xref: /netbsd-src/sys/netinet/tcp_input.c (revision f983e71d70cfccf7b3de601eb4d998b2d886ede4)
1 /*	$NetBSD: tcp_input.c,v 1.285 2008/04/23 06:09:05 thorpej Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
74  * All rights reserved.
75  *
76  * This code is derived from software contributed to The NetBSD Foundation
77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78  * Facility, NASA Ames Research Center.
79  * This code is derived from software contributed to The NetBSD Foundation
80  * by Charles M. Hannum.
81  * This code is derived from software contributed to The NetBSD Foundation
82  * by Rui Paulo.
83  *
84  * Redistribution and use in source and binary forms, with or without
85  * modification, are permitted provided that the following conditions
86  * are met:
87  * 1. Redistributions of source code must retain the above copyright
88  *    notice, this list of conditions and the following disclaimer.
89  * 2. Redistributions in binary form must reproduce the above copyright
90  *    notice, this list of conditions and the following disclaimer in the
91  *    documentation and/or other materials provided with the distribution.
92  * 3. All advertising materials mentioning features or use of this software
93  *    must display the following acknowledgement:
94  *	This product includes software developed by the NetBSD
95  *	Foundation, Inc. and its contributors.
96  * 4. Neither the name of The NetBSD Foundation nor the names of its
97  *    contributors may be used to endorse or promote products derived
98  *    from this software without specific prior written permission.
99  *
100  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
101  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
102  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
103  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
104  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
105  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
106  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
107  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
108  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
109  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
110  * POSSIBILITY OF SUCH DAMAGE.
111  */
112 
113 /*
114  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
115  *	The Regents of the University of California.  All rights reserved.
116  *
117  * Redistribution and use in source and binary forms, with or without
118  * modification, are permitted provided that the following conditions
119  * are met:
120  * 1. Redistributions of source code must retain the above copyright
121  *    notice, this list of conditions and the following disclaimer.
122  * 2. Redistributions in binary form must reproduce the above copyright
123  *    notice, this list of conditions and the following disclaimer in the
124  *    documentation and/or other materials provided with the distribution.
125  * 3. Neither the name of the University nor the names of its contributors
126  *    may be used to endorse or promote products derived from this software
127  *    without specific prior written permission.
128  *
129  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
130  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
131  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
132  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
133  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
134  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
135  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
136  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
137  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
138  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
139  * SUCH DAMAGE.
140  *
141  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
142  */
143 
144 /*
145  *	TODO list for SYN cache stuff:
146  *
147  *	Find room for a "state" field, which is needed to keep a
148  *	compressed state for TIME_WAIT TCBs.  It's been noted already
149  *	that this is fairly important for very high-volume web and
150  *	mail servers, which use a large number of short-lived
151  *	connections.
152  */
153 
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.285 2008/04/23 06:09:05 thorpej Exp $");
156 
157 #include "opt_inet.h"
158 #include "opt_ipsec.h"
159 #include "opt_inet_csum.h"
160 #include "opt_tcp_debug.h"
161 
162 #include <sys/param.h>
163 #include <sys/systm.h>
164 #include <sys/malloc.h>
165 #include <sys/mbuf.h>
166 #include <sys/protosw.h>
167 #include <sys/socket.h>
168 #include <sys/socketvar.h>
169 #include <sys/errno.h>
170 #include <sys/syslog.h>
171 #include <sys/pool.h>
172 #include <sys/domain.h>
173 #include <sys/kernel.h>
174 #ifdef TCP_SIGNATURE
175 #include <sys/md5.h>
176 #endif
177 #include <sys/lwp.h> /* for lwp0 */
178 
179 #include <net/if.h>
180 #include <net/route.h>
181 #include <net/if_types.h>
182 
183 #include <netinet/in.h>
184 #include <netinet/in_systm.h>
185 #include <netinet/ip.h>
186 #include <netinet/in_pcb.h>
187 #include <netinet/in_var.h>
188 #include <netinet/ip_var.h>
189 #include <netinet/in_offload.h>
190 
191 #ifdef INET6
192 #ifndef INET
193 #include <netinet/in.h>
194 #endif
195 #include <netinet/ip6.h>
196 #include <netinet6/ip6_var.h>
197 #include <netinet6/in6_pcb.h>
198 #include <netinet6/ip6_var.h>
199 #include <netinet6/in6_var.h>
200 #include <netinet/icmp6.h>
201 #include <netinet6/nd6.h>
202 #ifdef TCP_SIGNATURE
203 #include <netinet6/scope6_var.h>
204 #endif
205 #endif
206 
207 #ifndef INET6
208 /* always need ip6.h for IP6_EXTHDR_GET */
209 #include <netinet/ip6.h>
210 #endif
211 
212 #include <netinet/tcp.h>
213 #include <netinet/tcp_fsm.h>
214 #include <netinet/tcp_seq.h>
215 #include <netinet/tcp_timer.h>
216 #include <netinet/tcp_var.h>
217 #include <netinet/tcp_private.h>
218 #include <netinet/tcpip.h>
219 #include <netinet/tcp_congctl.h>
220 #include <netinet/tcp_debug.h>
221 
222 #include <machine/stdarg.h>
223 
224 #ifdef IPSEC
225 #include <netinet6/ipsec.h>
226 #include <netinet6/ipsec_private.h>
227 #include <netkey/key.h>
228 #endif /*IPSEC*/
229 #ifdef INET6
230 #include "faith.h"
231 #if defined(NFAITH) && NFAITH > 0
232 #include <net/if_faith.h>
233 #endif
234 #endif	/* IPSEC */
235 
236 #ifdef FAST_IPSEC
237 #include <netipsec/ipsec.h>
238 #include <netipsec/ipsec_var.h>
239 #include <netipsec/ipsec_private.h>
240 #include <netipsec/key.h>
241 #ifdef INET6
242 #include <netipsec/ipsec6.h>
243 #endif
244 #endif	/* FAST_IPSEC*/
245 
246 int	tcprexmtthresh = 3;
247 int	tcp_log_refused;
248 
249 int	tcp_do_autorcvbuf = 0;
250 int	tcp_autorcvbuf_inc = 16 * 1024;
251 int	tcp_autorcvbuf_max = 256 * 1024;
252 
253 static int tcp_rst_ppslim_count = 0;
254 static struct timeval tcp_rst_ppslim_last;
255 static int tcp_ackdrop_ppslim_count = 0;
256 static struct timeval tcp_ackdrop_ppslim_last;
257 
258 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
259 
260 /* for modulo comparisons of timestamps */
261 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
262 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
263 
264 /*
265  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
266  */
267 #ifdef INET6
268 static inline void
269 nd6_hint(struct tcpcb *tp)
270 {
271 	struct rtentry *rt;
272 
273 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
274 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
275 		nd6_nud_hint(rt, NULL, 0);
276 }
277 #else
278 static inline void
279 nd6_hint(struct tcpcb *tp)
280 {
281 }
282 #endif
283 
284 /*
285  * Compute ACK transmission behavior.  Delay the ACK unless
286  * we have already delayed an ACK (must send an ACK every two segments).
287  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
288  * option is enabled.
289  */
290 static void
291 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
292 {
293 
294 	if (tp->t_flags & TF_DELACK ||
295 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
296 		tp->t_flags |= TF_ACKNOW;
297 	else
298 		TCP_SET_DELACK(tp);
299 }
300 
301 static void
302 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
303 {
304 
305 	/*
306 	 * If we had a pending ICMP message that refers to data that have
307 	 * just been acknowledged, disregard the recorded ICMP message.
308 	 */
309 	if ((tp->t_flags & TF_PMTUD_PEND) &&
310 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
311 		tp->t_flags &= ~TF_PMTUD_PEND;
312 
313 	/*
314 	 * Keep track of the largest chunk of data
315 	 * acknowledged since last PMTU update
316 	 */
317 	if (tp->t_pmtud_mss_acked < acked)
318 		tp->t_pmtud_mss_acked = acked;
319 }
320 
321 /*
322  * Convert TCP protocol fields to host order for easier processing.
323  */
324 static void
325 tcp_fields_to_host(struct tcphdr *th)
326 {
327 
328 	NTOHL(th->th_seq);
329 	NTOHL(th->th_ack);
330 	NTOHS(th->th_win);
331 	NTOHS(th->th_urp);
332 }
333 
334 /*
335  * ... and reverse the above.
336  */
337 static void
338 tcp_fields_to_net(struct tcphdr *th)
339 {
340 
341 	HTONL(th->th_seq);
342 	HTONL(th->th_ack);
343 	HTONS(th->th_win);
344 	HTONS(th->th_urp);
345 }
346 
347 #ifdef TCP_CSUM_COUNTERS
348 #include <sys/device.h>
349 
350 #if defined(INET)
351 extern struct evcnt tcp_hwcsum_ok;
352 extern struct evcnt tcp_hwcsum_bad;
353 extern struct evcnt tcp_hwcsum_data;
354 extern struct evcnt tcp_swcsum;
355 #endif /* defined(INET) */
356 #if defined(INET6)
357 extern struct evcnt tcp6_hwcsum_ok;
358 extern struct evcnt tcp6_hwcsum_bad;
359 extern struct evcnt tcp6_hwcsum_data;
360 extern struct evcnt tcp6_swcsum;
361 #endif /* defined(INET6) */
362 
363 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
364 
365 #else
366 
367 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
368 
369 #endif /* TCP_CSUM_COUNTERS */
370 
371 #ifdef TCP_REASS_COUNTERS
372 #include <sys/device.h>
373 
374 extern struct evcnt tcp_reass_;
375 extern struct evcnt tcp_reass_empty;
376 extern struct evcnt tcp_reass_iteration[8];
377 extern struct evcnt tcp_reass_prependfirst;
378 extern struct evcnt tcp_reass_prepend;
379 extern struct evcnt tcp_reass_insert;
380 extern struct evcnt tcp_reass_inserttail;
381 extern struct evcnt tcp_reass_append;
382 extern struct evcnt tcp_reass_appendtail;
383 extern struct evcnt tcp_reass_overlaptail;
384 extern struct evcnt tcp_reass_overlapfront;
385 extern struct evcnt tcp_reass_segdup;
386 extern struct evcnt tcp_reass_fragdup;
387 
388 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
389 
390 #else
391 
392 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
393 
394 #endif /* TCP_REASS_COUNTERS */
395 
396 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
397     int *);
398 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
399     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
400 
401 #ifdef INET
402 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
403 #endif
404 #ifdef INET6
405 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
406 #endif
407 
408 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
409 
410 #if defined(MBUFTRACE)
411 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
412 #endif /* defined(MBUFTRACE) */
413 
414 static POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
415     NULL, IPL_VM);
416 
417 struct ipqent *
418 tcpipqent_alloc(void)
419 {
420 	struct ipqent *ipqe;
421 	int s;
422 
423 	s = splvm();
424 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
425 	splx(s);
426 
427 	return ipqe;
428 }
429 
430 void
431 tcpipqent_free(struct ipqent *ipqe)
432 {
433 	int s;
434 
435 	s = splvm();
436 	pool_put(&tcpipqent_pool, ipqe);
437 	splx(s);
438 }
439 
440 static int
441 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
442 {
443 	struct ipqent *p, *q, *nq, *tiqe = NULL;
444 	struct socket *so = NULL;
445 	int pkt_flags;
446 	tcp_seq pkt_seq;
447 	unsigned pkt_len;
448 	u_long rcvpartdupbyte = 0;
449 	u_long rcvoobyte;
450 #ifdef TCP_REASS_COUNTERS
451 	u_int count = 0;
452 #endif
453 	uint64_t *tcps;
454 
455 	if (tp->t_inpcb)
456 		so = tp->t_inpcb->inp_socket;
457 #ifdef INET6
458 	else if (tp->t_in6pcb)
459 		so = tp->t_in6pcb->in6p_socket;
460 #endif
461 
462 	TCP_REASS_LOCK_CHECK(tp);
463 
464 	/*
465 	 * Call with th==0 after become established to
466 	 * force pre-ESTABLISHED data up to user socket.
467 	 */
468 	if (th == 0)
469 		goto present;
470 
471 	m_claimm(m, &tcp_reass_mowner);
472 
473 	rcvoobyte = *tlen;
474 	/*
475 	 * Copy these to local variables because the tcpiphdr
476 	 * gets munged while we are collapsing mbufs.
477 	 */
478 	pkt_seq = th->th_seq;
479 	pkt_len = *tlen;
480 	pkt_flags = th->th_flags;
481 
482 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
483 
484 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
485 		/*
486 		 * When we miss a packet, the vast majority of time we get
487 		 * packets that follow it in order.  So optimize for that.
488 		 */
489 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
490 			p->ipqe_len += pkt_len;
491 			p->ipqe_flags |= pkt_flags;
492 			m_cat(p->ipre_mlast, m);
493 			TRAVERSE(p->ipre_mlast);
494 			m = NULL;
495 			tiqe = p;
496 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
497 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
498 			goto skip_replacement;
499 		}
500 		/*
501 		 * While we're here, if the pkt is completely beyond
502 		 * anything we have, just insert it at the tail.
503 		 */
504 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
505 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
506 			goto insert_it;
507 		}
508 	}
509 
510 	q = TAILQ_FIRST(&tp->segq);
511 
512 	if (q != NULL) {
513 		/*
514 		 * If this segment immediately precedes the first out-of-order
515 		 * block, simply slap the segment in front of it and (mostly)
516 		 * skip the complicated logic.
517 		 */
518 		if (pkt_seq + pkt_len == q->ipqe_seq) {
519 			q->ipqe_seq = pkt_seq;
520 			q->ipqe_len += pkt_len;
521 			q->ipqe_flags |= pkt_flags;
522 			m_cat(m, q->ipqe_m);
523 			q->ipqe_m = m;
524 			q->ipre_mlast = m; /* last mbuf may have changed */
525 			TRAVERSE(q->ipre_mlast);
526 			tiqe = q;
527 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
528 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
529 			goto skip_replacement;
530 		}
531 	} else {
532 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
533 	}
534 
535 	/*
536 	 * Find a segment which begins after this one does.
537 	 */
538 	for (p = NULL; q != NULL; q = nq) {
539 		nq = TAILQ_NEXT(q, ipqe_q);
540 #ifdef TCP_REASS_COUNTERS
541 		count++;
542 #endif
543 		/*
544 		 * If the received segment is just right after this
545 		 * fragment, merge the two together and then check
546 		 * for further overlaps.
547 		 */
548 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
549 #ifdef TCPREASS_DEBUG
550 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
551 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
552 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
553 #endif
554 			pkt_len += q->ipqe_len;
555 			pkt_flags |= q->ipqe_flags;
556 			pkt_seq = q->ipqe_seq;
557 			m_cat(q->ipre_mlast, m);
558 			TRAVERSE(q->ipre_mlast);
559 			m = q->ipqe_m;
560 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
561 			goto free_ipqe;
562 		}
563 		/*
564 		 * If the received segment is completely past this
565 		 * fragment, we need to go the next fragment.
566 		 */
567 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
568 			p = q;
569 			continue;
570 		}
571 		/*
572 		 * If the fragment is past the received segment,
573 		 * it (or any following) can't be concatenated.
574 		 */
575 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
576 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
577 			break;
578 		}
579 
580 		/*
581 		 * We've received all the data in this segment before.
582 		 * mark it as a duplicate and return.
583 		 */
584 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
585 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
586 			tcps = TCP_STAT_GETREF();
587 			tcps[TCP_STAT_RCVDUPPACK]++;
588 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
589 			TCP_STAT_PUTREF();
590 			tcp_new_dsack(tp, pkt_seq, pkt_len);
591 			m_freem(m);
592 			if (tiqe != NULL) {
593 				tcpipqent_free(tiqe);
594 			}
595 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
596 			return (0);
597 		}
598 		/*
599 		 * Received segment completely overlaps this fragment
600 		 * so we drop the fragment (this keeps the temporal
601 		 * ordering of segments correct).
602 		 */
603 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
604 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
605 			rcvpartdupbyte += q->ipqe_len;
606 			m_freem(q->ipqe_m);
607 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
608 			goto free_ipqe;
609 		}
610 		/*
611 		 * RX'ed segment extends past the end of the
612 		 * fragment.  Drop the overlapping bytes.  Then
613 		 * merge the fragment and segment then treat as
614 		 * a longer received packet.
615 		 */
616 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
617 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
618 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
619 #ifdef TCPREASS_DEBUG
620 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
621 			       tp, overlap,
622 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
623 #endif
624 			m_adj(m, overlap);
625 			rcvpartdupbyte += overlap;
626 			m_cat(q->ipre_mlast, m);
627 			TRAVERSE(q->ipre_mlast);
628 			m = q->ipqe_m;
629 			pkt_seq = q->ipqe_seq;
630 			pkt_len += q->ipqe_len - overlap;
631 			rcvoobyte -= overlap;
632 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
633 			goto free_ipqe;
634 		}
635 		/*
636 		 * RX'ed segment extends past the front of the
637 		 * fragment.  Drop the overlapping bytes on the
638 		 * received packet.  The packet will then be
639 		 * contatentated with this fragment a bit later.
640 		 */
641 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
642 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
643 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
644 #ifdef TCPREASS_DEBUG
645 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
646 			       tp, overlap,
647 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
648 #endif
649 			m_adj(m, -overlap);
650 			pkt_len -= overlap;
651 			rcvpartdupbyte += overlap;
652 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
653 			rcvoobyte -= overlap;
654 		}
655 		/*
656 		 * If the received segment immediates precedes this
657 		 * fragment then tack the fragment onto this segment
658 		 * and reinsert the data.
659 		 */
660 		if (q->ipqe_seq == pkt_seq + pkt_len) {
661 #ifdef TCPREASS_DEBUG
662 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
663 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
664 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
665 #endif
666 			pkt_len += q->ipqe_len;
667 			pkt_flags |= q->ipqe_flags;
668 			m_cat(m, q->ipqe_m);
669 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
670 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
671 			tp->t_segqlen--;
672 			KASSERT(tp->t_segqlen >= 0);
673 			KASSERT(tp->t_segqlen != 0 ||
674 			    (TAILQ_EMPTY(&tp->segq) &&
675 			    TAILQ_EMPTY(&tp->timeq)));
676 			if (tiqe == NULL) {
677 				tiqe = q;
678 			} else {
679 				tcpipqent_free(q);
680 			}
681 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
682 			break;
683 		}
684 		/*
685 		 * If the fragment is before the segment, remember it.
