xref: /netbsd-src/sys/netinet/tcp_input.c (revision e4d7c2e329d54c97e0c0bd3016bbe74f550c3d5e)
1 /*	$NetBSD: tcp_input.c,v 1.105 2000/03/01 12:49:37 itojun Exp $	*/
2 
3 /*
4 %%% portions-copyright-nrl-95
5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
7 Reserved. All rights under this copyright have been assigned to the US
8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
10 software.
11 You should have received a copy of the license with this software. If you
12 didn't get a copy, you may request one from <license@ipv6.nrl.navy.mil>.
13 
14 */
15 
16 /*
17  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
18  * All rights reserved.
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  * 1. Redistributions of source code must retain the above copyright
24  *    notice, this list of conditions and the following disclaimer.
25  * 2. Redistributions in binary form must reproduce the above copyright
26  *    notice, this list of conditions and the following disclaimer in the
27  *    documentation and/or other materials provided with the distribution.
28  * 3. Neither the name of the project nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  */
44 
45 /*-
46  * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
47  * All rights reserved.
48  *
49  * This code is derived from software contributed to The NetBSD Foundation
50  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
51  * Facility, NASA Ames Research Center.
52  *
53  * Redistribution and use in source and binary forms, with or without
54  * modification, are permitted provided that the following conditions
55  * are met:
56  * 1. Redistributions of source code must retain the above copyright
57  *    notice, this list of conditions and the following disclaimer.
58  * 2. Redistributions in binary form must reproduce the above copyright
59  *    notice, this list of conditions and the following disclaimer in the
60  *    documentation and/or other materials provided with the distribution.
61  * 3. All advertising materials mentioning features or use of this software
62  *    must display the following acknowledgement:
63  *	This product includes software developed by the NetBSD
64  *	Foundation, Inc. and its contributors.
65  * 4. Neither the name of The NetBSD Foundation nor the names of its
66  *    contributors may be used to endorse or promote products derived
67  *    from this software without specific prior written permission.
68  *
69  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
70  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
71  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
72  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
73  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
79  * POSSIBILITY OF SUCH DAMAGE.
80  */
81 
82 /*
83  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
84  *	The Regents of the University of California.  All rights reserved.
85  *
86  * Redistribution and use in source and binary forms, with or without
87  * modification, are permitted provided that the following conditions
88  * are met:
89  * 1. Redistributions of source code must retain the above copyright
90  *    notice, this list of conditions and the following disclaimer.
91  * 2. Redistributions in binary form must reproduce the above copyright
92  *    notice, this list of conditions and the following disclaimer in the
93  *    documentation and/or other materials provided with the distribution.
94  * 3. All advertising materials mentioning features or use of this software
95  *    must display the following acknowledgement:
96  *	This product includes software developed by the University of
97  *	California, Berkeley and its contributors.
98  * 4. Neither the name of the University nor the names of its contributors
99  *    may be used to endorse or promote products derived from this software
100  *    without specific prior written permission.
101  *
102  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
103  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
104  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
105  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
106  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
107  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
108  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
109  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
110  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
111  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
112  * SUCH DAMAGE.
113  *
114  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
115  */
116 
117 /*
118  *	TODO list for SYN cache stuff:
119  *
120  *	Find room for a "state" field, which is needed to keep a
121  *	compressed state for TIME_WAIT TCBs.  It's been noted already
122  *	that this is fairly important for very high-volume web and
123  *	mail servers, which use a large number of short-lived
124  *	connections.
125  */
126 
127 #include "opt_inet.h"
128 #include "opt_ipsec.h"
129 
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/malloc.h>
133 #include <sys/mbuf.h>
134 #include <sys/protosw.h>
135 #include <sys/socket.h>
136 #include <sys/socketvar.h>
137 #include <sys/errno.h>
138 #include <sys/syslog.h>
139 #include <sys/pool.h>
140 #include <sys/domain.h>
141 
142 #include <net/if.h>
143 #include <net/route.h>
144 #include <net/if_types.h>
145 
146 #include <netinet/in.h>
147 #include <netinet/in_systm.h>
148 #include <netinet/ip.h>
149 #include <netinet/in_pcb.h>
150 #include <netinet/ip_var.h>
151 
152 #ifdef INET6
153 #ifndef INET
154 #include <netinet/in.h>
155 #endif
156 #include <netinet/ip6.h>
157 #include <netinet6/in6_pcb.h>
158 #include <netinet6/ip6_var.h>
159 #include <netinet6/in6_var.h>
160 #include <netinet/icmp6.h>
161 #include <netinet6/nd6.h>
162 #endif
163 
164 #ifdef PULLDOWN_TEST
165 #ifndef INET6
166 /* always need ip6.h for IP6_EXTHDR_GET */
167 #include <netinet/ip6.h>
168 #endif
169 #endif
170 
171 #include <netinet/tcp.h>
172 #include <netinet/tcp_fsm.h>
173 #include <netinet/tcp_seq.h>
174 #include <netinet/tcp_timer.h>
175 #include <netinet/tcp_var.h>
176 #include <netinet/tcpip.h>
177 #include <netinet/tcp_debug.h>
178 
179 #include <machine/stdarg.h>
180 
181 #ifdef IPSEC
182 #include <netinet6/ipsec.h>
183 #include <netkey/key.h>
184 #include <netkey/key_debug.h>
185 #endif /*IPSEC*/
186 #ifdef INET6
187 #include "faith.h"
188 #endif
189 
190 int	tcprexmtthresh = 3;
191 int	tcp_log_refused;
192 
193 struct timeval tcp_rst_ratelim_last;
194 
195 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
196 
197 /* for modulo comparisons of timestamps */
198 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
199 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
200 
201 /*
202  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
203  */
204 #ifdef INET6
205 #define ND6_HINT(tp) \
206 do { \
207 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
208 	 && tp->t_in6pcb->in6p_route.ro_rt) { \
209 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL); \
210 	} \
211 } while (0)
212 #else
213 #define ND6_HINT(tp)
214 #endif
215 
216 /*
217  * Macro to compute ACK transmission behavior.  Delay the ACK unless
218  * we have already delayed an ACK (must send an ACK every two segments).
219  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
220  * option is enabled.
221  */
222 #define	TCP_SETUP_ACK(tp, th) \
223 do { \
224 	if ((tp)->t_flags & TF_DELACK || \
225 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
226 		tp->t_flags |= TF_ACKNOW; \
227 	else \
228 		TCP_SET_DELACK(tp); \
229 } while (0)
230 
231 /*
232  * Convert TCP protocol fields to host order for easier processing.
233  */
234 #define	TCP_FIELDS_TO_HOST(th)						\
235 do {									\
236 	NTOHL((th)->th_seq);						\
237 	NTOHL((th)->th_ack);						\
238 	NTOHS((th)->th_win);						\
239 	NTOHS((th)->th_urp);						\
240 } while (0)
241 
242 int
243 tcp_reass(tp, th, m, tlen)
244 	register struct tcpcb *tp;
245 	register struct tcphdr *th;
246 	struct mbuf *m;
247 	int *tlen;
248 {
249 	register struct ipqent *p, *q, *nq, *tiqe = NULL;
250 	struct socket *so = NULL;
251 	int pkt_flags;
252 	tcp_seq pkt_seq;
253 	unsigned pkt_len;
254 	u_long rcvpartdupbyte = 0;
255 	u_long rcvoobyte;
256 
257 	if (tp->t_inpcb)
258 		so = tp->t_inpcb->inp_socket;
259 #ifdef INET6
260 	else if (tp->t_in6pcb)
261 		so = tp->t_in6pcb->in6p_socket;
262 #endif
263 
264 	TCP_REASS_LOCK_CHECK(tp);
265 
266 	/*
267 	 * Call with th==0 after become established to
268 	 * force pre-ESTABLISHED data up to user socket.
269 	 */
270 	if (th == 0)
271 		goto present;
272 
273 	rcvoobyte = *tlen;
274 	/*
275 	 * Copy these to local variables because the tcpiphdr
276 	 * gets munged while we are collapsing mbufs.
277 	 */
278 	pkt_seq = th->th_seq;
279 	pkt_len = *tlen;
280 	pkt_flags = th->th_flags;
281 	/*
282 	 * Find a segment which begins after this one does.
283 	 */
284 	for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
285 		nq = q->ipqe_q.le_next;
286 		/*
287 		 * If the received segment is just right after this
288 		 * fragment, merge the two together and then check
289 		 * for further overlaps.
290 		 */
291 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
292 #ifdef TCPREASS_DEBUG
293 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
294 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
295 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
296 #endif
297 			pkt_len += q->ipqe_len;
298 			pkt_flags |= q->ipqe_flags;
299 			pkt_seq = q->ipqe_seq;
300 			m_cat(q->ipqe_m, m);
301 			m = q->ipqe_m;
302 			goto free_ipqe;
303 		}
304 		/*
305 		 * If the received segment is completely past this
306 		 * fragment, we need to go the next fragment.
307 		 */
308 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
309 			p = q;
310 			continue;
311 		}
312 		/*
313 		 * If the fragment is past the received segment,
314 		 * it (or any following) can't be concatenated.
315 		 */
316 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
317 			break;
318 		/*
319 		 * We've received all the data in this segment before.
320 		 * mark it as a duplicate and return.
321 		 */
322 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
323 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
324 			tcpstat.tcps_rcvduppack++;
325 			tcpstat.tcps_rcvdupbyte += pkt_len;
326 			m_freem(m);
327 			if (tiqe != NULL)
328 				pool_put(&ipqent_pool, tiqe);
329 			return (0);
330 		}
331 		/*
332 		 * Received segment completely overlaps this fragment
333 		 * so we drop the fragment (this keeps the temporal
334 		 * ordering of segments correct).
335 		 */
336 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
337 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
338 			rcvpartdupbyte += q->ipqe_len;
339 			m_freem(q->ipqe_m);
340 			goto free_ipqe;
341 		}
342 		/*
343 		 * RX'ed segment extends past the end of the
344 		 * fragment.  Drop the overlapping bytes.  Then
345 		 * merge the fragment and segment then treat as
346 		 * a longer received packet.
347 		 */
348 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
349 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
350 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
351 #ifdef TCPREASS_DEBUG
352 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
353 			       tp, overlap,
354 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
355 #endif
356 			m_adj(m, overlap);
357 			rcvpartdupbyte += overlap;
358 			m_cat(q->ipqe_m, m);
359 			m = q->ipqe_m;
360 			pkt_seq = q->ipqe_seq;
361 			pkt_len += q->ipqe_len - overlap;
362 			rcvoobyte -= overlap;
363 			goto free_ipqe;
364 		}
365 		/*
366 		 * RX'ed segment extends past the front of the
367 		 * fragment.  Drop the overlapping bytes on the
368 		 * received packet.  The packet will then be
369 		 * contatentated with this fragment a bit later.
370 		 */
371 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
372 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
373 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
374 #ifdef TCPREASS_DEBUG
375 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
376 			       tp, overlap,
377 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
378 #endif
379 			m_adj(m, -overlap);
380 			pkt_len -= overlap;
381 			rcvpartdupbyte += overlap;
382 			rcvoobyte -= overlap;
383 		}
384 		/*
385 		 * If the received segment immediates precedes this
386 		 * fragment then tack the fragment onto this segment
387 		 * and reinsert the data.
388 		 */
389 		if (q->ipqe_seq == pkt_seq + pkt_len) {
390 #ifdef TCPREASS_DEBUG
391 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
392 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
393 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
394 #endif
395 			pkt_len += q->ipqe_len;
396 			pkt_flags |= q->ipqe_flags;
397 			m_cat(m, q->ipqe_m);
398 			LIST_REMOVE(q, ipqe_q);
399 			LIST_REMOVE(q, ipqe_timeq);
400 			if (tiqe == NULL) {
401 			    tiqe = q;
402 			} else {
403 			    pool_put(&ipqent_pool, q);
404 			}
405 			break;
406 		}
407 		/*
408 		 * If the fragment is before the segment, remember it.
409 		 * When this loop is terminated, p will contain the
410 		 * pointer to fragment that is right before the received
411 		 * segment.
412 		 */
413 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
414 			p = q;
415 
416 		continue;
417 
418 		/*
419 		 * This is a common operation.  It also will allow
420 		 * to save doing a malloc/free in most instances.
421 		 */
422 	  free_ipqe:
423 		LIST_REMOVE(q, ipqe_q);
424 		LIST_REMOVE(q, ipqe_timeq);
425 		if (tiqe == NULL) {
426 		    tiqe = q;
427 		} else {
428 		    pool_put(&ipqent_pool, q);
429 		}
430 	}
431 
432 	/*
433 	 * Allocate a new queue entry since the received segment did not
434 	 * collapse onto any other out-of-order block; thus we are allocating
435 	 * a new block.  If it had collapsed, tiqe would not be NULL and
436 	 * we would be reusing it.
437 	 * XXX If we can't, just drop the packet.  XXX
438 	 */
439 	if (tiqe == NULL) {
440 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
441 		if (tiqe == NULL) {
442 			tcpstat.tcps_rcvmemdrop++;
443 			m_freem(m);
444 			return (0);
445 		}
446 	}
447 
448 	/*
449 	 * Update the counters.
450 	 */
451 	tcpstat.tcps_rcvoopack++;
452 	tcpstat.tcps_rcvoobyte += rcvoobyte;
453 	if (rcvpartdupbyte) {
454 	    tcpstat.tcps_rcvpartduppack++;
455 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
456 	}
457 
458 	/*
459 	 * Insert the new fragment queue entry into both queues.
460 	 */
461 	tiqe->ipqe_m = m;
462 	tiqe->ipqe_seq = pkt_seq;
463 	tiqe->ipqe_len = pkt_len;
464 	tiqe->ipqe_flags = pkt_flags;
465 	if (p == NULL) {
466 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
467 #ifdef TCPREASS_DEBUG
468 		if (tiqe->ipqe_seq != tp->rcv_nxt)
469 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
470 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
471 #endif
472 	} else {
473 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
474 #ifdef TCPREASS_DEBUG
475 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
476 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
477 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
478 #endif
479 	}
480 
481 	LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
482 
483 present:
484 	/*
485 	 * Present data to user, advancing rcv_nxt through
486 	 * completed sequence space.
