xref: /netbsd-src/sys/netinet/tcp_input.c (revision f876c1012ec8280866d3287842a50de849d25967)
1 /*	$NetBSD: tcp_input.c,v 1.226 2005/04/03 05:02:46 yamt Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001, 2005 The NetBSD Foundation, Inc.
74  * All rights reserved.
75  *
76  * This code is derived from software contributed to The NetBSD Foundation
77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78  * Facility, NASA Ames Research Center.
79  * This code is derived from software contributed to The NetBSD Foundation
80  * by Charles M. Hannum.
81  *
82  * Redistribution and use in source and binary forms, with or without
83  * modification, are permitted provided that the following conditions
84  * are met:
85  * 1. Redistributions of source code must retain the above copyright
86  *    notice, this list of conditions and the following disclaimer.
87  * 2. Redistributions in binary form must reproduce the above copyright
88  *    notice, this list of conditions and the following disclaimer in the
89  *    documentation and/or other materials provided with the distribution.
90  * 3. All advertising materials mentioning features or use of this software
91  *    must display the following acknowledgement:
92  *	This product includes software developed by the NetBSD
93  *	Foundation, Inc. and its contributors.
94  * 4. Neither the name of The NetBSD Foundation nor the names of its
95  *    contributors may be used to endorse or promote products derived
96  *    from this software without specific prior written permission.
97  *
98  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
99  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
100  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
101  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
102  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
103  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
104  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
105  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
106  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
107  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
108  * POSSIBILITY OF SUCH DAMAGE.
109  */
110 
111 /*
112  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
113  *	The Regents of the University of California.  All rights reserved.
114  *
115  * Redistribution and use in source and binary forms, with or without
116  * modification, are permitted provided that the following conditions
117  * are met:
118  * 1. Redistributions of source code must retain the above copyright
119  *    notice, this list of conditions and the following disclaimer.
120  * 2. Redistributions in binary form must reproduce the above copyright
121  *    notice, this list of conditions and the following disclaimer in the
122  *    documentation and/or other materials provided with the distribution.
123  * 3. Neither the name of the University nor the names of its contributors
124  *    may be used to endorse or promote products derived from this software
125  *    without specific prior written permission.
126  *
127  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
128  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
129  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
130  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
131  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
132  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
133  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
134  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
135  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
136  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
137  * SUCH DAMAGE.
138  *
139  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
140  */
141 
142 /*
143  *	TODO list for SYN cache stuff:
144  *
145  *	Find room for a "state" field, which is needed to keep a
146  *	compressed state for TIME_WAIT TCBs.  It's been noted already
147  *	that this is fairly important for very high-volume web and
148  *	mail servers, which use a large number of short-lived
149  *	connections.
150  */
151 
152 #include <sys/cdefs.h>
153 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.226 2005/04/03 05:02:46 yamt Exp $");
154 
155 #include "opt_inet.h"
156 #include "opt_ipsec.h"
157 #include "opt_inet_csum.h"
158 #include "opt_tcp_debug.h"
159 
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175 
176 #include <net/if.h>
177 #include <net/route.h>
178 #include <net/if_types.h>
179 
180 #include <netinet/in.h>
181 #include <netinet/in_systm.h>
182 #include <netinet/ip.h>
183 #include <netinet/in_pcb.h>
184 #include <netinet/in_var.h>
185 #include <netinet/ip_var.h>
186 
187 #ifdef INET6
188 #ifndef INET
189 #include <netinet/in.h>
190 #endif
191 #include <netinet/ip6.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_pcb.h>
194 #include <netinet6/ip6_var.h>
195 #include <netinet6/in6_var.h>
196 #include <netinet/icmp6.h>
197 #include <netinet6/nd6.h>
198 #endif
199 
200 #ifndef INET6
201 /* always need ip6.h for IP6_EXTHDR_GET */
202 #include <netinet/ip6.h>
203 #endif
204 
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcpip.h>
211 #include <netinet/tcp_debug.h>
212 
213 #include <machine/stdarg.h>
214 
215 #ifdef IPSEC
216 #include <netinet6/ipsec.h>
217 #include <netkey/key.h>
218 #endif /*IPSEC*/
219 #ifdef INET6
220 #include "faith.h"
221 #if defined(NFAITH) && NFAITH > 0
222 #include <net/if_faith.h>
223 #endif
224 #endif	/* IPSEC */
225 
226 #ifdef FAST_IPSEC
227 #include <netipsec/ipsec.h>
228 #include <netipsec/ipsec_var.h>			/* XXX ipsecstat namespace */
229 #include <netipsec/key.h>
230 #ifdef INET6
231 #include <netipsec/ipsec6.h>
232 #endif
233 #endif	/* FAST_IPSEC*/
234 
235 int	tcprexmtthresh = 3;
236 int	tcp_log_refused;
237 
238 static int tcp_rst_ppslim_count = 0;
239 static struct timeval tcp_rst_ppslim_last;
240 static int tcp_ackdrop_ppslim_count = 0;
241 static struct timeval tcp_ackdrop_ppslim_last;
242 
243 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
244 
245 /* for modulo comparisons of timestamps */
246 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
247 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
248 
249 /*
250  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
251  */
252 #ifdef INET6
253 #define ND6_HINT(tp) \
254 do { \
255 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
256 	    tp->t_in6pcb->in6p_route.ro_rt) { \
257 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
258 	} \
259 } while (/*CONSTCOND*/ 0)
260 #else
261 #define ND6_HINT(tp)
262 #endif
263 
264 /*
265  * Macro to compute ACK transmission behavior.  Delay the ACK unless
266  * we have already delayed an ACK (must send an ACK every two segments).
267  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
268  * option is enabled.
269  */
270 #define	TCP_SETUP_ACK(tp, th) \
271 do { \
272 	if ((tp)->t_flags & TF_DELACK || \
273 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
274 		tp->t_flags |= TF_ACKNOW; \
275 	else \
276 		TCP_SET_DELACK(tp); \
277 } while (/*CONSTCOND*/ 0)
278 
279 /*
280  * Convert TCP protocol fields to host order for easier processing.
281  */
282 #define	TCP_FIELDS_TO_HOST(th)						\
283 do {									\
284 	NTOHL((th)->th_seq);						\
285 	NTOHL((th)->th_ack);						\
286 	NTOHS((th)->th_win);						\
287 	NTOHS((th)->th_urp);						\
288 } while (/*CONSTCOND*/ 0)
289 
290 /*
291  * ... and reverse the above.
292  */
293 #define	TCP_FIELDS_TO_NET(th)						\
294 do {									\
295 	HTONL((th)->th_seq);						\
296 	HTONL((th)->th_ack);						\
297 	HTONS((th)->th_win);						\
298 	HTONS((th)->th_urp);						\
299 } while (/*CONSTCOND*/ 0)
300 
301 #ifdef TCP_CSUM_COUNTERS
302 #include <sys/device.h>
303 
304 extern struct evcnt tcp_hwcsum_ok;
305 extern struct evcnt tcp_hwcsum_bad;
306 extern struct evcnt tcp_hwcsum_data;
307 extern struct evcnt tcp_swcsum;
308 
309 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
310 
311 #else
312 
313 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
314 
315 #endif /* TCP_CSUM_COUNTERS */
316 
317 #ifdef TCP_REASS_COUNTERS
318 #include <sys/device.h>
319 
320 extern struct evcnt tcp_reass_;
321 extern struct evcnt tcp_reass_empty;
322 extern struct evcnt tcp_reass_iteration[8];
323 extern struct evcnt tcp_reass_prependfirst;
324 extern struct evcnt tcp_reass_prepend;
325 extern struct evcnt tcp_reass_insert;
326 extern struct evcnt tcp_reass_inserttail;
327 extern struct evcnt tcp_reass_append;
328 extern struct evcnt tcp_reass_appendtail;
329 extern struct evcnt tcp_reass_overlaptail;
330 extern struct evcnt tcp_reass_overlapfront;
331 extern struct evcnt tcp_reass_segdup;
332 extern struct evcnt tcp_reass_fragdup;
333 
334 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
335 
336 #else
337 
338 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
339 
340 #endif /* TCP_REASS_COUNTERS */
341 
342 #ifdef INET
343 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
344 #endif
345 #ifdef INET6
346 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
347 #endif
348 
349 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
350 
351 POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl", NULL);
352 
353 struct ipqent *
354 tcpipqent_alloc()
355 {
356 	struct ipqent *ipqe;
357 	int s;
358 
359 	s = splvm();
360 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
361 	splx(s);
362 
363 	return ipqe;
364 }
365 
366 void
367 tcpipqent_free(struct ipqent *ipqe)
368 {
369 	int s;
370 
371 	s = splvm();
372 	pool_put(&tcpipqent_pool, ipqe);
373 	splx(s);
374 }
375 
376 int
377 tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen)
378 {
379 	struct ipqent *p, *q, *nq, *tiqe = NULL;
380 	struct socket *so = NULL;
381 	int pkt_flags;
382 	tcp_seq pkt_seq;
383 	unsigned pkt_len;
384 	u_long rcvpartdupbyte = 0;
385 	u_long rcvoobyte;
386 #ifdef TCP_REASS_COUNTERS
387 	u_int count = 0;
388 #endif
389 
390 	if (tp->t_inpcb)
391 		so = tp->t_inpcb->inp_socket;
392 #ifdef INET6
393 	else if (tp->t_in6pcb)
394 		so = tp->t_in6pcb->in6p_socket;
395 #endif
396 
397 	TCP_REASS_LOCK_CHECK(tp);
398 
399 	/*
400 	 * Call with th==0 after become established to
401 	 * force pre-ESTABLISHED data up to user socket.
402 	 */
403 	if (th == 0)
404 		goto present;
405 
406 	rcvoobyte = *tlen;
407 	/*
408 	 * Copy these to local variables because the tcpiphdr
409 	 * gets munged while we are collapsing mbufs.
410 	 */
411 	pkt_seq = th->th_seq;
412 	pkt_len = *tlen;
413 	pkt_flags = th->th_flags;
414 
415 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
416 
417 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
418 		/*
419 		 * When we miss a packet, the vast majority of time we get
420 		 * packets that follow it in order.  So optimize for that.
421 		 */
422 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
423 			p->ipqe_len += pkt_len;
424 			p->ipqe_flags |= pkt_flags;
425 			m_cat(p->ipre_mlast, m);
426 			TRAVERSE(p->ipre_mlast);
427 			m = NULL;
428 			tiqe = p;
429 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
430 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
431 			goto skip_replacement;
432 		}
433 		/*
434 		 * While we're here, if the pkt is completely beyond
435 		 * anything we have, just insert it at the tail.
436 		 */
437 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
438 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
439 			goto insert_it;
440 		}
441 	}
442 
443 	q = TAILQ_FIRST(&tp->segq);
444 
445 	if (q != NULL) {
446 		/*
447 		 * If this segment immediately precedes the first out-of-order
448 		 * block, simply slap the segment in front of it and (mostly)
449 		 * skip the complicated logic.
450 		 */
451 		if (pkt_seq + pkt_len == q->ipqe_seq) {
452 			q->ipqe_seq = pkt_seq;
453 			q->ipqe_len += pkt_len;
454 			q->ipqe_flags |= pkt_flags;
455 			m_cat(m, q->ipqe_m);
456 			q->ipqe_m = m;
457 			q->ipre_mlast = m; /* last mbuf may have changed */
458 			TRAVERSE(q->ipre_mlast);
459 			tiqe = q;
460 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
461 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
462 			goto skip_replacement;
463 		}
464 	} else {
465 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
466 	}
467 
468 	/*
469 	 * Find a segment which begins after this one does.
470 	 */
471 	for (p = NULL; q != NULL; q = nq) {
472 		nq = TAILQ_NEXT(q, ipqe_q);
473 #ifdef TCP_REASS_COUNTERS
474 		count++;
475 #endif
476 		/*
477 		 * If the received segment is just right after this
478 		 * fragment, merge the two together and then check
479 		 * for further overlaps.
480 		 */
481 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
482 #ifdef TCPREASS_DEBUG
483 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
484 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
485 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
486 #endif
487 			pkt_len += q->ipqe_len;
488 			pkt_flags |= q->ipqe_flags;
489 			pkt_seq = q->ipqe_seq;
490 			m_cat(q->ipre_mlast, m);
491 			TRAVERSE(q->ipre_mlast);
492 			m = q->ipqe_m;
493 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
494 			goto free_ipqe;
495 		}
496 		/*
497 		 * If the received segment is completely past this
498 		 * fragment, we need to go the next fragment.
499 		 */
500 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
501 			p = q;
502 			continue;
503 		}
504 		/*
505 		 * If the fragment is past the received segment,
506 		 * it (or any following) can't be concatenated.
507 		 */
508 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
509 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
510 			break;
511 		}
512 
513 		/*
514 		 * We've received all the data in this segment before.
515 		 * mark it as a duplicate and return.
516 		 */
517 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
518 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
519 			tcpstat.tcps_rcvduppack++;
520 			tcpstat.tcps_rcvdupbyte += pkt_len;
521 			tcp_new_dsack(tp, pkt_seq, pkt_len);
522 			m_freem(m);
523 			if (tiqe != NULL) {
524 				tcpipqent_free(tiqe);
525 			}
526 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
527 			return (0);
528 		}
529 		/*
530 		 * Received segment completely overlaps this fragment
531 		 * so we drop the fragment (this keeps the temporal
532 		 * ordering of segments correct).
533 		 */
534 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
535 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
536 			rcvpartdupbyte += q->ipqe_len;
537 			m_freem(q->ipqe_m);
538 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
539 			goto free_ipqe;
540 		}
541 		/*
542 		 * RX'ed segment extends past the end of the
543 		 * fragment.  Drop the overlapping bytes.  Then
544 		 * merge the fragment and segment then treat as
545 		 * a longer received packet.
546 		 */
547 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
548 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
549 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
550 #ifdef TCPREASS_DEBUG
551 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
552 			       tp, overlap,
553 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
554 #endif
555 			m_adj(m, overlap);
556 			rcvpartdupbyte += overlap;
557 			m_cat(q->ipre_mlast, m);
558 			TRAVERSE(q->ipre_mlast);
559 			m = q->ipqe_m;
560 			pkt_seq = q->ipqe_seq;
561 			pkt_len += q->ipqe_len - overlap;
562 			rcvoobyte -= overlap;
563 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
564 			goto free_ipqe;
565 		}
566 		/*
567 		 * RX'ed segment extends past the front of the
568 		 * fragment.  Drop the overlapping bytes on the
569 		 * received packet.  The packet will then be
570 		 * contatentated with this fragment a bit later.
571 		 */
572 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
573 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
574 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
575 #ifdef TCPREASS_DEBUG
576 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
577 			       tp, overlap,
578 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
579 #endif
580 			m_adj(m, -overlap);
581 			pkt_len -= overlap;
582 			rcvpartdupbyte += overlap;
583 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
584 			rcvoobyte -= overlap;
585 		}
586 		/*
587 		 * If the received segment immediates precedes this
588 		 * fragment then tack the fragment onto this segment
589 		 * and reinsert the data.
590 		 */
591 		if (q->ipqe_seq == pkt_seq + pkt_len) {
592 #ifdef TCPREASS_DEBUG
593 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
594 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
595 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
596 #endif
597 			pkt_len += q->ipqe_len;
598 			pkt_flags |= q->ipqe_flags;
599 			m_cat(m, q->ipqe_m);
600 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
601 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
602 			tp->t_segqlen--;
603 			KASSERT(tp->t_segqlen >= 0);
604 			KASSERT(tp->t_segqlen != 0 ||
605 			    (TAILQ_EMPTY(&tp->segq) &&
606 			    TAILQ_EMPTY(&tp->timeq)));
607 			if (tiqe == NULL) {
608 				tiqe = q;
609 			} else {
610 				tcpipqent_free(q);
611 			}
612 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
613 			break;
614 		}
615 		/*
616 		 * If the fragment is before the segment, remember it.
617 		 * When this loop is terminated, p will contain the
618 		 * pointer to fragment that is right before the received
619 		 * segment.
620 		 */
621 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
622 			p = q;
623 
624 		continue;
625 
626 		/*
627 		 * This is a common operation.  It also will allow
628 		 * to save doing a malloc/free in most instances.
629 		 */
630 	  free_ipqe:
631 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
632 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
633 		tp->t_segqlen--;
634 		KASSERT(tp->t_segqlen >= 0);
635 		KASSERT(tp->t_segqlen != 0 ||
636 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
637 		if (tiqe == NULL) {
638 			tiqe = q;
639 		} else {
640 			tcpipqent_free(q);
641 		}
642 	}
643 
644 #ifdef TCP_REASS_COUNTERS
645 	if (count > 7)
646 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
647 	else if (count > 0)
648 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
649 #endif
650 
651     insert_it:
652 
653 	/*
654 	 * Allocate a new queue entry since the received segment did not
655 	 * collapse onto any other out-of-order block; thus we are allocating
656 	 * a new block.  If it had collapsed, tiqe would not be NULL and
657 	 * we would be reusing it.
658 	 * XXX If we can't, just drop the packet.  XXX
659 	 */
660 	if (tiqe == NULL) {
661 		tiqe = tcpipqent_alloc();
662 		if (tiqe == NULL) {
663 			tcpstat.tcps_rcvmemdrop++;
664 			m_freem(m);
665 			return (0);
666 		}
667 	}
668 
669 	/*
670 	 * Update the counters.