686 		 * When this loop is terminated, p will contain the
687 		 * pointer to fragment that is right before the received
688 		 * segment.
689 		 */
690 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
691 			p = q;
692 
693 		continue;
694 
695 		/*
696 		 * This is a common operation.  It also will allow
697 		 * to save doing a malloc/free in most instances.
698 		 */
699 	  free_ipqe:
700 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
701 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
702 		tp->t_segqlen--;
703 		KASSERT(tp->t_segqlen >= 0);
704 		KASSERT(tp->t_segqlen != 0 ||
705 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
706 		if (tiqe == NULL) {
707 			tiqe = q;
708 		} else {
709 			tcpipqent_free(q);
710 		}
711 	}
712 
713 #ifdef TCP_REASS_COUNTERS
714 	if (count > 7)
715 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
716 	else if (count > 0)
717 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
718 #endif
719 
720     insert_it:
721 
722 	/*
723 	 * Allocate a new queue entry since the received segment did not
724 	 * collapse onto any other out-of-order block; thus we are allocating
725 	 * a new block.  If it had collapsed, tiqe would not be NULL and
726 	 * we would be reusing it.
727 	 * XXX If we can't, just drop the packet.  XXX
728 	 */
729 	if (tiqe == NULL) {
730 		tiqe = tcpipqent_alloc();
731 		if (tiqe == NULL) {
732 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
733 			m_freem(m);
734 			return (0);
735 		}
736 	}
737 
738 	/*
739 	 * Update the counters.
740 	 */
741 	tcps = TCP_STAT_GETREF();
742 	tcps[TCP_STAT_RCVOOPACK]++;
743 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
744 	if (rcvpartdupbyte) {
745 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
746 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
747 	}
748 	TCP_STAT_PUTREF();
749 
750 	/*
751 	 * Insert the new fragment queue entry into both queues.
752 	 */
753 	tiqe->ipqe_m = m;
754 	tiqe->ipre_mlast = m;
755 	tiqe->ipqe_seq = pkt_seq;
756 	tiqe->ipqe_len = pkt_len;
757 	tiqe->ipqe_flags = pkt_flags;
758 	if (p == NULL) {
759 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
760 #ifdef TCPREASS_DEBUG
761 		if (tiqe->ipqe_seq != tp->rcv_nxt)
762 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
763 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
764 #endif
765 	} else {
766 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
767 #ifdef TCPREASS_DEBUG
768 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
769 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
770 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
771 #endif
772 	}
773 	tp->t_segqlen++;
774 
775 skip_replacement:
776 
777 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
778 
779 present:
780 	/*
781 	 * Present data to user, advancing rcv_nxt through
782 	 * completed sequence space.
783 	 */
784 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
785 		return (0);
786 	q = TAILQ_FIRST(&tp->segq);
787 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
788 		return (0);
789 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
790 		return (0);
791 
792 	tp->rcv_nxt += q->ipqe_len;
793 	pkt_flags = q->ipqe_flags & TH_FIN;
794 	nd6_hint(tp);
795 
796 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
797 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
798 	tp->t_segqlen--;
799 	KASSERT(tp->t_segqlen >= 0);
800 	KASSERT(tp->t_segqlen != 0 ||
801 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
802 	if (so->so_state & SS_CANTRCVMORE)
803 		m_freem(q->ipqe_m);
804 	else
805 		sbappendstream(&so->so_rcv, q->ipqe_m);
806 	tcpipqent_free(q);
807 	sorwakeup(so);
808 	return (pkt_flags);
809 }
810 
811 #ifdef INET6
812 int
813 tcp6_input(struct mbuf **mp, int *offp, int proto)
814 {
815 	struct mbuf *m = *mp;
816 
817 	/*
818 	 * draft-itojun-ipv6-tcp-to-anycast
819 	 * better place to put this in?
820 	 */
821 	if (m->m_flags & M_ANYCAST6) {
822 		struct ip6_hdr *ip6;
823 		if (m->m_len < sizeof(struct ip6_hdr)) {
824 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
825 				TCP_STATINC(TCP_STAT_RCVSHORT);
826 				return IPPROTO_DONE;
827 			}
828 		}
829 		ip6 = mtod(m, struct ip6_hdr *);
830 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
831 		    (char *)&ip6->ip6_dst - (char *)ip6);
832 		return IPPROTO_DONE;
833 	}
834 
835 	tcp_input(m, *offp, proto);
836 	return IPPROTO_DONE;
837 }
838 #endif
839 
840 #ifdef INET
841 static void
842 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
843 {
844 	char src[4*sizeof "123"];
845 	char dst[4*sizeof "123"];
846 
847 	if (ip) {
848 		strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
849 		strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
850 	}
851 	else {
852 		strlcpy(src, "(unknown)", sizeof(src));
853 		strlcpy(dst, "(unknown)", sizeof(dst));
854 	}
855 	log(LOG_INFO,
856 	    "Connection attempt to TCP %s:%d from %s:%d\n",
857 	    dst, ntohs(th->th_dport),
858 	    src, ntohs(th->th_sport));
859 }
860 #endif
861 
862 #ifdef INET6
863 static void
864 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
865 {
866 	char src[INET6_ADDRSTRLEN];
867 	char dst[INET6_ADDRSTRLEN];
868 
869 	if (ip6) {
870 		strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
871 		strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
872 	}
873 	else {
874 		strlcpy(src, "(unknown v6)", sizeof(src));
875 		strlcpy(dst, "(unknown v6)", sizeof(dst));
876 	}
877 	log(LOG_INFO,
878 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
879 	    dst, ntohs(th->th_dport),
880 	    src, ntohs(th->th_sport));
881 }
882 #endif
883 
884 /*
885  * Checksum extended TCP header and data.
886  */
887 int
888 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
889     int toff, int off, int tlen)
890 {
891 
892 	/*
893 	 * XXX it's better to record and check if this mbuf is
894 	 * already checked.
895 	 */
896 
897 	switch (af) {
898 #ifdef INET
899 	case AF_INET:
900 		switch (m->m_pkthdr.csum_flags &
901 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
902 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
903 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
904 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
905 			goto badcsum;
906 
907 		case M_CSUM_TCPv4|M_CSUM_DATA: {
908 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
909 
910 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
911 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
912 				const struct ip *ip =
913 				    mtod(m, const struct ip *);
914 
915 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
916 				    ip->ip_dst.s_addr,
917 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
918 			}
919 			if ((hw_csum ^ 0xffff) != 0)
920 				goto badcsum;
921 			break;
922 		}
923 
924 		case M_CSUM_TCPv4:
925 			/* Checksum was okay. */
926 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
927 			break;
928 
929 		default:
930 			/*
931 			 * Must compute it ourselves.  Maybe skip checksum
932 			 * on loopback interfaces.
933 			 */
934 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
935 					     IFF_LOOPBACK) ||
936 					   tcp_do_loopback_cksum)) {
937 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
938 				if (in4_cksum(m, IPPROTO_TCP, toff,
939 					      tlen + off) != 0)
940 					goto badcsum;
941 			}
942 			break;
943 		}
944 		break;
945 #endif /* INET4 */
946 
947 #ifdef INET6
948 	case AF_INET6:
949 		switch (m->m_pkthdr.csum_flags &
950 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
951 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
952 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
953 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
954 			goto badcsum;
955 
956 #if 0 /* notyet */
957 		case M_CSUM_TCPv6|M_CSUM_DATA:
958 #endif
959 
960 		case M_CSUM_TCPv6:
961 			/* Checksum was okay. */
962 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
963 			break;
964 
965 		default:
966 			/*
967 			 * Must compute it ourselves.  Maybe skip checksum
968 			 * on loopback interfaces.
969 			 */
970 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
971 			    tcp_do_loopback_cksum)) {
972 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
973 				if (in6_cksum(m, IPPROTO_TCP, toff,
974 				    tlen + off) != 0)
975 					goto badcsum;
976 			}
977 		}
978 		break;
979 #endif /* INET6 */
980 	}
981 
982 	return 0;
983 
984 badcsum:
985 	TCP_STATINC(TCP_STAT_RCVBADSUM);
986 	return -1;
987 }
988 
989 /*
990  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
991  */
992 void
993 tcp_input(struct mbuf *m, ...)
994 {
995 	struct tcphdr *th;
996 	struct ip *ip;
997 	struct inpcb *inp;
998 #ifdef INET6
999 	struct ip6_hdr *ip6;
1000 	struct in6pcb *in6p;
1001 #endif
1002 	u_int8_t *optp = NULL;
1003 	int optlen = 0;
1004 	int len, tlen, toff, hdroptlen = 0;
1005 	struct tcpcb *tp = 0;
1006 	int tiflags;
1007 	struct socket *so = NULL;
1008 	int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
1009 #ifdef TCP_DEBUG
1010 	short ostate = 0;
1011 #endif
1012 	u_long tiwin;
1013 	struct tcp_opt_info opti;
1014 	int off, iphlen;
1015 	va_list ap;
1016 	int af;		/* af on the wire */
1017 	struct mbuf *tcp_saveti = NULL;
1018 	uint32_t ts_rtt;
1019 	uint8_t iptos;
1020 	uint64_t *tcps;
1021 
1022 	MCLAIM(m, &tcp_rx_mowner);
1023 	va_start(ap, m);
1024 	toff = va_arg(ap, int);
1025 	(void)va_arg(ap, int);		/* ignore value, advance ap */
1026 	va_end(ap);
1027 
1028 	TCP_STATINC(TCP_STAT_RCVTOTAL);
1029 
1030 	bzero(&opti, sizeof(opti));
1031 	opti.ts_present = 0;
1032 	opti.maxseg = 0;
1033 
1034 	/*
1035 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1036 	 *
1037 	 * TCP is, by definition, unicast, so we reject all
1038 	 * multicast outright.
1039 	 *
1040 	 * Note, there are additional src/dst address checks in
1041 	 * the AF-specific code below.
1042 	 */
1043 	if (m->m_flags & (M_BCAST|M_MCAST)) {
1044 		/* XXX stat */
1045 		goto drop;
1046 	}
1047 #ifdef INET6
1048 	if (m->m_flags & M_ANYCAST6) {
1049 		/* XXX stat */
1050 		goto drop;
1051 	}
1052 #endif
1053 
1054 	/*
1055 	 * Get IP and TCP header.
1056 	 * Note: IP leaves IP header in first mbuf.
1057 	 */
1058 	ip = mtod(m, struct ip *);
1059 #ifdef INET6
1060 	ip6 = NULL;
1061 #endif
1062 	switch (ip->ip_v) {
1063 #ifdef INET
1064 	case 4:
1065 		af = AF_INET;
1066 		iphlen = sizeof(struct ip);
1067 		ip = mtod(m, struct ip *);
1068 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1069 			sizeof(struct tcphdr));
1070 		if (th == NULL) {
1071 			TCP_STATINC(TCP_STAT_RCVSHORT);
1072 			return;
1073 		}
1074 		/* We do the checksum after PCB lookup... */
1075 		len = ntohs(ip->ip_len);
1076 		tlen = len - toff;
1077 		iptos = ip->ip_tos;
1078 		break;
1079 #endif
1080 #ifdef INET6
1081 	case 6:
1082 		ip = NULL;
1083 		iphlen = sizeof(struct ip6_hdr);
1084 		af = AF_INET6;
1085 		ip6 = mtod(m, struct ip6_hdr *);
1086 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1087 			sizeof(struct tcphdr));
1088 		if (th == NULL) {
1089 			TCP_STATINC(TCP_STAT_RCVSHORT);
1090 			return;
1091 		}
1092 
1093 		/* Be proactive about malicious use of IPv4 mapped address */
1094 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1095 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1096 			/* XXX stat */
1097 			goto drop;
1098 		}
1099 
1100 		/*
1101 		 * Be proactive about unspecified IPv6 address in source.
1102 		 * As we use all-zero to indicate unbounded/unconnected pcb,
1103 		 * unspecified IPv6 address can be used to confuse us.
1104 		 *
1105 		 * Note that packets with unspecified IPv6 destination is
1106 		 * already dropped in ip6_input.
1107 		 */
1108 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1109 			/* XXX stat */
1110 			goto drop;
1111 		}
1112 
1113 		/*
1114 		 * Make sure destination address is not multicast.
1115 		 * Source address checked in ip6_input().
1116 		 */
1117 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1118 			/* XXX stat */
1119 			goto drop;
1120 		}
1121 
1122 		/* We do the checksum after PCB lookup... */
1123 		len = m->m_pkthdr.len;
1124 		tlen = len - toff;
1125 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1126 		break;
1127 #endif
1128 	default:
1129 		m_freem(m);
1130 		return;
1131 	}
1132 
1133 	KASSERT(TCP_HDR_ALIGNED_P(th));
1134 
1135 	/*
1136 	 * Check that TCP offset makes sense,
1137 	 * pull out TCP options and adjust length.		XXX
1138 	 */
1139 	off = th->th_off << 2;
1140 	if (off < sizeof (struct tcphdr) || off > tlen) {
1141 		TCP_STATINC(TCP_STAT_RCVBADOFF);
1142 		goto drop;
1143 	}
1144 	tlen -= off;
1145 
1146 	/*
1147 	 * tcp_input() has been modified to use tlen to mean the TCP data
1148 	 * length throughout the function.  Other functions can use
1149 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1150 	 * rja
1151 	 */
1152 
1153 	if (off > sizeof (struct tcphdr)) {
1154 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1155 		if (th == NULL) {
1156 			TCP_STATINC(TCP_STAT_RCVSHORT);
1157 			return;
1158 		}
1159 		/*
1160 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
1161 		 * (as they're before toff) and we don't need to update those.
1162 		 */
1163 		KASSERT(TCP_HDR_ALIGNED_P(th));
1164 		optlen = off - sizeof (struct tcphdr);
1165 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1166 		/*
1167 		 * Do quick retrieval of timestamp options ("options
1168 		 * prediction?").  If timestamp is the only option and it's
1169 		 * formatted as recommended in RFC 1323 appendix A, we
1170 		 * quickly get the values now and not bother calling
1171 		 * tcp_dooptions(), etc.
1172 		 */
1173 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1174 		     (optlen > TCPOLEN_TSTAMP_APPA &&
1175 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1176 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1177 		     (th->th_flags & TH_SYN) == 0) {
1178 			opti.ts_present = 1;
1179 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1180 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1181 			optp = NULL;	/* we've parsed the options */
1182 		}
1183 	}
1184 	tiflags = th->th_flags;
1185 
1186 	/*
1187 	 * Locate pcb for segment.
1188 	 */
1189 findpcb:
1190 	inp = NULL;
1191 #ifdef INET6
1192 	in6p = NULL;
1193 #endif
1194 	switch (af) {
1195 #ifdef INET
1196 	case AF_INET:
1197 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1198 		    ip->ip_dst, th->th_dport);
1199 		if (inp == 0) {
1200 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1201 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1202 		}
1203 #ifdef INET6
1204 		if (inp == 0) {
1205 			struct in6_addr s, d;
1206 
1207 			/* mapped addr case */
1208 			bzero(&s, sizeof(s));
1209 			s.s6_addr16[5] = htons(0xffff);
1210 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1211 			bzero(&d, sizeof(d));
1212 			d.s6_addr16[5] = htons(0xffff);
1213 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1214 			in6p = in6_pcblookup_connect(&tcbtable, &s,
1215 			    th->th_sport, &d, th->th_dport, 0);
1216 			if (in6p == 0) {
1217 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
1218 				in6p = in6_pcblookup_bind(&tcbtable, &d,
1219 				    th->th_dport, 0);
1220 			}
1221 		}
1222 #endif
1223 #ifndef INET6
1224 		if (inp == 0)
1225 #else
1226 		if (inp == 0 && in6p == 0)
1227 #endif
1228 		{
1229 			TCP_STATINC(TCP_STAT_NOPORT);
1230 			if (tcp_log_refused &&
1231 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1232 				tcp4_log_refused(ip, th);
1233 			}
1234 			tcp_fields_to_host(th);
1235 			goto dropwithreset_ratelim;
1236 		}
1237 #if defined(IPSEC) || defined(FAST_IPSEC)
1238 		if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1239 		    ipsec4_in_reject(m, inp)) {
1240 			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1241 			goto drop;
1242 		}
1243 #ifdef INET6
1244 		else if (in6p &&
1245 		    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1246 		    ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1247 			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1248 			goto drop;
1249 		}
1250 #endif
1251 #endif /*IPSEC*/
1252 		break;
1253 #endif /*INET*/
1254 #ifdef INET6
1255 	case AF_INET6:
1256 	    {
1257 		int faith;
1258 
1259 #if defined(NFAITH) && NFAITH > 0
1260 		faith = faithprefix(&ip6->ip6_dst);
1261 #else
1262 		faith = 0;
1263 #endif
1264 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1265 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1266 		if (in6p == NULL) {
1267 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1268 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1269 				th->th_dport, faith);
1270 		}
1271 		if (in6p == NULL) {
1272 			TCP_STATINC(TCP_STAT_NOPORT);
1273 			if (tcp_log_refused &&
1274 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1275 				tcp6_log_refused(ip6, th);
1276 			}
1277 			tcp_fields_to_host(th);
1278 			goto dropwithreset_ratelim;
1279 		}
1280 #if defined(IPSEC) || defined(FAST_IPSEC)
1281 		if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1282 		    ipsec6_in_reject(m, in6p)) {
1283 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1284 			goto drop;
1285 		}
1286 #endif /*IPSEC*/
1287 		break;
1288 	    }
1289 #endif
1290 	}
1291 
1292 	/*
1293 	 * If the state is CLOSED (i.e., TCB does not exist) then
1294 	 * all data in the incoming segment is discarded.