487 	 */
488 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
489 		return (0);
490 	q = tp->segq.lh_first;
491 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
492 		return (0);
493 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
494 		return (0);
495 
496 	tp->rcv_nxt += q->ipqe_len;
497 	pkt_flags = q->ipqe_flags & TH_FIN;
498 	ND6_HINT(tp);
499 
500 	LIST_REMOVE(q, ipqe_q);
501 	LIST_REMOVE(q, ipqe_timeq);
502 	if (so->so_state & SS_CANTRCVMORE)
503 		m_freem(q->ipqe_m);
504 	else
505 		sbappend(&so->so_rcv, q->ipqe_m);
506 	pool_put(&ipqent_pool, q);
507 	sorwakeup(so);
508 	return (pkt_flags);
509 }
510 
511 #if defined(INET6) && !defined(TCP6)
512 int
513 tcp6_input(mp, offp, proto)
514 	struct mbuf **mp;
515 	int *offp, proto;
516 {
517 	struct mbuf *m = *mp;
518 
519 #if defined(NFAITH) && 0 < NFAITH
520 	if (m->m_pkthdr.rcvif) {
521 		if (m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
522 			/* XXX send icmp6 host/port unreach? */
523 			m_freem(m);
524 			return IPPROTO_DONE;
525 		}
526 	}
527 #endif
528 
529 	/*
530 	 * draft-itojun-ipv6-tcp-to-anycast
531 	 * better place to put this in?
532 	 */
533 	if (m->m_flags & M_ANYCAST6) {
534 		struct ip6_hdr *ip6;
535 		if (m->m_len < sizeof(struct ip6_hdr)) {
536 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
537 				tcpstat.tcps_rcvshort++;
538 				return IPPROTO_DONE;
539 			}
540 		}
541 		ip6 = mtod(m, struct ip6_hdr *);
542 		icmp6_error(m, ICMP6_DST_UNREACH,
543 			ICMP6_DST_UNREACH_ADDR,
544 			(caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
545 		return IPPROTO_DONE;
546 	}
547 
548 	tcp_input(m, *offp, proto);
549 	return IPPROTO_DONE;
550 }
551 #endif
552 
553 /*
554  * TCP input routine, follows pages 65-76 of the
555  * protocol specification dated September, 1981 very closely.
556  */
557 void
558 #if __STDC__
559 tcp_input(struct mbuf *m, ...)
560 #else
561 tcp_input(m, va_alist)
562 	register struct mbuf *m;
563 #endif
564 {
565 	int proto;
566 	register struct tcphdr *th;
567 	struct ip *ip;
568 	register struct inpcb *inp;
569 #ifdef INET6
570 	struct ip6_hdr *ip6;
571 	register struct in6pcb *in6p;
572 #endif
573 	caddr_t optp = NULL;
574 	int optlen = 0;
575 	int len, tlen, toff, hdroptlen = 0;
576 	register struct tcpcb *tp = 0;
577 	register int tiflags;
578 	struct socket *so = NULL;
579 	int todrop, acked, ourfinisacked, needoutput = 0;
580 	short ostate = 0;
581 	int iss = 0;
582 	u_long tiwin;
583 	struct tcp_opt_info opti;
584 	int off, iphlen;
585 	va_list ap;
586 	int af;		/* af on the wire */
587 	struct mbuf *tcp_saveti = NULL;
588 
589 	va_start(ap, m);
590 	toff = va_arg(ap, int);
591 	proto = va_arg(ap, int);
592 	va_end(ap);
593 
594 	tcpstat.tcps_rcvtotal++;
595 
596 	bzero(&opti, sizeof(opti));
597 	opti.ts_present = 0;
598 	opti.maxseg = 0;
599 
600 	/*
601 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
602 	 *
603 	 * TCP is, by definition, unicast, so we reject all
604 	 * multicast outright.
605 	 *
606 	 * Note, there are additional src/dst address checks in
607 	 * the AF-specific code below.
608 	 */
609 	if (m->m_flags & (M_BCAST|M_MCAST)) {
610 		/* XXX stat */
611 		goto drop;
612 	}
613 #ifdef INET6
614 	if (m->m_flags & M_ANYCAST6) {
615 		/* XXX stat */
616 		goto drop;
617 	}
618 #endif
619 
620 	/*
621 	 * Get IP and TCP header together in first mbuf.
622 	 * Note: IP leaves IP header in first mbuf.
623 	 */
624 	ip = mtod(m, struct ip *);
625 #ifdef INET6
626 	ip6 = NULL;
627 #endif
628 	switch (ip->ip_v) {
629 	case 4:
630 		af = AF_INET;
631 		iphlen = sizeof(struct ip);
632 #ifndef PULLDOWN_TEST
633 		/* would like to get rid of this... */
634 		if (toff > sizeof (struct ip)) {
635 			ip_stripoptions(m, (struct mbuf *)0);
636 			toff = sizeof(struct ip);
637 		}
638 		if (m->m_len < toff + sizeof (struct tcphdr)) {
639 			if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
640 				tcpstat.tcps_rcvshort++;
641 				return;
642 			}
643 		}
644 		ip = mtod(m, struct ip *);
645 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
646 #else
647 		ip = mtod(m, struct ip *);
648 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
649 			sizeof(struct tcphdr));
650 		if (th == NULL) {
651 			tcpstat.tcps_rcvshort++;
652 			return;
653 		}
654 #endif
655 
656 		/*
657 		 * Make sure destination address is not multicast.
658 		 * Source address checked in ip_input().
659 		 */
660 		if (IN_MULTICAST(ip->ip_dst.s_addr)) {
661 			/* XXX stat */
662 			goto drop;
663 		}
664 
665 		/* We do the checksum after PCB lookup... */
666 		len = ip->ip_len;
667 		tlen = len - toff;
668 		break;
669 #ifdef INET6
670 	case 6:
671 		ip = NULL;
672 		iphlen = sizeof(struct ip6_hdr);
673 		af = AF_INET6;
674 #ifndef PULLDOWN_TEST
675 		if (m->m_len < toff + sizeof(struct tcphdr)) {
676 			m = m_pullup(m, toff + sizeof(struct tcphdr));	/*XXX*/
677 			if (m == NULL) {
678 				tcpstat.tcps_rcvshort++;
679 				return;
680 			}
681 		}
682 		ip6 = mtod(m, struct ip6_hdr *);
683 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
684 #else
685 		ip6 = mtod(m, struct ip6_hdr *);
686 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
687 			sizeof(struct tcphdr));
688 		if (th == NULL) {
689 			tcpstat.tcps_rcvshort++;
690 			return;
691 		}
692 #endif
693 
694 		/* Be proactive about malicious use of IPv4 mapped address */
695 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
696 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
697 			/* XXX stat */
698 			goto drop;
699 		}
700 
701 		/*
702 		 * Make sure destination address is not multicast.
703 		 * Source address checked in ip6_input().
704 		 */
705 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
706 			/* XXX stat */
707 			goto drop;
708 		}
709 
710 		/* We do the checksum after PCB lookup... */
711 		len = m->m_pkthdr.len;
712 		tlen = len - toff;
713 		break;
714 #endif
715 	default:
716 		m_freem(m);
717 		return;
718 	}
719 
720 	/*
721 	 * Check that TCP offset makes sense,
722 	 * pull out TCP options and adjust length.		XXX
723 	 */
724 	off = th->th_off << 2;
725 	if (off < sizeof (struct tcphdr) || off > tlen) {
726 		tcpstat.tcps_rcvbadoff++;
727 		goto drop;
728 	}
729 	tlen -= off;
730 
731 	/*
732 	 * tcp_input() has been modified to use tlen to mean the TCP data
733 	 * length throughout the function.  Other functions can use
734 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
735 	 * rja
736 	 */
737 
738 	if (off > sizeof (struct tcphdr)) {
739 #ifndef PULLDOWN_TEST
740 		if (m->m_len < toff + off) {
741 			if ((m = m_pullup(m, toff + off)) == 0) {
742 				tcpstat.tcps_rcvshort++;
743 				return;
744 			}
745 			switch (af) {
746 			case AF_INET:
747 				ip = mtod(m, struct ip *);
748 				break;
749 #ifdef INET6
750 			case AF_INET6:
751 				ip6 = mtod(m, struct ip6_hdr *);
752 				break;
753 #endif
754 			}
755 			th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
756 		}
757 #else
758 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
759 		if (th == NULL) {
760 			tcpstat.tcps_rcvshort++;
761 			return;
762 		}
763 		/*
764 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
765 		 * (as they're before toff) and we don't need to update those.
766 		 */
767 #endif
768 		optlen = off - sizeof (struct tcphdr);
769 		optp = ((caddr_t)th) + sizeof(struct tcphdr);
770 		/*
771 		 * Do quick retrieval of timestamp options ("options
772 		 * prediction?").  If timestamp is the only option and it's
773 		 * formatted as recommended in RFC 1323 appendix A, we
774 		 * quickly get the values now and not bother calling
775 		 * tcp_dooptions(), etc.
776 		 */
777 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
778 		     (optlen > TCPOLEN_TSTAMP_APPA &&
779 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
780 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
781 		     (th->th_flags & TH_SYN) == 0) {
782 			opti.ts_present = 1;
783 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
784 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
785 			optp = NULL;	/* we've parsed the options */
786 		}
787 	}
788 	tiflags = th->th_flags;
789 
790 	/*
791 	 * Locate pcb for segment.
792 	 */
793 findpcb:
794 	inp = NULL;
795 #ifdef INET6
796 	in6p = NULL;
797 #endif
798 	switch (af) {
799 	case AF_INET:
800 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
801 		    ip->ip_dst, th->th_dport);
802 		if (inp == 0) {
803 			++tcpstat.tcps_pcbhashmiss;
804 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
805 		}
806 #if defined(INET6) && !defined(TCP6)
807 		if (inp == 0) {
808 			struct in6_addr s, d;
809 
810 			/* mapped addr case */
811 			bzero(&s, sizeof(s));
812 			s.s6_addr16[5] = htons(0xffff);
813 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
814 			bzero(&d, sizeof(d));
815 			d.s6_addr16[5] = htons(0xffff);
816 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
817 			in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
818 				&d, th->th_dport, 0);
819 			if (in6p == 0) {
820 				++tcpstat.tcps_pcbhashmiss;
821 				in6p = in6_pcblookup_bind(&tcb6, &d,
822 					th->th_dport, 0);
823 			}
824 		}
825 #endif
826 #ifndef INET6
827 		if (inp == 0)
828 #else
829 		if (inp == 0 && in6p == 0)
830 #endif
831 		{
832 			++tcpstat.tcps_noport;
833 			if (tcp_log_refused && (tiflags & TH_SYN)) {
834 #ifndef INET6
835 				char src[4*sizeof "123"];
836 				char dst[4*sizeof "123"];
837 #else
838 				char src[INET6_ADDRSTRLEN];
839 				char dst[INET6_ADDRSTRLEN];
840 #endif
841 				if (ip) {
842 					strcpy(src, inet_ntoa(ip->ip_src));
843 					strcpy(dst, inet_ntoa(ip->ip_dst));
844 				}
845 #ifdef INET6
846 				else if (ip6) {
847 					strcpy(src, ip6_sprintf(&ip6->ip6_src));
848 					strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
849 				}
850 #endif
851 				else {
852 					strcpy(src, "(unknown)");
853 					strcpy(dst, "(unknown)");
854 				}
855 				log(LOG_INFO,
856 				    "Connection attempt to TCP %s:%d from %s:%d\n",
857 				    dst, ntohs(th->th_dport),
858 				    src, ntohs(th->th_sport));
859 			}
860 			TCP_FIELDS_TO_HOST(th);
861 			goto dropwithreset_ratelim;
862 		}
863 #ifdef IPSEC
864 		if (inp && ipsec4_in_reject(m, inp)) {
865 			ipsecstat.in_polvio++;
866 			goto drop;
867 		}
868 #ifdef INET6
869 		else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
870 			ipsecstat.in_polvio++;
871 			goto drop;
872 		}
873 #endif
874 #endif /*IPSEC*/
875 		break;
876 #if defined(INET6) && !defined(TCP6)
877 	case AF_INET6:
878 	    {
879 		int faith;
880 
881 #if defined(NFAITH) && NFAITH > 0
882 		if (m->m_pkthdr.rcvif
883 		 && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
884 			faith = 1;
885 		} else
886 			faith = 0;
887 #else
888 		faith = 0;
889 #endif
890 		in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
891 			&ip6->ip6_dst, th->th_dport, faith);
892 		if (in6p == NULL) {
893 			++tcpstat.tcps_pcbhashmiss;
894 			in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
895 				th->th_dport, faith);
896 		}
897 		if (in6p == NULL) {
898 			++tcpstat.tcps_noport;
899 			TCP_FIELDS_TO_HOST(th);
900 			goto dropwithreset_ratelim;
901 		}
902 #ifdef IPSEC
903 		if (ipsec6_in_reject(m, in6p)) {
904 			ipsec6stat.in_polvio++;
905 			goto drop;
906 		}
907 #endif /*IPSEC*/
908 		break;
909 	    }
910 #endif
911 	}
912 
913 	/*
914 	 * If the state is CLOSED (i.e., TCB does not exist) then
915 	 * all data in the incoming segment is discarded.
916 	 * If the TCB exists but is in CLOSED state, it is embryonic,
917 	 * but should either do a listen or a connect soon.
