xref: /netbsd-src/sys/netinet/tcp_input.c (revision f89f6560d453f5e37386cc7938c072d2f528b9fa)
1 /*	$NetBSD: tcp_input.c,v 1.337 2015/03/14 02:08:16 rtr Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74  * 2011 The NetBSD Foundation, Inc.
75  * All rights reserved.
76  *
77  * This code is derived from software contributed to The NetBSD Foundation
78  * by Coyote Point Systems, Inc.
79  * This code is derived from software contributed to The NetBSD Foundation
80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81  * Facility, NASA Ames Research Center.
82  * This code is derived from software contributed to The NetBSD Foundation
83  * by Charles M. Hannum.
84  * This code is derived from software contributed to The NetBSD Foundation
85  * by Rui Paulo.
86  *
87  * Redistribution and use in source and binary forms, with or without
88  * modification, are permitted provided that the following conditions
89  * are met:
90  * 1. Redistributions of source code must retain the above copyright
91  *    notice, this list of conditions and the following disclaimer.
92  * 2. Redistributions in binary form must reproduce the above copyright
93  *    notice, this list of conditions and the following disclaimer in the
94  *    documentation and/or other materials provided with the distribution.
95  *
96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106  * POSSIBILITY OF SUCH DAMAGE.
107  */
108 
109 /*
110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111  *	The Regents of the University of California.  All rights reserved.
112  *
113  * Redistribution and use in source and binary forms, with or without
114  * modification, are permitted provided that the following conditions
115  * are met:
116  * 1. Redistributions of source code must retain the above copyright
117  *    notice, this list of conditions and the following disclaimer.
118  * 2. Redistributions in binary form must reproduce the above copyright
119  *    notice, this list of conditions and the following disclaimer in the
120  *    documentation and/or other materials provided with the distribution.
121  * 3. Neither the name of the University nor the names of its contributors
122  *    may be used to endorse or promote products derived from this software
123  *    without specific prior written permission.
124  *
125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135  * SUCH DAMAGE.
136  *
137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
138  */
139 
140 /*
141  *	TODO list for SYN cache stuff:
142  *
143  *	Find room for a "state" field, which is needed to keep a
144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
145  *	that this is fairly important for very high-volume web and
146  *	mail servers, which use a large number of short-lived
147  *	connections.
148  */
149 
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.337 2015/03/14 02:08:16 rtr Exp $");
152 
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157 
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170 #ifdef TCP_SIGNATURE
171 #include <sys/md5.h>
172 #endif
173 #include <sys/lwp.h> /* for lwp0 */
174 #include <sys/cprng.h>
175 
176 #include <net/if.h>
177 #include <net/route.h>
178 #include <net/if_types.h>
179 
180 #include <netinet/in.h>
181 #include <netinet/in_systm.h>
182 #include <netinet/ip.h>
183 #include <netinet/in_pcb.h>
184 #include <netinet/in_var.h>
185 #include <netinet/ip_var.h>
186 #include <netinet/in_offload.h>
187 
188 #ifdef INET6
189 #ifndef INET
190 #include <netinet/in.h>
191 #endif
192 #include <netinet/ip6.h>
193 #include <netinet6/ip6_var.h>
194 #include <netinet6/in6_pcb.h>
195 #include <netinet6/ip6_var.h>
196 #include <netinet6/in6_var.h>
197 #include <netinet/icmp6.h>
198 #include <netinet6/nd6.h>
199 #ifdef TCP_SIGNATURE
200 #include <netinet6/scope6_var.h>
201 #endif
202 #endif
203 
204 #ifndef INET6
205 /* always need ip6.h for IP6_EXTHDR_GET */
206 #include <netinet/ip6.h>
207 #endif
208 
209 #include <netinet/tcp.h>
210 #include <netinet/tcp_fsm.h>
211 #include <netinet/tcp_seq.h>
212 #include <netinet/tcp_timer.h>
213 #include <netinet/tcp_var.h>
214 #include <netinet/tcp_private.h>
215 #include <netinet/tcpip.h>
216 #include <netinet/tcp_congctl.h>
217 #include <netinet/tcp_debug.h>
218 
219 #ifdef INET6
220 #include "faith.h"
221 #if defined(NFAITH) && NFAITH > 0
222 #include <net/if_faith.h>
223 #endif
224 #endif	/* INET6 */
225 
226 #ifdef IPSEC
227 #include <netipsec/ipsec.h>
228 #include <netipsec/ipsec_var.h>
229 #include <netipsec/ipsec_private.h>
230 #include <netipsec/key.h>
231 #ifdef INET6
232 #include <netipsec/ipsec6.h>
233 #endif
234 #endif	/* IPSEC*/
235 
236 #include <netinet/tcp_vtw.h>
237 
238 int	tcprexmtthresh = 3;
239 int	tcp_log_refused;
240 
241 int	tcp_do_autorcvbuf = 1;
242 int	tcp_autorcvbuf_inc = 16 * 1024;
243 int	tcp_autorcvbuf_max = 256 * 1024;
244 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
245 
246 static int tcp_rst_ppslim_count = 0;
247 static struct timeval tcp_rst_ppslim_last;
248 static int tcp_ackdrop_ppslim_count = 0;
249 static struct timeval tcp_ackdrop_ppslim_last;
250 
251 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
252 
253 /* for modulo comparisons of timestamps */
254 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
255 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
256 
257 /*
258  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
259  */
260 #ifdef INET6
261 static inline void
262 nd6_hint(struct tcpcb *tp)
263 {
264 	struct rtentry *rt;
265 
266 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
267 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
268 		nd6_nud_hint(rt, NULL, 0);
269 }
270 #else
271 static inline void
272 nd6_hint(struct tcpcb *tp)
273 {
274 }
275 #endif
276 
277 /*
278  * Compute ACK transmission behavior.  Delay the ACK unless
279  * we have already delayed an ACK (must send an ACK every two segments).
280  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
281  * option is enabled.
282  */
283 static void
284 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
285 {
286 
287 	if (tp->t_flags & TF_DELACK ||
288 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
289 		tp->t_flags |= TF_ACKNOW;
290 	else
291 		TCP_SET_DELACK(tp);
292 }
293 
294 static void
295 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
296 {
297 
298 	/*
299 	 * If we had a pending ICMP message that refers to data that have
300 	 * just been acknowledged, disregard the recorded ICMP message.
301 	 */
302 	if ((tp->t_flags & TF_PMTUD_PEND) &&
303 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
304 		tp->t_flags &= ~TF_PMTUD_PEND;
305 
306 	/*
307 	 * Keep track of the largest chunk of data
308 	 * acknowledged since last PMTU update
309 	 */
310 	if (tp->t_pmtud_mss_acked < acked)
311 		tp->t_pmtud_mss_acked = acked;
312 }
313 
314 /*
315  * Convert TCP protocol fields to host order for easier processing.
316  */
317 static void
318 tcp_fields_to_host(struct tcphdr *th)
319 {
320 
321 	NTOHL(th->th_seq);
322 	NTOHL(th->th_ack);
323 	NTOHS(th->th_win);
324 	NTOHS(th->th_urp);
325 }
326 
327 /*
328  * ... and reverse the above.
329  */
330 static void
331 tcp_fields_to_net(struct tcphdr *th)
332 {
333 
334 	HTONL(th->th_seq);
335 	HTONL(th->th_ack);
336 	HTONS(th->th_win);
337 	HTONS(th->th_urp);
338 }
339 
340 #ifdef TCP_CSUM_COUNTERS
341 #include <sys/device.h>
342 
343 #if defined(INET)
344 extern struct evcnt tcp_hwcsum_ok;
345 extern struct evcnt tcp_hwcsum_bad;
346 extern struct evcnt tcp_hwcsum_data;
347 extern struct evcnt tcp_swcsum;
348 #endif /* defined(INET) */
349 #if defined(INET6)
350 extern struct evcnt tcp6_hwcsum_ok;
351 extern struct evcnt tcp6_hwcsum_bad;
352 extern struct evcnt tcp6_hwcsum_data;
353 extern struct evcnt tcp6_swcsum;
354 #endif /* defined(INET6) */
355 
356 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
357 
358 #else
359 
360 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
361 
362 #endif /* TCP_CSUM_COUNTERS */
363 
364 #ifdef TCP_REASS_COUNTERS
365 #include <sys/device.h>
366 
367 extern struct evcnt tcp_reass_;
368 extern struct evcnt tcp_reass_empty;
369 extern struct evcnt tcp_reass_iteration[8];
370 extern struct evcnt tcp_reass_prependfirst;
371 extern struct evcnt tcp_reass_prepend;
372 extern struct evcnt tcp_reass_insert;
373 extern struct evcnt tcp_reass_inserttail;
374 extern struct evcnt tcp_reass_append;
375 extern struct evcnt tcp_reass_appendtail;
376 extern struct evcnt tcp_reass_overlaptail;
377 extern struct evcnt tcp_reass_overlapfront;
378 extern struct evcnt tcp_reass_segdup;
379 extern struct evcnt tcp_reass_fragdup;
380 
381 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
382 
383 #else
384 
385 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
386 
387 #endif /* TCP_REASS_COUNTERS */
388 
389 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
390     int *);
391 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
392     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
393 
394 #ifdef INET
395 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
396 #endif
397 #ifdef INET6
398 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
399 #endif
400 
401 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
402 
403 #if defined(MBUFTRACE)
404 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
405 #endif /* defined(MBUFTRACE) */
406 
407 static struct pool tcpipqent_pool;
408 
409 void
410 tcpipqent_init(void)
411 {
412 
413 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
414 	    NULL, IPL_VM);
415 }
416 
417 struct ipqent *
418 tcpipqent_alloc(void)
419 {
420 	struct ipqent *ipqe;
421 	int s;
422 
423 	s = splvm();
424 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
425 	splx(s);
426 
427 	return ipqe;
428 }
429 
430 void
431 tcpipqent_free(struct ipqent *ipqe)
432 {
433 	int s;
434 
435 	s = splvm();
436 	pool_put(&tcpipqent_pool, ipqe);
437 	splx(s);
438 }
439 
440 static int
441 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
442 {
443 	struct ipqent *p, *q, *nq, *tiqe = NULL;
444 	struct socket *so = NULL;
445 	int pkt_flags;
446 	tcp_seq pkt_seq;
447 	unsigned pkt_len;
448 	u_long rcvpartdupbyte = 0;
449 	u_long rcvoobyte;
450 #ifdef TCP_REASS_COUNTERS
451 	u_int count = 0;
452 #endif
453 	uint64_t *tcps;
454 
455 	if (tp->t_inpcb)
456 		so = tp->t_inpcb->inp_socket;
457 #ifdef INET6
458 	else if (tp->t_in6pcb)
459 		so = tp->t_in6pcb->in6p_socket;
460 #endif
461 
462 	TCP_REASS_LOCK_CHECK(tp);
463 
464 	/*
465 	 * Call with th==0 after become established to
466 	 * force pre-ESTABLISHED data up to user socket.
467 	 */
468 	if (th == 0)
469 		goto present;
470 
471 	m_claimm(m, &tcp_reass_mowner);
472 
473 	rcvoobyte = *tlen;
474 	/*
475 	 * Copy these to local variables because the tcpiphdr
476 	 * gets munged while we are collapsing mbufs.
477 	 */
478 	pkt_seq = th->th_seq;
479 	pkt_len = *tlen;
480 	pkt_flags = th->th_flags;
481 
482 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
483 
484 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
485 		/*
486 		 * When we miss a packet, the vast majority of time we get
487 		 * packets that follow it in order.  So optimize for that.
488 		 */
489 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
490 			p->ipqe_len += pkt_len;
491 			p->ipqe_flags |= pkt_flags;
492 			m_cat(p->ipre_mlast, m);
493 			TRAVERSE(p->ipre_mlast);
494 			m = NULL;
495 			tiqe = p;
496 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
497 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
498 			goto skip_replacement;
499 		}
500 		/*
501 		 * While we're here, if the pkt is completely beyond
502 		 * anything we have, just insert it at the tail.
503 		 */
504 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
505 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
506 			goto insert_it;
507 		}
508 	}
509 
510 	q = TAILQ_FIRST(&tp->segq);
511 
512 	if (q != NULL) {
513 		/*
514 		 * If this segment immediately precedes the first out-of-order
515 		 * block, simply slap the segment in front of it and (mostly)
516 		 * skip the complicated logic.
517 		 */
518 		if (pkt_seq + pkt_len == q->ipqe_seq) {
519 			q->ipqe_seq = pkt_seq;
520 			q->ipqe_len += pkt_len;
521 			q->ipqe_flags |= pkt_flags;
522 			m_cat(m, q->ipqe_m);
523 			q->ipqe_m = m;
524 			q->ipre_mlast = m; /* last mbuf may have changed */
525 			TRAVERSE(q->ipre_mlast);
526 			tiqe = q;
527 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
528 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
529 			goto skip_replacement;
530 		}
531 	} else {
532 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
533 	}
534 
535 	/*
536 	 * Find a segment which begins after this one does.
537 	 */
538 	for (p = NULL; q != NULL; q = nq) {
539 		nq = TAILQ_NEXT(q, ipqe_q);
540 #ifdef TCP_REASS_COUNTERS
541 		count++;
542 #endif
543 		/*
544 		 * If the received segment is just right after this
545 		 * fragment, merge the two together and then check
546 		 * for further overlaps.
547 		 */
548 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
549 #ifdef TCPREASS_DEBUG
550 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
551 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
552 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
553 #endif
554 			pkt_len += q->ipqe_len;
555 			pkt_flags |= q->ipqe_flags;
556 			pkt_seq = q->ipqe_seq;
557 			m_cat(q->ipre_mlast, m);
558 			TRAVERSE(q->ipre_mlast);
559 			m = q->ipqe_m;
560 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
561 			goto free_ipqe;
562 		}
563 		/*
564 		 * If the received segment is completely past this
565 		 * fragment, we need to go the next fragment.
566 		 */
567 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
568 			p = q;
569 			continue;
570 		}
571 		/*
572 		 * If the fragment is past the received segment,
573 		 * it (or any following) can't be concatenated.
574 		 */
575 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
576 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
577 			break;
578 		}
579 
580 		/*
581 		 * We've received all the data in this segment before.
582 		 * mark it as a duplicate and return.
583 		 */
584 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
585 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
586 			tcps = TCP_STAT_GETREF();
587 			tcps[TCP_STAT_RCVDUPPACK]++;
588 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
589 			TCP_STAT_PUTREF();
590 			tcp_new_dsack(tp, pkt_seq, pkt_len);
591 			m_freem(m);
592 			if (tiqe != NULL) {
593 				tcpipqent_free(tiqe);
594 			}
595 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
596 			goto out;
597 		}
598 		/*
599 		 * Received segment completely overlaps this fragment
600 		 * so we drop the fragment (this keeps the temporal
601 		 * ordering of segments correct).
602 		 */
603 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
604 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
605 			rcvpartdupbyte += q->ipqe_len;
606 			m_freem(q->ipqe_m);
607 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
608 			goto free_ipqe;
609 		}
610 		/*
611 		 * RX'ed segment extends past the end of the
612 		 * fragment.  Drop the overlapping bytes.  Then
613 		 * merge the fragment and segment then treat as
614 		 * a longer received packet.
615 		 */
616 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
617 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
618 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
619 #ifdef TCPREASS_DEBUG
620 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
621 			       tp, overlap,
622 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
623 #endif
624 			m_adj(m, overlap);
625 			rcvpartdupbyte += overlap;
626 			m_cat(q->ipre_mlast, m);
627 			TRAVERSE(q->ipre_mlast);
628 			m = q->ipqe_m;
629 			pkt_seq = q->ipqe_seq;
630 			pkt_len += q->ipqe_len - overlap;
631 			rcvoobyte -= overlap;
632 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
633 			goto free_ipqe;
634 		}
635 		/*
636 		 * RX'ed segment extends past the front of the
637 		 * fragment.  Drop the overlapping bytes on the
638 		 * received packet.  The packet will then be
639 		 * contatentated with this fragment a bit later.
640 		 */
641 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
642 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
643 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
644 #ifdef TCPREASS_DEBUG
645 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
646 			       tp, overlap,
647 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
648 #endif
649 			m_adj(m, -overlap);
650 			pkt_len -= overlap;
651 			rcvpartdupbyte += overlap;
652 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
653 			rcvoobyte -= overlap;
654 		}
655 		/*
656 		 * If the received segment immediates precedes this
657 		 * fragment then tack the fragment onto this segment
658 		 * and reinsert the data.
659 		 */
660 		if (q->ipqe_seq == pkt_seq + pkt_len) {
661 #ifdef TCPREASS_DEBUG
662 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
663 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
664 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
665 #endif
666 			pkt_len += q->ipqe_len;
667 			pkt_flags |= q->ipqe_flags;
668 			m_cat(m, q->ipqe_m);
669 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
670 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
671 			tp->t_segqlen--;
672 			KASSERT(tp->t_segqlen >= 0);
673 			KASSERT(tp->t_segqlen != 0 ||
674 			    (TAILQ_EMPTY(&tp->segq) &&
675 			    TAILQ_EMPTY(&tp->timeq)));
676 			if (tiqe == NULL) {
677 				tiqe = q;
678 			} else {
679 				tcpipqent_free(q);
680 			}
681 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
682 			break;
683 		}
684 		/*
685 		 * If the fragment is before the segment, remember it.
686 		 * When this loop is terminated, p will contain the
687 		 * pointer to fragment that is right before the received
688 		 * segment.
689 		 */
690 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
691 			p = q;
692 
693 		continue;
694 
695 		/*
696 		 * This is a common operation.  It also will allow
697 		 * to save doing a malloc/free in most instances.
698 		 */
699 	  free_ipqe:
700 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
701 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
702 		tp->t_segqlen--;
703 		KASSERT(tp->t_segqlen >= 0);
704 		KASSERT(tp->t_segqlen != 0 ||
705 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
706 		if (tiqe == NULL) {
707 			tiqe = q;
708 		} else {
709 			tcpipqent_free(q);
710 		}
711 	}
712 
713 #ifdef TCP_REASS_COUNTERS
714 	if (count > 7)
715 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
716 	else if (count > 0)
717 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
718 #endif
719 
720     insert_it:
721 
722 	/*
723 	 * Allocate a new queue entry since the received segment did not
724 	 * collapse onto any other out-of-order block; thus we are allocating
725 	 * a new block.  If it had collapsed, tiqe would not be NULL and
726 	 * we would be reusing it.
727 	 * XXX If we can't, just drop the packet.  XXX
728 	 */
729 	if (tiqe == NULL) {
730 		tiqe = tcpipqent_alloc();
731 		if (tiqe == NULL) {
732 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
733 			m_freem(m);
734 			goto out;
735 		}
736 	}
737 
738 	/*
739 	 * Update the counters.
740 	 */
741 	tp->t_rcvoopack++;
742 	tcps = TCP_STAT_GETREF();
743 	tcps[TCP_STAT_RCVOOPACK]++;
744 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
745 	if (rcvpartdupbyte) {
746 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
747 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
748 	}
749 	TCP_STAT_PUTREF();
750 
751 	/*
752 	 * Insert the new fragment queue entry into both queues.