1295 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1296 	 * but should either do a listen or a connect soon.
1297 	 */
1298 	tp = NULL;
1299 	so = NULL;
1300 	if (inp) {
1301 		tp = intotcpcb(inp);
1302 		so = inp->inp_socket;
1303 	}
1304 #ifdef INET6
1305 	else if (in6p) {
1306 		tp = in6totcpcb(in6p);
1307 		so = in6p->in6p_socket;
1308 	}
1309 #endif
1310 	if (tp == 0) {
1311 		tcp_fields_to_host(th);
1312 		goto dropwithreset_ratelim;
1313 	}
1314 	if (tp->t_state == TCPS_CLOSED)
1315 		goto drop;
1316 
1317 	/*
1318 	 * Checksum extended TCP header and data.
1319 	 */
1320 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
1321 		goto badcsum;
1322 
1323 	tcp_fields_to_host(th);
1324 
1325 	/* Unscale the window into a 32-bit value. */
1326 	if ((tiflags & TH_SYN) == 0)
1327 		tiwin = th->th_win << tp->snd_scale;
1328 	else
1329 		tiwin = th->th_win;
1330 
1331 #ifdef INET6
1332 	/* save packet options if user wanted */
1333 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1334 		if (in6p->in6p_options) {
1335 			m_freem(in6p->in6p_options);
1336 			in6p->in6p_options = 0;
1337 		}
1338 		KASSERT(ip6 != NULL);
1339 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1340 	}
1341 #endif
1342 
1343 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1344 		union syn_cache_sa src;
1345 		union syn_cache_sa dst;
1346 
1347 		bzero(&src, sizeof(src));
1348 		bzero(&dst, sizeof(dst));
1349 		switch (af) {
1350 #ifdef INET
1351 		case AF_INET:
1352 			src.sin.sin_len = sizeof(struct sockaddr_in);
1353 			src.sin.sin_family = AF_INET;
1354 			src.sin.sin_addr = ip->ip_src;
1355 			src.sin.sin_port = th->th_sport;
1356 
1357 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1358 			dst.sin.sin_family = AF_INET;
1359 			dst.sin.sin_addr = ip->ip_dst;
1360 			dst.sin.sin_port = th->th_dport;
1361 			break;
1362 #endif
1363 #ifdef INET6
1364 		case AF_INET6:
1365 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1366 			src.sin6.sin6_family = AF_INET6;
1367 			src.sin6.sin6_addr = ip6->ip6_src;
1368 			src.sin6.sin6_port = th->th_sport;
1369 
1370 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1371 			dst.sin6.sin6_family = AF_INET6;
1372 			dst.sin6.sin6_addr = ip6->ip6_dst;
1373 			dst.sin6.sin6_port = th->th_dport;
1374 			break;
1375 #endif /* INET6 */
1376 		default:
1377 			goto badsyn;	/*sanity*/
1378 		}
1379 
1380 		if (so->so_options & SO_DEBUG) {
1381 #ifdef TCP_DEBUG
1382 			ostate = tp->t_state;
1383 #endif
1384 
1385 			tcp_saveti = NULL;
1386 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1387 				goto nosave;
1388 
1389 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1390 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1391 				if (!tcp_saveti)
1392 					goto nosave;
1393 			} else {
1394 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1395 				if (!tcp_saveti)
1396 					goto nosave;
1397 				MCLAIM(m, &tcp_mowner);
1398 				tcp_saveti->m_len = iphlen;
1399 				m_copydata(m, 0, iphlen,
1400 				    mtod(tcp_saveti, void *));
1401 			}
1402 
1403 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1404 				m_freem(tcp_saveti);
1405 				tcp_saveti = NULL;
1406 			} else {
1407 				tcp_saveti->m_len += sizeof(struct tcphdr);
1408 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1409 				    sizeof(struct tcphdr));
1410 			}
1411 	nosave:;
1412 		}
1413 		if (so->so_options & SO_ACCEPTCONN) {
1414 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1415 				if (tiflags & TH_RST) {
1416 					syn_cache_reset(&src.sa, &dst.sa, th);
1417 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1418 				    (TH_ACK|TH_SYN)) {
1419 					/*
1420 					 * Received a SYN,ACK.  This should
1421 					 * never happen while we are in
1422 					 * LISTEN.  Send an RST.
1423 					 */
1424 					goto badsyn;
1425 				} else if (tiflags & TH_ACK) {
1426 					so = syn_cache_get(&src.sa, &dst.sa,
1427 						th, toff, tlen, so, m);
1428 					if (so == NULL) {
1429 						/*
1430 						 * We don't have a SYN for
1431 						 * this ACK; send an RST.
1432 						 */
1433 						goto badsyn;
1434 					} else if (so ==
1435 					    (struct socket *)(-1)) {
1436 						/*
1437 						 * We were unable to create
1438 						 * the connection.  If the
1439 						 * 3-way handshake was
1440 						 * completed, and RST has
1441 						 * been sent to the peer.
1442 						 * Since the mbuf might be
1443 						 * in use for the reply,
1444 						 * do not free it.
1445 						 */
1446 						m = NULL;
1447 					} else {
1448 						/*
1449 						 * We have created a
1450 						 * full-blown connection.
1451 						 */
1452 						tp = NULL;
1453 						inp = NULL;
1454 #ifdef INET6
1455 						in6p = NULL;
1456 #endif
1457 						switch (so->so_proto->pr_domain->dom_family) {
1458 #ifdef INET
1459 						case AF_INET:
1460 							inp = sotoinpcb(so);
1461 							tp = intotcpcb(inp);
1462 							break;
1463 #endif
1464 #ifdef INET6
1465 						case AF_INET6:
1466 							in6p = sotoin6pcb(so);
1467 							tp = in6totcpcb(in6p);
1468 							break;
1469 #endif
1470 						}
1471 						if (tp == NULL)
1472 							goto badsyn;	/*XXX*/
1473 						tiwin <<= tp->snd_scale;
1474 						goto after_listen;
1475 					}
1476 				} else {
1477 					/*
1478 					 * None of RST, SYN or ACK was set.
1479 					 * This is an invalid packet for a
1480 					 * TCB in LISTEN state.  Send a RST.
1481 					 */
1482 					goto badsyn;
1483 				}
1484 			} else {
1485 				/*
1486 				 * Received a SYN.
1487 				 *
1488 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1489 				 */
1490 				if (m->m_flags & (M_BCAST|M_MCAST))
1491 					goto drop;
1492 
1493 				switch (af) {
1494 #ifdef INET6
1495 				case AF_INET6:
1496 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1497 						goto drop;
1498 					break;
1499 #endif /* INET6 */
1500 				case AF_INET:
1501 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1502 					    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1503 						goto drop;
1504 				break;
1505 				}
1506 
1507 #ifdef INET6
1508 				/*
1509 				 * If deprecated address is forbidden, we do
1510 				 * not accept SYN to deprecated interface
1511 				 * address to prevent any new inbound
1512 				 * connection from getting established.
1513 				 * When we do not accept SYN, we send a TCP
1514 				 * RST, with deprecated source address (instead
1515 				 * of dropping it).  We compromise it as it is
1516 				 * much better for peer to send a RST, and
1517 				 * RST will be the final packet for the
1518 				 * exchange.
1519 				 *
1520 				 * If we do not forbid deprecated addresses, we
1521 				 * accept the SYN packet.  RFC2462 does not
1522 				 * suggest dropping SYN in this case.
1523 				 * If we decipher RFC2462 5.5.4, it says like
1524 				 * this:
1525 				 * 1. use of deprecated addr with existing
1526 				 *    communication is okay - "SHOULD continue
1527 				 *    to be used"
1528 				 * 2. use of it with new communication:
1529 				 *   (2a) "SHOULD NOT be used if alternate
1530 				 *        address with sufficient scope is
1531 				 *        available"
1532 				 *   (2b) nothing mentioned otherwise.
1533 				 * Here we fall into (2b) case as we have no
1534 				 * choice in our source address selection - we
1535 				 * must obey the peer.
1536 				 *
1537 				 * The wording in RFC2462 is confusing, and
1538 				 * there are multiple description text for
1539 				 * deprecated address handling - worse, they
1540 				 * are not exactly the same.  I believe 5.5.4
1541 				 * is the best one, so we follow 5.5.4.
1542 				 */
1543 				if (af == AF_INET6 && !ip6_use_deprecated) {
1544 					struct in6_ifaddr *ia6;
1545 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1546 					    &ip6->ip6_dst)) &&
1547 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1548 						tp = NULL;
1549 						goto dropwithreset;
1550 					}
1551 				}
1552 #endif
1553 
1554 #if defined(IPSEC) || defined(FAST_IPSEC)
1555 				switch (af) {
1556 #ifdef INET
1557 				case AF_INET:
1558 					if (ipsec4_in_reject_so(m, so)) {
1559 						IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1560 						tp = NULL;
1561 						goto dropwithreset;
1562 					}
1563 					break;
1564 #endif
1565 #ifdef INET6
1566 				case AF_INET6:
1567 					if (ipsec6_in_reject_so(m, so)) {
1568 						IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1569 						tp = NULL;
1570 						goto dropwithreset;
1571 					}
1572 					break;
1573 #endif /*INET6*/
1574 				}
1575 #endif /*IPSEC*/
1576 
1577 				/*
1578 				 * LISTEN socket received a SYN
1579 				 * from itself?  This can't possibly
1580 				 * be valid; drop the packet.
1581 				 */
1582 				if (th->th_sport == th->th_dport) {
1583 					int i;
1584 
1585 					switch (af) {
1586 #ifdef INET
1587 					case AF_INET:
1588 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1589 						break;
1590 #endif
1591 #ifdef INET6
1592 					case AF_INET6:
1593 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1594 						break;
1595 #endif
1596 					default:
1597 						i = 1;
1598 					}
1599 					if (i) {
1600 						TCP_STATINC(TCP_STAT_BADSYN);
1601 						goto drop;
1602 					}
1603 				}
1604 
1605 				/*
1606 				 * SYN looks ok; create compressed TCP
1607 				 * state for it.
1608 				 */
1609 				if (so->so_qlen <= so->so_qlimit &&
1610 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1611 						so, m, optp, optlen, &opti))
1612 					m = NULL;
1613 			}
1614 			goto drop;
1615 		}
1616 	}
1617 
1618 after_listen:
1619 #ifdef DIAGNOSTIC
1620 	/*
1621 	 * Should not happen now that all embryonic connections
1622 	 * are handled with compressed state.
1623 	 */
1624 	if (tp->t_state == TCPS_LISTEN)
1625 		panic("tcp_input: TCPS_LISTEN");
1626 #endif
1627 
1628 	/*
1629 	 * Segment received on connection.
1630 	 * Reset idle time and keep-alive timer.
1631 	 */
1632 	tp->t_rcvtime = tcp_now;
1633 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1634 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1635 
1636 	/*
1637 	 * Process options.
1638 	 */
1639 #ifdef TCP_SIGNATURE
1640 	if (optp || (tp->t_flags & TF_SIGNATURE))
1641 #else
1642 	if (optp)
1643 #endif
1644 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1645 			goto drop;
1646 
1647 	if (TCP_SACK_ENABLED(tp)) {
1648 		tcp_del_sackholes(tp, th);
1649 	}
1650 
1651 	if (TCP_ECN_ALLOWED(tp)) {
1652 		switch (iptos & IPTOS_ECN_MASK) {
1653 		case IPTOS_ECN_CE:
1654 			tp->t_flags |= TF_ECN_SND_ECE;
1655 			TCP_STATINC(TCP_STAT_ECN_CE);
1656 			break;
1657 		case IPTOS_ECN_ECT0:
1658 			TCP_STATINC(TCP_STAT_ECN_ECT);
1659 			break;
1660 		case IPTOS_ECN_ECT1:
1661 			/* XXX: ignore for now -- rpaulo */
1662 			break;
1663 		}
1664 
1665 		if (tiflags & TH_CWR)
1666 			tp->t_flags &= ~TF_ECN_SND_ECE;
1667 
1668 		/*
1669 		 * Congestion experienced.
1670 		 * Ignore if we are already trying to recover.
1671 		 */
1672 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1673 			tp->t_congctl->cong_exp(tp);
1674 	}
1675 
1676 	if (opti.ts_present && opti.ts_ecr) {
1677 		/*
1678 		 * Calculate the RTT from the returned time stamp and the
1679 		 * connection's time base.  If the time stamp is later than
1680 		 * the current time, or is extremely old, fall back to non-1323
1681 		 * RTT calculation.  Since ts_ecr is unsigned, we can test both
1682 		 * at the same time.
1683 		 */
1684 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1685 		if (ts_rtt > TCP_PAWS_IDLE)
1686 			ts_rtt = 0;
1687 	} else {
1688 		ts_rtt = 0;
1689 	}
1690 
1691 	/*
1692 	 * Header prediction: check for the two common cases
1693 	 * of a uni-directional data xfer.  If the packet has
1694 	 * no control flags, is in-sequence, the window didn't
1695 	 * change and we're not retransmitting, it's a
1696 	 * candidate.  If the length is zero and the ack moved
1697 	 * forward, we're the sender side of the xfer.  Just
1698 	 * free the data acked & wake any higher level process
1699 	 * that was blocked waiting for space.  If the length
1700 	 * is non-zero and the ack didn't move, we're the
1701 	 * receiver side.  If we're getting packets in-order
1702 	 * (the reassembly queue is empty), add the data to
1703 	 * the socket buffer and note that we need a delayed ack.
1704 	 */
1705 	if (tp->t_state == TCPS_ESTABLISHED &&
1706 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1707 	        == TH_ACK &&
1708 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1709 	    th->th_seq == tp->rcv_nxt &&
1710 	    tiwin && tiwin == tp->snd_wnd &&
1711 	    tp->snd_nxt == tp->snd_max) {
1712 
1713 		/*
1714 		 * If last ACK falls within this segment's sequence numbers,
1715 		 * record the timestamp.
1716 		 * NOTE that the test is modified according to the latest
1717 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1718 		 *
1719 		 * note that we already know
1720 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1721 		 */
1722 		if (opti.ts_present &&
1723 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1724 			tp->ts_recent_age = tcp_now;
1725 			tp->ts_recent = opti.ts_val;
1726 		}
1727 
1728 		if (tlen == 0) {
1729 			/* Ack prediction. */
1730 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1731 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1732 			    tp->snd_cwnd >= tp->snd_wnd &&
1733 			    tp->t_partialacks < 0) {
1734 				/*
1735 				 * this is a pure ack for outstanding data.
1736 				 */
1737 				if (ts_rtt)
1738 					tcp_xmit_timer(tp, ts_rtt);
1739 				else if (tp->t_rtttime &&
1740 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1741 					tcp_xmit_timer(tp,
1742 					  tcp_now - tp->t_rtttime);
1743 				acked = th->th_ack - tp->snd_una;
1744 				tcps = TCP_STAT_GETREF();
1745 				tcps[TCP_STAT_PREDACK]++;
1746 				tcps[TCP_STAT_RCVACKPACK]++;
1747 				tcps[TCP_STAT_RCVACKBYTE] += acked;
1748 				TCP_STAT_PUTREF();
1749 				nd6_hint(tp);
1750 
1751 				if (acked > (tp->t_lastoff - tp->t_inoff))
1752 					tp->t_lastm = NULL;
1753 				sbdrop(&so->so_snd, acked);
1754 				tp->t_lastoff -= acked;
1755 
1756 				icmp_check(tp, th, acked);
1757 
1758 				tp->snd_una = th->th_ack;
1759 				tp->snd_fack = tp->snd_una;
1760 				if (SEQ_LT(tp->snd_high, tp->snd_una))
1761 					tp->snd_high = tp->snd_una;
1762 				m_freem(m);
1763 
1764 				/*
1765 				 * If all outstanding data are acked, stop
1766 				 * retransmit timer, otherwise restart timer
1767 				 * using current (possibly backed-off) value.
1768 				 * If process is waiting for space,
1769 				 * wakeup/selnotify/signal.  If data
1770 				 * are ready to send, let tcp_output
1771 				 * decide between more output or persist.
1772 				 */
1773 				if (tp->snd_una == tp->snd_max)
1774 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1775 				else if (TCP_TIMER_ISARMED(tp,
1776 				    TCPT_PERSIST) == 0)
1777 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1778 					    tp->t_rxtcur);
1779 
1780 				sowwakeup(so);
1781 				if (so->so_snd.sb_cc)
1782 					(void) tcp_output(tp);
1783 				if (tcp_saveti)
1784 					m_freem(tcp_saveti);
1785 				return;
1786 			}
1787 		} else if (th->th_ack == tp->snd_una &&
1788 		    TAILQ_FIRST(&tp->segq) == NULL &&
1789 		    tlen <= sbspace(&so->so_rcv)) {
1790 			int newsize = 0;	/* automatic sockbuf scaling */
1791 
1792 			/*
1793 			 * this is a pure, in-sequence data packet
1794 			 * with nothing on the reassembly queue and
1795 			 * we have enough buffer space to take it.
1796 			 */
1797 			tp->rcv_nxt += tlen;
1798 			tcps = TCP_STAT_GETREF();
1799 			tcps[TCP_STAT_PREDDAT]++;
1800 			tcps[TCP_STAT_RCVPACK]++;
1801 			tcps[TCP_STAT_RCVBYTE] += tlen;
1802 			TCP_STAT_PUTREF();
1803 			nd6_hint(tp);
1804 
1805 		/*
1806 		 * Automatic sizing enables the performance of large buffers
1807 		 * and most of the efficiency of small ones by only allocating
1808 		 * space when it is needed.
1809 		 *
1810 		 * On the receive side the socket buffer memory is only rarely
1811 		 * used to any significant extent.  This allows us to be much
1812 		 * more aggressive in scaling the receive socket buffer.  For
1813 		 * the case that the buffer space is actually used to a large
1814 		 * extent and we run out of kernel memory we can simply drop
1815 		 * the new segments; TCP on the sender will just retransmit it
1816 		 * later.  Setting the buffer size too big may only consume too
1817 		 * much kernel memory if the application doesn't read() from
1818 		 * the socket or packet loss or reordering makes use of the
1819 		 * reassembly queue.
