 	sin6.sin6_addr = *faddr;
1403 	(void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
1404 	    (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1405 }
1406 
1407 void
1408 tcp6_mtudisc(in6p, errno)
1409 	struct in6pcb *in6p;
1410 	int errno;
1411 {
1412 	struct tcpcb *tp = in6totcpcb(in6p);
1413 	struct rtentry *rt = in6_pcbrtentry(in6p);
1414 
1415 	if (tp != 0) {
1416 		if (rt != 0) {
1417 			/*
1418 			 * If this was not a host route, remove and realloc.
1419 			 */
1420 			if ((rt->rt_flags & RTF_HOST) == 0) {
1421 				in6_rtchange(in6p, errno);
1422 				if ((rt = in6_pcbrtentry(in6p)) == 0)
1423 					return;
1424 			}
1425 
1426 			/*
1427 			 * Slow start out of the error condition.  We
1428 			 * use the MTU because we know it's smaller
1429 			 * than the previously transmitted segment.
1430 			 *
1431 			 * Note: This is more conservative than the
1432 			 * suggestion in draft-floyd-incr-init-win-03.
1433 			 */
1434 			if (rt->rt_rmx.rmx_mtu != 0)
1435 				tp->snd_cwnd =
1436 				    TCP_INITIAL_WINDOW(tcp_init_win,
1437 				    rt->rt_rmx.rmx_mtu);
1438 		}
1439 
1440 		/*
1441 		 * Resend unacknowledged packets.
1442 		 */
1443 		tp->snd_nxt = tp->snd_una;
1444 		tcp_output(tp);
1445 	}
1446 }
1447 #endif /* INET6 */
1448 
1449 /*
1450  * Compute the MSS to advertise to the peer.  Called only during
1451  * the 3-way handshake.  If we are the server (peer initiated
1452  * connection), we are called with a pointer to the interface
1453  * on which the SYN packet arrived.  If we are the client (we
1454  * initiated connection), we are called with a pointer to the
1455  * interface out which this connection should go.
1456  *
1457  * NOTE: Do not subtract IP option/extension header size nor IPsec
1458  * header size from MSS advertisement.  MSS option must hold the maximum
1459  * segment size we can accept, so it must always be:
1460  *	 max(if mtu) - ip header - tcp header
1461  */
1462 u_long
1463 tcp_mss_to_advertise(ifp, af)
1464 	const struct ifnet *ifp;
1465 	int af;
1466 {
1467 	extern u_long in_maxmtu;
1468 	u_long mss = 0;
1469 	u_long hdrsiz;
1470 
1471 	/*
1472 	 * In order to avoid defeating path MTU discovery on the peer,
1473 	 * we advertise the max MTU of all attached networks as our MSS,
1474 	 * per RFC 1191, section 3.1.
1475 	 *
1476 	 * We provide the option to advertise just the MTU of
1477 	 * the interface on which we hope this connection will
1478 	 * be receiving.  If we are responding to a SYN, we
1479 	 * will have a pretty good idea about this, but when
1480 	 * initiating a connection there is a bit more doubt.
1481 	 *
1482 	 * We also need to ensure that loopback has a large enough
1483 	 * MSS, as the loopback MTU is never included in in_maxmtu.
1484 	 */
1485 
1486 	if (ifp != NULL)
1487 		mss = ifp->if_mtu;
1488 
1489 	if (tcp_mss_ifmtu == 0)
1490 		mss = max(in_maxmtu, mss);
1491 
1492 	switch (af) {
1493 	case AF_INET:
1494 		hdrsiz = sizeof(struct ip);
1495 		break;
1496 #ifdef INET6
1497 	case AF_INET6:
1498 		hdrsiz = sizeof(struct ip6_hdr);
1499 		break;
1500 #endif
1501 	default:
1502 		hdrsiz = 0;
1503 		break;
1504 	}
1505 	hdrsiz += sizeof(struct tcphdr);
1506 	if (mss > hdrsiz)
1507 		mss -= hdrsiz;
1508 
1509 	mss = max(tcp_mssdflt, mss);
1510 	return (mss);
1511 }
1512 
1513 /*
1514  * Set connection variables based on the peer's advertised MSS.
1515  * We are passed the TCPCB for the actual connection.  If we
1516  * are the server, we are called by the compressed state engine
1517  * when the 3-way handshake is complete.  If we are the client,
1518  * we are called when we recieve the SYN,ACK from the server.
