xref: /netbsd-src/sys/netinet/tcp_input.c (revision e89934bbf778a6d6d6894877c4da59d0c7835b0f)
1 /*	$NetBSD: tcp_input.c,v 1.354 2017/02/07 02:38:08 ozaki-r Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74  * 2011 The NetBSD Foundation, Inc.
75  * All rights reserved.
76  *
77  * This code is derived from software contributed to The NetBSD Foundation
78  * by Coyote Point Systems, Inc.
79  * This code is derived from software contributed to The NetBSD Foundation
80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81  * Facility, NASA Ames Research Center.
82  * This code is derived from software contributed to The NetBSD Foundation
83  * by Charles M. Hannum.
84  * This code is derived from software contributed to The NetBSD Foundation
85  * by Rui Paulo.
86  *
87  * Redistribution and use in source and binary forms, with or without
88  * modification, are permitted provided that the following conditions
89  * are met:
90  * 1. Redistributions of source code must retain the above copyright
91  *    notice, this list of conditions and the following disclaimer.
92  * 2. Redistributions in binary form must reproduce the above copyright
93  *    notice, this list of conditions and the following disclaimer in the
94  *    documentation and/or other materials provided with the distribution.
95  *
96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106  * POSSIBILITY OF SUCH DAMAGE.
107  */
108 
109 /*
110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111  *	The Regents of the University of California.  All rights reserved.
112  *
113  * Redistribution and use in source and binary forms, with or without
114  * modification, are permitted provided that the following conditions
115  * are met:
116  * 1. Redistributions of source code must retain the above copyright
117  *    notice, this list of conditions and the following disclaimer.
118  * 2. Redistributions in binary form must reproduce the above copyright
119  *    notice, this list of conditions and the following disclaimer in the
120  *    documentation and/or other materials provided with the distribution.
121  * 3. Neither the name of the University nor the names of its contributors
122  *    may be used to endorse or promote products derived from this software
123  *    without specific prior written permission.
124  *
125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135  * SUCH DAMAGE.
136  *
137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
138  */
139 
140 /*
141  *	TODO list for SYN cache stuff:
142  *
143  *	Find room for a "state" field, which is needed to keep a
144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
145  *	that this is fairly important for very high-volume web and
146  *	mail servers, which use a large number of short-lived
147  *	connections.
148  */
149 
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.354 2017/02/07 02:38:08 ozaki-r Exp $");
152 
153 #ifdef _KERNEL_OPT
154 #include "opt_inet.h"
155 #include "opt_ipsec.h"
156 #include "opt_inet_csum.h"
157 #include "opt_tcp_debug.h"
158 #endif
159 
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175 #include <sys/lwp.h> /* for lwp0 */
176 #include <sys/cprng.h>
177 
178 #include <net/if.h>
179 #include <net/if_types.h>
180 
181 #include <netinet/in.h>
182 #include <netinet/in_systm.h>
183 #include <netinet/ip.h>
184 #include <netinet/in_pcb.h>
185 #include <netinet/in_var.h>
186 #include <netinet/ip_var.h>
187 #include <netinet/in_offload.h>
188 
189 #ifdef INET6
190 #ifndef INET
191 #include <netinet/in.h>
192 #endif
193 #include <netinet/ip6.h>
194 #include <netinet6/ip6_var.h>
195 #include <netinet6/in6_pcb.h>
196 #include <netinet6/ip6_var.h>
197 #include <netinet6/in6_var.h>
198 #include <netinet/icmp6.h>
199 #include <netinet6/nd6.h>
200 #ifdef TCP_SIGNATURE
201 #include <netinet6/scope6_var.h>
202 #endif
203 #endif
204 
205 #ifndef INET6
206 /* always need ip6.h for IP6_EXTHDR_GET */
207 #include <netinet/ip6.h>
208 #endif
209 
210 #include <netinet/tcp.h>
211 #include <netinet/tcp_fsm.h>
212 #include <netinet/tcp_seq.h>
213 #include <netinet/tcp_timer.h>
214 #include <netinet/tcp_var.h>
215 #include <netinet/tcp_private.h>
216 #include <netinet/tcpip.h>
217 #include <netinet/tcp_congctl.h>
218 #include <netinet/tcp_debug.h>
219 
220 #ifdef INET6
221 #include "faith.h"
222 #if defined(NFAITH) && NFAITH > 0
223 #include <net/if_faith.h>
224 #endif
225 #endif	/* INET6 */
226 
227 #ifdef IPSEC
228 #include <netipsec/ipsec.h>
229 #include <netipsec/ipsec_var.h>
230 #include <netipsec/ipsec_private.h>
231 #include <netipsec/key.h>
232 #ifdef INET6
233 #include <netipsec/ipsec6.h>
234 #endif
235 #endif	/* IPSEC*/
236 
237 #include <netinet/tcp_vtw.h>
238 
239 int	tcprexmtthresh = 3;
240 int	tcp_log_refused;
241 
242 int	tcp_do_autorcvbuf = 1;
243 int	tcp_autorcvbuf_inc = 16 * 1024;
244 int	tcp_autorcvbuf_max = 256 * 1024;
245 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
246 
247 static int tcp_rst_ppslim_count = 0;
248 static struct timeval tcp_rst_ppslim_last;
249 static int tcp_ackdrop_ppslim_count = 0;
250 static struct timeval tcp_ackdrop_ppslim_last;
251 
252 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
253 
254 /* for modulo comparisons of timestamps */
255 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
256 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
257 
258 /*
259  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
260  */
261 #ifdef INET6
262 static inline void
263 nd6_hint(struct tcpcb *tp)
264 {
265 	struct rtentry *rt = NULL;
266 
267 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
268 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
269 		nd6_nud_hint(rt);
270 	rtcache_unref(rt, &tp->t_in6pcb->in6p_route);
271 }
272 #else
273 static inline void
274 nd6_hint(struct tcpcb *tp)
275 {
276 }
277 #endif
278 
279 /*
280  * Compute ACK transmission behavior.  Delay the ACK unless
281  * we have already delayed an ACK (must send an ACK every two segments).
282  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
283  * option is enabled.
284  */
285 static void
286 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
287 {
288 
289 	if (tp->t_flags & TF_DELACK ||
290 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
291 		tp->t_flags |= TF_ACKNOW;
292 	else
293 		TCP_SET_DELACK(tp);
294 }
295 
296 static void
297 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
298 {
299 
300 	/*
301 	 * If we had a pending ICMP message that refers to data that have
302 	 * just been acknowledged, disregard the recorded ICMP message.
303 	 */
304 	if ((tp->t_flags & TF_PMTUD_PEND) &&
305 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
306 		tp->t_flags &= ~TF_PMTUD_PEND;
307 
308 	/*
309 	 * Keep track of the largest chunk of data
310 	 * acknowledged since last PMTU update
311 	 */
312 	if (tp->t_pmtud_mss_acked < acked)
313 		tp->t_pmtud_mss_acked = acked;
314 }
315 
316 /*
317  * Convert TCP protocol fields to host order for easier processing.
318  */
319 static void
320 tcp_fields_to_host(struct tcphdr *th)
321 {
322 
323 	NTOHL(th->th_seq);
324 	NTOHL(th->th_ack);
325 	NTOHS(th->th_win);
326 	NTOHS(th->th_urp);
327 }
328 
329 /*
330  * ... and reverse the above.
331  */
332 static void
333 tcp_fields_to_net(struct tcphdr *th)
334 {
335 
336 	HTONL(th->th_seq);
337 	HTONL(th->th_ack);
338 	HTONS(th->th_win);
339 	HTONS(th->th_urp);
340 }
341 
342 #ifdef TCP_CSUM_COUNTERS
343 #include <sys/device.h>
344 
345 #if defined(INET)
346 extern struct evcnt tcp_hwcsum_ok;
347 extern struct evcnt tcp_hwcsum_bad;
348 extern struct evcnt tcp_hwcsum_data;
349 extern struct evcnt tcp_swcsum;
350 #endif /* defined(INET) */
351 #if defined(INET6)
352 extern struct evcnt tcp6_hwcsum_ok;
353 extern struct evcnt tcp6_hwcsum_bad;
354 extern struct evcnt tcp6_hwcsum_data;
355 extern struct evcnt tcp6_swcsum;
356 #endif /* defined(INET6) */
357 
358 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
359 
360 #else
361 
362 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
363 
364 #endif /* TCP_CSUM_COUNTERS */
365 
366 #ifdef TCP_REASS_COUNTERS
367 #include <sys/device.h>
368 
369 extern struct evcnt tcp_reass_;
370 extern struct evcnt tcp_reass_empty;
371 extern struct evcnt tcp_reass_iteration[8];
372 extern struct evcnt tcp_reass_prependfirst;
373 extern struct evcnt tcp_reass_prepend;
374 extern struct evcnt tcp_reass_insert;
375 extern struct evcnt tcp_reass_inserttail;
376 extern struct evcnt tcp_reass_append;
377 extern struct evcnt tcp_reass_appendtail;
378 extern struct evcnt tcp_reass_overlaptail;
379 extern struct evcnt tcp_reass_overlapfront;
380 extern struct evcnt tcp_reass_segdup;
381 extern struct evcnt tcp_reass_fragdup;
382 
383 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
384 
385 #else
386 
387 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
388 
389 #endif /* TCP_REASS_COUNTERS */
390 
391 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
392     int *);
393 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
394     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
395 
396 #ifdef INET
397 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
398 #endif
399 #ifdef INET6
400 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
401 #endif
402 
403 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
404 
405 #if defined(MBUFTRACE)
406 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
407 #endif /* defined(MBUFTRACE) */
408 
409 static struct pool tcpipqent_pool;
410 
411 void
412 tcpipqent_init(void)
413 {
414 
415 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
416 	    NULL, IPL_VM);
417 }
418 
419 struct ipqent *
420 tcpipqent_alloc(void)
421 {
422 	struct ipqent *ipqe;
423 	int s;
424 
425 	s = splvm();
426 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
427 	splx(s);
428 
429 	return ipqe;
430 }
431 
432 void
433 tcpipqent_free(struct ipqent *ipqe)
434 {
435 	int s;
436 
437 	s = splvm();
438 	pool_put(&tcpipqent_pool, ipqe);
439 	splx(s);
440 }
441 
442 static int
443 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
444 {
445 	struct ipqent *p, *q, *nq, *tiqe = NULL;
446 	struct socket *so = NULL;
447 	int pkt_flags;
448 	tcp_seq pkt_seq;
449 	unsigned pkt_len;
450 	u_long rcvpartdupbyte = 0;
451 	u_long rcvoobyte;
452 #ifdef TCP_REASS_COUNTERS
453 	u_int count = 0;
454 #endif
455 	uint64_t *tcps;
456 
457 	if (tp->t_inpcb)
458 		so = tp->t_inpcb->inp_socket;
459 #ifdef INET6
460 	else if (tp->t_in6pcb)
461 		so = tp->t_in6pcb->in6p_socket;
462 #endif
463 
464 	TCP_REASS_LOCK_CHECK(tp);
465 
466 	/*
467 	 * Call with th==0 after become established to
468 	 * force pre-ESTABLISHED data up to user socket.
469 	 */
470 	if (th == 0)
471 		goto present;
472 
473 	m_claimm(m, &tcp_reass_mowner);
474 
475 	rcvoobyte = *tlen;
476 	/*
477 	 * Copy these to local variables because the tcpiphdr
478 	 * gets munged while we are collapsing mbufs.
479 	 */
480 	pkt_seq = th->th_seq;
481 	pkt_len = *tlen;
482 	pkt_flags = th->th_flags;
483 
484 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
485 
486 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
487 		/*
488 		 * When we miss a packet, the vast majority of time we get
489 		 * packets that follow it in order.  So optimize for that.
490 		 */
491 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
492 			p->ipqe_len += pkt_len;
493 			p->ipqe_flags |= pkt_flags;
494 			m_cat(p->ipre_mlast, m);
495 			TRAVERSE(p->ipre_mlast);
496 			m = NULL;
497 			tiqe = p;
498 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
499 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
500 			goto skip_replacement;
501 		}
502 		/*
503 		 * While we're here, if the pkt is completely beyond
504 		 * anything we have, just insert it at the tail.
505 		 */
506 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
507 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
508 			goto insert_it;
509 		}
510 	}
511 
512 	q = TAILQ_FIRST(&tp->segq);
513 
514 	if (q != NULL) {
515 		/*
516 		 * If this segment immediately precedes the first out-of-order
517 		 * block, simply slap the segment in front of it and (mostly)
518 		 * skip the complicated logic.
519 		 */
520 		if (pkt_seq + pkt_len == q->ipqe_seq) {
521 			q->ipqe_seq = pkt_seq;
522 			q->ipqe_len += pkt_len;
523 			q->ipqe_flags |= pkt_flags;
524 			m_cat(m, q->ipqe_m);
525 			q->ipqe_m = m;
526 			q->ipre_mlast = m; /* last mbuf may have changed */
527 			TRAVERSE(q->ipre_mlast);
528 			tiqe = q;
529 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
530 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
531 			goto skip_replacement;
532 		}
533 	} else {
534 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
535 	}
536 
537 	/*
538 	 * Find a segment which begins after this one does.
539 	 */
540 	for (p = NULL; q != NULL; q = nq) {
541 		nq = TAILQ_NEXT(q, ipqe_q);
542 #ifdef TCP_REASS_COUNTERS
543 		count++;
544 #endif
545 		/*
546 		 * If the received segment is just right after this
547 		 * fragment, merge the two together and then check
548 		 * for further overlaps.
549 		 */
550 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
551 #ifdef TCPREASS_DEBUG
552 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
553 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
554 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
555 #endif
556 			pkt_len += q->ipqe_len;
557 			pkt_flags |= q->ipqe_flags;
558 			pkt_seq = q->ipqe_seq;
559 			m_cat(q->ipre_mlast, m);
560 			TRAVERSE(q->ipre_mlast);
561 			m = q->ipqe_m;
562 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
563 			goto free_ipqe;
564 		}
565 		/*
566 		 * If the received segment is completely past this
567 		 * fragment, we need to go the next fragment.
568 		 */
569 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
570 			p = q;
571 			continue;
572 		}
573 		/*
574 		 * If the fragment is past the received segment,
575 		 * it (or any following) can't be concatenated.
576 		 */
577 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
578 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
579 			break;
580 		}
581 
582 		/*
583 		 * We've received all the data in this segment before.
584 		 * mark it as a duplicate and return.
585 		 */
586 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
587 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
588 			tcps = TCP_STAT_GETREF();
589 			tcps[TCP_STAT_RCVDUPPACK]++;
590 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
591 			TCP_STAT_PUTREF();
592 			tcp_new_dsack(tp, pkt_seq, pkt_len);
593 			m_freem(m);
594 			if (tiqe != NULL) {
595 				tcpipqent_free(tiqe);
596 			}
597 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
598 			goto out;
599 		}
600 		/*
601 		 * Received segment completely overlaps this fragment
602 		 * so we drop the fragment (this keeps the temporal
603 		 * ordering of segments correct).
604 		 */
605 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
606 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
607 			rcvpartdupbyte += q->ipqe_len;
608 			m_freem(q->ipqe_m);
609 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
610 			goto free_ipqe;
611 		}
612 		/*
613 		 * RX'ed segment extends past the end of the
614 		 * fragment.  Drop the overlapping bytes.  Then
615 		 * merge the fragment and segment then treat as
616 		 * a longer received packet.
617 		 */
618 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
619 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
620 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
621 #ifdef TCPREASS_DEBUG
622 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
623 			       tp, overlap,
624 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
625 #endif
626 			m_adj(m, overlap);
627 			rcvpartdupbyte += overlap;
628 			m_cat(q->ipre_mlast, m);
629 			TRAVERSE(q->ipre_mlast);
630 			m = q->ipqe_m;
631 			pkt_seq = q->ipqe_seq;
632 			pkt_len += q->ipqe_len - overlap;
633 			rcvoobyte -= overlap;
634 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
635 			goto free_ipqe;
636 		}
637 		/*
638 		 * RX'ed segment extends past the front of the
639 		 * fragment.  Drop the overlapping bytes on the
640 		 * received packet.  The packet will then be
641 		 * contatentated with this fragment a bit later.
642 		 */
643 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
644 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
645 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
646 #ifdef TCPREASS_DEBUG
647 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
648 			       tp, overlap,
649 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
650 #endif
651 			m_adj(m, -overlap);
652 			pkt_len -= overlap;
653 			rcvpartdupbyte += overlap;
654 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
655 			rcvoobyte -= overlap;
656 		}
657 		/*
658 		 * If the received segment immediates precedes this
659 		 * fragment then tack the fragment onto this segment
660 		 * and reinsert the data.
661 		 */
662 		if (q->ipqe_seq == pkt_seq + pkt_len) {
663 #ifdef TCPREASS_DEBUG
664 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
665 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
666 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
667 #endif
668 			pkt_len += q->ipqe_len;
669 			pkt_flags |= q->ipqe_flags;
670 			m_cat(m, q->ipqe_m);
671 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
672 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
673 			tp->t_segqlen--;
674 			KASSERT(tp->t_segqlen >= 0);
675 			KASSERT(tp->t_segqlen != 0 ||
676 			    (TAILQ_EMPTY(&tp->segq) &&
677 			    TAILQ_EMPTY(&tp->timeq)));
678 			if (tiqe == NULL) {
679 				tiqe = q;
680 			} else {
681 				tcpipqent_free(q);
682 			}
683 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
684 			break;
685 		}
686 		/*
687 		 * If the fragment is before the segment, remember it.
688 		 * When this loop is terminated, p will contain the
689 		 * pointer to fragment that is right before the received
690 		 * segment.
691 		 */
692 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
693 			p = q;
694 
695 		continue;
696 
697 		/*
698 		 * This is a common operation.  It also will allow
699 		 * to save doing a malloc/free in most instances.
700 		 */
701 	  free_ipqe:
702 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
703 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
704 		tp->t_segqlen--;
705 		KASSERT(tp->t_segqlen >= 0);
706 		KASSERT(tp->t_segqlen != 0 ||
707 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
708 		if (tiqe == NULL) {
709 			tiqe = q;
710 		} else {
711 			tcpipqent_free(q);
712 		}
713 	}
714 
715 #ifdef TCP_REASS_COUNTERS
716 	if (count > 7)
717 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
718 	else if (count > 0)
719 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
720 #endif
721 
722     insert_it:
723 
724 	/*
725 	 * Allocate a new queue entry since the received segment did not
726 	 * collapse onto any other out-of-order block; thus we are allocating
727 	 * a new block.  If it had collapsed, tiqe would not be NULL and
728 	 * we would be reusing it.
729 	 * XXX If we can't, just drop the packet.  XXX
730 	 */
731 	if (tiqe == NULL) {
732 		tiqe = tcpipqent_alloc();
733 		if (tiqe == NULL) {
734 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
735 			m_freem(m);
736 			goto out;
737 		}
738 	}
739 
740 	/*
741 	 * Update the counters.
742 	 */
743 	tp->t_rcvoopack++;
744 	tcps = TCP_STAT_GETREF();
745 	tcps[TCP_STAT_RCVOOPACK]++;
746 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
747 	if (rcvpartdupbyte) {
748 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
749 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
750 	}
751 	TCP_STAT_PUTREF();
752 
753 	/*
754 	 * Insert the new fragment queue entry into both queues.