1820 		 *
1821 		 * The criteria to step up the receive buffer one notch are:
1822 		 *  1. the number of bytes received during the time it takes
1823 		 *     one timestamp to be reflected back to us (the RTT);
1824 		 *  2. received bytes per RTT is within seven eighth of the
1825 		 *     current socket buffer size;
1826 		 *  3. receive buffer size has not hit maximal automatic size;
1827 		 *
1828 		 * This algorithm does one step per RTT at most and only if
1829 		 * we receive a bulk stream w/o packet losses or reorderings.
1830 		 * Shrinking the buffer during idle times is not necessary as
1831 		 * it doesn't consume any memory when idle.
1832 		 *
1833 		 * TODO: Only step up if the application is actually serving
1834 		 * the buffer to better manage the socket buffer resources.
1835 		 */
1836 			if (tcp_do_autorcvbuf &&
1837 			    opti.ts_ecr &&
1838 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1839 				if (opti.ts_ecr > tp->rfbuf_ts &&
1840 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1841 					if (tp->rfbuf_cnt >
1842 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1843 					    so->so_rcv.sb_hiwat <
1844 					    tcp_autorcvbuf_max) {
1845 						newsize =
1846 						    min(so->so_rcv.sb_hiwat +
1847 						    tcp_autorcvbuf_inc,
1848 						    tcp_autorcvbuf_max);
1849 					}
1850 					/* Start over with next RTT. */
1851 					tp->rfbuf_ts = 0;
1852 					tp->rfbuf_cnt = 0;
1853 				} else
1854 					tp->rfbuf_cnt += tlen;	/* add up */
1855 			}
1856 
1857 			/*
1858 			 * Drop TCP, IP headers and TCP options then add data
1859 			 * to socket buffer.
1860 			 */
1861 			if (so->so_state & SS_CANTRCVMORE)
1862 				m_freem(m);
1863 			else {
1864 				/*
1865 				 * Set new socket buffer size.
1866 				 * Give up when limit is reached.
1867 				 */
1868 				if (newsize)
1869 					if (!sbreserve(&so->so_rcv,
1870 					    newsize, so))
1871 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1872 				m_adj(m, toff + off);
1873 				sbappendstream(&so->so_rcv, m);
1874 			}
1875 			sorwakeup(so);
1876 			tcp_setup_ack(tp, th);
1877 			if (tp->t_flags & TF_ACKNOW)
1878 				(void) tcp_output(tp);
1879 			if (tcp_saveti)
1880 				m_freem(tcp_saveti);
1881 			return;
1882 		}
1883 	}
1884 
1885 	/*
1886 	 * Compute mbuf offset to TCP data segment.
1887 	 */
1888 	hdroptlen = toff + off;
1889 
1890 	/*
1891 	 * Calculate amount of space in receive window,
1892 	 * and then do TCP input processing.
1893 	 * Receive window is amount of space in rcv queue,
1894 	 * but not less than advertised window.
1895 	 */
1896 	{ int win;
1897 
1898 	win = sbspace(&so->so_rcv);
1899 	if (win < 0)
1900 		win = 0;
1901 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1902 	}
1903 
1904 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1905 	tp->rfbuf_ts = 0;
1906 	tp->rfbuf_cnt = 0;
1907 
1908 	switch (tp->t_state) {
1909 	/*
1910 	 * If the state is SYN_SENT:
1911 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1912 	 *	if seg contains a RST, then drop the connection.
1913 	 *	if seg does not contain SYN, then drop it.
1914 	 * Otherwise this is an acceptable SYN segment
1915 	 *	initialize tp->rcv_nxt and tp->irs
1916 	 *	if seg contains ack then advance tp->snd_una
1917 	 *	if seg contains a ECE and ECN support is enabled, the stream
1918 	 *	    is ECN capable.
1919 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1920 	 *	arrange for segment to be acked (eventually)
1921 	 *	continue processing rest of data/controls, beginning with URG
1922 	 */
1923 	case TCPS_SYN_SENT:
1924 		if ((tiflags & TH_ACK) &&
1925 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1926 		     SEQ_GT(th->th_ack, tp->snd_max)))
1927 			goto dropwithreset;
1928 		if (tiflags & TH_RST) {
1929 			if (tiflags & TH_ACK)
1930 				tp = tcp_drop(tp, ECONNREFUSED);
1931 			goto drop;
1932 		}
1933 		if ((tiflags & TH_SYN) == 0)
1934 			goto drop;
1935 		if (tiflags & TH_ACK) {
1936 			tp->snd_una = th->th_ack;
1937 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1938 				tp->snd_nxt = tp->snd_una;
1939 			if (SEQ_LT(tp->snd_high, tp->snd_una))
1940 				tp->snd_high = tp->snd_una;
1941 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1942 
1943 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
1944 				tp->t_flags |= TF_ECN_PERMIT;
1945 				TCP_STATINC(TCP_STAT_ECN_SHS);
1946 			}
1947 
1948 		}
1949 		tp->irs = th->th_seq;
1950 		tcp_rcvseqinit(tp);
1951 		tp->t_flags |= TF_ACKNOW;
1952 		tcp_mss_from_peer(tp, opti.maxseg);
1953 
1954 		/*
1955 		 * Initialize the initial congestion window.  If we
1956 		 * had to retransmit the SYN, we must initialize cwnd
1957 		 * to 1 segment (i.e. the Loss Window).
1958 		 */
1959 		if (tp->t_flags & TF_SYN_REXMT)
1960 			tp->snd_cwnd = tp->t_peermss;
1961 		else {
1962 			int ss = tcp_init_win;
1963 #ifdef INET
1964 			if (inp != NULL && in_localaddr(inp->inp_faddr))
1965 				ss = tcp_init_win_local;
1966 #endif
1967 #ifdef INET6
1968 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1969 				ss = tcp_init_win_local;
1970 #endif
1971 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1972 		}
1973 
1974 		tcp_rmx_rtt(tp);
1975 		if (tiflags & TH_ACK) {
1976 			TCP_STATINC(TCP_STAT_CONNECTS);
1977 			soisconnected(so);
1978 			tcp_established(tp);
1979 			/* Do window scaling on this connection? */
1980 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1981 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1982 				tp->snd_scale = tp->requested_s_scale;
1983 				tp->rcv_scale = tp->request_r_scale;
1984 			}
1985 			TCP_REASS_LOCK(tp);
1986 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1987 			TCP_REASS_UNLOCK(tp);
1988 			/*
1989 			 * if we didn't have to retransmit the SYN,
1990 			 * use its rtt as our initial srtt & rtt var.
1991 			 */
1992 			if (tp->t_rtttime)
1993 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1994 		} else
1995 			tp->t_state = TCPS_SYN_RECEIVED;
1996 
1997 		/*
1998 		 * Advance th->th_seq to correspond to first data byte.
1999 		 * If data, trim to stay within window,
2000 		 * dropping FIN if necessary.
2001 		 */
2002 		th->th_seq++;
2003 		if (tlen > tp->rcv_wnd) {
2004 			todrop = tlen - tp->rcv_wnd;
2005 			m_adj(m, -todrop);
2006 			tlen = tp->rcv_wnd;
2007 			tiflags &= ~TH_FIN;
2008 			tcps = TCP_STAT_GETREF();
2009 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2010 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2011 			TCP_STAT_PUTREF();
2012 		}
2013 		tp->snd_wl1 = th->th_seq - 1;
2014 		tp->rcv_up = th->th_seq;
2015 		goto step6;
2016 
2017 	/*
2018 	 * If the state is SYN_RECEIVED:
2019 	 *	If seg contains an ACK, but not for our SYN, drop the input
2020 	 *	and generate an RST.  See page 36, rfc793
2021 	 */
2022 	case TCPS_SYN_RECEIVED:
2023 		if ((tiflags & TH_ACK) &&
2024 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2025 		     SEQ_GT(th->th_ack, tp->snd_max)))
2026 			goto dropwithreset;
2027 		break;
2028 	}
2029 
2030 	/*
2031 	 * States other than LISTEN or SYN_SENT.
2032 	 * First check timestamp, if present.
2033 	 * Then check that at least some bytes of segment are within
2034 	 * receive window.  If segment begins before rcv_nxt,
2035 	 * drop leading data (and SYN); if nothing left, just ack.
2036 	 *
2037 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2038 	 * and it's less than ts_recent, drop it.
2039 	 */
2040 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2041 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2042 
2043 		/* Check to see if ts_recent is over 24 days old.  */
2044 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2045 			/*
2046 			 * Invalidate ts_recent.  If this segment updates
2047 			 * ts_recent, the age will be reset later and ts_recent
2048 			 * will get a valid value.  If it does not, setting
2049 			 * ts_recent to zero will at least satisfy the
2050 			 * requirement that zero be placed in the timestamp
2051 			 * echo reply when ts_recent isn't valid.  The
2052 			 * age isn't reset until we get a valid ts_recent
2053 			 * because we don't want out-of-order segments to be
2054 			 * dropped when ts_recent is old.
2055 			 */
2056 			tp->ts_recent = 0;
2057 		} else {
2058 			tcps = TCP_STAT_GETREF();
2059 			tcps[TCP_STAT_RCVDUPPACK]++;
2060 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2061 			tcps[TCP_STAT_PAWSDROP]++;
2062 			TCP_STAT_PUTREF();
2063 			tcp_new_dsack(tp, th->th_seq, tlen);
2064 			goto dropafterack;
2065 		}
2066 	}
2067 
2068 	todrop = tp->rcv_nxt - th->th_seq;
2069 	dupseg = false;
2070 	if (todrop > 0) {
2071 		if (tiflags & TH_SYN) {
2072 			tiflags &= ~TH_SYN;
2073 			th->th_seq++;
2074 			if (th->th_urp > 1)
2075 				th->th_urp--;
2076 			else {
2077 				tiflags &= ~TH_URG;
2078 				th->th_urp = 0;
2079 			}
2080 			todrop--;
2081 		}
2082 		if (todrop > tlen ||
2083 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2084 			/*
2085 			 * Any valid FIN or RST must be to the left of the
2086 			 * window.  At this point the FIN or RST must be a
2087 			 * duplicate or out of sequence; drop it.
2088 			 */
2089 			if (tiflags & TH_RST)
2090 				goto drop;
2091 			tiflags &= ~(TH_FIN|TH_RST);
2092 			/*
2093 			 * Send an ACK to resynchronize and drop any data.
2094 			 * But keep on processing for RST or ACK.
2095 			 */
2096 			tp->t_flags |= TF_ACKNOW;
2097 			todrop = tlen;
2098 			dupseg = true;
2099 			tcps = TCP_STAT_GETREF();
2100 			tcps[TCP_STAT_RCVDUPPACK]++;
2101 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2102 			TCP_STAT_PUTREF();
2103 		} else if ((tiflags & TH_RST) &&
2104 			   th->th_seq != tp->last_ack_sent) {
2105 			/*
2106 			 * Test for reset before adjusting the sequence
2107 			 * number for overlapping data.
2108 			 */
2109 			goto dropafterack_ratelim;
2110 		} else {
2111 			tcps = TCP_STAT_GETREF();
2112 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
2113 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2114 			TCP_STAT_PUTREF();
2115 		}
2116 		tcp_new_dsack(tp, th->th_seq, todrop);
2117 		hdroptlen += todrop;	/*drop from head afterwards*/
2118 		th->th_seq += todrop;
2119 		tlen -= todrop;
2120 		if (th->th_urp > todrop)
2121 			th->th_urp -= todrop;
2122 		else {
2123 			tiflags &= ~TH_URG;
2124 			th->th_urp = 0;
2125 		}
2126 	}
2127 
2128 	/*
2129 	 * If new data are received on a connection after the
2130 	 * user processes are gone, then RST the other end.
2131 	 */
2132 	if ((so->so_state & SS_NOFDREF) &&
2133 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2134 		tp = tcp_close(tp);
2135 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2136 		goto dropwithreset;
2137 	}
2138 
2139 	/*
2140 	 * If segment ends after window, drop trailing data
2141 	 * (and PUSH and FIN); if nothing left, just ACK.
2142 	 */
2143 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2144 	if (todrop > 0) {
2145 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2146 		if (todrop >= tlen) {
2147 			/*
2148 			 * The segment actually starts after the window.
2149 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2150 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2151 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2152 			 */
2153 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2154 			/*
2155 			 * If a new connection request is received
2156 			 * while in TIME_WAIT, drop the old connection
2157 			 * and start over if the sequence numbers
2158 			 * are above the previous ones.
2159 			 *
2160 			 * NOTE: We will checksum the packet again, and
2161 			 * so we need to put the header fields back into
2162 			 * network order!
2163 			 * XXX This kind of sucks, but we don't expect
2164 			 * XXX this to happen very often, so maybe it
2165 			 * XXX doesn't matter so much.
2166 			 */
2167 			if (tiflags & TH_SYN &&
2168 			    tp->t_state == TCPS_TIME_WAIT &&
2169 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2170 				tp = tcp_close(tp);
2171 				tcp_fields_to_net(th);
2172 				goto findpcb;
2173 			}
2174 			/*
2175 			 * If window is closed can only take segments at
2176 			 * window edge, and have to drop data and PUSH from
2177 			 * incoming segments.  Continue processing, but
2178 			 * remember to ack.  Otherwise, drop segment
2179 			 * and (if not RST) ack.
2180 			 */
2181 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2182 				tp->t_flags |= TF_ACKNOW;
2183 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
2184 			} else
2185 				goto dropafterack;
2186 		} else
2187 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2188 		m_adj(m, -todrop);
2189 		tlen -= todrop;
2190 		tiflags &= ~(TH_PUSH|TH_FIN);
2191 	}
2192 
2193 	/*
2194 	 * If last ACK falls within this segment's sequence numbers,
2195 	 *  record the timestamp.
2196 	 * NOTE:
2197 	 * 1) That the test incorporates suggestions from the latest
2198 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2199 	 * 2) That updating only on newer timestamps interferes with
2200 	 *    our earlier PAWS tests, so this check should be solely
2201 	 *    predicated on the sequence space of this segment.
2202 	 * 3) That we modify the segment boundary check to be
2203 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2204 	 *    instead of RFC1323's
2205 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2206 	 *    This modified check allows us to overcome RFC1323's
2207 	 *    limitations as described in Stevens TCP/IP Illustrated
2208 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2209 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2210 	 */
2211 	if (opti.ts_present &&
2212 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2213 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2214 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2215 		tp->ts_recent_age = tcp_now;
2216 		tp->ts_recent = opti.ts_val;
2217 	}
2218 
2219 	/*
2220 	 * If the RST bit is set examine the state:
2221 	 *    SYN_RECEIVED STATE:
2222 	 *	If passive open, return to LISTEN state.
2223 	 *	If active open, inform user that connection was refused.
2224 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2225 	 *	Inform user that connection was reset, and close tcb.
2226 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
2227 	 *	Close the tcb.
2228 	 */
2229 	if (tiflags & TH_RST) {
2230 		if (th->th_seq != tp->last_ack_sent)
2231 			goto dropafterack_ratelim;
2232 
2233 		switch (tp->t_state) {
2234 		case TCPS_SYN_RECEIVED:
2235 			so->so_error = ECONNREFUSED;
2236 			goto close;
2237 
2238 		case TCPS_ESTABLISHED:
2239 		case TCPS_FIN_WAIT_1:
2240 		case TCPS_FIN_WAIT_2:
2241 		case TCPS_CLOSE_WAIT:
2242 			so->so_error = ECONNRESET;
2243 		close:
2244 			tp->t_state = TCPS_CLOSED;
2245 			TCP_STATINC(TCP_STAT_DROPS);
2246 			tp = tcp_close(tp);
2247 			goto drop;
2248 
2249 		case TCPS_CLOSING:
2250 		case TCPS_LAST_ACK:
2251 		case TCPS_TIME_WAIT:
2252 			tp = tcp_close(tp);
2253 			goto drop;
2254 		}
2255 	}
2256 
2257 	/*
2258 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2259 	 * we must be in a synchronized state.  RFC791 states (under RST
2260 	 * generation) that any unacceptable segment (an out-of-order SYN
2261 	 * qualifies) received in a synchronized state must elicit only an
2262 	 * empty acknowledgment segment ... and the connection remains in
2263 	 * the same state.
2264 	 */
2265 	if (tiflags & TH_SYN) {
2266 		if (tp->rcv_nxt == th->th_seq) {
2267 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2268 			    TH_ACK);
2269 			if (tcp_saveti)
2270 				m_freem(tcp_saveti);
2271 			return;
2272 		}
2273 
2274 		goto dropafterack_ratelim;
2275 	}
2276 
2277 	/*
2278 	 * If the ACK bit is off we drop the segment and return.
2279 	 */
2280 	if ((tiflags & TH_ACK) == 0) {
2281 		if (tp->t_flags & TF_ACKNOW)
2282 			goto dropafterack;
2283 		else
2284 			goto drop;
2285 	}
2286 
2287 	/*
2288 	 * Ack processing.
2289 	 */
2290 	switch (tp->t_state) {
2291 
2292 	/*
2293 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2294 	 * ESTABLISHED state and continue processing, otherwise
2295 	 * send an RST.
2296 	 */
2297 	case TCPS_SYN_RECEIVED:
2298 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
2299 		    SEQ_GT(th->th_ack, tp->snd_max))
2300 			goto dropwithreset;
2301 		TCP_STATINC(TCP_STAT_CONNECTS);
2302 		soisconnected(so);
2303 		tcp_established(tp);
2304 		/* Do window scaling? */
2305 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2306 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2307 			tp->snd_scale = tp->requested_s_scale;
2308 			tp->rcv_scale = tp->request_r_scale;
2309 		}
2310 		TCP_REASS_LOCK(tp);
2311 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2312 		TCP_REASS_UNLOCK(tp);
2313 		tp->snd_wl1 = th->th_seq - 1;
2314 		/* fall into ... */
2315 
2316 	/*
2317 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2318 	 * ACKs.  If the ack is in the range
2319 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2320 	 * then advance tp->snd_una to th->th_ack and drop
2321 	 * data from the retransmission queue.  If this ACK reflects
2322 	 * more up to date window information we update our window information.