918 	 */
919 	tp = NULL;
920 	so = NULL;
921 	if (inp) {
922 		tp = intotcpcb(inp);
923 		so = inp->inp_socket;
924 	}
925 #ifdef INET6
926 	else if (in6p) {
927 		tp = in6totcpcb(in6p);
928 		so = in6p->in6p_socket;
929 	}
930 #endif
931 	if (tp == 0) {
932 		TCP_FIELDS_TO_HOST(th);
933 		goto dropwithreset_ratelim;
934 	}
935 	if (tp->t_state == TCPS_CLOSED)
936 		goto drop;
937 
938 	/*
939 	 * Checksum extended TCP header and data.
940 	 */
941 	switch (af) {
942 	case AF_INET:
943 #ifndef PULLDOWN_TEST
944 	    {
945 		struct ipovly *ipov;
946 		ipov = (struct ipovly *)ip;
947 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
948 		ipov->ih_len = htons(tlen + off);
949 
950 		if (in_cksum(m, len) != 0) {
951 			tcpstat.tcps_rcvbadsum++;
952 			goto drop;
953 		}
954 	    }
955 #else
956 		if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0) {
957 			tcpstat.tcps_rcvbadsum++;
958 			goto drop;
959 		}
960 #endif
961 		break;
962 
963 #ifdef INET6
964 	case AF_INET6:
965 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0) {
966 			tcpstat.tcps_rcvbadsum++;
967 			goto drop;
968 		}
969 		break;
970 #endif
971 	}
972 
973 	TCP_FIELDS_TO_HOST(th);
974 
975 	/* Unscale the window into a 32-bit value. */
976 	if ((tiflags & TH_SYN) == 0)
977 		tiwin = th->th_win << tp->snd_scale;
978 	else
979 		tiwin = th->th_win;
980 
981 #ifdef INET6
982 	/* save packet options if user wanted */
983 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
984 		if (in6p->in6p_options) {
985 			m_freem(in6p->in6p_options);
986 			in6p->in6p_options = 0;
987 		}
988 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
989 	}
990 #endif
991 
992 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
993 		union syn_cache_sa src;
994 		union syn_cache_sa dst;
995 
996 		bzero(&src, sizeof(src));
997 		bzero(&dst, sizeof(dst));
998 		switch (af) {
999 		case AF_INET:
1000 			src.sin.sin_len = sizeof(struct sockaddr_in);
1001 			src.sin.sin_family = AF_INET;
1002 			src.sin.sin_addr = ip->ip_src;
1003 			src.sin.sin_port = th->th_sport;
1004 
1005 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1006 			dst.sin.sin_family = AF_INET;
1007 			dst.sin.sin_addr = ip->ip_dst;
1008 			dst.sin.sin_port = th->th_dport;
1009 			break;
1010 #ifdef INET6
1011 		case AF_INET6:
1012 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1013 			src.sin6.sin6_family = AF_INET6;
1014 			src.sin6.sin6_addr = ip6->ip6_src;
1015 			src.sin6.sin6_port = th->th_sport;
1016 
1017 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1018 			dst.sin6.sin6_family = AF_INET6;
1019 			dst.sin6.sin6_addr = ip6->ip6_dst;
1020 			dst.sin6.sin6_port = th->th_dport;
1021 			break;
1022 #endif /* INET6 */
1023 		default:
1024 			goto badsyn;	/*sanity*/
1025 		}
1026 
1027 		if (so->so_options & SO_DEBUG) {
1028 			ostate = tp->t_state;
1029 			tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1030 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1031 				m_freem(tcp_saveti);
1032 				tcp_saveti = NULL;
1033 			} else {
1034 				tcp_saveti->m_len += sizeof(struct tcphdr);
1035 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1036 					sizeof(struct tcphdr));
1037 			}
1038 			if (tcp_saveti) {
1039 				/*
1040 				 * need to recover version # field, which was
1041 				 * overwritten on ip_cksum computation.
1042 				 */
1043 				struct ip *sip;
1044 				sip = mtod(tcp_saveti, struct ip *);
1045 				switch (af) {
1046 				case AF_INET:
1047 					sip->ip_v = 4;
1048 					break;
1049 #ifdef INET6
1050 				case AF_INET6:
1051 					sip->ip_v = 6;
1052 					break;
1053 #endif
1054 				}
1055 			}
1056 		}
1057 		if (so->so_options & SO_ACCEPTCONN) {
1058   			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1059 				if (tiflags & TH_RST) {
1060 					syn_cache_reset(&src.sa, &dst.sa, th);
1061 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1062 				    (TH_ACK|TH_SYN)) {
1063 					/*
1064 					 * Received a SYN,ACK.  This should
1065 					 * never happen while we are in
1066 					 * LISTEN.  Send an RST.
1067 					 */
1068 					goto badsyn;
1069 				} else if (tiflags & TH_ACK) {
1070 					so = syn_cache_get(&src.sa, &dst.sa,
1071 						th, toff, tlen, so, m);
1072 					if (so == NULL) {
1073 						/*
1074 						 * We don't have a SYN for
1075 						 * this ACK; send an RST.
1076 						 */
1077 						goto badsyn;
1078 					} else if (so ==
1079 					    (struct socket *)(-1)) {
1080 						/*
1081 						 * We were unable to create
1082 						 * the connection.  If the
1083 						 * 3-way handshake was
1084 						 * completed, and RST has
1085 						 * been sent to the peer.
1086 						 * Since the mbuf might be
1087 						 * in use for the reply,
1088 						 * do not free it.
1089 						 */
1090 						m = NULL;
1091 					} else {
1092 						/*
1093 						 * We have created a
1094 						 * full-blown connection.
1095 						 */
1096 						tp = NULL;
1097 						inp = NULL;
1098 #ifdef INET6
1099 						in6p = NULL;
1100 #endif
1101 						switch (so->so_proto->pr_domain->dom_family) {
1102 						case AF_INET:
1103 							inp = sotoinpcb(so);
1104 							tp = intotcpcb(inp);
1105 							break;
1106 #ifdef INET6
1107 						case AF_INET6:
1108 							in6p = sotoin6pcb(so);
1109 							tp = in6totcpcb(in6p);
1110 							break;
1111 #endif
1112 						}
1113 						if (tp == NULL)
1114 							goto badsyn;	/*XXX*/
1115 						tiwin <<= tp->snd_scale;
1116 						goto after_listen;
1117 					}
1118   				} else {
1119 					/*
1120 					 * None of RST, SYN or ACK was set.
1121 					 * This is an invalid packet for a
1122 					 * TCB in LISTEN state.  Send a RST.
1123 					 */
1124 					goto badsyn;
1125 				}
1126   			} else {
1127 				/*
1128 				 * Received a SYN.
1129 				 */
1130 
1131 				/*
1132 				 * LISTEN socket received a SYN
1133 				 * from itself?  This can't possibly
1134 				 * be valid; drop the packet.
1135 				 */
1136 				if (th->th_sport == th->th_dport) {
1137 					int i;
1138 
1139 					switch (af) {
1140 					case AF_INET:
1141 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1142 						break;
1143 #ifdef INET6
1144 					case AF_INET6:
1145 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1146 						break;
1147 #endif
1148 					default:
1149 						i = 1;
1150 					}
1151 					if (i) {
1152 						tcpstat.tcps_badsyn++;
1153 						goto drop;
1154 					}
1155 				}
1156 
1157 				/*
1158 				 * SYN looks ok; create compressed TCP
1159 				 * state for it.
1160 				 */
1161 				if (so->so_qlen <= so->so_qlimit &&
1162 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1163 						so, m, optp, optlen, &opti))
1164 					m = NULL;
1165 			}
1166 			goto drop;
1167 		}
1168 	}
1169 
1170 after_listen:
1171 #ifdef DIAGNOSTIC
1172 	/*
1173 	 * Should not happen now that all embryonic connections
1174 	 * are handled with compressed state.
1175 	 */
1176 	if (tp->t_state == TCPS_LISTEN)
1177 		panic("tcp_input: TCPS_LISTEN");
1178 #endif
1179 
1180 	/*
1181 	 * Segment received on connection.
1182 	 * Reset idle time and keep-alive timer.
1183 	 */
1184 	tp->t_idle = 0;
1185 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1186 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1187 
1188 	/*
1189 	 * Process options.
1190 	 */
1191 	if (optp)
1192 		tcp_dooptions(tp, optp, optlen, th, &opti);
1193 
1194 	/*
1195 	 * Header prediction: check for the two common cases
1196 	 * of a uni-directional data xfer.  If the packet has
1197 	 * no control flags, is in-sequence, the window didn't
1198 	 * change and we're not retransmitting, it's a
1199 	 * candidate.  If the length is zero and the ack moved
1200 	 * forward, we're the sender side of the xfer.  Just
1201 	 * free the data acked & wake any higher level process
1202 	 * that was blocked waiting for space.  If the length
1203 	 * is non-zero and the ack didn't move, we're the
1204 	 * receiver side.  If we're getting packets in-order
1205 	 * (the reassembly queue is empty), add the data to
1206 	 * the socket buffer and note that we need a delayed ack.
1207 	 */
1208 	if (tp->t_state == TCPS_ESTABLISHED &&
1209 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1210 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1211 	    th->th_seq == tp->rcv_nxt &&
1212 	    tiwin && tiwin == tp->snd_wnd &&
1213 	    tp->snd_nxt == tp->snd_max) {
1214 
1215 		/*
1216 		 * If last ACK falls within this segment's sequence numbers,
1217 		 *  record the timestamp.
1218 		 */
1219 		if (opti.ts_present &&
1220 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1221 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1222 			tp->ts_recent_age = tcp_now;
1223 			tp->ts_recent = opti.ts_val;
1224 		}
1225 
1226 		if (tlen == 0) {
1227 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1228 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1229 			    tp->snd_cwnd >= tp->snd_wnd &&
1230 			    tp->t_dupacks < tcprexmtthresh) {
1231 				/*
1232 				 * this is a pure ack for outstanding data.
1233 				 */
1234 				++tcpstat.tcps_predack;
1235 				if (opti.ts_present && opti.ts_ecr)
1236 					tcp_xmit_timer(tp,
1237 					    tcp_now - opti.ts_ecr + 1);
1238 				else if (tp->t_rtt &&
1239 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1240 					tcp_xmit_timer(tp, tp->t_rtt);
1241 				acked = th->th_ack - tp->snd_una;
1242 				tcpstat.tcps_rcvackpack++;
1243 				tcpstat.tcps_rcvackbyte += acked;
1244 				ND6_HINT(tp);
1245 				sbdrop(&so->so_snd, acked);
1246 				/*
1247 				 * We want snd_recover to track snd_una to
1248 				 * avoid sequence wraparound problems for
1249 				 * very large transfers.
1250 				 */
1251 				tp->snd_una = tp->snd_recover = th->th_ack;
1252 				m_freem(m);
1253 
1254 				/*
1255 				 * If all outstanding data are acked, stop
1256 				 * retransmit timer, otherwise restart timer
1257 				 * using current (possibly backed-off) value.
1258 				 * If process is waiting for space,
1259 				 * wakeup/selwakeup/signal.  If data
1260 				 * are ready to send, let tcp_output
1261 				 * decide between more output or persist.
1262 				 */
1263 				if (tp->snd_una == tp->snd_max)
1264 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1265 				else if (TCP_TIMER_ISARMED(tp,
1266 				    TCPT_PERSIST) == 0)
1267 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1268 					    tp->t_rxtcur);
1269 
1270 				sowwakeup(so);
1271 				if (so->so_snd.sb_cc)
1272 					(void) tcp_output(tp);
1273 				if (tcp_saveti)
1274 					m_freem(tcp_saveti);
1275 				return;
1276 			}
1277 		} else if (th->th_ack == tp->snd_una &&
1278 		    tp->segq.lh_first == NULL &&
1279 		    tlen <= sbspace(&so->so_rcv)) {
1280 			/*
1281 			 * this is a pure, in-sequence data packet
1282 			 * with nothing on the reassembly queue and
1283 			 * we have enough buffer space to take it.
1284 			 */
1285 			++tcpstat.tcps_preddat;
1286 			tp->rcv_nxt += tlen;
1287 			tcpstat.tcps_rcvpack++;
1288 			tcpstat.tcps_rcvbyte += tlen;
1289 			ND6_HINT(tp);
1290 			/*
1291 			 * Drop TCP, IP headers and TCP options then add data
1292 			 * to socket buffer.
1293 			 */
1294 			m_adj(m, toff + off);
1295 			sbappend(&so->so_rcv, m);
1296 			sorwakeup(so);
1297 			TCP_SETUP_ACK(tp, th);
1298 			if (tp->t_flags & TF_ACKNOW)
1299 				(void) tcp_output(tp);
1300 			if (tcp_saveti)
1301 				m_freem(tcp_saveti);
1302 			return;
1303 		}
1304 	}
1305 
1306 	/*
1307 	 * Compute mbuf offset to TCP data segment.
1308 	 */
1309 	hdroptlen = toff + off;
1310 
1311 	/*
1312 	 * Calculate amount of space in receive window,
1313 	 * and then do TCP input processing.
1314 	 * Receive window is amount of space in rcv queue,
1315 	 * but not less than advertised window.
1316 	 */
1317 	{ int win;
1318 
1319 	win = sbspace(&so->so_rcv);
1320 	if (win < 0)
1321 		win = 0;
1322 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1323 	}
1324 
1325 	switch (tp->t_state) {
1326 
1327 	/*
1328 	 * If the state is SYN_SENT:
1329 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1330 	 *	if seg contains a RST, then drop the connection.
1331 	 *	if seg does not contain SYN, then drop it.