671 	 */
672 	tcpstat.tcps_rcvoopack++;
673 	tcpstat.tcps_rcvoobyte += rcvoobyte;
674 	if (rcvpartdupbyte) {
675 	    tcpstat.tcps_rcvpartduppack++;
676 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
677 	}
678 
679 	/*
680 	 * Insert the new fragment queue entry into both queues.
681 	 */
682 	tiqe->ipqe_m = m;
683 	tiqe->ipre_mlast = m;
684 	tiqe->ipqe_seq = pkt_seq;
685 	tiqe->ipqe_len = pkt_len;
686 	tiqe->ipqe_flags = pkt_flags;
687 	if (p == NULL) {
688 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
689 #ifdef TCPREASS_DEBUG
690 		if (tiqe->ipqe_seq != tp->rcv_nxt)
691 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
692 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
693 #endif
694 	} else {
695 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
696 #ifdef TCPREASS_DEBUG
697 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
698 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
699 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
700 #endif
701 	}
702 	tp->t_segqlen++;
703 
704 skip_replacement:
705 
706 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
707 
708 present:
709 	/*
710 	 * Present data to user, advancing rcv_nxt through
711 	 * completed sequence space.
712 	 */
713 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
714 		return (0);
715 	q = TAILQ_FIRST(&tp->segq);
716 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
717 		return (0);
718 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
719 		return (0);
720 
721 	tp->rcv_nxt += q->ipqe_len;
722 	pkt_flags = q->ipqe_flags & TH_FIN;
723 	ND6_HINT(tp);
724 
725 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
726 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
727 	tp->t_segqlen--;
728 	KASSERT(tp->t_segqlen >= 0);
729 	KASSERT(tp->t_segqlen != 0 ||
730 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
731 	if (so->so_state & SS_CANTRCVMORE)
732 		m_freem(q->ipqe_m);
733 	else
734 		sbappendstream(&so->so_rcv, q->ipqe_m);
735 	tcpipqent_free(q);
736 	sorwakeup(so);
737 	return (pkt_flags);
738 }
739 
740 #ifdef INET6
741 int
742 tcp6_input(struct mbuf **mp, int *offp, int proto)
743 {
744 	struct mbuf *m = *mp;
745 
746 	/*
747 	 * draft-itojun-ipv6-tcp-to-anycast
748 	 * better place to put this in?
749 	 */
750 	if (m->m_flags & M_ANYCAST6) {
751 		struct ip6_hdr *ip6;
752 		if (m->m_len < sizeof(struct ip6_hdr)) {
753 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
754 				tcpstat.tcps_rcvshort++;
755 				return IPPROTO_DONE;
756 			}
757 		}
758 		ip6 = mtod(m, struct ip6_hdr *);
759 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
760 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
761 		return IPPROTO_DONE;
762 	}
763 
764 	tcp_input(m, *offp, proto);
765 	return IPPROTO_DONE;
766 }
767 #endif
768 
769 #ifdef INET
770 static void
771 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
772 {
773 	char src[4*sizeof "123"];
774 	char dst[4*sizeof "123"];
775 
776 	if (ip) {
777 		strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
778 		strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
779 	}
780 	else {
781 		strlcpy(src, "(unknown)", sizeof(src));
782 		strlcpy(dst, "(unknown)", sizeof(dst));
783 	}
784 	log(LOG_INFO,
785 	    "Connection attempt to TCP %s:%d from %s:%d\n",
786 	    dst, ntohs(th->th_dport),
787 	    src, ntohs(th->th_sport));
788 }
789 #endif
790 
791 #ifdef INET6
792 static void
793 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
794 {
795 	char src[INET6_ADDRSTRLEN];
796 	char dst[INET6_ADDRSTRLEN];
797 
798 	if (ip6) {
799 		strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
800 		strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
801 	}
802 	else {
803 		strlcpy(src, "(unknown v6)", sizeof(src));
804 		strlcpy(dst, "(unknown v6)", sizeof(dst));
805 	}
806 	log(LOG_INFO,
807 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
808 	    dst, ntohs(th->th_dport),
809 	    src, ntohs(th->th_sport));
810 }
811 #endif
812 
813 /*
814  * Checksum extended TCP header and data.
815  */
816 int
817 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th, int toff,
818     int off, int tlen)
819 {
820 
821 	/*
822 	 * XXX it's better to record and check if this mbuf is
823 	 * already checked.
824 	 */
825 
826 	switch (af) {
827 #ifdef INET
828 	case AF_INET:
829 		switch (m->m_pkthdr.csum_flags &
830 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
831 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
832 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
833 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
834 			goto badcsum;
835 
836 		case M_CSUM_TCPv4|M_CSUM_DATA: {
837 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
838 
839 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
840 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
841 				const struct ip *ip =
842 				    mtod(m, const struct ip *);
843 
844 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
845 				    ip->ip_dst.s_addr,
846 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
847 			}
848 			if ((hw_csum ^ 0xffff) != 0)
849 				goto badcsum;
850 			break;
851 		}
852 
853 		case M_CSUM_TCPv4:
854 			/* Checksum was okay. */
855 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
856 			break;
857 
858 		default:
859 			/*
860 			 * Must compute it ourselves.  Maybe skip checksum
861 			 * on loopback interfaces.
862 			 */
863 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
864 					     IFF_LOOPBACK) ||
865 					   tcp_do_loopback_cksum)) {
866 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
867 				if (in4_cksum(m, IPPROTO_TCP, toff,
868 					      tlen + off) != 0)
869 					goto badcsum;
870 			}
871 			break;
872 		}
873 		break;
874 #endif /* INET4 */
875 
876 #ifdef INET6
877 	case AF_INET6:
878 		if (__predict_true((m->m_flags & M_LOOP) == 0 ||
879 		    tcp_do_loopback_cksum)) {
880 			if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
881 				goto badcsum;
882 		}
883 		break;
884 #endif /* INET6 */
885 	}
886 
887 	return 0;
888 
889 badcsum:
890 	tcpstat.tcps_rcvbadsum++;
891 	return -1;
892 }
893 
894 /*
895  * TCP input routine, follows pages 65-76 of the
896  * protocol specification dated September, 1981 very closely.
897  */
898 void
899 tcp_input(struct mbuf *m, ...)
900 {
901 	struct tcphdr *th;
902 	struct ip *ip;
903 	struct inpcb *inp;
904 #ifdef INET6
905 	struct ip6_hdr *ip6;
906 	struct in6pcb *in6p;
907 #endif
908 	u_int8_t *optp = NULL;
909 	int optlen = 0;
910 	int len, tlen, toff, hdroptlen = 0;
911 	struct tcpcb *tp = 0;
912 	int tiflags;
913 	struct socket *so = NULL;
914 	int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
915 #ifdef TCP_DEBUG
916 	short ostate = 0;
917 #endif
918 	int iss = 0;
919 	u_long tiwin;
920 	struct tcp_opt_info opti;
921 	int off, iphlen;
922 	va_list ap;
923 	int af;		/* af on the wire */
924 	struct mbuf *tcp_saveti = NULL;
925 
926 	MCLAIM(m, &tcp_rx_mowner);
927 	va_start(ap, m);
928 	toff = va_arg(ap, int);
929 	(void)va_arg(ap, int);		/* ignore value, advance ap */
930 	va_end(ap);
931 
932 	tcpstat.tcps_rcvtotal++;
933 
934 	bzero(&opti, sizeof(opti));
935 	opti.ts_present = 0;
936 	opti.maxseg = 0;
937 
938 	/*
939 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
940 	 *
941 	 * TCP is, by definition, unicast, so we reject all
942 	 * multicast outright.
943 	 *
944 	 * Note, there are additional src/dst address checks in
945 	 * the AF-specific code below.
946 	 */
947 	if (m->m_flags & (M_BCAST|M_MCAST)) {
948 		/* XXX stat */
949 		goto drop;
950 	}
951 #ifdef INET6
952 	if (m->m_flags & M_ANYCAST6) {
953 		/* XXX stat */
954 		goto drop;
955 	}
956 #endif
957 
958 	/*
959 	 * Get IP and TCP header.
960 	 * Note: IP leaves IP header in first mbuf.
961 	 */
962 	ip = mtod(m, struct ip *);
963 #ifdef INET6
964 	ip6 = NULL;
965 #endif
966 	switch (ip->ip_v) {
967 #ifdef INET
968 	case 4:
969 		af = AF_INET;
970 		iphlen = sizeof(struct ip);
971 		ip = mtod(m, struct ip *);
972 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
973 			sizeof(struct tcphdr));
974 		if (th == NULL) {
975 			tcpstat.tcps_rcvshort++;
976 			return;
977 		}
978 		/* We do the checksum after PCB lookup... */
979 		len = ntohs(ip->ip_len);
980 		tlen = len - toff;
981 		break;
982 #endif
983 #ifdef INET6
984 	case 6:
985 		ip = NULL;
986 		iphlen = sizeof(struct ip6_hdr);
987 		af = AF_INET6;
988 		ip6 = mtod(m, struct ip6_hdr *);
989 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
990 			sizeof(struct tcphdr));
991 		if (th == NULL) {
992 			tcpstat.tcps_rcvshort++;
993 			return;
994 		}
995 
996 		/* Be proactive about malicious use of IPv4 mapped address */
997 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
998 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
999 			/* XXX stat */
1000 			goto drop;
1001 		}
1002 
1003 		/*
1004 		 * Be proactive about unspecified IPv6 address in source.
1005 		 * As we use all-zero to indicate unbounded/unconnected pcb,
1006 		 * unspecified IPv6 address can be used to confuse us.
1007 		 *
1008 		 * Note that packets with unspecified IPv6 destination is
1009 		 * already dropped in ip6_input.
1010 		 */
1011 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1012 			/* XXX stat */
1013 			goto drop;
1014 		}
1015 
1016 		/*
1017 		 * Make sure destination address is not multicast.
1018 		 * Source address checked in ip6_input().
1019 		 */
1020 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1021 			/* XXX stat */
1022 			goto drop;
1023 		}
1024 
1025 		/* We do the checksum after PCB lookup... */
1026 		len = m->m_pkthdr.len;
1027 		tlen = len - toff;
1028 		break;
1029 #endif
1030 	default:
1031 		m_freem(m);
1032 		return;
1033 	}
1034 
1035 	KASSERT(TCP_HDR_ALIGNED_P(th));
1036 
1037 	/*
1038 	 * Check that TCP offset makes sense,
1039 	 * pull out TCP options and adjust length.		XXX
1040 	 */
1041 	off = th->th_off << 2;
1042 	if (off < sizeof (struct tcphdr) || off > tlen) {
1043 		tcpstat.tcps_rcvbadoff++;
1044 		goto drop;
1045 	}
1046 	tlen -= off;
1047 
1048 	/*
1049 	 * tcp_input() has been modified to use tlen to mean the TCP data
1050 	 * length throughout the function.  Other functions can use
1051 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1052 	 * rja
1053 	 */
1054 
1055 	if (off > sizeof (struct tcphdr)) {
1056 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1057 		if (th == NULL) {
1058 			tcpstat.tcps_rcvshort++;
1059 			return;
1060 		}
1061 		/*
1062 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
1063 		 * (as they're before toff) and we don't need to update those.
1064 		 */
1065 		KASSERT(TCP_HDR_ALIGNED_P(th));
1066 		optlen = off - sizeof (struct tcphdr);
1067 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1068 		/*
1069 		 * Do quick retrieval of timestamp options ("options
1070 		 * prediction?").  If timestamp is the only option and it's
1071 		 * formatted as recommended in RFC 1323 appendix A, we
1072 		 * quickly get the values now and not bother calling
1073 		 * tcp_dooptions(), etc.
1074 		 */
1075 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1076 		     (optlen > TCPOLEN_TSTAMP_APPA &&
1077 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1078 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1079 		     (th->th_flags & TH_SYN) == 0) {
1080 			opti.ts_present = 1;
1081 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1082 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1083 			optp = NULL;	/* we've parsed the options */
1084 		}
1085 	}
1086 	tiflags = th->th_flags;
1087 
1088 	/*
1089 	 * Locate pcb for segment.
1090 	 */
1091 findpcb:
1092 	inp = NULL;
1093 #ifdef INET6
1094 	in6p = NULL;
1095 #endif
1096 	switch (af) {
1097 #ifdef INET
1098 	case AF_INET:
1099 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1100 		    ip->ip_dst, th->th_dport);
1101 		if (inp == 0) {
1102 			++tcpstat.tcps_pcbhashmiss;
1103 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1104 		}
1105 #ifdef INET6
1106 		if (inp == 0) {
1107 			struct in6_addr s, d;
1108 
1109 			/* mapped addr case */
1110 			bzero(&s, sizeof(s));
1111 			s.s6_addr16[5] = htons(0xffff);
1112 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1113 			bzero(&d, sizeof(d));
1114 			d.s6_addr16[5] = htons(0xffff);
1115 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1116 			in6p = in6_pcblookup_connect(&tcbtable, &s,
1117 			    th->th_sport, &d, th->th_dport, 0);
1118 			if (in6p == 0) {
1119 				++tcpstat.tcps_pcbhashmiss;
1120 				in6p = in6_pcblookup_bind(&tcbtable, &d,
1121 				    th->th_dport, 0);
1122 			}
1123 		}
1124 #endif
1125 #ifndef INET6
1126 		if (inp == 0)
1127 #else
1128 		if (inp == 0 && in6p == 0)
1129 #endif
1130 		{
1131 			++tcpstat.tcps_noport;
1132 			if (tcp_log_refused &&
1133 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1134 				tcp4_log_refused(ip, th);
1135 			}
1136 			TCP_FIELDS_TO_HOST(th);
1137 			goto dropwithreset_ratelim;
1138 		}
1139 #if defined(IPSEC) || defined(FAST_IPSEC)
1140 		if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1141 		    ipsec4_in_reject(m, inp)) {
1142 			ipsecstat.in_polvio++;
1143 			goto drop;
1144 		}
1145 #ifdef INET6
1146 		else if (in6p &&
1147 		    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1148 		    ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1149 			ipsecstat.in_polvio++;
1150 			goto drop;
1151 		}
1152 #endif
1153 #endif /*IPSEC*/
1154 		break;
1155 #endif /*INET*/
1156 #ifdef INET6
1157 	case AF_INET6:
1158 	    {
1159 		int faith;
1160 
1161 #if defined(NFAITH) && NFAITH > 0
1162 		faith = faithprefix(&ip6->ip6_dst);
1163 #else
1164 		faith = 0;
1165 #endif
1166 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1167 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1168 		if (in6p == NULL) {
1169 			++tcpstat.tcps_pcbhashmiss;
1170 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1171 				th->th_dport, faith);
1172 		}
1173 		if (in6p == NULL) {
1174 			++tcpstat.tcps_noport;
1175 			if (tcp_log_refused &&
1176 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1177 				tcp6_log_refused(ip6, th);
1178 			}
1179 			TCP_FIELDS_TO_HOST(th);
1180 			goto dropwithreset_ratelim;
1181 		}
1182 #if defined(IPSEC) || defined(FAST_IPSEC)
1183 		if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1184 		    ipsec6_in_reject(m, in6p)) {
1185 			ipsec6stat.in_polvio++;
1186 			goto drop;
1187 		}
1188 #endif /*IPSEC*/
1189 		break;
1190 	    }
1191 #endif
1192 	}
1193 
1194 	/*
1195 	 * If the state is CLOSED (i.e., TCB does not exist) then
1196 	 * all data in the incoming segment is discarded.
1197 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1198 	 * but should either do a listen or a connect soon.
1199 	 */
1200 	tp = NULL;
1201 	so = NULL;
1202 	if (inp) {
1203 		tp = intotcpcb(inp);
1204 		so = inp->inp_socket;
1205 	}
1206 #ifdef INET6
1207 	else if (in6p) {
1208 		tp = in6totcpcb(in6p);
1209 		so = in6p->in6p_socket;
1210 	}
1211 #endif
1212 	if (tp == 0) {
1213 		TCP_FIELDS_TO_HOST(th);
1214 		goto dropwithreset_ratelim;
1215 	}
1216 	if (tp->t_state == TCPS_CLOSED)
1217 		goto drop;
1218 
1219 	/*
1220 	 * Checksum extended TCP header and data.