2323 	 */
2324 	case TCPS_ESTABLISHED:
2325 	case TCPS_FIN_WAIT_1:
2326 	case TCPS_FIN_WAIT_2:
2327 	case TCPS_CLOSE_WAIT:
2328 	case TCPS_CLOSING:
2329 	case TCPS_LAST_ACK:
2330 	case TCPS_TIME_WAIT:
2331 
2332 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2333 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2334 				TCP_STATINC(TCP_STAT_RCVDUPPACK);
2335 				/*
2336 				 * If we have outstanding data (other than
2337 				 * a window probe), this is a completely
2338 				 * duplicate ack (ie, window info didn't
2339 				 * change), the ack is the biggest we've
2340 				 * seen and we've seen exactly our rexmt
2341 				 * threshhold of them, assume a packet
2342 				 * has been dropped and retransmit it.
2343 				 * Kludge snd_nxt & the congestion
2344 				 * window so we send only this one
2345 				 * packet.
2346 				 */
2347 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2348 				    th->th_ack != tp->snd_una)
2349 					tp->t_dupacks = 0;
2350 				else if (tp->t_partialacks < 0 &&
2351 					 (++tp->t_dupacks == tcprexmtthresh ||
2352 					 TCP_FACK_FASTRECOV(tp))) {
2353 					/*
2354 					 * Do the fast retransmit, and adjust
2355 					 * congestion control paramenters.
2356 					 */
2357 					if (tp->t_congctl->fast_retransmit(tp, th)) {
2358 						/* False fast retransmit */
2359 						break;
2360 					} else
2361 						goto drop;
2362 				} else if (tp->t_dupacks > tcprexmtthresh) {
2363 					tp->snd_cwnd += tp->t_segsz;
2364 					(void) tcp_output(tp);
2365 					goto drop;
2366 				}
2367 			} else {
2368 				/*
2369 				 * If the ack appears to be very old, only
2370 				 * allow data that is in-sequence.  This
2371 				 * makes it somewhat more difficult to insert
2372 				 * forged data by guessing sequence numbers.
2373 				 * Sent an ack to try to update the send
2374 				 * sequence number on the other side.
2375 				 */
2376 				if (tlen && th->th_seq != tp->rcv_nxt &&
2377 				    SEQ_LT(th->th_ack,
2378 				    tp->snd_una - tp->max_sndwnd))
2379 					goto dropafterack;
2380 			}
2381 			break;
2382 		}
2383 		/*
2384 		 * If the congestion window was inflated to account
2385 		 * for the other side's cached packets, retract it.
2386 		 */
2387 		/* XXX: make SACK have his own congestion control
2388 		 * struct -- rpaulo */
2389 		if (TCP_SACK_ENABLED(tp))
2390 			tcp_sack_newack(tp, th);
2391 		else
2392 			tp->t_congctl->fast_retransmit_newack(tp, th);
2393 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2394 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2395 			goto dropafterack;
2396 		}
2397 		acked = th->th_ack - tp->snd_una;
2398 		tcps = TCP_STAT_GETREF();
2399 		tcps[TCP_STAT_RCVACKPACK]++;
2400 		tcps[TCP_STAT_RCVACKBYTE] += acked;
2401 		TCP_STAT_PUTREF();
2402 
2403 		/*
2404 		 * If we have a timestamp reply, update smoothed
2405 		 * round trip time.  If no timestamp is present but
2406 		 * transmit timer is running and timed sequence
2407 		 * number was acked, update smoothed round trip time.
2408 		 * Since we now have an rtt measurement, cancel the
2409 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2410 		 * Recompute the initial retransmit timer.
2411 		 */
2412 		if (ts_rtt)
2413 			tcp_xmit_timer(tp, ts_rtt);
2414 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2415 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2416 
2417 		/*
2418 		 * If all outstanding data is acked, stop retransmit
2419 		 * timer and remember to restart (more output or persist).
2420 		 * If there is more data to be acked, restart retransmit
2421 		 * timer, using current (possibly backed-off) value.
2422 		 */
2423 		if (th->th_ack == tp->snd_max) {
2424 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2425 			needoutput = 1;
2426 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2427 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2428 
2429 		/*
2430 		 * New data has been acked, adjust the congestion window.
2431 		 */
2432 		tp->t_congctl->newack(tp, th);
2433 
2434 		nd6_hint(tp);
2435 		if (acked > so->so_snd.sb_cc) {
2436 			tp->snd_wnd -= so->so_snd.sb_cc;
2437 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2438 			ourfinisacked = 1;
2439 		} else {
2440 			if (acked > (tp->t_lastoff - tp->t_inoff))
2441 				tp->t_lastm = NULL;
2442 			sbdrop(&so->so_snd, acked);
2443 			tp->t_lastoff -= acked;
2444 			tp->snd_wnd -= acked;
2445 			ourfinisacked = 0;
2446 		}
2447 		sowwakeup(so);
2448 
2449 		icmp_check(tp, th, acked);
2450 
2451 		tp->snd_una = th->th_ack;
2452 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
2453 			tp->snd_fack = tp->snd_una;
2454 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2455 			tp->snd_nxt = tp->snd_una;
2456 		if (SEQ_LT(tp->snd_high, tp->snd_una))
2457 			tp->snd_high = tp->snd_una;
2458 
2459 		switch (tp->t_state) {
2460 
2461 		/*
2462 		 * In FIN_WAIT_1 STATE in addition to the processing
2463 		 * for the ESTABLISHED state if our FIN is now acknowledged
2464 		 * then enter FIN_WAIT_2.
2465 		 */
2466 		case TCPS_FIN_WAIT_1:
2467 			if (ourfinisacked) {
2468 				/*
2469 				 * If we can't receive any more
2470 				 * data, then closing user can proceed.
2471 				 * Starting the timer is contrary to the
2472 				 * specification, but if we don't get a FIN
2473 				 * we'll hang forever.
2474 				 */
2475 				if (so->so_state & SS_CANTRCVMORE) {
2476 					soisdisconnected(so);
2477 					if (tp->t_maxidle > 0)
2478 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2479 						    tp->t_maxidle);
2480 				}
2481 				tp->t_state = TCPS_FIN_WAIT_2;
2482 			}
2483 			break;
2484 
2485 	 	/*
2486 		 * In CLOSING STATE in addition to the processing for
2487 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2488 		 * then enter the TIME-WAIT state, otherwise ignore
2489 		 * the segment.
2490 		 */
2491 		case TCPS_CLOSING:
2492 			if (ourfinisacked) {
2493 				tp->t_state = TCPS_TIME_WAIT;
2494 				tcp_canceltimers(tp);
2495 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2496 				soisdisconnected(so);
2497 			}
2498 			break;
2499 
2500 		/*
2501 		 * In LAST_ACK, we may still be waiting for data to drain
2502 		 * and/or to be acked, as well as for the ack of our FIN.
2503 		 * If our FIN is now acknowledged, delete the TCB,
2504 		 * enter the closed state and return.
2505 		 */
2506 		case TCPS_LAST_ACK:
2507 			if (ourfinisacked) {
2508 				tp = tcp_close(tp);
2509 				goto drop;
2510 			}
2511 			break;
2512 
2513 		/*
2514 		 * In TIME_WAIT state the only thing that should arrive
2515 		 * is a retransmission of the remote FIN.  Acknowledge
2516 		 * it and restart the finack timer.
2517 		 */
2518 		case TCPS_TIME_WAIT:
2519 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2520 			goto dropafterack;
2521 		}
2522 	}
2523 
2524 step6:
2525 	/*
2526 	 * Update window information.
2527 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2528 	 */
2529 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2530 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2531 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2532 		/* keep track of pure window updates */
2533 		if (tlen == 0 &&
2534 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2535 			TCP_STATINC(TCP_STAT_RCVWINUPD);
2536 		tp->snd_wnd = tiwin;
2537 		tp->snd_wl1 = th->th_seq;
2538 		tp->snd_wl2 = th->th_ack;
2539 		if (tp->snd_wnd > tp->max_sndwnd)
2540 			tp->max_sndwnd = tp->snd_wnd;
2541 		needoutput = 1;
2542 	}
2543 
2544 	/*
2545 	 * Process segments with URG.
2546 	 */
2547 	if ((tiflags & TH_URG) && th->th_urp &&
2548 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2549 		/*
2550 		 * This is a kludge, but if we receive and accept
2551 		 * random urgent pointers, we'll crash in
2552 		 * soreceive.  It's hard to imagine someone
2553 		 * actually wanting to send this much urgent data.
2554 		 */
2555 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2556 			th->th_urp = 0;			/* XXX */
2557 			tiflags &= ~TH_URG;		/* XXX */
2558 			goto dodata;			/* XXX */
2559 		}
2560 		/*
2561 		 * If this segment advances the known urgent pointer,
2562 		 * then mark the data stream.  This should not happen
2563 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2564 		 * a FIN has been received from the remote side.
2565 		 * In these states we ignore the URG.
2566 		 *
2567 		 * According to RFC961 (Assigned Protocols),
2568 		 * the urgent pointer points to the last octet
2569 		 * of urgent data.  We continue, however,
2570 		 * to consider it to indicate the first octet
2571 		 * of data past the urgent section as the original
2572 		 * spec states (in one of two places).
2573 		 */
2574 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2575 			tp->rcv_up = th->th_seq + th->th_urp;
2576 			so->so_oobmark = so->so_rcv.sb_cc +
2577 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2578 			if (so->so_oobmark == 0)
2579 				so->so_state |= SS_RCVATMARK;
2580 			sohasoutofband(so);
2581 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2582 		}
2583 		/*
2584 		 * Remove out of band data so doesn't get presented to user.
2585 		 * This can happen independent of advancing the URG pointer,
2586 		 * but if two URG's are pending at once, some out-of-band
2587 		 * data may creep in... ick.
2588 		 */
2589 		if (th->th_urp <= (u_int16_t) tlen
2590 #ifdef SO_OOBINLINE
2591 		     && (so->so_options & SO_OOBINLINE) == 0
2592 #endif
2593 		     )
2594 			tcp_pulloutofband(so, th, m, hdroptlen);
2595 	} else
2596 		/*
2597 		 * If no out of band data is expected,
2598 		 * pull receive urgent pointer along
2599 		 * with the receive window.
2600 		 */
2601 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2602 			tp->rcv_up = tp->rcv_nxt;
2603 dodata:							/* XXX */
2604 
2605 	/*
2606 	 * Process the segment text, merging it into the TCP sequencing queue,
2607 	 * and arranging for acknowledgement of receipt if necessary.
2608 	 * This process logically involves adjusting tp->rcv_wnd as data
2609 	 * is presented to the user (this happens in tcp_usrreq.c,
2610 	 * case PRU_RCVD).  If a FIN has already been received on this
2611 	 * connection then we just ignore the text.
2612 	 */
2613 	if ((tlen || (tiflags & TH_FIN)) &&
2614 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2615 		/*
2616 		 * Insert segment ti into reassembly queue of tcp with
2617 		 * control block tp.  Return TH_FIN if reassembly now includes
2618 		 * a segment with FIN.  The macro form does the common case
2619 		 * inline (segment is the next to be received on an
2620 		 * established connection, and the queue is empty),
2621 		 * avoiding linkage into and removal from the queue and
2622 		 * repetition of various conversions.
2623 		 * Set DELACK for segments received in order, but ack
2624 		 * immediately when segments are out of order
2625 		 * (so fast retransmit can work).
2626 		 */
2627 		/* NOTE: this was TCP_REASS() macro, but used only once */
2628 		TCP_REASS_LOCK(tp);
2629 		if (th->th_seq == tp->rcv_nxt &&
2630 		    TAILQ_FIRST(&tp->segq) == NULL &&
2631 		    tp->t_state == TCPS_ESTABLISHED) {
2632 			tcp_setup_ack(tp, th);
2633 			tp->rcv_nxt += tlen;
2634 			tiflags = th->th_flags & TH_FIN;
2635 			tcps = TCP_STAT_GETREF();
2636 			tcps[TCP_STAT_RCVPACK]++;
2637 			tcps[TCP_STAT_RCVBYTE] += tlen;
2638 			TCP_STAT_PUTREF();
2639 			nd6_hint(tp);
2640 			if (so->so_state & SS_CANTRCVMORE)
2641 				m_freem(m);
2642 			else {
2643 				m_adj(m, hdroptlen);
2644 				sbappendstream(&(so)->so_rcv, m);
2645 			}
2646 			sorwakeup(so);
2647 		} else {
2648 			m_adj(m, hdroptlen);
2649 			tiflags = tcp_reass(tp, th, m, &tlen);
2650 			tp->t_flags |= TF_ACKNOW;
2651 		}
2652 		TCP_REASS_UNLOCK(tp);
2653 
2654 		/*
2655 		 * Note the amount of data that peer has sent into
2656 		 * our window, in order to estimate the sender's
2657 		 * buffer size.
2658 		 */
2659 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2660 	} else {
2661 		m_freem(m);
2662 		m = NULL;
2663 		tiflags &= ~TH_FIN;
2664 	}
2665 
2666 	/*
2667 	 * If FIN is received ACK the FIN and let the user know
2668 	 * that the connection is closing.  Ignore a FIN received before
2669 	 * the connection is fully established.
2670 	 */
2671 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2672 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2673 			socantrcvmore(so);
2674 			tp->t_flags |= TF_ACKNOW;
2675 			tp->rcv_nxt++;
2676 		}
2677 		switch (tp->t_state) {
2678 
2679 	 	/*
2680 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2681 		 */
2682 		case TCPS_ESTABLISHED:
2683 			tp->t_state = TCPS_CLOSE_WAIT;
2684 			break;
2685 
2686 	 	/*
2687 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2688 		 * enter the CLOSING state.
2689 		 */
2690 		case TCPS_FIN_WAIT_1:
2691 			tp->t_state = TCPS_CLOSING;
2692 			break;
2693 
2694 	 	/*
2695 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2696 		 * starting the time-wait timer, turning off the other
2697 		 * standard timers.
2698 		 */
2699 		case TCPS_FIN_WAIT_2:
2700 			tp->t_state = TCPS_TIME_WAIT;
2701 			tcp_canceltimers(tp);
2702 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2703 			soisdisconnected(so);
2704 			break;
2705 
2706 		/*
2707 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2708 		 */
2709 		case TCPS_TIME_WAIT:
2710 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2711 			break;
2712 		}
2713 	}
2714 #ifdef TCP_DEBUG
2715 	if (so->so_options & SO_DEBUG)
2716 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2717 #endif
2718 
2719 	/*
2720 	 * Return any desired output.
2721 	 */
2722 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2723 		(void) tcp_output(tp);
2724 	}
2725 	if (tcp_saveti)
2726 		m_freem(tcp_saveti);
2727 	return;
2728 
2729 badsyn:
2730 	/*
2731 	 * Received a bad SYN.  Increment counters and dropwithreset.
2732 	 */
2733 	TCP_STATINC(TCP_STAT_BADSYN);
2734 	tp = NULL;
2735 	goto dropwithreset;
2736 
2737 dropafterack:
2738 	/*
2739 	 * Generate an ACK dropping incoming segment if it occupies
2740 	 * sequence space, where the ACK reflects our state.
2741 	 */
2742 	if (tiflags & TH_RST)
2743 		goto drop;
2744 	goto dropafterack2;
2745 
2746 dropafterack_ratelim:
2747 	/*
2748 	 * We may want to rate-limit ACKs against SYN/RST attack.
2749 	 */
2750 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2751 	    tcp_ackdrop_ppslim) == 0) {
2752 		/* XXX stat */
2753 		goto drop;
2754 	}
2755 	/* ...fall into dropafterack2... */
2756 
2757 dropafterack2:
2758 	m_freem(m);
2759 	tp->t_flags |= TF_ACKNOW;
2760 	(void) tcp_output(tp);
2761 	if (tcp_saveti)
2762 		m_freem(tcp_saveti);
2763 	return;
2764 
2765 dropwithreset_ratelim:
2766 	/*
2767 	 * We may want to rate-limit RSTs in certain situations,
2768 	 * particularly if we are sending an RST in response to
2769 	 * an attempt to connect to or otherwise communicate with
2770 	 * a port for which we have no socket.
2771 	 */
2772 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2773 	    tcp_rst_ppslim) == 0) {
2774 		/* XXX stat */
2775 		goto drop;
2776 	}
2777 	/* ...fall into dropwithreset... */
2778 
2779 dropwithreset:
2780 	/*
2781 	 * Generate a RST, dropping incoming segment.
2782 	 * Make ACK acceptable to originator of segment.
2783 	 */
2784 	if (tiflags & TH_RST)
2785 		goto drop;
2786 
2787 	switch (af) {
2788 #ifdef INET6
2789 	case AF_INET6:
2790 		/* For following calls to tcp_respond */
2791 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2792 			goto drop;
2793 		break;
2794 #endif /* INET6 */
2795 	case AF_INET:
2796 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2797 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2798 			goto drop;
2799 	}
2800 
2801 	if (tiflags & TH_ACK)
2802 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2803 	else {
2804 		if (tiflags & TH_SYN)
2805 			tlen++;
2806 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2807 		    TH_RST|TH_ACK);
2808 	}
2809 	if (tcp_saveti)
2810 		m_freem(tcp_saveti);
2811 	return;
2812 
2813 badcsum:
2814 drop:
2815 	/*
2816 	 * Drop space held by incoming segment and return.