1332 	 * Otherwise this is an acceptable SYN segment
1333 	 *	initialize tp->rcv_nxt and tp->irs
1334 	 *	if seg contains ack then advance tp->snd_una
1335 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1336 	 *	arrange for segment to be acked (eventually)
1337 	 *	continue processing rest of data/controls, beginning with URG
1338 	 */
1339 	case TCPS_SYN_SENT:
1340 		if ((tiflags & TH_ACK) &&
1341 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1342 		     SEQ_GT(th->th_ack, tp->snd_max)))
1343 			goto dropwithreset;
1344 		if (tiflags & TH_RST) {
1345 			if (tiflags & TH_ACK)
1346 				tp = tcp_drop(tp, ECONNREFUSED);
1347 			goto drop;
1348 		}
1349 		if ((tiflags & TH_SYN) == 0)
1350 			goto drop;
1351 		if (tiflags & TH_ACK) {
1352 			tp->snd_una = tp->snd_recover = th->th_ack;
1353 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1354 				tp->snd_nxt = tp->snd_una;
1355 		}
1356 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
1357 		tp->irs = th->th_seq;
1358 		tcp_rcvseqinit(tp);
1359 		tp->t_flags |= TF_ACKNOW;
1360 		tcp_mss_from_peer(tp, opti.maxseg);
1361 
1362 		/*
1363 		 * Initialize the initial congestion window.  If we
1364 		 * had to retransmit the SYN, we must initialize cwnd
1365 		 * to 1 segment (i.e. the Loss Window).
1366 		 */
1367 		if (tp->t_flags & TF_SYN_REXMT)
1368 			tp->snd_cwnd = tp->t_peermss;
1369 		else
1370 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1371 			    tp->t_peermss);
1372 
1373 		tcp_rmx_rtt(tp);
1374 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
1375 			tcpstat.tcps_connects++;
1376 			soisconnected(so);
1377 			tcp_established(tp);
1378 			/* Do window scaling on this connection? */
1379 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1380 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1381 				tp->snd_scale = tp->requested_s_scale;
1382 				tp->rcv_scale = tp->request_r_scale;
1383 			}
1384 			TCP_REASS_LOCK(tp);
1385 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1386 			TCP_REASS_UNLOCK(tp);
1387 			/*
1388 			 * if we didn't have to retransmit the SYN,
1389 			 * use its rtt as our initial srtt & rtt var.
1390 			 */
1391 			if (tp->t_rtt)
1392 				tcp_xmit_timer(tp, tp->t_rtt);
1393 		} else
1394 			tp->t_state = TCPS_SYN_RECEIVED;
1395 
1396 		/*
1397 		 * Advance th->th_seq to correspond to first data byte.
1398 		 * If data, trim to stay within window,
1399 		 * dropping FIN if necessary.
1400 		 */
1401 		th->th_seq++;
1402 		if (tlen > tp->rcv_wnd) {
1403 			todrop = tlen - tp->rcv_wnd;
1404 			m_adj(m, -todrop);
1405 			tlen = tp->rcv_wnd;
1406 			tiflags &= ~TH_FIN;
1407 			tcpstat.tcps_rcvpackafterwin++;
1408 			tcpstat.tcps_rcvbyteafterwin += todrop;
1409 		}
1410 		tp->snd_wl1 = th->th_seq - 1;
1411 		tp->rcv_up = th->th_seq;
1412 		goto step6;
1413 
1414 	/*
1415 	 * If the state is SYN_RECEIVED:
1416 	 *	If seg contains an ACK, but not for our SYN, drop the input
1417 	 *	and generate an RST.  See page 36, rfc793
1418 	 */
1419 	case TCPS_SYN_RECEIVED:
1420 		if ((tiflags & TH_ACK) &&
1421 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1422 		     SEQ_GT(th->th_ack, tp->snd_max)))
1423 			goto dropwithreset;
1424 		break;
1425 	}
1426 
1427 	/*
1428 	 * States other than LISTEN or SYN_SENT.
1429 	 * First check timestamp, if present.
1430 	 * Then check that at least some bytes of segment are within
1431 	 * receive window.  If segment begins before rcv_nxt,
1432 	 * drop leading data (and SYN); if nothing left, just ack.
1433 	 *
1434 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1435 	 * and it's less than ts_recent, drop it.
1436 	 */
1437 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1438 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1439 
1440 		/* Check to see if ts_recent is over 24 days old.  */
1441 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1442 			/*
1443 			 * Invalidate ts_recent.  If this segment updates
1444 			 * ts_recent, the age will be reset later and ts_recent
1445 			 * will get a valid value.  If it does not, setting
1446 			 * ts_recent to zero will at least satisfy the
1447 			 * requirement that zero be placed in the timestamp
1448 			 * echo reply when ts_recent isn't valid.  The
1449 			 * age isn't reset until we get a valid ts_recent
1450 			 * because we don't want out-of-order segments to be
1451 			 * dropped when ts_recent is old.
1452 			 */
1453 			tp->ts_recent = 0;
1454 		} else {
1455 			tcpstat.tcps_rcvduppack++;
1456 			tcpstat.tcps_rcvdupbyte += tlen;
1457 			tcpstat.tcps_pawsdrop++;
1458 			goto dropafterack;
1459 		}
1460 	}
1461 
1462 	todrop = tp->rcv_nxt - th->th_seq;
1463 	if (todrop > 0) {
1464 		if (tiflags & TH_SYN) {
1465 			tiflags &= ~TH_SYN;
1466 			th->th_seq++;
1467 			if (th->th_urp > 1)
1468 				th->th_urp--;
1469 			else {
1470 				tiflags &= ~TH_URG;
1471 				th->th_urp = 0;
1472 			}
1473 			todrop--;
1474 		}
1475 		if (todrop > tlen ||
1476 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1477 			/*
1478 			 * Any valid FIN must be to the left of the window.
1479 			 * At this point the FIN must be a duplicate or
1480 			 * out of sequence; drop it.
1481 			 */
1482 			tiflags &= ~TH_FIN;
1483 			/*
1484 			 * Send an ACK to resynchronize and drop any data.
1485 			 * But keep on processing for RST or ACK.
1486 			 */
1487 			tp->t_flags |= TF_ACKNOW;
1488 			todrop = tlen;
1489 			tcpstat.tcps_rcvdupbyte += todrop;
1490 			tcpstat.tcps_rcvduppack++;
1491 		} else {
1492 			tcpstat.tcps_rcvpartduppack++;
1493 			tcpstat.tcps_rcvpartdupbyte += todrop;
1494 		}
1495 		hdroptlen += todrop;	/*drop from head afterwards*/
1496 		th->th_seq += todrop;
1497 		tlen -= todrop;
1498 		if (th->th_urp > todrop)
1499 			th->th_urp -= todrop;
1500 		else {
1501 			tiflags &= ~TH_URG;
1502 			th->th_urp = 0;
1503 		}
1504 	}
1505 
1506 	/*
1507 	 * If new data are received on a connection after the
1508 	 * user processes are gone, then RST the other end.
1509 	 */
1510 	if ((so->so_state & SS_NOFDREF) &&
1511 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1512 		tp = tcp_close(tp);
1513 		tcpstat.tcps_rcvafterclose++;
1514 		goto dropwithreset;
1515 	}
1516 
1517 	/*
1518 	 * If segment ends after window, drop trailing data
1519 	 * (and PUSH and FIN); if nothing left, just ACK.
1520 	 */
1521 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1522 	if (todrop > 0) {
1523 		tcpstat.tcps_rcvpackafterwin++;
1524 		if (todrop >= tlen) {
1525 			tcpstat.tcps_rcvbyteafterwin += tlen;
1526 			/*
1527 			 * If a new connection request is received
1528 			 * while in TIME_WAIT, drop the old connection
1529 			 * and start over if the sequence numbers
1530 			 * are above the previous ones.
1531 			 */
1532 			if (tiflags & TH_SYN &&
1533 			    tp->t_state == TCPS_TIME_WAIT &&
1534 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1535 				iss = tcp_new_iss(tp, sizeof(struct tcpcb),
1536 						  tp->snd_nxt);
1537 				tp = tcp_close(tp);
1538 				goto findpcb;
1539 			}
1540 			/*
1541 			 * If window is closed can only take segments at
1542 			 * window edge, and have to drop data and PUSH from
1543 			 * incoming segments.  Continue processing, but
1544 			 * remember to ack.  Otherwise, drop segment
1545 			 * and ack.
1546 			 */
1547 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1548 				tp->t_flags |= TF_ACKNOW;
1549 				tcpstat.tcps_rcvwinprobe++;
1550 			} else
1551 				goto dropafterack;
1552 		} else
1553 			tcpstat.tcps_rcvbyteafterwin += todrop;
1554 		m_adj(m, -todrop);
1555 		tlen -= todrop;
1556 		tiflags &= ~(TH_PUSH|TH_FIN);
1557 	}
1558 
1559 	/*
1560 	 * If last ACK falls within this segment's sequence numbers,
1561 	 * and the timestamp is newer, record it.
1562 	 */
1563 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1564 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1565 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1566 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1567 		tp->ts_recent_age = tcp_now;
1568 		tp->ts_recent = opti.ts_val;
1569 	}
1570 
1571 	/*
1572 	 * If the RST bit is set examine the state:
1573 	 *    SYN_RECEIVED STATE:
1574 	 *	If passive open, return to LISTEN state.
1575 	 *	If active open, inform user that connection was refused.
1576 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1577 	 *	Inform user that connection was reset, and close tcb.
1578 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1579 	 *	Close the tcb.
1580 	 */
1581 	if (tiflags&TH_RST) switch (tp->t_state) {
1582 
1583 	case TCPS_SYN_RECEIVED:
1584 		so->so_error = ECONNREFUSED;
1585 		goto close;
1586 
1587 	case TCPS_ESTABLISHED:
1588 	case TCPS_FIN_WAIT_1:
1589 	case TCPS_FIN_WAIT_2:
1590 	case TCPS_CLOSE_WAIT:
1591 		so->so_error = ECONNRESET;
1592 	close:
1593 		tp->t_state = TCPS_CLOSED;
1594 		tcpstat.tcps_drops++;
1595 		tp = tcp_close(tp);
1596 		goto drop;
1597 
1598 	case TCPS_CLOSING:
1599 	case TCPS_LAST_ACK:
1600 	case TCPS_TIME_WAIT:
1601 		tp = tcp_close(tp);
1602 		goto drop;
1603 	}
1604 
1605 	/*
1606 	 * If a SYN is in the window, then this is an
1607 	 * error and we send an RST and drop the connection.
1608 	 */
1609 	if (tiflags & TH_SYN) {
1610 		tp = tcp_drop(tp, ECONNRESET);
1611 		goto dropwithreset;
1612 	}
1613 
1614 	/*
1615 	 * If the ACK bit is off we drop the segment and return.
1616 	 */
1617 	if ((tiflags & TH_ACK) == 0) {
1618 		if (tp->t_flags & TF_ACKNOW)
1619 			goto dropafterack;
1620 		else
1621 			goto drop;
1622 	}
1623 
1624 	/*
1625 	 * Ack processing.
1626 	 */
1627 	switch (tp->t_state) {
1628 
1629 	/*
1630 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1631 	 * ESTABLISHED state and continue processing, otherwise
1632 	 * send an RST.
1633 	 */
1634 	case TCPS_SYN_RECEIVED:
1635 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
1636 		    SEQ_GT(th->th_ack, tp->snd_max))
1637 			goto dropwithreset;
1638 		tcpstat.tcps_connects++;
1639 		soisconnected(so);
1640 		tcp_established(tp);
1641 		/* Do window scaling? */
1642 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1643 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1644 			tp->snd_scale = tp->requested_s_scale;
1645 			tp->rcv_scale = tp->request_r_scale;
1646 		}
1647 		TCP_REASS_LOCK(tp);
1648 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1649 		TCP_REASS_UNLOCK(tp);
1650 		tp->snd_wl1 = th->th_seq - 1;
1651 		/* fall into ... */
1652 
1653 	/*
1654 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1655 	 * ACKs.  If the ack is in the range
1656 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1657 	 * then advance tp->snd_una to th->th_ack and drop
1658 	 * data from the retransmission queue.  If this ACK reflects
1659 	 * more up to date window information we update our window information.
1660 	 */
1661 	case TCPS_ESTABLISHED:
1662 	case TCPS_FIN_WAIT_1:
1663 	case TCPS_FIN_WAIT_2:
1664 	case TCPS_CLOSE_WAIT:
1665 	case TCPS_CLOSING:
1666 	case TCPS_LAST_ACK:
1667 	case TCPS_TIME_WAIT:
1668 
1669 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1670 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1671 				tcpstat.tcps_rcvdupack++;
1672 				/*
1673 				 * If we have outstanding data (other than
1674 				 * a window probe), this is a completely
1675 				 * duplicate ack (ie, window info didn't
1676 				 * change), the ack is the biggest we've
1677 				 * seen and we've seen exactly our rexmt
1678 				 * threshhold of them, assume a packet
1679 				 * has been dropped and retransmit it.
1680 				 * Kludge snd_nxt & the congestion
1681 				 * window so we send only this one
1682 				 * packet.
1683 				 *
1684 				 * We know we're losing at the current
1685 				 * window size so do congestion avoidance
1686 				 * (set ssthresh to half the current window
1687 				 * and pull our congestion window back to
1688 				 * the new ssthresh).
1689 				 *
1690 				 * Dup acks mean that packets have left the
1691 				 * network (they're now cached at the receiver)
1692 				 * so bump cwnd by the amount in the receiver
1693 				 * to keep a constant cwnd packets in the
1694 				 * network.
1695 				 */
1696 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1697 				    th->th_ack != tp->snd_una)
1698 					tp->t_dupacks = 0;
1699 				else if (++tp->t_dupacks == tcprexmtthresh) {
1700 					tcp_seq onxt = tp->snd_nxt;
1701 					u_int win =
1702 					    min(tp->snd_wnd, tp->snd_cwnd) /
1703 					    2 /	tp->t_segsz;
1704 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
1705 					    tp->snd_recover)) {
1706 						/*
1707 						 * False fast retransmit after
1708 						 * timeout.  Do not cut window.