1221 	 */
1222 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
1223 		goto badcsum;
1224 
1225 	TCP_FIELDS_TO_HOST(th);
1226 
1227 	/* Unscale the window into a 32-bit value. */
1228 	if ((tiflags & TH_SYN) == 0)
1229 		tiwin = th->th_win << tp->snd_scale;
1230 	else
1231 		tiwin = th->th_win;
1232 
1233 #ifdef INET6
1234 	/* save packet options if user wanted */
1235 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1236 		if (in6p->in6p_options) {
1237 			m_freem(in6p->in6p_options);
1238 			in6p->in6p_options = 0;
1239 		}
1240 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1241 	}
1242 #endif
1243 
1244 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1245 		union syn_cache_sa src;
1246 		union syn_cache_sa dst;
1247 
1248 		bzero(&src, sizeof(src));
1249 		bzero(&dst, sizeof(dst));
1250 		switch (af) {
1251 #ifdef INET
1252 		case AF_INET:
1253 			src.sin.sin_len = sizeof(struct sockaddr_in);
1254 			src.sin.sin_family = AF_INET;
1255 			src.sin.sin_addr = ip->ip_src;
1256 			src.sin.sin_port = th->th_sport;
1257 
1258 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1259 			dst.sin.sin_family = AF_INET;
1260 			dst.sin.sin_addr = ip->ip_dst;
1261 			dst.sin.sin_port = th->th_dport;
1262 			break;
1263 #endif
1264 #ifdef INET6
1265 		case AF_INET6:
1266 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1267 			src.sin6.sin6_family = AF_INET6;
1268 			src.sin6.sin6_addr = ip6->ip6_src;
1269 			src.sin6.sin6_port = th->th_sport;
1270 
1271 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1272 			dst.sin6.sin6_family = AF_INET6;
1273 			dst.sin6.sin6_addr = ip6->ip6_dst;
1274 			dst.sin6.sin6_port = th->th_dport;
1275 			break;
1276 #endif /* INET6 */
1277 		default:
1278 			goto badsyn;	/*sanity*/
1279 		}
1280 
1281 		if (so->so_options & SO_DEBUG) {
1282 #ifdef TCP_DEBUG
1283 			ostate = tp->t_state;
1284 #endif
1285 
1286 			tcp_saveti = NULL;
1287 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1288 				goto nosave;
1289 
1290 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1291 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1292 				if (!tcp_saveti)
1293 					goto nosave;
1294 			} else {
1295 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1296 				if (!tcp_saveti)
1297 					goto nosave;
1298 				MCLAIM(m, &tcp_mowner);
1299 				tcp_saveti->m_len = iphlen;
1300 				m_copydata(m, 0, iphlen,
1301 				    mtod(tcp_saveti, caddr_t));
1302 			}
1303 
1304 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1305 				m_freem(tcp_saveti);
1306 				tcp_saveti = NULL;
1307 			} else {
1308 				tcp_saveti->m_len += sizeof(struct tcphdr);
1309 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1310 				    sizeof(struct tcphdr));
1311 			}
1312 	nosave:;
1313 		}
1314 		if (so->so_options & SO_ACCEPTCONN) {
1315 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1316 				if (tiflags & TH_RST) {
1317 					syn_cache_reset(&src.sa, &dst.sa, th);
1318 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1319 				    (TH_ACK|TH_SYN)) {
1320 					/*
1321 					 * Received a SYN,ACK.  This should
1322 					 * never happen while we are in
1323 					 * LISTEN.  Send an RST.
1324 					 */
1325 					goto badsyn;
1326 				} else if (tiflags & TH_ACK) {
1327 					so = syn_cache_get(&src.sa, &dst.sa,
1328 						th, toff, tlen, so, m);
1329 					if (so == NULL) {
1330 						/*
1331 						 * We don't have a SYN for
1332 						 * this ACK; send an RST.
1333 						 */
1334 						goto badsyn;
1335 					} else if (so ==
1336 					    (struct socket *)(-1)) {
1337 						/*
1338 						 * We were unable to create
1339 						 * the connection.  If the
1340 						 * 3-way handshake was
1341 						 * completed, and RST has
1342 						 * been sent to the peer.
1343 						 * Since the mbuf might be
1344 						 * in use for the reply,
1345 						 * do not free it.
1346 						 */
1347 						m = NULL;
1348 					} else {
1349 						/*
1350 						 * We have created a
1351 						 * full-blown connection.
1352 						 */
1353 						tp = NULL;
1354 						inp = NULL;
1355 #ifdef INET6
1356 						in6p = NULL;
1357 #endif
1358 						switch (so->so_proto->pr_domain->dom_family) {
1359 #ifdef INET
1360 						case AF_INET:
1361 							inp = sotoinpcb(so);
1362 							tp = intotcpcb(inp);
1363 							break;
1364 #endif
1365 #ifdef INET6
1366 						case AF_INET6:
1367 							in6p = sotoin6pcb(so);
1368 							tp = in6totcpcb(in6p);
1369 							break;
1370 #endif
1371 						}
1372 						if (tp == NULL)
1373 							goto badsyn;	/*XXX*/
1374 						tiwin <<= tp->snd_scale;
1375 						goto after_listen;
1376 					}
1377 				} else {
1378 					/*
1379 					 * None of RST, SYN or ACK was set.
1380 					 * This is an invalid packet for a
1381 					 * TCB in LISTEN state.  Send a RST.
1382 					 */
1383 					goto badsyn;
1384 				}
1385 			} else {
1386 				/*
1387 				 * Received a SYN.
1388 				 */
1389 
1390 #ifdef INET6
1391 				/*
1392 				 * If deprecated address is forbidden, we do
1393 				 * not accept SYN to deprecated interface
1394 				 * address to prevent any new inbound
1395 				 * connection from getting established.
1396 				 * When we do not accept SYN, we send a TCP
1397 				 * RST, with deprecated source address (instead
1398 				 * of dropping it).  We compromise it as it is
1399 				 * much better for peer to send a RST, and
1400 				 * RST will be the final packet for the
1401 				 * exchange.
1402 				 *
1403 				 * If we do not forbid deprecated addresses, we
1404 				 * accept the SYN packet.  RFC2462 does not
1405 				 * suggest dropping SYN in this case.
1406 				 * If we decipher RFC2462 5.5.4, it says like
1407 				 * this:
1408 				 * 1. use of deprecated addr with existing
1409 				 *    communication is okay - "SHOULD continue
1410 				 *    to be used"
1411 				 * 2. use of it with new communication:
1412 				 *   (2a) "SHOULD NOT be used if alternate
1413 				 *        address with sufficient scope is
1414 				 *        available"
1415 				 *   (2b) nothing mentioned otherwise.
1416 				 * Here we fall into (2b) case as we have no
1417 				 * choice in our source address selection - we
1418 				 * must obey the peer.
1419 				 *
1420 				 * The wording in RFC2462 is confusing, and
1421 				 * there are multiple description text for
1422 				 * deprecated address handling - worse, they
1423 				 * are not exactly the same.  I believe 5.5.4
1424 				 * is the best one, so we follow 5.5.4.
1425 				 */
1426 				if (af == AF_INET6 && !ip6_use_deprecated) {
1427 					struct in6_ifaddr *ia6;
1428 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1429 					    &ip6->ip6_dst)) &&
1430 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1431 						tp = NULL;
1432 						goto dropwithreset;
1433 					}
1434 				}
1435 #endif
1436 
1437 #ifdef IPSEC
1438 				switch (af) {
1439 #ifdef INET
1440 				case AF_INET:
1441 					if (ipsec4_in_reject_so(m, so)) {
1442 						ipsecstat.in_polvio++;
1443 						tp = NULL;
1444 						goto dropwithreset;
1445 					}
1446 					break;
1447 #endif
1448 #ifdef INET6
1449 				case AF_INET6:
1450 					if (ipsec6_in_reject_so(m, so)) {
1451 						ipsec6stat.in_polvio++;
1452 						tp = NULL;
1453 						goto dropwithreset;
1454 					}
1455 					break;
1456 #endif
1457 				}
1458 #endif
1459 
1460 				/*
1461 				 * LISTEN socket received a SYN
1462 				 * from itself?  This can't possibly
1463 				 * be valid; drop the packet.
1464 				 */
1465 				if (th->th_sport == th->th_dport) {
1466 					int i;
1467 
1468 					switch (af) {
1469 #ifdef INET
1470 					case AF_INET:
1471 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1472 						break;
1473 #endif
1474 #ifdef INET6
1475 					case AF_INET6:
1476 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1477 						break;
1478 #endif
1479 					default:
1480 						i = 1;
1481 					}
1482 					if (i) {
1483 						tcpstat.tcps_badsyn++;
1484 						goto drop;
1485 					}
1486 				}
1487 
1488 				/*
1489 				 * SYN looks ok; create compressed TCP
1490 				 * state for it.
1491 				 */
1492 				if (so->so_qlen <= so->so_qlimit &&
1493 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1494 						so, m, optp, optlen, &opti))
1495 					m = NULL;
1496 			}
1497 			goto drop;
1498 		}
1499 	}
1500 
1501 after_listen:
1502 #ifdef DIAGNOSTIC
1503 	/*
1504 	 * Should not happen now that all embryonic connections
1505 	 * are handled with compressed state.
1506 	 */
1507 	if (tp->t_state == TCPS_LISTEN)
1508 		panic("tcp_input: TCPS_LISTEN");
1509 #endif
1510 
1511 	/*
1512 	 * Segment received on connection.
1513 	 * Reset idle time and keep-alive timer.
1514 	 */
1515 	tp->t_rcvtime = tcp_now;
1516 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1517 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1518 
1519 	/*
1520 	 * Process options.
1521 	 */
1522 #ifdef TCP_SIGNATURE
1523 	if (optp || (tp->t_flags & TF_SIGNATURE))
1524 #else
1525 	if (optp)
1526 #endif
1527 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1528 			goto drop;
1529 
1530 	if (TCP_SACK_ENABLED(tp)) {
1531 		tcp_del_sackholes(tp, th);
1532 	}
1533 
1534 	if (opti.ts_present && opti.ts_ecr) {
1535 		/*
1536 		 * Calculate the RTT from the returned time stamp and the
1537 		 * connection's time base.  If the time stamp is later than
1538 		 * the current time, or is extremely old, fall back to non-1323
1539 		 * RTT calculation.  Since ts_ecr is unsigned, we can test both
1540 		 * at the same time.
1541 		 */
1542 		opti.ts_ecr = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1543 		if (opti.ts_ecr > TCP_PAWS_IDLE)
1544 			opti.ts_ecr = 0;
1545 	}
1546 
1547 	/*
1548 	 * Header prediction: check for the two common cases
1549 	 * of a uni-directional data xfer.  If the packet has
1550 	 * no control flags, is in-sequence, the window didn't
1551 	 * change and we're not retransmitting, it's a
1552 	 * candidate.  If the length is zero and the ack moved
1553 	 * forward, we're the sender side of the xfer.  Just
1554 	 * free the data acked & wake any higher level process
1555 	 * that was blocked waiting for space.  If the length
1556 	 * is non-zero and the ack didn't move, we're the
1557 	 * receiver side.  If we're getting packets in-order
1558 	 * (the reassembly queue is empty), add the data to
1559 	 * the socket buffer and note that we need a delayed ack.
1560 	 */
1561 	if (tp->t_state == TCPS_ESTABLISHED &&
1562 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1563 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1564 	    th->th_seq == tp->rcv_nxt &&
1565 	    tiwin && tiwin == tp->snd_wnd &&
1566 	    tp->snd_nxt == tp->snd_max) {
1567 
1568 		/*
1569 		 * If last ACK falls within this segment's sequence numbers,
1570 		 *  record the timestamp.
1571 		 */
1572 		if (opti.ts_present &&
1573 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1574 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1575 			tp->ts_recent_age = tcp_now;
1576 			tp->ts_recent = opti.ts_val;
1577 		}
1578 
1579 		if (tlen == 0) {
1580 			/* Ack prediction. */
1581 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1582 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1583 			    tp->snd_cwnd >= tp->snd_wnd &&
1584 			    tp->t_partialacks < 0) {
1585 				/*
1586 				 * this is a pure ack for outstanding data.
1587 				 */
1588 				++tcpstat.tcps_predack;
1589 				if (opti.ts_present && opti.ts_ecr)
1590 					tcp_xmit_timer(tp, opti.ts_ecr);
1591 				else if (tp->t_rtttime &&
1592 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1593 					tcp_xmit_timer(tp,
1594 					  tcp_now - tp->t_rtttime);
1595 				acked = th->th_ack - tp->snd_una;
1596 				tcpstat.tcps_rcvackpack++;
1597 				tcpstat.tcps_rcvackbyte += acked;
1598 				ND6_HINT(tp);
1599 
1600 				if (acked > (tp->t_lastoff - tp->t_inoff))
1601 					tp->t_lastm = NULL;
1602 				sbdrop(&so->so_snd, acked);
1603 				tp->t_lastoff -= acked;
1604 
1605 				tp->snd_una = th->th_ack;
1606 				tp->snd_fack = tp->snd_una;
1607 				if (SEQ_LT(tp->snd_high, tp->snd_una))
1608 					tp->snd_high = tp->snd_una;
1609 				m_freem(m);
1610 
1611 				/*
1612 				 * If all outstanding data are acked, stop
1613 				 * retransmit timer, otherwise restart timer
1614 				 * using current (possibly backed-off) value.
1615 				 * If process is waiting for space,
1616 				 * wakeup/selwakeup/signal.  If data
1617 				 * are ready to send, let tcp_output
1618 				 * decide between more output or persist.
1619 				 */
1620 				if (tp->snd_una == tp->snd_max)
1621 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1622 				else if (TCP_TIMER_ISARMED(tp,
1623 				    TCPT_PERSIST) == 0)
1624 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1625 					    tp->t_rxtcur);
1626 
1627 				sowwakeup(so);
1628 				if (so->so_snd.sb_cc)
1629 					(void) tcp_output(tp);
1630 				if (tcp_saveti)
1631 					m_freem(tcp_saveti);
1632 				return;
1633 			}
1634 		} else if (th->th_ack == tp->snd_una &&
1635 		    TAILQ_FIRST(&tp->segq) == NULL &&
1636 		    tlen <= sbspace(&so->so_rcv)) {
1637 			/*
1638 			 * this is a pure, in-sequence data packet
1639 			 * with nothing on the reassembly queue and
1640 			 * we have enough buffer space to take it.
1641 			 */
1642 			++tcpstat.tcps_preddat;
1643 			tp->rcv_nxt += tlen;
1644 			tcpstat.tcps_rcvpack++;
1645 			tcpstat.tcps_rcvbyte += tlen;
1646 			ND6_HINT(tp);
1647 			/*
1648 			 * Drop TCP, IP headers and TCP options then add data
1649 			 * to socket buffer.
1650 			 */
1651 			if (so->so_state & SS_CANTRCVMORE)
1652 				m_freem(m);
1653 			else {
1654 				m_adj(m, toff + off);
1655 				sbappendstream(&so->so_rcv, m);
1656 			}
1657 			sorwakeup(so);
1658 			TCP_SETUP_ACK(tp, th);
1659 			if (tp->t_flags & TF_ACKNOW)
1660 				(void) tcp_output(tp);
1661 			if (tcp_saveti)
1662 				m_freem(tcp_saveti);
1663 			return;
1664 		}
1665 	}
1666 
1667 	/*
1668 	 * Compute mbuf offset to TCP data segment.
1669 	 */
1670 	hdroptlen = toff + off;
1671 
1672 	/*
1673 	 * Calculate amount of space in receive window,
1674 	 * and then do TCP input processing.
1675 	 * Receive window is amount of space in rcv queue,
1676 	 * but not less than advertised window.
1677 	 */
1678 	{ int win;
1679 
1680 	win = sbspace(&so->so_rcv);
1681 	if (win < 0)
1682 		win = 0;
1683 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1684 	}
1685 
1686 	switch (tp->t_state) {
1687 	case TCPS_LISTEN:
1688 		/*
1689 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1690 		 */
1691 		if (m->m_flags & (M_BCAST|M_MCAST))
1692 			goto drop;
1693 		switch (af) {
1694 #ifdef INET6
1695 		case AF_INET6:
1696 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1697 				goto drop;
1698 			break;
1699 #endif /* INET6 */
1700 		case AF_INET:
1701 			if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1702 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1703 				goto drop;
1704 			break;
1705 		}
1706 		break;
1707 
1708 	/*
1709 	 * If the state is SYN_SENT:
1710 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1711 	 *	if seg contains a RST, then drop the connection.
1712 	 *	if seg does not contain SYN, then drop it.
1713 	 * Otherwise this is an acceptable SYN segment
1714 	 *	initialize tp->rcv_nxt and tp->irs
1715 	 *	if seg contains ack then advance tp->snd_una
1716 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1717 	 *	arrange for segment to be acked (eventually)
1718 	 *	continue processing rest of data/controls, beginning with URG
1719 	 */
1720 	case TCPS_SYN_SENT:
1721 		if ((tiflags & TH_ACK) &&
1722 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1723 		     SEQ_GT(th->th_ack, tp->snd_max)))
1724 			goto dropwithreset;
1725 		if (tiflags & TH_RST) {
1726 			if (tiflags & TH_ACK)
1727 				tp = tcp_drop(tp, ECONNREFUSED);
1728 			goto drop;
1729 		}
1730 		if ((tiflags & TH_SYN) == 0)
1731 			goto drop;
1732 		if (tiflags & TH_ACK) {
1733 			tp->snd_una = th->th_ack;
1734 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1735 				tp->snd_nxt = tp->snd_una;
1736 			if (SEQ_LT(tp->snd_high, tp->snd_una))
1737 				tp->snd_high = tp->snd_una;
1738 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1739 		}
1740 		tp->irs = th->th_seq;
1741 		tcp_rcvseqinit(tp);
1742 		tp->t_flags |= TF_ACKNOW;
1743 		tcp_mss_from_peer(tp, opti.maxseg);
1744 
1745 		/*
1746 		 * Initialize the initial congestion window.  If we
1747 		 * had to retransmit the SYN, we must initialize cwnd
1748 		 * to 1 segment (i.e. the Loss Window).