755 	 */
756 	tiqe->ipqe_m = m;
757 	tiqe->ipre_mlast = m;
758 	tiqe->ipqe_seq = pkt_seq;
759 	tiqe->ipqe_len = pkt_len;
760 	tiqe->ipqe_flags = pkt_flags;
761 	if (p == NULL) {
762 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
763 #ifdef TCPREASS_DEBUG
764 		if (tiqe->ipqe_seq != tp->rcv_nxt)
765 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
766 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
767 #endif
768 	} else {
769 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
770 #ifdef TCPREASS_DEBUG
771 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
772 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
773 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
774 #endif
775 	}
776 	tp->t_segqlen++;
777 
778 skip_replacement:
779 
780 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
781 
782 present:
783 	/*
784 	 * Present data to user, advancing rcv_nxt through
785 	 * completed sequence space.
786 	 */
787 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
788 		goto out;
789 	q = TAILQ_FIRST(&tp->segq);
790 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
791 		goto out;
792 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
793 		goto out;
794 
795 	tp->rcv_nxt += q->ipqe_len;
796 	pkt_flags = q->ipqe_flags & TH_FIN;
797 	nd6_hint(tp);
798 
799 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
800 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
801 	tp->t_segqlen--;
802 	KASSERT(tp->t_segqlen >= 0);
803 	KASSERT(tp->t_segqlen != 0 ||
804 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
805 	if (so->so_state & SS_CANTRCVMORE)
806 		m_freem(q->ipqe_m);
807 	else
808 		sbappendstream(&so->so_rcv, q->ipqe_m);
809 	tcpipqent_free(q);
810 	TCP_REASS_UNLOCK(tp);
811 	sorwakeup(so);
812 	return (pkt_flags);
813 out:
814 	TCP_REASS_UNLOCK(tp);
815 	return (0);
816 }
817 
818 #ifdef INET6
819 int
820 tcp6_input(struct mbuf **mp, int *offp, int proto)
821 {
822 	struct mbuf *m = *mp;
823 
824 	/*
825 	 * draft-itojun-ipv6-tcp-to-anycast
826 	 * better place to put this in?
827 	 */
828 	if (m->m_flags & M_ANYCAST6) {
829 		struct ip6_hdr *ip6;
830 		if (m->m_len < sizeof(struct ip6_hdr)) {
831 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
832 				TCP_STATINC(TCP_STAT_RCVSHORT);
833 				return IPPROTO_DONE;
834 			}
835 		}
836 		ip6 = mtod(m, struct ip6_hdr *);
837 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
838 		    (char *)&ip6->ip6_dst - (char *)ip6);
839 		return IPPROTO_DONE;
840 	}
841 
842 	tcp_input(m, *offp, proto);
843 	return IPPROTO_DONE;
844 }
845 #endif
846 
847 #ifdef INET
848 static void
849 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
850 {
851 	char src[INET_ADDRSTRLEN];
852 	char dst[INET_ADDRSTRLEN];
853 
854 	if (ip) {
855 		in_print(src, sizeof(src), &ip->ip_src);
856 		in_print(dst, sizeof(dst), &ip->ip_dst);
857 	}
858 	else {
859 		strlcpy(src, "(unknown)", sizeof(src));
860 		strlcpy(dst, "(unknown)", sizeof(dst));
861 	}
862 	log(LOG_INFO,
863 	    "Connection attempt to TCP %s:%d from %s:%d\n",
864 	    dst, ntohs(th->th_dport),
865 	    src, ntohs(th->th_sport));
866 }
867 #endif
868 
869 #ifdef INET6
870 static void
871 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
872 {
873 	char src[INET6_ADDRSTRLEN];
874 	char dst[INET6_ADDRSTRLEN];
875 
876 	if (ip6) {
877 		in6_print(src, sizeof(src), &ip6->ip6_src);
878 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
879 	}
880 	else {
881 		strlcpy(src, "(unknown v6)", sizeof(src));
882 		strlcpy(dst, "(unknown v6)", sizeof(dst));
883 	}
884 	log(LOG_INFO,
885 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
886 	    dst, ntohs(th->th_dport),
887 	    src, ntohs(th->th_sport));
888 }
889 #endif
890 
891 /*
892  * Checksum extended TCP header and data.
893  */
894 int
895 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
896     int toff, int off, int tlen)
897 {
898 	struct ifnet *rcvif;
899 	int s;
900 
901 	/*
902 	 * XXX it's better to record and check if this mbuf is
903 	 * already checked.
904 	 */
905 
906 	rcvif = m_get_rcvif(m, &s);
907 	if (__predict_false(rcvif == NULL))
908 		goto badcsum; /* XXX */
909 
910 	switch (af) {
911 #ifdef INET
912 	case AF_INET:
913 		switch (m->m_pkthdr.csum_flags &
914 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
915 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
916 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
917 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
918 			goto badcsum;
919 
920 		case M_CSUM_TCPv4|M_CSUM_DATA: {
921 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
922 
923 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
924 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
925 				const struct ip *ip =
926 				    mtod(m, const struct ip *);
927 
928 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
929 				    ip->ip_dst.s_addr,
930 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
931 			}
932 			if ((hw_csum ^ 0xffff) != 0)
933 				goto badcsum;
934 			break;
935 		}
936 
937 		case M_CSUM_TCPv4:
938 			/* Checksum was okay. */
939 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
940 			break;
941 
942 		default:
943 			/*
944 			 * Must compute it ourselves.  Maybe skip checksum
945 			 * on loopback interfaces.
946 			 */
947 			if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
948 					   tcp_do_loopback_cksum)) {
949 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
950 				if (in4_cksum(m, IPPROTO_TCP, toff,
951 					      tlen + off) != 0)
952 					goto badcsum;
953 			}
954 			break;
955 		}
956 		break;
957 #endif /* INET4 */
958 
959 #ifdef INET6
960 	case AF_INET6:
961 		switch (m->m_pkthdr.csum_flags &
962 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
963 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
964 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
965 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
966 			goto badcsum;
967 
968 #if 0 /* notyet */
969 		case M_CSUM_TCPv6|M_CSUM_DATA:
970 #endif
971 
972 		case M_CSUM_TCPv6:
973 			/* Checksum was okay. */
974 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
975 			break;
976 
977 		default:
978 			/*
979 			 * Must compute it ourselves.  Maybe skip checksum
980 			 * on loopback interfaces.
981 			 */
982 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
983 			    tcp_do_loopback_cksum)) {
984 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
985 				if (in6_cksum(m, IPPROTO_TCP, toff,
986 				    tlen + off) != 0)
987 					goto badcsum;
988 			}
989 		}
990 		break;
991 #endif /* INET6 */
992 	}
993 	m_put_rcvif(rcvif, &s);
994 
995 	return 0;
996 
997 badcsum:
998 	m_put_rcvif(rcvif, &s);
999 	TCP_STATINC(TCP_STAT_RCVBADSUM);
1000 	return -1;
1001 }
1002 
1003 /* When a packet arrives addressed to a vestigial tcpbp, we
1004  * nevertheless have to respond to it per the spec.
1005  */
1006 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
1007 			  struct mbuf *m, int tlen, int multicast)
1008 {
1009 	int		tiflags;
1010 	int		todrop;
1011 	uint32_t	t_flags = 0;
1012 	uint64_t	*tcps;
1013 
1014 	tiflags = th->th_flags;
1015 	todrop  = vp->rcv_nxt - th->th_seq;
1016 
1017 	if (todrop > 0) {
1018 		if (tiflags & TH_SYN) {
1019 			tiflags &= ~TH_SYN;
1020 			++th->th_seq;
1021 			if (th->th_urp > 1)
1022 				--th->th_urp;
1023 			else {
1024 				tiflags &= ~TH_URG;
1025 				th->th_urp = 0;
1026 			}
1027 			--todrop;
1028 		}
1029 		if (todrop > tlen ||
1030 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1031 			/*
1032 			 * Any valid FIN or RST must be to the left of the
1033 			 * window.  At this point the FIN or RST must be a
1034 			 * duplicate or out of sequence; drop it.
1035 			 */
1036 			if (tiflags & TH_RST)
1037 				goto drop;
1038 			tiflags &= ~(TH_FIN|TH_RST);
1039 			/*
1040 			 * Send an ACK to resynchronize and drop any data.
1041 			 * But keep on processing for RST or ACK.
1042 			 */
1043 			t_flags |= TF_ACKNOW;
1044 			todrop = tlen;
1045 			tcps = TCP_STAT_GETREF();
1046 			tcps[TCP_STAT_RCVDUPPACK] += 1;
1047 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1048 			TCP_STAT_PUTREF();
1049 		} else if ((tiflags & TH_RST)
1050 			   && th->th_seq != vp->rcv_nxt) {
1051 			/*
1052 			 * Test for reset before adjusting the sequence
1053 			 * number for overlapping data.
1054 			 */
1055 			goto dropafterack_ratelim;
1056 		} else {
1057 			tcps = TCP_STAT_GETREF();
1058 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1059 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1060 			TCP_STAT_PUTREF();
1061 		}
1062 
1063 //		tcp_new_dsack(tp, th->th_seq, todrop);
1064 //		hdroptlen += todrop;	/*drop from head afterwards*/
1065 
1066 		th->th_seq += todrop;
1067 		tlen -= todrop;
1068 
1069 		if (th->th_urp > todrop)
1070 			th->th_urp -= todrop;
1071 		else {
1072 			tiflags &= ~TH_URG;
1073 			th->th_urp = 0;
1074 		}
1075 	}
1076 
1077 	/*
1078 	 * If new data are received on a connection after the
1079 	 * user processes are gone, then RST the other end.
1080 	 */
1081 	if (tlen) {
1082 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1083 		goto dropwithreset;
1084 	}
1085 
1086 	/*
1087 	 * If segment ends after window, drop trailing data
1088 	 * (and PUSH and FIN); if nothing left, just ACK.
1089 	 */
1090 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
1091 
1092 	if (todrop > 0) {
1093 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1094 		if (todrop >= tlen) {
1095 			/*
1096 			 * The segment actually starts after the window.
1097 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1098 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1099 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1100 			 */
1101 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1102 			/*
1103 			 * If a new connection request is received
1104 			 * while in TIME_WAIT, drop the old connection
1105 			 * and start over if the sequence numbers
1106 			 * are above the previous ones.
1107 			 */
1108 			if ((tiflags & TH_SYN)
1109 			    && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1110 				/* We only support this in the !NOFDREF case, which
1111 				 * is to say: not here.
1112 				 */
1113 				goto dropwithreset;
1114 			}
1115 			/*
1116 			 * If window is closed can only take segments at
1117 			 * window edge, and have to drop data and PUSH from
1118 			 * incoming segments.  Continue processing, but
1119 			 * remember to ack.  Otherwise, drop segment
1120 			 * and (if not RST) ack.
1121 			 */
1122 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1123 				t_flags |= TF_ACKNOW;
1124 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
1125 			} else
1126 				goto dropafterack;
1127 		} else
1128 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1129 		m_adj(m, -todrop);
1130 		tlen -= todrop;
1131 		tiflags &= ~(TH_PUSH|TH_FIN);
1132 	}
1133 
1134 	if (tiflags & TH_RST) {
1135 		if (th->th_seq != vp->rcv_nxt)
1136 			goto dropafterack_ratelim;
1137 
1138 		vtw_del(vp->ctl, vp->vtw);
1139 		goto drop;
1140 	}
1141 
1142 	/*
1143 	 * If the ACK bit is off we drop the segment and return.
1144 	 */
1145 	if ((tiflags & TH_ACK) == 0) {
1146 		if (t_flags & TF_ACKNOW)
1147 			goto dropafterack;
1148 		else
1149 			goto drop;
1150 	}
1151 
1152 	/*
1153 	 * In TIME_WAIT state the only thing that should arrive
1154 	 * is a retransmission of the remote FIN.  Acknowledge
1155 	 * it and restart the finack timer.
1156 	 */
1157 	vtw_restart(vp);
1158 	goto dropafterack;
1159 
1160 dropafterack:
1161 	/*
1162 	 * Generate an ACK dropping incoming segment if it occupies
1163 	 * sequence space, where the ACK reflects our state.
1164 	 */
1165 	if (tiflags & TH_RST)
1166 		goto drop;
1167 	goto dropafterack2;
1168 
1169 dropafterack_ratelim:
1170 	/*
1171 	 * We may want to rate-limit ACKs against SYN/RST attack.
1172 	 */
1173 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1174 			 tcp_ackdrop_ppslim) == 0) {
1175 		/* XXX stat */
1176 		goto drop;
1177 	}
1178 	/* ...fall into dropafterack2... */
1179 
1180 dropafterack2:
1181 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
1182 			  TH_ACK);
1183 	return;
1184 
1185 dropwithreset:
1186 	/*
1187 	 * Generate a RST, dropping incoming segment.
1188 	 * Make ACK acceptable to originator of segment.
1189 	 */
1190 	if (tiflags & TH_RST)
1191 		goto drop;
1192 
1193 	if (tiflags & TH_ACK)
1194 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1195 	else {
1196 		if (tiflags & TH_SYN)
1197 			++tlen;
1198 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1199 				  TH_RST|TH_ACK);
1200 	}
1201 	return;
1202 drop:
1203 	m_freem(m);
1204 }
1205 
1206 /*
1207  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1208  */
1209 void
1210 tcp_input(struct mbuf *m, ...)
1211 {
1212 	struct tcphdr *th;
1213 	struct ip *ip;
1214 	struct inpcb *inp;
1215 #ifdef INET6
1216 	struct ip6_hdr *ip6;
1217 	struct in6pcb *in6p;
1218 #endif
1219 	u_int8_t *optp = NULL;
1220 	int optlen = 0;
1221 	int len, tlen, toff, hdroptlen = 0;
1222 	struct tcpcb *tp = 0;
1223 	int tiflags;
1224 	struct socket *so = NULL;
1225 	int todrop, acked, ourfinisacked, needoutput = 0;
1226 	bool dupseg;
1227 #ifdef TCP_DEBUG
1228 	short ostate = 0;
1229 #endif
1230 	u_long tiwin;
1231 	struct tcp_opt_info opti;
1232 	int off, iphlen;
1233 	va_list ap;
1234 	int af;		/* af on the wire */
1235 	struct mbuf *tcp_saveti = NULL;
1236 	uint32_t ts_rtt;
1237 	uint8_t iptos;
1238 	uint64_t *tcps;
1239 	vestigial_inpcb_t vestige;
1240 
1241 	vestige.valid = 0;
1242 
1243 	MCLAIM(m, &tcp_rx_mowner);
1244 	va_start(ap, m);
1245 	toff = va_arg(ap, int);
1246 	(void)va_arg(ap, int);		/* ignore value, advance ap */
1247 	va_end(ap);
1248 
1249 	TCP_STATINC(TCP_STAT_RCVTOTAL);
1250 
1251 	memset(&opti, 0, sizeof(opti));
1252 	opti.ts_present = 0;
1253 	opti.maxseg = 0;
1254 
1255 	/*
1256 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1257 	 *
1258 	 * TCP is, by definition, unicast, so we reject all
1259 	 * multicast outright.
1260 	 *
1261 	 * Note, there are additional src/dst address checks in
1262 	 * the AF-specific code below.
1263 	 */
1264 	if (m->m_flags & (M_BCAST|M_MCAST)) {
1265 		/* XXX stat */
1266 		goto drop;
1267 	}
1268 #ifdef INET6
1269 	if (m->m_flags & M_ANYCAST6) {
1270 		/* XXX stat */
1271 		goto drop;
1272 	}
1273 #endif
1274 
1275 	/*
1276 	 * Get IP and TCP header.
1277 	 * Note: IP leaves IP header in first mbuf.
1278 	 */
1279 	ip = mtod(m, struct ip *);
1280 	switch (ip->ip_v) {
1281 #ifdef INET
1282 	case 4:
1283 #ifdef INET6
1284 		ip6 = NULL;
1285 #endif
1286 		af = AF_INET;
1287 		iphlen = sizeof(struct ip);
1288 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1289 			sizeof(struct tcphdr));
1290 		if (th == NULL) {
1291 			TCP_STATINC(TCP_STAT_RCVSHORT);
1292 			return;
1293 		}
1294 		/* We do the checksum after PCB lookup... */
1295 		len = ntohs(ip->ip_len);
1296 		tlen = len - toff;
1297 		iptos = ip->ip_tos;
1298 		break;
1299 #endif
1300 #ifdef INET6
1301 	case 6:
1302 		ip = NULL;
1303 		iphlen = sizeof(struct ip6_hdr);
1304 		af = AF_INET6;
1305 		ip6 = mtod(m, struct ip6_hdr *);
1306 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1307 			sizeof(struct tcphdr));
1308 		if (th == NULL) {
1309 			TCP_STATINC(TCP_STAT_RCVSHORT);
1310 			return;
1311 		}
1312 
1313 		/* Be proactive about malicious use of IPv4 mapped address */
1314 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1315 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1316 			/* XXX stat */
1317 			goto drop;
1318 		}
1319 
1320 		/*
1321 		 * Be proactive about unspecified IPv6 address in source.
1322 		 * As we use all-zero to indicate unbounded/unconnected pcb,
1323 		 * unspecified IPv6 address can be used to confuse us.
1324 		 *
1325 		 * Note that packets with unspecified IPv6 destination is
1326 		 * already dropped in ip6_input.
1327 		 */
1328 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1329 			/* XXX stat */
1330 			goto drop;
1331 		}
1332 
1333 		/*
1334 		 * Make sure destination address is not multicast.
1335 		 * Source address checked in ip6_input().
1336 		 */
1337 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1338 			/* XXX stat */
1339 			goto drop;
1340 		}
1341 
1342 		/* We do the checksum after PCB lookup... */
1343 		len = m->m_pkthdr.len;
1344 		tlen = len - toff;
1345 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1346 		break;
1347 #endif
1348 	default:
1349 		m_freem(m);
1350 		return;
1351 	}
1352 	/*
1353          * Enforce alignment requirements that are violated in
1354 	 * some cases, see kern/50766 for details.
1355 	 */
1356 	if (TCP_HDR_ALIGNED_P(th) == 0) {
1357 		m = m_copyup(m, toff + sizeof(struct tcphdr), 0);
1358 		if (m == NULL) {
1359 			TCP_STATINC(TCP_STAT_RCVSHORT);
1360 			return;
1361 		}
1362 		ip = mtod(m, struct ip *);
1363 #ifdef INET6
1364 		ip6 = mtod(m, struct ip6_hdr *);
1365 #endif
1366 		th = (struct tcphdr *)(mtod(m, char *) + toff);
1367 	}
1368 	KASSERT(TCP_HDR_ALIGNED_P(th));
1369 
1370 	/*
1371 	 * Check that TCP offset makes sense,
1372 	 * pull out TCP options and adjust length.		XXX
1373 	 */
1374 	off = th->th_off << 2;
1375 	if (off < sizeof (struct tcphdr) || off > tlen) {
1376 		TCP_STATINC(TCP_STAT_RCVBADOFF);
1377 		goto drop;
1378 	}
1379 	tlen -= off;
1380 
1381 	/*
1382 	 * tcp_input() has been modified to use tlen to mean the TCP data
1383 	 * length throughout the function.  Other functions can use
1384 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1385 	 * rja
1386 	 */
1387 
1388 	if (off > sizeof (struct tcphdr)) {
1389 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1390 		if (th == NULL) {
1391 			TCP_STATINC(TCP_STAT_RCVSHORT);
1392 			return;
1393 		}
1394 		/*
1395 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
1396 		 * (as they're before toff) and we don't need to update those.
1397 		 */
1398 		KASSERT(TCP_HDR_ALIGNED_P(th));
1399 		optlen = off - sizeof (struct tcphdr);
1400 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1401 		/*
1402 		 * Do quick retrieval of timestamp options ("options
1403 		 * prediction?").  If timestamp is the only option and it's
1404 		 * formatted as recommended in RFC 1323 appendix A, we
1405 		 * quickly get the values now and not bother calling
1406 		 * tcp_dooptions(), etc.