1709 						 */
1710 						tp->snd_cwnd += tp->t_segsz;
1711 						tp->t_dupacks = 0;
1712 						(void) tcp_output(tp);
1713 						goto drop;
1714 					}
1715 
1716 					if (win < 2)
1717 						win = 2;
1718 					tp->snd_ssthresh = win * tp->t_segsz;
1719 					tp->snd_recover = tp->snd_max;
1720 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1721 					tp->t_rtt = 0;
1722 					tp->snd_nxt = th->th_ack;
1723 					tp->snd_cwnd = tp->t_segsz;
1724 					(void) tcp_output(tp);
1725 					tp->snd_cwnd = tp->snd_ssthresh +
1726 					       tp->t_segsz * tp->t_dupacks;
1727 					if (SEQ_GT(onxt, tp->snd_nxt))
1728 						tp->snd_nxt = onxt;
1729 					goto drop;
1730 				} else if (tp->t_dupacks > tcprexmtthresh) {
1731 					tp->snd_cwnd += tp->t_segsz;
1732 					(void) tcp_output(tp);
1733 					goto drop;
1734 				}
1735 			} else
1736 				tp->t_dupacks = 0;
1737 			break;
1738 		}
1739 		/*
1740 		 * If the congestion window was inflated to account
1741 		 * for the other side's cached packets, retract it.
1742 		 */
1743 		if (tcp_do_newreno == 0) {
1744 			if (tp->t_dupacks >= tcprexmtthresh &&
1745 			    tp->snd_cwnd > tp->snd_ssthresh)
1746 				tp->snd_cwnd = tp->snd_ssthresh;
1747 			tp->t_dupacks = 0;
1748 		} else if (tp->t_dupacks >= tcprexmtthresh &&
1749 			   tcp_newreno(tp, th) == 0) {
1750 			tp->snd_cwnd = tp->snd_ssthresh;
1751 			/*
1752 			 * Window inflation should have left us with approx.
1753 			 * snd_ssthresh outstanding data.  But in case we
1754 			 * would be inclined to send a burst, better to do
1755 			 * it via the slow start mechanism.
1756 			 */
1757 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1758 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1759 				    + tp->t_segsz;
1760 			tp->t_dupacks = 0;
1761 		}
1762 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1763 			tcpstat.tcps_rcvacktoomuch++;
1764 			goto dropafterack;
1765 		}
1766 		acked = th->th_ack - tp->snd_una;
1767 		tcpstat.tcps_rcvackpack++;
1768 		tcpstat.tcps_rcvackbyte += acked;
1769 
1770 		/*
1771 		 * If we have a timestamp reply, update smoothed
1772 		 * round trip time.  If no timestamp is present but
1773 		 * transmit timer is running and timed sequence
1774 		 * number was acked, update smoothed round trip time.
1775 		 * Since we now have an rtt measurement, cancel the
1776 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1777 		 * Recompute the initial retransmit timer.
1778 		 */
1779 		if (opti.ts_present && opti.ts_ecr)
1780 			tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
1781 		else if (tp->t_rtt && SEQ_GT(th->th_ack, tp->t_rtseq))
1782 			tcp_xmit_timer(tp,tp->t_rtt);
1783 
1784 		/*
1785 		 * If all outstanding data is acked, stop retransmit
1786 		 * timer and remember to restart (more output or persist).
1787 		 * If there is more data to be acked, restart retransmit
1788 		 * timer, using current (possibly backed-off) value.
1789 		 */
1790 		if (th->th_ack == tp->snd_max) {
1791 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1792 			needoutput = 1;
1793 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1794 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1795 		/*
1796 		 * When new data is acked, open the congestion window.
1797 		 * If the window gives us less than ssthresh packets
1798 		 * in flight, open exponentially (segsz per packet).
1799 		 * Otherwise open linearly: segsz per window
1800 		 * (segsz^2 / cwnd per packet), plus a constant
1801 		 * fraction of a packet (segsz/8) to help larger windows
1802 		 * open quickly enough.
1803 		 */
1804 		{
1805 		register u_int cw = tp->snd_cwnd;
1806 		register u_int incr = tp->t_segsz;
1807 
1808 		if (cw > tp->snd_ssthresh)
1809 			incr = incr * incr / cw;
1810 		if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
1811 			tp->snd_cwnd = min(cw + incr,
1812 			    TCP_MAXWIN << tp->snd_scale);
1813 		}
1814 		ND6_HINT(tp);
1815 		if (acked > so->so_snd.sb_cc) {
1816 			tp->snd_wnd -= so->so_snd.sb_cc;
1817 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1818 			ourfinisacked = 1;
1819 		} else {
1820 			sbdrop(&so->so_snd, acked);
1821 			tp->snd_wnd -= acked;
1822 			ourfinisacked = 0;
1823 		}
1824 		sowwakeup(so);
1825 		/*
1826 		 * We want snd_recover to track snd_una to
1827 		 * avoid sequence wraparound problems for
1828 		 * very large transfers.
1829 		 */
1830 		tp->snd_una = tp->snd_recover = th->th_ack;
1831 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1832 			tp->snd_nxt = tp->snd_una;
1833 
1834 		switch (tp->t_state) {
1835 
1836 		/*
1837 		 * In FIN_WAIT_1 STATE in addition to the processing
1838 		 * for the ESTABLISHED state if our FIN is now acknowledged
1839 		 * then enter FIN_WAIT_2.
1840 		 */
1841 		case TCPS_FIN_WAIT_1:
1842 			if (ourfinisacked) {
1843 				/*
1844 				 * If we can't receive any more
1845 				 * data, then closing user can proceed.
1846 				 * Starting the timer is contrary to the
1847 				 * specification, but if we don't get a FIN
1848 				 * we'll hang forever.
1849 				 */
1850 				if (so->so_state & SS_CANTRCVMORE) {
1851 					soisdisconnected(so);
1852 					if (tcp_maxidle > 0)
1853 						TCP_TIMER_ARM(tp, TCPT_2MSL,
1854 						    tcp_maxidle);
1855 				}
1856 				tp->t_state = TCPS_FIN_WAIT_2;
1857 			}
1858 			break;
1859 
1860 	 	/*
1861 		 * In CLOSING STATE in addition to the processing for
1862 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1863 		 * then enter the TIME-WAIT state, otherwise ignore
1864 		 * the segment.
1865 		 */
1866 		case TCPS_CLOSING:
1867 			if (ourfinisacked) {
1868 				tp->t_state = TCPS_TIME_WAIT;
1869 				tcp_canceltimers(tp);
1870 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1871 				soisdisconnected(so);
1872 			}
1873 			break;
1874 
1875 		/*
1876 		 * In LAST_ACK, we may still be waiting for data to drain
1877 		 * and/or to be acked, as well as for the ack of our FIN.
1878 		 * If our FIN is now acknowledged, delete the TCB,
1879 		 * enter the closed state and return.
1880 		 */
1881 		case TCPS_LAST_ACK:
1882 			if (ourfinisacked) {
1883 				tp = tcp_close(tp);
1884 				goto drop;
1885 			}
1886 			break;
1887 
1888 		/*
1889 		 * In TIME_WAIT state the only thing that should arrive
1890 		 * is a retransmission of the remote FIN.  Acknowledge
1891 		 * it and restart the finack timer.
1892 		 */
1893 		case TCPS_TIME_WAIT:
1894 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1895 			goto dropafterack;
1896 		}
1897 	}
1898 
1899 step6:
1900 	/*
1901 	 * Update window information.
1902 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1903 	 */
1904 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1905 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
1906 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
1907 		/* keep track of pure window updates */
1908 		if (tlen == 0 &&
1909 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1910 			tcpstat.tcps_rcvwinupd++;
1911 		tp->snd_wnd = tiwin;
1912 		tp->snd_wl1 = th->th_seq;
1913 		tp->snd_wl2 = th->th_ack;
1914 		if (tp->snd_wnd > tp->max_sndwnd)
1915 			tp->max_sndwnd = tp->snd_wnd;
1916 		needoutput = 1;
1917 	}
1918 
1919 	/*
1920 	 * Process segments with URG.
1921 	 */
1922 	if ((tiflags & TH_URG) && th->th_urp &&
1923 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1924 		/*
1925 		 * This is a kludge, but if we receive and accept
1926 		 * random urgent pointers, we'll crash in
1927 		 * soreceive.  It's hard to imagine someone
1928 		 * actually wanting to send this much urgent data.
1929 		 */
1930 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
1931 			th->th_urp = 0;			/* XXX */
1932 			tiflags &= ~TH_URG;		/* XXX */
1933 			goto dodata;			/* XXX */
1934 		}
1935 		/*
1936 		 * If this segment advances the known urgent pointer,
1937 		 * then mark the data stream.  This should not happen
1938 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1939 		 * a FIN has been received from the remote side.
1940 		 * In these states we ignore the URG.
1941 		 *
1942 		 * According to RFC961 (Assigned Protocols),
1943 		 * the urgent pointer points to the last octet
1944 		 * of urgent data.  We continue, however,
1945 		 * to consider it to indicate the first octet
1946 		 * of data past the urgent section as the original
1947 		 * spec states (in one of two places).
1948 		 */
1949 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
1950 			tp->rcv_up = th->th_seq + th->th_urp;
1951 			so->so_oobmark = so->so_rcv.sb_cc +
1952 			    (tp->rcv_up - tp->rcv_nxt) - 1;
1953 			if (so->so_oobmark == 0)
1954 				so->so_state |= SS_RCVATMARK;
1955 			sohasoutofband(so);
1956 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1957 		}
1958 		/*
1959 		 * Remove out of band data so doesn't get presented to user.
1960 		 * This can happen independent of advancing the URG pointer,
1961 		 * but if two URG's are pending at once, some out-of-band
1962 		 * data may creep in... ick.
1963 		 */
1964 		if (th->th_urp <= (u_int16_t) tlen
1965 #ifdef SO_OOBINLINE
1966 		     && (so->so_options & SO_OOBINLINE) == 0
1967 #endif
1968 		     )
1969 			tcp_pulloutofband(so, th, m, hdroptlen);
1970 	} else
1971 		/*
1972 		 * If no out of band data is expected,
1973 		 * pull receive urgent pointer along
1974 		 * with the receive window.
1975 		 */
1976 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1977 			tp->rcv_up = tp->rcv_nxt;
1978 dodata:							/* XXX */
1979 
1980 	/*
1981 	 * Process the segment text, merging it into the TCP sequencing queue,
1982 	 * and arranging for acknowledgement of receipt if necessary.
1983 	 * This process logically involves adjusting tp->rcv_wnd as data
1984 	 * is presented to the user (this happens in tcp_usrreq.c,
1985 	 * case PRU_RCVD).  If a FIN has already been received on this
1986 	 * connection then we just ignore the text.
1987 	 */
1988 	if ((tlen || (tiflags & TH_FIN)) &&
1989 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1990 		/*
1991 		 * Insert segment ti into reassembly queue of tcp with
1992 		 * control block tp.  Return TH_FIN if reassembly now includes
1993 		 * a segment with FIN.  The macro form does the common case
1994 		 * inline (segment is the next to be received on an
1995 		 * established connection, and the queue is empty),
1996 		 * avoiding linkage into and removal from the queue and
1997 		 * repetition of various conversions.
1998 		 * Set DELACK for segments received in order, but ack
1999 		 * immediately when segments are out of order
2000 		 * (so fast retransmit can work).
2001 		 */
2002 		/* NOTE: this was TCP_REASS() macro, but used only once */
2003 		TCP_REASS_LOCK(tp);
2004 		if (th->th_seq == tp->rcv_nxt &&
2005 		    tp->segq.lh_first == NULL &&
2006 		    tp->t_state == TCPS_ESTABLISHED) {
2007 			TCP_SETUP_ACK(tp, th);
2008 			tp->rcv_nxt += tlen;
2009 			tiflags = th->th_flags & TH_FIN;
2010 			tcpstat.tcps_rcvpack++;
2011 			tcpstat.tcps_rcvbyte += tlen;
2012 			ND6_HINT(tp);
2013 			m_adj(m, hdroptlen);
2014 			sbappend(&(so)->so_rcv, m);
2015 			sorwakeup(so);
2016 		} else {
2017 			m_adj(m, hdroptlen);
2018 			tiflags = tcp_reass(tp, th, m, &tlen);
2019 			tp->t_flags |= TF_ACKNOW;
2020 		}
2021 		TCP_REASS_UNLOCK(tp);
2022 
2023 		/*
2024 		 * Note the amount of data that peer has sent into
2025 		 * our window, in order to estimate the sender's
2026 		 * buffer size.
2027 		 */
2028 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2029 	} else {
2030 		m_freem(m);
2031 		m = NULL;
2032 		tiflags &= ~TH_FIN;
2033 	}
2034 
2035 	/*
2036 	 * If FIN is received ACK the FIN and let the user know
2037 	 * that the connection is closing.  Ignore a FIN received before
2038 	 * the connection is fully established.
2039 	 */
2040 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2041 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2042 			socantrcvmore(so);
2043 			tp->t_flags |= TF_ACKNOW;
2044 			tp->rcv_nxt++;
2045 		}
2046 		switch (tp->t_state) {
2047 
2048 	 	/*
2049 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2050 		 */
2051 		case TCPS_ESTABLISHED:
2052 			tp->t_state = TCPS_CLOSE_WAIT;
2053 			break;
2054 
2055 	 	/*
2056 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2057 		 * enter the CLOSING state.
2058 		 */
2059 		case TCPS_FIN_WAIT_1:
2060 			tp->t_state = TCPS_CLOSING;
2061 			break;
2062 
2063 	 	/*
2064 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2065 		 * starting the time-wait timer, turning off the other
2066 		 * standard timers.
2067 		 */
2068 		case TCPS_FIN_WAIT_2:
2069 			tp->t_state = TCPS_TIME_WAIT;
2070 			tcp_canceltimers(tp);
2071 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2072 			soisdisconnected(so);
2073 			break;
2074 
2075 		/*
2076 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2077 		 */
2078 		case TCPS_TIME_WAIT:
2079 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2080 			break;
2081 		}
2082 	}
2083 	if (so->so_options & SO_DEBUG) {
2084 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2085 	}
2086 
2087 	/*
2088 	 * Return any desired output.