1749 		 */
1750 		if (tp->t_flags & TF_SYN_REXMT)
1751 			tp->snd_cwnd = tp->t_peermss;
1752 		else {
1753 			int ss = tcp_init_win;
1754 #ifdef INET
1755 			if (inp != NULL && in_localaddr(inp->inp_faddr))
1756 				ss = tcp_init_win_local;
1757 #endif
1758 #ifdef INET6
1759 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1760 				ss = tcp_init_win_local;
1761 #endif
1762 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1763 		}
1764 
1765 		tcp_rmx_rtt(tp);
1766 		if (tiflags & TH_ACK) {
1767 			tcpstat.tcps_connects++;
1768 			soisconnected(so);
1769 			tcp_established(tp);
1770 			/* Do window scaling on this connection? */
1771 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1772 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1773 				tp->snd_scale = tp->requested_s_scale;
1774 				tp->rcv_scale = tp->request_r_scale;
1775 			}
1776 			TCP_REASS_LOCK(tp);
1777 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1778 			TCP_REASS_UNLOCK(tp);
1779 			/*
1780 			 * if we didn't have to retransmit the SYN,
1781 			 * use its rtt as our initial srtt & rtt var.
1782 			 */
1783 			if (tp->t_rtttime)
1784 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1785 		} else
1786 			tp->t_state = TCPS_SYN_RECEIVED;
1787 
1788 		/*
1789 		 * Advance th->th_seq to correspond to first data byte.
1790 		 * If data, trim to stay within window,
1791 		 * dropping FIN if necessary.
1792 		 */
1793 		th->th_seq++;
1794 		if (tlen > tp->rcv_wnd) {
1795 			todrop = tlen - tp->rcv_wnd;
1796 			m_adj(m, -todrop);
1797 			tlen = tp->rcv_wnd;
1798 			tiflags &= ~TH_FIN;
1799 			tcpstat.tcps_rcvpackafterwin++;
1800 			tcpstat.tcps_rcvbyteafterwin += todrop;
1801 		}
1802 		tp->snd_wl1 = th->th_seq - 1;
1803 		tp->rcv_up = th->th_seq;
1804 		goto step6;
1805 
1806 	/*
1807 	 * If the state is SYN_RECEIVED:
1808 	 *	If seg contains an ACK, but not for our SYN, drop the input
1809 	 *	and generate an RST.  See page 36, rfc793
1810 	 */
1811 	case TCPS_SYN_RECEIVED:
1812 		if ((tiflags & TH_ACK) &&
1813 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1814 		     SEQ_GT(th->th_ack, tp->snd_max)))
1815 			goto dropwithreset;
1816 		break;
1817 	}
1818 
1819 	/*
1820 	 * States other than LISTEN or SYN_SENT.
1821 	 * First check timestamp, if present.
1822 	 * Then check that at least some bytes of segment are within
1823 	 * receive window.  If segment begins before rcv_nxt,
1824 	 * drop leading data (and SYN); if nothing left, just ack.
1825 	 *
1826 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1827 	 * and it's less than ts_recent, drop it.
1828 	 */
1829 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1830 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1831 
1832 		/* Check to see if ts_recent is over 24 days old.  */
1833 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
1834 			/*
1835 			 * Invalidate ts_recent.  If this segment updates
1836 			 * ts_recent, the age will be reset later and ts_recent
1837 			 * will get a valid value.  If it does not, setting
1838 			 * ts_recent to zero will at least satisfy the
1839 			 * requirement that zero be placed in the timestamp
1840 			 * echo reply when ts_recent isn't valid.  The
1841 			 * age isn't reset until we get a valid ts_recent
1842 			 * because we don't want out-of-order segments to be
1843 			 * dropped when ts_recent is old.
1844 			 */
1845 			tp->ts_recent = 0;
1846 		} else {
1847 			tcpstat.tcps_rcvduppack++;
1848 			tcpstat.tcps_rcvdupbyte += tlen;
1849 			tcpstat.tcps_pawsdrop++;
1850 			tcp_new_dsack(tp, th->th_seq, tlen);
1851 			goto dropafterack;
1852 		}
1853 	}
1854 
1855 	todrop = tp->rcv_nxt - th->th_seq;
1856 	dupseg = FALSE;
1857 	if (todrop > 0) {
1858 		if (tiflags & TH_SYN) {
1859 			tiflags &= ~TH_SYN;
1860 			th->th_seq++;
1861 			if (th->th_urp > 1)
1862 				th->th_urp--;
1863 			else {
1864 				tiflags &= ~TH_URG;
1865 				th->th_urp = 0;
1866 			}
1867 			todrop--;
1868 		}
1869 		if (todrop > tlen ||
1870 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1871 			/*
1872 			 * Any valid FIN or RST must be to the left of the
1873 			 * window.  At this point the FIN or RST must be a
1874 			 * duplicate or out of sequence; drop it.
1875 			 */
1876 			if (tiflags & TH_RST)
1877 				goto drop;
1878 			tiflags &= ~(TH_FIN|TH_RST);
1879 			/*
1880 			 * Send an ACK to resynchronize and drop any data.
1881 			 * But keep on processing for RST or ACK.
1882 			 */
1883 			tp->t_flags |= TF_ACKNOW;
1884 			todrop = tlen;
1885 			dupseg = TRUE;
1886 			tcpstat.tcps_rcvdupbyte += todrop;
1887 			tcpstat.tcps_rcvduppack++;
1888 		} else if ((tiflags & TH_RST) &&
1889 			   th->th_seq != tp->last_ack_sent) {
1890 			/*
1891 			 * Test for reset before adjusting the sequence
1892 			 * number for overlapping data.
1893 			 */
1894 			goto dropafterack_ratelim;
1895 		} else {
1896 			tcpstat.tcps_rcvpartduppack++;
1897 			tcpstat.tcps_rcvpartdupbyte += todrop;
1898 		}
1899 		tcp_new_dsack(tp, th->th_seq, todrop);
1900 		hdroptlen += todrop;	/*drop from head afterwards*/
1901 		th->th_seq += todrop;
1902 		tlen -= todrop;
1903 		if (th->th_urp > todrop)
1904 			th->th_urp -= todrop;
1905 		else {
1906 			tiflags &= ~TH_URG;
1907 			th->th_urp = 0;
1908 		}
1909 	}
1910 
1911 	/*
1912 	 * If new data are received on a connection after the
1913 	 * user processes are gone, then RST the other end.
1914 	 */
1915 	if ((so->so_state & SS_NOFDREF) &&
1916 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1917 		tp = tcp_close(tp);
1918 		tcpstat.tcps_rcvafterclose++;
1919 		goto dropwithreset;
1920 	}
1921 
1922 	/*
1923 	 * If segment ends after window, drop trailing data
1924 	 * (and PUSH and FIN); if nothing left, just ACK.
1925 	 */
1926 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1927 	if (todrop > 0) {
1928 		tcpstat.tcps_rcvpackafterwin++;
1929 		if (todrop >= tlen) {
1930 			/*
1931 			 * The segment actually starts after the window.
1932 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
1933 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
1934 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
1935 			 */
1936 			tcpstat.tcps_rcvbyteafterwin += tlen;
1937 			/*
1938 			 * If a new connection request is received
1939 			 * while in TIME_WAIT, drop the old connection
1940 			 * and start over if the sequence numbers
1941 			 * are above the previous ones.
1942 			 *
1943 			 * NOTE: We will checksum the packet again, and
1944 			 * so we need to put the header fields back into
1945 			 * network order!
1946 			 * XXX This kind of sucks, but we don't expect
1947 			 * XXX this to happen very often, so maybe it
1948 			 * XXX doesn't matter so much.
1949 			 */
1950 			if (tiflags & TH_SYN &&
1951 			    tp->t_state == TCPS_TIME_WAIT &&
1952 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1953 				iss = tcp_new_iss(tp, tp->snd_nxt);
1954 				tp = tcp_close(tp);
1955 				TCP_FIELDS_TO_NET(th);
1956 				goto findpcb;
1957 			}
1958 			/*
1959 			 * If window is closed can only take segments at
1960 			 * window edge, and have to drop data and PUSH from
1961 			 * incoming segments.  Continue processing, but
1962 			 * remember to ack.  Otherwise, drop segment
1963 			 * and (if not RST) ack.
1964 			 */
1965 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1966 				tp->t_flags |= TF_ACKNOW;
1967 				tcpstat.tcps_rcvwinprobe++;
1968 			} else
1969 				goto dropafterack;
1970 		} else
1971 			tcpstat.tcps_rcvbyteafterwin += todrop;
1972 		m_adj(m, -todrop);
1973 		tlen -= todrop;
1974 		tiflags &= ~(TH_PUSH|TH_FIN);
1975 	}
1976 
1977 	/*
1978 	 * If last ACK falls within this segment's sequence numbers,
1979 	 * and the timestamp is newer, record it.
1980 	 */
1981 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1982 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1983 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1984 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1985 		tp->ts_recent_age = tcp_now;
1986 		tp->ts_recent = opti.ts_val;
1987 	}
1988 
1989 	/*
1990 	 * If the RST bit is set examine the state:
1991 	 *    SYN_RECEIVED STATE:
1992 	 *	If passive open, return to LISTEN state.
1993 	 *	If active open, inform user that connection was refused.
1994 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1995 	 *	Inform user that connection was reset, and close tcb.
1996 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1997 	 *	Close the tcb.
1998 	 */
1999 	if (tiflags & TH_RST) {
2000 		if (th->th_seq != tp->last_ack_sent)
2001 			goto dropafterack_ratelim;
2002 
2003 		switch (tp->t_state) {
2004 		case TCPS_SYN_RECEIVED:
2005 			so->so_error = ECONNREFUSED;
2006 			goto close;
2007 
2008 		case TCPS_ESTABLISHED:
2009 		case TCPS_FIN_WAIT_1:
2010 		case TCPS_FIN_WAIT_2:
2011 		case TCPS_CLOSE_WAIT:
2012 			so->so_error = ECONNRESET;
2013 		close:
2014 			tp->t_state = TCPS_CLOSED;
2015 			tcpstat.tcps_drops++;
2016 			tp = tcp_close(tp);
2017 			goto drop;
2018 
2019 		case TCPS_CLOSING:
2020 		case TCPS_LAST_ACK:
2021 		case TCPS_TIME_WAIT:
2022 			tp = tcp_close(tp);
2023 			goto drop;
2024 		}
2025 	}
2026 
2027 	/*
2028 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2029 	 * we must be in a synchronized state.  RFC791 states (under RST
2030 	 * generation) that any unacceptable segment (an out-of-order SYN
2031 	 * qualifies) received in a synchronized state must elicit only an
2032 	 * empty acknowledgment segment ... and the connection remains in
2033 	 * the same state.
2034 	 */
2035 	if (tiflags & TH_SYN) {
2036 		if (tp->rcv_nxt == th->th_seq) {
2037 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2038 			    TH_ACK);
2039 			if (tcp_saveti)
2040 				m_freem(tcp_saveti);
2041 			return;
2042 		}
2043 
2044 		goto dropafterack_ratelim;
2045 	}
2046 
2047 	/*
2048 	 * If the ACK bit is off we drop the segment and return.
2049 	 */
2050 	if ((tiflags & TH_ACK) == 0) {
2051 		if (tp->t_flags & TF_ACKNOW)
2052 			goto dropafterack;
2053 		else
2054 			goto drop;
2055 	}
2056 
2057 	/*
2058 	 * Ack processing.
2059 	 */
2060 	switch (tp->t_state) {
2061 
2062 	/*
2063 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2064 	 * ESTABLISHED state and continue processing, otherwise
2065 	 * send an RST.
2066 	 */
2067 	case TCPS_SYN_RECEIVED:
2068 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
2069 		    SEQ_GT(th->th_ack, tp->snd_max))
2070 			goto dropwithreset;
2071 		tcpstat.tcps_connects++;
2072 		soisconnected(so);
2073 		tcp_established(tp);
2074 		/* Do window scaling? */
2075 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2076 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2077 			tp->snd_scale = tp->requested_s_scale;
2078 			tp->rcv_scale = tp->request_r_scale;
2079 		}
2080 		TCP_REASS_LOCK(tp);
2081 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2082 		TCP_REASS_UNLOCK(tp);
2083 		tp->snd_wl1 = th->th_seq - 1;
2084 		/* fall into ... */
2085 
2086 	/*
2087 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2088 	 * ACKs.  If the ack is in the range
2089 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2090 	 * then advance tp->snd_una to th->th_ack and drop
2091 	 * data from the retransmission queue.  If this ACK reflects
2092 	 * more up to date window information we update our window information.
2093 	 */
2094 	case TCPS_ESTABLISHED:
2095 	case TCPS_FIN_WAIT_1:
2096 	case TCPS_FIN_WAIT_2:
2097 	case TCPS_CLOSE_WAIT:
2098 	case TCPS_CLOSING:
2099 	case TCPS_LAST_ACK:
2100 	case TCPS_TIME_WAIT:
2101 
2102 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2103 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2104 				tcpstat.tcps_rcvdupack++;
2105 				/*
2106 				 * If we have outstanding data (other than
2107 				 * a window probe), this is a completely
2108 				 * duplicate ack (ie, window info didn't
2109 				 * change), the ack is the biggest we've
2110 				 * seen and we've seen exactly our rexmt
2111 				 * threshhold of them, assume a packet
2112 				 * has been dropped and retransmit it.
2113 				 * Kludge snd_nxt & the congestion
2114 				 * window so we send only this one
2115 				 * packet.
2116 				 *
2117 				 * We know we're losing at the current
2118 				 * window size so do congestion avoidance
2119 				 * (set ssthresh to half the current window
2120 				 * and pull our congestion window back to
2121 				 * the new ssthresh).
2122 				 *
2123 				 * Dup acks mean that packets have left the
2124 				 * network (they're now cached at the receiver)
2125 				 * so bump cwnd by the amount in the receiver
2126 				 * to keep a constant cwnd packets in the
2127 				 * network.
2128 				 *
2129 				 * If we are using TCP/SACK, then enter
2130 				 * Fast Recovery if the receiver SACKs
2131 				 * data that is tcprexmtthresh * MSS
2132 				 * bytes past the last ACKed segment,
2133 				 * irrespective of the number of DupAcks.
2134 				 */
2135 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2136 				    th->th_ack != tp->snd_una)
2137 					tp->t_dupacks = 0;
2138 				else if (tp->t_partialacks < 0 &&
2139 					 (++tp->t_dupacks == tcprexmtthresh ||
2140 					 TCP_FACK_FASTRECOV(tp))) {
2141 					tcp_seq onxt;
2142 					u_int win;
2143 
2144 					if (tcp_do_newreno &&
2145 					    SEQ_LT(th->th_ack, tp->snd_high)) {
2146 						/*
2147 						 * False fast retransmit after
2148 						 * timeout.  Do not enter fast
2149 						 * recovery.
2150 						 */
2151 						tp->t_dupacks = 0;
2152 						break;
2153 					}
2154 
2155 					onxt = tp->snd_nxt;
2156 					win = min(tp->snd_wnd, tp->snd_cwnd) /
2157 					    2 /	tp->t_segsz;
2158 					if (win < 2)
2159 						win = 2;
2160 					tp->snd_ssthresh = win * tp->t_segsz;
2161 					tp->snd_recover = tp->snd_max;
2162 					tp->t_partialacks = 0;
2163 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
2164 					tp->t_rtttime = 0;
2165 					if (TCP_SACK_ENABLED(tp)) {
2166 						tp->t_dupacks = tcprexmtthresh;
2167 						tp->sack_newdata = tp->snd_nxt;
2168 						tp->snd_cwnd = tp->t_segsz;
2169 						(void) tcp_output(tp);
2170 						goto drop;
2171 					}
2172 					tp->snd_nxt = th->th_ack;
2173 					tp->snd_cwnd = tp->t_segsz;
2174 					(void) tcp_output(tp);
2175 					tp->snd_cwnd = tp->snd_ssthresh +
2176 					       tp->t_segsz * tp->t_dupacks;
2177 					if (SEQ_GT(onxt, tp->snd_nxt))
2178 						tp->snd_nxt = onxt;
2179 					goto drop;
2180 				} else if (tp->t_dupacks > tcprexmtthresh) {
2181 					tp->snd_cwnd += tp->t_segsz;
2182 					(void) tcp_output(tp);
2183 					goto drop;
2184 				}
2185 			} else {
2186 				/*
2187 				 * If the ack appears to be very old, only
2188 				 * allow data that is in-sequence.  This
2189 				 * makes it somewhat more difficult to insert
2190 				 * forged data by guessing sequence numbers.
2191 				 * Sent an ack to try to update the send
2192 				 * sequence number on the other side.
2193 				 */
2194 				if (tlen && th->th_seq != tp->rcv_nxt &&
2195 				    SEQ_LT(th->th_ack,
2196 				    tp->snd_una - tp->max_sndwnd))
2197 					goto dropafterack;
2198 			}
2199 			break;
2200 		}
2201 		/*
2202 		 * If the congestion window was inflated to account
2203 		 * for the other side's cached packets, retract it.