2817 	 */
2818 	if (tp) {
2819 		if (tp->t_inpcb)
2820 			so = tp->t_inpcb->inp_socket;
2821 #ifdef INET6
2822 		else if (tp->t_in6pcb)
2823 			so = tp->t_in6pcb->in6p_socket;
2824 #endif
2825 		else
2826 			so = NULL;
2827 #ifdef TCP_DEBUG
2828 		if (so && (so->so_options & SO_DEBUG) != 0)
2829 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2830 #endif
2831 	}
2832 	if (tcp_saveti)
2833 		m_freem(tcp_saveti);
2834 	m_freem(m);
2835 	return;
2836 }
2837 
2838 #ifdef TCP_SIGNATURE
2839 int
2840 tcp_signature_apply(void *fstate, void *data, u_int len)
2841 {
2842 
2843 	MD5Update(fstate, (u_char *)data, len);
2844 	return (0);
2845 }
2846 
2847 struct secasvar *
2848 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2849 {
2850 	struct secasvar *sav;
2851 #ifdef FAST_IPSEC
2852 	union sockaddr_union dst;
2853 #endif
2854 	struct ip *ip;
2855 	struct ip6_hdr *ip6;
2856 
2857 	ip = mtod(m, struct ip *);
2858 	switch (ip->ip_v) {
2859 	case 4:
2860 		ip = mtod(m, struct ip *);
2861 		ip6 = NULL;
2862 		break;
2863 	case 6:
2864 		ip = NULL;
2865 		ip6 = mtod(m, struct ip6_hdr *);
2866 		break;
2867 	default:
2868 		return (NULL);
2869 	}
2870 
2871 #ifdef FAST_IPSEC
2872 	/* Extract the destination from the IP header in the mbuf. */
2873 	bzero(&dst, sizeof(union sockaddr_union));
2874 	if (ip !=NULL) {
2875 		dst.sa.sa_len = sizeof(struct sockaddr_in);
2876 		dst.sa.sa_family = AF_INET;
2877 		dst.sin.sin_addr = ip->ip_dst;
2878 	} else {
2879 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2880 		dst.sa.sa_family = AF_INET6;
2881 		dst.sin6.sin6_addr = ip6->ip6_dst;
2882 	}
2883 
2884 	/*
2885 	 * Look up an SADB entry which matches the address of the peer.
2886 	 */
2887 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2888 #else
2889 	if (ip)
2890 		sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
2891 		    (void *)&ip->ip_dst, IPPROTO_TCP,
2892 		    htonl(TCP_SIG_SPI), 0, 0);
2893 	else
2894 		sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
2895 		    (void *)&ip6->ip6_dst, IPPROTO_TCP,
2896 		    htonl(TCP_SIG_SPI), 0, 0);
2897 #endif
2898 
2899 	return (sav);	/* freesav must be performed by caller */
2900 }
2901 
2902 int
2903 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2904     struct secasvar *sav, char *sig)
2905 {
2906 	MD5_CTX ctx;
2907 	struct ip *ip;
2908 	struct ipovly *ipovly;
2909 	struct ip6_hdr *ip6;
2910 	struct ippseudo ippseudo;
2911 	struct ip6_hdr_pseudo ip6pseudo;
2912 	struct tcphdr th0;
2913 	int l, tcphdrlen;
2914 
2915 	if (sav == NULL)
2916 		return (-1);
2917 
2918 	tcphdrlen = th->th_off * 4;
2919 
2920 	switch (mtod(m, struct ip *)->ip_v) {
2921 	case 4:
2922 		ip = mtod(m, struct ip *);
2923 		ip6 = NULL;
2924 		break;
2925 	case 6:
2926 		ip = NULL;
2927 		ip6 = mtod(m, struct ip6_hdr *);
2928 		break;
2929 	default:
2930 		return (-1);
2931 	}
2932 
2933 	MD5Init(&ctx);
2934 
2935 	if (ip) {
2936 		memset(&ippseudo, 0, sizeof(ippseudo));
2937 		ipovly = (struct ipovly *)ip;
2938 		ippseudo.ippseudo_src = ipovly->ih_src;
2939 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2940 		ippseudo.ippseudo_pad = 0;
2941 		ippseudo.ippseudo_p = IPPROTO_TCP;
2942 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2943 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2944 	} else {
2945 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2946 		ip6pseudo.ip6ph_src = ip6->ip6_src;
2947 		in6_clearscope(&ip6pseudo.ip6ph_src);
2948 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2949 		in6_clearscope(&ip6pseudo.ip6ph_dst);
2950 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2951 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2952 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2953 	}
2954 
2955 	th0 = *th;
2956 	th0.th_sum = 0;
2957 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
2958 
2959 	l = m->m_pkthdr.len - thoff - tcphdrlen;
2960 	if (l > 0)
2961 		m_apply(m, thoff + tcphdrlen,
2962 		    m->m_pkthdr.len - thoff - tcphdrlen,
2963 		    tcp_signature_apply, &ctx);
2964 
2965 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2966 	MD5Final(sig, &ctx);
2967 
2968 	return (0);
2969 }
2970 #endif
2971 
2972 static int
2973 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
2974     struct tcphdr *th,
2975     struct mbuf *m, int toff, struct tcp_opt_info *oi)
2976 {
2977 	u_int16_t mss;
2978 	int opt, optlen = 0;
2979 #ifdef TCP_SIGNATURE
2980 	void *sigp = NULL;
2981 	char sigbuf[TCP_SIGLEN];
2982 	struct secasvar *sav = NULL;
2983 #endif
2984 
2985 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2986 		opt = cp[0];
2987 		if (opt == TCPOPT_EOL)
2988 			break;
2989 		if (opt == TCPOPT_NOP)
2990 			optlen = 1;
2991 		else {
2992 			if (cnt < 2)
2993 				break;
2994 			optlen = cp[1];
2995 			if (optlen < 2 || optlen > cnt)
2996 				break;
2997 		}
2998 		switch (opt) {
2999 
3000 		default:
3001 			continue;
3002 
3003 		case TCPOPT_MAXSEG:
3004 			if (optlen != TCPOLEN_MAXSEG)
3005 				continue;
3006 			if (!(th->th_flags & TH_SYN))
3007 				continue;
3008 			if (TCPS_HAVERCVDSYN(tp->t_state))
3009 				continue;
3010 			bcopy(cp + 2, &mss, sizeof(mss));
3011 			oi->maxseg = ntohs(mss);
3012 			break;
3013 
3014 		case TCPOPT_WINDOW:
3015 			if (optlen != TCPOLEN_WINDOW)
3016 				continue;
3017 			if (!(th->th_flags & TH_SYN))
3018 				continue;
3019 			if (TCPS_HAVERCVDSYN(tp->t_state))
3020 				continue;
3021 			tp->t_flags |= TF_RCVD_SCALE;
3022 			tp->requested_s_scale = cp[2];
3023 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3024 #if 0	/*XXX*/
3025 				char *p;
3026 
3027 				if (ip)
3028 					p = ntohl(ip->ip_src);
3029 #ifdef INET6
3030 				else if (ip6)
3031 					p = ip6_sprintf(&ip6->ip6_src);
3032 #endif
3033 				else
3034 					p = "(unknown)";
3035 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3036 				    "assuming %d\n",
3037 				    tp->requested_s_scale, p,
3038 				    TCP_MAX_WINSHIFT);
3039 #else
3040 				log(LOG_ERR, "TCP: invalid wscale %d, "
3041 				    "assuming %d\n",
3042 				    tp->requested_s_scale,
3043 				    TCP_MAX_WINSHIFT);
3044 #endif
3045 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
3046 			}
3047 			break;
3048 
3049 		case TCPOPT_TIMESTAMP:
3050 			if (optlen != TCPOLEN_TIMESTAMP)
3051 				continue;
3052 			oi->ts_present = 1;
3053 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3054 			NTOHL(oi->ts_val);
3055 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3056 			NTOHL(oi->ts_ecr);
3057 
3058 			if (!(th->th_flags & TH_SYN))
3059 				continue;
3060 			if (TCPS_HAVERCVDSYN(tp->t_state))
3061 				continue;
3062 			/*
3063 			 * A timestamp received in a SYN makes
3064 			 * it ok to send timestamp requests and replies.
3065 			 */
3066 			tp->t_flags |= TF_RCVD_TSTMP;
3067 			tp->ts_recent = oi->ts_val;
3068 			tp->ts_recent_age = tcp_now;
3069                         break;
3070 
3071 		case TCPOPT_SACK_PERMITTED:
3072 			if (optlen != TCPOLEN_SACK_PERMITTED)
3073 				continue;
3074 			if (!(th->th_flags & TH_SYN))
3075 				continue;
3076 			if (TCPS_HAVERCVDSYN(tp->t_state))
3077 				continue;
3078 			if (tcp_do_sack) {
3079 				tp->t_flags |= TF_SACK_PERMIT;
3080 				tp->t_flags |= TF_WILL_SACK;
3081 			}
3082 			break;
3083 
3084 		case TCPOPT_SACK:
3085 			tcp_sack_option(tp, th, cp, optlen);
3086 			break;
3087 #ifdef TCP_SIGNATURE
3088 		case TCPOPT_SIGNATURE:
3089 			if (optlen != TCPOLEN_SIGNATURE)
3090 				continue;
3091 			if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
3092 				return (-1);
3093 
3094 			sigp = sigbuf;
3095 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3096 			tp->t_flags |= TF_SIGNATURE;
3097 			break;
3098 #endif
3099 		}
3100 	}
3101 
3102 #ifdef TCP_SIGNATURE
3103 	if (tp->t_flags & TF_SIGNATURE) {
3104 
3105 		sav = tcp_signature_getsav(m, th);
3106 
3107 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
3108 			return (-1);
3109 	}
3110 
3111 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
3112 		if (sav == NULL)
3113 			return (-1);
3114 #ifdef FAST_IPSEC
3115 		KEY_FREESAV(&sav);
3116 #else
3117 		key_freesav(sav);
3118 #endif
3119 		return (-1);
3120 	}
3121 
3122 	if (sigp) {
3123 		char sig[TCP_SIGLEN];
3124 
3125 		tcp_fields_to_net(th);
3126 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
3127 			tcp_fields_to_host(th);
3128 			if (sav == NULL)
3129 				return (-1);
3130 #ifdef FAST_IPSEC
3131 			KEY_FREESAV(&sav);
3132 #else
3133 			key_freesav(sav);
3134 #endif
3135 			return (-1);
3136 		}
3137 		tcp_fields_to_host(th);
3138 
3139 		if (bcmp(sig, sigp, TCP_SIGLEN)) {
3140 			TCP_STATINC(TCP_STAT_BADSIG);
3141 			if (sav == NULL)
3142 				return (-1);
3143 #ifdef FAST_IPSEC
3144 			KEY_FREESAV(&sav);
3145 #else
3146 			key_freesav(sav);
3147 #endif
3148 			return (-1);
3149 		} else
3150 			TCP_STATINC(TCP_STAT_GOODSIG);
3151 
3152 		key_sa_recordxfer(sav, m);
3153 #ifdef FAST_IPSEC
3154 		KEY_FREESAV(&sav);
3155 #else
3156 		key_freesav(sav);
3157 #endif
3158 	}
3159 #endif
3160 
3161 	return (0);
3162 }
3163 
3164 /*
3165  * Pull out of band byte out of a segment so
3166  * it doesn't appear in the user's data queue.
3167  * It is still reflected in the segment length for
3168  * sequencing purposes.
3169  */
3170 void
3171 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3172     struct mbuf *m, int off)
3173 {
3174 	int cnt = off + th->th_urp - 1;
3175 
3176 	while (cnt >= 0) {
3177 		if (m->m_len > cnt) {
3178 			char *cp = mtod(m, char *) + cnt;
3179 			struct tcpcb *tp = sototcpcb(so);
3180 
3181 			tp->t_iobc = *cp;
3182 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3183 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3184 			m->m_len--;
3185 			return;
3186 		}
3187 		cnt -= m->m_len;
3188 		m = m->m_next;
3189 		if (m == 0)
3190 			break;
3191 	}
3192 	panic("tcp_pulloutofband");
3193 }
3194 
3195 /*
3196  * Collect new round-trip time estimate
3197  * and update averages and current timeout.
3198  */
3199 void
3200 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3201 {
3202 	int32_t delta;
3203 
3204 	TCP_STATINC(TCP_STAT_RTTUPDATED);
3205 	if (tp->t_srtt != 0) {
3206 		/*
3207 		 * srtt is stored as fixed point with 3 bits after the
3208 		 * binary point (i.e., scaled by 8).  The following magic
3209 		 * is equivalent to the smoothing algorithm in rfc793 with
3210 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3211 		 * point).  Adjust rtt to origin 0.
3212 		 */
3213 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3214 		if ((tp->t_srtt += delta) <= 0)
3215 			tp->t_srtt = 1 << 2;
3216 		/*
3217 		 * We accumulate a smoothed rtt variance (actually, a
3218 		 * smoothed mean difference), then set the retransmit
3219 		 * timer to smoothed rtt + 4 times the smoothed variance.
3220 		 * rttvar is stored as fixed point with 2 bits after the
3221 		 * binary point (scaled by 4).  The following is
3222 		 * equivalent to rfc793 smoothing with an alpha of .75
3223 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3224 		 * rfc793's wired-in beta.
3225 		 */
3226 		if (delta < 0)
3227 			delta = -delta;
3228 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3229 		if ((tp->t_rttvar += delta) <= 0)
3230 			tp->t_rttvar = 1 << 2;
3231 	} else {
3232 		/*
3233 		 * No rtt measurement yet - use the unsmoothed rtt.
3234 		 * Set the variance to half the rtt (so our first
3235 		 * retransmit happens at 3*rtt).
3236 		 */
3237 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3238 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3239 	}
3240 	tp->t_rtttime = 0;
3241 	tp->t_rxtshift = 0;
3242 
3243 	/*
3244 	 * the retransmit should happen at rtt + 4 * rttvar.
3245 	 * Because of the way we do the smoothing, srtt and rttvar
3246 	 * will each average +1/2 tick of bias.  When we compute
3247 	 * the retransmit timer, we want 1/2 tick of rounding and
3248 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3249 	 * firing of the timer.  The bias will give us exactly the
3250 	 * 1.5 tick we need.  But, because the bias is
3251 	 * statistical, we have to test that we don't drop below
3252 	 * the minimum feasible timer (which is 2 ticks).
3253 	 */
3254 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3255 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3256 
3257 	/*
3258 	 * We received an ack for a packet that wasn't retransmitted;
3259 	 * it is probably safe to discard any error indications we've
3260 	 * received recently.  This isn't quite right, but close enough
3261 	 * for now (a route might have failed after we sent a segment,
3262 	 * and the return path might not be symmetrical).
3263 	 */
3264 	tp->t_softerror = 0;
3265 }
3266 
3267 
3268 /*
3269  * TCP compressed state engine.  Currently used to hold compressed
3270  * state for SYN_RECEIVED.
3271  */
3272 
3273 u_long	syn_cache_count;
3274 u_int32_t syn_hash1, syn_hash2;
3275 
3276 #define SYN_HASH(sa, sp, dp) \
3277 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3278 				     ((u_int32_t)(sp)))^syn_hash2)))
3279 #ifndef INET6
3280 #define	SYN_HASHALL(hash, src, dst) \
3281 do {									\
3282 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
3283 		((const struct sockaddr_in *)(src))->sin_port,		\
3284 		((const struct sockaddr_in *)(dst))->sin_port);		\
3285 } while (/*CONSTCOND*/ 0)
3286 #else
3287 #define SYN_HASH6(sa, sp, dp) \
3288 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3289 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3290 	 & 0x7fffffff)
3291 
3292 #define SYN_HASHALL(hash, src, dst) \
3293 do {									\
3294 	switch ((src)->sa_family) {					\
3295 	case AF_INET:							\
3296 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3297 			((const struct sockaddr_in *)(src))->sin_port,	\
3298 			((const struct sockaddr_in *)(dst))->sin_port);	\
3299 		break;							\
3300 	case AF_INET6:							\
3301 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3302 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
3303 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
3304 		break;							\
3305 	default:							\
3306 		hash = 0;						\
3307 	}								\
3308 } while (/*CONSTCOND*/0)
3309 #endif /* INET6 */
3310 
3311 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL,
3312     IPL_SOFTNET);
3313 
3314 /*
3315  * We don't estimate RTT with SYNs, so each packet starts with the default
3316  * RTT and each timer step has a fixed timeout value.
3317  */
3318 #define	SYN_CACHE_TIMER_ARM(sc)						\
3319 do {									\
3320 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3321 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3322 	    TCPTV_REXMTMAX);						\
3323 	callout_reset(&(sc)->sc_timer,					\
3324 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
3325 } while (/*CONSTCOND*/0)
3326 
3327 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
3328 
3329 static inline void
3330 syn_cache_rm(struct syn_cache *sc)
3331 {
3332 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3333 	    sc, sc_bucketq);
3334 	sc->sc_tp = NULL;
3335 	LIST_REMOVE(sc, sc_tpq);
3336 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3337 	callout_stop(&sc->sc_timer);
3338 	syn_cache_count--;
3339 }
3340 
3341 static inline void
3342 syn_cache_put(struct syn_cache *sc)
3343 {
3344 	if (sc->sc_ipopts)
3345 		(void) m_free(sc->sc_ipopts);
3346 	rtcache_free(&sc->sc_route);
3347 	if (callout_invoking(&sc->sc_timer))
3348 		sc->sc_flags |= SCF_DEAD;
3349 	else {
3350 		callout_destroy(&sc->sc_timer);
3351 		pool_put(&syn_cache_pool, sc);
3352 	}
3353 }
3354 
3355 void
3356 syn_cache_init(void)
3357 {
3358 	int i;
3359 
3360 	/* Initialize the hash buckets. */
3361 	for (i = 0; i < tcp_syn_cache_size; i++)
3362 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3363 }
3364 
3365 void
3366 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3367 {
3368 	struct syn_cache_head *scp;
3369 	struct syn_cache *sc2;
3370 	int s;
3371 
3372 	/*
3373 	 * If there are no entries in the hash table, reinitialize
3374 	 * the hash secrets.
3375 	 */
3376 	if (syn_cache_count == 0) {
3377 		syn_hash1 = arc4random();
3378 		syn_hash2 = arc4random();
3379 	}
3380 
3381 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3382 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3383 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3384 
3385 	/*
3386 	 * Make sure that we don't overflow the per-bucket
3387 	 * limit or the total cache size limit.