2089 	 */
2090 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2091 		(void) tcp_output(tp);
2092 	if (tcp_saveti)
2093 		m_freem(tcp_saveti);
2094 	return;
2095 
2096 badsyn:
2097 	/*
2098 	 * Received a bad SYN.  Increment counters and dropwithreset.
2099 	 */
2100 	tcpstat.tcps_badsyn++;
2101 	tp = NULL;
2102 	goto dropwithreset;
2103 
2104 dropafterack:
2105 	/*
2106 	 * Generate an ACK dropping incoming segment if it occupies
2107 	 * sequence space, where the ACK reflects our state.
2108 	 */
2109 	if (tiflags & TH_RST)
2110 		goto drop;
2111 	m_freem(m);
2112 	tp->t_flags |= TF_ACKNOW;
2113 	(void) tcp_output(tp);
2114 	if (tcp_saveti)
2115 		m_freem(tcp_saveti);
2116 	return;
2117 
2118 dropwithreset_ratelim:
2119 	/*
2120 	 * We may want to rate-limit RSTs in certain situations,
2121 	 * particularly if we are sending an RST in response to
2122 	 * an attempt to connect to or otherwise communicate with
2123 	 * a port for which we have no socket.
2124 	 */
2125 	if (ratecheck(&tcp_rst_ratelim_last, &tcp_rst_ratelim) == 0) {
2126 		/* XXX stat */
2127 		goto drop;
2128 	}
2129 	/* ...fall into dropwithreset... */
2130 
2131 dropwithreset:
2132 	/*
2133 	 * Generate a RST, dropping incoming segment.
2134 	 * Make ACK acceptable to originator of segment.
2135 	 */
2136 	if (tiflags & TH_RST)
2137 		goto drop;
2138     {
2139 	/*
2140 	 * need to recover version # field, which was overwritten on
2141 	 * ip_cksum computation.
2142 	 */
2143 	struct ip *sip;
2144 	sip = mtod(m, struct ip *);
2145 	switch (af) {
2146 	case AF_INET:
2147 		sip->ip_v = 4;
2148 		break;
2149 #ifdef INET6
2150 	case AF_INET6:
2151 		sip->ip_v = 6;
2152 		break;
2153 #endif
2154 	}
2155     }
2156 	if (tiflags & TH_ACK)
2157 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2158 	else {
2159 		if (tiflags & TH_SYN)
2160 			tlen++;
2161 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2162 		    TH_RST|TH_ACK);
2163 	}
2164 	if (tcp_saveti)
2165 		m_freem(tcp_saveti);
2166 	return;
2167 
2168 drop:
2169 	/*
2170 	 * Drop space held by incoming segment and return.
2171 	 */
2172 	if (tp) {
2173 		if (tp->t_inpcb)
2174 			so = tp->t_inpcb->inp_socket;
2175 #ifdef INET6
2176 		else if (tp->t_in6pcb)
2177 			so = tp->t_in6pcb->in6p_socket;
2178 #endif
2179 		else
2180 			so = NULL;
2181 		if (so && (so->so_options & SO_DEBUG) != 0)
2182 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2183 	}
2184 	if (tcp_saveti)
2185 		m_freem(tcp_saveti);
2186 	m_freem(m);
2187 	return;
2188 }
2189 
2190 void
2191 tcp_dooptions(tp, cp, cnt, th, oi)
2192 	struct tcpcb *tp;
2193 	u_char *cp;
2194 	int cnt;
2195 	struct tcphdr *th;
2196 	struct tcp_opt_info *oi;
2197 {
2198 	u_int16_t mss;
2199 	int opt, optlen;
2200 
2201 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2202 		opt = cp[0];
2203 		if (opt == TCPOPT_EOL)
2204 			break;
2205 		if (opt == TCPOPT_NOP)
2206 			optlen = 1;
2207 		else {
2208 			optlen = cp[1];
2209 			if (optlen <= 0)
2210 				break;
2211 		}
2212 		switch (opt) {
2213 
2214 		default:
2215 			continue;
2216 
2217 		case TCPOPT_MAXSEG:
2218 			if (optlen != TCPOLEN_MAXSEG)
2219 				continue;
2220 			if (!(th->th_flags & TH_SYN))
2221 				continue;
2222 			bcopy(cp + 2, &mss, sizeof(mss));
2223 			oi->maxseg = ntohs(mss);
2224 			break;
2225 
2226 		case TCPOPT_WINDOW:
2227 			if (optlen != TCPOLEN_WINDOW)
2228 				continue;
2229 			if (!(th->th_flags & TH_SYN))
2230 				continue;
2231 			tp->t_flags |= TF_RCVD_SCALE;
2232 			tp->requested_s_scale = cp[2];
2233 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2234 #if 0	/*XXX*/
2235 				char *p;
2236 
2237 				if (ip)
2238 					p = ntohl(ip->ip_src);
2239 #ifdef INET6
2240 				else if (ip6)
2241 					p = ip6_sprintf(&ip6->ip6_src);
2242 #endif
2243 				else
2244 					p = "(unknown)";
2245 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2246 				    "assuming %d\n",
2247 				    tp->requested_s_scale, p,
2248 				    TCP_MAX_WINSHIFT);
2249 #else
2250 				log(LOG_ERR, "TCP: invalid wscale %d, "
2251 				    "assuming %d\n",
2252 				    tp->requested_s_scale,
2253 				    TCP_MAX_WINSHIFT);
2254 #endif
2255 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
2256 			}
2257 			break;
2258 
2259 		case TCPOPT_TIMESTAMP:
2260 			if (optlen != TCPOLEN_TIMESTAMP)
2261 				continue;
2262 			oi->ts_present = 1;
2263 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2264 			NTOHL(oi->ts_val);
2265 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2266 			NTOHL(oi->ts_ecr);
2267 
2268 			/*
2269 			 * A timestamp received in a SYN makes
2270 			 * it ok to send timestamp requests and replies.
2271 			 */
2272 			if (th->th_flags & TH_SYN) {
2273 				tp->t_flags |= TF_RCVD_TSTMP;
2274 				tp->ts_recent = oi->ts_val;
2275 				tp->ts_recent_age = tcp_now;
2276 			}
2277 			break;
2278 		case TCPOPT_SACK_PERMITTED:
2279 			if (optlen != TCPOLEN_SACK_PERMITTED)
2280 				continue;
2281 			if (!(th->th_flags & TH_SYN))
2282 				continue;
2283 			tp->t_flags &= ~TF_CANT_TXSACK;
2284 			break;
2285 
2286 		case TCPOPT_SACK:
2287 			if (tp->t_flags & TF_IGNR_RXSACK)
2288 				continue;
2289 			if (optlen % 8 != 2 || optlen < 10)
2290 				continue;
2291 			cp += 2;
2292 			optlen -= 2;
2293 			for (; optlen > 0; cp -= 8, optlen -= 8) {
2294 				tcp_seq lwe, rwe;
2295 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2296 				NTOHL(lwe);
2297 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2298 				NTOHL(rwe);
2299 				/* tcp_mark_sacked(tp, lwe, rwe); */
2300 			}
2301 			break;
2302 		}
2303 	}
2304 }
2305 
2306 /*
2307  * Pull out of band byte out of a segment so
2308  * it doesn't appear in the user's data queue.
2309  * It is still reflected in the segment length for
2310  * sequencing purposes.
2311  */
2312 void
2313 tcp_pulloutofband(so, th, m, off)
2314 	struct socket *so;
2315 	struct tcphdr *th;
2316 	register struct mbuf *m;
2317 	int off;
2318 {
2319 	int cnt = off + th->th_urp - 1;
2320 
2321 	while (cnt >= 0) {
2322 		if (m->m_len > cnt) {
2323 			char *cp = mtod(m, caddr_t) + cnt;
2324 			struct tcpcb *tp = sototcpcb(so);
2325 
2326 			tp->t_iobc = *cp;
2327 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2328 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2329 			m->m_len--;
2330 			return;
2331 		}
2332 		cnt -= m->m_len;
2333 		m = m->m_next;
2334 		if (m == 0)
2335 			break;
2336 	}
2337 	panic("tcp_pulloutofband");
2338 }
2339 
2340 /*
2341  * Collect new round-trip time estimate
2342  * and update averages and current timeout.
2343  */
2344 void
2345 tcp_xmit_timer(tp, rtt)
2346 	register struct tcpcb *tp;
2347 	short rtt;
2348 {
2349 	register short delta;
2350 	short rttmin;
2351 
2352 	tcpstat.tcps_rttupdated++;
2353 	--rtt;
2354 	if (tp->t_srtt != 0) {
2355 		/*
2356 		 * srtt is stored as fixed point with 3 bits after the
2357 		 * binary point (i.e., scaled by 8).  The following magic
2358 		 * is equivalent to the smoothing algorithm in rfc793 with
2359 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2360 		 * point).  Adjust rtt to origin 0.
2361 		 */
2362 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2363 		if ((tp->t_srtt += delta) <= 0)
2364 			tp->t_srtt = 1 << 2;
2365 		/*
2366 		 * We accumulate a smoothed rtt variance (actually, a
2367 		 * smoothed mean difference), then set the retransmit
2368 		 * timer to smoothed rtt + 4 times the smoothed variance.
2369 		 * rttvar is stored as fixed point with 2 bits after the
2370 		 * binary point (scaled by 4).  The following is
2371 		 * equivalent to rfc793 smoothing with an alpha of .75
2372 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2373 		 * rfc793's wired-in beta.
2374 		 */
2375 		if (delta < 0)
2376 			delta = -delta;
2377 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2378 		if ((tp->t_rttvar += delta) <= 0)
2379 			tp->t_rttvar = 1 << 2;
2380 	} else {
2381 		/*
2382 		 * No rtt measurement yet - use the unsmoothed rtt.
2383 		 * Set the variance to half the rtt (so our first
2384 		 * retransmit happens at 3*rtt).
2385 		 */
2386 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2387 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2388 	}
2389 	tp->t_rtt = 0;
2390 	tp->t_rxtshift = 0;
2391 
2392 	/*
2393 	 * the retransmit should happen at rtt + 4 * rttvar.
2394 	 * Because of the way we do the smoothing, srtt and rttvar
2395 	 * will each average +1/2 tick of bias.  When we compute
2396 	 * the retransmit timer, we want 1/2 tick of rounding and
2397 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2398 	 * firing of the timer.  The bias will give us exactly the
2399 	 * 1.5 tick we need.  But, because the bias is
2400 	 * statistical, we have to test that we don't drop below
2401 	 * the minimum feasible timer (which is 2 ticks).
2402 	 */
2403 	if (tp->t_rttmin > rtt + 2)
2404 		rttmin = tp->t_rttmin;
2405 	else
2406 		rttmin = rtt + 2;
2407 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2408 
2409 	/*
2410 	 * We received an ack for a packet that wasn't retransmitted;
2411 	 * it is probably safe to discard any error indications we've
2412 	 * received recently.  This isn't quite right, but close enough
2413 	 * for now (a route might have failed after we sent a segment,
2414 	 * and the return path might not be symmetrical).
2415 	 */
2416 	tp->t_softerror = 0;
2417 }
2418 
2419 /*
2420  * Checks for partial ack.  If partial ack arrives, force the retransmission
2421  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2422  * 1.  By setting snd_nxt to th_ack, this forces retransmission timer to
2423  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
2424  */
2425 int
2426 tcp_newreno(tp, th)
2427 	struct tcpcb *tp;
2428 	struct tcphdr *th;
2429 {
2430 	tcp_seq onxt = tp->snd_nxt;
2431 	u_long ocwnd = tp->snd_cwnd;
2432 
2433 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2434 		/*
2435 		 * snd_una has not yet been updated and the socket's send
2436 		 * buffer has not yet drained off the ACK'd data, so we
2437 		 * have to leave snd_una as it was to get the correct data
2438 		 * offset in tcp_output().
2439 		 */
2440 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
2441 	        tp->t_rtt = 0;
2442 	        tp->snd_nxt = th->th_ack;
2443 		/*
2444 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
2445 		 * is not yet updated when we're called.
2446 		 */
2447 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2448 	        (void) tcp_output(tp);
2449 	        tp->snd_cwnd = ocwnd;
2450 	        if (SEQ_GT(onxt, tp->snd_nxt))
2451 	                tp->snd_nxt = onxt;
2452 	        /*
2453 	         * Partial window deflation.  Relies on fact that tp->snd_una
2454 	         * not updated yet.
2455 	         */
2456 	        tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2457 	        return 1;
2458 	}
2459 	return 0;
2460 }
2461 
2462 
2463 /*
2464  * TCP compressed state engine.  Currently used to hold compressed
2465  * state for SYN_RECEIVED.