1407 		 */
1408 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1409 		     (optlen > TCPOLEN_TSTAMP_APPA &&
1410 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1411 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1412 		     (th->th_flags & TH_SYN) == 0) {
1413 			opti.ts_present = 1;
1414 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1415 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1416 			optp = NULL;	/* we've parsed the options */
1417 		}
1418 	}
1419 	tiflags = th->th_flags;
1420 
1421 	/*
1422 	 * Checksum extended TCP header and data
1423 	 */
1424 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
1425 		goto badcsum;
1426 
1427 	/*
1428 	 * Locate pcb for segment.
1429 	 */
1430 findpcb:
1431 	inp = NULL;
1432 #ifdef INET6
1433 	in6p = NULL;
1434 #endif
1435 	switch (af) {
1436 #ifdef INET
1437 	case AF_INET:
1438 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1439 					   ip->ip_dst, th->th_dport,
1440 					   &vestige);
1441 		if (inp == 0 && !vestige.valid) {
1442 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1443 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1444 		}
1445 #ifdef INET6
1446 		if (inp == 0 && !vestige.valid) {
1447 			struct in6_addr s, d;
1448 
1449 			/* mapped addr case */
1450 			in6_in_2_v4mapin6(&ip->ip_src, &s);
1451 			in6_in_2_v4mapin6(&ip->ip_dst, &d);
1452 			in6p = in6_pcblookup_connect(&tcbtable, &s,
1453 						     th->th_sport, &d, th->th_dport,
1454 						     0, &vestige);
1455 			if (in6p == 0 && !vestige.valid) {
1456 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
1457 				in6p = in6_pcblookup_bind(&tcbtable, &d,
1458 				    th->th_dport, 0);
1459 			}
1460 		}
1461 #endif
1462 #ifndef INET6
1463 		if (inp == 0 && !vestige.valid)
1464 #else
1465 		if (inp == 0 && in6p == 0 && !vestige.valid)
1466 #endif
1467 		{
1468 			TCP_STATINC(TCP_STAT_NOPORT);
1469 			if (tcp_log_refused &&
1470 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1471 				tcp4_log_refused(ip, th);
1472 			}
1473 			tcp_fields_to_host(th);
1474 			goto dropwithreset_ratelim;
1475 		}
1476 #if defined(IPSEC)
1477 		if (ipsec_used) {
1478 			if (inp &&
1479 			    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0
1480 			    && ipsec4_in_reject(m, inp)) {
1481 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1482 				goto drop;
1483 			}
1484 #ifdef INET6
1485 			else if (in6p &&
1486 			    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1487 			    && ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1488 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1489 				goto drop;
1490 			}
1491 #endif
1492 		}
1493 #endif /*IPSEC*/
1494 		break;
1495 #endif /*INET*/
1496 #ifdef INET6
1497 	case AF_INET6:
1498 	    {
1499 		int faith;
1500 
1501 #if defined(NFAITH) && NFAITH > 0
1502 		faith = faithprefix(&ip6->ip6_dst);
1503 #else
1504 		faith = 0;
1505 #endif
1506 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1507 					     th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1508 		if (!in6p && !vestige.valid) {
1509 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1510 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1511 				th->th_dport, faith);
1512 		}
1513 		if (!in6p && !vestige.valid) {
1514 			TCP_STATINC(TCP_STAT_NOPORT);
1515 			if (tcp_log_refused &&
1516 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1517 				tcp6_log_refused(ip6, th);
1518 			}
1519 			tcp_fields_to_host(th);
1520 			goto dropwithreset_ratelim;
1521 		}
1522 #if defined(IPSEC)
1523 		if (ipsec_used && in6p
1524 		    && (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1525 		    && ipsec6_in_reject(m, in6p)) {
1526 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1527 			goto drop;
1528 		}
1529 #endif /*IPSEC*/
1530 		break;
1531 	    }
1532 #endif
1533 	}
1534 
1535 	/*
1536 	 * If the state is CLOSED (i.e., TCB does not exist) then
1537 	 * all data in the incoming segment is discarded.
1538 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1539 	 * but should either do a listen or a connect soon.
1540 	 */
1541 	tp = NULL;
1542 	so = NULL;
1543 	if (inp) {
1544 		/* Check the minimum TTL for socket. */
1545 		if (ip->ip_ttl < inp->inp_ip_minttl)
1546 			goto drop;
1547 
1548 		tp = intotcpcb(inp);
1549 		so = inp->inp_socket;
1550 	}
1551 #ifdef INET6
1552 	else if (in6p) {
1553 		tp = in6totcpcb(in6p);
1554 		so = in6p->in6p_socket;
1555 	}
1556 #endif
1557 	else if (vestige.valid) {
1558 		int mc = 0;
1559 
1560 		/* We do not support the resurrection of vtw tcpcps.
1561 		 */
1562 		if (tcp_input_checksum(af, m, th, toff, off, tlen))
1563 			goto badcsum;
1564 
1565 		switch (af) {
1566 #ifdef INET6
1567 		case AF_INET6:
1568 			mc = IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst);
1569 			break;
1570 #endif
1571 
1572 		case AF_INET:
1573 			mc = (IN_MULTICAST(ip->ip_dst.s_addr)
1574 			      || in_broadcast(ip->ip_dst,
1575 			                      m_get_rcvif_NOMPSAFE(m)));
1576 			break;
1577 		}
1578 
1579 		tcp_fields_to_host(th);
1580 		tcp_vtw_input(th, &vestige, m, tlen, mc);
1581 		m = 0;
1582 		goto drop;
1583 	}
1584 
1585 	if (tp == 0) {
1586 		tcp_fields_to_host(th);
1587 		goto dropwithreset_ratelim;
1588 	}
1589 	if (tp->t_state == TCPS_CLOSED)
1590 		goto drop;
1591 
1592 	KASSERT(so->so_lock == softnet_lock);
1593 	KASSERT(solocked(so));
1594 
1595 	tcp_fields_to_host(th);
1596 
1597 	/* Unscale the window into a 32-bit value. */
1598 	if ((tiflags & TH_SYN) == 0)
1599 		tiwin = th->th_win << tp->snd_scale;
1600 	else
1601 		tiwin = th->th_win;
1602 
1603 #ifdef INET6
1604 	/* save packet options if user wanted */
1605 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1606 		if (in6p->in6p_options) {
1607 			m_freem(in6p->in6p_options);
1608 			in6p->in6p_options = 0;
1609 		}
1610 		KASSERT(ip6 != NULL);
1611 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1612 	}
1613 #endif
1614 
1615 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1616 		union syn_cache_sa src;
1617 		union syn_cache_sa dst;
1618 
1619 		memset(&src, 0, sizeof(src));
1620 		memset(&dst, 0, sizeof(dst));
1621 		switch (af) {
1622 #ifdef INET
1623 		case AF_INET:
1624 			src.sin.sin_len = sizeof(struct sockaddr_in);
1625 			src.sin.sin_family = AF_INET;
1626 			src.sin.sin_addr = ip->ip_src;
1627 			src.sin.sin_port = th->th_sport;
1628 
1629 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1630 			dst.sin.sin_family = AF_INET;
1631 			dst.sin.sin_addr = ip->ip_dst;
1632 			dst.sin.sin_port = th->th_dport;
1633 			break;
1634 #endif
1635 #ifdef INET6
1636 		case AF_INET6:
1637 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1638 			src.sin6.sin6_family = AF_INET6;
1639 			src.sin6.sin6_addr = ip6->ip6_src;
1640 			src.sin6.sin6_port = th->th_sport;
1641 
1642 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1643 			dst.sin6.sin6_family = AF_INET6;
1644 			dst.sin6.sin6_addr = ip6->ip6_dst;
1645 			dst.sin6.sin6_port = th->th_dport;
1646 			break;
1647 #endif /* INET6 */
1648 		default:
1649 			goto badsyn;	/*sanity*/
1650 		}
1651 
1652 		if (so->so_options & SO_DEBUG) {
1653 #ifdef TCP_DEBUG
1654 			ostate = tp->t_state;
1655 #endif
1656 
1657 			tcp_saveti = NULL;
1658 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1659 				goto nosave;
1660 
1661 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1662 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1663 				if (!tcp_saveti)
1664 					goto nosave;
1665 			} else {
1666 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1667 				if (!tcp_saveti)
1668 					goto nosave;
1669 				MCLAIM(m, &tcp_mowner);
1670 				tcp_saveti->m_len = iphlen;
1671 				m_copydata(m, 0, iphlen,
1672 				    mtod(tcp_saveti, void *));
1673 			}
1674 
1675 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1676 				m_freem(tcp_saveti);
1677 				tcp_saveti = NULL;
1678 			} else {
1679 				tcp_saveti->m_len += sizeof(struct tcphdr);
1680 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1681 				    sizeof(struct tcphdr));
1682 			}
1683 	nosave:;
1684 		}
1685 		if (so->so_options & SO_ACCEPTCONN) {
1686 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1687 				if (tiflags & TH_RST) {
1688 					syn_cache_reset(&src.sa, &dst.sa, th);
1689 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1690 				    (TH_ACK|TH_SYN)) {
1691 					/*
1692 					 * Received a SYN,ACK.  This should
1693 					 * never happen while we are in
1694 					 * LISTEN.  Send an RST.
1695 					 */
1696 					goto badsyn;
1697 				} else if (tiflags & TH_ACK) {
1698 					so = syn_cache_get(&src.sa, &dst.sa,
1699 						th, toff, tlen, so, m);
1700 					if (so == NULL) {
1701 						/*
1702 						 * We don't have a SYN for
1703 						 * this ACK; send an RST.
1704 						 */
1705 						goto badsyn;
1706 					} else if (so ==
1707 					    (struct socket *)(-1)) {
1708 						/*
1709 						 * We were unable to create
1710 						 * the connection.  If the
1711 						 * 3-way handshake was
1712 						 * completed, and RST has
1713 						 * been sent to the peer.
1714 						 * Since the mbuf might be
1715 						 * in use for the reply,
1716 						 * do not free it.
1717 						 */
1718 						m = NULL;
1719 					} else {
1720 						/*
1721 						 * We have created a
1722 						 * full-blown connection.
1723 						 */
1724 						tp = NULL;
1725 						inp = NULL;
1726 #ifdef INET6
1727 						in6p = NULL;
1728 #endif
1729 						switch (so->so_proto->pr_domain->dom_family) {
1730 #ifdef INET
1731 						case AF_INET:
1732 							inp = sotoinpcb(so);
1733 							tp = intotcpcb(inp);
1734 							break;
1735 #endif
1736 #ifdef INET6
1737 						case AF_INET6:
1738 							in6p = sotoin6pcb(so);
1739 							tp = in6totcpcb(in6p);
1740 							break;
1741 #endif
1742 						}
1743 						if (tp == NULL)
1744 							goto badsyn;	/*XXX*/
1745 						tiwin <<= tp->snd_scale;
1746 						goto after_listen;
1747 					}
1748 				} else {
1749 					/*
1750 					 * None of RST, SYN or ACK was set.
1751 					 * This is an invalid packet for a
1752 					 * TCB in LISTEN state.  Send a RST.
1753 					 */
1754 					goto badsyn;
1755 				}
1756 			} else {
1757 				/*
1758 				 * Received a SYN.
1759 				 *
1760 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1761 				 */
1762 				if (m->m_flags & (M_BCAST|M_MCAST))
1763 					goto drop;
1764 
1765 				switch (af) {
1766 #ifdef INET6
1767 				case AF_INET6:
1768 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1769 						goto drop;
1770 					break;
1771 #endif /* INET6 */
1772 				case AF_INET:
1773 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1774 					    in_broadcast(ip->ip_dst,
1775 					                 m_get_rcvif_NOMPSAFE(m)))
1776 						goto drop;
1777 				break;
1778 				}
1779 
1780 #ifdef INET6
1781 				/*
1782 				 * If deprecated address is forbidden, we do
1783 				 * not accept SYN to deprecated interface
1784 				 * address to prevent any new inbound
1785 				 * connection from getting established.
1786 				 * When we do not accept SYN, we send a TCP
1787 				 * RST, with deprecated source address (instead
1788 				 * of dropping it).  We compromise it as it is
1789 				 * much better for peer to send a RST, and
1790 				 * RST will be the final packet for the
1791 				 * exchange.
1792 				 *
1793 				 * If we do not forbid deprecated addresses, we
1794 				 * accept the SYN packet.  RFC2462 does not
1795 				 * suggest dropping SYN in this case.
1796 				 * If we decipher RFC2462 5.5.4, it says like
1797 				 * this:
1798 				 * 1. use of deprecated addr with existing
1799 				 *    communication is okay - "SHOULD continue
1800 				 *    to be used"
1801 				 * 2. use of it with new communication:
1802 				 *   (2a) "SHOULD NOT be used if alternate
1803 				 *        address with sufficient scope is
1804 				 *        available"
1805 				 *   (2b) nothing mentioned otherwise.
1806 				 * Here we fall into (2b) case as we have no
1807 				 * choice in our source address selection - we
1808 				 * must obey the peer.
1809 				 *
1810 				 * The wording in RFC2462 is confusing, and
1811 				 * there are multiple description text for
1812 				 * deprecated address handling - worse, they
1813 				 * are not exactly the same.  I believe 5.5.4
1814 				 * is the best one, so we follow 5.5.4.
1815 				 */
1816 				if (af == AF_INET6 && !ip6_use_deprecated) {
1817 					struct in6_ifaddr *ia6;
1818 					int s;
1819 					struct ifnet *rcvif = m_get_rcvif(m, &s);
1820 					if (rcvif == NULL)
1821 						goto dropwithreset; /* XXX */
1822 					if ((ia6 = in6ifa_ifpwithaddr(rcvif,
1823 					    &ip6->ip6_dst)) &&
1824 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1825 						tp = NULL;
1826 						m_put_rcvif(rcvif, &s);
1827 						goto dropwithreset;
1828 					}
1829 					m_put_rcvif(rcvif, &s);
1830 				}
1831 #endif
1832 
1833 #if defined(IPSEC)
1834 				if (ipsec_used) {
1835 					switch (af) {
1836 #ifdef INET
1837 					case AF_INET:
1838 						if (!ipsec4_in_reject_so(m, so))
1839 							break;
1840 						IPSEC_STATINC(
1841 						    IPSEC_STAT_IN_POLVIO);
1842 						tp = NULL;
1843 						goto dropwithreset;
1844 #endif
1845 #ifdef INET6
1846 					case AF_INET6:
1847 						if (!ipsec6_in_reject_so(m, so))
1848 							break;
1849 						IPSEC6_STATINC(
1850 						    IPSEC_STAT_IN_POLVIO);
1851 						tp = NULL;
1852 						goto dropwithreset;
1853 #endif /*INET6*/
1854 					}
1855 				}
1856 #endif /*IPSEC*/
1857 
1858 				/*
1859 				 * LISTEN socket received a SYN
1860 				 * from itself?  This can't possibly
1861 				 * be valid; drop the packet.
1862 				 */
1863 				if (th->th_sport == th->th_dport) {
1864 					int i;
1865 
1866 					switch (af) {
1867 #ifdef INET
1868 					case AF_INET:
1869 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1870 						break;
1871 #endif
1872 #ifdef INET6
1873 					case AF_INET6:
1874 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1875 						break;
1876 #endif
1877 					default:
1878 						i = 1;
1879 					}
1880 					if (i) {
1881 						TCP_STATINC(TCP_STAT_BADSYN);
1882 						goto drop;
1883 					}
1884 				}
1885 
1886 				/*
1887 				 * SYN looks ok; create compressed TCP
1888 				 * state for it.
1889 				 */
1890 				if (so->so_qlen <= so->so_qlimit &&
1891 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1892 						so, m, optp, optlen, &opti))
1893 					m = NULL;
1894 			}
1895 			goto drop;
1896 		}
1897 	}
1898 
1899 after_listen:
1900 #ifdef DIAGNOSTIC
1901 	/*
1902 	 * Should not happen now that all embryonic connections
1903 	 * are handled with compressed state.
1904 	 */
1905 	if (tp->t_state == TCPS_LISTEN)
1906 		panic("tcp_input: TCPS_LISTEN");
1907 #endif
1908 
1909 	/*
1910 	 * Segment received on connection.
1911 	 * Reset idle time and keep-alive timer.
1912 	 */
1913 	tp->t_rcvtime = tcp_now;
1914 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1915 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1916 
1917 	/*
1918 	 * Process options.
1919 	 */
1920 #ifdef TCP_SIGNATURE
1921 	if (optp || (tp->t_flags & TF_SIGNATURE))
1922 #else
1923 	if (optp)
1924 #endif
1925 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1926 			goto drop;
1927 
1928 	if (TCP_SACK_ENABLED(tp)) {
1929 		tcp_del_sackholes(tp, th);
1930 	}
1931 
1932 	if (TCP_ECN_ALLOWED(tp)) {
1933 		if (tiflags & TH_CWR) {
1934 			tp->t_flags &= ~TF_ECN_SND_ECE;
1935 		}
1936 		switch (iptos & IPTOS_ECN_MASK) {
1937 		case IPTOS_ECN_CE:
1938 			tp->t_flags |= TF_ECN_SND_ECE;
1939 			TCP_STATINC(TCP_STAT_ECN_CE);
1940 			break;
1941 		case IPTOS_ECN_ECT0:
1942 			TCP_STATINC(TCP_STAT_ECN_ECT);
1943 			break;
1944 		case IPTOS_ECN_ECT1:
1945 			/* XXX: ignore for now -- rpaulo */
1946 			break;
1947 		}
1948 		/*
1949 		 * Congestion experienced.
1950 		 * Ignore if we are already trying to recover.
1951 		 */
1952 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1953 			tp->t_congctl->cong_exp(tp);
1954 	}
1955 
1956 	if (opti.ts_present && opti.ts_ecr) {
1957 		/*
1958 		 * Calculate the RTT from the returned time stamp and the
1959 		 * connection's time base.  If the time stamp is later than
1960 		 * the current time, or is extremely old, fall back to non-1323
1961 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
1962 		 * at the same time.
1963 		 *
1964 		 * Note that ts_rtt is in units of slow ticks (500
1965 		 * ms).  Since most earthbound RTTs are < 500 ms,
1966 		 * observed values will have large quantization noise.
1967 		 * Our smoothed RTT is then the fraction of observed
1968 		 * samples that are 1 tick instead of 0 (times 500
1969 		 * ms).
1970 		 *
1971 		 * ts_rtt is increased by 1 to denote a valid sample,
1972 		 * with 0 indicating an invalid measurement.  This
1973 		 * extra 1 must be removed when ts_rtt is used, or
1974 		 * else an an erroneous extra 500 ms will result.
1975 		 */
1976 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1977 		if (ts_rtt > TCP_PAWS_IDLE)
1978 			ts_rtt = 0;
1979 	} else {
1980 		ts_rtt = 0;
1981 	}
1982 
1983 	/*
1984 	 * Header prediction: check for the two common cases
1985 	 * of a uni-directional data xfer.  If the packet has
1986 	 * no control flags, is in-sequence, the window didn't
1987 	 * change and we're not retransmitting, it's a
1988 	 * candidate.  If the length is zero and the ack moved
1989 	 * forward, we're the sender side of the xfer.  Just
1990 	 * free the data acked & wake any higher level process
1991 	 * that was blocked waiting for space.  If the length
1992 	 * is non-zero and the ack didn't move, we're the
1993 	 * receiver side.  If we're getting packets in-order
1994 	 * (the reassembly queue is empty), add the data to
1995 	 * the socket buffer and note that we need a delayed ack.