2204 		 */
2205 		if (TCP_SACK_ENABLED(tp))
2206 			tcp_sack_newack(tp, th);
2207 		else if (tcp_do_newreno)
2208 			tcp_newreno_newack(tp, th);
2209 		else
2210 			tcp_reno_newack(tp, th);
2211 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2212 			tcpstat.tcps_rcvacktoomuch++;
2213 			goto dropafterack;
2214 		}
2215 		acked = th->th_ack - tp->snd_una;
2216 		tcpstat.tcps_rcvackpack++;
2217 		tcpstat.tcps_rcvackbyte += acked;
2218 
2219 		/*
2220 		 * If we have a timestamp reply, update smoothed
2221 		 * round trip time.  If no timestamp is present but
2222 		 * transmit timer is running and timed sequence
2223 		 * number was acked, update smoothed round trip time.
2224 		 * Since we now have an rtt measurement, cancel the
2225 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2226 		 * Recompute the initial retransmit timer.
2227 		 */
2228 		if (opti.ts_present && opti.ts_ecr)
2229 			tcp_xmit_timer(tp, opti.ts_ecr);
2230 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2231 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2232 
2233 		/*
2234 		 * If all outstanding data is acked, stop retransmit
2235 		 * timer and remember to restart (more output or persist).
2236 		 * If there is more data to be acked, restart retransmit
2237 		 * timer, using current (possibly backed-off) value.
2238 		 */
2239 		if (th->th_ack == tp->snd_max) {
2240 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2241 			needoutput = 1;
2242 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2243 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2244 		/*
2245 		 * When new data is acked, open the congestion window.
2246 		 * If the window gives us less than ssthresh packets
2247 		 * in flight, open exponentially (segsz per packet).
2248 		 * Otherwise open linearly: segsz per window
2249 		 * (segsz^2 / cwnd per packet).
2250 		 *
2251 		 * If we are still in fast recovery (meaning we are using
2252 		 * NewReno and we have only received partial acks), do not
2253 		 * inflate the window yet.
2254 		 */
2255 		if (tp->t_partialacks < 0) {
2256 			u_int cw = tp->snd_cwnd;
2257 			u_int incr = tp->t_segsz;
2258 
2259 			if (cw >= tp->snd_ssthresh)
2260 				incr = incr * incr / cw;
2261 			tp->snd_cwnd = min(cw + incr,
2262 			    TCP_MAXWIN << tp->snd_scale);
2263 		}
2264 		ND6_HINT(tp);
2265 		if (acked > so->so_snd.sb_cc) {
2266 			tp->snd_wnd -= so->so_snd.sb_cc;
2267 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2268 			ourfinisacked = 1;
2269 		} else {
2270 			if (acked > (tp->t_lastoff - tp->t_inoff))
2271 				tp->t_lastm = NULL;
2272 			sbdrop(&so->so_snd, acked);
2273 			tp->t_lastoff -= acked;
2274 			tp->snd_wnd -= acked;
2275 			ourfinisacked = 0;
2276 		}
2277 		sowwakeup(so);
2278 		tp->snd_una = th->th_ack;
2279 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
2280 			tp->snd_fack = tp->snd_una;
2281 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2282 			tp->snd_nxt = tp->snd_una;
2283 		if (SEQ_LT(tp->snd_high, tp->snd_una))
2284 			tp->snd_high = tp->snd_una;
2285 
2286 		switch (tp->t_state) {
2287 
2288 		/*
2289 		 * In FIN_WAIT_1 STATE in addition to the processing
2290 		 * for the ESTABLISHED state if our FIN is now acknowledged
2291 		 * then enter FIN_WAIT_2.
2292 		 */
2293 		case TCPS_FIN_WAIT_1:
2294 			if (ourfinisacked) {
2295 				/*
2296 				 * If we can't receive any more
2297 				 * data, then closing user can proceed.
2298 				 * Starting the timer is contrary to the
2299 				 * specification, but if we don't get a FIN
2300 				 * we'll hang forever.
2301 				 */
2302 				if (so->so_state & SS_CANTRCVMORE) {
2303 					soisdisconnected(so);
2304 					if (tcp_maxidle > 0)
2305 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2306 						    tcp_maxidle);
2307 				}
2308 				tp->t_state = TCPS_FIN_WAIT_2;
2309 			}
2310 			break;
2311 
2312 	 	/*
2313 		 * In CLOSING STATE in addition to the processing for
2314 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2315 		 * then enter the TIME-WAIT state, otherwise ignore
2316 		 * the segment.
2317 		 */
2318 		case TCPS_CLOSING:
2319 			if (ourfinisacked) {
2320 				tp->t_state = TCPS_TIME_WAIT;
2321 				tcp_canceltimers(tp);
2322 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2323 				soisdisconnected(so);
2324 			}
2325 			break;
2326 
2327 		/*
2328 		 * In LAST_ACK, we may still be waiting for data to drain
2329 		 * and/or to be acked, as well as for the ack of our FIN.
2330 		 * If our FIN is now acknowledged, delete the TCB,
2331 		 * enter the closed state and return.
2332 		 */
2333 		case TCPS_LAST_ACK:
2334 			if (ourfinisacked) {
2335 				tp = tcp_close(tp);
2336 				goto drop;
2337 			}
2338 			break;
2339 
2340 		/*
2341 		 * In TIME_WAIT state the only thing that should arrive
2342 		 * is a retransmission of the remote FIN.  Acknowledge
2343 		 * it and restart the finack timer.
2344 		 */
2345 		case TCPS_TIME_WAIT:
2346 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2347 			goto dropafterack;
2348 		}
2349 	}
2350 
2351 step6:
2352 	/*
2353 	 * Update window information.
2354 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2355 	 */
2356 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2357 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2358 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2359 		/* keep track of pure window updates */
2360 		if (tlen == 0 &&
2361 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2362 			tcpstat.tcps_rcvwinupd++;
2363 		tp->snd_wnd = tiwin;
2364 		tp->snd_wl1 = th->th_seq;
2365 		tp->snd_wl2 = th->th_ack;
2366 		if (tp->snd_wnd > tp->max_sndwnd)
2367 			tp->max_sndwnd = tp->snd_wnd;
2368 		needoutput = 1;
2369 	}
2370 
2371 	/*
2372 	 * Process segments with URG.
2373 	 */
2374 	if ((tiflags & TH_URG) && th->th_urp &&
2375 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2376 		/*
2377 		 * This is a kludge, but if we receive and accept
2378 		 * random urgent pointers, we'll crash in
2379 		 * soreceive.  It's hard to imagine someone
2380 		 * actually wanting to send this much urgent data.
2381 		 */
2382 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2383 			th->th_urp = 0;			/* XXX */
2384 			tiflags &= ~TH_URG;		/* XXX */
2385 			goto dodata;			/* XXX */
2386 		}
2387 		/*
2388 		 * If this segment advances the known urgent pointer,
2389 		 * then mark the data stream.  This should not happen
2390 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2391 		 * a FIN has been received from the remote side.
2392 		 * In these states we ignore the URG.
2393 		 *
2394 		 * According to RFC961 (Assigned Protocols),
2395 		 * the urgent pointer points to the last octet
2396 		 * of urgent data.  We continue, however,
2397 		 * to consider it to indicate the first octet
2398 		 * of data past the urgent section as the original
2399 		 * spec states (in one of two places).
2400 		 */
2401 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2402 			tp->rcv_up = th->th_seq + th->th_urp;
2403 			so->so_oobmark = so->so_rcv.sb_cc +
2404 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2405 			if (so->so_oobmark == 0)
2406 				so->so_state |= SS_RCVATMARK;
2407 			sohasoutofband(so);
2408 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2409 		}
2410 		/*
2411 		 * Remove out of band data so doesn't get presented to user.
2412 		 * This can happen independent of advancing the URG pointer,
2413 		 * but if two URG's are pending at once, some out-of-band
2414 		 * data may creep in... ick.
2415 		 */
2416 		if (th->th_urp <= (u_int16_t) tlen
2417 #ifdef SO_OOBINLINE
2418 		     && (so->so_options & SO_OOBINLINE) == 0
2419 #endif
2420 		     )
2421 			tcp_pulloutofband(so, th, m, hdroptlen);
2422 	} else
2423 		/*
2424 		 * If no out of band data is expected,
2425 		 * pull receive urgent pointer along
2426 		 * with the receive window.
2427 		 */
2428 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2429 			tp->rcv_up = tp->rcv_nxt;
2430 dodata:							/* XXX */
2431 
2432 	/*
2433 	 * Process the segment text, merging it into the TCP sequencing queue,
2434 	 * and arranging for acknowledgement of receipt if necessary.
2435 	 * This process logically involves adjusting tp->rcv_wnd as data
2436 	 * is presented to the user (this happens in tcp_usrreq.c,
2437 	 * case PRU_RCVD).  If a FIN has already been received on this
2438 	 * connection then we just ignore the text.
2439 	 */
2440 	if ((tlen || (tiflags & TH_FIN)) &&
2441 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2442 		/*
2443 		 * Insert segment ti into reassembly queue of tcp with
2444 		 * control block tp.  Return TH_FIN if reassembly now includes
2445 		 * a segment with FIN.  The macro form does the common case
2446 		 * inline (segment is the next to be received on an
2447 		 * established connection, and the queue is empty),
2448 		 * avoiding linkage into and removal from the queue and
2449 		 * repetition of various conversions.
2450 		 * Set DELACK for segments received in order, but ack
2451 		 * immediately when segments are out of order
2452 		 * (so fast retransmit can work).
2453 		 */
2454 		/* NOTE: this was TCP_REASS() macro, but used only once */
2455 		TCP_REASS_LOCK(tp);
2456 		if (th->th_seq == tp->rcv_nxt &&
2457 		    TAILQ_FIRST(&tp->segq) == NULL &&
2458 		    tp->t_state == TCPS_ESTABLISHED) {
2459 			TCP_SETUP_ACK(tp, th);
2460 			tp->rcv_nxt += tlen;
2461 			tiflags = th->th_flags & TH_FIN;
2462 			tcpstat.tcps_rcvpack++;
2463 			tcpstat.tcps_rcvbyte += tlen;
2464 			ND6_HINT(tp);
2465 			if (so->so_state & SS_CANTRCVMORE)
2466 				m_freem(m);
2467 			else {
2468 				m_adj(m, hdroptlen);
2469 				sbappendstream(&(so)->so_rcv, m);
2470 			}
2471 			sorwakeup(so);
2472 		} else {
2473 			m_adj(m, hdroptlen);
2474 			tiflags = tcp_reass(tp, th, m, &tlen);
2475 			tp->t_flags |= TF_ACKNOW;
2476 		}
2477 		TCP_REASS_UNLOCK(tp);
2478 
2479 		/*
2480 		 * Note the amount of data that peer has sent into
2481 		 * our window, in order to estimate the sender's
2482 		 * buffer size.
2483 		 */
2484 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2485 	} else {
2486 		m_freem(m);
2487 		m = NULL;
2488 		tiflags &= ~TH_FIN;
2489 	}
2490 
2491 	/*
2492 	 * If FIN is received ACK the FIN and let the user know
2493 	 * that the connection is closing.  Ignore a FIN received before
2494 	 * the connection is fully established.
2495 	 */
2496 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2497 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2498 			socantrcvmore(so);
2499 			tp->t_flags |= TF_ACKNOW;
2500 			tp->rcv_nxt++;
2501 		}
2502 		switch (tp->t_state) {
2503 
2504 	 	/*
2505 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2506 		 */
2507 		case TCPS_ESTABLISHED:
2508 			tp->t_state = TCPS_CLOSE_WAIT;
2509 			break;
2510 
2511 	 	/*
2512 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2513 		 * enter the CLOSING state.
2514 		 */
2515 		case TCPS_FIN_WAIT_1:
2516 			tp->t_state = TCPS_CLOSING;
2517 			break;
2518 
2519 	 	/*
2520 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2521 		 * starting the time-wait timer, turning off the other
2522 		 * standard timers.
2523 		 */
2524 		case TCPS_FIN_WAIT_2:
2525 			tp->t_state = TCPS_TIME_WAIT;
2526 			tcp_canceltimers(tp);
2527 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2528 			soisdisconnected(so);
2529 			break;
2530 
2531 		/*
2532 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2533 		 */
2534 		case TCPS_TIME_WAIT:
2535 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2536 			break;
2537 		}
2538 	}
2539 #ifdef TCP_DEBUG
2540 	if (so->so_options & SO_DEBUG)
2541 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2542 #endif
2543 
2544 	/*
2545 	 * Return any desired output.
2546 	 */
2547 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2548 		(void) tcp_output(tp);
2549 	}
2550 	if (tcp_saveti)
2551 		m_freem(tcp_saveti);
2552 	return;
2553 
2554 badsyn:
2555 	/*
2556 	 * Received a bad SYN.  Increment counters and dropwithreset.
2557 	 */
2558 	tcpstat.tcps_badsyn++;
2559 	tp = NULL;
2560 	goto dropwithreset;
2561 
2562 dropafterack:
2563 	/*
2564 	 * Generate an ACK dropping incoming segment if it occupies
2565 	 * sequence space, where the ACK reflects our state.
2566 	 */
2567 	if (tiflags & TH_RST)
2568 		goto drop;
2569 	goto dropafterack2;
2570 
2571 dropafterack_ratelim:
2572 	/*
2573 	 * We may want to rate-limit ACKs against SYN/RST attack.
2574 	 */
2575 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2576 	    tcp_ackdrop_ppslim) == 0) {
2577 		/* XXX stat */
2578 		goto drop;
2579 	}
2580 	/* ...fall into dropafterack2... */
2581 
2582 dropafterack2:
2583 	m_freem(m);
2584 	tp->t_flags |= TF_ACKNOW;
2585 	(void) tcp_output(tp);
2586 	if (tcp_saveti)
2587 		m_freem(tcp_saveti);
2588 	return;
2589 
2590 dropwithreset_ratelim:
2591 	/*
2592 	 * We may want to rate-limit RSTs in certain situations,
2593 	 * particularly if we are sending an RST in response to
2594 	 * an attempt to connect to or otherwise communicate with
2595 	 * a port for which we have no socket.
2596 	 */
2597 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2598 	    tcp_rst_ppslim) == 0) {
2599 		/* XXX stat */
2600 		goto drop;
2601 	}
2602 	/* ...fall into dropwithreset... */
2603 
2604 dropwithreset:
2605 	/*
2606 	 * Generate a RST, dropping incoming segment.
2607 	 * Make ACK acceptable to originator of segment.
2608 	 */
2609 	if (tiflags & TH_RST)
2610 		goto drop;
2611 
2612 	switch (af) {
2613 #ifdef INET6
2614 	case AF_INET6:
2615 		/* For following calls to tcp_respond */
2616 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2617 			goto drop;
2618 		break;
2619 #endif /* INET6 */
2620 	case AF_INET:
2621 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2622 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2623 			goto drop;
2624 	}
2625 
2626 	if (tiflags & TH_ACK)
2627 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2628 	else {
2629 		if (tiflags & TH_SYN)
2630 			tlen++;
2631 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2632 		    TH_RST|TH_ACK);
2633 	}
2634 	if (tcp_saveti)
2635 		m_freem(tcp_saveti);
2636 	return;
2637 
2638 badcsum:
2639 drop:
2640 	/*
2641 	 * Drop space held by incoming segment and return.
2642 	 */
2643 	if (tp) {
2644 		if (tp->t_inpcb)
2645 			so = tp->t_inpcb->inp_socket;
2646 #ifdef INET6
2647 		else if (tp->t_in6pcb)
2648 			so = tp->t_in6pcb->in6p_socket;
2649 #endif
2650 		else
2651 			so = NULL;
2652 #ifdef TCP_DEBUG
2653 		if (so && (so->so_options & SO_DEBUG) != 0)
2654 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2655 #endif
2656 	}
2657 	if (tcp_saveti)
2658 		m_freem(tcp_saveti);
2659 	m_freem(m);
2660 	return;
2661 }
2662 
2663 #ifdef TCP_SIGNATURE
2664 int
2665 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
2666 {
2667 
2668 	MD5Update(fstate, (u_char *)data, len);
2669 	return (0);
2670 }
2671 
2672 struct secasvar *
2673 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2674 {
2675 	struct secasvar *sav;
2676 #ifdef FAST_IPSEC
2677 	union sockaddr_union dst;
2678 #endif
2679 	struct ip *ip;
2680 	struct ip6_hdr *ip6;
2681 
2682 	ip = mtod(m, struct ip *);
2683 	switch (ip->ip_v) {
2684 	case 4:
2685 		ip = mtod(m, struct ip *);
2686 		ip6 = NULL;
2687 		break;
2688 	case 6:
2689 		ip = NULL;
2690 		ip6 = mtod(m, struct ip6_hdr *);
2691 		break;
2692 	default:
2693 		return (NULL);
2694 	}
2695 
2696 #ifdef FAST_IPSEC
2697 	/* Extract the destination from the IP header in the mbuf. */
2698 	bzero(&dst, sizeof(union sockaddr_union));
2699 	dst.sa.sa_len = sizeof(struct sockaddr_in);
2700 	dst.sa.sa_family = AF_INET;
2701 	dst.sin.sin_addr = ip->ip_dst;
2702 
2703 	/*
2704 	 * Look up an SADB entry which matches the address of the peer.