3388 	 */
3389 	s = splsoftnet();
3390 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3391 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3392 		/*
3393 		 * The bucket is full.  Toss the oldest element in the
3394 		 * bucket.  This will be the first entry in the bucket.
3395 		 */
3396 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3397 #ifdef DIAGNOSTIC
3398 		/*
3399 		 * This should never happen; we should always find an
3400 		 * entry in our bucket.
3401 		 */
3402 		if (sc2 == NULL)
3403 			panic("syn_cache_insert: bucketoverflow: impossible");
3404 #endif
3405 		syn_cache_rm(sc2);
3406 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3407 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3408 		struct syn_cache_head *scp2, *sce;
3409 
3410 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3411 		/*
3412 		 * The cache is full.  Toss the oldest entry in the
3413 		 * first non-empty bucket we can find.
3414 		 *
3415 		 * XXX We would really like to toss the oldest
3416 		 * entry in the cache, but we hope that this
3417 		 * condition doesn't happen very often.
3418 		 */
3419 		scp2 = scp;
3420 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3421 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3422 			for (++scp2; scp2 != scp; scp2++) {
3423 				if (scp2 >= sce)
3424 					scp2 = &tcp_syn_cache[0];
3425 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3426 					break;
3427 			}
3428 #ifdef DIAGNOSTIC
3429 			/*
3430 			 * This should never happen; we should always find a
3431 			 * non-empty bucket.
3432 			 */
3433 			if (scp2 == scp)
3434 				panic("syn_cache_insert: cacheoverflow: "
3435 				    "impossible");
3436 #endif
3437 		}
3438 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3439 		syn_cache_rm(sc2);
3440 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3441 	}
3442 
3443 	/*
3444 	 * Initialize the entry's timer.
3445 	 */
3446 	sc->sc_rxttot = 0;
3447 	sc->sc_rxtshift = 0;
3448 	SYN_CACHE_TIMER_ARM(sc);
3449 
3450 	/* Link it from tcpcb entry */
3451 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3452 
3453 	/* Put it into the bucket. */
3454 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3455 	scp->sch_length++;
3456 	syn_cache_count++;
3457 
3458 	TCP_STATINC(TCP_STAT_SC_ADDED);
3459 	splx(s);
3460 }
3461 
3462 /*
3463  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3464  * If we have retransmitted an entry the maximum number of times, expire
3465  * that entry.
3466  */
3467 void
3468 syn_cache_timer(void *arg)
3469 {
3470 	struct syn_cache *sc = arg;
3471 	int s;
3472 
3473 	s = splsoftnet();
3474 	callout_ack(&sc->sc_timer);
3475 
3476 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3477 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3478 		callout_destroy(&sc->sc_timer);
3479 		pool_put(&syn_cache_pool, sc);
3480 		splx(s);
3481 		return;
3482 	}
3483 
3484 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3485 		/* Drop it -- too many retransmissions. */
3486 		goto dropit;
3487 	}
3488 
3489 	/*
3490 	 * Compute the total amount of time this entry has
3491 	 * been on a queue.  If this entry has been on longer
3492 	 * than the keep alive timer would allow, expire it.
3493 	 */
3494 	sc->sc_rxttot += sc->sc_rxtcur;
3495 	if (sc->sc_rxttot >= tcp_keepinit)
3496 		goto dropit;
3497 
3498 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3499 	(void) syn_cache_respond(sc, NULL);
3500 
3501 	/* Advance the timer back-off. */
3502 	sc->sc_rxtshift++;
3503 	SYN_CACHE_TIMER_ARM(sc);
3504 
3505 	splx(s);
3506 	return;
3507 
3508  dropit:
3509 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3510 	syn_cache_rm(sc);
3511 	syn_cache_put(sc);	/* calls pool_put but see spl above */
3512 	splx(s);
3513 }
3514 
3515 /*
3516  * Remove syn cache created by the specified tcb entry,
3517  * because this does not make sense to keep them
3518  * (if there's no tcb entry, syn cache entry will never be used)
3519  */
3520 void
3521 syn_cache_cleanup(struct tcpcb *tp)
3522 {
3523 	struct syn_cache *sc, *nsc;
3524 	int s;
3525 
3526 	s = splsoftnet();
3527 
3528 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3529 		nsc = LIST_NEXT(sc, sc_tpq);
3530 
3531 #ifdef DIAGNOSTIC
3532 		if (sc->sc_tp != tp)
3533 			panic("invalid sc_tp in syn_cache_cleanup");
3534 #endif
3535 		syn_cache_rm(sc);
3536 		syn_cache_put(sc);	/* calls pool_put but see spl above */
3537 	}
3538 	/* just for safety */
3539 	LIST_INIT(&tp->t_sc);
3540 
3541 	splx(s);
3542 }
3543 
3544 /*
3545  * Find an entry in the syn cache.
3546  */
3547 struct syn_cache *
3548 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3549     struct syn_cache_head **headp)
3550 {
3551 	struct syn_cache *sc;
3552 	struct syn_cache_head *scp;
3553 	u_int32_t hash;
3554 	int s;
3555 
3556 	SYN_HASHALL(hash, src, dst);
3557 
3558 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3559 	*headp = scp;
3560 	s = splsoftnet();
3561 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3562 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3563 		if (sc->sc_hash != hash)
3564 			continue;
3565 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3566 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3567 			splx(s);
3568 			return (sc);
3569 		}
3570 	}
3571 	splx(s);
3572 	return (NULL);
3573 }
3574 
3575 /*
3576  * This function gets called when we receive an ACK for a
3577  * socket in the LISTEN state.  We look up the connection
3578  * in the syn cache, and if its there, we pull it out of
3579  * the cache and turn it into a full-blown connection in
3580  * the SYN-RECEIVED state.
3581  *
3582  * The return values may not be immediately obvious, and their effects
3583  * can be subtle, so here they are:
3584  *
3585  *	NULL	SYN was not found in cache; caller should drop the
3586  *		packet and send an RST.
3587  *
3588  *	-1	We were unable to create the new connection, and are
3589  *		aborting it.  An ACK,RST is being sent to the peer
3590  *		(unless we got screwey sequence numbners; see below),
3591  *		because the 3-way handshake has been completed.  Caller
3592  *		should not free the mbuf, since we may be using it.  If
3593  *		we are not, we will free it.
3594  *
3595  *	Otherwise, the return value is a pointer to the new socket
3596  *	associated with the connection.
3597  */
3598 struct socket *
3599 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3600     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3601     struct socket *so, struct mbuf *m)
3602 {
3603 	struct syn_cache *sc;
3604 	struct syn_cache_head *scp;
3605 	struct inpcb *inp = NULL;
3606 #ifdef INET6
3607 	struct in6pcb *in6p = NULL;
3608 #endif
3609 	struct tcpcb *tp = 0;
3610 	struct mbuf *am;
3611 	int s;
3612 	struct socket *oso;
3613 
3614 	s = splsoftnet();
3615 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3616 		splx(s);
3617 		return (NULL);
3618 	}
3619 
3620 	/*
3621 	 * Verify the sequence and ack numbers.  Try getting the correct
3622 	 * response again.
3623 	 */
3624 	if ((th->th_ack != sc->sc_iss + 1) ||
3625 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3626 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3627 		(void) syn_cache_respond(sc, m);
3628 		splx(s);
3629 		return ((struct socket *)(-1));
3630 	}
3631 
3632 	/* Remove this cache entry */
3633 	syn_cache_rm(sc);
3634 	splx(s);
3635 
3636 	/*
3637 	 * Ok, create the full blown connection, and set things up
3638 	 * as they would have been set up if we had created the
3639 	 * connection when the SYN arrived.  If we can't create
3640 	 * the connection, abort it.
3641 	 */
3642 	/*
3643 	 * inp still has the OLD in_pcb stuff, set the
3644 	 * v6-related flags on the new guy, too.   This is
3645 	 * done particularly for the case where an AF_INET6
3646 	 * socket is bound only to a port, and a v4 connection
3647 	 * comes in on that port.
3648 	 * we also copy the flowinfo from the original pcb
3649 	 * to the new one.
3650 	 */
3651 	oso = so;
3652 	so = sonewconn(so, SS_ISCONNECTED);
3653 	if (so == NULL)
3654 		goto resetandabort;
3655 
3656 	switch (so->so_proto->pr_domain->dom_family) {
3657 #ifdef INET
3658 	case AF_INET:
3659 		inp = sotoinpcb(so);
3660 		break;
3661 #endif
3662 #ifdef INET6
3663 	case AF_INET6:
3664 		in6p = sotoin6pcb(so);
3665 		break;
3666 #endif
3667 	}
3668 	switch (src->sa_family) {
3669 #ifdef INET
3670 	case AF_INET:
3671 		if (inp) {
3672 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3673 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3674 			inp->inp_options = ip_srcroute();
3675 			in_pcbstate(inp, INP_BOUND);
3676 			if (inp->inp_options == NULL) {
3677 				inp->inp_options = sc->sc_ipopts;
3678 				sc->sc_ipopts = NULL;
3679 			}
3680 		}
3681 #ifdef INET6
3682 		else if (in6p) {
3683 			/* IPv4 packet to AF_INET6 socket */
3684 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3685 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3686 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3687 				&in6p->in6p_laddr.s6_addr32[3],
3688 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
3689 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3690 			in6totcpcb(in6p)->t_family = AF_INET;
3691 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3692 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3693 			else
3694 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3695 			in6_pcbstate(in6p, IN6P_BOUND);
3696 		}
3697 #endif
3698 		break;
3699 #endif
3700 #ifdef INET6
3701 	case AF_INET6:
3702 		if (in6p) {
3703 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3704 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3705 			in6_pcbstate(in6p, IN6P_BOUND);
3706 		}
3707 		break;
3708 #endif
3709 	}
3710 #ifdef INET6
3711 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3712 		struct in6pcb *oin6p = sotoin6pcb(oso);
3713 		/* inherit socket options from the listening socket */
3714 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3715 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3716 			m_freem(in6p->in6p_options);
3717 			in6p->in6p_options = 0;
3718 		}
3719 		ip6_savecontrol(in6p, &in6p->in6p_options,
3720 			mtod(m, struct ip6_hdr *), m);
3721 	}
3722 #endif
3723 
3724 #if defined(IPSEC) || defined(FAST_IPSEC)
3725 	/*
3726 	 * we make a copy of policy, instead of sharing the policy,
3727 	 * for better behavior in terms of SA lookup and dead SA removal.
3728 	 */
3729 	if (inp) {
3730 		/* copy old policy into new socket's */
3731 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3732 			printf("tcp_input: could not copy policy\n");
3733 	}
3734 #ifdef INET6
3735 	else if (in6p) {
3736 		/* copy old policy into new socket's */
3737 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3738 		    in6p->in6p_sp))
3739 			printf("tcp_input: could not copy policy\n");
3740 	}
3741 #endif
3742 #endif
3743 
3744 	/*
3745 	 * Give the new socket our cached route reference.
3746 	 */
3747 	if (inp) {
3748 		rtcache_copy(&inp->inp_route, &sc->sc_route);
3749 		rtcache_free(&sc->sc_route);
3750 	}
3751 #ifdef INET6
3752 	else {
3753 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3754 		rtcache_free(&sc->sc_route);
3755 	}
3756 #endif
3757 
3758 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3759 	if (am == NULL)
3760 		goto resetandabort;
3761 	MCLAIM(am, &tcp_mowner);
3762 	am->m_len = src->sa_len;
3763 	bcopy(src, mtod(am, void *), src->sa_len);
3764 	if (inp) {
3765 		if (in_pcbconnect(inp, am, &lwp0)) {
3766 			(void) m_free(am);
3767 			goto resetandabort;
3768 		}
3769 	}
3770 #ifdef INET6
3771 	else if (in6p) {
3772 		if (src->sa_family == AF_INET) {
3773 			/* IPv4 packet to AF_INET6 socket */
3774 			struct sockaddr_in6 *sin6;
3775 			sin6 = mtod(am, struct sockaddr_in6 *);
3776 			am->m_len = sizeof(*sin6);
3777 			bzero(sin6, sizeof(*sin6));
3778 			sin6->sin6_family = AF_INET6;
3779 			sin6->sin6_len = sizeof(*sin6);
3780 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3781 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3782 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
3783 				&sin6->sin6_addr.s6_addr32[3],
3784 				sizeof(sin6->sin6_addr.s6_addr32[3]));
3785 		}
3786 		if (in6_pcbconnect(in6p, am, NULL)) {
3787 			(void) m_free(am);
3788 			goto resetandabort;
3789 		}
3790 	}
3791 #endif
3792 	else {
3793 		(void) m_free(am);
3794 		goto resetandabort;
3795 	}
3796 	(void) m_free(am);
3797 
3798 	if (inp)
3799 		tp = intotcpcb(inp);
3800 #ifdef INET6
3801 	else if (in6p)
3802 		tp = in6totcpcb(in6p);
3803 #endif
3804 	else
3805 		tp = NULL;
3806 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3807 	if (sc->sc_request_r_scale != 15) {
3808 		tp->requested_s_scale = sc->sc_requested_s_scale;
3809 		tp->request_r_scale = sc->sc_request_r_scale;
3810 		tp->snd_scale = sc->sc_requested_s_scale;
3811 		tp->rcv_scale = sc->sc_request_r_scale;
3812 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3813 	}
3814 	if (sc->sc_flags & SCF_TIMESTAMP)
3815 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3816 	tp->ts_timebase = sc->sc_timebase;
3817 
3818 	tp->t_template = tcp_template(tp);
3819 	if (tp->t_template == 0) {
3820 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3821 		so = NULL;
3822 		m_freem(m);
3823 		goto abort;
3824 	}
3825 
3826 	tp->iss = sc->sc_iss;
3827 	tp->irs = sc->sc_irs;
3828 	tcp_sendseqinit(tp);
3829 	tcp_rcvseqinit(tp);
3830 	tp->t_state = TCPS_SYN_RECEIVED;
3831 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3832 	TCP_STATINC(TCP_STAT_ACCEPTS);
3833 
3834 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3835 		tp->t_flags |= TF_WILL_SACK;
3836 
3837 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
3838 		tp->t_flags |= TF_ECN_PERMIT;
3839 
3840 #ifdef TCP_SIGNATURE
3841 	if (sc->sc_flags & SCF_SIGNATURE)
3842 		tp->t_flags |= TF_SIGNATURE;
3843 #endif
3844 
3845 	/* Initialize tp->t_ourmss before we deal with the peer's! */
3846 	tp->t_ourmss = sc->sc_ourmaxseg;
3847 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3848 
3849 	/*
3850 	 * Initialize the initial congestion window.  If we
3851 	 * had to retransmit the SYN,ACK, we must initialize cwnd
3852 	 * to 1 segment (i.e. the Loss Window).
3853 	 */
3854 	if (sc->sc_rxtshift)
3855 		tp->snd_cwnd = tp->t_peermss;
3856 	else {
3857 		int ss = tcp_init_win;
3858 #ifdef INET
3859 		if (inp != NULL && in_localaddr(inp->inp_faddr))
3860 			ss = tcp_init_win_local;
3861 #endif
3862 #ifdef INET6
3863 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3864 			ss = tcp_init_win_local;
3865 #endif
3866 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3867 	}
3868 
3869 	tcp_rmx_rtt(tp);
3870 	tp->snd_wl1 = sc->sc_irs;
3871 	tp->rcv_up = sc->sc_irs + 1;
3872 
3873 	/*
3874 	 * This is what whould have happened in tcp_output() when
3875 	 * the SYN,ACK was sent.
3876 	 */
3877 	tp->snd_up = tp->snd_una;
3878 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3879 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3880 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3881 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3882 	tp->last_ack_sent = tp->rcv_nxt;
3883 	tp->t_partialacks = -1;
3884 	tp->t_dupacks = 0;
3885 
3886 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
3887 	s = splsoftnet();
3888 	syn_cache_put(sc);
3889 	splx(s);
3890 	return (so);
3891 
3892 resetandabort:
3893 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3894 abort:
3895 	if (so != NULL)
3896 		(void) soabort(so);
3897 	s = splsoftnet();
3898 	syn_cache_put(sc);
3899 	splx(s);
3900 	TCP_STATINC(TCP_STAT_SC_ABORTED);
3901 	return ((struct socket *)(-1));
3902 }
3903 
3904 /*
3905  * This function is called when we get a RST for a
3906  * non-existent connection, so that we can see if the
3907  * connection is in the syn cache.  If it is, zap it.
3908  */
3909 
3910 void
3911 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3912 {
3913 	struct syn_cache *sc;
3914 	struct syn_cache_head *scp;
3915 	int s = splsoftnet();
3916 
3917 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3918 		splx(s);
3919 		return;
3920 	}
3921 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3922 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3923 		splx(s);
3924 		return;
3925 	}
3926 	syn_cache_rm(sc);
3927 	TCP_STATINC(TCP_STAT_SC_RESET);
3928 	syn_cache_put(sc);	/* calls pool_put but see spl above */
3929 	splx(s);
3930 }
3931 
3932 void
3933 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
3934     struct tcphdr *th)
3935 {
3936 	struct syn_cache *sc;
3937 	struct syn_cache_head *scp;
3938 	int s;
3939 
3940 	s = splsoftnet();
3941 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3942 		splx(s);
3943 		return;
3944 	}
3945 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3946 	if (ntohl (th->th_seq) != sc->sc_iss) {
3947 		splx(s);
3948 		return;
3949 	}
3950 
3951 	/*
3952 	 * If we've retransmitted 3 times and this is our second error,
3953 	 * we remove the entry.  Otherwise, we allow it to continue on.
3954 	 * This prevents us from incorrectly nuking an entry during a
3955 	 * spurious network outage.
3956 	 *
3957 	 * See tcp_notify().