753 	 */
754 	tiqe->ipqe_m = m;
755 	tiqe->ipre_mlast = m;
756 	tiqe->ipqe_seq = pkt_seq;
757 	tiqe->ipqe_len = pkt_len;
758 	tiqe->ipqe_flags = pkt_flags;
759 	if (p == NULL) {
760 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
761 #ifdef TCPREASS_DEBUG
762 		if (tiqe->ipqe_seq != tp->rcv_nxt)
763 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
764 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
765 #endif
766 	} else {
767 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
768 #ifdef TCPREASS_DEBUG
769 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
770 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
771 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
772 #endif
773 	}
774 	tp->t_segqlen++;
775 
776 skip_replacement:
777 
778 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
779 
780 present:
781 	/*
782 	 * Present data to user, advancing rcv_nxt through
783 	 * completed sequence space.
784 	 */
785 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
786 		goto out;
787 	q = TAILQ_FIRST(&tp->segq);
788 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
789 		goto out;
790 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
791 		goto out;
792 
793 	tp->rcv_nxt += q->ipqe_len;
794 	pkt_flags = q->ipqe_flags & TH_FIN;
795 	nd6_hint(tp);
796 
797 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
798 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
799 	tp->t_segqlen--;
800 	KASSERT(tp->t_segqlen >= 0);
801 	KASSERT(tp->t_segqlen != 0 ||
802 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
803 	if (so->so_state & SS_CANTRCVMORE)
804 		m_freem(q->ipqe_m);
805 	else
806 		sbappendstream(&so->so_rcv, q->ipqe_m);
807 	tcpipqent_free(q);
808 	TCP_REASS_UNLOCK(tp);
809 	sorwakeup(so);
810 	return (pkt_flags);
811 out:
812 	TCP_REASS_UNLOCK(tp);
813 	return (0);
814 }
815 
816 #ifdef INET6
817 int
818 tcp6_input(struct mbuf **mp, int *offp, int proto)
819 {
820 	struct mbuf *m = *mp;
821 
822 	/*
823 	 * draft-itojun-ipv6-tcp-to-anycast
824 	 * better place to put this in?
825 	 */
826 	if (m->m_flags & M_ANYCAST6) {
827 		struct ip6_hdr *ip6;
828 		if (m->m_len < sizeof(struct ip6_hdr)) {
829 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
830 				TCP_STATINC(TCP_STAT_RCVSHORT);
831 				return IPPROTO_DONE;
832 			}
833 		}
834 		ip6 = mtod(m, struct ip6_hdr *);
835 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
836 		    (char *)&ip6->ip6_dst - (char *)ip6);
837 		return IPPROTO_DONE;
838 	}
839 
840 	tcp_input(m, *offp, proto);
841 	return IPPROTO_DONE;
842 }
843 #endif
844 
845 #ifdef INET
846 static void
847 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
848 {
849 	char src[INET_ADDRSTRLEN];
850 	char dst[INET_ADDRSTRLEN];
851 
852 	if (ip) {
853 		in_print(src, sizeof(src), &ip->ip_src);
854 		in_print(dst, sizeof(dst), &ip->ip_dst);
855 	}
856 	else {
857 		strlcpy(src, "(unknown)", sizeof(src));
858 		strlcpy(dst, "(unknown)", sizeof(dst));
859 	}
860 	log(LOG_INFO,
861 	    "Connection attempt to TCP %s:%d from %s:%d\n",
862 	    dst, ntohs(th->th_dport),
863 	    src, ntohs(th->th_sport));
864 }
865 #endif
866 
867 #ifdef INET6
868 static void
869 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
870 {
871 	char src[INET6_ADDRSTRLEN];
872 	char dst[INET6_ADDRSTRLEN];
873 
874 	if (ip6) {
875 		in6_print(src, sizeof(src), &ip6->ip6_src);
876 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
877 	}
878 	else {
879 		strlcpy(src, "(unknown v6)", sizeof(src));
880 		strlcpy(dst, "(unknown v6)", sizeof(dst));
881 	}
882 	log(LOG_INFO,
883 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
884 	    dst, ntohs(th->th_dport),
885 	    src, ntohs(th->th_sport));
886 }
887 #endif
888 
889 /*
890  * Checksum extended TCP header and data.
891  */
892 int
893 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
894     int toff, int off, int tlen)
895 {
896 
897 	/*
898 	 * XXX it's better to record and check if this mbuf is
899 	 * already checked.
900 	 */
901 
902 	switch (af) {
903 #ifdef INET
904 	case AF_INET:
905 		switch (m->m_pkthdr.csum_flags &
906 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
907 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
908 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
909 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
910 			goto badcsum;
911 
912 		case M_CSUM_TCPv4|M_CSUM_DATA: {
913 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
914 
915 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
916 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
917 				const struct ip *ip =
918 				    mtod(m, const struct ip *);
919 
920 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
921 				    ip->ip_dst.s_addr,
922 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
923 			}
924 			if ((hw_csum ^ 0xffff) != 0)
925 				goto badcsum;
926 			break;
927 		}
928 
929 		case M_CSUM_TCPv4:
930 			/* Checksum was okay. */
931 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
932 			break;
933 
934 		default:
935 			/*
936 			 * Must compute it ourselves.  Maybe skip checksum
937 			 * on loopback interfaces.
938 			 */
939 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
940 					     IFF_LOOPBACK) ||
941 					   tcp_do_loopback_cksum)) {
942 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
943 				if (in4_cksum(m, IPPROTO_TCP, toff,
944 					      tlen + off) != 0)
945 					goto badcsum;
946 			}
947 			break;
948 		}
949 		break;
950 #endif /* INET4 */
951 
952 #ifdef INET6
953 	case AF_INET6:
954 		switch (m->m_pkthdr.csum_flags &
955 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
956 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
957 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
958 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
959 			goto badcsum;
960 
961 #if 0 /* notyet */
962 		case M_CSUM_TCPv6|M_CSUM_DATA:
963 #endif
964 
965 		case M_CSUM_TCPv6:
966 			/* Checksum was okay. */
967 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
968 			break;
969 
970 		default:
971 			/*
972 			 * Must compute it ourselves.  Maybe skip checksum
973 			 * on loopback interfaces.
974 			 */
975 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
976 			    tcp_do_loopback_cksum)) {
977 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
978 				if (in6_cksum(m, IPPROTO_TCP, toff,
979 				    tlen + off) != 0)
980 					goto badcsum;
981 			}
982 		}
983 		break;
984 #endif /* INET6 */
985 	}
986 
987 	return 0;
988 
989 badcsum:
990 	TCP_STATINC(TCP_STAT_RCVBADSUM);
991 	return -1;
992 }
993 
994 /* When a packet arrives addressed to a vestigial tcpbp, we
995  * nevertheless have to respond to it per the spec.
996  */
997 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
998 			  struct mbuf *m, int tlen, int multicast)
999 {
1000 	int		tiflags;
1001 	int		todrop;
1002 	uint32_t	t_flags = 0;
1003 	uint64_t	*tcps;
1004 
1005 	tiflags = th->th_flags;
1006 	todrop  = vp->rcv_nxt - th->th_seq;
1007 
1008 	if (todrop > 0) {
1009 		if (tiflags & TH_SYN) {
1010 			tiflags &= ~TH_SYN;
1011 			++th->th_seq;
1012 			if (th->th_urp > 1)
1013 				--th->th_urp;
1014 			else {
1015 				tiflags &= ~TH_URG;
1016 				th->th_urp = 0;
1017 			}
1018 			--todrop;
1019 		}
1020 		if (todrop > tlen ||
1021 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1022 			/*
1023 			 * Any valid FIN or RST must be to the left of the
1024 			 * window.  At this point the FIN or RST must be a
1025 			 * duplicate or out of sequence; drop it.
1026 			 */
1027 			if (tiflags & TH_RST)
1028 				goto drop;
1029 			tiflags &= ~(TH_FIN|TH_RST);
1030 			/*
1031 			 * Send an ACK to resynchronize and drop any data.
1032 			 * But keep on processing for RST or ACK.
1033 			 */
1034 			t_flags |= TF_ACKNOW;
1035 			todrop = tlen;
1036 			tcps = TCP_STAT_GETREF();
1037 			tcps[TCP_STAT_RCVDUPPACK] += 1;
1038 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1039 			TCP_STAT_PUTREF();
1040 		} else if ((tiflags & TH_RST)
1041 			   && th->th_seq != vp->rcv_nxt) {
1042 			/*
1043 			 * Test for reset before adjusting the sequence
1044 			 * number for overlapping data.
1045 			 */
1046 			goto dropafterack_ratelim;
1047 		} else {
1048 			tcps = TCP_STAT_GETREF();
1049 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1050 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1051 			TCP_STAT_PUTREF();
1052 		}
1053 
1054 //		tcp_new_dsack(tp, th->th_seq, todrop);
1055 //		hdroptlen += todrop;	/*drop from head afterwards*/
1056 
1057 		th->th_seq += todrop;
1058 		tlen -= todrop;
1059 
1060 		if (th->th_urp > todrop)
1061 			th->th_urp -= todrop;
1062 		else {
1063 			tiflags &= ~TH_URG;
1064 			th->th_urp = 0;
1065 		}
1066 	}
1067 
1068 	/*
1069 	 * If new data are received on a connection after the
1070 	 * user processes are gone, then RST the other end.
1071 	 */
1072 	if (tlen) {
1073 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1074 		goto dropwithreset;
1075 	}
1076 
1077 	/*
1078 	 * If segment ends after window, drop trailing data
1079 	 * (and PUSH and FIN); if nothing left, just ACK.
1080 	 */
1081 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
1082 
1083 	if (todrop > 0) {
1084 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1085 		if (todrop >= tlen) {
1086 			/*
1087 			 * The segment actually starts after the window.
1088 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1089 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1090 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1091 			 */
1092 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1093 			/*
1094 			 * If a new connection request is received
1095 			 * while in TIME_WAIT, drop the old connection
1096 			 * and start over if the sequence numbers
1097 			 * are above the previous ones.
1098 			 */
1099 			if ((tiflags & TH_SYN)
1100 			    && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1101 				/* We only support this in the !NOFDREF case, which
1102 				 * is to say: not here.
1103 				 */
1104 				goto dropwithreset;
1105 			}
1106 			/*
1107 			 * If window is closed can only take segments at
1108 			 * window edge, and have to drop data and PUSH from
1109 			 * incoming segments.  Continue processing, but
1110 			 * remember to ack.  Otherwise, drop segment
1111 			 * and (if not RST) ack.
1112 			 */
1113 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1114 				t_flags |= TF_ACKNOW;
1115 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
1116 			} else
1117 				goto dropafterack;
1118 		} else
1119 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1120 		m_adj(m, -todrop);
1121 		tlen -= todrop;
1122 		tiflags &= ~(TH_PUSH|TH_FIN);
1123 	}
1124 
1125 	if (tiflags & TH_RST) {
1126 		if (th->th_seq != vp->rcv_nxt)
1127 			goto dropafterack_ratelim;
1128 
1129 		vtw_del(vp->ctl, vp->vtw);
1130 		goto drop;
1131 	}
1132 
1133 	/*
1134 	 * If the ACK bit is off we drop the segment and return.
1135 	 */
1136 	if ((tiflags & TH_ACK) == 0) {
1137 		if (t_flags & TF_ACKNOW)
1138 			goto dropafterack;
1139 		else
1140 			goto drop;
1141 	}
1142 
1143 	/*
1144 	 * In TIME_WAIT state the only thing that should arrive
1145 	 * is a retransmission of the remote FIN.  Acknowledge
1146 	 * it and restart the finack timer.
1147 	 */
1148 	vtw_restart(vp);
1149 	goto dropafterack;
1150 
1151 dropafterack:
1152 	/*
1153 	 * Generate an ACK dropping incoming segment if it occupies
1154 	 * sequence space, where the ACK reflects our state.
1155 	 */
1156 	if (tiflags & TH_RST)
1157 		goto drop;
1158 	goto dropafterack2;
1159 
1160 dropafterack_ratelim:
1161 	/*
1162 	 * We may want to rate-limit ACKs against SYN/RST attack.
1163 	 */
1164 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1165 			 tcp_ackdrop_ppslim) == 0) {
1166 		/* XXX stat */
1167 		goto drop;
1168 	}
1169 	/* ...fall into dropafterack2... */
1170 
1171 dropafterack2:
1172 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
1173 			  TH_ACK);
1174 	return;
1175 
1176 dropwithreset:
1177 	/*
1178 	 * Generate a RST, dropping incoming segment.
1179 	 * Make ACK acceptable to originator of segment.
1180 	 */
1181 	if (tiflags & TH_RST)
1182 		goto drop;
1183 
1184 	if (tiflags & TH_ACK)
1185 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1186 	else {
1187 		if (tiflags & TH_SYN)
1188 			++tlen;
1189 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1190 				  TH_RST|TH_ACK);
1191 	}
1192 	return;
1193 drop:
1194 	m_freem(m);
1195 }
1196 
1197 /*
1198  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1199  */
1200 void
1201 tcp_input(struct mbuf *m, ...)
1202 {
1203 	struct tcphdr *th;
1204 	struct ip *ip;
1205 	struct inpcb *inp;
1206 #ifdef INET6
1207 	struct ip6_hdr *ip6;
1208 	struct in6pcb *in6p;
1209 #endif
1210 	u_int8_t *optp = NULL;
1211 	int optlen = 0;
1212 	int len, tlen, toff, hdroptlen = 0;
1213 	struct tcpcb *tp = 0;
1214 	int tiflags;
1215 	struct socket *so = NULL;
1216 	int todrop, acked, ourfinisacked, needoutput = 0;
1217 	bool dupseg;
1218 #ifdef TCP_DEBUG
1219 	short ostate = 0;
1220 #endif
1221 	u_long tiwin;
1222 	struct tcp_opt_info opti;
1223 	int off, iphlen;
1224 	va_list ap;
1225 	int af;		/* af on the wire */
1226 	struct mbuf *tcp_saveti = NULL;
1227 	uint32_t ts_rtt;
1228 	uint8_t iptos;
1229 	uint64_t *tcps;
1230 	vestigial_inpcb_t vestige;
1231 
1232 	vestige.valid = 0;
1233 
1234 	MCLAIM(m, &tcp_rx_mowner);
1235 	va_start(ap, m);
1236 	toff = va_arg(ap, int);
1237 	(void)va_arg(ap, int);		/* ignore value, advance ap */
1238 	va_end(ap);
1239 
1240 	TCP_STATINC(TCP_STAT_RCVTOTAL);
1241 
1242 	memset(&opti, 0, sizeof(opti));
1243 	opti.ts_present = 0;
1244 	opti.maxseg = 0;
1245 
1246 	/*
1247 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1248 	 *
1249 	 * TCP is, by definition, unicast, so we reject all
1250 	 * multicast outright.
1251 	 *
1252 	 * Note, there are additional src/dst address checks in
1253 	 * the AF-specific code below.
1254 	 */
1255 	if (m->m_flags & (M_BCAST|M_MCAST)) {
1256 		/* XXX stat */
1257 		goto drop;
1258 	}
1259 #ifdef INET6
1260 	if (m->m_flags & M_ANYCAST6) {
1261 		/* XXX stat */
1262 		goto drop;
1263 	}
1264 #endif
1265 
1266 	/*
1267 	 * Get IP and TCP header.
1268 	 * Note: IP leaves IP header in first mbuf.
1269 	 */
1270 	ip = mtod(m, struct ip *);
1271 	switch (ip->ip_v) {
1272 #ifdef INET
1273 	case 4:
1274 #ifdef INET6
1275 		ip6 = NULL;
1276 #endif
1277 		af = AF_INET;
1278 		iphlen = sizeof(struct ip);
1279 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1280 			sizeof(struct tcphdr));
1281 		if (th == NULL) {
1282 			TCP_STATINC(TCP_STAT_RCVSHORT);
1283 			return;
1284 		}
1285 		/* We do the checksum after PCB lookup... */
1286 		len = ntohs(ip->ip_len);
1287 		tlen = len - toff;
1288 		iptos = ip->ip_tos;
1289 		break;
1290 #endif
1291 #ifdef INET6
1292 	case 6:
1293 		ip = NULL;
1294 		iphlen = sizeof(struct ip6_hdr);
1295 		af = AF_INET6;
1296 		ip6 = mtod(m, struct ip6_hdr *);
1297 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1298 			sizeof(struct tcphdr));
1299 		if (th == NULL) {
1300 			TCP_STATINC(TCP_STAT_RCVSHORT);
1301 			return;
1302 		}
1303 
1304 		/* Be proactive about malicious use of IPv4 mapped address */
1305 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1306 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1307 			/* XXX stat */
1308 			goto drop;
1309 		}
1310 
1311 		/*
1312 		 * Be proactive about unspecified IPv6 address in source.
1313 		 * As we use all-zero to indicate unbounded/unconnected pcb,
1314 		 * unspecified IPv6 address can be used to confuse us.
1315 		 *
1316 		 * Note that packets with unspecified IPv6 destination is
1317 		 * already dropped in ip6_input.
1318 		 */
1319 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1320 			/* XXX stat */
1321 			goto drop;
1322 		}
1323 
1324 		/*
1325 		 * Make sure destination address is not multicast.
1326 		 * Source address checked in ip6_input().
1327 		 */
1328 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1329 			/* XXX stat */
1330 			goto drop;
1331 		}
1332 
1333 		/* We do the checksum after PCB lookup... */
1334 		len = m->m_pkthdr.len;
1335 		tlen = len - toff;
1336 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1337 		break;
1338 #endif
1339 	default:
1340 		m_freem(m);
1341 		return;
1342 	}
1343 
1344 	KASSERT(TCP_HDR_ALIGNED_P(th));
1345 
1346 	/*
1347 	 * Check that TCP offset makes sense,
1348 	 * pull out TCP options and adjust length.		XXX
1349 	 */
1350 	off = th->th_off << 2;
1351 	if (off < sizeof (struct tcphdr) || off > tlen) {
1352 		TCP_STATINC(TCP_STAT_RCVBADOFF);
1353 		goto drop;
1354 	}
1355 	tlen -= off;
1356 
1357 	/*
1358 	 * tcp_input() has been modified to use tlen to mean the TCP data
1359 	 * length throughout the function.  Other functions can use
1360 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1361 	 * rja
1362 	 */
1363 
1364 	if (off > sizeof (struct tcphdr)) {
1365 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1366 		if (th == NULL) {
1367 			TCP_STATINC(TCP_STAT_RCVSHORT);
1368 			return;
1369 		}
1370 		/*
1371 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
1372 		 * (as they're before toff) and we don't need to update those.
1373 		 */
1374 		KASSERT(TCP_HDR_ALIGNED_P(th));
1375 		optlen = off - sizeof (struct tcphdr);
1376 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1377 		/*
1378 		 * Do quick retrieval of timestamp options ("options
1379 		 * prediction?").  If timestamp is the only option and it's
1380 		 * formatted as recommended in RFC 1323 appendix A, we
1381 		 * quickly get the values now and not bother calling
1382 		 * tcp_dooptions(), etc.
1383 		 */
1384 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1385 		     (optlen > TCPOLEN_TSTAMP_APPA &&
1386 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1387 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1388 		     (th->th_flags & TH_SYN) == 0) {
1389 			opti.ts_present = 1;
1390 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1391 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1392 			optp = NULL;	/* we've parsed the options */
1393 		}
1394 	}
1395 	tiflags = th->th_flags;
1396 
1397 	/*
1398 	 * Locate pcb for segment.