2466  */
2467 
2468 u_long	syn_cache_count;
2469 u_int32_t syn_hash1, syn_hash2;
2470 
2471 #define SYN_HASH(sa, sp, dp) \
2472 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2473 				     ((u_int32_t)(sp)))^syn_hash2)))
2474 #ifndef INET6
2475 #define	SYN_HASHALL(hash, src, dst) \
2476 do {									\
2477 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
2478 		((struct sockaddr_in *)(src))->sin_port,		\
2479 		((struct sockaddr_in *)(dst))->sin_port);		\
2480 } while (0)
2481 #else
2482 #define SYN_HASH6(sa, sp, dp) \
2483 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2484 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2485 	 & 0x7fffffff)
2486 
2487 #define SYN_HASHALL(hash, src, dst) \
2488 do {									\
2489 	switch ((src)->sa_family) {					\
2490 	case AF_INET:							\
2491 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2492 			((struct sockaddr_in *)(src))->sin_port,	\
2493 			((struct sockaddr_in *)(dst))->sin_port);	\
2494 		break;							\
2495 	case AF_INET6:							\
2496 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2497 			((struct sockaddr_in6 *)(src))->sin6_port,	\
2498 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
2499 		break;							\
2500 	default:							\
2501 		hash = 0;						\
2502 	}								\
2503 } while (0)
2504 #endif /* INET6 */
2505 
2506 #define	SYN_CACHE_RM(sc)						\
2507 do {									\
2508 	LIST_REMOVE((sc), sc_bucketq);					\
2509 	(sc)->sc_tp = NULL;						\
2510 	LIST_REMOVE((sc), sc_tpq);					\
2511 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
2512 	TAILQ_REMOVE(&tcp_syn_cache_timeq[(sc)->sc_rxtshift], (sc), sc_timeq); \
2513 	syn_cache_count--;						\
2514 } while (0)
2515 
2516 #define	SYN_CACHE_PUT(sc)						\
2517 do {									\
2518 	if ((sc)->sc_ipopts)						\
2519 		(void) m_free((sc)->sc_ipopts);				\
2520 	if ((sc)->sc_route4.ro_rt != NULL)				\
2521 		RTFREE((sc)->sc_route4.ro_rt);				\
2522 	pool_put(&syn_cache_pool, (sc));				\
2523 } while (0)
2524 
2525 struct pool syn_cache_pool;
2526 
2527 /*
2528  * We don't estimate RTT with SYNs, so each packet starts with the default
2529  * RTT and each timer queue has a fixed timeout value.  This allows us to
2530  * optimize the timer queues somewhat.
2531  */
2532 #define	SYN_CACHE_TIMER_ARM(sc)						\
2533 do {									\
2534 	TCPT_RANGESET((sc)->sc_rxtcur,					\
2535 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
2536 	    TCPTV_REXMTMAX);						\
2537 	PRT_SLOW_ARM((sc)->sc_rexmt, (sc)->sc_rxtcur);			\
2538 } while (0)
2539 
2540 TAILQ_HEAD(, syn_cache) tcp_syn_cache_timeq[TCP_MAXRXTSHIFT + 1];
2541 
2542 void
2543 syn_cache_init()
2544 {
2545 	int i;
2546 
2547 	/* Initialize the hash buckets. */
2548 	for (i = 0; i < tcp_syn_cache_size; i++)
2549 		LIST_INIT(&tcp_syn_cache[i].sch_bucket);
2550 
2551 	/* Initialize the timer queues. */
2552 	for (i = 0; i <= TCP_MAXRXTSHIFT; i++)
2553 		TAILQ_INIT(&tcp_syn_cache_timeq[i]);
2554 
2555 	/* Initialize the syn cache pool. */
2556 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2557 	    "synpl", 0, NULL, NULL, M_PCB);
2558 }
2559 
2560 void
2561 syn_cache_insert(sc, tp)
2562 	struct syn_cache *sc;
2563 	struct tcpcb *tp;
2564 {
2565 	struct syn_cache_head *scp;
2566 	struct syn_cache *sc2;
2567 	int s, i;
2568 
2569 	/*
2570 	 * If there are no entries in the hash table, reinitialize
2571 	 * the hash secrets.
2572 	 */
2573 	if (syn_cache_count == 0) {
2574 		struct timeval tv;
2575 		microtime(&tv);
2576 		syn_hash1 = random() ^ (u_long)&sc;
2577 		syn_hash2 = random() ^ tv.tv_usec;
2578 	}
2579 
2580 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2581 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2582 	scp = &tcp_syn_cache[sc->sc_bucketidx];
2583 
2584 	/*
2585 	 * Make sure that we don't overflow the per-bucket
2586 	 * limit or the total cache size limit.
2587 	 */
2588 	s = splsoftnet();
2589 	if (scp->sch_length >= tcp_syn_bucket_limit) {
2590 		tcpstat.tcps_sc_bucketoverflow++;
2591 		/*
2592 		 * The bucket is full.  Toss the oldest element in the
2593 		 * bucket.  This will be the entry with our bucket
2594 		 * index closest to the front of the timer queue with
2595 		 * the largest timeout value.
2596 		 *
2597 		 * Note: This timer queue traversal may be expensive, so
2598 		 * we hope that this doesn't happen very often.  It is
2599 		 * much more likely that we'll overflow the entire
2600 		 * cache, which is much easier to handle; see below.
2601 		 */
2602 		for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2603 			for (sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2604 			     sc2 != NULL;
2605 			     sc2 = TAILQ_NEXT(sc2, sc_timeq)) {
2606 				if (sc2->sc_bucketidx == sc->sc_bucketidx) {
2607 					SYN_CACHE_RM(sc2);
2608 					SYN_CACHE_PUT(sc2);
2609 					goto insert;	/* 2 level break */
2610 				}
2611 			}
2612 		}
2613 #ifdef DIAGNOSTIC
2614 		/*
2615 		 * This should never happen; we should always find an
2616 		 * entry in our bucket.
2617 		 */
2618 		panic("syn_cache_insert: bucketoverflow: impossible");
2619 #endif
2620 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
2621 		tcpstat.tcps_sc_overflowed++;
2622 		/*
2623 		 * The cache is full.  Toss the oldest entry in the
2624 		 * entire cache.  This is the front entry in the
2625 		 * first non-empty timer queue with the largest
2626 		 * timeout value.
2627 		 */
2628 		for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2629 			sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2630 			if (sc2 == NULL)
2631 				continue;
2632 			SYN_CACHE_RM(sc2);
2633 			SYN_CACHE_PUT(sc2);
2634 			goto insert;		/* symmetry with above */
2635 		}
2636 #ifdef DIAGNOSTIC
2637 		/*
2638 		 * This should never happen; we should always find an
2639 		 * entry in the cache.
2640 		 */
2641 		panic("syn_cache_insert: cache overflow: impossible");
2642 #endif
2643 	}
2644 
2645  insert:
2646 	/*
2647 	 * Initialize the entry's timer.
2648 	 */
2649 	sc->sc_rxttot = 0;
2650 	sc->sc_rxtshift = 0;
2651 	SYN_CACHE_TIMER_ARM(sc);
2652 	TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift], sc, sc_timeq);
2653 
2654 	/* Link it from tcpcb entry */
2655 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2656 
2657 	/* Put it into the bucket. */
2658 	LIST_INSERT_HEAD(&scp->sch_bucket, sc, sc_bucketq);
2659 	scp->sch_length++;
2660 	syn_cache_count++;
2661 
2662 	tcpstat.tcps_sc_added++;
2663 	splx(s);
2664 }
2665 
2666 /*
2667  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2668  * If we have retransmitted an entry the maximum number of times, expire
2669  * that entry.
2670  */
2671 void
2672 syn_cache_timer()
2673 {
2674 	struct syn_cache *sc, *nsc;
2675 	int i, s;
2676 
2677 	s = splsoftnet();
2678 
2679 	/*
2680 	 * First, get all the entries that need to be retransmitted, or
2681 	 * must be expired due to exceeding the initial keepalive time.
2682 	 */
2683 	for (i = 0; i < TCP_MAXRXTSHIFT; i++) {
2684 		for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2685 		     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2686 		     sc = nsc) {
2687 			nsc = TAILQ_NEXT(sc, sc_timeq);
2688 
2689 			/*
2690 			 * Compute the total amount of time this entry has
2691 			 * been on a queue.  If this entry has been on longer
2692 			 * than the keep alive timer would allow, expire it.
2693 			 */
2694 			sc->sc_rxttot += sc->sc_rxtcur;
2695 			if (sc->sc_rxttot >= TCPTV_KEEP_INIT) {
2696 				tcpstat.tcps_sc_timed_out++;
2697 				SYN_CACHE_RM(sc);
2698 				SYN_CACHE_PUT(sc);
2699 				continue;
2700 			}
2701 
2702 			tcpstat.tcps_sc_retransmitted++;
2703 			(void) syn_cache_respond(sc, NULL);
2704 
2705 			/* Advance this entry onto the next timer queue. */
2706 			TAILQ_REMOVE(&tcp_syn_cache_timeq[i], sc, sc_timeq);
2707 			sc->sc_rxtshift = i + 1;
2708 			SYN_CACHE_TIMER_ARM(sc);
2709 			TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift],
2710 			    sc, sc_timeq);
2711 		}
2712 	}
2713 
2714 	/*
2715 	 * Now get all the entries that are expired due to too many
2716 	 * retransmissions.
2717 	 */
2718 	for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[TCP_MAXRXTSHIFT]);
2719 	     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2720 	     sc = nsc) {
2721 		nsc = TAILQ_NEXT(sc, sc_timeq);
2722 		tcpstat.tcps_sc_timed_out++;
2723 		SYN_CACHE_RM(sc);
2724 		SYN_CACHE_PUT(sc);
2725 	}
2726 	splx(s);
2727 }
2728 
2729 /*
2730  * Remove syn cache created by the specified tcb entry,
2731  * because this does not make sense to keep them
2732  * (if there's no tcb entry, syn cache entry will never be used)
2733  */
2734 void
2735 syn_cache_cleanup(tp)
2736 	struct tcpcb *tp;
2737 {
2738 	struct syn_cache *sc, *nsc;
2739 	int s;
2740 
2741 	s = splsoftnet();
2742 
2743 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2744 		nsc = LIST_NEXT(sc, sc_tpq);
2745 
2746 #ifdef DIAGNOSTIC
2747 		if (sc->sc_tp != tp)
2748 			panic("invalid sc_tp in syn_cache_cleanup");
2749 #endif
2750 		SYN_CACHE_RM(sc);
2751 		SYN_CACHE_PUT(sc);
2752 	}
2753 	/* just for safety */
2754 	LIST_INIT(&tp->t_sc);
2755 
2756 	splx(s);
2757 }
2758 
2759 /*
2760  * Find an entry in the syn cache.
2761  */
2762 struct syn_cache *
2763 syn_cache_lookup(src, dst, headp)
2764 	struct sockaddr *src;
2765 	struct sockaddr *dst;
2766 	struct syn_cache_head **headp;
2767 {
2768 	struct syn_cache *sc;
2769 	struct syn_cache_head *scp;
2770 	u_int32_t hash;
2771 	int s;
2772 
2773 	SYN_HASHALL(hash, src, dst);
2774 
2775 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2776 	*headp = scp;
2777 	s = splsoftnet();
2778 	for (sc = LIST_FIRST(&scp->sch_bucket); sc != NULL;
2779 	     sc = LIST_NEXT(sc, sc_bucketq)) {
2780 		if (sc->sc_hash != hash)
2781 			continue;
2782 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2783 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2784 			splx(s);
2785 			return (sc);
2786 		}
2787 	}
2788 	splx(s);
2789 	return (NULL);
2790 }
2791 
2792 /*
2793  * This function gets called when we receive an ACK for a
2794  * socket in the LISTEN state.  We look up the connection
2795  * in the syn cache, and if its there, we pull it out of
2796  * the cache and turn it into a full-blown connection in
2797  * the SYN-RECEIVED state.
2798  *
2799  * The return values may not be immediately obvious, and their effects
2800  * can be subtle, so here they are:
2801  *
2802  *	NULL	SYN was not found in cache; caller should drop the
2803  *		packet and send an RST.
2804  *
2805  *	-1	We were unable to create the new connection, and are
2806  *		aborting it.  An ACK,RST is being sent to the peer
2807  *		(unless we got screwey sequence numbners; see below),
2808  *		because the 3-way handshake has been completed.  Caller
2809  *		should not free the mbuf, since we may be using it.  If
2810  *		we are not, we will free it.
2811  *
2812  *	Otherwise, the return value is a pointer to the new socket
2813  *	associated with the connection.
2814  */
2815 struct socket *
2816 syn_cache_get(src, dst, th, hlen, tlen, so, m)
2817 	struct sockaddr *src;
2818 	struct sockaddr *dst;
2819 	struct tcphdr *th;
2820 	unsigned int hlen, tlen;
2821 	struct socket *so;
2822 	struct mbuf *m;
2823 {
2824 	struct syn_cache *sc;
2825 	struct syn_cache_head *scp;
2826 	register struct inpcb *inp = NULL;
2827 #ifdef INET6
2828 	register struct in6pcb *in6p = NULL;
2829 #endif
2830 	register struct tcpcb *tp = 0;
2831 	struct mbuf *am;
2832 	int s;
2833 	struct socket *oso;
2834 
2835 	s = splsoftnet();
2836 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
2837 		splx(s);
2838 		return (NULL);
2839 	}
2840 
2841 	/*
2842 	 * Verify the sequence and ack numbers.  Try getting the correct
2843 	 * response again.
2844 	 */
2845 	if ((th->th_ack != sc->sc_iss + 1) ||
2846 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
2847 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
2848 		(void) syn_cache_respond(sc, m);
2849 		splx(s);
2850 		return ((struct socket *)(-1));
2851 	}
2852 
2853 	/* Remove this cache entry */
2854 	SYN_CACHE_RM(sc);
2855 	splx(s);
2856 
2857 	/*
2858 	 * Ok, create the full blown connection, and set things up
2859 	 * as they would have been set up if we had created the
2860 	 * connection when the SYN arrived.  If we can't create
2861 	 * the connection, abort it.
2862 	 */
2863 	/*
2864 	 * inp still has the OLD in_pcb stuff, set the
2865 	 * v6-related flags on the new guy, too.   This is
2866 	 * done particularly for the case where an AF_INET6
2867 	 * socket is bound only to a port, and a v4 connection
2868 	 * comes in on that port.
2869 	 * we also copy the flowinfo from the original pcb
2870 	 * to the new one.