1996 	 */
1997 	if (tp->t_state == TCPS_ESTABLISHED &&
1998 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1999 	        == TH_ACK &&
2000 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
2001 	    th->th_seq == tp->rcv_nxt &&
2002 	    tiwin && tiwin == tp->snd_wnd &&
2003 	    tp->snd_nxt == tp->snd_max) {
2004 
2005 		/*
2006 		 * If last ACK falls within this segment's sequence numbers,
2007 		 * record the timestamp.
2008 		 * NOTE that the test is modified according to the latest
2009 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
2010 		 *
2011 		 * note that we already know
2012 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
2013 		 */
2014 		if (opti.ts_present &&
2015 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
2016 			tp->ts_recent_age = tcp_now;
2017 			tp->ts_recent = opti.ts_val;
2018 		}
2019 
2020 		if (tlen == 0) {
2021 			/* Ack prediction. */
2022 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
2023 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
2024 			    tp->snd_cwnd >= tp->snd_wnd &&
2025 			    tp->t_partialacks < 0) {
2026 				/*
2027 				 * this is a pure ack for outstanding data.
2028 				 */
2029 				if (ts_rtt)
2030 					tcp_xmit_timer(tp, ts_rtt - 1);
2031 				else if (tp->t_rtttime &&
2032 				    SEQ_GT(th->th_ack, tp->t_rtseq))
2033 					tcp_xmit_timer(tp,
2034 					  tcp_now - tp->t_rtttime);
2035 				acked = th->th_ack - tp->snd_una;
2036 				tcps = TCP_STAT_GETREF();
2037 				tcps[TCP_STAT_PREDACK]++;
2038 				tcps[TCP_STAT_RCVACKPACK]++;
2039 				tcps[TCP_STAT_RCVACKBYTE] += acked;
2040 				TCP_STAT_PUTREF();
2041 				nd6_hint(tp);
2042 
2043 				if (acked > (tp->t_lastoff - tp->t_inoff))
2044 					tp->t_lastm = NULL;
2045 				sbdrop(&so->so_snd, acked);
2046 				tp->t_lastoff -= acked;
2047 
2048 				icmp_check(tp, th, acked);
2049 
2050 				tp->snd_una = th->th_ack;
2051 				tp->snd_fack = tp->snd_una;
2052 				if (SEQ_LT(tp->snd_high, tp->snd_una))
2053 					tp->snd_high = tp->snd_una;
2054 				m_freem(m);
2055 
2056 				/*
2057 				 * If all outstanding data are acked, stop
2058 				 * retransmit timer, otherwise restart timer
2059 				 * using current (possibly backed-off) value.
2060 				 * If process is waiting for space,
2061 				 * wakeup/selnotify/signal.  If data
2062 				 * are ready to send, let tcp_output
2063 				 * decide between more output or persist.
2064 				 */
2065 				if (tp->snd_una == tp->snd_max)
2066 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
2067 				else if (TCP_TIMER_ISARMED(tp,
2068 				    TCPT_PERSIST) == 0)
2069 					TCP_TIMER_ARM(tp, TCPT_REXMT,
2070 					    tp->t_rxtcur);
2071 
2072 				sowwakeup(so);
2073 				if (so->so_snd.sb_cc) {
2074 					KERNEL_LOCK(1, NULL);
2075 					(void) tcp_output(tp);
2076 					KERNEL_UNLOCK_ONE(NULL);
2077 				}
2078 				if (tcp_saveti)
2079 					m_freem(tcp_saveti);
2080 				return;
2081 			}
2082 		} else if (th->th_ack == tp->snd_una &&
2083 		    TAILQ_FIRST(&tp->segq) == NULL &&
2084 		    tlen <= sbspace(&so->so_rcv)) {
2085 			int newsize = 0;	/* automatic sockbuf scaling */
2086 
2087 			/*
2088 			 * this is a pure, in-sequence data packet
2089 			 * with nothing on the reassembly queue and
2090 			 * we have enough buffer space to take it.
2091 			 */
2092 			tp->rcv_nxt += tlen;
2093 			tcps = TCP_STAT_GETREF();
2094 			tcps[TCP_STAT_PREDDAT]++;
2095 			tcps[TCP_STAT_RCVPACK]++;
2096 			tcps[TCP_STAT_RCVBYTE] += tlen;
2097 			TCP_STAT_PUTREF();
2098 			nd6_hint(tp);
2099 
2100 		/*
2101 		 * Automatic sizing enables the performance of large buffers
2102 		 * and most of the efficiency of small ones by only allocating
2103 		 * space when it is needed.
2104 		 *
2105 		 * On the receive side the socket buffer memory is only rarely
2106 		 * used to any significant extent.  This allows us to be much
2107 		 * more aggressive in scaling the receive socket buffer.  For
2108 		 * the case that the buffer space is actually used to a large
2109 		 * extent and we run out of kernel memory we can simply drop
2110 		 * the new segments; TCP on the sender will just retransmit it
2111 		 * later.  Setting the buffer size too big may only consume too
2112 		 * much kernel memory if the application doesn't read() from
2113 		 * the socket or packet loss or reordering makes use of the
2114 		 * reassembly queue.
2115 		 *
2116 		 * The criteria to step up the receive buffer one notch are:
2117 		 *  1. the number of bytes received during the time it takes
2118 		 *     one timestamp to be reflected back to us (the RTT);
2119 		 *  2. received bytes per RTT is within seven eighth of the
2120 		 *     current socket buffer size;
2121 		 *  3. receive buffer size has not hit maximal automatic size;
2122 		 *
2123 		 * This algorithm does one step per RTT at most and only if
2124 		 * we receive a bulk stream w/o packet losses or reorderings.
2125 		 * Shrinking the buffer during idle times is not necessary as
2126 		 * it doesn't consume any memory when idle.
2127 		 *
2128 		 * TODO: Only step up if the application is actually serving
2129 		 * the buffer to better manage the socket buffer resources.
2130 		 */
2131 			if (tcp_do_autorcvbuf &&
2132 			    opti.ts_ecr &&
2133 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
2134 				if (opti.ts_ecr > tp->rfbuf_ts &&
2135 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
2136 					if (tp->rfbuf_cnt >
2137 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
2138 					    so->so_rcv.sb_hiwat <
2139 					    tcp_autorcvbuf_max) {
2140 						newsize =
2141 						    min(so->so_rcv.sb_hiwat +
2142 						    tcp_autorcvbuf_inc,
2143 						    tcp_autorcvbuf_max);
2144 					}
2145 					/* Start over with next RTT. */
2146 					tp->rfbuf_ts = 0;
2147 					tp->rfbuf_cnt = 0;
2148 				} else
2149 					tp->rfbuf_cnt += tlen;	/* add up */
2150 			}
2151 
2152 			/*
2153 			 * Drop TCP, IP headers and TCP options then add data
2154 			 * to socket buffer.
2155 			 */
2156 			if (so->so_state & SS_CANTRCVMORE)
2157 				m_freem(m);
2158 			else {
2159 				/*
2160 				 * Set new socket buffer size.
2161 				 * Give up when limit is reached.
2162 				 */
2163 				if (newsize)
2164 					if (!sbreserve(&so->so_rcv,
2165 					    newsize, so))
2166 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2167 				m_adj(m, toff + off);
2168 				sbappendstream(&so->so_rcv, m);
2169 			}
2170 			sorwakeup(so);
2171 			tcp_setup_ack(tp, th);
2172 			if (tp->t_flags & TF_ACKNOW) {
2173 				KERNEL_LOCK(1, NULL);
2174 				(void) tcp_output(tp);
2175 				KERNEL_UNLOCK_ONE(NULL);
2176 			}
2177 			if (tcp_saveti)
2178 				m_freem(tcp_saveti);
2179 			return;
2180 		}
2181 	}
2182 
2183 	/*
2184 	 * Compute mbuf offset to TCP data segment.
2185 	 */
2186 	hdroptlen = toff + off;
2187 
2188 	/*
2189 	 * Calculate amount of space in receive window,
2190 	 * and then do TCP input processing.
2191 	 * Receive window is amount of space in rcv queue,
2192 	 * but not less than advertised window.
2193 	 */
2194 	{ int win;
2195 
2196 	win = sbspace(&so->so_rcv);
2197 	if (win < 0)
2198 		win = 0;
2199 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2200 	}
2201 
2202 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
2203 	tp->rfbuf_ts = 0;
2204 	tp->rfbuf_cnt = 0;
2205 
2206 	switch (tp->t_state) {
2207 	/*
2208 	 * If the state is SYN_SENT:
2209 	 *	if seg contains an ACK, but not for our SYN, drop the input.
2210 	 *	if seg contains a RST, then drop the connection.
2211 	 *	if seg does not contain SYN, then drop it.
2212 	 * Otherwise this is an acceptable SYN segment
2213 	 *	initialize tp->rcv_nxt and tp->irs
2214 	 *	if seg contains ack then advance tp->snd_una
2215 	 *	if seg contains a ECE and ECN support is enabled, the stream
2216 	 *	    is ECN capable.
2217 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2218 	 *	arrange for segment to be acked (eventually)
2219 	 *	continue processing rest of data/controls, beginning with URG
2220 	 */
2221 	case TCPS_SYN_SENT:
2222 		if ((tiflags & TH_ACK) &&
2223 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2224 		     SEQ_GT(th->th_ack, tp->snd_max)))
2225 			goto dropwithreset;
2226 		if (tiflags & TH_RST) {
2227 			if (tiflags & TH_ACK)
2228 				tp = tcp_drop(tp, ECONNREFUSED);
2229 			goto drop;
2230 		}
2231 		if ((tiflags & TH_SYN) == 0)
2232 			goto drop;
2233 		if (tiflags & TH_ACK) {
2234 			tp->snd_una = th->th_ack;
2235 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2236 				tp->snd_nxt = tp->snd_una;
2237 			if (SEQ_LT(tp->snd_high, tp->snd_una))
2238 				tp->snd_high = tp->snd_una;
2239 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2240 
2241 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
2242 				tp->t_flags |= TF_ECN_PERMIT;
2243 				TCP_STATINC(TCP_STAT_ECN_SHS);
2244 			}
2245 
2246 		}
2247 		tp->irs = th->th_seq;
2248 		tcp_rcvseqinit(tp);
2249 		tp->t_flags |= TF_ACKNOW;
2250 		tcp_mss_from_peer(tp, opti.maxseg);
2251 
2252 		/*
2253 		 * Initialize the initial congestion window.  If we
2254 		 * had to retransmit the SYN, we must initialize cwnd
2255 		 * to 1 segment (i.e. the Loss Window).
2256 		 */
2257 		if (tp->t_flags & TF_SYN_REXMT)
2258 			tp->snd_cwnd = tp->t_peermss;
2259 		else {
2260 			int ss = tcp_init_win;
2261 #ifdef INET
2262 			if (inp != NULL && in_localaddr(inp->inp_faddr))
2263 				ss = tcp_init_win_local;
2264 #endif
2265 #ifdef INET6
2266 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2267 				ss = tcp_init_win_local;
2268 #endif
2269 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2270 		}
2271 
2272 		tcp_rmx_rtt(tp);
2273 		if (tiflags & TH_ACK) {
2274 			TCP_STATINC(TCP_STAT_CONNECTS);
2275 			/*
2276 			 * move tcp_established before soisconnected
2277 			 * because upcall handler can drive tcp_output
2278 			 * functionality.
2279 			 * XXX we might call soisconnected at the end of
2280 			 * all processing
2281 			 */
2282 			tcp_established(tp);
2283 			soisconnected(so);
2284 			/* Do window scaling on this connection? */
2285 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2286 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2287 				tp->snd_scale = tp->requested_s_scale;
2288 				tp->rcv_scale = tp->request_r_scale;
2289 			}
2290 			TCP_REASS_LOCK(tp);
2291 			(void) tcp_reass(tp, NULL, NULL, &tlen);
2292 			/*
2293 			 * if we didn't have to retransmit the SYN,
2294 			 * use its rtt as our initial srtt & rtt var.
2295 			 */
2296 			if (tp->t_rtttime)
2297 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2298 		} else
2299 			tp->t_state = TCPS_SYN_RECEIVED;
2300 
2301 		/*
2302 		 * Advance th->th_seq to correspond to first data byte.
2303 		 * If data, trim to stay within window,
2304 		 * dropping FIN if necessary.
2305 		 */
2306 		th->th_seq++;
2307 		if (tlen > tp->rcv_wnd) {
2308 			todrop = tlen - tp->rcv_wnd;
2309 			m_adj(m, -todrop);
2310 			tlen = tp->rcv_wnd;
2311 			tiflags &= ~TH_FIN;
2312 			tcps = TCP_STAT_GETREF();
2313 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2314 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2315 			TCP_STAT_PUTREF();
2316 		}
2317 		tp->snd_wl1 = th->th_seq - 1;
2318 		tp->rcv_up = th->th_seq;
2319 		goto step6;
2320 
2321 	/*
2322 	 * If the state is SYN_RECEIVED:
2323 	 *	If seg contains an ACK, but not for our SYN, drop the input
2324 	 *	and generate an RST.  See page 36, rfc793
2325 	 */
2326 	case TCPS_SYN_RECEIVED:
2327 		if ((tiflags & TH_ACK) &&
2328 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2329 		     SEQ_GT(th->th_ack, tp->snd_max)))
2330 			goto dropwithreset;
2331 		break;
2332 	}
2333 
2334 	/*
2335 	 * States other than LISTEN or SYN_SENT.
2336 	 * First check timestamp, if present.
2337 	 * Then check that at least some bytes of segment are within
2338 	 * receive window.  If segment begins before rcv_nxt,
2339 	 * drop leading data (and SYN); if nothing left, just ack.
2340 	 *
2341 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2342 	 * and it's less than ts_recent, drop it.
2343 	 */
2344 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2345 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2346 
2347 		/* Check to see if ts_recent is over 24 days old.  */
2348 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2349 			/*
2350 			 * Invalidate ts_recent.  If this segment updates
2351 			 * ts_recent, the age will be reset later and ts_recent
2352 			 * will get a valid value.  If it does not, setting
2353 			 * ts_recent to zero will at least satisfy the
2354 			 * requirement that zero be placed in the timestamp
2355 			 * echo reply when ts_recent isn't valid.  The
2356 			 * age isn't reset until we get a valid ts_recent
2357 			 * because we don't want out-of-order segments to be
2358 			 * dropped when ts_recent is old.
2359 			 */
2360 			tp->ts_recent = 0;
2361 		} else {
2362 			tcps = TCP_STAT_GETREF();
2363 			tcps[TCP_STAT_RCVDUPPACK]++;
2364 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2365 			tcps[TCP_STAT_PAWSDROP]++;
2366 			TCP_STAT_PUTREF();
2367 			tcp_new_dsack(tp, th->th_seq, tlen);
2368 			goto dropafterack;
2369 		}
2370 	}
2371 
2372 	todrop = tp->rcv_nxt - th->th_seq;
2373 	dupseg = false;
2374 	if (todrop > 0) {
2375 		if (tiflags & TH_SYN) {
2376 			tiflags &= ~TH_SYN;
2377 			th->th_seq++;
2378 			if (th->th_urp > 1)
2379 				th->th_urp--;
2380 			else {
2381 				tiflags &= ~TH_URG;
2382 				th->th_urp = 0;
2383 			}
2384 			todrop--;
2385 		}
2386 		if (todrop > tlen ||
2387 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2388 			/*
2389 			 * Any valid FIN or RST must be to the left of the
2390 			 * window.  At this point the FIN or RST must be a
2391 			 * duplicate or out of sequence; drop it.
2392 			 */
2393 			if (tiflags & TH_RST)
2394 				goto drop;
2395 			tiflags &= ~(TH_FIN|TH_RST);
2396 			/*
2397 			 * Send an ACK to resynchronize and drop any data.
2398 			 * But keep on processing for RST or ACK.
2399 			 */
2400 			tp->t_flags |= TF_ACKNOW;
2401 			todrop = tlen;
2402 			dupseg = true;
2403 			tcps = TCP_STAT_GETREF();
2404 			tcps[TCP_STAT_RCVDUPPACK]++;
2405 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2406 			TCP_STAT_PUTREF();
2407 		} else if ((tiflags & TH_RST) &&
2408 			   th->th_seq != tp->rcv_nxt) {
2409 			/*
2410 			 * Test for reset before adjusting the sequence
2411 			 * number for overlapping data.
2412 			 */
2413 			goto dropafterack_ratelim;
2414 		} else {
2415 			tcps = TCP_STAT_GETREF();
2416 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
2417 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2418 			TCP_STAT_PUTREF();
2419 		}
2420 		tcp_new_dsack(tp, th->th_seq, todrop);
2421 		hdroptlen += todrop;	/*drop from head afterwards*/
2422 		th->th_seq += todrop;
2423 		tlen -= todrop;
2424 		if (th->th_urp > todrop)
2425 			th->th_urp -= todrop;
2426 		else {
2427 			tiflags &= ~TH_URG;
2428 			th->th_urp = 0;
2429 		}
2430 	}
2431 
2432 	/*
2433 	 * If new data are received on a connection after the
2434 	 * user processes are gone, then RST the other end.
2435 	 */
2436 	if ((so->so_state & SS_NOFDREF) &&
2437 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2438 		tp = tcp_close(tp);
2439 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2440 		goto dropwithreset;
2441 	}
2442 
2443 	/*
2444 	 * If segment ends after window, drop trailing data
2445 	 * (and PUSH and FIN); if nothing left, just ACK.
2446 	 */
2447 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2448 	if (todrop > 0) {
2449 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2450 		if (todrop >= tlen) {
2451 			/*
2452 			 * The segment actually starts after the window.
2453 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2454 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2455 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2456 			 */
2457 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2458 			/*
2459 			 * If a new connection request is received
2460 			 * while in TIME_WAIT, drop the old connection
2461 			 * and start over if the sequence numbers
2462 			 * are above the previous ones.
2463 			 *
2464 			 * NOTE: We will checksum the packet again, and
2465 			 * so we need to put the header fields back into
2466 			 * network order!
2467 			 * XXX This kind of sucks, but we don't expect
2468 			 * XXX this to happen very often, so maybe it
2469 			 * XXX doesn't matter so much.
2470 			 */
2471 			if (tiflags & TH_SYN &&
2472 			    tp->t_state == TCPS_TIME_WAIT &&
2473 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2474 				tp = tcp_close(tp);
2475 				tcp_fields_to_net(th);
2476 				goto findpcb;
2477 			}
2478 			/*
2479 			 * If window is closed can only take segments at
2480 			 * window edge, and have to drop data and PUSH from
2481 			 * incoming segments.  Continue processing, but
2482 			 * remember to ack.  Otherwise, drop segment
2483 			 * and (if not RST) ack.
2484 			 */
2485 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2486 				tp->t_flags |= TF_ACKNOW;
2487 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
2488 			} else
2489 				goto dropafterack;
2490 		} else
2491 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2492 		m_adj(m, -todrop);
2493 		tlen -= todrop;
2494 		tiflags &= ~(TH_PUSH|TH_FIN);
2495 	}
2496 
2497 	/*
2498 	 * If last ACK falls within this segment's sequence numbers,
2499 	 *  record the timestamp.
2500 	 * NOTE:
2501 	 * 1) That the test incorporates suggestions from the latest
2502 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2503 	 * 2) That updating only on newer timestamps interferes with
2504 	 *    our earlier PAWS tests, so this check should be solely
2505 	 *    predicated on the sequence space of this segment.