1399 	 */
1400 findpcb:
1401 	inp = NULL;
1402 #ifdef INET6
1403 	in6p = NULL;
1404 #endif
1405 	switch (af) {
1406 #ifdef INET
1407 	case AF_INET:
1408 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1409 					   ip->ip_dst, th->th_dport,
1410 					   &vestige);
1411 		if (inp == 0 && !vestige.valid) {
1412 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1413 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1414 		}
1415 #ifdef INET6
1416 		if (inp == 0 && !vestige.valid) {
1417 			struct in6_addr s, d;
1418 
1419 			/* mapped addr case */
1420 			memset(&s, 0, sizeof(s));
1421 			s.s6_addr16[5] = htons(0xffff);
1422 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1423 			memset(&d, 0, sizeof(d));
1424 			d.s6_addr16[5] = htons(0xffff);
1425 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1426 			in6p = in6_pcblookup_connect(&tcbtable, &s,
1427 						     th->th_sport, &d, th->th_dport,
1428 						     0, &vestige);
1429 			if (in6p == 0 && !vestige.valid) {
1430 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
1431 				in6p = in6_pcblookup_bind(&tcbtable, &d,
1432 				    th->th_dport, 0);
1433 			}
1434 		}
1435 #endif
1436 #ifndef INET6
1437 		if (inp == 0 && !vestige.valid)
1438 #else
1439 		if (inp == 0 && in6p == 0 && !vestige.valid)
1440 #endif
1441 		{
1442 			TCP_STATINC(TCP_STAT_NOPORT);
1443 			if (tcp_log_refused &&
1444 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1445 				tcp4_log_refused(ip, th);
1446 			}
1447 			tcp_fields_to_host(th);
1448 			goto dropwithreset_ratelim;
1449 		}
1450 #if defined(IPSEC)
1451 		if (ipsec_used) {
1452 			if (inp &&
1453 			    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0
1454 			    && ipsec4_in_reject(m, inp)) {
1455 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1456 				goto drop;
1457 			}
1458 #ifdef INET6
1459 			else if (in6p &&
1460 			    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1461 			    && ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1462 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1463 				goto drop;
1464 			}
1465 #endif
1466 		}
1467 #endif /*IPSEC*/
1468 		break;
1469 #endif /*INET*/
1470 #ifdef INET6
1471 	case AF_INET6:
1472 	    {
1473 		int faith;
1474 
1475 #if defined(NFAITH) && NFAITH > 0
1476 		faith = faithprefix(&ip6->ip6_dst);
1477 #else
1478 		faith = 0;
1479 #endif
1480 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1481 					     th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1482 		if (!in6p && !vestige.valid) {
1483 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1484 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1485 				th->th_dport, faith);
1486 		}
1487 		if (!in6p && !vestige.valid) {
1488 			TCP_STATINC(TCP_STAT_NOPORT);
1489 			if (tcp_log_refused &&
1490 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1491 				tcp6_log_refused(ip6, th);
1492 			}
1493 			tcp_fields_to_host(th);
1494 			goto dropwithreset_ratelim;
1495 		}
1496 #if defined(IPSEC)
1497 		if (ipsec_used && in6p
1498 		    && (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1499 		    && ipsec6_in_reject(m, in6p)) {
1500 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1501 			goto drop;
1502 		}
1503 #endif /*IPSEC*/
1504 		break;
1505 	    }
1506 #endif
1507 	}
1508 
1509 	/*
1510 	 * If the state is CLOSED (i.e., TCB does not exist) then
1511 	 * all data in the incoming segment is discarded.
1512 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1513 	 * but should either do a listen or a connect soon.
1514 	 */
1515 	tp = NULL;
1516 	so = NULL;
1517 	if (inp) {
1518 		/* Check the minimum TTL for socket. */
1519 		if (ip->ip_ttl < inp->inp_ip_minttl)
1520 			goto drop;
1521 
1522 		tp = intotcpcb(inp);
1523 		so = inp->inp_socket;
1524 	}
1525 #ifdef INET6
1526 	else if (in6p) {
1527 		tp = in6totcpcb(in6p);
1528 		so = in6p->in6p_socket;
1529 	}
1530 #endif
1531 	else if (vestige.valid) {
1532 		int mc = 0;
1533 
1534 		/* We do not support the resurrection of vtw tcpcps.
1535 		 */
1536 		if (tcp_input_checksum(af, m, th, toff, off, tlen))
1537 			goto badcsum;
1538 
1539 		switch (af) {
1540 #ifdef INET6
1541 		case AF_INET6:
1542 			mc = IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst);
1543 			break;
1544 #endif
1545 
1546 		case AF_INET:
1547 			mc = (IN_MULTICAST(ip->ip_dst.s_addr)
1548 			      || in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif));
1549 			break;
1550 		}
1551 
1552 		tcp_fields_to_host(th);
1553 		tcp_vtw_input(th, &vestige, m, tlen, mc);
1554 		m = 0;
1555 		goto drop;
1556 	}
1557 
1558 	if (tp == 0) {
1559 		tcp_fields_to_host(th);
1560 		goto dropwithreset_ratelim;
1561 	}
1562 	if (tp->t_state == TCPS_CLOSED)
1563 		goto drop;
1564 
1565 	KASSERT(so->so_lock == softnet_lock);
1566 	KASSERT(solocked(so));
1567 
1568 	/*
1569 	 * Checksum extended TCP header and data.
1570 	 */
1571 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
1572 		goto badcsum;
1573 
1574 	tcp_fields_to_host(th);
1575 
1576 	/* Unscale the window into a 32-bit value. */
1577 	if ((tiflags & TH_SYN) == 0)
1578 		tiwin = th->th_win << tp->snd_scale;
1579 	else
1580 		tiwin = th->th_win;
1581 
1582 #ifdef INET6
1583 	/* save packet options if user wanted */
1584 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1585 		if (in6p->in6p_options) {
1586 			m_freem(in6p->in6p_options);
1587 			in6p->in6p_options = 0;
1588 		}
1589 		KASSERT(ip6 != NULL);
1590 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1591 	}
1592 #endif
1593 
1594 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1595 		union syn_cache_sa src;
1596 		union syn_cache_sa dst;
1597 
1598 		memset(&src, 0, sizeof(src));
1599 		memset(&dst, 0, sizeof(dst));
1600 		switch (af) {
1601 #ifdef INET
1602 		case AF_INET:
1603 			src.sin.sin_len = sizeof(struct sockaddr_in);
1604 			src.sin.sin_family = AF_INET;
1605 			src.sin.sin_addr = ip->ip_src;
1606 			src.sin.sin_port = th->th_sport;
1607 
1608 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1609 			dst.sin.sin_family = AF_INET;
1610 			dst.sin.sin_addr = ip->ip_dst;
1611 			dst.sin.sin_port = th->th_dport;
1612 			break;
1613 #endif
1614 #ifdef INET6
1615 		case AF_INET6:
1616 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1617 			src.sin6.sin6_family = AF_INET6;
1618 			src.sin6.sin6_addr = ip6->ip6_src;
1619 			src.sin6.sin6_port = th->th_sport;
1620 
1621 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1622 			dst.sin6.sin6_family = AF_INET6;
1623 			dst.sin6.sin6_addr = ip6->ip6_dst;
1624 			dst.sin6.sin6_port = th->th_dport;
1625 			break;
1626 #endif /* INET6 */
1627 		default:
1628 			goto badsyn;	/*sanity*/
1629 		}
1630 
1631 		if (so->so_options & SO_DEBUG) {
1632 #ifdef TCP_DEBUG
1633 			ostate = tp->t_state;
1634 #endif
1635 
1636 			tcp_saveti = NULL;
1637 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1638 				goto nosave;
1639 
1640 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1641 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1642 				if (!tcp_saveti)
1643 					goto nosave;
1644 			} else {
1645 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1646 				if (!tcp_saveti)
1647 					goto nosave;
1648 				MCLAIM(m, &tcp_mowner);
1649 				tcp_saveti->m_len = iphlen;
1650 				m_copydata(m, 0, iphlen,
1651 				    mtod(tcp_saveti, void *));
1652 			}
1653 
1654 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1655 				m_freem(tcp_saveti);
1656 				tcp_saveti = NULL;
1657 			} else {
1658 				tcp_saveti->m_len += sizeof(struct tcphdr);
1659 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1660 				    sizeof(struct tcphdr));
1661 			}
1662 	nosave:;
1663 		}
1664 		if (so->so_options & SO_ACCEPTCONN) {
1665 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1666 				if (tiflags & TH_RST) {
1667 					syn_cache_reset(&src.sa, &dst.sa, th);
1668 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1669 				    (TH_ACK|TH_SYN)) {
1670 					/*
1671 					 * Received a SYN,ACK.  This should
1672 					 * never happen while we are in
1673 					 * LISTEN.  Send an RST.
1674 					 */
1675 					goto badsyn;
1676 				} else if (tiflags & TH_ACK) {
1677 					so = syn_cache_get(&src.sa, &dst.sa,
1678 						th, toff, tlen, so, m);
1679 					if (so == NULL) {
1680 						/*
1681 						 * We don't have a SYN for
1682 						 * this ACK; send an RST.
1683 						 */
1684 						goto badsyn;
1685 					} else if (so ==
1686 					    (struct socket *)(-1)) {
1687 						/*
1688 						 * We were unable to create
1689 						 * the connection.  If the
1690 						 * 3-way handshake was
1691 						 * completed, and RST has
1692 						 * been sent to the peer.
1693 						 * Since the mbuf might be
1694 						 * in use for the reply,
1695 						 * do not free it.
1696 						 */
1697 						m = NULL;
1698 					} else {
1699 						/*
1700 						 * We have created a
1701 						 * full-blown connection.
1702 						 */
1703 						tp = NULL;
1704 						inp = NULL;
1705 #ifdef INET6
1706 						in6p = NULL;
1707 #endif
1708 						switch (so->so_proto->pr_domain->dom_family) {
1709 #ifdef INET
1710 						case AF_INET:
1711 							inp = sotoinpcb(so);
1712 							tp = intotcpcb(inp);
1713 							break;
1714 #endif
1715 #ifdef INET6
1716 						case AF_INET6:
1717 							in6p = sotoin6pcb(so);
1718 							tp = in6totcpcb(in6p);
1719 							break;
1720 #endif
1721 						}
1722 						if (tp == NULL)
1723 							goto badsyn;	/*XXX*/
1724 						tiwin <<= tp->snd_scale;
1725 						goto after_listen;
1726 					}
1727 				} else {
1728 					/*
1729 					 * None of RST, SYN or ACK was set.
1730 					 * This is an invalid packet for a
1731 					 * TCB in LISTEN state.  Send a RST.
1732 					 */
1733 					goto badsyn;
1734 				}
1735 			} else {
1736 				/*
1737 				 * Received a SYN.
1738 				 *
1739 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1740 				 */
1741 				if (m->m_flags & (M_BCAST|M_MCAST))
1742 					goto drop;
1743 
1744 				switch (af) {
1745 #ifdef INET6
1746 				case AF_INET6:
1747 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1748 						goto drop;
1749 					break;
1750 #endif /* INET6 */
1751 				case AF_INET:
1752 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1753 					    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1754 						goto drop;
1755 				break;
1756 				}
1757 
1758 #ifdef INET6
1759 				/*
1760 				 * If deprecated address is forbidden, we do
1761 				 * not accept SYN to deprecated interface
1762 				 * address to prevent any new inbound
1763 				 * connection from getting established.
1764 				 * When we do not accept SYN, we send a TCP
1765 				 * RST, with deprecated source address (instead
1766 				 * of dropping it).  We compromise it as it is
1767 				 * much better for peer to send a RST, and
1768 				 * RST will be the final packet for the
1769 				 * exchange.
1770 				 *
1771 				 * If we do not forbid deprecated addresses, we
1772 				 * accept the SYN packet.  RFC2462 does not
1773 				 * suggest dropping SYN in this case.
1774 				 * If we decipher RFC2462 5.5.4, it says like
1775 				 * this:
1776 				 * 1. use of deprecated addr with existing
1777 				 *    communication is okay - "SHOULD continue
1778 				 *    to be used"
1779 				 * 2. use of it with new communication:
1780 				 *   (2a) "SHOULD NOT be used if alternate
1781 				 *        address with sufficient scope is
1782 				 *        available"
1783 				 *   (2b) nothing mentioned otherwise.
1784 				 * Here we fall into (2b) case as we have no
1785 				 * choice in our source address selection - we
1786 				 * must obey the peer.
1787 				 *
1788 				 * The wording in RFC2462 is confusing, and
1789 				 * there are multiple description text for
1790 				 * deprecated address handling - worse, they
1791 				 * are not exactly the same.  I believe 5.5.4
1792 				 * is the best one, so we follow 5.5.4.
1793 				 */
1794 				if (af == AF_INET6 && !ip6_use_deprecated) {
1795 					struct in6_ifaddr *ia6;
1796 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1797 					    &ip6->ip6_dst)) &&
1798 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1799 						tp = NULL;
1800 						goto dropwithreset;
1801 					}
1802 				}
1803 #endif
1804 
1805 #if defined(IPSEC)
1806 				if (ipsec_used) {
1807 					switch (af) {
1808 #ifdef INET
1809 					case AF_INET:
1810 						if (!ipsec4_in_reject_so(m, so))
1811 							break;
1812 						IPSEC_STATINC(
1813 						    IPSEC_STAT_IN_POLVIO);
1814 						tp = NULL;
1815 						goto dropwithreset;
1816 #endif
1817 #ifdef INET6
1818 					case AF_INET6:
1819 						if (!ipsec6_in_reject_so(m, so))
1820 							break;
1821 						IPSEC6_STATINC(
1822 						    IPSEC_STAT_IN_POLVIO);
1823 						tp = NULL;
1824 						goto dropwithreset;
1825 #endif /*INET6*/
1826 					}
1827 				}
1828 #endif /*IPSEC*/
1829 
1830 				/*
1831 				 * LISTEN socket received a SYN
1832 				 * from itself?  This can't possibly
1833 				 * be valid; drop the packet.
1834 				 */
1835 				if (th->th_sport == th->th_dport) {
1836 					int i;
1837 
1838 					switch (af) {
1839 #ifdef INET
1840 					case AF_INET:
1841 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1842 						break;
1843 #endif
1844 #ifdef INET6
1845 					case AF_INET6:
1846 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1847 						break;
1848 #endif
1849 					default:
1850 						i = 1;
1851 					}
1852 					if (i) {
1853 						TCP_STATINC(TCP_STAT_BADSYN);
1854 						goto drop;
1855 					}
1856 				}
1857 
1858 				/*
1859 				 * SYN looks ok; create compressed TCP
1860 				 * state for it.
1861 				 */
1862 				if (so->so_qlen <= so->so_qlimit &&
1863 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1864 						so, m, optp, optlen, &opti))
1865 					m = NULL;
1866 			}
1867 			goto drop;
1868 		}
1869 	}
1870 
1871 after_listen:
1872 #ifdef DIAGNOSTIC
1873 	/*
1874 	 * Should not happen now that all embryonic connections
1875 	 * are handled with compressed state.
1876 	 */
1877 	if (tp->t_state == TCPS_LISTEN)
1878 		panic("tcp_input: TCPS_LISTEN");
1879 #endif
1880 
1881 	/*
1882 	 * Segment received on connection.
1883 	 * Reset idle time and keep-alive timer.
1884 	 */
1885 	tp->t_rcvtime = tcp_now;
1886 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1887 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1888 
1889 	/*
1890 	 * Process options.
1891 	 */
1892 #ifdef TCP_SIGNATURE
1893 	if (optp || (tp->t_flags & TF_SIGNATURE))
1894 #else
1895 	if (optp)
1896 #endif
1897 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1898 			goto drop;
1899 
1900 	if (TCP_SACK_ENABLED(tp)) {
1901 		tcp_del_sackholes(tp, th);
1902 	}
1903 
1904 	if (TCP_ECN_ALLOWED(tp)) {
1905 		if (tiflags & TH_CWR) {
1906 			tp->t_flags &= ~TF_ECN_SND_ECE;
1907 		}
1908 		switch (iptos & IPTOS_ECN_MASK) {
1909 		case IPTOS_ECN_CE:
1910 			tp->t_flags |= TF_ECN_SND_ECE;
1911 			TCP_STATINC(TCP_STAT_ECN_CE);
1912 			break;
1913 		case IPTOS_ECN_ECT0:
1914 			TCP_STATINC(TCP_STAT_ECN_ECT);
1915 			break;
1916 		case IPTOS_ECN_ECT1:
1917 			/* XXX: ignore for now -- rpaulo */
1918 			break;
1919 		}
1920 		/*
1921 		 * Congestion experienced.
1922 		 * Ignore if we are already trying to recover.
1923 		 */
1924 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1925 			tp->t_congctl->cong_exp(tp);
1926 	}
1927 
1928 	if (opti.ts_present && opti.ts_ecr) {
1929 		/*
1930 		 * Calculate the RTT from the returned time stamp and the
1931 		 * connection's time base.  If the time stamp is later than
1932 		 * the current time, or is extremely old, fall back to non-1323
1933 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
1934 		 * at the same time.
1935 		 *
1936 		 * Note that ts_rtt is in units of slow ticks (500
1937 		 * ms).  Since most earthbound RTTs are < 500 ms,
1938 		 * observed values will have large quantization noise.
1939 		 * Our smoothed RTT is then the fraction of observed
1940 		 * samples that are 1 tick instead of 0 (times 500
1941 		 * ms).
1942 		 *
1943 		 * ts_rtt is increased by 1 to denote a valid sample,
1944 		 * with 0 indicating an invalid measurement.  This
1945 		 * extra 1 must be removed when ts_rtt is used, or
1946 		 * else an an erroneous extra 500 ms will result.
1947 		 */
1948 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1949 		if (ts_rtt > TCP_PAWS_IDLE)
1950 			ts_rtt = 0;
1951 	} else {
1952 		ts_rtt = 0;
1953 	}
1954 
1955 	/*
1956 	 * Header prediction: check for the two common cases
1957 	 * of a uni-directional data xfer.  If the packet has
1958 	 * no control flags, is in-sequence, the window didn't
1959 	 * change and we're not retransmitting, it's a
1960 	 * candidate.  If the length is zero and the ack moved
1961 	 * forward, we're the sender side of the xfer.  Just
1962 	 * free the data acked & wake any higher level process
1963 	 * that was blocked waiting for space.  If the length
1964 	 * is non-zero and the ack didn't move, we're the
1965 	 * receiver side.  If we're getting packets in-order
1966 	 * (the reassembly queue is empty), add the data to
1967 	 * the socket buffer and note that we need a delayed ack.
1968 	 */
1969 	if (tp->t_state == TCPS_ESTABLISHED &&
1970 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1971 	        == TH_ACK &&
1972 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1973 	    th->th_seq == tp->rcv_nxt &&
1974 	    tiwin && tiwin == tp->snd_wnd &&
1975 	    tp->snd_nxt == tp->snd_max) {
1976 
1977 		/*
1978 		 * If last ACK falls within this segment's sequence numbers,
1979 		 * record the timestamp.
1980 		 * NOTE that the test is modified according to the latest
1981 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1982 		 *
1983 		 * note that we already know
1984 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1985 		 */
1986 		if (opti.ts_present &&
1987 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1988 			tp->ts_recent_age = tcp_now;
1989 			tp->ts_recent = opti.ts_val;
1990 		}
1991 
1992 		if (tlen == 0) {
1993 			/* Ack prediction. */
1994 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1995 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1996 			    tp->snd_cwnd >= tp->snd_wnd &&
1997 			    tp->t_partialacks < 0) {
1998 				/*
1999 				 * this is a pure ack for outstanding data.