1519  *
1520  * NOTE: Our advertised MSS value must be initialized in the TCPCB
1521  * before this routine is called!
1522  */
1523 void
1524 tcp_mss_from_peer(tp, offer)
1525 	struct tcpcb *tp;
1526 	int offer;
1527 {
1528 	struct socket *so;
1529 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1530 	struct rtentry *rt;
1531 #endif
1532 	u_long bufsize;
1533 	int mss;
1534 
1535 #ifdef DIAGNOSTIC
1536 	if (tp->t_inpcb && tp->t_in6pcb)
1537 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1538 #endif
1539 	so = NULL;
1540 	rt = NULL;
1541 #ifdef INET
1542 	if (tp->t_inpcb) {
1543 		so = tp->t_inpcb->inp_socket;
1544 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1545 		rt = in_pcbrtentry(tp->t_inpcb);
1546 #endif
1547 	}
1548 #endif
1549 #ifdef INET6
1550 	if (tp->t_in6pcb) {
1551 		so = tp->t_in6pcb->in6p_socket;
1552 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1553 		rt = in6_pcbrtentry(tp->t_in6pcb);
1554 #endif
1555 	}
1556 #endif
1557 
1558 	/*
1559 	 * As per RFC1122, use the default MSS value, unless they
1560 	 * sent us an offer.  Do not accept offers less than 32 bytes.
1561 	 */
1562 	mss = tcp_mssdflt;
1563 	if (offer)
1564 		mss = offer;
1565 	mss = max(mss, 32);		/* sanity */
1566 	tp->t_peermss = mss;
1567 	mss -= tcp_optlen(tp);
1568 #ifdef INET
1569 	if (tp->t_inpcb)
1570 		mss -= ip_optlen(tp->t_inpcb);
1571 #endif
1572 #ifdef INET6
1573 	if (tp->t_in6pcb)
1574 		mss -= ip6_optlen(tp->t_in6pcb);
1575 #endif
1576 
1577 	/*
1578 	 * If there's a pipesize, change the socket buffer to that size.
1579 	 * Make the socket buffer an integral number of MSS units.  If
1580 	 * the MSS is larger than the socket buffer, artificially decrease
1581 	 * the MSS.
1582 	 */
1583 #ifdef RTV_SPIPE
1584 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1585 		bufsize = rt->rt_rmx.rmx_sendpipe;
1586 	else
1587 #endif
1588 		bufsize = so->so_snd.sb_hiwat;
1589 	if (bufsize < mss)
1590 		mss = bufsize;
1591 	else {
1592 		bufsize = roundup(bufsize, mss);
1593 		if (bufsize > sb_max)
1594 			bufsize = sb_max;
1595 		(void) sbreserve(&so->so_snd, bufsize);
1596 	}
1597 	tp->t_segsz = mss;
1598 
1599 #ifdef RTV_SSTHRESH
1600 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1601 		/*
1602 		 * There's some sort of gateway or interface buffer
1603 		 * limit on the path.  Use this to set the slow
1604 		 * start threshold, but set the threshold to no less
1605 		 * than 2 * MSS.
1606 		 */
1607 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1608 	}
1609 #endif
1610 }
1611 
1612 /*
1613  * Processing necessary when a TCP connection is established.
1614  */
1615 void
1616 tcp_established(tp)
1617 	struct tcpcb *tp;
1618 {
1619 	struct socket *so;
1620 #ifdef RTV_RPIPE
1621 	struct rtentry *rt;
1622 #endif
1623 	u_long bufsize;
1624 
1625 #ifdef DIAGNOSTIC
1626 	if (tp->t_inpcb && tp->t_in6pcb)
1627 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
1628 #endif
1629 	so = NULL;
1630 	rt = NULL;
1631 #ifdef INET
1632 	if (tp->t_inpcb) {
1633 		so = tp->t_inpcb->inp_socket;
1634 #if defined(RTV_RPIPE)
1635 		rt = in_pcbrtentry(tp->t_inpcb);
1636 #endif
1637 	}
1638 #endif
1639 #ifdef INET6
1640 	if (tp->t_in6pcb) {
1641 		so = tp->t_in6pcb->in6p_socket;
1642 #if defined(RTV_RPIPE)
1643 		rt = in6_pcbrtentry(tp->t_in6pcb);
1644 #endif
1645 	}
1646 #endif
1647 
1648 	tp->t_state = TCPS_ESTABLISHED;
1649 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1650 
1651 #ifdef RTV_RPIPE
1652 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1653 		bufsize = rt->rt_rmx.rmx_recvpipe;
1654 	else
1655 #endif
1656 		bufsize = so->so_rcv.sb_hiwat;
1657 	if (bufsize > tp->t_ourmss) {
1658 		bufsize = roundup(bufsize, tp->t_ourmss);
1659 		if (bufsize > sb_max)
1660 			bufsize = sb_max;
1661 		(void) sbreserve(&so->so_rcv, bufsize);
1662 	}
1663 }
1664 
1665 /*
1666  * Check if there's an initial rtt or rttvar.  Convert from the
1667  * route-table units to scaled multiples of the slow timeout timer.