2506 	 * 3) That we modify the segment boundary check to be
2507 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2508 	 *    instead of RFC1323's
2509 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2510 	 *    This modified check allows us to overcome RFC1323's
2511 	 *    limitations as described in Stevens TCP/IP Illustrated
2512 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2513 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2514 	 */
2515 	if (opti.ts_present &&
2516 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2517 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2518 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2519 		tp->ts_recent_age = tcp_now;
2520 		tp->ts_recent = opti.ts_val;
2521 	}
2522 
2523 	/*
2524 	 * If the RST bit is set examine the state:
2525 	 *    SYN_RECEIVED STATE:
2526 	 *	If passive open, return to LISTEN state.
2527 	 *	If active open, inform user that connection was refused.
2528 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2529 	 *	Inform user that connection was reset, and close tcb.
2530 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
2531 	 *	Close the tcb.
2532 	 */
2533 	if (tiflags & TH_RST) {
2534 		if (th->th_seq != tp->rcv_nxt)
2535 			goto dropafterack_ratelim;
2536 
2537 		switch (tp->t_state) {
2538 		case TCPS_SYN_RECEIVED:
2539 			so->so_error = ECONNREFUSED;
2540 			goto close;
2541 
2542 		case TCPS_ESTABLISHED:
2543 		case TCPS_FIN_WAIT_1:
2544 		case TCPS_FIN_WAIT_2:
2545 		case TCPS_CLOSE_WAIT:
2546 			so->so_error = ECONNRESET;
2547 		close:
2548 			tp->t_state = TCPS_CLOSED;
2549 			TCP_STATINC(TCP_STAT_DROPS);
2550 			tp = tcp_close(tp);
2551 			goto drop;
2552 
2553 		case TCPS_CLOSING:
2554 		case TCPS_LAST_ACK:
2555 		case TCPS_TIME_WAIT:
2556 			tp = tcp_close(tp);
2557 			goto drop;
2558 		}
2559 	}
2560 
2561 	/*
2562 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2563 	 * we must be in a synchronized state.  RFC791 states (under RST
2564 	 * generation) that any unacceptable segment (an out-of-order SYN
2565 	 * qualifies) received in a synchronized state must elicit only an
2566 	 * empty acknowledgment segment ... and the connection remains in
2567 	 * the same state.
2568 	 */
2569 	if (tiflags & TH_SYN) {
2570 		if (tp->rcv_nxt == th->th_seq) {
2571 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2572 			    TH_ACK);
2573 			if (tcp_saveti)
2574 				m_freem(tcp_saveti);
2575 			return;
2576 		}
2577 
2578 		goto dropafterack_ratelim;
2579 	}
2580 
2581 	/*
2582 	 * If the ACK bit is off we drop the segment and return.
2583 	 */
2584 	if ((tiflags & TH_ACK) == 0) {
2585 		if (tp->t_flags & TF_ACKNOW)
2586 			goto dropafterack;
2587 		else
2588 			goto drop;
2589 	}
2590 
2591 	/*
2592 	 * Ack processing.
2593 	 */
2594 	switch (tp->t_state) {
2595 
2596 	/*
2597 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2598 	 * ESTABLISHED state and continue processing, otherwise
2599 	 * send an RST.
2600 	 */
2601 	case TCPS_SYN_RECEIVED:
2602 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
2603 		    SEQ_GT(th->th_ack, tp->snd_max))
2604 			goto dropwithreset;
2605 		TCP_STATINC(TCP_STAT_CONNECTS);
2606 		soisconnected(so);
2607 		tcp_established(tp);
2608 		/* Do window scaling? */
2609 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2610 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2611 			tp->snd_scale = tp->requested_s_scale;
2612 			tp->rcv_scale = tp->request_r_scale;
2613 		}
2614 		TCP_REASS_LOCK(tp);
2615 		(void) tcp_reass(tp, NULL, NULL, &tlen);
2616 		tp->snd_wl1 = th->th_seq - 1;
2617 		/* fall into ... */
2618 
2619 	/*
2620 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2621 	 * ACKs.  If the ack is in the range
2622 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2623 	 * then advance tp->snd_una to th->th_ack and drop
2624 	 * data from the retransmission queue.  If this ACK reflects
2625 	 * more up to date window information we update our window information.
2626 	 */
2627 	case TCPS_ESTABLISHED:
2628 	case TCPS_FIN_WAIT_1:
2629 	case TCPS_FIN_WAIT_2:
2630 	case TCPS_CLOSE_WAIT:
2631 	case TCPS_CLOSING:
2632 	case TCPS_LAST_ACK:
2633 	case TCPS_TIME_WAIT:
2634 
2635 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2636 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2637 				TCP_STATINC(TCP_STAT_RCVDUPACK);
2638 				/*
2639 				 * If we have outstanding data (other than
2640 				 * a window probe), this is a completely
2641 				 * duplicate ack (ie, window info didn't
2642 				 * change), the ack is the biggest we've
2643 				 * seen and we've seen exactly our rexmt
2644 				 * threshhold of them, assume a packet
2645 				 * has been dropped and retransmit it.
2646 				 * Kludge snd_nxt & the congestion
2647 				 * window so we send only this one
2648 				 * packet.
2649 				 */
2650 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2651 				    th->th_ack != tp->snd_una)
2652 					tp->t_dupacks = 0;
2653 				else if (tp->t_partialacks < 0 &&
2654 					 (++tp->t_dupacks == tcprexmtthresh ||
2655 					 TCP_FACK_FASTRECOV(tp))) {
2656 					/*
2657 					 * Do the fast retransmit, and adjust
2658 					 * congestion control paramenters.
2659 					 */
2660 					if (tp->t_congctl->fast_retransmit(tp, th)) {
2661 						/* False fast retransmit */
2662 						break;
2663 					} else
2664 						goto drop;
2665 				} else if (tp->t_dupacks > tcprexmtthresh) {
2666 					tp->snd_cwnd += tp->t_segsz;
2667 					KERNEL_LOCK(1, NULL);
2668 					(void) tcp_output(tp);
2669 					KERNEL_UNLOCK_ONE(NULL);
2670 					goto drop;
2671 				}
2672 			} else {
2673 				/*
2674 				 * If the ack appears to be very old, only
2675 				 * allow data that is in-sequence.  This
2676 				 * makes it somewhat more difficult to insert
2677 				 * forged data by guessing sequence numbers.
2678 				 * Sent an ack to try to update the send
2679 				 * sequence number on the other side.
2680 				 */
2681 				if (tlen && th->th_seq != tp->rcv_nxt &&
2682 				    SEQ_LT(th->th_ack,
2683 				    tp->snd_una - tp->max_sndwnd))
2684 					goto dropafterack;
2685 			}
2686 			break;
2687 		}
2688 		/*
2689 		 * If the congestion window was inflated to account
2690 		 * for the other side's cached packets, retract it.
2691 		 */
2692 		tp->t_congctl->fast_retransmit_newack(tp, th);
2693 
2694 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2695 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2696 			goto dropafterack;
2697 		}
2698 		acked = th->th_ack - tp->snd_una;
2699 		tcps = TCP_STAT_GETREF();
2700 		tcps[TCP_STAT_RCVACKPACK]++;
2701 		tcps[TCP_STAT_RCVACKBYTE] += acked;
2702 		TCP_STAT_PUTREF();
2703 
2704 		/*
2705 		 * If we have a timestamp reply, update smoothed
2706 		 * round trip time.  If no timestamp is present but
2707 		 * transmit timer is running and timed sequence
2708 		 * number was acked, update smoothed round trip time.
2709 		 * Since we now have an rtt measurement, cancel the
2710 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2711 		 * Recompute the initial retransmit timer.
2712 		 */
2713 		if (ts_rtt)
2714 			tcp_xmit_timer(tp, ts_rtt - 1);
2715 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2716 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2717 
2718 		/*
2719 		 * If all outstanding data is acked, stop retransmit
2720 		 * timer and remember to restart (more output or persist).
2721 		 * If there is more data to be acked, restart retransmit
2722 		 * timer, using current (possibly backed-off) value.
2723 		 */
2724 		if (th->th_ack == tp->snd_max) {
2725 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2726 			needoutput = 1;
2727 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2728 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2729 
2730 		/*
2731 		 * New data has been acked, adjust the congestion window.
2732 		 */
2733 		tp->t_congctl->newack(tp, th);
2734 
2735 		nd6_hint(tp);
2736 		if (acked > so->so_snd.sb_cc) {
2737 			tp->snd_wnd -= so->so_snd.sb_cc;
2738 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2739 			ourfinisacked = 1;
2740 		} else {
2741 			if (acked > (tp->t_lastoff - tp->t_inoff))
2742 				tp->t_lastm = NULL;
2743 			sbdrop(&so->so_snd, acked);
2744 			tp->t_lastoff -= acked;
2745 			if (tp->snd_wnd > acked)
2746 				tp->snd_wnd -= acked;
2747 			else
2748 				tp->snd_wnd = 0;
2749 			ourfinisacked = 0;
2750 		}
2751 		sowwakeup(so);
2752 
2753 		icmp_check(tp, th, acked);
2754 
2755 		tp->snd_una = th->th_ack;
2756 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
2757 			tp->snd_fack = tp->snd_una;
2758 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2759 			tp->snd_nxt = tp->snd_una;
2760 		if (SEQ_LT(tp->snd_high, tp->snd_una))
2761 			tp->snd_high = tp->snd_una;
2762 
2763 		switch (tp->t_state) {
2764 
2765 		/*
2766 		 * In FIN_WAIT_1 STATE in addition to the processing
2767 		 * for the ESTABLISHED state if our FIN is now acknowledged
2768 		 * then enter FIN_WAIT_2.
2769 		 */
2770 		case TCPS_FIN_WAIT_1:
2771 			if (ourfinisacked) {
2772 				/*
2773 				 * If we can't receive any more
2774 				 * data, then closing user can proceed.
2775 				 * Starting the timer is contrary to the
2776 				 * specification, but if we don't get a FIN
2777 				 * we'll hang forever.
2778 				 */
2779 				if (so->so_state & SS_CANTRCVMORE) {
2780 					soisdisconnected(so);
2781 					if (tp->t_maxidle > 0)
2782 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2783 						    tp->t_maxidle);
2784 				}
2785 				tp->t_state = TCPS_FIN_WAIT_2;
2786 			}
2787 			break;
2788 
2789 	 	/*
2790 		 * In CLOSING STATE in addition to the processing for
2791 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2792 		 * then enter the TIME-WAIT state, otherwise ignore
2793 		 * the segment.
2794 		 */
2795 		case TCPS_CLOSING:
2796 			if (ourfinisacked) {
2797 				tp->t_state = TCPS_TIME_WAIT;
2798 				tcp_canceltimers(tp);
2799 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2800 				soisdisconnected(so);
2801 			}
2802 			break;
2803 
2804 		/*
2805 		 * In LAST_ACK, we may still be waiting for data to drain
2806 		 * and/or to be acked, as well as for the ack of our FIN.
2807 		 * If our FIN is now acknowledged, delete the TCB,
2808 		 * enter the closed state and return.
2809 		 */
2810 		case TCPS_LAST_ACK:
2811 			if (ourfinisacked) {
2812 				tp = tcp_close(tp);
2813 				goto drop;
2814 			}
2815 			break;
2816 
2817 		/*
2818 		 * In TIME_WAIT state the only thing that should arrive
2819 		 * is a retransmission of the remote FIN.  Acknowledge
2820 		 * it and restart the finack timer.
2821 		 */
2822 		case TCPS_TIME_WAIT:
2823 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2824 			goto dropafterack;
2825 		}
2826 	}
2827 
2828 step6:
2829 	/*
2830 	 * Update window information.
2831 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2832 	 */
2833 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2834 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2835 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2836 		/* keep track of pure window updates */
2837 		if (tlen == 0 &&
2838 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2839 			TCP_STATINC(TCP_STAT_RCVWINUPD);
2840 		tp->snd_wnd = tiwin;
2841 		tp->snd_wl1 = th->th_seq;
2842 		tp->snd_wl2 = th->th_ack;
2843 		if (tp->snd_wnd > tp->max_sndwnd)
2844 			tp->max_sndwnd = tp->snd_wnd;
2845 		needoutput = 1;
2846 	}
2847 
2848 	/*
2849 	 * Process segments with URG.
2850 	 */
2851 	if ((tiflags & TH_URG) && th->th_urp &&
2852 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2853 		/*
2854 		 * This is a kludge, but if we receive and accept
2855 		 * random urgent pointers, we'll crash in
2856 		 * soreceive.  It's hard to imagine someone
2857 		 * actually wanting to send this much urgent data.
2858 		 */
2859 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2860 			th->th_urp = 0;			/* XXX */
2861 			tiflags &= ~TH_URG;		/* XXX */
2862 			goto dodata;			/* XXX */
2863 		}
2864 		/*
2865 		 * If this segment advances the known urgent pointer,
2866 		 * then mark the data stream.  This should not happen
2867 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2868 		 * a FIN has been received from the remote side.
2869 		 * In these states we ignore the URG.
2870 		 *
2871 		 * According to RFC961 (Assigned Protocols),
2872 		 * the urgent pointer points to the last octet
2873 		 * of urgent data.  We continue, however,
2874 		 * to consider it to indicate the first octet
2875 		 * of data past the urgent section as the original
2876 		 * spec states (in one of two places).
2877 		 */
2878 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2879 			tp->rcv_up = th->th_seq + th->th_urp;
2880 			so->so_oobmark = so->so_rcv.sb_cc +
2881 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2882 			if (so->so_oobmark == 0)
2883 				so->so_state |= SS_RCVATMARK;
2884 			sohasoutofband(so);
2885 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2886 		}
2887 		/*
2888 		 * Remove out of band data so doesn't get presented to user.
2889 		 * This can happen independent of advancing the URG pointer,
2890 		 * but if two URG's are pending at once, some out-of-band
2891 		 * data may creep in... ick.
2892 		 */
2893 		if (th->th_urp <= (u_int16_t) tlen
2894 #ifdef SO_OOBINLINE
2895 		     && (so->so_options & SO_OOBINLINE) == 0
2896 #endif
2897 		     )
2898 			tcp_pulloutofband(so, th, m, hdroptlen);
2899 	} else
2900 		/*
2901 		 * If no out of band data is expected,
2902 		 * pull receive urgent pointer along
2903 		 * with the receive window.
2904 		 */
2905 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2906 			tp->rcv_up = tp->rcv_nxt;
2907 dodata:							/* XXX */
2908 
2909 	/*
2910 	 * Process the segment text, merging it into the TCP sequencing queue,
2911 	 * and arranging for acknowledgement of receipt if necessary.
2912 	 * This process logically involves adjusting tp->rcv_wnd as data
2913 	 * is presented to the user (this happens in tcp_usrreq.c,
2914 	 * tcp_rcvd()).  If a FIN has already been received on this
2915 	 * connection then we just ignore the text.
2916 	 */
2917 	if ((tlen || (tiflags & TH_FIN)) &&
2918 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2919 		/*
2920 		 * Insert segment ti into reassembly queue of tcp with
2921 		 * control block tp.  Return TH_FIN if reassembly now includes
2922 		 * a segment with FIN.  The macro form does the common case
2923 		 * inline (segment is the next to be received on an
2924 		 * established connection, and the queue is empty),
2925 		 * avoiding linkage into and removal from the queue and
2926 		 * repetition of various conversions.
2927 		 * Set DELACK for segments received in order, but ack
2928 		 * immediately when segments are out of order
2929 		 * (so fast retransmit can work).
2930 		 */
2931 		/* NOTE: this was TCP_REASS() macro, but used only once */
2932 		TCP_REASS_LOCK(tp);
2933 		if (th->th_seq == tp->rcv_nxt &&
2934 		    TAILQ_FIRST(&tp->segq) == NULL &&
2935 		    tp->t_state == TCPS_ESTABLISHED) {
2936 			tcp_setup_ack(tp, th);
2937 			tp->rcv_nxt += tlen;
2938 			tiflags = th->th_flags & TH_FIN;
2939 			tcps = TCP_STAT_GETREF();
2940 			tcps[TCP_STAT_RCVPACK]++;
2941 			tcps[TCP_STAT_RCVBYTE] += tlen;
2942 			TCP_STAT_PUTREF();
2943 			nd6_hint(tp);
2944 			if (so->so_state & SS_CANTRCVMORE)
2945 				m_freem(m);
2946 			else {
2947 				m_adj(m, hdroptlen);
2948 				sbappendstream(&(so)->so_rcv, m);
2949 			}
2950 			TCP_REASS_UNLOCK(tp);
2951 			sorwakeup(so);
2952 		} else {
2953 			m_adj(m, hdroptlen);
2954 			tiflags = tcp_reass(tp, th, m, &tlen);
2955 			tp->t_flags |= TF_ACKNOW;
2956 		}
2957 
2958 		/*
2959 		 * Note the amount of data that peer has sent into
2960 		 * our window, in order to estimate the sender's
2961 		 * buffer size.
2962 		 */
2963 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2964 	} else {
2965 		m_freem(m);
2966 		m = NULL;
2967 		tiflags &= ~TH_FIN;
2968 	}
2969 
2970 	/*
2971 	 * If FIN is received ACK the FIN and let the user know
2972 	 * that the connection is closing.  Ignore a FIN received before
2973 	 * the connection is fully established.
2974 	 */
2975 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2976 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2977 			socantrcvmore(so);
2978 			tp->t_flags |= TF_ACKNOW;
2979 			tp->rcv_nxt++;
2980 		}
2981 		switch (tp->t_state) {
2982 
2983 	 	/*
2984 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2985 		 */
2986 		case TCPS_ESTABLISHED:
2987 			tp->t_state = TCPS_CLOSE_WAIT;
2988 			break;
2989 
2990 	 	/*
2991 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2992 		 * enter the CLOSING state.
2993 		 */
2994 		case TCPS_FIN_WAIT_1:
2995 			tp->t_state = TCPS_CLOSING;
2996 			break;
2997 
2998 	 	/*
2999 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3000 		 * starting the time-wait timer, turning off the other
3001 		 * standard timers.
3002 		 */
3003 		case TCPS_FIN_WAIT_2:
3004 			tp->t_state = TCPS_TIME_WAIT;
3005 			tcp_canceltimers(tp);
3006 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
3007 			soisdisconnected(so);
3008 			break;
3009 
3010 		/*
3011 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
3012 		 */
3013 		case TCPS_TIME_WAIT:
3014 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
3015 			break;
3016 		}
3017 	}
3018 #ifdef TCP_DEBUG
3019 	if (so->so_options & SO_DEBUG)
3020 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
3021 #endif
3022 
3023 	/*
3024 	 * Return any desired output.
3025 	 */
3026 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
3027 		KERNEL_LOCK(1, NULL);
3028 		(void) tcp_output(tp);
3029 		KERNEL_UNLOCK_ONE(NULL);
3030 	}
3031 	if (tcp_saveti)
3032 		m_freem(tcp_saveti);
3033 
3034 	if (tp->t_state == TCPS_TIME_WAIT
3035 	    && (so->so_state & SS_NOFDREF)
3036 	    && (tp->t_inpcb || af != AF_INET)
3037 	    && (tp->t_in6pcb || af != AF_INET6)
3038 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
3039 	    && TAILQ_EMPTY(&tp->segq)
3040 	    && vtw_add(af, tp)) {
3041 		;
3042 	}
3043 	return;
3044 
3045 badsyn:
3046 	/*
3047 	 * Received a bad SYN.  Increment counters and dropwithreset.
3048 	 */
3049 	TCP_STATINC(TCP_STAT_BADSYN);
3050 	tp = NULL;
3051 	goto dropwithreset;
3052 
3053 dropafterack:
3054 	/*
3055 	 * Generate an ACK dropping incoming segment if it occupies
3056 	 * sequence space, where the ACK reflects our state.