2000 				 */
2001 				if (ts_rtt)
2002 					tcp_xmit_timer(tp, ts_rtt - 1);
2003 				else if (tp->t_rtttime &&
2004 				    SEQ_GT(th->th_ack, tp->t_rtseq))
2005 					tcp_xmit_timer(tp,
2006 					  tcp_now - tp->t_rtttime);
2007 				acked = th->th_ack - tp->snd_una;
2008 				tcps = TCP_STAT_GETREF();
2009 				tcps[TCP_STAT_PREDACK]++;
2010 				tcps[TCP_STAT_RCVACKPACK]++;
2011 				tcps[TCP_STAT_RCVACKBYTE] += acked;
2012 				TCP_STAT_PUTREF();
2013 				nd6_hint(tp);
2014 
2015 				if (acked > (tp->t_lastoff - tp->t_inoff))
2016 					tp->t_lastm = NULL;
2017 				sbdrop(&so->so_snd, acked);
2018 				tp->t_lastoff -= acked;
2019 
2020 				icmp_check(tp, th, acked);
2021 
2022 				tp->snd_una = th->th_ack;
2023 				tp->snd_fack = tp->snd_una;
2024 				if (SEQ_LT(tp->snd_high, tp->snd_una))
2025 					tp->snd_high = tp->snd_una;
2026 				m_freem(m);
2027 
2028 				/*
2029 				 * If all outstanding data are acked, stop
2030 				 * retransmit timer, otherwise restart timer
2031 				 * using current (possibly backed-off) value.
2032 				 * If process is waiting for space,
2033 				 * wakeup/selnotify/signal.  If data
2034 				 * are ready to send, let tcp_output
2035 				 * decide between more output or persist.
2036 				 */
2037 				if (tp->snd_una == tp->snd_max)
2038 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
2039 				else if (TCP_TIMER_ISARMED(tp,
2040 				    TCPT_PERSIST) == 0)
2041 					TCP_TIMER_ARM(tp, TCPT_REXMT,
2042 					    tp->t_rxtcur);
2043 
2044 				sowwakeup(so);
2045 				if (so->so_snd.sb_cc) {
2046 					KERNEL_LOCK(1, NULL);
2047 					(void) tcp_output(tp);
2048 					KERNEL_UNLOCK_ONE(NULL);
2049 				}
2050 				if (tcp_saveti)
2051 					m_freem(tcp_saveti);
2052 				return;
2053 			}
2054 		} else if (th->th_ack == tp->snd_una &&
2055 		    TAILQ_FIRST(&tp->segq) == NULL &&
2056 		    tlen <= sbspace(&so->so_rcv)) {
2057 			int newsize = 0;	/* automatic sockbuf scaling */
2058 
2059 			/*
2060 			 * this is a pure, in-sequence data packet
2061 			 * with nothing on the reassembly queue and
2062 			 * we have enough buffer space to take it.
2063 			 */
2064 			tp->rcv_nxt += tlen;
2065 			tcps = TCP_STAT_GETREF();
2066 			tcps[TCP_STAT_PREDDAT]++;
2067 			tcps[TCP_STAT_RCVPACK]++;
2068 			tcps[TCP_STAT_RCVBYTE] += tlen;
2069 			TCP_STAT_PUTREF();
2070 			nd6_hint(tp);
2071 
2072 		/*
2073 		 * Automatic sizing enables the performance of large buffers
2074 		 * and most of the efficiency of small ones by only allocating
2075 		 * space when it is needed.
2076 		 *
2077 		 * On the receive side the socket buffer memory is only rarely
2078 		 * used to any significant extent.  This allows us to be much
2079 		 * more aggressive in scaling the receive socket buffer.  For
2080 		 * the case that the buffer space is actually used to a large
2081 		 * extent and we run out of kernel memory we can simply drop
2082 		 * the new segments; TCP on the sender will just retransmit it
2083 		 * later.  Setting the buffer size too big may only consume too
2084 		 * much kernel memory if the application doesn't read() from
2085 		 * the socket or packet loss or reordering makes use of the
2086 		 * reassembly queue.
2087 		 *
2088 		 * The criteria to step up the receive buffer one notch are:
2089 		 *  1. the number of bytes received during the time it takes
2090 		 *     one timestamp to be reflected back to us (the RTT);
2091 		 *  2. received bytes per RTT is within seven eighth of the
2092 		 *     current socket buffer size;
2093 		 *  3. receive buffer size has not hit maximal automatic size;
2094 		 *
2095 		 * This algorithm does one step per RTT at most and only if
2096 		 * we receive a bulk stream w/o packet losses or reorderings.
2097 		 * Shrinking the buffer during idle times is not necessary as
2098 		 * it doesn't consume any memory when idle.
2099 		 *
2100 		 * TODO: Only step up if the application is actually serving
2101 		 * the buffer to better manage the socket buffer resources.
2102 		 */
2103 			if (tcp_do_autorcvbuf &&
2104 			    opti.ts_ecr &&
2105 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
2106 				if (opti.ts_ecr > tp->rfbuf_ts &&
2107 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
2108 					if (tp->rfbuf_cnt >
2109 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
2110 					    so->so_rcv.sb_hiwat <
2111 					    tcp_autorcvbuf_max) {
2112 						newsize =
2113 						    min(so->so_rcv.sb_hiwat +
2114 						    tcp_autorcvbuf_inc,
2115 						    tcp_autorcvbuf_max);
2116 					}
2117 					/* Start over with next RTT. */
2118 					tp->rfbuf_ts = 0;
2119 					tp->rfbuf_cnt = 0;
2120 				} else
2121 					tp->rfbuf_cnt += tlen;	/* add up */
2122 			}
2123 
2124 			/*
2125 			 * Drop TCP, IP headers and TCP options then add data
2126 			 * to socket buffer.
2127 			 */
2128 			if (so->so_state & SS_CANTRCVMORE)
2129 				m_freem(m);
2130 			else {
2131 				/*
2132 				 * Set new socket buffer size.
2133 				 * Give up when limit is reached.
2134 				 */
2135 				if (newsize)
2136 					if (!sbreserve(&so->so_rcv,
2137 					    newsize, so))
2138 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2139 				m_adj(m, toff + off);
2140 				sbappendstream(&so->so_rcv, m);
2141 			}
2142 			sorwakeup(so);
2143 			tcp_setup_ack(tp, th);
2144 			if (tp->t_flags & TF_ACKNOW) {
2145 				KERNEL_LOCK(1, NULL);
2146 				(void) tcp_output(tp);
2147 				KERNEL_UNLOCK_ONE(NULL);
2148 			}
2149 			if (tcp_saveti)
2150 				m_freem(tcp_saveti);
2151 			return;
2152 		}
2153 	}
2154 
2155 	/*
2156 	 * Compute mbuf offset to TCP data segment.
2157 	 */
2158 	hdroptlen = toff + off;
2159 
2160 	/*
2161 	 * Calculate amount of space in receive window,
2162 	 * and then do TCP input processing.
2163 	 * Receive window is amount of space in rcv queue,
2164 	 * but not less than advertised window.
2165 	 */
2166 	{ int win;
2167 
2168 	win = sbspace(&so->so_rcv);
2169 	if (win < 0)
2170 		win = 0;
2171 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2172 	}
2173 
2174 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
2175 	tp->rfbuf_ts = 0;
2176 	tp->rfbuf_cnt = 0;
2177 
2178 	switch (tp->t_state) {
2179 	/*
2180 	 * If the state is SYN_SENT:
2181 	 *	if seg contains an ACK, but not for our SYN, drop the input.
2182 	 *	if seg contains a RST, then drop the connection.
2183 	 *	if seg does not contain SYN, then drop it.
2184 	 * Otherwise this is an acceptable SYN segment
2185 	 *	initialize tp->rcv_nxt and tp->irs
2186 	 *	if seg contains ack then advance tp->snd_una
2187 	 *	if seg contains a ECE and ECN support is enabled, the stream
2188 	 *	    is ECN capable.
2189 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2190 	 *	arrange for segment to be acked (eventually)
2191 	 *	continue processing rest of data/controls, beginning with URG
2192 	 */
2193 	case TCPS_SYN_SENT:
2194 		if ((tiflags & TH_ACK) &&
2195 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2196 		     SEQ_GT(th->th_ack, tp->snd_max)))
2197 			goto dropwithreset;
2198 		if (tiflags & TH_RST) {
2199 			if (tiflags & TH_ACK)
2200 				tp = tcp_drop(tp, ECONNREFUSED);
2201 			goto drop;
2202 		}
2203 		if ((tiflags & TH_SYN) == 0)
2204 			goto drop;
2205 		if (tiflags & TH_ACK) {
2206 			tp->snd_una = th->th_ack;
2207 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2208 				tp->snd_nxt = tp->snd_una;
2209 			if (SEQ_LT(tp->snd_high, tp->snd_una))
2210 				tp->snd_high = tp->snd_una;
2211 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2212 
2213 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
2214 				tp->t_flags |= TF_ECN_PERMIT;
2215 				TCP_STATINC(TCP_STAT_ECN_SHS);
2216 			}
2217 
2218 		}
2219 		tp->irs = th->th_seq;
2220 		tcp_rcvseqinit(tp);
2221 		tp->t_flags |= TF_ACKNOW;
2222 		tcp_mss_from_peer(tp, opti.maxseg);
2223 
2224 		/*
2225 		 * Initialize the initial congestion window.  If we
2226 		 * had to retransmit the SYN, we must initialize cwnd
2227 		 * to 1 segment (i.e. the Loss Window).
2228 		 */
2229 		if (tp->t_flags & TF_SYN_REXMT)
2230 			tp->snd_cwnd = tp->t_peermss;
2231 		else {
2232 			int ss = tcp_init_win;
2233 #ifdef INET
2234 			if (inp != NULL && in_localaddr(inp->inp_faddr))
2235 				ss = tcp_init_win_local;
2236 #endif
2237 #ifdef INET6
2238 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2239 				ss = tcp_init_win_local;
2240 #endif
2241 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2242 		}
2243 
2244 		tcp_rmx_rtt(tp);
2245 		if (tiflags & TH_ACK) {
2246 			TCP_STATINC(TCP_STAT_CONNECTS);
2247 			/*
2248 			 * move tcp_established before soisconnected
2249 			 * because upcall handler can drive tcp_output
2250 			 * functionality.
2251 			 * XXX we might call soisconnected at the end of
2252 			 * all processing
2253 			 */
2254 			tcp_established(tp);
2255 			soisconnected(so);
2256 			/* Do window scaling on this connection? */
2257 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2258 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2259 				tp->snd_scale = tp->requested_s_scale;
2260 				tp->rcv_scale = tp->request_r_scale;
2261 			}
2262 			TCP_REASS_LOCK(tp);
2263 			(void) tcp_reass(tp, NULL, NULL, &tlen);
2264 			/*
2265 			 * if we didn't have to retransmit the SYN,
2266 			 * use its rtt as our initial srtt & rtt var.
2267 			 */
2268 			if (tp->t_rtttime)
2269 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2270 		} else
2271 			tp->t_state = TCPS_SYN_RECEIVED;
2272 
2273 		/*
2274 		 * Advance th->th_seq to correspond to first data byte.
2275 		 * If data, trim to stay within window,
2276 		 * dropping FIN if necessary.
2277 		 */
2278 		th->th_seq++;
2279 		if (tlen > tp->rcv_wnd) {
2280 			todrop = tlen - tp->rcv_wnd;
2281 			m_adj(m, -todrop);
2282 			tlen = tp->rcv_wnd;
2283 			tiflags &= ~TH_FIN;
2284 			tcps = TCP_STAT_GETREF();
2285 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2286 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2287 			TCP_STAT_PUTREF();
2288 		}
2289 		tp->snd_wl1 = th->th_seq - 1;
2290 		tp->rcv_up = th->th_seq;
2291 		goto step6;
2292 
2293 	/*
2294 	 * If the state is SYN_RECEIVED:
2295 	 *	If seg contains an ACK, but not for our SYN, drop the input
2296 	 *	and generate an RST.  See page 36, rfc793
2297 	 */
2298 	case TCPS_SYN_RECEIVED:
2299 		if ((tiflags & TH_ACK) &&
2300 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2301 		     SEQ_GT(th->th_ack, tp->snd_max)))
2302 			goto dropwithreset;
2303 		break;
2304 	}
2305 
2306 	/*
2307 	 * States other than LISTEN or SYN_SENT.
2308 	 * First check timestamp, if present.
2309 	 * Then check that at least some bytes of segment are within
2310 	 * receive window.  If segment begins before rcv_nxt,
2311 	 * drop leading data (and SYN); if nothing left, just ack.
2312 	 *
2313 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2314 	 * and it's less than ts_recent, drop it.
2315 	 */
2316 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2317 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2318 
2319 		/* Check to see if ts_recent is over 24 days old.  */
2320 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2321 			/*
2322 			 * Invalidate ts_recent.  If this segment updates
2323 			 * ts_recent, the age will be reset later and ts_recent
2324 			 * will get a valid value.  If it does not, setting
2325 			 * ts_recent to zero will at least satisfy the
2326 			 * requirement that zero be placed in the timestamp
2327 			 * echo reply when ts_recent isn't valid.  The
2328 			 * age isn't reset until we get a valid ts_recent
2329 			 * because we don't want out-of-order segments to be
2330 			 * dropped when ts_recent is old.
2331 			 */
2332 			tp->ts_recent = 0;
2333 		} else {
2334 			tcps = TCP_STAT_GETREF();
2335 			tcps[TCP_STAT_RCVDUPPACK]++;
2336 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2337 			tcps[TCP_STAT_PAWSDROP]++;
2338 			TCP_STAT_PUTREF();
2339 			tcp_new_dsack(tp, th->th_seq, tlen);
2340 			goto dropafterack;
2341 		}
2342 	}
2343 
2344 	todrop = tp->rcv_nxt - th->th_seq;
2345 	dupseg = false;
2346 	if (todrop > 0) {
2347 		if (tiflags & TH_SYN) {
2348 			tiflags &= ~TH_SYN;
2349 			th->th_seq++;
2350 			if (th->th_urp > 1)
2351 				th->th_urp--;
2352 			else {
2353 				tiflags &= ~TH_URG;
2354 				th->th_urp = 0;
2355 			}
2356 			todrop--;
2357 		}
2358 		if (todrop > tlen ||
2359 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2360 			/*
2361 			 * Any valid FIN or RST must be to the left of the
2362 			 * window.  At this point the FIN or RST must be a
2363 			 * duplicate or out of sequence; drop it.
2364 			 */
2365 			if (tiflags & TH_RST)
2366 				goto drop;
2367 			tiflags &= ~(TH_FIN|TH_RST);
2368 			/*
2369 			 * Send an ACK to resynchronize and drop any data.
2370 			 * But keep on processing for RST or ACK.
2371 			 */
2372 			tp->t_flags |= TF_ACKNOW;
2373 			todrop = tlen;
2374 			dupseg = true;
2375 			tcps = TCP_STAT_GETREF();
2376 			tcps[TCP_STAT_RCVDUPPACK]++;
2377 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2378 			TCP_STAT_PUTREF();
2379 		} else if ((tiflags & TH_RST) &&
2380 			   th->th_seq != tp->rcv_nxt) {
2381 			/*
2382 			 * Test for reset before adjusting the sequence
2383 			 * number for overlapping data.
2384 			 */
2385 			goto dropafterack_ratelim;
2386 		} else {
2387 			tcps = TCP_STAT_GETREF();
2388 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
2389 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2390 			TCP_STAT_PUTREF();
2391 		}
2392 		tcp_new_dsack(tp, th->th_seq, todrop);
2393 		hdroptlen += todrop;	/*drop from head afterwards*/
2394 		th->th_seq += todrop;
2395 		tlen -= todrop;
2396 		if (th->th_urp > todrop)
2397 			th->th_urp -= todrop;
2398 		else {
2399 			tiflags &= ~TH_URG;
2400 			th->th_urp = 0;
2401 		}
2402 	}
2403 
2404 	/*
2405 	 * If new data are received on a connection after the
2406 	 * user processes are gone, then RST the other end.
2407 	 */
2408 	if ((so->so_state & SS_NOFDREF) &&
2409 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2410 		tp = tcp_close(tp);
2411 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2412 		goto dropwithreset;
2413 	}
2414 
2415 	/*
2416 	 * If segment ends after window, drop trailing data
2417 	 * (and PUSH and FIN); if nothing left, just ACK.
2418 	 */
2419 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2420 	if (todrop > 0) {
2421 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2422 		if (todrop >= tlen) {
2423 			/*
2424 			 * The segment actually starts after the window.
2425 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2426 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2427 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2428 			 */
2429 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2430 			/*
2431 			 * If a new connection request is received
2432 			 * while in TIME_WAIT, drop the old connection
2433 			 * and start over if the sequence numbers
2434 			 * are above the previous ones.
2435 			 *
2436 			 * NOTE: We will checksum the packet again, and
2437 			 * so we need to put the header fields back into
2438 			 * network order!
2439 			 * XXX This kind of sucks, but we don't expect
2440 			 * XXX this to happen very often, so maybe it
2441 			 * XXX doesn't matter so much.
2442 			 */
2443 			if (tiflags & TH_SYN &&
2444 			    tp->t_state == TCPS_TIME_WAIT &&
2445 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2446 				tp = tcp_close(tp);
2447 				tcp_fields_to_net(th);
2448 				goto findpcb;
2449 			}
2450 			/*
2451 			 * If window is closed can only take segments at
2452 			 * window edge, and have to drop data and PUSH from
2453 			 * incoming segments.  Continue processing, but
2454 			 * remember to ack.  Otherwise, drop segment
2455 			 * and (if not RST) ack.
2456 			 */
2457 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2458 				tp->t_flags |= TF_ACKNOW;
2459 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
2460 			} else
2461 				goto dropafterack;
2462 		} else
2463 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2464 		m_adj(m, -todrop);
2465 		tlen -= todrop;
2466 		tiflags &= ~(TH_PUSH|TH_FIN);
2467 	}
2468 
2469 	/*
2470 	 * If last ACK falls within this segment's sequence numbers,
2471 	 *  record the timestamp.
2472 	 * NOTE:
2473 	 * 1) That the test incorporates suggestions from the latest
2474 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2475 	 * 2) That updating only on newer timestamps interferes with
2476 	 *    our earlier PAWS tests, so this check should be solely
2477 	 *    predicated on the sequence space of this segment.
2478 	 * 3) That we modify the segment boundary check to be
2479 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2480 	 *    instead of RFC1323's
2481 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2482 	 *    This modified check allows us to overcome RFC1323's
2483 	 *    limitations as described in Stevens TCP/IP Illustrated
2484 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2485 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2486 	 */
2487 	if (opti.ts_present &&
2488 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2489 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2490 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2491 		tp->ts_recent_age = tcp_now;
2492 		tp->ts_recent = opti.ts_val;
2493 	}
2494 
2495 	/*
2496 	 * If the RST bit is set examine the state:
2497 	 *    SYN_RECEIVED STATE:
2498 	 *	If passive open, return to LISTEN state.
2499 	 *	If active open, inform user that connection was refused.
2500 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2501 	 *	Inform user that connection was reset, and close tcb.
2502 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
2503 	 *	Close the tcb.