2705 	 */
2706 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2707 #else
2708 	if (ip)
2709 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
2710 		    (caddr_t)&ip->ip_dst, IPPROTO_TCP,
2711 		    htonl(TCP_SIG_SPI));
2712 	else
2713 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
2714 		    (caddr_t)&ip6->ip6_dst, IPPROTO_TCP,
2715 		    htonl(TCP_SIG_SPI));
2716 #endif
2717 
2718 	return (sav);	/* freesav must be performed by caller */
2719 }
2720 
2721 int
2722 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2723     struct secasvar *sav, char *sig)
2724 {
2725 	MD5_CTX ctx;
2726 	struct ip *ip;
2727 	struct ipovly *ipovly;
2728 	struct ip6_hdr *ip6;
2729 	struct ippseudo ippseudo;
2730 	struct ip6_hdr_pseudo ip6pseudo;
2731 	struct tcphdr th0;
2732 	int l, tcphdrlen;
2733 
2734 	if (sav == NULL)
2735 		return (-1);
2736 
2737 	tcphdrlen = th->th_off * 4;
2738 
2739 	switch (mtod(m, struct ip *)->ip_v) {
2740 	case 4:
2741 		ip = mtod(m, struct ip *);
2742 		ip6 = NULL;
2743 		break;
2744 	case 6:
2745 		ip = NULL;
2746 		ip6 = mtod(m, struct ip6_hdr *);
2747 		break;
2748 	default:
2749 		return (-1);
2750 	}
2751 
2752 	MD5Init(&ctx);
2753 
2754 	if (ip) {
2755 		memset(&ippseudo, 0, sizeof(ippseudo));
2756 		ipovly = (struct ipovly *)ip;
2757 		ippseudo.ippseudo_src = ipovly->ih_src;
2758 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2759 		ippseudo.ippseudo_pad = 0;
2760 		ippseudo.ippseudo_p = IPPROTO_TCP;
2761 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2762 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2763 	} else {
2764 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2765 		ip6pseudo.ip6ph_src = ip6->ip6_src;
2766 		in6_clearscope(&ip6pseudo.ip6ph_src);
2767 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2768 		in6_clearscope(&ip6pseudo.ip6ph_dst);
2769 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2770 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2771 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2772 	}
2773 
2774 	th0 = *th;
2775 	th0.th_sum = 0;
2776 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
2777 
2778 	l = m->m_pkthdr.len - thoff - tcphdrlen;
2779 	if (l > 0)
2780 		m_apply(m, thoff + tcphdrlen,
2781 		    m->m_pkthdr.len - thoff - tcphdrlen,
2782 		    tcp_signature_apply, &ctx);
2783 
2784 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2785 	MD5Final(sig, &ctx);
2786 
2787 	return (0);
2788 }
2789 #endif
2790 
2791 int
2792 tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
2793     struct mbuf *m, int toff, struct tcp_opt_info *oi)
2794 {
2795 	u_int16_t mss;
2796 	int opt, optlen = 0;
2797 #ifdef TCP_SIGNATURE
2798 	caddr_t sigp = NULL;
2799 	char sigbuf[TCP_SIGLEN];
2800 	struct secasvar *sav = NULL;
2801 #endif
2802 
2803 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2804 		opt = cp[0];
2805 		if (opt == TCPOPT_EOL)
2806 			break;
2807 		if (opt == TCPOPT_NOP)
2808 			optlen = 1;
2809 		else {
2810 			if (cnt < 2)
2811 				break;
2812 			optlen = cp[1];
2813 			if (optlen < 2 || optlen > cnt)
2814 				break;
2815 		}
2816 		switch (opt) {
2817 
2818 		default:
2819 			continue;
2820 
2821 		case TCPOPT_MAXSEG:
2822 			if (optlen != TCPOLEN_MAXSEG)
2823 				continue;
2824 			if (!(th->th_flags & TH_SYN))
2825 				continue;
2826 			bcopy(cp + 2, &mss, sizeof(mss));
2827 			oi->maxseg = ntohs(mss);
2828 			break;
2829 
2830 		case TCPOPT_WINDOW:
2831 			if (optlen != TCPOLEN_WINDOW)
2832 				continue;
2833 			if (!(th->th_flags & TH_SYN))
2834 				continue;
2835 			tp->t_flags |= TF_RCVD_SCALE;
2836 			tp->requested_s_scale = cp[2];
2837 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2838 #if 0	/*XXX*/
2839 				char *p;
2840 
2841 				if (ip)
2842 					p = ntohl(ip->ip_src);
2843 #ifdef INET6
2844 				else if (ip6)
2845 					p = ip6_sprintf(&ip6->ip6_src);
2846 #endif
2847 				else
2848 					p = "(unknown)";
2849 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2850 				    "assuming %d\n",
2851 				    tp->requested_s_scale, p,
2852 				    TCP_MAX_WINSHIFT);
2853 #else
2854 				log(LOG_ERR, "TCP: invalid wscale %d, "
2855 				    "assuming %d\n",
2856 				    tp->requested_s_scale,
2857 				    TCP_MAX_WINSHIFT);
2858 #endif
2859 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
2860 			}
2861 			break;
2862 
2863 		case TCPOPT_TIMESTAMP:
2864 			if (optlen != TCPOLEN_TIMESTAMP)
2865 				continue;
2866 			oi->ts_present = 1;
2867 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2868 			NTOHL(oi->ts_val);
2869 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2870 			NTOHL(oi->ts_ecr);
2871 
2872 			/*
2873 			 * A timestamp received in a SYN makes
2874 			 * it ok to send timestamp requests and replies.
2875 			 */
2876 			if (th->th_flags & TH_SYN) {
2877 				tp->t_flags |= TF_RCVD_TSTMP;
2878 				tp->ts_recent = oi->ts_val;
2879 				tp->ts_recent_age = tcp_now;
2880 			}
2881 			break;
2882 		case TCPOPT_SACK_PERMITTED:
2883 			if (optlen != TCPOLEN_SACK_PERMITTED)
2884 				continue;
2885 			if (!(th->th_flags & TH_SYN))
2886 				continue;
2887 			if (tcp_do_sack) {
2888 				tp->t_flags |= TF_SACK_PERMIT;
2889 				tp->t_flags |= TF_WILL_SACK;
2890 			}
2891 			break;
2892 
2893 		case TCPOPT_SACK:
2894 			tcp_sack_option(tp, th, cp, optlen);
2895 			break;
2896 #ifdef TCP_SIGNATURE
2897 		case TCPOPT_SIGNATURE:
2898 			if (optlen != TCPOLEN_SIGNATURE)
2899 				continue;
2900 			if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
2901 				return (-1);
2902 
2903 			sigp = sigbuf;
2904 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
2905 			memset(cp + 2, 0, TCP_SIGLEN);
2906 			tp->t_flags |= TF_SIGNATURE;
2907 			break;
2908 #endif
2909 		}
2910 	}
2911 
2912 #ifdef TCP_SIGNATURE
2913 	if (tp->t_flags & TF_SIGNATURE) {
2914 
2915 		sav = tcp_signature_getsav(m, th);
2916 
2917 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
2918 			return (-1);
2919 	}
2920 
2921 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2922 		if (sav == NULL)
2923 			return (-1);
2924 #ifdef FAST_IPSEC
2925 		KEY_FREESAV(&sav);
2926 #else
2927 		key_freesav(sav);
2928 #endif
2929 		return (-1);
2930 	}
2931 
2932 	if (sigp) {
2933 		char sig[TCP_SIGLEN];
2934 
2935 		TCP_FIELDS_TO_NET(th);
2936 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
2937 			TCP_FIELDS_TO_HOST(th);
2938 			if (sav == NULL)
2939 				return (-1);
2940 #ifdef FAST_IPSEC
2941 			KEY_FREESAV(&sav);
2942 #else
2943 			key_freesav(sav);
2944 #endif
2945 			return (-1);
2946 		}
2947 		TCP_FIELDS_TO_HOST(th);
2948 
2949 		if (bcmp(sig, sigp, TCP_SIGLEN)) {
2950 			tcpstat.tcps_badsig++;
2951 			if (sav == NULL)
2952 				return (-1);
2953 #ifdef FAST_IPSEC
2954 			KEY_FREESAV(&sav);
2955 #else
2956 			key_freesav(sav);
2957 #endif
2958 			return (-1);
2959 		} else
2960 			tcpstat.tcps_goodsig++;
2961 
2962 		key_sa_recordxfer(sav, m);
2963 #ifdef FAST_IPSEC
2964 		KEY_FREESAV(&sav);
2965 #else
2966 		key_freesav(sav);
2967 #endif
2968 	}
2969 #endif
2970 
2971 	return (0);
2972 }
2973 
2974 /*
2975  * Pull out of band byte out of a segment so
2976  * it doesn't appear in the user's data queue.
2977  * It is still reflected in the segment length for
2978  * sequencing purposes.
2979  */
2980 void
2981 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
2982     struct mbuf *m, int off)
2983 {
2984 	int cnt = off + th->th_urp - 1;
2985 
2986 	while (cnt >= 0) {
2987 		if (m->m_len > cnt) {
2988 			char *cp = mtod(m, caddr_t) + cnt;
2989 			struct tcpcb *tp = sototcpcb(so);
2990 
2991 			tp->t_iobc = *cp;
2992 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2993 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2994 			m->m_len--;
2995 			return;
2996 		}
2997 		cnt -= m->m_len;
2998 		m = m->m_next;
2999 		if (m == 0)
3000 			break;
3001 	}
3002 	panic("tcp_pulloutofband");
3003 }
3004 
3005 /*
3006  * Collect new round-trip time estimate
3007  * and update averages and current timeout.
3008  */
3009 void
3010 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3011 {
3012 	int32_t delta;
3013 
3014 	tcpstat.tcps_rttupdated++;
3015 	if (tp->t_srtt != 0) {
3016 		/*
3017 		 * srtt is stored as fixed point with 3 bits after the
3018 		 * binary point (i.e., scaled by 8).  The following magic
3019 		 * is equivalent to the smoothing algorithm in rfc793 with
3020 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3021 		 * point).  Adjust rtt to origin 0.
3022 		 */
3023 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3024 		if ((tp->t_srtt += delta) <= 0)
3025 			tp->t_srtt = 1 << 2;
3026 		/*
3027 		 * We accumulate a smoothed rtt variance (actually, a
3028 		 * smoothed mean difference), then set the retransmit
3029 		 * timer to smoothed rtt + 4 times the smoothed variance.
3030 		 * rttvar is stored as fixed point with 2 bits after the
3031 		 * binary point (scaled by 4).  The following is
3032 		 * equivalent to rfc793 smoothing with an alpha of .75
3033 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3034 		 * rfc793's wired-in beta.
3035 		 */
3036 		if (delta < 0)
3037 			delta = -delta;
3038 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3039 		if ((tp->t_rttvar += delta) <= 0)
3040 			tp->t_rttvar = 1 << 2;
3041 	} else {
3042 		/*
3043 		 * No rtt measurement yet - use the unsmoothed rtt.
3044 		 * Set the variance to half the rtt (so our first
3045 		 * retransmit happens at 3*rtt).
3046 		 */
3047 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3048 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3049 	}
3050 	tp->t_rtttime = 0;
3051 	tp->t_rxtshift = 0;
3052 
3053 	/*
3054 	 * the retransmit should happen at rtt + 4 * rttvar.
3055 	 * Because of the way we do the smoothing, srtt and rttvar
3056 	 * will each average +1/2 tick of bias.  When we compute
3057 	 * the retransmit timer, we want 1/2 tick of rounding and
3058 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3059 	 * firing of the timer.  The bias will give us exactly the
3060 	 * 1.5 tick we need.  But, because the bias is
3061 	 * statistical, we have to test that we don't drop below
3062 	 * the minimum feasible timer (which is 2 ticks).
3063 	 */
3064 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3065 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3066 
3067 	/*
3068 	 * We received an ack for a packet that wasn't retransmitted;
3069 	 * it is probably safe to discard any error indications we've
3070 	 * received recently.  This isn't quite right, but close enough
3071 	 * for now (a route might have failed after we sent a segment,
3072 	 * and the return path might not be symmetrical).
3073 	 */
3074 	tp->t_softerror = 0;
3075 }
3076 
3077 void
3078 tcp_reno_newack(struct tcpcb *tp, struct tcphdr *th)
3079 {
3080 	if (tp->t_partialacks < 0) {
3081 		/*
3082 		 * We were not in fast recovery.  Reset the duplicate ack
3083 		 * counter.
3084 		 */
3085 		tp->t_dupacks = 0;
3086 	} else {
3087 		/*
3088 		 * Clamp the congestion window to the crossover point and
3089 		 * exit fast recovery.
3090 		 */
3091 		if (tp->snd_cwnd > tp->snd_ssthresh)
3092 			tp->snd_cwnd = tp->snd_ssthresh;
3093 		tp->t_partialacks = -1;
3094 		tp->t_dupacks = 0;
3095 	}
3096 }
3097 
3098 /*
3099  * Implement the NewReno response to a new ack, checking for partial acks in
3100  * fast recovery.
3101  */
3102 void
3103 tcp_newreno_newack(struct tcpcb *tp, struct tcphdr *th)
3104 {
3105 	if (tp->t_partialacks < 0) {
3106 		/*
3107 		 * We were not in fast recovery.  Reset the duplicate ack
3108 		 * counter.
3109 		 */
3110 		tp->t_dupacks = 0;
3111 	} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
3112 		/*
3113 		 * This is a partial ack.  Retransmit the first unacknowledged
3114 		 * segment and deflate the congestion window by the amount of
3115 		 * acknowledged data.  Do not exit fast recovery.
3116 		 */
3117 		tcp_seq onxt = tp->snd_nxt;
3118 		u_long ocwnd = tp->snd_cwnd;
3119 
3120 		/*
3121 		 * snd_una has not yet been updated and the socket's send
3122 		 * buffer has not yet drained off the ACK'd data, so we
3123 		 * have to leave snd_una as it was to get the correct data
3124 		 * offset in tcp_output().
3125 		 */
3126 		if (++tp->t_partialacks == 1)
3127 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
3128 		tp->t_rtttime = 0;
3129 		tp->snd_nxt = th->th_ack;
3130 		/*
3131 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
3132 		 * is not yet updated when we're called.
3133 		 */
3134 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
3135 		(void) tcp_output(tp);
3136 		tp->snd_cwnd = ocwnd;
3137 		if (SEQ_GT(onxt, tp->snd_nxt))
3138 			tp->snd_nxt = onxt;
3139 		/*
3140 		 * Partial window deflation.  Relies on fact that tp->snd_una
3141 		 * not updated yet.
3142 		 */
3143 		tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
3144 	} else {
3145 		/*
3146 		 * Complete ack.  Inflate the congestion window to ssthresh
3147 		 * and exit fast recovery.
3148 		 *
3149 		 * Window inflation should have left us with approx.
3150 		 * snd_ssthresh outstanding data.  But in case we
3151 		 * would be inclined to send a burst, better to do
3152 		 * it via the slow start mechanism.
3153 		 */
3154 		if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
3155 			tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
3156 			    + tp->t_segsz;
3157 		else
3158 			tp->snd_cwnd = tp->snd_ssthresh;
3159 		tp->t_partialacks = -1;
3160 		tp->t_dupacks = 0;
3161 	}
3162 }
3163 
3164 
3165 /*
3166  * TCP compressed state engine.  Currently used to hold compressed
3167  * state for SYN_RECEIVED.
3168  */
3169 
3170 u_long	syn_cache_count;
3171 u_int32_t syn_hash1, syn_hash2;
3172 
3173 #define SYN_HASH(sa, sp, dp) \
3174 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3175 				     ((u_int32_t)(sp)))^syn_hash2)))
3176 #ifndef INET6
3177 #define	SYN_HASHALL(hash, src, dst) \
3178 do {									\
3179 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
3180 		((struct sockaddr_in *)(src))->sin_port,		\
3181 		((struct sockaddr_in *)(dst))->sin_port);		\
3182 } while (/*CONSTCOND*/ 0)
3183 #else
3184 #define SYN_HASH6(sa, sp, dp) \
3185 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3186 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3187 	 & 0x7fffffff)
3188 
3189 #define SYN_HASHALL(hash, src, dst) \
3190 do {									\
3191 	switch ((src)->sa_family) {					\
3192 	case AF_INET:							\
3193 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3194 			((struct sockaddr_in *)(src))->sin_port,	\
3195 			((struct sockaddr_in *)(dst))->sin_port);	\
3196 		break;							\
3197 	case AF_INET6:							\
3198 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
3199 			((struct sockaddr_in6 *)(src))->sin6_port,	\
3200 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
3201 		break;							\
3202 	default:							\
3203 		hash = 0;						\
3204 	}								\
3205 } while (/*CONSTCOND*/0)
3206 #endif /* INET6 */
3207 
3208 #define	SYN_CACHE_RM(sc)						\
3209 do {									\
3210 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
3211 	    (sc), sc_bucketq);						\
3212 	(sc)->sc_tp = NULL;						\
3213 	LIST_REMOVE((sc), sc_tpq);					\
3214 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
3215 	callout_stop(&(sc)->sc_timer);					\
3216 	syn_cache_count--;						\
3217 } while (/*CONSTCOND*/0)
3218 
3219 #define	SYN_CACHE_PUT(sc)						\
3220 do {									\
3221 	if ((sc)->sc_ipopts)						\
3222 		(void) m_free((sc)->sc_ipopts);				\
3223 	if ((sc)->sc_route4.ro_rt != NULL)				\
3224 		RTFREE((sc)->sc_route4.ro_rt);				\
3225 	if (callout_invoking(&(sc)->sc_timer))				\
3226 		(sc)->sc_flags |= SCF_DEAD;				\
3227 	else								\
3228 		pool_put(&syn_cache_pool, (sc));			\
3229 } while (/*CONSTCOND*/0)
3230 
3231 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL);
3232 
3233 /*
3234  * We don't estimate RTT with SYNs, so each packet starts with the default
3235  * RTT and each timer step has a fixed timeout value.