3057 	 */
3058 	if (tiflags & TH_RST)
3059 		goto drop;
3060 	goto dropafterack2;
3061 
3062 dropafterack_ratelim:
3063 	/*
3064 	 * We may want to rate-limit ACKs against SYN/RST attack.
3065 	 */
3066 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
3067 	    tcp_ackdrop_ppslim) == 0) {
3068 		/* XXX stat */
3069 		goto drop;
3070 	}
3071 	/* ...fall into dropafterack2... */
3072 
3073 dropafterack2:
3074 	m_freem(m);
3075 	tp->t_flags |= TF_ACKNOW;
3076 	KERNEL_LOCK(1, NULL);
3077 	(void) tcp_output(tp);
3078 	KERNEL_UNLOCK_ONE(NULL);
3079 	if (tcp_saveti)
3080 		m_freem(tcp_saveti);
3081 	return;
3082 
3083 dropwithreset_ratelim:
3084 	/*
3085 	 * We may want to rate-limit RSTs in certain situations,
3086 	 * particularly if we are sending an RST in response to
3087 	 * an attempt to connect to or otherwise communicate with
3088 	 * a port for which we have no socket.
3089 	 */
3090 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
3091 	    tcp_rst_ppslim) == 0) {
3092 		/* XXX stat */
3093 		goto drop;
3094 	}
3095 	/* ...fall into dropwithreset... */
3096 
3097 dropwithreset:
3098 	/*
3099 	 * Generate a RST, dropping incoming segment.
3100 	 * Make ACK acceptable to originator of segment.
3101 	 */
3102 	if (tiflags & TH_RST)
3103 		goto drop;
3104 
3105 	switch (af) {
3106 #ifdef INET6
3107 	case AF_INET6:
3108 		/* For following calls to tcp_respond */
3109 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
3110 			goto drop;
3111 		break;
3112 #endif /* INET6 */
3113 	case AF_INET:
3114 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
3115 		    in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
3116 			goto drop;
3117 	}
3118 
3119 	if (tiflags & TH_ACK)
3120 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3121 	else {
3122 		if (tiflags & TH_SYN)
3123 			tlen++;
3124 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
3125 		    TH_RST|TH_ACK);
3126 	}
3127 	if (tcp_saveti)
3128 		m_freem(tcp_saveti);
3129 	return;
3130 
3131 badcsum:
3132 drop:
3133 	/*
3134 	 * Drop space held by incoming segment and return.
3135 	 */
3136 	if (tp) {
3137 		if (tp->t_inpcb)
3138 			so = tp->t_inpcb->inp_socket;
3139 #ifdef INET6
3140 		else if (tp->t_in6pcb)
3141 			so = tp->t_in6pcb->in6p_socket;
3142 #endif
3143 		else
3144 			so = NULL;
3145 #ifdef TCP_DEBUG
3146 		if (so && (so->so_options & SO_DEBUG) != 0)
3147 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
3148 #endif
3149 	}
3150 	if (tcp_saveti)
3151 		m_freem(tcp_saveti);
3152 	m_freem(m);
3153 	return;
3154 }
3155 
3156 #ifdef TCP_SIGNATURE
3157 int
3158 tcp_signature_apply(void *fstate, void *data, u_int len)
3159 {
3160 
3161 	MD5Update(fstate, (u_char *)data, len);
3162 	return (0);
3163 }
3164 
3165 struct secasvar *
3166 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
3167 {
3168 	struct ip *ip;
3169 	struct ip6_hdr *ip6;
3170 
3171 	ip = mtod(m, struct ip *);
3172 	switch (ip->ip_v) {
3173 	case 4:
3174 		ip = mtod(m, struct ip *);
3175 		ip6 = NULL;
3176 		break;
3177 	case 6:
3178 		ip = NULL;
3179 		ip6 = mtod(m, struct ip6_hdr *);
3180 		break;
3181 	default:
3182 		return (NULL);
3183 	}
3184 
3185 #ifdef IPSEC
3186 	union sockaddr_union dst;
3187 
3188 	/* Extract the destination from the IP header in the mbuf. */
3189 	memset(&dst, 0, sizeof(union sockaddr_union));
3190 	if (ip != NULL) {
3191 		dst.sa.sa_len = sizeof(struct sockaddr_in);
3192 		dst.sa.sa_family = AF_INET;
3193 		dst.sin.sin_addr = ip->ip_dst;
3194 	} else {
3195 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
3196 		dst.sa.sa_family = AF_INET6;
3197 		dst.sin6.sin6_addr = ip6->ip6_dst;
3198 	}
3199 
3200 	/*
3201 	 * Look up an SADB entry which matches the address of the peer.
3202 	 */
3203 	return KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3204 #else
3205 	return NULL;
3206 #endif
3207 }
3208 
3209 int
3210 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3211     struct secasvar *sav, char *sig)
3212 {
3213 	MD5_CTX ctx;
3214 	struct ip *ip;
3215 	struct ipovly *ipovly;
3216 #ifdef INET6
3217 	struct ip6_hdr *ip6;
3218 	struct ip6_hdr_pseudo ip6pseudo;
3219 #endif /* INET6 */
3220 	struct ippseudo ippseudo;
3221 	struct tcphdr th0;
3222 	int l, tcphdrlen;
3223 
3224 	if (sav == NULL)
3225 		return (-1);
3226 
3227 	tcphdrlen = th->th_off * 4;
3228 
3229 	switch (mtod(m, struct ip *)->ip_v) {
3230 	case 4:
3231 		MD5Init(&ctx);
3232 		ip = mtod(m, struct ip *);
3233 		memset(&ippseudo, 0, sizeof(ippseudo));
3234 		ipovly = (struct ipovly *)ip;
3235 		ippseudo.ippseudo_src = ipovly->ih_src;
3236 		ippseudo.ippseudo_dst = ipovly->ih_dst;
3237 		ippseudo.ippseudo_pad = 0;
3238 		ippseudo.ippseudo_p = IPPROTO_TCP;
3239 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3240 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3241 		break;
3242 #if INET6
3243 	case 6:
3244 		MD5Init(&ctx);
3245 		ip6 = mtod(m, struct ip6_hdr *);
3246 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3247 		ip6pseudo.ip6ph_src = ip6->ip6_src;
3248 		in6_clearscope(&ip6pseudo.ip6ph_src);
3249 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3250 		in6_clearscope(&ip6pseudo.ip6ph_dst);
3251 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3252 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3253 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3254 		break;
3255 #endif /* INET6 */
3256 	default:
3257 		return (-1);
3258 	}
3259 
3260 	th0 = *th;
3261 	th0.th_sum = 0;
3262 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
3263 
3264 	l = m->m_pkthdr.len - thoff - tcphdrlen;
3265 	if (l > 0)
3266 		m_apply(m, thoff + tcphdrlen,
3267 		    m->m_pkthdr.len - thoff - tcphdrlen,
3268 		    tcp_signature_apply, &ctx);
3269 
3270 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3271 	MD5Final(sig, &ctx);
3272 
3273 	return (0);
3274 }
3275 #endif
3276 
3277 /*
3278  * tcp_dooptions: parse and process tcp options.
3279  *
3280  * returns -1 if this segment should be dropped.  (eg. wrong signature)
3281  * otherwise returns 0.
3282  */
3283 
3284 static int
3285 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
3286     struct tcphdr *th,
3287     struct mbuf *m, int toff, struct tcp_opt_info *oi)
3288 {
3289 	u_int16_t mss;
3290 	int opt, optlen = 0;
3291 #ifdef TCP_SIGNATURE
3292 	void *sigp = NULL;
3293 	char sigbuf[TCP_SIGLEN];
3294 	struct secasvar *sav = NULL;
3295 #endif
3296 
3297 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3298 		opt = cp[0];
3299 		if (opt == TCPOPT_EOL)
3300 			break;
3301 		if (opt == TCPOPT_NOP)
3302 			optlen = 1;
3303 		else {
3304 			if (cnt < 2)
3305 				break;
3306 			optlen = cp[1];
3307 			if (optlen < 2 || optlen > cnt)
3308 				break;
3309 		}
3310 		switch (opt) {
3311 
3312 		default:
3313 			continue;
3314 
3315 		case TCPOPT_MAXSEG:
3316 			if (optlen != TCPOLEN_MAXSEG)
3317 				continue;
3318 			if (!(th->th_flags & TH_SYN))
3319 				continue;
3320 			if (TCPS_HAVERCVDSYN(tp->t_state))
3321 				continue;
3322 			bcopy(cp + 2, &mss, sizeof(mss));
3323 			oi->maxseg = ntohs(mss);
3324 			break;
3325 
3326 		case TCPOPT_WINDOW:
3327 			if (optlen != TCPOLEN_WINDOW)
3328 				continue;
3329 			if (!(th->th_flags & TH_SYN))
3330 				continue;
3331 			if (TCPS_HAVERCVDSYN(tp->t_state))
3332 				continue;
3333 			tp->t_flags |= TF_RCVD_SCALE;
3334 			tp->requested_s_scale = cp[2];
3335 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3336 				char buf[INET6_ADDRSTRLEN];
3337 				struct ip *ip = mtod(m, struct ip *);
3338 #ifdef INET6
3339 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3340 #endif
3341 				if (ip)
3342 					in_print(buf, sizeof(buf),
3343 					    &ip->ip_src);
3344 #ifdef INET6
3345 				else if (ip6)
3346 					in6_print(buf, sizeof(buf),
3347 					    &ip6->ip6_src);
3348 #endif
3349 				else
3350 					strlcpy(buf, "(unknown)", sizeof(buf));
3351 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3352 				    "assuming %d\n",
3353 				    tp->requested_s_scale, buf,
3354 				    TCP_MAX_WINSHIFT);
3355 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
3356 			}
3357 			break;
3358 
3359 		case TCPOPT_TIMESTAMP:
3360 			if (optlen != TCPOLEN_TIMESTAMP)
3361 				continue;
3362 			oi->ts_present = 1;
3363 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3364 			NTOHL(oi->ts_val);
3365 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3366 			NTOHL(oi->ts_ecr);
3367 
3368 			if (!(th->th_flags & TH_SYN))
3369 				continue;
3370 			if (TCPS_HAVERCVDSYN(tp->t_state))
3371 				continue;
3372 			/*
3373 			 * A timestamp received in a SYN makes
3374 			 * it ok to send timestamp requests and replies.
3375 			 */
3376 			tp->t_flags |= TF_RCVD_TSTMP;
3377 			tp->ts_recent = oi->ts_val;
3378 			tp->ts_recent_age = tcp_now;
3379                         break;
3380 
3381 		case TCPOPT_SACK_PERMITTED:
3382 			if (optlen != TCPOLEN_SACK_PERMITTED)
3383 				continue;
3384 			if (!(th->th_flags & TH_SYN))
3385 				continue;
3386 			if (TCPS_HAVERCVDSYN(tp->t_state))
3387 				continue;
3388 			if (tcp_do_sack) {
3389 				tp->t_flags |= TF_SACK_PERMIT;
3390 				tp->t_flags |= TF_WILL_SACK;
3391 			}
3392 			break;
3393 
3394 		case TCPOPT_SACK:
3395 			tcp_sack_option(tp, th, cp, optlen);
3396 			break;
3397 #ifdef TCP_SIGNATURE
3398 		case TCPOPT_SIGNATURE:
3399 			if (optlen != TCPOLEN_SIGNATURE)
3400 				continue;
3401 			if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
3402 				return (-1);
3403 
3404 			sigp = sigbuf;
3405 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3406 			tp->t_flags |= TF_SIGNATURE;
3407 			break;
3408 #endif
3409 		}
3410 	}
3411 
3412 #ifndef TCP_SIGNATURE
3413 	return 0;
3414 #else
3415 	if (tp->t_flags & TF_SIGNATURE) {
3416 
3417 		sav = tcp_signature_getsav(m, th);
3418 
3419 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
3420 			return (-1);
3421 	}
3422 
3423 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3424 		goto out;
3425 
3426 	if (sigp) {
3427 		char sig[TCP_SIGLEN];
3428 
3429 		tcp_fields_to_net(th);
3430 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
3431 			tcp_fields_to_host(th);
3432 			goto out;
3433 		}
3434 		tcp_fields_to_host(th);
3435 
3436 		if (memcmp(sig, sigp, TCP_SIGLEN)) {
3437 			TCP_STATINC(TCP_STAT_BADSIG);
3438 			goto out;
3439 		} else
3440 			TCP_STATINC(TCP_STAT_GOODSIG);
3441 
3442 		key_sa_recordxfer(sav, m);
3443 		KEY_FREESAV(&sav);
3444 	}
3445 	return 0;
3446 out:
3447 	if (sav != NULL)
3448 		KEY_FREESAV(&sav);
3449 	return -1;
3450 #endif
3451 }
3452 
3453 /*
3454  * Pull out of band byte out of a segment so
3455  * it doesn't appear in the user's data queue.
3456  * It is still reflected in the segment length for
3457  * sequencing purposes.
3458  */
3459 void
3460 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3461     struct mbuf *m, int off)
3462 {
3463 	int cnt = off + th->th_urp - 1;
3464 
3465 	while (cnt >= 0) {
3466 		if (m->m_len > cnt) {
3467 			char *cp = mtod(m, char *) + cnt;
3468 			struct tcpcb *tp = sototcpcb(so);
3469 
3470 			tp->t_iobc = *cp;
3471 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3472 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3473 			m->m_len--;
3474 			return;
3475 		}
3476 		cnt -= m->m_len;
3477 		m = m->m_next;
3478 		if (m == 0)
3479 			break;
3480 	}
3481 	panic("tcp_pulloutofband");
3482 }
3483 
3484 /*
3485  * Collect new round-trip time estimate
3486  * and update averages and current timeout.
3487  *
3488  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3489  * difference of two timestamps.
3490  */
3491 void
3492 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3493 {
3494 	int32_t delta;
3495 
3496 	TCP_STATINC(TCP_STAT_RTTUPDATED);
3497 	if (tp->t_srtt != 0) {
3498 		/*
3499 		 * Compute the amount to add to srtt for smoothing,
3500 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
3501 		 * srtt is stored in 1/32 slow ticks, we conceptually
3502 		 * shift left 5 bits, subtract srtt to get the
3503 		 * diference, and then shift right by TCP_RTT_SHIFT
3504 		 * (3) to obtain 1/8 of the difference.
3505 		 */
3506 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3507 		/*
3508 		 * This can never happen, because delta's lowest
3509 		 * possible value is 1/8 of t_srtt.  But if it does,
3510 		 * set srtt to some reasonable value, here chosen
3511 		 * as 1/8 tick.
3512 		 */
3513 		if ((tp->t_srtt += delta) <= 0)
3514 			tp->t_srtt = 1 << 2;
3515 		/*
3516 		 * RFC2988 requires that rttvar be updated first.
3517 		 * This code is compliant because "delta" is the old
3518 		 * srtt minus the new observation (scaled).
3519 		 *
3520 		 * RFC2988 says:
3521 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3522 		 *
3523 		 * delta is in units of 1/32 ticks, and has then been
3524 		 * divided by 8.  This is equivalent to being in 1/16s
3525 		 * units and divided by 4.  Subtract from it 1/4 of
3526 		 * the existing rttvar to form the (signed) amount to
3527 		 * adjust.
3528 		 */
3529 		if (delta < 0)
3530 			delta = -delta;
3531 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3532 		/*
3533 		 * As with srtt, this should never happen.  There is
3534 		 * no support in RFC2988 for this operation.  But 1/4s
3535 		 * as rttvar when faced with something arguably wrong
3536 		 * is ok.
3537 		 */
3538 		if ((tp->t_rttvar += delta) <= 0)
3539 			tp->t_rttvar = 1 << 2;
3540 
3541 		/*
3542 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3543 		 * Problem is: it doesn't work.  Disabled by defaulting
3544 		 * tcp_rttlocal to 0; see corresponding code in
3545 		 * tcp_subr that selects local vs remote in a different way.
3546 		 *
3547 		 * The static branch prediction hint here should be removed
3548 		 * when the rtt estimator is fixed and the rtt_enable code
3549 		 * is turned back on.
3550 		 */
3551 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3552 		    && tp->t_srtt > tcp_msl_remote_threshold
3553 		    && tp->t_msl  < tcp_msl_remote) {
3554 			tp->t_msl = tcp_msl_remote;
3555 		}
3556 	} else {
3557 		/*
3558 		 * This is the first measurement.  Per RFC2988, 2.2,
3559 		 * set rtt=R and srtt=R/2.
3560 		 * For srtt, storage representation is 1/32 ticks,
3561 		 * so shift left by 5.
3562 		 * For rttvar, storage representation is 1/16 ticks,
3563 		 * So shift left by 4, but then right by 1 to halve.
3564 		 */
3565 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3566 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3567 	}
3568 	tp->t_rtttime = 0;
3569 	tp->t_rxtshift = 0;
3570 
3571 	/*
3572 	 * the retransmit should happen at rtt + 4 * rttvar.
3573 	 * Because of the way we do the smoothing, srtt and rttvar
3574 	 * will each average +1/2 tick of bias.  When we compute
3575 	 * the retransmit timer, we want 1/2 tick of rounding and
3576 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3577 	 * firing of the timer.  The bias will give us exactly the
3578 	 * 1.5 tick we need.  But, because the bias is
3579 	 * statistical, we have to test that we don't drop below
3580 	 * the minimum feasible timer (which is 2 ticks).
3581 	 */
3582 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3583 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3584 
3585 	/*
3586 	 * We received an ack for a packet that wasn't retransmitted;
3587 	 * it is probably safe to discard any error indications we've
3588 	 * received recently.  This isn't quite right, but close enough
3589 	 * for now (a route might have failed after we sent a segment,
3590 	 * and the return path might not be symmetrical).
3591 	 */
3592 	tp->t_softerror = 0;
3593 }
3594 
3595 
3596 /*
3597  * TCP compressed state engine.  Currently used to hold compressed
3598  * state for SYN_RECEIVED.
3599  */
3600 
3601 u_long	syn_cache_count;
3602 u_int32_t syn_hash1, syn_hash2;
3603 
3604 #define SYN_HASH(sa, sp, dp) \
3605 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3606 				     ((u_int32_t)(sp)))^syn_hash2)))
3607 #ifndef INET6
3608 #define	SYN_HASHALL(hash, src, dst) \
3609 do {									\
3610 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
3611 		((const struct sockaddr_in *)(src))->sin_port,		\
3612 		((const struct sockaddr_in *)(dst))->sin_port);		\
3613 } while (/*CONSTCOND*/ 0)
3614 #else
3615 #define SYN_HASH6(sa, sp, dp) \
3616 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3617 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3618 	 & 0x7fffffff)
3619 
3620 #define SYN_HASHALL(hash, src, dst) \
3621 do {									\
3622 	switch ((src)->sa_family) {					\
3623 	case AF_INET:							\
3624 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3625 			((const struct sockaddr_in *)(src))->sin_port,	\
3626 			((const struct sockaddr_in *)(dst))->sin_port);	\
3627 		break;							\
3628 	case AF_INET6:							\
3629 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3630 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
3631 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
3632 		break;							\
3633 	default:							\
3634 		hash = 0;						\
3635 	}								\
3636 } while (/*CONSTCOND*/0)
3637 #endif /* INET6 */
3638 
3639 static struct pool syn_cache_pool;
3640 
3641 /*
3642  * We don't estimate RTT with SYNs, so each packet starts with the default
3643  * RTT and each timer step has a fixed timeout value.