2504 	 */
2505 	if (tiflags & TH_RST) {
2506 		if (th->th_seq != tp->rcv_nxt)
2507 			goto dropafterack_ratelim;
2508 
2509 		switch (tp->t_state) {
2510 		case TCPS_SYN_RECEIVED:
2511 			so->so_error = ECONNREFUSED;
2512 			goto close;
2513 
2514 		case TCPS_ESTABLISHED:
2515 		case TCPS_FIN_WAIT_1:
2516 		case TCPS_FIN_WAIT_2:
2517 		case TCPS_CLOSE_WAIT:
2518 			so->so_error = ECONNRESET;
2519 		close:
2520 			tp->t_state = TCPS_CLOSED;
2521 			TCP_STATINC(TCP_STAT_DROPS);
2522 			tp = tcp_close(tp);
2523 			goto drop;
2524 
2525 		case TCPS_CLOSING:
2526 		case TCPS_LAST_ACK:
2527 		case TCPS_TIME_WAIT:
2528 			tp = tcp_close(tp);
2529 			goto drop;
2530 		}
2531 	}
2532 
2533 	/*
2534 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2535 	 * we must be in a synchronized state.  RFC791 states (under RST
2536 	 * generation) that any unacceptable segment (an out-of-order SYN
2537 	 * qualifies) received in a synchronized state must elicit only an
2538 	 * empty acknowledgment segment ... and the connection remains in
2539 	 * the same state.
2540 	 */
2541 	if (tiflags & TH_SYN) {
2542 		if (tp->rcv_nxt == th->th_seq) {
2543 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2544 			    TH_ACK);
2545 			if (tcp_saveti)
2546 				m_freem(tcp_saveti);
2547 			return;
2548 		}
2549 
2550 		goto dropafterack_ratelim;
2551 	}
2552 
2553 	/*
2554 	 * If the ACK bit is off we drop the segment and return.
2555 	 */
2556 	if ((tiflags & TH_ACK) == 0) {
2557 		if (tp->t_flags & TF_ACKNOW)
2558 			goto dropafterack;
2559 		else
2560 			goto drop;
2561 	}
2562 
2563 	/*
2564 	 * Ack processing.
2565 	 */
2566 	switch (tp->t_state) {
2567 
2568 	/*
2569 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2570 	 * ESTABLISHED state and continue processing, otherwise
2571 	 * send an RST.
2572 	 */
2573 	case TCPS_SYN_RECEIVED:
2574 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
2575 		    SEQ_GT(th->th_ack, tp->snd_max))
2576 			goto dropwithreset;
2577 		TCP_STATINC(TCP_STAT_CONNECTS);
2578 		soisconnected(so);
2579 		tcp_established(tp);
2580 		/* Do window scaling? */
2581 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2582 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2583 			tp->snd_scale = tp->requested_s_scale;
2584 			tp->rcv_scale = tp->request_r_scale;
2585 		}
2586 		TCP_REASS_LOCK(tp);
2587 		(void) tcp_reass(tp, NULL, NULL, &tlen);
2588 		tp->snd_wl1 = th->th_seq - 1;
2589 		/* fall into ... */
2590 
2591 	/*
2592 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2593 	 * ACKs.  If the ack is in the range
2594 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2595 	 * then advance tp->snd_una to th->th_ack and drop
2596 	 * data from the retransmission queue.  If this ACK reflects
2597 	 * more up to date window information we update our window information.
2598 	 */
2599 	case TCPS_ESTABLISHED:
2600 	case TCPS_FIN_WAIT_1:
2601 	case TCPS_FIN_WAIT_2:
2602 	case TCPS_CLOSE_WAIT:
2603 	case TCPS_CLOSING:
2604 	case TCPS_LAST_ACK:
2605 	case TCPS_TIME_WAIT:
2606 
2607 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2608 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2609 				TCP_STATINC(TCP_STAT_RCVDUPACK);
2610 				/*
2611 				 * If we have outstanding data (other than
2612 				 * a window probe), this is a completely
2613 				 * duplicate ack (ie, window info didn't
2614 				 * change), the ack is the biggest we've
2615 				 * seen and we've seen exactly our rexmt
2616 				 * threshhold of them, assume a packet
2617 				 * has been dropped and retransmit it.
2618 				 * Kludge snd_nxt & the congestion
2619 				 * window so we send only this one
2620 				 * packet.
2621 				 */
2622 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2623 				    th->th_ack != tp->snd_una)
2624 					tp->t_dupacks = 0;
2625 				else if (tp->t_partialacks < 0 &&
2626 					 (++tp->t_dupacks == tcprexmtthresh ||
2627 					 TCP_FACK_FASTRECOV(tp))) {
2628 					/*
2629 					 * Do the fast retransmit, and adjust
2630 					 * congestion control paramenters.
2631 					 */
2632 					if (tp->t_congctl->fast_retransmit(tp, th)) {
2633 						/* False fast retransmit */
2634 						break;
2635 					} else
2636 						goto drop;
2637 				} else if (tp->t_dupacks > tcprexmtthresh) {
2638 					tp->snd_cwnd += tp->t_segsz;
2639 					KERNEL_LOCK(1, NULL);
2640 					(void) tcp_output(tp);
2641 					KERNEL_UNLOCK_ONE(NULL);
2642 					goto drop;
2643 				}
2644 			} else {
2645 				/*
2646 				 * If the ack appears to be very old, only
2647 				 * allow data that is in-sequence.  This
2648 				 * makes it somewhat more difficult to insert
2649 				 * forged data by guessing sequence numbers.
2650 				 * Sent an ack to try to update the send
2651 				 * sequence number on the other side.
2652 				 */
2653 				if (tlen && th->th_seq != tp->rcv_nxt &&
2654 				    SEQ_LT(th->th_ack,
2655 				    tp->snd_una - tp->max_sndwnd))
2656 					goto dropafterack;
2657 			}
2658 			break;
2659 		}
2660 		/*
2661 		 * If the congestion window was inflated to account
2662 		 * for the other side's cached packets, retract it.
2663 		 */
2664 		tp->t_congctl->fast_retransmit_newack(tp, th);
2665 
2666 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2667 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2668 			goto dropafterack;
2669 		}
2670 		acked = th->th_ack - tp->snd_una;
2671 		tcps = TCP_STAT_GETREF();
2672 		tcps[TCP_STAT_RCVACKPACK]++;
2673 		tcps[TCP_STAT_RCVACKBYTE] += acked;
2674 		TCP_STAT_PUTREF();
2675 
2676 		/*
2677 		 * If we have a timestamp reply, update smoothed
2678 		 * round trip time.  If no timestamp is present but
2679 		 * transmit timer is running and timed sequence
2680 		 * number was acked, update smoothed round trip time.
2681 		 * Since we now have an rtt measurement, cancel the
2682 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2683 		 * Recompute the initial retransmit timer.
2684 		 */
2685 		if (ts_rtt)
2686 			tcp_xmit_timer(tp, ts_rtt - 1);
2687 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2688 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2689 
2690 		/*
2691 		 * If all outstanding data is acked, stop retransmit
2692 		 * timer and remember to restart (more output or persist).
2693 		 * If there is more data to be acked, restart retransmit
2694 		 * timer, using current (possibly backed-off) value.
2695 		 */
2696 		if (th->th_ack == tp->snd_max) {
2697 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2698 			needoutput = 1;
2699 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2700 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2701 
2702 		/*
2703 		 * New data has been acked, adjust the congestion window.
2704 		 */
2705 		tp->t_congctl->newack(tp, th);
2706 
2707 		nd6_hint(tp);
2708 		if (acked > so->so_snd.sb_cc) {
2709 			tp->snd_wnd -= so->so_snd.sb_cc;
2710 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2711 			ourfinisacked = 1;
2712 		} else {
2713 			if (acked > (tp->t_lastoff - tp->t_inoff))
2714 				tp->t_lastm = NULL;
2715 			sbdrop(&so->so_snd, acked);
2716 			tp->t_lastoff -= acked;
2717 			tp->snd_wnd -= acked;
2718 			ourfinisacked = 0;
2719 		}
2720 		sowwakeup(so);
2721 
2722 		icmp_check(tp, th, acked);
2723 
2724 		tp->snd_una = th->th_ack;
2725 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
2726 			tp->snd_fack = tp->snd_una;
2727 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2728 			tp->snd_nxt = tp->snd_una;
2729 		if (SEQ_LT(tp->snd_high, tp->snd_una))
2730 			tp->snd_high = tp->snd_una;
2731 
2732 		switch (tp->t_state) {
2733 
2734 		/*
2735 		 * In FIN_WAIT_1 STATE in addition to the processing
2736 		 * for the ESTABLISHED state if our FIN is now acknowledged
2737 		 * then enter FIN_WAIT_2.
2738 		 */
2739 		case TCPS_FIN_WAIT_1:
2740 			if (ourfinisacked) {
2741 				/*
2742 				 * If we can't receive any more
2743 				 * data, then closing user can proceed.
2744 				 * Starting the timer is contrary to the
2745 				 * specification, but if we don't get a FIN
2746 				 * we'll hang forever.
2747 				 */
2748 				if (so->so_state & SS_CANTRCVMORE) {
2749 					soisdisconnected(so);
2750 					if (tp->t_maxidle > 0)
2751 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2752 						    tp->t_maxidle);
2753 				}
2754 				tp->t_state = TCPS_FIN_WAIT_2;
2755 			}
2756 			break;
2757 
2758 	 	/*
2759 		 * In CLOSING STATE in addition to the processing for
2760 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2761 		 * then enter the TIME-WAIT state, otherwise ignore
2762 		 * the segment.
2763 		 */
2764 		case TCPS_CLOSING:
2765 			if (ourfinisacked) {
2766 				tp->t_state = TCPS_TIME_WAIT;
2767 				tcp_canceltimers(tp);
2768 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2769 				soisdisconnected(so);
2770 			}
2771 			break;
2772 
2773 		/*
2774 		 * In LAST_ACK, we may still be waiting for data to drain
2775 		 * and/or to be acked, as well as for the ack of our FIN.
2776 		 * If our FIN is now acknowledged, delete the TCB,
2777 		 * enter the closed state and return.
2778 		 */
2779 		case TCPS_LAST_ACK:
2780 			if (ourfinisacked) {
2781 				tp = tcp_close(tp);
2782 				goto drop;
2783 			}
2784 			break;
2785 
2786 		/*
2787 		 * In TIME_WAIT state the only thing that should arrive
2788 		 * is a retransmission of the remote FIN.  Acknowledge
2789 		 * it and restart the finack timer.
2790 		 */
2791 		case TCPS_TIME_WAIT:
2792 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2793 			goto dropafterack;
2794 		}
2795 	}
2796 
2797 step6:
2798 	/*
2799 	 * Update window information.
2800 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2801 	 */
2802 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2803 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2804 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2805 		/* keep track of pure window updates */
2806 		if (tlen == 0 &&
2807 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2808 			TCP_STATINC(TCP_STAT_RCVWINUPD);
2809 		tp->snd_wnd = tiwin;
2810 		tp->snd_wl1 = th->th_seq;
2811 		tp->snd_wl2 = th->th_ack;
2812 		if (tp->snd_wnd > tp->max_sndwnd)
2813 			tp->max_sndwnd = tp->snd_wnd;
2814 		needoutput = 1;
2815 	}
2816 
2817 	/*
2818 	 * Process segments with URG.
2819 	 */
2820 	if ((tiflags & TH_URG) && th->th_urp &&
2821 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2822 		/*
2823 		 * This is a kludge, but if we receive and accept
2824 		 * random urgent pointers, we'll crash in
2825 		 * soreceive.  It's hard to imagine someone
2826 		 * actually wanting to send this much urgent data.
2827 		 */
2828 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2829 			th->th_urp = 0;			/* XXX */
2830 			tiflags &= ~TH_URG;		/* XXX */
2831 			goto dodata;			/* XXX */
2832 		}
2833 		/*
2834 		 * If this segment advances the known urgent pointer,
2835 		 * then mark the data stream.  This should not happen
2836 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2837 		 * a FIN has been received from the remote side.
2838 		 * In these states we ignore the URG.
2839 		 *
2840 		 * According to RFC961 (Assigned Protocols),
2841 		 * the urgent pointer points to the last octet
2842 		 * of urgent data.  We continue, however,
2843 		 * to consider it to indicate the first octet
2844 		 * of data past the urgent section as the original
2845 		 * spec states (in one of two places).
2846 		 */
2847 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2848 			tp->rcv_up = th->th_seq + th->th_urp;
2849 			so->so_oobmark = so->so_rcv.sb_cc +
2850 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2851 			if (so->so_oobmark == 0)
2852 				so->so_state |= SS_RCVATMARK;
2853 			sohasoutofband(so);
2854 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2855 		}
2856 		/*
2857 		 * Remove out of band data so doesn't get presented to user.
2858 		 * This can happen independent of advancing the URG pointer,
2859 		 * but if two URG's are pending at once, some out-of-band
2860 		 * data may creep in... ick.
2861 		 */
2862 		if (th->th_urp <= (u_int16_t) tlen
2863 #ifdef SO_OOBINLINE
2864 		     && (so->so_options & SO_OOBINLINE) == 0
2865 #endif
2866 		     )
2867 			tcp_pulloutofband(so, th, m, hdroptlen);
2868 	} else
2869 		/*
2870 		 * If no out of band data is expected,
2871 		 * pull receive urgent pointer along
2872 		 * with the receive window.
2873 		 */
2874 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2875 			tp->rcv_up = tp->rcv_nxt;
2876 dodata:							/* XXX */
2877 
2878 	/*
2879 	 * Process the segment text, merging it into the TCP sequencing queue,
2880 	 * and arranging for acknowledgement of receipt if necessary.
2881 	 * This process logically involves adjusting tp->rcv_wnd as data
2882 	 * is presented to the user (this happens in tcp_usrreq.c,
2883 	 * tcp_rcvd()).  If a FIN has already been received on this
2884 	 * connection then we just ignore the text.
2885 	 */
2886 	if ((tlen || (tiflags & TH_FIN)) &&
2887 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2888 		/*
2889 		 * Insert segment ti into reassembly queue of tcp with
2890 		 * control block tp.  Return TH_FIN if reassembly now includes
2891 		 * a segment with FIN.  The macro form does the common case
2892 		 * inline (segment is the next to be received on an
2893 		 * established connection, and the queue is empty),
2894 		 * avoiding linkage into and removal from the queue and
2895 		 * repetition of various conversions.
2896 		 * Set DELACK for segments received in order, but ack
2897 		 * immediately when segments are out of order
2898 		 * (so fast retransmit can work).
2899 		 */
2900 		/* NOTE: this was TCP_REASS() macro, but used only once */
2901 		TCP_REASS_LOCK(tp);
2902 		if (th->th_seq == tp->rcv_nxt &&
2903 		    TAILQ_FIRST(&tp->segq) == NULL &&
2904 		    tp->t_state == TCPS_ESTABLISHED) {
2905 			tcp_setup_ack(tp, th);
2906 			tp->rcv_nxt += tlen;
2907 			tiflags = th->th_flags & TH_FIN;
2908 			tcps = TCP_STAT_GETREF();
2909 			tcps[TCP_STAT_RCVPACK]++;
2910 			tcps[TCP_STAT_RCVBYTE] += tlen;
2911 			TCP_STAT_PUTREF();
2912 			nd6_hint(tp);
2913 			if (so->so_state & SS_CANTRCVMORE)
2914 				m_freem(m);
2915 			else {
2916 				m_adj(m, hdroptlen);
2917 				sbappendstream(&(so)->so_rcv, m);
2918 			}
2919 			TCP_REASS_UNLOCK(tp);
2920 			sorwakeup(so);
2921 		} else {
2922 			m_adj(m, hdroptlen);
2923 			tiflags = tcp_reass(tp, th, m, &tlen);
2924 			tp->t_flags |= TF_ACKNOW;
2925 		}
2926 
2927 		/*
2928 		 * Note the amount of data that peer has sent into
2929 		 * our window, in order to estimate the sender's
2930 		 * buffer size.
2931 		 */
2932 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2933 	} else {
2934 		m_freem(m);
2935 		m = NULL;
2936 		tiflags &= ~TH_FIN;
2937 	}
2938 
2939 	/*
2940 	 * If FIN is received ACK the FIN and let the user know
2941 	 * that the connection is closing.  Ignore a FIN received before
2942 	 * the connection is fully established.
2943 	 */
2944 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2945 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2946 			socantrcvmore(so);
2947 			tp->t_flags |= TF_ACKNOW;
2948 			tp->rcv_nxt++;
2949 		}
2950 		switch (tp->t_state) {
2951 
2952 	 	/*
2953 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2954 		 */
2955 		case TCPS_ESTABLISHED:
2956 			tp->t_state = TCPS_CLOSE_WAIT;
2957 			break;
2958 
2959 	 	/*
2960 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2961 		 * enter the CLOSING state.
2962 		 */
2963 		case TCPS_FIN_WAIT_1:
2964 			tp->t_state = TCPS_CLOSING;
2965 			break;
2966 
2967 	 	/*
2968 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2969 		 * starting the time-wait timer, turning off the other
2970 		 * standard timers.
2971 		 */
2972 		case TCPS_FIN_WAIT_2:
2973 			tp->t_state = TCPS_TIME_WAIT;
2974 			tcp_canceltimers(tp);
2975 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2976 			soisdisconnected(so);
2977 			break;
2978 
2979 		/*
2980 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2981 		 */
2982 		case TCPS_TIME_WAIT:
2983 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2984 			break;
2985 		}
2986 	}
2987 #ifdef TCP_DEBUG
2988 	if (so->so_options & SO_DEBUG)
2989 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2990 #endif
2991 
2992 	/*
2993 	 * Return any desired output.
2994 	 */
2995 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2996 		KERNEL_LOCK(1, NULL);
2997 		(void) tcp_output(tp);
2998 		KERNEL_UNLOCK_ONE(NULL);
2999 	}
3000 	if (tcp_saveti)
3001 		m_freem(tcp_saveti);
3002 
3003 	if (tp->t_state == TCPS_TIME_WAIT
3004 	    && (so->so_state & SS_NOFDREF)
3005 	    && (tp->t_inpcb || af != AF_INET)
3006 	    && (tp->t_in6pcb || af != AF_INET6)
3007 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
3008 	    && TAILQ_EMPTY(&tp->segq)
3009 	    && vtw_add(af, tp)) {
3010 		;
3011 	}
3012 	return;
3013 
3014 badsyn:
3015 	/*
3016 	 * Received a bad SYN.  Increment counters and dropwithreset.
3017 	 */
3018 	TCP_STATINC(TCP_STAT_BADSYN);
3019 	tp = NULL;
3020 	goto dropwithreset;
3021 
3022 dropafterack:
3023 	/*
3024 	 * Generate an ACK dropping incoming segment if it occupies
3025 	 * sequence space, where the ACK reflects our state.
3026 	 */
3027 	if (tiflags & TH_RST)
3028 		goto drop;
3029 	goto dropafterack2;
3030 
3031 dropafterack_ratelim:
3032 	/*
3033 	 * We may want to rate-limit ACKs against SYN/RST attack.