3236  */
3237 #define	SYN_CACHE_TIMER_ARM(sc)						\
3238 do {									\
3239 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3240 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3241 	    TCPTV_REXMTMAX);						\
3242 	callout_reset(&(sc)->sc_timer,					\
3243 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
3244 } while (/*CONSTCOND*/0)
3245 
3246 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
3247 
3248 void
3249 syn_cache_init(void)
3250 {
3251 	int i;
3252 
3253 	/* Initialize the hash buckets. */
3254 	for (i = 0; i < tcp_syn_cache_size; i++)
3255 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3256 }
3257 
3258 void
3259 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3260 {
3261 	struct syn_cache_head *scp;
3262 	struct syn_cache *sc2;
3263 	int s;
3264 
3265 	/*
3266 	 * If there are no entries in the hash table, reinitialize
3267 	 * the hash secrets.
3268 	 */
3269 	if (syn_cache_count == 0) {
3270 		syn_hash1 = arc4random();
3271 		syn_hash2 = arc4random();
3272 	}
3273 
3274 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3275 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3276 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3277 
3278 	/*
3279 	 * Make sure that we don't overflow the per-bucket
3280 	 * limit or the total cache size limit.
3281 	 */
3282 	s = splsoftnet();
3283 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3284 		tcpstat.tcps_sc_bucketoverflow++;
3285 		/*
3286 		 * The bucket is full.  Toss the oldest element in the
3287 		 * bucket.  This will be the first entry in the bucket.
3288 		 */
3289 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3290 #ifdef DIAGNOSTIC
3291 		/*
3292 		 * This should never happen; we should always find an
3293 		 * entry in our bucket.
3294 		 */
3295 		if (sc2 == NULL)
3296 			panic("syn_cache_insert: bucketoverflow: impossible");
3297 #endif
3298 		SYN_CACHE_RM(sc2);
3299 		SYN_CACHE_PUT(sc2);
3300 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3301 		struct syn_cache_head *scp2, *sce;
3302 
3303 		tcpstat.tcps_sc_overflowed++;
3304 		/*
3305 		 * The cache is full.  Toss the oldest entry in the
3306 		 * first non-empty bucket we can find.
3307 		 *
3308 		 * XXX We would really like to toss the oldest
3309 		 * entry in the cache, but we hope that this
3310 		 * condition doesn't happen very often.
3311 		 */
3312 		scp2 = scp;
3313 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3314 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3315 			for (++scp2; scp2 != scp; scp2++) {
3316 				if (scp2 >= sce)
3317 					scp2 = &tcp_syn_cache[0];
3318 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3319 					break;
3320 			}
3321 #ifdef DIAGNOSTIC
3322 			/*
3323 			 * This should never happen; we should always find a
3324 			 * non-empty bucket.
3325 			 */
3326 			if (scp2 == scp)
3327 				panic("syn_cache_insert: cacheoverflow: "
3328 				    "impossible");
3329 #endif
3330 		}
3331 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3332 		SYN_CACHE_RM(sc2);
3333 		SYN_CACHE_PUT(sc2);
3334 	}
3335 
3336 	/*
3337 	 * Initialize the entry's timer.
3338 	 */
3339 	sc->sc_rxttot = 0;
3340 	sc->sc_rxtshift = 0;
3341 	SYN_CACHE_TIMER_ARM(sc);
3342 
3343 	/* Link it from tcpcb entry */
3344 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3345 
3346 	/* Put it into the bucket. */
3347 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3348 	scp->sch_length++;
3349 	syn_cache_count++;
3350 
3351 	tcpstat.tcps_sc_added++;
3352 	splx(s);
3353 }
3354 
3355 /*
3356  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3357  * If we have retransmitted an entry the maximum number of times, expire
3358  * that entry.
3359  */
3360 void
3361 syn_cache_timer(void *arg)
3362 {
3363 	struct syn_cache *sc = arg;
3364 	int s;
3365 
3366 	s = splsoftnet();
3367 	callout_ack(&sc->sc_timer);
3368 
3369 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3370 		tcpstat.tcps_sc_delayed_free++;
3371 		pool_put(&syn_cache_pool, sc);
3372 		splx(s);
3373 		return;
3374 	}
3375 
3376 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3377 		/* Drop it -- too many retransmissions. */
3378 		goto dropit;
3379 	}
3380 
3381 	/*
3382 	 * Compute the total amount of time this entry has
3383 	 * been on a queue.  If this entry has been on longer
3384 	 * than the keep alive timer would allow, expire it.
3385 	 */
3386 	sc->sc_rxttot += sc->sc_rxtcur;
3387 	if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3388 		goto dropit;
3389 
3390 	tcpstat.tcps_sc_retransmitted++;
3391 	(void) syn_cache_respond(sc, NULL);
3392 
3393 	/* Advance the timer back-off. */
3394 	sc->sc_rxtshift++;
3395 	SYN_CACHE_TIMER_ARM(sc);
3396 
3397 	splx(s);
3398 	return;
3399 
3400  dropit:
3401 	tcpstat.tcps_sc_timed_out++;
3402 	SYN_CACHE_RM(sc);
3403 	SYN_CACHE_PUT(sc);
3404 	splx(s);
3405 }
3406 
3407 /*
3408  * Remove syn cache created by the specified tcb entry,
3409  * because this does not make sense to keep them
3410  * (if there's no tcb entry, syn cache entry will never be used)
3411  */
3412 void
3413 syn_cache_cleanup(struct tcpcb *tp)
3414 {
3415 	struct syn_cache *sc, *nsc;
3416 	int s;
3417 
3418 	s = splsoftnet();
3419 
3420 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3421 		nsc = LIST_NEXT(sc, sc_tpq);
3422 
3423 #ifdef DIAGNOSTIC
3424 		if (sc->sc_tp != tp)
3425 			panic("invalid sc_tp in syn_cache_cleanup");
3426 #endif
3427 		SYN_CACHE_RM(sc);
3428 		SYN_CACHE_PUT(sc);
3429 	}
3430 	/* just for safety */
3431 	LIST_INIT(&tp->t_sc);
3432 
3433 	splx(s);
3434 }
3435 
3436 /*
3437  * Find an entry in the syn cache.
3438  */
3439 struct syn_cache *
3440 syn_cache_lookup(struct sockaddr *src, struct sockaddr *dst,
3441     struct syn_cache_head **headp)
3442 {
3443 	struct syn_cache *sc;
3444 	struct syn_cache_head *scp;
3445 	u_int32_t hash;
3446 	int s;
3447 
3448 	SYN_HASHALL(hash, src, dst);
3449 
3450 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3451 	*headp = scp;
3452 	s = splsoftnet();
3453 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3454 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3455 		if (sc->sc_hash != hash)
3456 			continue;
3457 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3458 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3459 			splx(s);
3460 			return (sc);
3461 		}
3462 	}
3463 	splx(s);
3464 	return (NULL);
3465 }
3466 
3467 /*
3468  * This function gets called when we receive an ACK for a
3469  * socket in the LISTEN state.  We look up the connection
3470  * in the syn cache, and if its there, we pull it out of
3471  * the cache and turn it into a full-blown connection in
3472  * the SYN-RECEIVED state.
3473  *
3474  * The return values may not be immediately obvious, and their effects
3475  * can be subtle, so here they are:
3476  *
3477  *	NULL	SYN was not found in cache; caller should drop the
3478  *		packet and send an RST.
3479  *
3480  *	-1	We were unable to create the new connection, and are
3481  *		aborting it.  An ACK,RST is being sent to the peer
3482  *		(unless we got screwey sequence numbners; see below),
3483  *		because the 3-way handshake has been completed.  Caller
3484  *		should not free the mbuf, since we may be using it.  If
3485  *		we are not, we will free it.
3486  *
3487  *	Otherwise, the return value is a pointer to the new socket
3488  *	associated with the connection.
3489  */
3490 struct socket *
3491 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3492     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3493     struct socket *so, struct mbuf *m)
3494 {
3495 	struct syn_cache *sc;
3496 	struct syn_cache_head *scp;
3497 	struct inpcb *inp = NULL;
3498 #ifdef INET6
3499 	struct in6pcb *in6p = NULL;
3500 #endif
3501 	struct tcpcb *tp = 0;
3502 	struct mbuf *am;
3503 	int s;
3504 	struct socket *oso;
3505 
3506 	s = splsoftnet();
3507 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3508 		splx(s);
3509 		return (NULL);
3510 	}
3511 
3512 	/*
3513 	 * Verify the sequence and ack numbers.  Try getting the correct
3514 	 * response again.
3515 	 */
3516 	if ((th->th_ack != sc->sc_iss + 1) ||
3517 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3518 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3519 		(void) syn_cache_respond(sc, m);
3520 		splx(s);
3521 		return ((struct socket *)(-1));
3522 	}
3523 
3524 	/* Remove this cache entry */
3525 	SYN_CACHE_RM(sc);
3526 	splx(s);
3527 
3528 	/*
3529 	 * Ok, create the full blown connection, and set things up
3530 	 * as they would have been set up if we had created the
3531 	 * connection when the SYN arrived.  If we can't create
3532 	 * the connection, abort it.
3533 	 */
3534 	/*
3535 	 * inp still has the OLD in_pcb stuff, set the
3536 	 * v6-related flags on the new guy, too.   This is
3537 	 * done particularly for the case where an AF_INET6
3538 	 * socket is bound only to a port, and a v4 connection
3539 	 * comes in on that port.
3540 	 * we also copy the flowinfo from the original pcb
3541 	 * to the new one.
3542 	 */
3543 	oso = so;
3544 	so = sonewconn(so, SS_ISCONNECTED);
3545 	if (so == NULL)
3546 		goto resetandabort;
3547 
3548 	switch (so->so_proto->pr_domain->dom_family) {
3549 #ifdef INET
3550 	case AF_INET:
3551 		inp = sotoinpcb(so);
3552 		break;
3553 #endif
3554 #ifdef INET6
3555 	case AF_INET6:
3556 		in6p = sotoin6pcb(so);
3557 		break;
3558 #endif
3559 	}
3560 	switch (src->sa_family) {
3561 #ifdef INET
3562 	case AF_INET:
3563 		if (inp) {
3564 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3565 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3566 			inp->inp_options = ip_srcroute();
3567 			in_pcbstate(inp, INP_BOUND);
3568 			if (inp->inp_options == NULL) {
3569 				inp->inp_options = sc->sc_ipopts;
3570 				sc->sc_ipopts = NULL;
3571 			}
3572 		}
3573 #ifdef INET6
3574 		else if (in6p) {
3575 			/* IPv4 packet to AF_INET6 socket */
3576 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3577 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3578 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3579 				&in6p->in6p_laddr.s6_addr32[3],
3580 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
3581 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3582 			in6totcpcb(in6p)->t_family = AF_INET;
3583 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3584 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3585 			else
3586 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3587 			in6_pcbstate(in6p, IN6P_BOUND);
3588 		}
3589 #endif
3590 		break;
3591 #endif
3592 #ifdef INET6
3593 	case AF_INET6:
3594 		if (in6p) {
3595 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3596 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3597 			in6_pcbstate(in6p, IN6P_BOUND);
3598 		}
3599 		break;
3600 #endif
3601 	}
3602 #ifdef INET6
3603 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3604 		struct in6pcb *oin6p = sotoin6pcb(oso);
3605 		/* inherit socket options from the listening socket */
3606 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3607 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3608 			m_freem(in6p->in6p_options);
3609 			in6p->in6p_options = 0;
3610 		}
3611 		ip6_savecontrol(in6p, &in6p->in6p_options,
3612 			mtod(m, struct ip6_hdr *), m);
3613 	}
3614 #endif
3615 
3616 #if defined(IPSEC) || defined(FAST_IPSEC)
3617 	/*
3618 	 * we make a copy of policy, instead of sharing the policy,
3619 	 * for better behavior in terms of SA lookup and dead SA removal.
3620 	 */
3621 	if (inp) {
3622 		/* copy old policy into new socket's */
3623 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3624 			printf("tcp_input: could not copy policy\n");
3625 	}
3626 #ifdef INET6
3627 	else if (in6p) {
3628 		/* copy old policy into new socket's */
3629 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3630 		    in6p->in6p_sp))
3631 			printf("tcp_input: could not copy policy\n");
3632 	}
3633 #endif
3634 #endif
3635 
3636 	/*
3637 	 * Give the new socket our cached route reference.
3638 	 */
3639 	if (inp)
3640 		inp->inp_route = sc->sc_route4;		/* struct assignment */
3641 #ifdef INET6
3642 	else
3643 		in6p->in6p_route = sc->sc_route6;
3644 #endif
3645 	sc->sc_route4.ro_rt = NULL;
3646 
3647 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3648 	if (am == NULL)
3649 		goto resetandabort;
3650 	MCLAIM(am, &tcp_mowner);
3651 	am->m_len = src->sa_len;
3652 	bcopy(src, mtod(am, caddr_t), src->sa_len);
3653 	if (inp) {
3654 		if (in_pcbconnect(inp, am)) {
3655 			(void) m_free(am);
3656 			goto resetandabort;
3657 		}
3658 	}
3659 #ifdef INET6
3660 	else if (in6p) {
3661 		if (src->sa_family == AF_INET) {
3662 			/* IPv4 packet to AF_INET6 socket */
3663 			struct sockaddr_in6 *sin6;
3664 			sin6 = mtod(am, struct sockaddr_in6 *);
3665 			am->m_len = sizeof(*sin6);
3666 			bzero(sin6, sizeof(*sin6));
3667 			sin6->sin6_family = AF_INET6;
3668 			sin6->sin6_len = sizeof(*sin6);
3669 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3670 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3671 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
3672 				&sin6->sin6_addr.s6_addr32[3],
3673 				sizeof(sin6->sin6_addr.s6_addr32[3]));
3674 		}
3675 		if (in6_pcbconnect(in6p, am)) {
3676 			(void) m_free(am);
3677 			goto resetandabort;
3678 		}
3679 	}
3680 #endif
3681 	else {
3682 		(void) m_free(am);
3683 		goto resetandabort;
3684 	}
3685 	(void) m_free(am);
3686 
3687 	if (inp)
3688 		tp = intotcpcb(inp);
3689 #ifdef INET6
3690 	else if (in6p)
3691 		tp = in6totcpcb(in6p);
3692 #endif
3693 	else
3694 		tp = NULL;
3695 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3696 	if (sc->sc_request_r_scale != 15) {
3697 		tp->requested_s_scale = sc->sc_requested_s_scale;
3698 		tp->request_r_scale = sc->sc_request_r_scale;
3699 		tp->snd_scale = sc->sc_requested_s_scale;
3700 		tp->rcv_scale = sc->sc_request_r_scale;
3701 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3702 	}
3703 	if (sc->sc_flags & SCF_TIMESTAMP)
3704 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3705 	tp->ts_timebase = sc->sc_timebase;
3706 
3707 	tp->t_template = tcp_template(tp);
3708 	if (tp->t_template == 0) {
3709 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3710 		so = NULL;
3711 		m_freem(m);
3712 		goto abort;
3713 	}
3714 
3715 	tp->iss = sc->sc_iss;
3716 	tp->irs = sc->sc_irs;
3717 	tcp_sendseqinit(tp);
3718 	tcp_rcvseqinit(tp);
3719 	tp->t_state = TCPS_SYN_RECEIVED;
3720 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3721 	tcpstat.tcps_accepts++;
3722 
3723 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3724 		tp->t_flags |= TF_WILL_SACK;
3725 
3726 #ifdef TCP_SIGNATURE
3727 	if (sc->sc_flags & SCF_SIGNATURE)
3728 		tp->t_flags |= TF_SIGNATURE;
3729 #endif
3730 
3731 	/* Initialize tp->t_ourmss before we deal with the peer's! */
3732 	tp->t_ourmss = sc->sc_ourmaxseg;
3733 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3734 
3735 	/*
3736 	 * Initialize the initial congestion window.  If we
3737 	 * had to retransmit the SYN,ACK, we must initialize cwnd
3738 	 * to 1 segment (i.e. the Loss Window).
3739 	 */
3740 	if (sc->sc_rxtshift)
3741 		tp->snd_cwnd = tp->t_peermss;
3742 	else {
3743 		int ss = tcp_init_win;
3744 #ifdef INET
3745 		if (inp != NULL && in_localaddr(inp->inp_faddr))
3746 			ss = tcp_init_win_local;
3747 #endif
3748 #ifdef INET6
3749 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3750 			ss = tcp_init_win_local;
3751 #endif
3752 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3753 	}
3754 
3755 	tcp_rmx_rtt(tp);
3756 	tp->snd_wl1 = sc->sc_irs;
3757 	tp->rcv_up = sc->sc_irs + 1;
3758 
3759 	/*
3760 	 * This is what whould have happened in tcp_output() when
3761 	 * the SYN,ACK was sent.