3958 	 */
3959 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3960 		sc->sc_flags |= SCF_UNREACH;
3961 		splx(s);
3962 		return;
3963 	}
3964 
3965 	syn_cache_rm(sc);
3966 	TCP_STATINC(TCP_STAT_SC_UNREACH);
3967 	syn_cache_put(sc);	/* calls pool_put but see spl above */
3968 	splx(s);
3969 }
3970 
3971 /*
3972  * Given a LISTEN socket and an inbound SYN request, add
3973  * this to the syn cache, and send back a segment:
3974  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3975  * to the source.
3976  *
3977  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3978  * Doing so would require that we hold onto the data and deliver it
3979  * to the application.  However, if we are the target of a SYN-flood
3980  * DoS attack, an attacker could send data which would eventually
3981  * consume all available buffer space if it were ACKed.  By not ACKing
3982  * the data, we avoid this DoS scenario.
3983  */
3984 
3985 int
3986 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3987     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
3988     int optlen, struct tcp_opt_info *oi)
3989 {
3990 	struct tcpcb tb, *tp;
3991 	long win;
3992 	struct syn_cache *sc;
3993 	struct syn_cache_head *scp;
3994 	struct mbuf *ipopts;
3995 	struct tcp_opt_info opti;
3996 	int s;
3997 
3998 	tp = sototcpcb(so);
3999 
4000 	bzero(&opti, sizeof(opti));
4001 
4002 	/*
4003 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4004 	 *
4005 	 * Note this check is performed in tcp_input() very early on.
4006 	 */
4007 
4008 	/*
4009 	 * Initialize some local state.
4010 	 */
4011 	win = sbspace(&so->so_rcv);
4012 	if (win > TCP_MAXWIN)
4013 		win = TCP_MAXWIN;
4014 
4015 	switch (src->sa_family) {
4016 #ifdef INET
4017 	case AF_INET:
4018 		/*
4019 		 * Remember the IP options, if any.
4020 		 */
4021 		ipopts = ip_srcroute();
4022 		break;
4023 #endif
4024 	default:
4025 		ipopts = NULL;
4026 	}
4027 
4028 #ifdef TCP_SIGNATURE
4029 	if (optp || (tp->t_flags & TF_SIGNATURE))
4030 #else
4031 	if (optp)
4032 #endif
4033 	{
4034 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4035 #ifdef TCP_SIGNATURE
4036 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4037 #endif
4038 		tb.t_state = TCPS_LISTEN;
4039 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4040 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4041 			return (0);
4042 	} else
4043 		tb.t_flags = 0;
4044 
4045 	/*
4046 	 * See if we already have an entry for this connection.
4047 	 * If we do, resend the SYN,ACK.  We do not count this
4048 	 * as a retransmission (XXX though maybe we should).
4049 	 */
4050 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4051 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
4052 		if (ipopts) {
4053 			/*
4054 			 * If we were remembering a previous source route,
4055 			 * forget it and use the new one we've been given.
4056 			 */
4057 			if (sc->sc_ipopts)
4058 				(void) m_free(sc->sc_ipopts);
4059 			sc->sc_ipopts = ipopts;
4060 		}
4061 		sc->sc_timestamp = tb.ts_recent;
4062 		if (syn_cache_respond(sc, m) == 0) {
4063 			uint64_t *tcps = TCP_STAT_GETREF();
4064 			tcps[TCP_STAT_SNDACKS]++;
4065 			tcps[TCP_STAT_SNDTOTAL]++;
4066 			TCP_STAT_PUTREF();
4067 		}
4068 		return (1);
4069 	}
4070 
4071 	s = splsoftnet();
4072 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4073 	splx(s);
4074 	if (sc == NULL) {
4075 		if (ipopts)
4076 			(void) m_free(ipopts);
4077 		return (0);
4078 	}
4079 
4080 	/*
4081 	 * Fill in the cache, and put the necessary IP and TCP
4082 	 * options into the reply.
4083 	 */
4084 	bzero(sc, sizeof(struct syn_cache));
4085 	callout_init(&sc->sc_timer, 0);
4086 	bcopy(src, &sc->sc_src, src->sa_len);
4087 	bcopy(dst, &sc->sc_dst, dst->sa_len);
4088 	sc->sc_flags = 0;
4089 	sc->sc_ipopts = ipopts;
4090 	sc->sc_irs = th->th_seq;
4091 	switch (src->sa_family) {
4092 #ifdef INET
4093 	case AF_INET:
4094 	    {
4095 		struct sockaddr_in *srcin = (void *) src;
4096 		struct sockaddr_in *dstin = (void *) dst;
4097 
4098 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4099 		    &srcin->sin_addr, dstin->sin_port,
4100 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
4101 		break;
4102 	    }
4103 #endif /* INET */
4104 #ifdef INET6
4105 	case AF_INET6:
4106 	    {
4107 		struct sockaddr_in6 *srcin6 = (void *) src;
4108 		struct sockaddr_in6 *dstin6 = (void *) dst;
4109 
4110 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4111 		    &srcin6->sin6_addr, dstin6->sin6_port,
4112 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4113 		break;
4114 	    }
4115 #endif /* INET6 */
4116 	}
4117 	sc->sc_peermaxseg = oi->maxseg;
4118 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4119 						m->m_pkthdr.rcvif : NULL,
4120 						sc->sc_src.sa.sa_family);
4121 	sc->sc_win = win;
4122 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
4123 	sc->sc_timestamp = tb.ts_recent;
4124 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4125 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4126 		sc->sc_flags |= SCF_TIMESTAMP;
4127 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4128 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4129 		sc->sc_requested_s_scale = tb.requested_s_scale;
4130 		sc->sc_request_r_scale = 0;
4131 		/*
4132 		 * Pick the smallest possible scaling factor that
4133 		 * will still allow us to scale up to sb_max.
4134 		 *
4135 		 * We do this because there are broken firewalls that
4136 		 * will corrupt the window scale option, leading to
4137 		 * the other endpoint believing that our advertised
4138 		 * window is unscaled.  At scale factors larger than
4139 		 * 5 the unscaled window will drop below 1500 bytes,
4140 		 * leading to serious problems when traversing these
4141 		 * broken firewalls.
4142 		 *
4143 		 * With the default sbmax of 256K, a scale factor
4144 		 * of 3 will be chosen by this algorithm.  Those who
4145 		 * choose a larger sbmax should watch out
4146 		 * for the compatiblity problems mentioned above.
4147 		 *
4148 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4149 		 * or <SYN,ACK>) segment itself is never scaled.
4150 		 */
4151 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4152 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4153 			sc->sc_request_r_scale++;
4154 	} else {
4155 		sc->sc_requested_s_scale = 15;
4156 		sc->sc_request_r_scale = 15;
4157 	}
4158 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4159 		sc->sc_flags |= SCF_SACK_PERMIT;
4160 
4161 	/*
4162 	 * ECN setup packet recieved.
4163 	 */
4164 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4165 		sc->sc_flags |= SCF_ECN_PERMIT;
4166 
4167 #ifdef TCP_SIGNATURE
4168 	if (tb.t_flags & TF_SIGNATURE)
4169 		sc->sc_flags |= SCF_SIGNATURE;
4170 #endif
4171 	sc->sc_tp = tp;
4172 	if (syn_cache_respond(sc, m) == 0) {
4173 		uint64_t *tcps = TCP_STAT_GETREF();
4174 		tcps[TCP_STAT_SNDACKS]++;
4175 		tcps[TCP_STAT_SNDTOTAL]++;
4176 		TCP_STAT_PUTREF();
4177 		syn_cache_insert(sc, tp);
4178 	} else {
4179 		s = splsoftnet();
4180 		syn_cache_put(sc);
4181 		splx(s);
4182 		TCP_STATINC(TCP_STAT_SC_DROPPED);
4183 	}
4184 	return (1);
4185 }
4186 
4187 int
4188 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4189 {
4190 #ifdef INET6
4191 	struct rtentry *rt;
4192 #endif
4193 	struct route *ro;
4194 	u_int8_t *optp;
4195 	int optlen, error;
4196 	u_int16_t tlen;
4197 	struct ip *ip = NULL;
4198 #ifdef INET6
4199 	struct ip6_hdr *ip6 = NULL;
4200 #endif
4201 	struct tcpcb *tp = NULL;
4202 	struct tcphdr *th;
4203 	u_int hlen;
4204 	struct socket *so;
4205 
4206 	ro = &sc->sc_route;
4207 	switch (sc->sc_src.sa.sa_family) {
4208 	case AF_INET:
4209 		hlen = sizeof(struct ip);
4210 		break;
4211 #ifdef INET6
4212 	case AF_INET6:
4213 		hlen = sizeof(struct ip6_hdr);
4214 		break;
4215 #endif
4216 	default:
4217 		if (m)
4218 			m_freem(m);
4219 		return (EAFNOSUPPORT);
4220 	}
4221 
4222 	/* Compute the size of the TCP options. */
4223 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4224 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4225 #ifdef TCP_SIGNATURE
4226 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4227 #endif
4228 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4229 
4230 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4231 
4232 	/*
4233 	 * Create the IP+TCP header from scratch.
4234 	 */
4235 	if (m)
4236 		m_freem(m);
4237 #ifdef DIAGNOSTIC
4238 	if (max_linkhdr + tlen > MCLBYTES)
4239 		return (ENOBUFS);
4240 #endif
4241 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4242 	if (m && tlen > MHLEN) {
4243 		MCLGET(m, M_DONTWAIT);
4244 		if ((m->m_flags & M_EXT) == 0) {
4245 			m_freem(m);
4246 			m = NULL;
4247 		}
4248 	}
4249 	if (m == NULL)
4250 		return (ENOBUFS);
4251 	MCLAIM(m, &tcp_tx_mowner);
4252 
4253 	/* Fixup the mbuf. */
4254 	m->m_data += max_linkhdr;
4255 	m->m_len = m->m_pkthdr.len = tlen;
4256 	if (sc->sc_tp) {
4257 		tp = sc->sc_tp;
4258 		if (tp->t_inpcb)
4259 			so = tp->t_inpcb->inp_socket;
4260 #ifdef INET6
4261 		else if (tp->t_in6pcb)
4262 			so = tp->t_in6pcb->in6p_socket;
4263 #endif
4264 		else
4265 			so = NULL;
4266 	} else
4267 		so = NULL;
4268 	m->m_pkthdr.rcvif = NULL;
4269 	memset(mtod(m, u_char *), 0, tlen);
4270 
4271 	switch (sc->sc_src.sa.sa_family) {
4272 	case AF_INET:
4273 		ip = mtod(m, struct ip *);
4274 		ip->ip_v = 4;
4275 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4276 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4277 		ip->ip_p = IPPROTO_TCP;
4278 		th = (struct tcphdr *)(ip + 1);
4279 		th->th_dport = sc->sc_src.sin.sin_port;
4280 		th->th_sport = sc->sc_dst.sin.sin_port;
4281 		break;
4282 #ifdef INET6
4283 	case AF_INET6:
4284 		ip6 = mtod(m, struct ip6_hdr *);
4285 		ip6->ip6_vfc = IPV6_VERSION;
4286 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4287 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4288 		ip6->ip6_nxt = IPPROTO_TCP;
4289 		/* ip6_plen will be updated in ip6_output() */
4290 		th = (struct tcphdr *)(ip6 + 1);
4291 		th->th_dport = sc->sc_src.sin6.sin6_port;
4292 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4293 		break;
4294 #endif
4295 	default:
4296 		th = NULL;
4297 	}
4298 
4299 	th->th_seq = htonl(sc->sc_iss);
4300 	th->th_ack = htonl(sc->sc_irs + 1);
4301 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4302 	th->th_flags = TH_SYN|TH_ACK;
4303 	th->th_win = htons(sc->sc_win);
4304 	/* th_sum already 0 */
4305 	/* th_urp already 0 */
4306 
4307 	/* Tack on the TCP options. */
4308 	optp = (u_int8_t *)(th + 1);
4309 	*optp++ = TCPOPT_MAXSEG;
4310 	*optp++ = 4;
4311 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4312 	*optp++ = sc->sc_ourmaxseg & 0xff;
4313 
4314 	if (sc->sc_request_r_scale != 15) {
4315 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4316 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4317 		    sc->sc_request_r_scale);
4318 		optp += 4;
4319 	}
4320 
4321 	if (sc->sc_flags & SCF_TIMESTAMP) {
4322 		u_int32_t *lp = (u_int32_t *)(optp);
4323 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4324 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
4325 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4326 		*lp   = htonl(sc->sc_timestamp);
4327 		optp += TCPOLEN_TSTAMP_APPA;
4328 	}
4329 
4330 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4331 		u_int8_t *p = optp;
4332 
4333 		/* Let the peer know that we will SACK. */
4334 		p[0] = TCPOPT_SACK_PERMITTED;
4335 		p[1] = 2;
4336 		p[2] = TCPOPT_NOP;
4337 		p[3] = TCPOPT_NOP;
4338 		optp += 4;
4339 	}
4340 
4341 	/*
4342 	 * Send ECN SYN-ACK setup packet.
4343 	 * Routes can be asymetric, so, even if we receive a packet
4344 	 * with ECE and CWR set, we must not assume no one will block
4345 	 * the ECE packet we are about to send.
4346 	 */
4347 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4348 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4349 		th->th_flags |= TH_ECE;
4350 		TCP_STATINC(TCP_STAT_ECN_SHS);
4351 
4352 		/*
4353 		 * draft-ietf-tcpm-ecnsyn-00.txt
4354 		 *
4355 		 * "[...] a TCP node MAY respond to an ECN-setup
4356 		 * SYN packet by setting ECT in the responding
4357 		 * ECN-setup SYN/ACK packet, indicating to routers
4358 		 * that the SYN/ACK packet is ECN-Capable.
4359 		 * This allows a congested router along the path
4360 		 * to mark the packet instead of dropping the
4361 		 * packet as an indication of congestion."
4362 		 *
4363 		 * "[...] There can be a great benefit in setting
4364 		 * an ECN-capable codepoint in SYN/ACK packets [...]
4365 		 * Congestion is  most likely to occur in
4366 		 * the server-to-client direction.  As a result,
4367 		 * setting an ECN-capable codepoint in SYN/ACK
4368 		 * packets can reduce the occurence of three-second
4369 		 * retransmit timeouts resulting from the drop
4370 		 * of SYN/ACK packets."
4371 		 *
4372 		 * Page 4 and 6, January 2006.
4373 		 */
4374 
4375 		switch (sc->sc_src.sa.sa_family) {
4376 #ifdef INET
4377 		case AF_INET:
4378 			ip->ip_tos |= IPTOS_ECN_ECT0;
4379 			break;
4380 #endif
4381 #ifdef INET6
4382 		case AF_INET6:
4383 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4384 			break;
4385 #endif
4386 		}
4387 		TCP_STATINC(TCP_STAT_ECN_ECT);
4388 	}
4389 
4390 #ifdef TCP_SIGNATURE
4391 	if (sc->sc_flags & SCF_SIGNATURE) {
4392 		struct secasvar *sav;
4393 		u_int8_t *sigp;
4394 
4395 		sav = tcp_signature_getsav(m, th);
4396 
4397 		if (sav == NULL) {
4398 			if (m)
4399 				m_freem(m);
4400 			return (EPERM);
4401 		}
4402 
4403 		*optp++ = TCPOPT_SIGNATURE;
4404 		*optp++ = TCPOLEN_SIGNATURE;
4405 		sigp = optp;
4406 		bzero(optp, TCP_SIGLEN);
4407 		optp += TCP_SIGLEN;
4408 		*optp++ = TCPOPT_NOP;
4409 		*optp++ = TCPOPT_EOL;
4410 
4411 		(void)tcp_signature(m, th, hlen, sav, sigp);
4412 
4413 		key_sa_recordxfer(sav, m);
4414 #ifdef FAST_IPSEC
4415 		KEY_FREESAV(&sav);
4416 #else
4417 		key_freesav(sav);
4418 #endif
4419 	}
4420 #endif
4421 
4422 	/* Compute the packet's checksum. */
4423 	switch (sc->sc_src.sa.sa_family) {
4424 	case AF_INET:
4425 		ip->ip_len = htons(tlen - hlen);
4426 		th->th_sum = 0;
4427 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4428 		break;
4429 #ifdef INET6
4430 	case AF_INET6:
4431 		ip6->ip6_plen = htons(tlen - hlen);
4432 		th->th_sum = 0;
4433 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4434 		break;
4435 #endif
4436 	}
4437 
4438 	/*
4439 	 * Fill in some straggling IP bits.  Note the stack expects
4440 	 * ip_len to be in host order, for convenience.
4441 	 */
4442 	switch (sc->sc_src.sa.sa_family) {
4443 #ifdef INET
4444 	case AF_INET:
4445 		ip->ip_len = htons(tlen);
4446 		ip->ip_ttl = ip_defttl;
4447 		/* XXX tos? */
4448 		break;
4449 #endif
4450 #ifdef INET6
4451 	case AF_INET6:
4452 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4453 		ip6->ip6_vfc |= IPV6_VERSION;
4454 		ip6->ip6_plen = htons(tlen - hlen);
4455 		/* ip6_hlim will be initialized afterwards */
4456 		/* XXX flowlabel? */
4457 		break;
4458 #endif
4459 	}
4460 
4461 	/* XXX use IPsec policy on listening socket, on SYN ACK */
4462 	tp = sc->sc_tp;
4463 
4464 	switch (sc->sc_src.sa.sa_family) {
4465 #ifdef INET
4466 	case AF_INET:
4467 		error = ip_output(m, sc->sc_ipopts, ro,
4468 		    (ip_mtudisc ? IP_MTUDISC : 0),
4469 		    (struct ip_moptions *)NULL, so);
4470 		break;
4471 #endif
4472 #ifdef INET6
4473 	case AF_INET6:
4474 		ip6->ip6_hlim = in6_selecthlim(NULL,
4475 				(rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
4476 				                                    : NULL);
4477 
4478 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4479 		break;
4480 #endif
4481 	default:
4482 		error = EAFNOSUPPORT;
4483 		break;
4484 	}
4485 	return (error);
4486 }
4487