3034 	 */
3035 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
3036 	    tcp_ackdrop_ppslim) == 0) {
3037 		/* XXX stat */
3038 		goto drop;
3039 	}
3040 	/* ...fall into dropafterack2... */
3041 
3042 dropafterack2:
3043 	m_freem(m);
3044 	tp->t_flags |= TF_ACKNOW;
3045 	KERNEL_LOCK(1, NULL);
3046 	(void) tcp_output(tp);
3047 	KERNEL_UNLOCK_ONE(NULL);
3048 	if (tcp_saveti)
3049 		m_freem(tcp_saveti);
3050 	return;
3051 
3052 dropwithreset_ratelim:
3053 	/*
3054 	 * We may want to rate-limit RSTs in certain situations,
3055 	 * particularly if we are sending an RST in response to
3056 	 * an attempt to connect to or otherwise communicate with
3057 	 * a port for which we have no socket.
3058 	 */
3059 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
3060 	    tcp_rst_ppslim) == 0) {
3061 		/* XXX stat */
3062 		goto drop;
3063 	}
3064 	/* ...fall into dropwithreset... */
3065 
3066 dropwithreset:
3067 	/*
3068 	 * Generate a RST, dropping incoming segment.
3069 	 * Make ACK acceptable to originator of segment.
3070 	 */
3071 	if (tiflags & TH_RST)
3072 		goto drop;
3073 
3074 	switch (af) {
3075 #ifdef INET6
3076 	case AF_INET6:
3077 		/* For following calls to tcp_respond */
3078 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
3079 			goto drop;
3080 		break;
3081 #endif /* INET6 */
3082 	case AF_INET:
3083 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
3084 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3085 			goto drop;
3086 	}
3087 
3088 	if (tiflags & TH_ACK)
3089 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3090 	else {
3091 		if (tiflags & TH_SYN)
3092 			tlen++;
3093 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
3094 		    TH_RST|TH_ACK);
3095 	}
3096 	if (tcp_saveti)
3097 		m_freem(tcp_saveti);
3098 	return;
3099 
3100 badcsum:
3101 drop:
3102 	/*
3103 	 * Drop space held by incoming segment and return.
3104 	 */
3105 	if (tp) {
3106 		if (tp->t_inpcb)
3107 			so = tp->t_inpcb->inp_socket;
3108 #ifdef INET6
3109 		else if (tp->t_in6pcb)
3110 			so = tp->t_in6pcb->in6p_socket;
3111 #endif
3112 		else
3113 			so = NULL;
3114 #ifdef TCP_DEBUG
3115 		if (so && (so->so_options & SO_DEBUG) != 0)
3116 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
3117 #endif
3118 	}
3119 	if (tcp_saveti)
3120 		m_freem(tcp_saveti);
3121 	m_freem(m);
3122 	return;
3123 }
3124 
3125 #ifdef TCP_SIGNATURE
3126 int
3127 tcp_signature_apply(void *fstate, void *data, u_int len)
3128 {
3129 
3130 	MD5Update(fstate, (u_char *)data, len);
3131 	return (0);
3132 }
3133 
3134 struct secasvar *
3135 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
3136 {
3137 	struct ip *ip;
3138 	struct ip6_hdr *ip6;
3139 
3140 	ip = mtod(m, struct ip *);
3141 	switch (ip->ip_v) {
3142 	case 4:
3143 		ip = mtod(m, struct ip *);
3144 		ip6 = NULL;
3145 		break;
3146 	case 6:
3147 		ip = NULL;
3148 		ip6 = mtod(m, struct ip6_hdr *);
3149 		break;
3150 	default:
3151 		return (NULL);
3152 	}
3153 
3154 #ifdef IPSEC
3155 	if (ipsec_used) {
3156 		union sockaddr_union dst;
3157 		/* Extract the destination from the IP header in the mbuf. */
3158 		memset(&dst, 0, sizeof(union sockaddr_union));
3159 		if (ip != NULL) {
3160 			dst.sa.sa_len = sizeof(struct sockaddr_in);
3161 			dst.sa.sa_family = AF_INET;
3162 			dst.sin.sin_addr = ip->ip_dst;
3163 		} else {
3164 			dst.sa.sa_len = sizeof(struct sockaddr_in6);
3165 			dst.sa.sa_family = AF_INET6;
3166 			dst.sin6.sin6_addr = ip6->ip6_dst;
3167 		}
3168 
3169 		/*
3170 		 * Look up an SADB entry which matches the address of the peer.
3171 		 */
3172 		return KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3173 	}
3174 	return NULL;
3175 #else
3176 	if (ip)
3177 		return key_allocsa(AF_INET, (void *)&ip->ip_src,
3178 		    (void *)&ip->ip_dst, IPPROTO_TCP,
3179 		    htonl(TCP_SIG_SPI), 0, 0);
3180 	else
3181 		return key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
3182 		    (void *)&ip6->ip6_dst, IPPROTO_TCP,
3183 		    htonl(TCP_SIG_SPI), 0, 0);
3184 #endif
3185 }
3186 
3187 int
3188 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3189     struct secasvar *sav, char *sig)
3190 {
3191 	MD5_CTX ctx;
3192 	struct ip *ip;
3193 	struct ipovly *ipovly;
3194 #ifdef INET6
3195 	struct ip6_hdr *ip6;
3196 	struct ip6_hdr_pseudo ip6pseudo;
3197 #endif /* INET6 */
3198 	struct ippseudo ippseudo;
3199 	struct tcphdr th0;
3200 	int l, tcphdrlen;
3201 
3202 	if (sav == NULL)
3203 		return (-1);
3204 
3205 	tcphdrlen = th->th_off * 4;
3206 
3207 	switch (mtod(m, struct ip *)->ip_v) {
3208 	case 4:
3209 		MD5Init(&ctx);
3210 		ip = mtod(m, struct ip *);
3211 		memset(&ippseudo, 0, sizeof(ippseudo));
3212 		ipovly = (struct ipovly *)ip;
3213 		ippseudo.ippseudo_src = ipovly->ih_src;
3214 		ippseudo.ippseudo_dst = ipovly->ih_dst;
3215 		ippseudo.ippseudo_pad = 0;
3216 		ippseudo.ippseudo_p = IPPROTO_TCP;
3217 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3218 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3219 		break;
3220 #if INET6
3221 	case 6:
3222 		MD5Init(&ctx);
3223 		ip6 = mtod(m, struct ip6_hdr *);
3224 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3225 		ip6pseudo.ip6ph_src = ip6->ip6_src;
3226 		in6_clearscope(&ip6pseudo.ip6ph_src);
3227 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3228 		in6_clearscope(&ip6pseudo.ip6ph_dst);
3229 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3230 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3231 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3232 		break;
3233 #endif /* INET6 */
3234 	default:
3235 		return (-1);
3236 	}
3237 
3238 	th0 = *th;
3239 	th0.th_sum = 0;
3240 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
3241 
3242 	l = m->m_pkthdr.len - thoff - tcphdrlen;
3243 	if (l > 0)
3244 		m_apply(m, thoff + tcphdrlen,
3245 		    m->m_pkthdr.len - thoff - tcphdrlen,
3246 		    tcp_signature_apply, &ctx);
3247 
3248 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3249 	MD5Final(sig, &ctx);
3250 
3251 	return (0);
3252 }
3253 #endif
3254 
3255 /*
3256  * tcp_dooptions: parse and process tcp options.
3257  *
3258  * returns -1 if this segment should be dropped.  (eg. wrong signature)
3259  * otherwise returns 0.
3260  */
3261 
3262 static int
3263 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
3264     struct tcphdr *th,
3265     struct mbuf *m, int toff, struct tcp_opt_info *oi)
3266 {
3267 	u_int16_t mss;
3268 	int opt, optlen = 0;
3269 #ifdef TCP_SIGNATURE
3270 	void *sigp = NULL;
3271 	char sigbuf[TCP_SIGLEN];
3272 	struct secasvar *sav = NULL;
3273 #endif
3274 
3275 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3276 		opt = cp[0];
3277 		if (opt == TCPOPT_EOL)
3278 			break;
3279 		if (opt == TCPOPT_NOP)
3280 			optlen = 1;
3281 		else {
3282 			if (cnt < 2)
3283 				break;
3284 			optlen = cp[1];
3285 			if (optlen < 2 || optlen > cnt)
3286 				break;
3287 		}
3288 		switch (opt) {
3289 
3290 		default:
3291 			continue;
3292 
3293 		case TCPOPT_MAXSEG:
3294 			if (optlen != TCPOLEN_MAXSEG)
3295 				continue;
3296 			if (!(th->th_flags & TH_SYN))
3297 				continue;
3298 			if (TCPS_HAVERCVDSYN(tp->t_state))
3299 				continue;
3300 			bcopy(cp + 2, &mss, sizeof(mss));
3301 			oi->maxseg = ntohs(mss);
3302 			break;
3303 
3304 		case TCPOPT_WINDOW:
3305 			if (optlen != TCPOLEN_WINDOW)
3306 				continue;
3307 			if (!(th->th_flags & TH_SYN))
3308 				continue;
3309 			if (TCPS_HAVERCVDSYN(tp->t_state))
3310 				continue;
3311 			tp->t_flags |= TF_RCVD_SCALE;
3312 			tp->requested_s_scale = cp[2];
3313 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3314 				char buf[INET6_ADDRSTRLEN];
3315 				struct ip *ip = mtod(m, struct ip *);
3316 #ifdef INET6
3317 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3318 #endif
3319 				if (ip)
3320 					in_print(buf, sizeof(buf),
3321 					    &ip->ip_src);
3322 #ifdef INET6
3323 				else if (ip6)
3324 					in6_print(buf, sizeof(buf),
3325 					    &ip6->ip6_src);
3326 #endif
3327 				else
3328 					strlcpy(buf, "(unknown)", sizeof(buf));
3329 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3330 				    "assuming %d\n",
3331 				    tp->requested_s_scale, buf,
3332 				    TCP_MAX_WINSHIFT);
3333 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
3334 			}
3335 			break;
3336 
3337 		case TCPOPT_TIMESTAMP:
3338 			if (optlen != TCPOLEN_TIMESTAMP)
3339 				continue;
3340 			oi->ts_present = 1;
3341 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3342 			NTOHL(oi->ts_val);
3343 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3344 			NTOHL(oi->ts_ecr);
3345 
3346 			if (!(th->th_flags & TH_SYN))
3347 				continue;
3348 			if (TCPS_HAVERCVDSYN(tp->t_state))
3349 				continue;
3350 			/*
3351 			 * A timestamp received in a SYN makes
3352 			 * it ok to send timestamp requests and replies.
3353 			 */
3354 			tp->t_flags |= TF_RCVD_TSTMP;
3355 			tp->ts_recent = oi->ts_val;
3356 			tp->ts_recent_age = tcp_now;
3357                         break;
3358 
3359 		case TCPOPT_SACK_PERMITTED:
3360 			if (optlen != TCPOLEN_SACK_PERMITTED)
3361 				continue;
3362 			if (!(th->th_flags & TH_SYN))
3363 				continue;
3364 			if (TCPS_HAVERCVDSYN(tp->t_state))
3365 				continue;
3366 			if (tcp_do_sack) {
3367 				tp->t_flags |= TF_SACK_PERMIT;
3368 				tp->t_flags |= TF_WILL_SACK;
3369 			}
3370 			break;
3371 
3372 		case TCPOPT_SACK:
3373 			tcp_sack_option(tp, th, cp, optlen);
3374 			break;
3375 #ifdef TCP_SIGNATURE
3376 		case TCPOPT_SIGNATURE:
3377 			if (optlen != TCPOLEN_SIGNATURE)
3378 				continue;
3379 			if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
3380 				return (-1);
3381 
3382 			sigp = sigbuf;
3383 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3384 			tp->t_flags |= TF_SIGNATURE;
3385 			break;
3386 #endif
3387 		}
3388 	}
3389 
3390 #ifndef TCP_SIGNATURE
3391 	return 0;
3392 #else
3393 	if (tp->t_flags & TF_SIGNATURE) {
3394 
3395 		sav = tcp_signature_getsav(m, th);
3396 
3397 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
3398 			return (-1);
3399 	}
3400 
3401 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3402 		goto out;
3403 
3404 	if (sigp) {
3405 		char sig[TCP_SIGLEN];
3406 
3407 		tcp_fields_to_net(th);
3408 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
3409 			tcp_fields_to_host(th);
3410 			goto out;
3411 		}
3412 		tcp_fields_to_host(th);
3413 
3414 		if (memcmp(sig, sigp, TCP_SIGLEN)) {
3415 			TCP_STATINC(TCP_STAT_BADSIG);
3416 			goto out;
3417 		} else
3418 			TCP_STATINC(TCP_STAT_GOODSIG);
3419 
3420 		key_sa_recordxfer(sav, m);
3421 		KEY_FREESAV(&sav);
3422 	}
3423 	return 0;
3424 out:
3425 	if (sav != NULL)
3426 		KEY_FREESAV(&sav);
3427 	return -1;
3428 #endif
3429 }
3430 
3431 /*
3432  * Pull out of band byte out of a segment so
3433  * it doesn't appear in the user's data queue.
3434  * It is still reflected in the segment length for
3435  * sequencing purposes.
3436  */
3437 void
3438 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3439     struct mbuf *m, int off)
3440 {
3441 	int cnt = off + th->th_urp - 1;
3442 
3443 	while (cnt >= 0) {
3444 		if (m->m_len > cnt) {
3445 			char *cp = mtod(m, char *) + cnt;
3446 			struct tcpcb *tp = sototcpcb(so);
3447 
3448 			tp->t_iobc = *cp;
3449 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3450 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3451 			m->m_len--;
3452 			return;
3453 		}
3454 		cnt -= m->m_len;
3455 		m = m->m_next;
3456 		if (m == 0)
3457 			break;
3458 	}
3459 	panic("tcp_pulloutofband");
3460 }
3461 
3462 /*
3463  * Collect new round-trip time estimate
3464  * and update averages and current timeout.
3465  *
3466  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3467  * difference of two timestamps.
3468  */
3469 void
3470 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3471 {
3472 	int32_t delta;
3473 
3474 	TCP_STATINC(TCP_STAT_RTTUPDATED);
3475 	if (tp->t_srtt != 0) {
3476 		/*
3477 		 * Compute the amount to add to srtt for smoothing,
3478 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
3479 		 * srtt is stored in 1/32 slow ticks, we conceptually
3480 		 * shift left 5 bits, subtract srtt to get the
3481 		 * diference, and then shift right by TCP_RTT_SHIFT
3482 		 * (3) to obtain 1/8 of the difference.
3483 		 */
3484 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3485 		/*
3486 		 * This can never happen, because delta's lowest
3487 		 * possible value is 1/8 of t_srtt.  But if it does,
3488 		 * set srtt to some reasonable value, here chosen
3489 		 * as 1/8 tick.
3490 		 */
3491 		if ((tp->t_srtt += delta) <= 0)
3492 			tp->t_srtt = 1 << 2;
3493 		/*
3494 		 * RFC2988 requires that rttvar be updated first.
3495 		 * This code is compliant because "delta" is the old
3496 		 * srtt minus the new observation (scaled).
3497 		 *
3498 		 * RFC2988 says:
3499 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3500 		 *
3501 		 * delta is in units of 1/32 ticks, and has then been
3502 		 * divided by 8.  This is equivalent to being in 1/16s
3503 		 * units and divided by 4.  Subtract from it 1/4 of
3504 		 * the existing rttvar to form the (signed) amount to
3505 		 * adjust.
3506 		 */
3507 		if (delta < 0)
3508 			delta = -delta;
3509 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3510 		/*
3511 		 * As with srtt, this should never happen.  There is
3512 		 * no support in RFC2988 for this operation.  But 1/4s
3513 		 * as rttvar when faced with something arguably wrong
3514 		 * is ok.
3515 		 */
3516 		if ((tp->t_rttvar += delta) <= 0)
3517 			tp->t_rttvar = 1 << 2;
3518 
3519 		/*
3520 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3521 		 * Problem is: it doesn't work.  Disabled by defaulting
3522 		 * tcp_rttlocal to 0; see corresponding code in
3523 		 * tcp_subr that selects local vs remote in a different way.
3524 		 *
3525 		 * The static branch prediction hint here should be removed
3526 		 * when the rtt estimator is fixed and the rtt_enable code
3527 		 * is turned back on.
3528 		 */
3529 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3530 		    && tp->t_srtt > tcp_msl_remote_threshold
3531 		    && tp->t_msl  < tcp_msl_remote) {
3532 			tp->t_msl = tcp_msl_remote;
3533 		}
3534 	} else {
3535 		/*
3536 		 * This is the first measurement.  Per RFC2988, 2.2,
3537 		 * set rtt=R and srtt=R/2.
3538 		 * For srtt, storage representation is 1/32 ticks,
3539 		 * so shift left by 5.
3540 		 * For rttvar, storage representation is 1/16 ticks,
3541 		 * So shift left by 4, but then right by 1 to halve.
3542 		 */
3543 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3544 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3545 	}
3546 	tp->t_rtttime = 0;
3547 	tp->t_rxtshift = 0;
3548 
3549 	/*
3550 	 * the retransmit should happen at rtt + 4 * rttvar.
3551 	 * Because of the way we do the smoothing, srtt and rttvar
3552 	 * will each average +1/2 tick of bias.  When we compute
3553 	 * the retransmit timer, we want 1/2 tick of rounding and
3554 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3555 	 * firing of the timer.  The bias will give us exactly the
3556 	 * 1.5 tick we need.  But, because the bias is
3557 	 * statistical, we have to test that we don't drop below
3558 	 * the minimum feasible timer (which is 2 ticks).
3559 	 */
3560 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3561 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3562 
3563 	/*
3564 	 * We received an ack for a packet that wasn't retransmitted;
3565 	 * it is probably safe to discard any error indications we've
3566 	 * received recently.  This isn't quite right, but close enough
3567 	 * for now (a route might have failed after we sent a segment,
3568 	 * and the return path might not be symmetrical).
3569 	 */
3570 	tp->t_softerror = 0;
3571 }
3572 
3573 
3574 /*
3575  * TCP compressed state engine.  Currently used to hold compressed
3576  * state for SYN_RECEIVED.
3577  */
3578 
3579 u_long	syn_cache_count;
3580 u_int32_t syn_hash1, syn_hash2;
3581 
3582 #define SYN_HASH(sa, sp, dp) \
3583 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3584 				     ((u_int32_t)(sp)))^syn_hash2)))
3585 #ifndef INET6
3586 #define	SYN_HASHALL(hash, src, dst) \
3587 do {									\
3588 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
3589 		((const struct sockaddr_in *)(src))->sin_port,		\
3590 		((const struct sockaddr_in *)(dst))->sin_port);		\
3591 } while (/*CONSTCOND*/ 0)
3592 #else
3593 #define SYN_HASH6(sa, sp, dp) \
3594 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3595 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3596 	 & 0x7fffffff)
3597 
3598 #define SYN_HASHALL(hash, src, dst) \
3599 do {									\
3600 	switch ((src)->sa_family) {					\
3601 	case AF_INET:							\
3602 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3603 			((const struct sockaddr_in *)(src))->sin_port,	\
3604 			((const struct sockaddr_in *)(dst))->sin_port);	\
3605 		break;							\
3606 	case AF_INET6:							\
3607 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3608 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
3609 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
3610 		break;							\
3611 	default:							\
3612 		hash = 0;						\
3613 	}								\
3614 } while (/*CONSTCOND*/0)
3615 #endif /* INET6 */
3616 
3617 static struct pool syn_cache_pool;
3618 
3619 /*
3620  * We don't estimate RTT with SYNs, so each packet starts with the default
3621  * RTT and each timer step has a fixed timeout value.