3762 	 */
3763 	tp->snd_up = tp->snd_una;
3764 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3765 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3766 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3767 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3768 	tp->last_ack_sent = tp->rcv_nxt;
3769 	tp->t_partialacks = -1;
3770 	tp->t_dupacks = 0;
3771 
3772 	tcpstat.tcps_sc_completed++;
3773 	SYN_CACHE_PUT(sc);
3774 	return (so);
3775 
3776 resetandabort:
3777 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3778 abort:
3779 	if (so != NULL)
3780 		(void) soabort(so);
3781 	SYN_CACHE_PUT(sc);
3782 	tcpstat.tcps_sc_aborted++;
3783 	return ((struct socket *)(-1));
3784 }
3785 
3786 /*
3787  * This function is called when we get a RST for a
3788  * non-existent connection, so that we can see if the
3789  * connection is in the syn cache.  If it is, zap it.
3790  */
3791 
3792 void
3793 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3794 {
3795 	struct syn_cache *sc;
3796 	struct syn_cache_head *scp;
3797 	int s = splsoftnet();
3798 
3799 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3800 		splx(s);
3801 		return;
3802 	}
3803 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3804 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3805 		splx(s);
3806 		return;
3807 	}
3808 	SYN_CACHE_RM(sc);
3809 	splx(s);
3810 	tcpstat.tcps_sc_reset++;
3811 	SYN_CACHE_PUT(sc);
3812 }
3813 
3814 void
3815 syn_cache_unreach(struct sockaddr *src, struct sockaddr *dst,
3816     struct tcphdr *th)
3817 {
3818 	struct syn_cache *sc;
3819 	struct syn_cache_head *scp;
3820 	int s;
3821 
3822 	s = splsoftnet();
3823 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3824 		splx(s);
3825 		return;
3826 	}
3827 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3828 	if (ntohl (th->th_seq) != sc->sc_iss) {
3829 		splx(s);
3830 		return;
3831 	}
3832 
3833 	/*
3834 	 * If we've retransmitted 3 times and this is our second error,
3835 	 * we remove the entry.  Otherwise, we allow it to continue on.
3836 	 * This prevents us from incorrectly nuking an entry during a
3837 	 * spurious network outage.
3838 	 *
3839 	 * See tcp_notify().
3840 	 */
3841 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3842 		sc->sc_flags |= SCF_UNREACH;
3843 		splx(s);
3844 		return;
3845 	}
3846 
3847 	SYN_CACHE_RM(sc);
3848 	splx(s);
3849 	tcpstat.tcps_sc_unreach++;
3850 	SYN_CACHE_PUT(sc);
3851 }
3852 
3853 /*
3854  * Given a LISTEN socket and an inbound SYN request, add
3855  * this to the syn cache, and send back a segment:
3856  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3857  * to the source.
3858  *
3859  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3860  * Doing so would require that we hold onto the data and deliver it
3861  * to the application.  However, if we are the target of a SYN-flood
3862  * DoS attack, an attacker could send data which would eventually
3863  * consume all available buffer space if it were ACKed.  By not ACKing
3864  * the data, we avoid this DoS scenario.
3865  */
3866 
3867 int
3868 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3869     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
3870     int optlen, struct tcp_opt_info *oi)
3871 {
3872 	struct tcpcb tb, *tp;
3873 	long win;
3874 	struct syn_cache *sc;
3875 	struct syn_cache_head *scp;
3876 	struct mbuf *ipopts;
3877 	struct tcp_opt_info opti;
3878 
3879 	tp = sototcpcb(so);
3880 
3881 	bzero(&opti, sizeof(opti));
3882 
3883 	/*
3884 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3885 	 *
3886 	 * Note this check is performed in tcp_input() very early on.
3887 	 */
3888 
3889 	/*
3890 	 * Initialize some local state.
3891 	 */
3892 	win = sbspace(&so->so_rcv);
3893 	if (win > TCP_MAXWIN)
3894 		win = TCP_MAXWIN;
3895 
3896 	switch (src->sa_family) {
3897 #ifdef INET
3898 	case AF_INET:
3899 		/*
3900 		 * Remember the IP options, if any.
3901 		 */
3902 		ipopts = ip_srcroute();
3903 		break;
3904 #endif
3905 	default:
3906 		ipopts = NULL;
3907 	}
3908 
3909 #ifdef TCP_SIGNATURE
3910 	if (optp || (tp->t_flags & TF_SIGNATURE))
3911 #else
3912 	if (optp)
3913 #endif
3914 	{
3915 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3916 #ifdef TCP_SIGNATURE
3917 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
3918 #endif
3919 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
3920 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
3921 			return (0);
3922 	} else
3923 		tb.t_flags = 0;
3924 
3925 	/*
3926 	 * See if we already have an entry for this connection.
3927 	 * If we do, resend the SYN,ACK.  We do not count this
3928 	 * as a retransmission (XXX though maybe we should).
3929 	 */
3930 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3931 		tcpstat.tcps_sc_dupesyn++;
3932 		if (ipopts) {
3933 			/*
3934 			 * If we were remembering a previous source route,
3935 			 * forget it and use the new one we've been given.
3936 			 */
3937 			if (sc->sc_ipopts)
3938 				(void) m_free(sc->sc_ipopts);
3939 			sc->sc_ipopts = ipopts;
3940 		}
3941 		sc->sc_timestamp = tb.ts_recent;
3942 		if (syn_cache_respond(sc, m) == 0) {
3943 			tcpstat.tcps_sndacks++;
3944 			tcpstat.tcps_sndtotal++;
3945 		}
3946 		return (1);
3947 	}
3948 
3949 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3950 	if (sc == NULL) {
3951 		if (ipopts)
3952 			(void) m_free(ipopts);
3953 		return (0);
3954 	}
3955 
3956 	/*
3957 	 * Fill in the cache, and put the necessary IP and TCP
3958 	 * options into the reply.
3959 	 */
3960 	bzero(sc, sizeof(struct syn_cache));
3961 	callout_init(&sc->sc_timer);
3962 	bcopy(src, &sc->sc_src, src->sa_len);
3963 	bcopy(dst, &sc->sc_dst, dst->sa_len);
3964 	sc->sc_flags = 0;
3965 	sc->sc_ipopts = ipopts;
3966 	sc->sc_irs = th->th_seq;
3967 	switch (src->sa_family) {
3968 #ifdef INET
3969 	case AF_INET:
3970 	    {
3971 		struct sockaddr_in *srcin = (void *) src;
3972 		struct sockaddr_in *dstin = (void *) dst;
3973 
3974 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3975 		    &srcin->sin_addr, dstin->sin_port,
3976 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
3977 		break;
3978 	    }
3979 #endif /* INET */
3980 #ifdef INET6
3981 	case AF_INET6:
3982 	    {
3983 		struct sockaddr_in6 *srcin6 = (void *) src;
3984 		struct sockaddr_in6 *dstin6 = (void *) dst;
3985 
3986 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3987 		    &srcin6->sin6_addr, dstin6->sin6_port,
3988 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3989 		break;
3990 	    }
3991 #endif /* INET6 */
3992 	}
3993 	sc->sc_peermaxseg = oi->maxseg;
3994 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3995 						m->m_pkthdr.rcvif : NULL,
3996 						sc->sc_src.sa.sa_family);
3997 	sc->sc_win = win;
3998 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
3999 	sc->sc_timestamp = tb.ts_recent;
4000 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4001 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4002 		sc->sc_flags |= SCF_TIMESTAMP;
4003 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4004 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4005 		sc->sc_requested_s_scale = tb.requested_s_scale;
4006 		sc->sc_request_r_scale = 0;
4007 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4008 		    TCP_MAXWIN << sc->sc_request_r_scale <
4009 		    so->so_rcv.sb_hiwat)
4010 			sc->sc_request_r_scale++;
4011 	} else {
4012 		sc->sc_requested_s_scale = 15;
4013 		sc->sc_request_r_scale = 15;
4014 	}
4015 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4016 		sc->sc_flags |= SCF_SACK_PERMIT;
4017 #ifdef TCP_SIGNATURE
4018 	if (tb.t_flags & TF_SIGNATURE)
4019 		sc->sc_flags |= SCF_SIGNATURE;
4020 #endif
4021 	sc->sc_tp = tp;
4022 	if (syn_cache_respond(sc, m) == 0) {
4023 		syn_cache_insert(sc, tp);
4024 		tcpstat.tcps_sndacks++;
4025 		tcpstat.tcps_sndtotal++;
4026 	} else {
4027 		SYN_CACHE_PUT(sc);
4028 		tcpstat.tcps_sc_dropped++;
4029 	}
4030 	return (1);
4031 }
4032 
4033 int
4034 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4035 {
4036 	struct route *ro;
4037 	u_int8_t *optp;
4038 	int optlen, error;
4039 	u_int16_t tlen;
4040 	struct ip *ip = NULL;
4041 #ifdef INET6
4042 	struct ip6_hdr *ip6 = NULL;
4043 #endif
4044 	struct tcpcb *tp;
4045 	struct tcphdr *th;
4046 	u_int hlen;
4047 	struct socket *so;
4048 
4049 	switch (sc->sc_src.sa.sa_family) {
4050 	case AF_INET:
4051 		hlen = sizeof(struct ip);
4052 		ro = &sc->sc_route4;
4053 		break;
4054 #ifdef INET6
4055 	case AF_INET6:
4056 		hlen = sizeof(struct ip6_hdr);
4057 		ro = (struct route *)&sc->sc_route6;
4058 		break;
4059 #endif
4060 	default:
4061 		if (m)
4062 			m_freem(m);
4063 		return (EAFNOSUPPORT);
4064 	}
4065 
4066 	/* Compute the size of the TCP options. */
4067 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4068 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4069 #ifdef TCP_SIGNATURE
4070 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4071 #endif
4072 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4073 
4074 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4075 
4076 	/*
4077 	 * Create the IP+TCP header from scratch.
4078 	 */
4079 	if (m)
4080 		m_freem(m);
4081 #ifdef DIAGNOSTIC
4082 	if (max_linkhdr + tlen > MCLBYTES)
4083 		return (ENOBUFS);
4084 #endif
4085 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4086 	if (m && tlen > MHLEN) {
4087 		MCLGET(m, M_DONTWAIT);
4088 		if ((m->m_flags & M_EXT) == 0) {
4089 			m_freem(m);
4090 			m = NULL;
4091 		}
4092 	}
4093 	if (m == NULL)
4094 		return (ENOBUFS);
4095 	MCLAIM(m, &tcp_tx_mowner);
4096 
4097 	/* Fixup the mbuf. */
4098 	m->m_data += max_linkhdr;
4099 	m->m_len = m->m_pkthdr.len = tlen;
4100 	if (sc->sc_tp) {
4101 		tp = sc->sc_tp;
4102 		if (tp->t_inpcb)
4103 			so = tp->t_inpcb->inp_socket;
4104 #ifdef INET6
4105 		else if (tp->t_in6pcb)
4106 			so = tp->t_in6pcb->in6p_socket;
4107 #endif
4108 		else
4109 			so = NULL;
4110 	} else
4111 		so = NULL;
4112 	m->m_pkthdr.rcvif = NULL;
4113 	memset(mtod(m, u_char *), 0, tlen);
4114 
4115 	switch (sc->sc_src.sa.sa_family) {
4116 	case AF_INET:
4117 		ip = mtod(m, struct ip *);
4118 		ip->ip_v = 4;
4119 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4120 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4121 		ip->ip_p = IPPROTO_TCP;
4122 		th = (struct tcphdr *)(ip + 1);
4123 		th->th_dport = sc->sc_src.sin.sin_port;
4124 		th->th_sport = sc->sc_dst.sin.sin_port;
4125 		break;
4126 #ifdef INET6
4127 	case AF_INET6:
4128 		ip6 = mtod(m, struct ip6_hdr *);
4129 		ip6->ip6_vfc = IPV6_VERSION;
4130 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4131 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4132 		ip6->ip6_nxt = IPPROTO_TCP;
4133 		/* ip6_plen will be updated in ip6_output() */
4134 		th = (struct tcphdr *)(ip6 + 1);
4135 		th->th_dport = sc->sc_src.sin6.sin6_port;
4136 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4137 		break;
4138 #endif
4139 	default:
4140 		th = NULL;
4141 	}
4142 
4143 	th->th_seq = htonl(sc->sc_iss);
4144 	th->th_ack = htonl(sc->sc_irs + 1);
4145 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4146 	th->th_flags = TH_SYN|TH_ACK;
4147 	th->th_win = htons(sc->sc_win);
4148 	/* th_sum already 0 */
4149 	/* th_urp already 0 */
4150 
4151 	/* Tack on the TCP options. */
4152 	optp = (u_int8_t *)(th + 1);
4153 	*optp++ = TCPOPT_MAXSEG;
4154 	*optp++ = 4;
4155 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4156 	*optp++ = sc->sc_ourmaxseg & 0xff;
4157 
4158 	if (sc->sc_request_r_scale != 15) {
4159 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4160 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4161 		    sc->sc_request_r_scale);
4162 		optp += 4;
4163 	}
4164 
4165 	if (sc->sc_flags & SCF_TIMESTAMP) {
4166 		u_int32_t *lp = (u_int32_t *)(optp);
4167 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4168 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
4169 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4170 		*lp   = htonl(sc->sc_timestamp);
4171 		optp += TCPOLEN_TSTAMP_APPA;
4172 	}
4173 
4174 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4175 		u_int8_t *p = optp;
4176 
4177 		/* Let the peer know that we will SACK. */
4178 		p[0] = TCPOPT_SACK_PERMITTED;
4179 		p[1] = 2;
4180 		p[2] = TCPOPT_NOP;
4181 		p[3] = TCPOPT_NOP;
4182 		optp += 4;
4183 	}
4184 
4185 #ifdef TCP_SIGNATURE
4186 	if (sc->sc_flags & SCF_SIGNATURE) {
4187 		struct secasvar *sav;
4188 		u_int8_t *sigp;
4189 
4190 		sav = tcp_signature_getsav(m, th);
4191 
4192 		if (sav == NULL) {
4193 			if (m)
4194 				m_freem(m);
4195 			return (EPERM);
4196 		}
4197 
4198 		*optp++ = TCPOPT_SIGNATURE;
4199 		*optp++ = TCPOLEN_SIGNATURE;
4200 		sigp = optp;
4201 		bzero(optp, TCP_SIGLEN);
4202 		optp += TCP_SIGLEN;
4203 		*optp++ = TCPOPT_NOP;
4204 		*optp++ = TCPOPT_EOL;
4205 
4206 		(void)tcp_signature(m, th, hlen, sav, sigp);
4207 
4208 		key_sa_recordxfer(sav, m);
4209 #ifdef FAST_IPSEC
4210 		KEY_FREESAV(&sav);
4211 #else
4212 		key_freesav(sav);
4213 #endif
4214 	}
4215 #endif
4216 
4217 	/* Compute the packet's checksum. */
4218 	switch (sc->sc_src.sa.sa_family) {
4219 	case AF_INET:
4220 		ip->ip_len = htons(tlen - hlen);
4221 		th->th_sum = 0;
4222 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4223 		break;
4224 #ifdef INET6
4225 	case AF_INET6:
4226 		ip6->ip6_plen = htons(tlen - hlen);
4227 		th->th_sum = 0;
4228 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4229 		break;
4230 #endif
4231 	}
4232 
4233 	/*
4234 	 * Fill in some straggling IP bits.  Note the stack expects
4235 	 * ip_len to be in host order, for convenience.
4236 	 */
4237 	switch (sc->sc_src.sa.sa_family) {
4238 #ifdef INET
4239 	case AF_INET:
4240 		ip->ip_len = htons(tlen);
4241 		ip->ip_ttl = ip_defttl;
4242 		/* XXX tos? */
4243 		break;
4244 #endif
4245 #ifdef INET6
4246 	case AF_INET6:
4247 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4248 		ip6->ip6_vfc |= IPV6_VERSION;
4249 		ip6->ip6_plen = htons(tlen - hlen);
4250 		/* ip6_hlim will be initialized afterwards */
4251 		/* XXX flowlabel? */
4252 		break;
4253 #endif
4254 	}
4255 
4256 	/* XXX use IPsec policy on listening socket, on SYN ACK */
4257 	tp = sc->sc_tp;
4258 
4259 	switch (sc->sc_src.sa.sa_family) {
4260 #ifdef INET
4261 	case AF_INET:
4262 		error = ip_output(m, sc->sc_ipopts, ro,
4263 		    (ip_mtudisc ? IP_MTUDISC : 0),
4264 		    (struct ip_moptions *)NULL, so);
4265 		break;
4266 #endif
4267 #ifdef INET6
4268 	case AF_INET6:
4269 		ip6->ip6_hlim = in6_selecthlim(NULL,
4270 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4271 
4272 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4273 			(struct ip6_moptions *)0, so, NULL);
4274 		break;
4275 #endif
4276 	default:
4277 		error = EAFNOSUPPORT;
4278 		break;
4279 	}
4280 	return (error);
4281 }
4282