3644  */
3645 #define	SYN_CACHE_TIMER_ARM(sc)						\
3646 do {									\
3647 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3648 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3649 	    TCPTV_REXMTMAX);						\
3650 	callout_reset(&(sc)->sc_timer,					\
3651 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
3652 } while (/*CONSTCOND*/0)
3653 
3654 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
3655 
3656 static inline void
3657 syn_cache_rm(struct syn_cache *sc)
3658 {
3659 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3660 	    sc, sc_bucketq);
3661 	sc->sc_tp = NULL;
3662 	LIST_REMOVE(sc, sc_tpq);
3663 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3664 	callout_stop(&sc->sc_timer);
3665 	syn_cache_count--;
3666 }
3667 
3668 static inline void
3669 syn_cache_put(struct syn_cache *sc)
3670 {
3671 	if (sc->sc_ipopts)
3672 		(void) m_free(sc->sc_ipopts);
3673 	rtcache_free(&sc->sc_route);
3674 	sc->sc_flags |= SCF_DEAD;
3675 	if (!callout_invoking(&sc->sc_timer))
3676 		callout_schedule(&(sc)->sc_timer, 1);
3677 }
3678 
3679 void
3680 syn_cache_init(void)
3681 {
3682 	int i;
3683 
3684 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3685 	    "synpl", NULL, IPL_SOFTNET);
3686 
3687 	/* Initialize the hash buckets. */
3688 	for (i = 0; i < tcp_syn_cache_size; i++)
3689 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3690 }
3691 
3692 void
3693 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3694 {
3695 	struct syn_cache_head *scp;
3696 	struct syn_cache *sc2;
3697 	int s;
3698 
3699 	/*
3700 	 * If there are no entries in the hash table, reinitialize
3701 	 * the hash secrets.
3702 	 */
3703 	if (syn_cache_count == 0) {
3704 		syn_hash1 = cprng_fast32();
3705 		syn_hash2 = cprng_fast32();
3706 	}
3707 
3708 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3709 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3710 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3711 
3712 	/*
3713 	 * Make sure that we don't overflow the per-bucket
3714 	 * limit or the total cache size limit.
3715 	 */
3716 	s = splsoftnet();
3717 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3718 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3719 		/*
3720 		 * The bucket is full.  Toss the oldest element in the
3721 		 * bucket.  This will be the first entry in the bucket.
3722 		 */
3723 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3724 #ifdef DIAGNOSTIC
3725 		/*
3726 		 * This should never happen; we should always find an
3727 		 * entry in our bucket.
3728 		 */
3729 		if (sc2 == NULL)
3730 			panic("syn_cache_insert: bucketoverflow: impossible");
3731 #endif
3732 		syn_cache_rm(sc2);
3733 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3734 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3735 		struct syn_cache_head *scp2, *sce;
3736 
3737 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3738 		/*
3739 		 * The cache is full.  Toss the oldest entry in the
3740 		 * first non-empty bucket we can find.
3741 		 *
3742 		 * XXX We would really like to toss the oldest
3743 		 * entry in the cache, but we hope that this
3744 		 * condition doesn't happen very often.
3745 		 */
3746 		scp2 = scp;
3747 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3748 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3749 			for (++scp2; scp2 != scp; scp2++) {
3750 				if (scp2 >= sce)
3751 					scp2 = &tcp_syn_cache[0];
3752 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3753 					break;
3754 			}
3755 #ifdef DIAGNOSTIC
3756 			/*
3757 			 * This should never happen; we should always find a
3758 			 * non-empty bucket.
3759 			 */
3760 			if (scp2 == scp)
3761 				panic("syn_cache_insert: cacheoverflow: "
3762 				    "impossible");
3763 #endif
3764 		}
3765 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3766 		syn_cache_rm(sc2);
3767 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3768 	}
3769 
3770 	/*
3771 	 * Initialize the entry's timer.
3772 	 */
3773 	sc->sc_rxttot = 0;
3774 	sc->sc_rxtshift = 0;
3775 	SYN_CACHE_TIMER_ARM(sc);
3776 
3777 	/* Link it from tcpcb entry */
3778 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3779 
3780 	/* Put it into the bucket. */
3781 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3782 	scp->sch_length++;
3783 	syn_cache_count++;
3784 
3785 	TCP_STATINC(TCP_STAT_SC_ADDED);
3786 	splx(s);
3787 }
3788 
3789 /*
3790  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3791  * If we have retransmitted an entry the maximum number of times, expire
3792  * that entry.
3793  */
3794 void
3795 syn_cache_timer(void *arg)
3796 {
3797 	struct syn_cache *sc = arg;
3798 
3799 	mutex_enter(softnet_lock);
3800 	KERNEL_LOCK(1, NULL);
3801 	callout_ack(&sc->sc_timer);
3802 
3803 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3804 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3805 		callout_destroy(&sc->sc_timer);
3806 		pool_put(&syn_cache_pool, sc);
3807 		KERNEL_UNLOCK_ONE(NULL);
3808 		mutex_exit(softnet_lock);
3809 		return;
3810 	}
3811 
3812 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3813 		/* Drop it -- too many retransmissions. */
3814 		goto dropit;
3815 	}
3816 
3817 	/*
3818 	 * Compute the total amount of time this entry has
3819 	 * been on a queue.  If this entry has been on longer
3820 	 * than the keep alive timer would allow, expire it.
3821 	 */
3822 	sc->sc_rxttot += sc->sc_rxtcur;
3823 	if (sc->sc_rxttot >= tcp_keepinit)
3824 		goto dropit;
3825 
3826 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3827 	(void) syn_cache_respond(sc, NULL);
3828 
3829 	/* Advance the timer back-off. */
3830 	sc->sc_rxtshift++;
3831 	SYN_CACHE_TIMER_ARM(sc);
3832 
3833 	KERNEL_UNLOCK_ONE(NULL);
3834 	mutex_exit(softnet_lock);
3835 	return;
3836 
3837  dropit:
3838 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3839 	syn_cache_rm(sc);
3840 	if (sc->sc_ipopts)
3841 		(void) m_free(sc->sc_ipopts);
3842 	rtcache_free(&sc->sc_route);
3843 	callout_destroy(&sc->sc_timer);
3844 	pool_put(&syn_cache_pool, sc);
3845 	KERNEL_UNLOCK_ONE(NULL);
3846 	mutex_exit(softnet_lock);
3847 }
3848 
3849 /*
3850  * Remove syn cache created by the specified tcb entry,
3851  * because this does not make sense to keep them
3852  * (if there's no tcb entry, syn cache entry will never be used)
3853  */
3854 void
3855 syn_cache_cleanup(struct tcpcb *tp)
3856 {
3857 	struct syn_cache *sc, *nsc;
3858 	int s;
3859 
3860 	s = splsoftnet();
3861 
3862 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3863 		nsc = LIST_NEXT(sc, sc_tpq);
3864 
3865 #ifdef DIAGNOSTIC
3866 		if (sc->sc_tp != tp)
3867 			panic("invalid sc_tp in syn_cache_cleanup");
3868 #endif
3869 		syn_cache_rm(sc);
3870 		syn_cache_put(sc);	/* calls pool_put but see spl above */
3871 	}
3872 	/* just for safety */
3873 	LIST_INIT(&tp->t_sc);
3874 
3875 	splx(s);
3876 }
3877 
3878 /*
3879  * Find an entry in the syn cache.
3880  */
3881 struct syn_cache *
3882 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3883     struct syn_cache_head **headp)
3884 {
3885 	struct syn_cache *sc;
3886 	struct syn_cache_head *scp;
3887 	u_int32_t hash;
3888 	int s;
3889 
3890 	SYN_HASHALL(hash, src, dst);
3891 
3892 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3893 	*headp = scp;
3894 	s = splsoftnet();
3895 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3896 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3897 		if (sc->sc_hash != hash)
3898 			continue;
3899 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3900 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3901 			splx(s);
3902 			return (sc);
3903 		}
3904 	}
3905 	splx(s);
3906 	return (NULL);
3907 }
3908 
3909 /*
3910  * This function gets called when we receive an ACK for a
3911  * socket in the LISTEN state.  We look up the connection
3912  * in the syn cache, and if its there, we pull it out of
3913  * the cache and turn it into a full-blown connection in
3914  * the SYN-RECEIVED state.
3915  *
3916  * The return values may not be immediately obvious, and their effects
3917  * can be subtle, so here they are:
3918  *
3919  *	NULL	SYN was not found in cache; caller should drop the
3920  *		packet and send an RST.
3921  *
3922  *	-1	We were unable to create the new connection, and are
3923  *		aborting it.  An ACK,RST is being sent to the peer
3924  *		(unless we got screwey sequence numbners; see below),
3925  *		because the 3-way handshake has been completed.  Caller
3926  *		should not free the mbuf, since we may be using it.  If
3927  *		we are not, we will free it.
3928  *
3929  *	Otherwise, the return value is a pointer to the new socket
3930  *	associated with the connection.
3931  */
3932 struct socket *
3933 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3934     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3935     struct socket *so, struct mbuf *m)
3936 {
3937 	struct syn_cache *sc;
3938 	struct syn_cache_head *scp;
3939 	struct inpcb *inp = NULL;
3940 #ifdef INET6
3941 	struct in6pcb *in6p = NULL;
3942 #endif
3943 	struct tcpcb *tp = 0;
3944 	int s;
3945 	struct socket *oso;
3946 
3947 	s = splsoftnet();
3948 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3949 		splx(s);
3950 		return (NULL);
3951 	}
3952 
3953 	/*
3954 	 * Verify the sequence and ack numbers.  Try getting the correct
3955 	 * response again.
3956 	 */
3957 	if ((th->th_ack != sc->sc_iss + 1) ||
3958 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3959 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3960 		(void) syn_cache_respond(sc, m);
3961 		splx(s);
3962 		return ((struct socket *)(-1));
3963 	}
3964 
3965 	/* Remove this cache entry */
3966 	syn_cache_rm(sc);
3967 	splx(s);
3968 
3969 	/*
3970 	 * Ok, create the full blown connection, and set things up
3971 	 * as they would have been set up if we had created the
3972 	 * connection when the SYN arrived.  If we can't create
3973 	 * the connection, abort it.
3974 	 */
3975 	/*
3976 	 * inp still has the OLD in_pcb stuff, set the
3977 	 * v6-related flags on the new guy, too.   This is
3978 	 * done particularly for the case where an AF_INET6
3979 	 * socket is bound only to a port, and a v4 connection
3980 	 * comes in on that port.
3981 	 * we also copy the flowinfo from the original pcb
3982 	 * to the new one.
3983 	 */
3984 	oso = so;
3985 	so = sonewconn(so, true);
3986 	if (so == NULL)
3987 		goto resetandabort;
3988 
3989 	switch (so->so_proto->pr_domain->dom_family) {
3990 #ifdef INET
3991 	case AF_INET:
3992 		inp = sotoinpcb(so);
3993 		break;
3994 #endif
3995 #ifdef INET6
3996 	case AF_INET6:
3997 		in6p = sotoin6pcb(so);
3998 		break;
3999 #endif
4000 	}
4001 	switch (src->sa_family) {
4002 #ifdef INET
4003 	case AF_INET:
4004 		if (inp) {
4005 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
4006 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
4007 			inp->inp_options = ip_srcroute();
4008 			in_pcbstate(inp, INP_BOUND);
4009 			if (inp->inp_options == NULL) {
4010 				inp->inp_options = sc->sc_ipopts;
4011 				sc->sc_ipopts = NULL;
4012 			}
4013 		}
4014 #ifdef INET6
4015 		else if (in6p) {
4016 			/* IPv4 packet to AF_INET6 socket */
4017 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
4018 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
4019 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
4020 				&in6p->in6p_laddr.s6_addr32[3],
4021 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
4022 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
4023 			in6totcpcb(in6p)->t_family = AF_INET;
4024 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
4025 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
4026 			else
4027 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
4028 			in6_pcbstate(in6p, IN6P_BOUND);
4029 		}
4030 #endif
4031 		break;
4032 #endif
4033 #ifdef INET6
4034 	case AF_INET6:
4035 		if (in6p) {
4036 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
4037 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
4038 			in6_pcbstate(in6p, IN6P_BOUND);
4039 		}
4040 		break;
4041 #endif
4042 	}
4043 #ifdef INET6
4044 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
4045 		struct in6pcb *oin6p = sotoin6pcb(oso);
4046 		/* inherit socket options from the listening socket */
4047 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
4048 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
4049 			m_freem(in6p->in6p_options);
4050 			in6p->in6p_options = 0;
4051 		}
4052 		ip6_savecontrol(in6p, &in6p->in6p_options,
4053 			mtod(m, struct ip6_hdr *), m);
4054 	}
4055 #endif
4056 
4057 #if defined(IPSEC)
4058 	if (ipsec_used) {
4059 		/*
4060 		 * we make a copy of policy, instead of sharing the policy, for
4061 		 * better behavior in terms of SA lookup and dead SA removal.
4062 		 */
4063 		if (inp) {
4064 			/* copy old policy into new socket's */
4065 			if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp,
4066 			    inp->inp_sp))
4067 				printf("tcp_input: could not copy policy\n");
4068 		}
4069 #ifdef INET6
4070 		else if (in6p) {
4071 			/* copy old policy into new socket's */
4072 			if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
4073 			    in6p->in6p_sp))
4074 				printf("tcp_input: could not copy policy\n");
4075 		}
4076 #endif
4077 	}
4078 #endif
4079 
4080 	/*
4081 	 * Give the new socket our cached route reference.
4082 	 */
4083 	if (inp) {
4084 		rtcache_copy(&inp->inp_route, &sc->sc_route);
4085 		rtcache_free(&sc->sc_route);
4086 	}
4087 #ifdef INET6
4088 	else {
4089 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
4090 		rtcache_free(&sc->sc_route);
4091 	}
4092 #endif
4093 
4094 	if (inp) {
4095 		struct sockaddr_in sin;
4096 		memcpy(&sin, src, src->sa_len);
4097 		if (in_pcbconnect(inp, &sin, &lwp0)) {
4098 			goto resetandabort;
4099 		}
4100 	}
4101 #ifdef INET6
4102 	else if (in6p) {
4103 		struct sockaddr_in6 sin6;
4104 		memcpy(&sin6, src, src->sa_len);
4105 		if (src->sa_family == AF_INET) {
4106 			/* IPv4 packet to AF_INET6 socket */
4107 			in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
4108 		}
4109 		if (in6_pcbconnect(in6p, &sin6, NULL)) {
4110 			goto resetandabort;
4111 		}
4112 	}
4113 #endif
4114 	else {
4115 		goto resetandabort;
4116 	}
4117 
4118 	if (inp)
4119 		tp = intotcpcb(inp);
4120 #ifdef INET6
4121 	else if (in6p)
4122 		tp = in6totcpcb(in6p);
4123 #endif
4124 	else
4125 		tp = NULL;
4126 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
4127 	if (sc->sc_request_r_scale != 15) {
4128 		tp->requested_s_scale = sc->sc_requested_s_scale;
4129 		tp->request_r_scale = sc->sc_request_r_scale;
4130 		tp->snd_scale = sc->sc_requested_s_scale;
4131 		tp->rcv_scale = sc->sc_request_r_scale;
4132 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
4133 	}
4134 	if (sc->sc_flags & SCF_TIMESTAMP)
4135 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
4136 	tp->ts_timebase = sc->sc_timebase;
4137 
4138 	tp->t_template = tcp_template(tp);
4139 	if (tp->t_template == 0) {
4140 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
4141 		so = NULL;
4142 		m_freem(m);
4143 		goto abort;
4144 	}
4145 
4146 	tp->iss = sc->sc_iss;
4147 	tp->irs = sc->sc_irs;
4148 	tcp_sendseqinit(tp);
4149 	tcp_rcvseqinit(tp);
4150 	tp->t_state = TCPS_SYN_RECEIVED;
4151 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
4152 	TCP_STATINC(TCP_STAT_ACCEPTS);
4153 
4154 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
4155 		tp->t_flags |= TF_WILL_SACK;
4156 
4157 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
4158 		tp->t_flags |= TF_ECN_PERMIT;
4159 
4160 #ifdef TCP_SIGNATURE
4161 	if (sc->sc_flags & SCF_SIGNATURE)
4162 		tp->t_flags |= TF_SIGNATURE;
4163 #endif
4164 
4165 	/* Initialize tp->t_ourmss before we deal with the peer's! */
4166 	tp->t_ourmss = sc->sc_ourmaxseg;
4167 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
4168 
4169 	/*
4170 	 * Initialize the initial congestion window.  If we
4171 	 * had to retransmit the SYN,ACK, we must initialize cwnd
4172 	 * to 1 segment (i.e. the Loss Window).
4173 	 */
4174 	if (sc->sc_rxtshift)
4175 		tp->snd_cwnd = tp->t_peermss;
4176 	else {
4177 		int ss = tcp_init_win;
4178 #ifdef INET
4179 		if (inp != NULL && in_localaddr(inp->inp_faddr))
4180 			ss = tcp_init_win_local;
4181 #endif
4182 #ifdef INET6
4183 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
4184 			ss = tcp_init_win_local;
4185 #endif
4186 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
4187 	}
4188 
4189 	tcp_rmx_rtt(tp);
4190 	tp->snd_wl1 = sc->sc_irs;
4191 	tp->rcv_up = sc->sc_irs + 1;
4192 
4193 	/*
4194 	 * This is what whould have happened in tcp_output() when
4195 	 * the SYN,ACK was sent.
4196 	 */
4197 	tp->snd_up = tp->snd_una;
4198 	tp->snd_max = tp->snd_nxt = tp->iss+1;
4199 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4200 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4201 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4202 	tp->last_ack_sent = tp->rcv_nxt;
4203 	tp->t_partialacks = -1;
4204 	tp->t_dupacks = 0;
4205 
4206 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
4207 	s = splsoftnet();
4208 	syn_cache_put(sc);
4209 	splx(s);
4210 	return (so);
4211 
4212 resetandabort:
4213 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4214 abort:
4215 	if (so != NULL) {
4216 		(void) soqremque(so, 1);
4217 		(void) soabort(so);
4218 		mutex_enter(softnet_lock);
4219 	}
4220 	s = splsoftnet();
4221 	syn_cache_put(sc);
4222 	splx(s);
4223 	TCP_STATINC(TCP_STAT_SC_ABORTED);
4224 	return ((struct socket *)(-1));
4225 }
4226 
4227 /*
4228  * This function is called when we get a RST for a
4229  * non-existent connection, so that we can see if the
4230  * connection is in the syn cache.  If it is, zap it.
4231  */
4232 
4233 void
4234 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4235 {
4236 	struct syn_cache *sc;
4237 	struct syn_cache_head *scp;
4238 	int s = splsoftnet();
4239 
4240 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4241 		splx(s);
4242 		return;
4243 	}
4244 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4245 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4246 		splx(s);
4247 		return;
4248 	}
4249 	syn_cache_rm(sc);
4250 	TCP_STATINC(TCP_STAT_SC_RESET);
4251 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4252 	splx(s);
4253 }
4254 
4255 void
4256 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4257     struct tcphdr *th)
4258 {
4259 	struct syn_cache *sc;
4260 	struct syn_cache_head *scp;
4261 	int s;
4262 
4263 	s = splsoftnet();
4264 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4265 		splx(s);
4266 		return;
4267 	}
4268 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4269 	if (ntohl (th->th_seq) != sc->sc_iss) {
4270 		splx(s);
4271 		return;
4272 	}
4273 
4274 	/*
4275 	 * If we've retransmitted 3 times and this is our second error,
4276 	 * we remove the entry.  Otherwise, we allow it to continue on.
4277 	 * This prevents us from incorrectly nuking an entry during a
4278 	 * spurious network outage.
4279 	 *
4280 	 * See tcp_notify().