3622  */
3623 #define	SYN_CACHE_TIMER_ARM(sc)						\
3624 do {									\
3625 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3626 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3627 	    TCPTV_REXMTMAX);						\
3628 	callout_reset(&(sc)->sc_timer,					\
3629 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
3630 } while (/*CONSTCOND*/0)
3631 
3632 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
3633 
3634 static inline void
3635 syn_cache_rm(struct syn_cache *sc)
3636 {
3637 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3638 	    sc, sc_bucketq);
3639 	sc->sc_tp = NULL;
3640 	LIST_REMOVE(sc, sc_tpq);
3641 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3642 	callout_stop(&sc->sc_timer);
3643 	syn_cache_count--;
3644 }
3645 
3646 static inline void
3647 syn_cache_put(struct syn_cache *sc)
3648 {
3649 	if (sc->sc_ipopts)
3650 		(void) m_free(sc->sc_ipopts);
3651 	rtcache_free(&sc->sc_route);
3652 	sc->sc_flags |= SCF_DEAD;
3653 	if (!callout_invoking(&sc->sc_timer))
3654 		callout_schedule(&(sc)->sc_timer, 1);
3655 }
3656 
3657 void
3658 syn_cache_init(void)
3659 {
3660 	int i;
3661 
3662 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3663 	    "synpl", NULL, IPL_SOFTNET);
3664 
3665 	/* Initialize the hash buckets. */
3666 	for (i = 0; i < tcp_syn_cache_size; i++)
3667 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3668 }
3669 
3670 void
3671 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3672 {
3673 	struct syn_cache_head *scp;
3674 	struct syn_cache *sc2;
3675 	int s;
3676 
3677 	/*
3678 	 * If there are no entries in the hash table, reinitialize
3679 	 * the hash secrets.
3680 	 */
3681 	if (syn_cache_count == 0) {
3682 		syn_hash1 = cprng_fast32();
3683 		syn_hash2 = cprng_fast32();
3684 	}
3685 
3686 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3687 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3688 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3689 
3690 	/*
3691 	 * Make sure that we don't overflow the per-bucket
3692 	 * limit or the total cache size limit.
3693 	 */
3694 	s = splsoftnet();
3695 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3696 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3697 		/*
3698 		 * The bucket is full.  Toss the oldest element in the
3699 		 * bucket.  This will be the first entry in the bucket.
3700 		 */
3701 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3702 #ifdef DIAGNOSTIC
3703 		/*
3704 		 * This should never happen; we should always find an
3705 		 * entry in our bucket.
3706 		 */
3707 		if (sc2 == NULL)
3708 			panic("syn_cache_insert: bucketoverflow: impossible");
3709 #endif
3710 		syn_cache_rm(sc2);
3711 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3712 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3713 		struct syn_cache_head *scp2, *sce;
3714 
3715 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3716 		/*
3717 		 * The cache is full.  Toss the oldest entry in the
3718 		 * first non-empty bucket we can find.
3719 		 *
3720 		 * XXX We would really like to toss the oldest
3721 		 * entry in the cache, but we hope that this
3722 		 * condition doesn't happen very often.
3723 		 */
3724 		scp2 = scp;
3725 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3726 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3727 			for (++scp2; scp2 != scp; scp2++) {
3728 				if (scp2 >= sce)
3729 					scp2 = &tcp_syn_cache[0];
3730 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3731 					break;
3732 			}
3733 #ifdef DIAGNOSTIC
3734 			/*
3735 			 * This should never happen; we should always find a
3736 			 * non-empty bucket.
3737 			 */
3738 			if (scp2 == scp)
3739 				panic("syn_cache_insert: cacheoverflow: "
3740 				    "impossible");
3741 #endif
3742 		}
3743 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3744 		syn_cache_rm(sc2);
3745 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3746 	}
3747 
3748 	/*
3749 	 * Initialize the entry's timer.
3750 	 */
3751 	sc->sc_rxttot = 0;
3752 	sc->sc_rxtshift = 0;
3753 	SYN_CACHE_TIMER_ARM(sc);
3754 
3755 	/* Link it from tcpcb entry */
3756 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3757 
3758 	/* Put it into the bucket. */
3759 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3760 	scp->sch_length++;
3761 	syn_cache_count++;
3762 
3763 	TCP_STATINC(TCP_STAT_SC_ADDED);
3764 	splx(s);
3765 }
3766 
3767 /*
3768  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3769  * If we have retransmitted an entry the maximum number of times, expire
3770  * that entry.
3771  */
3772 void
3773 syn_cache_timer(void *arg)
3774 {
3775 	struct syn_cache *sc = arg;
3776 
3777 	mutex_enter(softnet_lock);
3778 	KERNEL_LOCK(1, NULL);
3779 	callout_ack(&sc->sc_timer);
3780 
3781 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3782 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3783 		callout_destroy(&sc->sc_timer);
3784 		pool_put(&syn_cache_pool, sc);
3785 		KERNEL_UNLOCK_ONE(NULL);
3786 		mutex_exit(softnet_lock);
3787 		return;
3788 	}
3789 
3790 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3791 		/* Drop it -- too many retransmissions. */
3792 		goto dropit;
3793 	}
3794 
3795 	/*
3796 	 * Compute the total amount of time this entry has
3797 	 * been on a queue.  If this entry has been on longer
3798 	 * than the keep alive timer would allow, expire it.
3799 	 */
3800 	sc->sc_rxttot += sc->sc_rxtcur;
3801 	if (sc->sc_rxttot >= tcp_keepinit)
3802 		goto dropit;
3803 
3804 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3805 	(void) syn_cache_respond(sc, NULL);
3806 
3807 	/* Advance the timer back-off. */
3808 	sc->sc_rxtshift++;
3809 	SYN_CACHE_TIMER_ARM(sc);
3810 
3811 	KERNEL_UNLOCK_ONE(NULL);
3812 	mutex_exit(softnet_lock);
3813 	return;
3814 
3815  dropit:
3816 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3817 	syn_cache_rm(sc);
3818 	if (sc->sc_ipopts)
3819 		(void) m_free(sc->sc_ipopts);
3820 	rtcache_free(&sc->sc_route);
3821 	callout_destroy(&sc->sc_timer);
3822 	pool_put(&syn_cache_pool, sc);
3823 	KERNEL_UNLOCK_ONE(NULL);
3824 	mutex_exit(softnet_lock);
3825 }
3826 
3827 /*
3828  * Remove syn cache created by the specified tcb entry,
3829  * because this does not make sense to keep them
3830  * (if there's no tcb entry, syn cache entry will never be used)
3831  */
3832 void
3833 syn_cache_cleanup(struct tcpcb *tp)
3834 {
3835 	struct syn_cache *sc, *nsc;
3836 	int s;
3837 
3838 	s = splsoftnet();
3839 
3840 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3841 		nsc = LIST_NEXT(sc, sc_tpq);
3842 
3843 #ifdef DIAGNOSTIC
3844 		if (sc->sc_tp != tp)
3845 			panic("invalid sc_tp in syn_cache_cleanup");
3846 #endif
3847 		syn_cache_rm(sc);
3848 		syn_cache_put(sc);	/* calls pool_put but see spl above */
3849 	}
3850 	/* just for safety */
3851 	LIST_INIT(&tp->t_sc);
3852 
3853 	splx(s);
3854 }
3855 
3856 /*
3857  * Find an entry in the syn cache.
3858  */
3859 struct syn_cache *
3860 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3861     struct syn_cache_head **headp)
3862 {
3863 	struct syn_cache *sc;
3864 	struct syn_cache_head *scp;
3865 	u_int32_t hash;
3866 	int s;
3867 
3868 	SYN_HASHALL(hash, src, dst);
3869 
3870 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3871 	*headp = scp;
3872 	s = splsoftnet();
3873 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3874 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3875 		if (sc->sc_hash != hash)
3876 			continue;
3877 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3878 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3879 			splx(s);
3880 			return (sc);
3881 		}
3882 	}
3883 	splx(s);
3884 	return (NULL);
3885 }
3886 
3887 /*
3888  * This function gets called when we receive an ACK for a
3889  * socket in the LISTEN state.  We look up the connection
3890  * in the syn cache, and if its there, we pull it out of
3891  * the cache and turn it into a full-blown connection in
3892  * the SYN-RECEIVED state.
3893  *
3894  * The return values may not be immediately obvious, and their effects
3895  * can be subtle, so here they are:
3896  *
3897  *	NULL	SYN was not found in cache; caller should drop the
3898  *		packet and send an RST.
3899  *
3900  *	-1	We were unable to create the new connection, and are
3901  *		aborting it.  An ACK,RST is being sent to the peer
3902  *		(unless we got screwey sequence numbners; see below),
3903  *		because the 3-way handshake has been completed.  Caller
3904  *		should not free the mbuf, since we may be using it.  If
3905  *		we are not, we will free it.
3906  *
3907  *	Otherwise, the return value is a pointer to the new socket
3908  *	associated with the connection.
3909  */
3910 struct socket *
3911 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3912     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3913     struct socket *so, struct mbuf *m)
3914 {
3915 	struct syn_cache *sc;
3916 	struct syn_cache_head *scp;
3917 	struct inpcb *inp = NULL;
3918 #ifdef INET6
3919 	struct in6pcb *in6p = NULL;
3920 #endif
3921 	struct tcpcb *tp = 0;
3922 	struct mbuf *am;
3923 	int s;
3924 	struct socket *oso;
3925 
3926 	s = splsoftnet();
3927 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3928 		splx(s);
3929 		return (NULL);
3930 	}
3931 
3932 	/*
3933 	 * Verify the sequence and ack numbers.  Try getting the correct
3934 	 * response again.
3935 	 */
3936 	if ((th->th_ack != sc->sc_iss + 1) ||
3937 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3938 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3939 		(void) syn_cache_respond(sc, m);
3940 		splx(s);
3941 		return ((struct socket *)(-1));
3942 	}
3943 
3944 	/* Remove this cache entry */
3945 	syn_cache_rm(sc);
3946 	splx(s);
3947 
3948 	/*
3949 	 * Ok, create the full blown connection, and set things up
3950 	 * as they would have been set up if we had created the
3951 	 * connection when the SYN arrived.  If we can't create
3952 	 * the connection, abort it.
3953 	 */
3954 	/*
3955 	 * inp still has the OLD in_pcb stuff, set the
3956 	 * v6-related flags on the new guy, too.   This is
3957 	 * done particularly for the case where an AF_INET6
3958 	 * socket is bound only to a port, and a v4 connection
3959 	 * comes in on that port.
3960 	 * we also copy the flowinfo from the original pcb
3961 	 * to the new one.
3962 	 */
3963 	oso = so;
3964 	so = sonewconn(so, true);
3965 	if (so == NULL)
3966 		goto resetandabort;
3967 
3968 	switch (so->so_proto->pr_domain->dom_family) {
3969 #ifdef INET
3970 	case AF_INET:
3971 		inp = sotoinpcb(so);
3972 		break;
3973 #endif
3974 #ifdef INET6
3975 	case AF_INET6:
3976 		in6p = sotoin6pcb(so);
3977 		break;
3978 #endif
3979 	}
3980 	switch (src->sa_family) {
3981 #ifdef INET
3982 	case AF_INET:
3983 		if (inp) {
3984 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3985 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3986 			inp->inp_options = ip_srcroute();
3987 			in_pcbstate(inp, INP_BOUND);
3988 			if (inp->inp_options == NULL) {
3989 				inp->inp_options = sc->sc_ipopts;
3990 				sc->sc_ipopts = NULL;
3991 			}
3992 		}
3993 #ifdef INET6
3994 		else if (in6p) {
3995 			/* IPv4 packet to AF_INET6 socket */
3996 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
3997 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3998 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3999 				&in6p->in6p_laddr.s6_addr32[3],
4000 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
4001 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
4002 			in6totcpcb(in6p)->t_family = AF_INET;
4003 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
4004 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
4005 			else
4006 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
4007 			in6_pcbstate(in6p, IN6P_BOUND);
4008 		}
4009 #endif
4010 		break;
4011 #endif
4012 #ifdef INET6
4013 	case AF_INET6:
4014 		if (in6p) {
4015 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
4016 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
4017 			in6_pcbstate(in6p, IN6P_BOUND);
4018 		}
4019 		break;
4020 #endif
4021 	}
4022 #ifdef INET6
4023 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
4024 		struct in6pcb *oin6p = sotoin6pcb(oso);
4025 		/* inherit socket options from the listening socket */
4026 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
4027 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
4028 			m_freem(in6p->in6p_options);
4029 			in6p->in6p_options = 0;
4030 		}
4031 		ip6_savecontrol(in6p, &in6p->in6p_options,
4032 			mtod(m, struct ip6_hdr *), m);
4033 	}
4034 #endif
4035 
4036 #if defined(IPSEC)
4037 	if (ipsec_used) {
4038 		/*
4039 		 * we make a copy of policy, instead of sharing the policy, for
4040 		 * better behavior in terms of SA lookup and dead SA removal.
4041 		 */
4042 		if (inp) {
4043 			/* copy old policy into new socket's */
4044 			if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp,
4045 			    inp->inp_sp))
4046 				printf("tcp_input: could not copy policy\n");
4047 		}
4048 #ifdef INET6
4049 		else if (in6p) {
4050 			/* copy old policy into new socket's */
4051 			if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
4052 			    in6p->in6p_sp))
4053 				printf("tcp_input: could not copy policy\n");
4054 		}
4055 #endif
4056 	}
4057 #endif
4058 
4059 	/*
4060 	 * Give the new socket our cached route reference.
4061 	 */
4062 	if (inp) {
4063 		rtcache_copy(&inp->inp_route, &sc->sc_route);
4064 		rtcache_free(&sc->sc_route);
4065 	}
4066 #ifdef INET6
4067 	else {
4068 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
4069 		rtcache_free(&sc->sc_route);
4070 	}
4071 #endif
4072 
4073 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
4074 	if (am == NULL)
4075 		goto resetandabort;
4076 	MCLAIM(am, &tcp_mowner);
4077 	am->m_len = src->sa_len;
4078 	bcopy(src, mtod(am, void *), src->sa_len);
4079 	if (inp) {
4080 		if (in_pcbconnect(inp, am, &lwp0)) {
4081 			(void) m_free(am);
4082 			goto resetandabort;
4083 		}
4084 	}
4085 #ifdef INET6
4086 	else if (in6p) {
4087 		if (src->sa_family == AF_INET) {
4088 			/* IPv4 packet to AF_INET6 socket */
4089 			struct sockaddr_in6 *sin6;
4090 			sin6 = mtod(am, struct sockaddr_in6 *);
4091 			am->m_len = sizeof(*sin6);
4092 			memset(sin6, 0, sizeof(*sin6));
4093 			sin6->sin6_family = AF_INET6;
4094 			sin6->sin6_len = sizeof(*sin6);
4095 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
4096 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
4097 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
4098 				&sin6->sin6_addr.s6_addr32[3],
4099 				sizeof(sin6->sin6_addr.s6_addr32[3]));
4100 		}
4101 		if (in6_pcbconnect(in6p, am, NULL)) {
4102 			(void) m_free(am);
4103 			goto resetandabort;
4104 		}
4105 	}
4106 #endif
4107 	else {
4108 		(void) m_free(am);
4109 		goto resetandabort;
4110 	}
4111 	(void) m_free(am);
4112 
4113 	if (inp)
4114 		tp = intotcpcb(inp);
4115 #ifdef INET6
4116 	else if (in6p)
4117 		tp = in6totcpcb(in6p);
4118 #endif
4119 	else
4120 		tp = NULL;
4121 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
4122 	if (sc->sc_request_r_scale != 15) {
4123 		tp->requested_s_scale = sc->sc_requested_s_scale;
4124 		tp->request_r_scale = sc->sc_request_r_scale;
4125 		tp->snd_scale = sc->sc_requested_s_scale;
4126 		tp->rcv_scale = sc->sc_request_r_scale;
4127 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
4128 	}
4129 	if (sc->sc_flags & SCF_TIMESTAMP)
4130 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
4131 	tp->ts_timebase = sc->sc_timebase;
4132 
4133 	tp->t_template = tcp_template(tp);
4134 	if (tp->t_template == 0) {
4135 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
4136 		so = NULL;
4137 		m_freem(m);
4138 		goto abort;
4139 	}
4140 
4141 	tp->iss = sc->sc_iss;
4142 	tp->irs = sc->sc_irs;
4143 	tcp_sendseqinit(tp);
4144 	tcp_rcvseqinit(tp);
4145 	tp->t_state = TCPS_SYN_RECEIVED;
4146 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
4147 	TCP_STATINC(TCP_STAT_ACCEPTS);
4148 
4149 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
4150 		tp->t_flags |= TF_WILL_SACK;
4151 
4152 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
4153 		tp->t_flags |= TF_ECN_PERMIT;
4154 
4155 #ifdef TCP_SIGNATURE
4156 	if (sc->sc_flags & SCF_SIGNATURE)
4157 		tp->t_flags |= TF_SIGNATURE;
4158 #endif
4159 
4160 	/* Initialize tp->t_ourmss before we deal with the peer's! */
4161 	tp->t_ourmss = sc->sc_ourmaxseg;
4162 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
4163 
4164 	/*
4165 	 * Initialize the initial congestion window.  If we
4166 	 * had to retransmit the SYN,ACK, we must initialize cwnd
4167 	 * to 1 segment (i.e. the Loss Window).
4168 	 */
4169 	if (sc->sc_rxtshift)
4170 		tp->snd_cwnd = tp->t_peermss;
4171 	else {
4172 		int ss = tcp_init_win;
4173 #ifdef INET
4174 		if (inp != NULL && in_localaddr(inp->inp_faddr))
4175 			ss = tcp_init_win_local;
4176 #endif
4177 #ifdef INET6
4178 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
4179 			ss = tcp_init_win_local;
4180 #endif
4181 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
4182 	}
4183 
4184 	tcp_rmx_rtt(tp);
4185 	tp->snd_wl1 = sc->sc_irs;
4186 	tp->rcv_up = sc->sc_irs + 1;
4187 
4188 	/*
4189 	 * This is what whould have happened in tcp_output() when
4190 	 * the SYN,ACK was sent.
4191 	 */
4192 	tp->snd_up = tp->snd_una;
4193 	tp->snd_max = tp->snd_nxt = tp->iss+1;
4194 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4195 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4196 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4197 	tp->last_ack_sent = tp->rcv_nxt;
4198 	tp->t_partialacks = -1;
4199 	tp->t_dupacks = 0;
4200 
4201 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
4202 	s = splsoftnet();
4203 	syn_cache_put(sc);
4204 	splx(s);
4205 	return (so);
4206 
4207 resetandabort:
4208 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4209 abort:
4210 	if (so != NULL) {
4211 		(void) soqremque(so, 1);
4212 		(void) soabort(so);
4213 		mutex_enter(softnet_lock);
4214 	}
4215 	s = splsoftnet();
4216 	syn_cache_put(sc);
4217 	splx(s);
4218 	TCP_STATINC(TCP_STAT_SC_ABORTED);
4219 	return ((struct socket *)(-1));
4220 }
4221 
4222 /*
4223  * This function is called when we get a RST for a
4224  * non-existent connection, so that we can see if the
4225  * connection is in the syn cache.  If it is, zap it.