1668  * Called only during the 3-way handshake.
1669  */
1670 void
1671 tcp_rmx_rtt(tp)
1672 	struct tcpcb *tp;
1673 {
1674 #ifdef RTV_RTT
1675 	struct rtentry *rt = NULL;
1676 	int rtt;
1677 
1678 #ifdef DIAGNOSTIC
1679 	if (tp->t_inpcb && tp->t_in6pcb)
1680 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1681 #endif
1682 #ifdef INET
1683 	if (tp->t_inpcb)
1684 		rt = in_pcbrtentry(tp->t_inpcb);
1685 #endif
1686 #ifdef INET6
1687 	if (tp->t_in6pcb)
1688 		rt = in6_pcbrtentry(tp->t_in6pcb);
1689 #endif
1690 	if (rt == NULL)
1691 		return;
1692 
1693 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1694 		/*
1695 		 * XXX The lock bit for MTU indicates that the value
1696 		 * is also a minimum value; this is subject to time.
1697 		 */
1698 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
1699 			TCPT_RANGESET(tp->t_rttmin,
1700 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1701 			    TCPTV_MIN, TCPTV_REXMTMAX);
1702 		tp->t_srtt = rtt /
1703 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1704 		if (rt->rt_rmx.rmx_rttvar) {
1705 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1706 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
1707 				(TCP_RTTVAR_SHIFT + 2));
1708 		} else {
1709 			/* Default variation is +- 1 rtt */
1710 			tp->t_rttvar =
1711 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1712 		}
1713 		TCPT_RANGESET(tp->t_rxtcur,
1714 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1715 		    tp->t_rttmin, TCPTV_REXMTMAX);
1716 	}
1717 #endif
1718 }
1719 
1720 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
1721 #if NRND > 0
1722 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
1723 #endif
1724 
1725 /*
1726  * Get a new sequence value given a tcp control block
1727  */
1728 tcp_seq
1729 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
1730 {
1731 
1732 #ifdef INET
1733 	if (tp->t_inpcb != NULL) {
1734 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
1735 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
1736 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
1737 		    addin));
1738 	}
1739 #endif
1740 #ifdef INET6
1741 	if (tp->t_in6pcb != NULL) {
1742 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
1743 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
1744 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
1745 		    addin));
1746 	}
1747 #endif
1748 	/* Not possible. */
1749 	panic("tcp_new_iss");
1750 }
1751 
1752 /*
1753  * This routine actually generates a new TCP initial sequence number.
1754  */
1755 tcp_seq
1756 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
1757     size_t addrsz, tcp_seq addin)
1758 {
1759 	tcp_seq tcp_iss;
1760 
1761 #if NRND > 0
1762 	static int beenhere;
1763 
1764 	/*
1765 	 * If we haven't been here before, initialize our cryptographic
1766 	 * hash secret.
1767 	 */
1768 	if (beenhere == 0) {
1769 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
1770 		    RND_EXTRACT_ANY);
1771 		beenhere = 1;
1772 	}
1773 
1774 	if (tcp_do_rfc1948) {
1775 		MD5_CTX ctx;
1776 		u_int8_t hash[16];	/* XXX MD5 knowledge */
1777 
1778 		/*
1779 		 * Compute the base value of the ISS.  It is a hash
1780 		 * of (saddr, sport, daddr, dport, secret).
1781 		 */
1782 		MD5Init(&ctx);
1783 
1784 		MD5Update(&ctx, (u_char *) laddr, addrsz);
1785 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
1786 
1787 		MD5Update(&ctx, (u_char *) faddr, addrsz);
1788 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
1789 
1790 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
1791 
1792 		MD5Final(hash, &ctx);
1793 
1794 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
1795 
1796 		/*
1797 		 * Now increment our "timer", and add it in to
1798 		 * the computed value.