4281 	 */
4282 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4283 		sc->sc_flags |= SCF_UNREACH;
4284 		splx(s);
4285 		return;
4286 	}
4287 
4288 	syn_cache_rm(sc);
4289 	TCP_STATINC(TCP_STAT_SC_UNREACH);
4290 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4291 	splx(s);
4292 }
4293 
4294 /*
4295  * Given a LISTEN socket and an inbound SYN request, add
4296  * this to the syn cache, and send back a segment:
4297  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4298  * to the source.
4299  *
4300  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4301  * Doing so would require that we hold onto the data and deliver it
4302  * to the application.  However, if we are the target of a SYN-flood
4303  * DoS attack, an attacker could send data which would eventually
4304  * consume all available buffer space if it were ACKed.  By not ACKing
4305  * the data, we avoid this DoS scenario.
4306  */
4307 
4308 int
4309 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4310     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
4311     int optlen, struct tcp_opt_info *oi)
4312 {
4313 	struct tcpcb tb, *tp;
4314 	long win;
4315 	struct syn_cache *sc;
4316 	struct syn_cache_head *scp;
4317 	struct mbuf *ipopts;
4318 	struct tcp_opt_info opti;
4319 	int s;
4320 
4321 	tp = sototcpcb(so);
4322 
4323 	memset(&opti, 0, sizeof(opti));
4324 
4325 	/*
4326 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4327 	 *
4328 	 * Note this check is performed in tcp_input() very early on.
4329 	 */
4330 
4331 	/*
4332 	 * Initialize some local state.
4333 	 */
4334 	win = sbspace(&so->so_rcv);
4335 	if (win > TCP_MAXWIN)
4336 		win = TCP_MAXWIN;
4337 
4338 	switch (src->sa_family) {
4339 #ifdef INET
4340 	case AF_INET:
4341 		/*
4342 		 * Remember the IP options, if any.
4343 		 */
4344 		ipopts = ip_srcroute();
4345 		break;
4346 #endif
4347 	default:
4348 		ipopts = NULL;
4349 	}
4350 
4351 #ifdef TCP_SIGNATURE
4352 	if (optp || (tp->t_flags & TF_SIGNATURE))
4353 #else
4354 	if (optp)
4355 #endif
4356 	{
4357 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4358 #ifdef TCP_SIGNATURE
4359 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4360 #endif
4361 		tb.t_state = TCPS_LISTEN;
4362 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4363 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4364 			return (0);
4365 	} else
4366 		tb.t_flags = 0;
4367 
4368 	/*
4369 	 * See if we already have an entry for this connection.
4370 	 * If we do, resend the SYN,ACK.  We do not count this
4371 	 * as a retransmission (XXX though maybe we should).
4372 	 */
4373 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4374 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
4375 		if (ipopts) {
4376 			/*
4377 			 * If we were remembering a previous source route,
4378 			 * forget it and use the new one we've been given.
4379 			 */
4380 			if (sc->sc_ipopts)
4381 				(void) m_free(sc->sc_ipopts);
4382 			sc->sc_ipopts = ipopts;
4383 		}
4384 		sc->sc_timestamp = tb.ts_recent;
4385 		if (syn_cache_respond(sc, m) == 0) {
4386 			uint64_t *tcps = TCP_STAT_GETREF();
4387 			tcps[TCP_STAT_SNDACKS]++;
4388 			tcps[TCP_STAT_SNDTOTAL]++;
4389 			TCP_STAT_PUTREF();
4390 		}
4391 		return (1);
4392 	}
4393 
4394 	s = splsoftnet();
4395 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4396 	splx(s);
4397 	if (sc == NULL) {
4398 		if (ipopts)
4399 			(void) m_free(ipopts);
4400 		return (0);
4401 	}
4402 
4403 	/*
4404 	 * Fill in the cache, and put the necessary IP and TCP
4405 	 * options into the reply.
4406 	 */
4407 	memset(sc, 0, sizeof(struct syn_cache));
4408 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4409 	bcopy(src, &sc->sc_src, src->sa_len);
4410 	bcopy(dst, &sc->sc_dst, dst->sa_len);
4411 	sc->sc_flags = 0;
4412 	sc->sc_ipopts = ipopts;
4413 	sc->sc_irs = th->th_seq;
4414 	switch (src->sa_family) {
4415 #ifdef INET
4416 	case AF_INET:
4417 	    {
4418 		struct sockaddr_in *srcin = (void *) src;
4419 		struct sockaddr_in *dstin = (void *) dst;
4420 
4421 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4422 		    &srcin->sin_addr, dstin->sin_port,
4423 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
4424 		break;
4425 	    }
4426 #endif /* INET */
4427 #ifdef INET6
4428 	case AF_INET6:
4429 	    {
4430 		struct sockaddr_in6 *srcin6 = (void *) src;
4431 		struct sockaddr_in6 *dstin6 = (void *) dst;
4432 
4433 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4434 		    &srcin6->sin6_addr, dstin6->sin6_port,
4435 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4436 		break;
4437 	    }
4438 #endif /* INET6 */
4439 	}
4440 	sc->sc_peermaxseg = oi->maxseg;
4441 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4442 						m_get_rcvif_NOMPSAFE(m) : NULL,
4443 						sc->sc_src.sa.sa_family);
4444 	sc->sc_win = win;
4445 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
4446 	sc->sc_timestamp = tb.ts_recent;
4447 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4448 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4449 		sc->sc_flags |= SCF_TIMESTAMP;
4450 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4451 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4452 		sc->sc_requested_s_scale = tb.requested_s_scale;
4453 		sc->sc_request_r_scale = 0;
4454 		/*
4455 		 * Pick the smallest possible scaling factor that
4456 		 * will still allow us to scale up to sb_max.
4457 		 *
4458 		 * We do this because there are broken firewalls that
4459 		 * will corrupt the window scale option, leading to
4460 		 * the other endpoint believing that our advertised
4461 		 * window is unscaled.  At scale factors larger than
4462 		 * 5 the unscaled window will drop below 1500 bytes,
4463 		 * leading to serious problems when traversing these
4464 		 * broken firewalls.
4465 		 *
4466 		 * With the default sbmax of 256K, a scale factor
4467 		 * of 3 will be chosen by this algorithm.  Those who
4468 		 * choose a larger sbmax should watch out
4469 		 * for the compatiblity problems mentioned above.
4470 		 *
4471 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4472 		 * or <SYN,ACK>) segment itself is never scaled.
4473 		 */
4474 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4475 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4476 			sc->sc_request_r_scale++;
4477 	} else {
4478 		sc->sc_requested_s_scale = 15;
4479 		sc->sc_request_r_scale = 15;
4480 	}
4481 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4482 		sc->sc_flags |= SCF_SACK_PERMIT;
4483 
4484 	/*
4485 	 * ECN setup packet recieved.
4486 	 */
4487 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4488 		sc->sc_flags |= SCF_ECN_PERMIT;
4489 
4490 #ifdef TCP_SIGNATURE
4491 	if (tb.t_flags & TF_SIGNATURE)
4492 		sc->sc_flags |= SCF_SIGNATURE;
4493 #endif
4494 	sc->sc_tp = tp;
4495 	if (syn_cache_respond(sc, m) == 0) {
4496 		uint64_t *tcps = TCP_STAT_GETREF();
4497 		tcps[TCP_STAT_SNDACKS]++;
4498 		tcps[TCP_STAT_SNDTOTAL]++;
4499 		TCP_STAT_PUTREF();
4500 		syn_cache_insert(sc, tp);
4501 	} else {
4502 		s = splsoftnet();
4503 		/*
4504 		 * syn_cache_put() will try to schedule the timer, so
4505 		 * we need to initialize it
4506 		 */
4507 		SYN_CACHE_TIMER_ARM(sc);
4508 		syn_cache_put(sc);
4509 		splx(s);
4510 		TCP_STATINC(TCP_STAT_SC_DROPPED);
4511 	}
4512 	return (1);
4513 }
4514 
4515 /*
4516  * syn_cache_respond: (re)send SYN+ACK.
4517  *
4518  * returns 0 on success.  otherwise returns an errno, typically ENOBUFS.
4519  */
4520 
4521 int
4522 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4523 {
4524 #ifdef INET6
4525 	struct rtentry *rt = NULL;
4526 #endif
4527 	struct route *ro;
4528 	u_int8_t *optp;
4529 	int optlen, error;
4530 	u_int16_t tlen;
4531 	struct ip *ip = NULL;
4532 #ifdef INET6
4533 	struct ip6_hdr *ip6 = NULL;
4534 #endif
4535 	struct tcpcb *tp = NULL;
4536 	struct tcphdr *th;
4537 	u_int hlen;
4538 	struct socket *so;
4539 #ifdef TCP_SIGNATURE
4540 	struct secasvar *sav = NULL;
4541 	u_int8_t *sigp = NULL;
4542 #endif
4543 
4544 	ro = &sc->sc_route;
4545 	switch (sc->sc_src.sa.sa_family) {
4546 	case AF_INET:
4547 		hlen = sizeof(struct ip);
4548 		break;
4549 #ifdef INET6
4550 	case AF_INET6:
4551 		hlen = sizeof(struct ip6_hdr);
4552 		break;
4553 #endif
4554 	default:
4555 		if (m)
4556 			m_freem(m);
4557 		return (EAFNOSUPPORT);
4558 	}
4559 
4560 	/* worst case scanario, since we don't know the option size yet  */
4561 	tlen = hlen + sizeof(struct tcphdr) + MAX_TCPOPTLEN;
4562 
4563 	/*
4564 	 * Create the IP+TCP header from scratch.
4565 	 */
4566 	if (m)
4567 		m_freem(m);
4568 #ifdef DIAGNOSTIC
4569 	if (max_linkhdr + tlen > MCLBYTES)
4570 		return ENOBUFS;
4571 #endif
4572 
4573 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4574 	if (m && (max_linkhdr + tlen) > MHLEN) {
4575 		MCLGET(m, M_DONTWAIT);
4576 		if ((m->m_flags & M_EXT) == 0) {
4577 			m_freem(m);
4578 			m = NULL;
4579 		}
4580 	}
4581 	if (m == NULL)
4582 		return ENOBUFS;
4583 	MCLAIM(m, &tcp_tx_mowner);
4584 
4585 	/* Fixup the mbuf. */
4586 	m->m_data += max_linkhdr;
4587 	if (sc->sc_tp) {
4588 		tp = sc->sc_tp;
4589 		if (tp->t_inpcb)
4590 			so = tp->t_inpcb->inp_socket;
4591 #ifdef INET6
4592 		else if (tp->t_in6pcb)
4593 			so = tp->t_in6pcb->in6p_socket;
4594 #endif
4595 		else
4596 			so = NULL;
4597 	} else
4598 		so = NULL;
4599 	m_reset_rcvif(m);
4600 	memset(mtod(m, u_char *), 0, tlen);
4601 
4602 	switch (sc->sc_src.sa.sa_family) {
4603 	case AF_INET:
4604 		ip = mtod(m, struct ip *);
4605 		ip->ip_v = 4;
4606 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4607 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4608 		ip->ip_p = IPPROTO_TCP;
4609 		th = (struct tcphdr *)(ip + 1);
4610 		th->th_dport = sc->sc_src.sin.sin_port;
4611 		th->th_sport = sc->sc_dst.sin.sin_port;
4612 		break;
4613 #ifdef INET6
4614 	case AF_INET6:
4615 		ip6 = mtod(m, struct ip6_hdr *);
4616 		ip6->ip6_vfc = IPV6_VERSION;
4617 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4618 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4619 		ip6->ip6_nxt = IPPROTO_TCP;
4620 		/* ip6_plen will be updated in ip6_output() */
4621 		th = (struct tcphdr *)(ip6 + 1);
4622 		th->th_dport = sc->sc_src.sin6.sin6_port;
4623 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4624 		break;
4625 #endif
4626 	default:
4627 		return ENOBUFS;
4628 	}
4629 
4630 	th->th_seq = htonl(sc->sc_iss);
4631 	th->th_ack = htonl(sc->sc_irs + 1);
4632 	th->th_flags = TH_SYN|TH_ACK;
4633 	th->th_win = htons(sc->sc_win);
4634 	/* th_x2, th_sum, th_urp already 0 from memset */
4635 
4636 	/* Tack on the TCP options. */
4637 	optp = (u_int8_t *)(th + 1);
4638 	optlen = 0;
4639 	*optp++ = TCPOPT_MAXSEG;
4640 	*optp++ = TCPOLEN_MAXSEG;
4641 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4642 	*optp++ = sc->sc_ourmaxseg & 0xff;
4643 	optlen += TCPOLEN_MAXSEG;
4644 
4645 	if (sc->sc_request_r_scale != 15) {
4646 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4647 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4648 		    sc->sc_request_r_scale);
4649 		optp += TCPOLEN_WINDOW + TCPOLEN_NOP;
4650 		optlen += TCPOLEN_WINDOW + TCPOLEN_NOP;
4651 	}
4652 
4653 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4654 		/* Let the peer know that we will SACK. */
4655 		*optp++ = TCPOPT_SACK_PERMITTED;
4656 		*optp++ = TCPOLEN_SACK_PERMITTED;
4657 		optlen += TCPOLEN_SACK_PERMITTED;
4658 	}
4659 
4660 	if (sc->sc_flags & SCF_TIMESTAMP) {
4661                 while (optlen % 4 != 2) {
4662                         optlen += TCPOLEN_NOP;
4663                         *optp++ = TCPOPT_NOP;
4664                 }
4665 		*optp++ = TCPOPT_TIMESTAMP;
4666 		*optp++ = TCPOLEN_TIMESTAMP;
4667 		u_int32_t *lp = (u_int32_t *)(optp);
4668 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4669 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4670 		*lp   = htonl(sc->sc_timestamp);
4671 		optp += TCPOLEN_TIMESTAMP - 2;
4672 		optlen += TCPOLEN_TIMESTAMP;
4673 	}
4674 
4675 #ifdef TCP_SIGNATURE
4676 	if (sc->sc_flags & SCF_SIGNATURE) {
4677 
4678 		sav = tcp_signature_getsav(m, th);
4679 
4680 		if (sav == NULL) {
4681 			if (m)
4682 				m_freem(m);
4683 			return (EPERM);
4684 		}
4685 
4686 		*optp++ = TCPOPT_SIGNATURE;
4687 		*optp++ = TCPOLEN_SIGNATURE;
4688 		sigp = optp;
4689 		memset(optp, 0, TCP_SIGLEN);
4690 		optp += TCP_SIGLEN;
4691 		optlen += TCPOLEN_SIGNATURE;
4692 
4693 	}
4694 #endif
4695 	/* Terminate and pad TCP options to a 4 byte boundary. */
4696 	if (optlen % 4) {
4697 		optlen += TCPOLEN_EOL;
4698 		*optp++ = TCPOPT_EOL;
4699 	}
4700 	/*
4701 	 * According to RFC 793 (STD0007):
4702 	 *   "The content of the header beyond the End-of-Option option
4703 	 *    must be header padding (i.e., zero)."
4704 	 *   and later: "The padding is composed of zeros."
4705 	 */
4706 	while (optlen % 4) {
4707 		optlen += TCPOLEN_PAD;
4708 		*optp++ = TCPOPT_PAD;
4709 	}
4710 
4711 	/* compute the actual values now that we've added the options */
4712 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4713 	m->m_len = m->m_pkthdr.len = tlen;
4714 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4715 
4716 #ifdef TCP_SIGNATURE
4717 	if (sav) {
4718 		(void)tcp_signature(m, th, hlen, sav, sigp);
4719 		key_sa_recordxfer(sav, m);
4720 		KEY_FREESAV(&sav);
4721 	}
4722 #endif
4723 
4724 	/*
4725 	 * Send ECN SYN-ACK setup packet.
4726 	 * Routes can be asymetric, so, even if we receive a packet
4727 	 * with ECE and CWR set, we must not assume no one will block
4728 	 * the ECE packet we are about to send.
4729 	 */
4730 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4731 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4732 		th->th_flags |= TH_ECE;
4733 		TCP_STATINC(TCP_STAT_ECN_SHS);
4734 
4735 		/*
4736 		 * draft-ietf-tcpm-ecnsyn-00.txt
4737 		 *
4738 		 * "[...] a TCP node MAY respond to an ECN-setup
4739 		 * SYN packet by setting ECT in the responding
4740 		 * ECN-setup SYN/ACK packet, indicating to routers
4741 		 * that the SYN/ACK packet is ECN-Capable.
4742 		 * This allows a congested router along the path
4743 		 * to mark the packet instead of dropping the
4744 		 * packet as an indication of congestion."
4745 		 *
4746 		 * "[...] There can be a great benefit in setting
4747 		 * an ECN-capable codepoint in SYN/ACK packets [...]
4748 		 * Congestion is  most likely to occur in
4749 		 * the server-to-client direction.  As a result,
4750 		 * setting an ECN-capable codepoint in SYN/ACK
4751 		 * packets can reduce the occurence of three-second
4752 		 * retransmit timeouts resulting from the drop
4753 		 * of SYN/ACK packets."
4754 		 *
4755 		 * Page 4 and 6, January 2006.
4756 		 */
4757 
4758 		switch (sc->sc_src.sa.sa_family) {
4759 #ifdef INET
4760 		case AF_INET:
4761 			ip->ip_tos |= IPTOS_ECN_ECT0;
4762 			break;
4763 #endif
4764 #ifdef INET6
4765 		case AF_INET6:
4766 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4767 			break;
4768 #endif
4769 		}
4770 		TCP_STATINC(TCP_STAT_ECN_ECT);
4771 	}
4772 
4773 
4774 	/* Compute the packet's checksum. */
4775 	switch (sc->sc_src.sa.sa_family) {
4776 	case AF_INET:
4777 		ip->ip_len = htons(tlen - hlen);
4778 		th->th_sum = 0;
4779 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4780 		break;
4781 #ifdef INET6
4782 	case AF_INET6:
4783 		ip6->ip6_plen = htons(tlen - hlen);
4784 		th->th_sum = 0;
4785 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4786 		break;
4787 #endif
4788 	}
4789 
4790 	/*
4791 	 * Fill in some straggling IP bits.  Note the stack expects
4792 	 * ip_len to be in host order, for convenience.
4793 	 */
4794 	switch (sc->sc_src.sa.sa_family) {
4795 #ifdef INET
4796 	case AF_INET:
4797 		ip->ip_len = htons(tlen);
4798 		ip->ip_ttl = ip_defttl;
4799 		/* XXX tos? */
4800 		break;
4801 #endif
4802 #ifdef INET6
4803 	case AF_INET6:
4804 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4805 		ip6->ip6_vfc |= IPV6_VERSION;
4806 		ip6->ip6_plen = htons(tlen - hlen);
4807 		/* ip6_hlim will be initialized afterwards */
4808 		/* XXX flowlabel? */
4809 		break;
4810 #endif
4811 	}
4812 
4813 	/* XXX use IPsec policy on listening socket, on SYN ACK */
4814 	tp = sc->sc_tp;
4815 
4816 	switch (sc->sc_src.sa.sa_family) {
4817 #ifdef INET
4818 	case AF_INET:
4819 		error = ip_output(m, sc->sc_ipopts, ro,
4820 		    (ip_mtudisc ? IP_MTUDISC : 0),
4821 		    NULL, so);
4822 		break;
4823 #endif
4824 #ifdef INET6
4825 	case AF_INET6:
4826 		ip6->ip6_hlim = in6_selecthlim(NULL,
4827 		    (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
4828 		rtcache_unref(rt, ro);
4829 
4830 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4831 		break;
4832 #endif
4833 	default:
4834 		error = EAFNOSUPPORT;
4835 		break;
4836 	}
4837 	return (error);
4838 }
4839