4226  */
4227 
4228 void
4229 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4230 {
4231 	struct syn_cache *sc;
4232 	struct syn_cache_head *scp;
4233 	int s = splsoftnet();
4234 
4235 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4236 		splx(s);
4237 		return;
4238 	}
4239 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4240 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4241 		splx(s);
4242 		return;
4243 	}
4244 	syn_cache_rm(sc);
4245 	TCP_STATINC(TCP_STAT_SC_RESET);
4246 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4247 	splx(s);
4248 }
4249 
4250 void
4251 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4252     struct tcphdr *th)
4253 {
4254 	struct syn_cache *sc;
4255 	struct syn_cache_head *scp;
4256 	int s;
4257 
4258 	s = splsoftnet();
4259 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4260 		splx(s);
4261 		return;
4262 	}
4263 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4264 	if (ntohl (th->th_seq) != sc->sc_iss) {
4265 		splx(s);
4266 		return;
4267 	}
4268 
4269 	/*
4270 	 * If we've retransmitted 3 times and this is our second error,
4271 	 * we remove the entry.  Otherwise, we allow it to continue on.
4272 	 * This prevents us from incorrectly nuking an entry during a
4273 	 * spurious network outage.
4274 	 *
4275 	 * See tcp_notify().
4276 	 */
4277 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4278 		sc->sc_flags |= SCF_UNREACH;
4279 		splx(s);
4280 		return;
4281 	}
4282 
4283 	syn_cache_rm(sc);
4284 	TCP_STATINC(TCP_STAT_SC_UNREACH);
4285 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4286 	splx(s);
4287 }
4288 
4289 /*
4290  * Given a LISTEN socket and an inbound SYN request, add
4291  * this to the syn cache, and send back a segment:
4292  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4293  * to the source.
4294  *
4295  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4296  * Doing so would require that we hold onto the data and deliver it
4297  * to the application.  However, if we are the target of a SYN-flood
4298  * DoS attack, an attacker could send data which would eventually
4299  * consume all available buffer space if it were ACKed.  By not ACKing
4300  * the data, we avoid this DoS scenario.
4301  */
4302 
4303 int
4304 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4305     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
4306     int optlen, struct tcp_opt_info *oi)
4307 {
4308 	struct tcpcb tb, *tp;
4309 	long win;
4310 	struct syn_cache *sc;
4311 	struct syn_cache_head *scp;
4312 	struct mbuf *ipopts;
4313 	struct tcp_opt_info opti;
4314 	int s;
4315 
4316 	tp = sototcpcb(so);
4317 
4318 	memset(&opti, 0, sizeof(opti));
4319 
4320 	/*
4321 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4322 	 *
4323 	 * Note this check is performed in tcp_input() very early on.
4324 	 */
4325 
4326 	/*
4327 	 * Initialize some local state.
4328 	 */
4329 	win = sbspace(&so->so_rcv);
4330 	if (win > TCP_MAXWIN)
4331 		win = TCP_MAXWIN;
4332 
4333 	switch (src->sa_family) {
4334 #ifdef INET
4335 	case AF_INET:
4336 		/*
4337 		 * Remember the IP options, if any.
4338 		 */
4339 		ipopts = ip_srcroute();
4340 		break;
4341 #endif
4342 	default:
4343 		ipopts = NULL;
4344 	}
4345 
4346 #ifdef TCP_SIGNATURE
4347 	if (optp || (tp->t_flags & TF_SIGNATURE))
4348 #else
4349 	if (optp)
4350 #endif
4351 	{
4352 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4353 #ifdef TCP_SIGNATURE
4354 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4355 #endif
4356 		tb.t_state = TCPS_LISTEN;
4357 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4358 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4359 			return (0);
4360 	} else
4361 		tb.t_flags = 0;
4362 
4363 	/*
4364 	 * See if we already have an entry for this connection.
4365 	 * If we do, resend the SYN,ACK.  We do not count this
4366 	 * as a retransmission (XXX though maybe we should).
4367 	 */
4368 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4369 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
4370 		if (ipopts) {
4371 			/*
4372 			 * If we were remembering a previous source route,
4373 			 * forget it and use the new one we've been given.
4374 			 */
4375 			if (sc->sc_ipopts)
4376 				(void) m_free(sc->sc_ipopts);
4377 			sc->sc_ipopts = ipopts;
4378 		}
4379 		sc->sc_timestamp = tb.ts_recent;
4380 		if (syn_cache_respond(sc, m) == 0) {
4381 			uint64_t *tcps = TCP_STAT_GETREF();
4382 			tcps[TCP_STAT_SNDACKS]++;
4383 			tcps[TCP_STAT_SNDTOTAL]++;
4384 			TCP_STAT_PUTREF();
4385 		}
4386 		return (1);
4387 	}
4388 
4389 	s = splsoftnet();
4390 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4391 	splx(s);
4392 	if (sc == NULL) {
4393 		if (ipopts)
4394 			(void) m_free(ipopts);
4395 		return (0);
4396 	}
4397 
4398 	/*
4399 	 * Fill in the cache, and put the necessary IP and TCP
4400 	 * options into the reply.
4401 	 */
4402 	memset(sc, 0, sizeof(struct syn_cache));
4403 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4404 	bcopy(src, &sc->sc_src, src->sa_len);
4405 	bcopy(dst, &sc->sc_dst, dst->sa_len);
4406 	sc->sc_flags = 0;
4407 	sc->sc_ipopts = ipopts;
4408 	sc->sc_irs = th->th_seq;
4409 	switch (src->sa_family) {
4410 #ifdef INET
4411 	case AF_INET:
4412 	    {
4413 		struct sockaddr_in *srcin = (void *) src;
4414 		struct sockaddr_in *dstin = (void *) dst;
4415 
4416 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4417 		    &srcin->sin_addr, dstin->sin_port,
4418 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
4419 		break;
4420 	    }
4421 #endif /* INET */
4422 #ifdef INET6
4423 	case AF_INET6:
4424 	    {
4425 		struct sockaddr_in6 *srcin6 = (void *) src;
4426 		struct sockaddr_in6 *dstin6 = (void *) dst;
4427 
4428 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4429 		    &srcin6->sin6_addr, dstin6->sin6_port,
4430 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4431 		break;
4432 	    }
4433 #endif /* INET6 */
4434 	}
4435 	sc->sc_peermaxseg = oi->maxseg;
4436 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4437 						m->m_pkthdr.rcvif : NULL,
4438 						sc->sc_src.sa.sa_family);
4439 	sc->sc_win = win;
4440 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
4441 	sc->sc_timestamp = tb.ts_recent;
4442 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4443 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4444 		sc->sc_flags |= SCF_TIMESTAMP;
4445 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4446 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4447 		sc->sc_requested_s_scale = tb.requested_s_scale;
4448 		sc->sc_request_r_scale = 0;
4449 		/*
4450 		 * Pick the smallest possible scaling factor that
4451 		 * will still allow us to scale up to sb_max.
4452 		 *
4453 		 * We do this because there are broken firewalls that
4454 		 * will corrupt the window scale option, leading to
4455 		 * the other endpoint believing that our advertised
4456 		 * window is unscaled.  At scale factors larger than
4457 		 * 5 the unscaled window will drop below 1500 bytes,
4458 		 * leading to serious problems when traversing these
4459 		 * broken firewalls.
4460 		 *
4461 		 * With the default sbmax of 256K, a scale factor
4462 		 * of 3 will be chosen by this algorithm.  Those who
4463 		 * choose a larger sbmax should watch out
4464 		 * for the compatiblity problems mentioned above.
4465 		 *
4466 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4467 		 * or <SYN,ACK>) segment itself is never scaled.
4468 		 */
4469 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4470 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4471 			sc->sc_request_r_scale++;
4472 	} else {
4473 		sc->sc_requested_s_scale = 15;
4474 		sc->sc_request_r_scale = 15;
4475 	}
4476 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4477 		sc->sc_flags |= SCF_SACK_PERMIT;
4478 
4479 	/*
4480 	 * ECN setup packet recieved.
4481 	 */
4482 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4483 		sc->sc_flags |= SCF_ECN_PERMIT;
4484 
4485 #ifdef TCP_SIGNATURE
4486 	if (tb.t_flags & TF_SIGNATURE)
4487 		sc->sc_flags |= SCF_SIGNATURE;
4488 #endif
4489 	sc->sc_tp = tp;
4490 	if (syn_cache_respond(sc, m) == 0) {
4491 		uint64_t *tcps = TCP_STAT_GETREF();
4492 		tcps[TCP_STAT_SNDACKS]++;
4493 		tcps[TCP_STAT_SNDTOTAL]++;
4494 		TCP_STAT_PUTREF();
4495 		syn_cache_insert(sc, tp);
4496 	} else {
4497 		s = splsoftnet();
4498 		/*
4499 		 * syn_cache_put() will try to schedule the timer, so
4500 		 * we need to initialize it
4501 		 */
4502 		SYN_CACHE_TIMER_ARM(sc);
4503 		syn_cache_put(sc);
4504 		splx(s);
4505 		TCP_STATINC(TCP_STAT_SC_DROPPED);
4506 	}
4507 	return (1);
4508 }
4509 
4510 /*
4511  * syn_cache_respond: (re)send SYN+ACK.
4512  *
4513  * returns 0 on success.  otherwise returns an errno, typically ENOBUFS.
4514  */
4515 
4516 int
4517 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4518 {
4519 #ifdef INET6
4520 	struct rtentry *rt;
4521 #endif
4522 	struct route *ro;
4523 	u_int8_t *optp;
4524 	int optlen, error;
4525 	u_int16_t tlen;
4526 	struct ip *ip = NULL;
4527 #ifdef INET6
4528 	struct ip6_hdr *ip6 = NULL;
4529 #endif
4530 	struct tcpcb *tp = NULL;
4531 	struct tcphdr *th;
4532 	u_int hlen;
4533 	struct socket *so;
4534 
4535 	ro = &sc->sc_route;
4536 	switch (sc->sc_src.sa.sa_family) {
4537 	case AF_INET:
4538 		hlen = sizeof(struct ip);
4539 		break;
4540 #ifdef INET6
4541 	case AF_INET6:
4542 		hlen = sizeof(struct ip6_hdr);
4543 		break;
4544 #endif
4545 	default:
4546 		if (m)
4547 			m_freem(m);
4548 		return (EAFNOSUPPORT);
4549 	}
4550 
4551 	/* Compute the size of the TCP options. */
4552 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4553 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4554 #ifdef TCP_SIGNATURE
4555 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4556 #endif
4557 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4558 
4559 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4560 
4561 	/*
4562 	 * Create the IP+TCP header from scratch.
4563 	 */
4564 	if (m)
4565 		m_freem(m);
4566 #ifdef DIAGNOSTIC
4567 	if (max_linkhdr + tlen > MCLBYTES)
4568 		return (ENOBUFS);
4569 #endif
4570 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4571 	if (m && (max_linkhdr + tlen) > MHLEN) {
4572 		MCLGET(m, M_DONTWAIT);
4573 		if ((m->m_flags & M_EXT) == 0) {
4574 			m_freem(m);
4575 			m = NULL;
4576 		}
4577 	}
4578 	if (m == NULL)
4579 		return (ENOBUFS);
4580 	MCLAIM(m, &tcp_tx_mowner);
4581 
4582 	/* Fixup the mbuf. */
4583 	m->m_data += max_linkhdr;
4584 	m->m_len = m->m_pkthdr.len = tlen;
4585 	if (sc->sc_tp) {
4586 		tp = sc->sc_tp;
4587 		if (tp->t_inpcb)
4588 			so = tp->t_inpcb->inp_socket;
4589 #ifdef INET6
4590 		else if (tp->t_in6pcb)
4591 			so = tp->t_in6pcb->in6p_socket;
4592 #endif
4593 		else
4594 			so = NULL;
4595 	} else
4596 		so = NULL;
4597 	m->m_pkthdr.rcvif = NULL;
4598 	memset(mtod(m, u_char *), 0, tlen);
4599 
4600 	switch (sc->sc_src.sa.sa_family) {
4601 	case AF_INET:
4602 		ip = mtod(m, struct ip *);
4603 		ip->ip_v = 4;
4604 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4605 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4606 		ip->ip_p = IPPROTO_TCP;
4607 		th = (struct tcphdr *)(ip + 1);
4608 		th->th_dport = sc->sc_src.sin.sin_port;
4609 		th->th_sport = sc->sc_dst.sin.sin_port;
4610 		break;
4611 #ifdef INET6
4612 	case AF_INET6:
4613 		ip6 = mtod(m, struct ip6_hdr *);
4614 		ip6->ip6_vfc = IPV6_VERSION;
4615 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4616 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4617 		ip6->ip6_nxt = IPPROTO_TCP;
4618 		/* ip6_plen will be updated in ip6_output() */
4619 		th = (struct tcphdr *)(ip6 + 1);
4620 		th->th_dport = sc->sc_src.sin6.sin6_port;
4621 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4622 		break;
4623 #endif
4624 	default:
4625 		th = NULL;
4626 	}
4627 
4628 	th->th_seq = htonl(sc->sc_iss);
4629 	th->th_ack = htonl(sc->sc_irs + 1);
4630 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4631 	th->th_flags = TH_SYN|TH_ACK;
4632 	th->th_win = htons(sc->sc_win);
4633 	/* th_sum already 0 */
4634 	/* th_urp already 0 */
4635 
4636 	/* Tack on the TCP options. */
4637 	optp = (u_int8_t *)(th + 1);
4638 	*optp++ = TCPOPT_MAXSEG;
4639 	*optp++ = 4;
4640 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4641 	*optp++ = sc->sc_ourmaxseg & 0xff;
4642 
4643 	if (sc->sc_request_r_scale != 15) {
4644 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4645 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4646 		    sc->sc_request_r_scale);
4647 		optp += 4;
4648 	}
4649 
4650 	if (sc->sc_flags & SCF_TIMESTAMP) {
4651 		u_int32_t *lp = (u_int32_t *)(optp);
4652 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4653 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
4654 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4655 		*lp   = htonl(sc->sc_timestamp);
4656 		optp += TCPOLEN_TSTAMP_APPA;
4657 	}
4658 
4659 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4660 		u_int8_t *p = optp;
4661 
4662 		/* Let the peer know that we will SACK. */
4663 		p[0] = TCPOPT_SACK_PERMITTED;
4664 		p[1] = 2;
4665 		p[2] = TCPOPT_NOP;
4666 		p[3] = TCPOPT_NOP;
4667 		optp += 4;
4668 	}
4669 
4670 	/*
4671 	 * Send ECN SYN-ACK setup packet.
4672 	 * Routes can be asymetric, so, even if we receive a packet
4673 	 * with ECE and CWR set, we must not assume no one will block
4674 	 * the ECE packet we are about to send.
4675 	 */
4676 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4677 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4678 		th->th_flags |= TH_ECE;
4679 		TCP_STATINC(TCP_STAT_ECN_SHS);
4680 
4681 		/*
4682 		 * draft-ietf-tcpm-ecnsyn-00.txt
4683 		 *
4684 		 * "[...] a TCP node MAY respond to an ECN-setup
4685 		 * SYN packet by setting ECT in the responding
4686 		 * ECN-setup SYN/ACK packet, indicating to routers
4687 		 * that the SYN/ACK packet is ECN-Capable.
4688 		 * This allows a congested router along the path
4689 		 * to mark the packet instead of dropping the
4690 		 * packet as an indication of congestion."
4691 		 *
4692 		 * "[...] There can be a great benefit in setting
4693 		 * an ECN-capable codepoint in SYN/ACK packets [...]
4694 		 * Congestion is  most likely to occur in
4695 		 * the server-to-client direction.  As a result,
4696 		 * setting an ECN-capable codepoint in SYN/ACK
4697 		 * packets can reduce the occurence of three-second
4698 		 * retransmit timeouts resulting from the drop
4699 		 * of SYN/ACK packets."
4700 		 *
4701 		 * Page 4 and 6, January 2006.
4702 		 */
4703 
4704 		switch (sc->sc_src.sa.sa_family) {
4705 #ifdef INET
4706 		case AF_INET:
4707 			ip->ip_tos |= IPTOS_ECN_ECT0;
4708 			break;
4709 #endif
4710 #ifdef INET6
4711 		case AF_INET6:
4712 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4713 			break;
4714 #endif
4715 		}
4716 		TCP_STATINC(TCP_STAT_ECN_ECT);
4717 	}
4718 
4719 #ifdef TCP_SIGNATURE
4720 	if (sc->sc_flags & SCF_SIGNATURE) {
4721 		struct secasvar *sav;
4722 		u_int8_t *sigp;
4723 
4724 		sav = tcp_signature_getsav(m, th);
4725 
4726 		if (sav == NULL) {
4727 			if (m)
4728 				m_freem(m);
4729 			return (EPERM);
4730 		}
4731 
4732 		*optp++ = TCPOPT_SIGNATURE;
4733 		*optp++ = TCPOLEN_SIGNATURE;
4734 		sigp = optp;
4735 		memset(optp, 0, TCP_SIGLEN);
4736 		optp += TCP_SIGLEN;
4737 		*optp++ = TCPOPT_NOP;
4738 		*optp++ = TCPOPT_EOL;
4739 
4740 		(void)tcp_signature(m, th, hlen, sav, sigp);
4741 
4742 		key_sa_recordxfer(sav, m);
4743 		KEY_FREESAV(&sav);
4744 	}
4745 #endif
4746 
4747 	/* Compute the packet's checksum. */
4748 	switch (sc->sc_src.sa.sa_family) {
4749 	case AF_INET:
4750 		ip->ip_len = htons(tlen - hlen);
4751 		th->th_sum = 0;
4752 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4753 		break;
4754 #ifdef INET6
4755 	case AF_INET6:
4756 		ip6->ip6_plen = htons(tlen - hlen);
4757 		th->th_sum = 0;
4758 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4759 		break;
4760 #endif
4761 	}
4762 
4763 	/*
4764 	 * Fill in some straggling IP bits.  Note the stack expects
4765 	 * ip_len to be in host order, for convenience.
4766 	 */
4767 	switch (sc->sc_src.sa.sa_family) {
4768 #ifdef INET
4769 	case AF_INET:
4770 		ip->ip_len = htons(tlen);
4771 		ip->ip_ttl = ip_defttl;
4772 		/* XXX tos? */
4773 		break;
4774 #endif
4775 #ifdef INET6
4776 	case AF_INET6:
4777 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4778 		ip6->ip6_vfc |= IPV6_VERSION;
4779 		ip6->ip6_plen = htons(tlen - hlen);
4780 		/* ip6_hlim will be initialized afterwards */
4781 		/* XXX flowlabel? */
4782 		break;
4783 #endif
4784 	}
4785 
4786 	/* XXX use IPsec policy on listening socket, on SYN ACK */
4787 	tp = sc->sc_tp;
4788 
4789 	switch (sc->sc_src.sa.sa_family) {
4790 #ifdef INET
4791 	case AF_INET:
4792 		error = ip_output(m, sc->sc_ipopts, ro,
4793 		    (ip_mtudisc ? IP_MTUDISC : 0),
4794 		    NULL, so);
4795 		break;
4796 #endif
4797 #ifdef INET6
4798 	case AF_INET6:
4799 		ip6->ip6_hlim = in6_selecthlim(NULL,
4800 				(rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
4801 				                                    : NULL);
4802 
4803 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4804 		break;
4805 #endif
4806 	default:
4807 		error = EAFNOSUPPORT;
4808 		break;
4809 	}
4810 	return (error);
4811 }
4812