1799 		 *
1800 		 * XXX Use `addin'?
1801 		 * XXX TCP_ISSINCR too large to use?
1802 		 */
1803 		tcp_iss_seq += TCP_ISSINCR;
1804 #ifdef TCPISS_DEBUG
1805 		printf("ISS hash 0x%08x, ", tcp_iss);
1806 #endif
1807 		tcp_iss += tcp_iss_seq + addin;
1808 #ifdef TCPISS_DEBUG
1809 		printf("new ISS 0x%08x\n", tcp_iss);
1810 #endif
1811 	} else
1812 #endif /* NRND > 0 */
1813 	{
1814 		/*
1815 		 * Randomize.
1816 		 */
1817 #if NRND > 0
1818 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
1819 #else
1820 		tcp_iss = random();
1821 #endif
1822 
1823 		/*
1824 		 * If we were asked to add some amount to a known value,
1825 		 * we will take a random value obtained above, mask off
1826 		 * the upper bits, and add in the known value.  We also
1827 		 * add in a constant to ensure that we are at least a
1828 		 * certain distance from the original value.
1829 		 *
1830 		 * This is used when an old connection is in timed wait
1831 		 * and we have a new one coming in, for instance.
1832 		 */
1833 		if (addin != 0) {
1834 #ifdef TCPISS_DEBUG
1835 			printf("Random %08x, ", tcp_iss);
1836 #endif
1837 			tcp_iss &= TCP_ISS_RANDOM_MASK;
1838 			tcp_iss += addin + TCP_ISSINCR;
1839 #ifdef TCPISS_DEBUG
1840 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
1841 #endif
1842 		} else {
1843 			tcp_iss &= TCP_ISS_RANDOM_MASK;
1844 			tcp_iss += tcp_iss_seq;
1845 			tcp_iss_seq += TCP_ISSINCR;
1846 #ifdef TCPISS_DEBUG
1847 			printf("ISS %08x\n", tcp_iss);
1848 #endif
1849 		}
1850 	}
1851 
1852 	if (tcp_compat_42) {
1853 		/*
1854 		 * Limit it to the positive range for really old TCP
1855 		 * implementations.
1856 		 */
1857 		if (tcp_iss >= 0x80000000)
1858 			tcp_iss &= 0x7fffffff;		/* XXX */
1859 	}
1860 
1861 	return (tcp_iss);
1862 }
1863 
1864 #ifdef IPSEC
1865 /* compute ESP/AH header size for TCP, including outer IP header. */
1866 size_t
1867 ipsec4_hdrsiz_tcp(tp)
1868 	struct tcpcb *tp;
1869 {
1870 	struct inpcb *inp;
1871 	size_t hdrsiz;
1872 
1873 	/* XXX mapped addr case (tp->t_in6pcb) */
1874 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
1875 		return 0;
1876 	switch (tp->t_family) {
1877 	case AF_INET:
1878 		/* XXX: should use currect direction. */
1879 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
1880 		break;
1881 	default:
1882 		hdrsiz = 0;
1883 		break;
1884 	}
1885 
1886 	return hdrsiz;
1887 }
1888 
1889 #ifdef INET6
1890 size_t
1891 ipsec6_hdrsiz_tcp(tp)
1892 	struct tcpcb *tp;
1893 {
1894 	struct in6pcb *in6p;
1895 	size_t hdrsiz;
1896 
1897 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
1898 		return 0;
1899 	switch (tp->t_family) {
1900 	case AF_INET6:
1901 		/* XXX: should use currect direction. */
1902 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
1903 		break;
1904 	case AF_INET:
1905 		/* mapped address case - tricky */
1906 	default:
1907 		hdrsiz = 0;
1908 		break;
1909 	}
1910 
1911 	return hdrsiz;
1912 }
1913 #endif
1914 #endif /*IPSEC*/
1915 
1916 /*
1917  * Determine the length of the TCP options for this connection.
1918  *
1919  * XXX:  What do we do for SACK, when we add that?  Just reserve
1920  *       all of the space?  Otherwise we can't exactly be incrementing
1921  *       cwnd by an amount that varies depending on the amount we last
1922  *       had to SACK!
1923  */
1924 
1925 u_int
1926 tcp_optlen(tp)
1927 	struct tcpcb *tp;
1928 {
1929 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1930 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1931 		return TCPOLEN_TSTAMP_APPA;
1932 	else
1933 		return 0;
1934 }
1935