2871 	 */
2872     {
2873 	struct inpcb *parentinpcb;
2874 
2875 	parentinpcb = (struct inpcb *)so->so_pcb;
2876 
2877 	oso = so;
2878 	so = sonewconn(so, SS_ISCONNECTED);
2879 	if (so == NULL)
2880 		goto resetandabort;
2881 
2882 	switch (so->so_proto->pr_domain->dom_family) {
2883 	case AF_INET:
2884 		inp = sotoinpcb(so);
2885 		break;
2886 #ifdef INET6
2887 	case AF_INET6:
2888 		in6p = sotoin6pcb(so);
2889 #if 0 /*def INET6*/
2890 		inp->inp_flags |= (parentinpcb->inp_flags &
2891 			(INP_IPV6 | INP_IPV6_UNDEC | INP_IPV6_MAPPED));
2892 		if ((inp->inp_flags & INP_IPV6) &&
2893 		   !(inp->inp_flags & INP_IPV6_MAPPED)) {
2894 			inp->inp_ipv6.ip6_hlim = parentinpcb->inp_ipv6.ip6_hlim;
2895 			inp->inp_ipv6.ip6_vfc = parentinpcb->inp_ipv6.ip6_vfc;
2896 		}
2897 #endif
2898 		break;
2899 #endif
2900 	}
2901     }
2902 	switch (src->sa_family) {
2903 	case AF_INET:
2904 		if (inp) {
2905 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
2906 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
2907 			inp->inp_options = ip_srcroute();
2908 			in_pcbstate(inp, INP_BOUND);
2909 			if (inp->inp_options == NULL) {
2910 				inp->inp_options = sc->sc_ipopts;
2911 				sc->sc_ipopts = NULL;
2912 			}
2913 		}
2914 #ifdef INET6
2915 		else if (in6p) {
2916 			/* IPv4 packet to AF_INET6 socket */
2917 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
2918 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
2919 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
2920 				&in6p->in6p_laddr.s6_addr32[3],
2921 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
2922 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
2923 			in6totcpcb(in6p)->t_family = AF_INET;
2924 		}
2925 #endif
2926 		break;
2927 #ifdef INET6
2928 	case AF_INET6:
2929 		if (in6p) {
2930 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
2931 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
2932 #if 0
2933 			in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
2934 			/*inp->inp_options = ip6_srcroute();*/ /* soon. */
2935 #endif
2936 		}
2937 		break;
2938 #endif
2939 	}
2940 #ifdef INET6
2941 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
2942 		struct in6pcb *oin6p = sotoin6pcb(oso);
2943 		/* inherit socket options from the listening socket */
2944 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
2945 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
2946 			m_freem(in6p->in6p_options);
2947 			in6p->in6p_options = 0;
2948 		}
2949 		ip6_savecontrol(in6p, &in6p->in6p_options,
2950 			mtod(m, struct ip6_hdr *), m);
2951 	}
2952 #endif
2953 
2954 #ifdef IPSEC
2955 	/*
2956 	 * we make a copy of policy, instead of sharing the policy,
2957 	 * for better behavior in terms of SA lookup and dead SA removal.
2958 	 */
2959 	if (inp) {
2960 		/* copy old policy into new socket's */
2961 		if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
2962 			printf("tcp_input: could not copy policy\n");
2963 	}
2964 #ifdef INET6
2965 	else if (in6p) {
2966 		/* copy old policy into new socket's */
2967 		if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
2968 			printf("tcp_input: could not copy policy\n");
2969 	}
2970 #endif
2971 #endif
2972 
2973 	/*
2974 	 * Give the new socket our cached route reference.
2975 	 */
2976 	if (inp)
2977 		inp->inp_route = sc->sc_route4;		/* struct assignment */
2978 #ifdef INET6
2979 	else
2980 		in6p->in6p_route = sc->sc_route6;
2981 #endif
2982 	sc->sc_route4.ro_rt = NULL;
2983 
2984 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
2985 	if (am == NULL)
2986 		goto resetandabort;
2987 	am->m_len = src->sa_len;
2988 	bcopy(src, mtod(am, caddr_t), src->sa_len);
2989 	if (inp) {
2990 		if (in_pcbconnect(inp, am)) {
2991 			(void) m_free(am);
2992 			goto resetandabort;
2993 		}
2994 	}
2995 #ifdef INET6
2996 	else if (in6p) {
2997 		if (src->sa_family == AF_INET) {
2998 			/* IPv4 packet to AF_INET6 socket */
2999 			struct sockaddr_in6 *sin6;
3000 			sin6 = mtod(am, struct sockaddr_in6 *);
3001 			am->m_len = sizeof(*sin6);
3002 			bzero(sin6, sizeof(*sin6));
3003 			sin6->sin6_family = AF_INET6;
3004 			sin6->sin6_len = sizeof(*sin6);
3005 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3006 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3007 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
3008 				&sin6->sin6_addr.s6_addr32[3],
3009 				sizeof(sin6->sin6_addr.s6_addr32[3]));
3010 		}
3011 		if (in6_pcbconnect(in6p, am)) {
3012 			(void) m_free(am);
3013 			goto resetandabort;
3014 		}
3015 	}
3016 #endif
3017 	else {
3018 		(void) m_free(am);
3019 		goto resetandabort;
3020 	}
3021 	(void) m_free(am);
3022 
3023 	if (inp)
3024 		tp = intotcpcb(inp);
3025 #ifdef INET6
3026 	else if (in6p)
3027 		tp = in6totcpcb(in6p);
3028 #endif
3029 	else
3030 		tp = NULL;
3031 	if (sc->sc_request_r_scale != 15) {
3032 		tp->requested_s_scale = sc->sc_requested_s_scale;
3033 		tp->request_r_scale = sc->sc_request_r_scale;
3034 		tp->snd_scale = sc->sc_requested_s_scale;
3035 		tp->rcv_scale = sc->sc_request_r_scale;
3036 		tp->t_flags |= TF_RCVD_SCALE;
3037 	}
3038 	if (sc->sc_flags & SCF_TIMESTAMP)
3039 		tp->t_flags |= TF_RCVD_TSTMP;
3040 
3041 	tp->t_template = tcp_template(tp);
3042 	if (tp->t_template == 0) {
3043 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3044 		so = NULL;
3045 		m_freem(m);
3046 		goto abort;
3047 	}
3048 
3049 	tp->iss = sc->sc_iss;
3050 	tp->irs = sc->sc_irs;
3051 	tcp_sendseqinit(tp);
3052 	tcp_rcvseqinit(tp);
3053 	tp->t_state = TCPS_SYN_RECEIVED;
3054 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3055 	tcpstat.tcps_accepts++;
3056 
3057 	/* Initialize tp->t_ourmss before we deal with the peer's! */
3058 	tp->t_ourmss = sc->sc_ourmaxseg;
3059 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3060 
3061 	/*
3062 	 * Initialize the initial congestion window.  If we
3063 	 * had to retransmit the SYN,ACK, we must initialize cwnd
3064 	 * to 1 segment (i.e. the Loss Window).
3065 	 */
3066 	if (sc->sc_rxtshift)
3067 		tp->snd_cwnd = tp->t_peermss;
3068 	else
3069 		tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3070 
3071 	tcp_rmx_rtt(tp);
3072 	tp->snd_wl1 = sc->sc_irs;
3073 	tp->rcv_up = sc->sc_irs + 1;
3074 
3075 	/*
3076 	 * This is what whould have happened in tcp_ouput() when
3077 	 * the SYN,ACK was sent.
3078 	 */
3079 	tp->snd_up = tp->snd_una;
3080 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3081 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3082 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3083 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3084 	tp->last_ack_sent = tp->rcv_nxt;
3085 
3086 	tcpstat.tcps_sc_completed++;
3087 	SYN_CACHE_PUT(sc);
3088 	return (so);
3089 
3090 resetandabort:
3091 	(void) tcp_respond(NULL, m, m, th,
3092 			   th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3093 abort:
3094 	if (so != NULL)
3095 		(void) soabort(so);
3096 	SYN_CACHE_PUT(sc);
3097 	tcpstat.tcps_sc_aborted++;
3098 	return ((struct socket *)(-1));
3099 }
3100 
3101 /*
3102  * This function is called when we get a RST for a
3103  * non-existant connection, so that we can see if the
3104  * connection is in the syn cache.  If it is, zap it.
3105  */
3106 
3107 void
3108 syn_cache_reset(src, dst, th)
3109 	struct sockaddr *src;
3110 	struct sockaddr *dst;
3111 	struct tcphdr *th;
3112 {
3113 	struct syn_cache *sc;
3114 	struct syn_cache_head *scp;
3115 	int s = splsoftnet();
3116 
3117 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3118 		splx(s);
3119 		return;
3120 	}
3121 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3122 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3123 		splx(s);
3124 		return;
3125 	}
3126 	SYN_CACHE_RM(sc);
3127 	splx(s);
3128 	tcpstat.tcps_sc_reset++;
3129 	SYN_CACHE_PUT(sc);
3130 }
3131 
3132 void
3133 syn_cache_unreach(src, dst, th)
3134 	struct sockaddr *src;
3135 	struct sockaddr *dst;
3136 	struct tcphdr *th;
3137 {
3138 	struct syn_cache *sc;
3139 	struct syn_cache_head *scp;
3140 	int s;
3141 
3142 	s = splsoftnet();
3143 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3144 		splx(s);
3145 		return;
3146 	}
3147 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3148 	if (ntohl (th->th_seq) != sc->sc_iss) {
3149 		splx(s);
3150 		return;
3151 	}
3152 
3153 	/*
3154 	 * If we've rertransmitted 3 times and this is our second error,
3155 	 * we remove the entry.  Otherwise, we allow it to continue on.
3156 	 * This prevents us from incorrectly nuking an entry during a
3157 	 * spurious network outage.
3158 	 *
3159 	 * See tcp_notify().
3160 	 */
3161 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3162 		sc->sc_flags |= SCF_UNREACH;
3163 		splx(s);
3164 		return;
3165 	}
3166 
3167 	SYN_CACHE_RM(sc);
3168 	splx(s);
3169 	tcpstat.tcps_sc_unreach++;
3170 	SYN_CACHE_PUT(sc);
3171 }
3172 
3173 /*
3174  * Given a LISTEN socket and an inbound SYN request, add
3175  * this to the syn cache, and send back a segment:
3176  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3177  * to the source.
3178  *
3179  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3180  * Doing so would require that we hold onto the data and deliver it
3181  * to the application.  However, if we are the target of a SYN-flood
3182  * DoS attack, an attacker could send data which would eventually
3183  * consume all available buffer space if it were ACKed.  By not ACKing
3184  * the data, we avoid this DoS scenario.
3185  */
3186 
3187 int
3188 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3189 	struct sockaddr *src;
3190 	struct sockaddr *dst;
3191 	struct tcphdr *th;
3192 	unsigned int hlen;
3193 	struct socket *so;
3194 	struct mbuf *m;
3195 	u_char *optp;
3196 	int optlen;
3197 	struct tcp_opt_info *oi;
3198 {
3199 	struct tcpcb tb, *tp;
3200 	long win;
3201 	struct syn_cache *sc;
3202 	struct syn_cache_head *scp;
3203 	struct mbuf *ipopts;
3204 
3205 	tp = sototcpcb(so);
3206 
3207 	/*
3208 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3209 	 *
3210 	 * Note this check is performed in tcp_input() very early on.
3211 	 */
3212 
3213 	/*
3214 	 * Initialize some local state.
3215 	 */
3216 	win = sbspace(&so->so_rcv);
3217 	if (win > TCP_MAXWIN)
3218 		win = TCP_MAXWIN;
3219 
3220 	if (src->sa_family == AF_INET) {
3221 		/*
3222 		 * Remember the IP options, if any.
3223 		 */
3224 		ipopts = ip_srcroute();
3225 	} else
3226 		ipopts = NULL;
3227 
3228 	if (optp) {
3229 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3230 		tcp_dooptions(&tb, optp, optlen, th, oi);
3231 	} else
3232 		tb.t_flags = 0;
3233 
3234 	/*
3235 	 * See if we already have an entry for this connection.
3236 	 * If we do, resend the SYN,ACK.  We do not count this
3237 	 * as a retransmission (XXX though maybe we should).
3238 	 */
3239 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3240 		tcpstat.tcps_sc_dupesyn++;
3241 		if (ipopts) {
3242 			/*
3243 			 * If we were remembering a previous source route,
3244 			 * forget it and use the new one we've been given.
3245 			 */
3246 			if (sc->sc_ipopts)
3247 				(void) m_free(sc->sc_ipopts);
3248 			sc->sc_ipopts = ipopts;
3249 		}
3250 		sc->sc_timestamp = tb.ts_recent;
3251 		if (syn_cache_respond(sc, m) == 0) {
3252 			tcpstat.tcps_sndacks++;
3253 			tcpstat.tcps_sndtotal++;
3254 		}
3255 		return (1);
3256 	}
3257 
3258 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3259 	if (sc == NULL) {
3260 		if (ipopts)
3261 			(void) m_free(ipopts);
3262 		return (0);
3263 	}
3264 
3265 	/*
3266 	 * Fill in the cache, and put the necessary IP and TCP
3267 	 * options into the reply.
3268 	 */
3269 	bzero(sc, sizeof(struct syn_cache));
3270 	bcopy(src, &sc->sc_src, src->sa_len);
3271 	bcopy(dst, &sc->sc_dst, dst->sa_len);
3272 	sc->sc_flags = 0;
3273 	sc->sc_ipopts = ipopts;
3274 	sc->sc_irs = th->th_seq;
3275 	sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
3276 	sc->sc_peermaxseg = oi->maxseg;
3277 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3278 						m->m_pkthdr.rcvif : NULL,
3279 						sc->sc_src.sa.sa_family);
3280 	sc->sc_win = win;
3281 	sc->sc_timestamp = tb.ts_recent;
3282 	if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3283 		sc->sc_flags |= SCF_TIMESTAMP;
3284 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3285 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3286 		sc->sc_requested_s_scale = tb.requested_s_scale;
3287 		sc->sc_request_r_scale = 0;
3288 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3289 		    TCP_MAXWIN << sc->sc_request_r_scale <
3290 		    so->so_rcv.sb_hiwat)
3291 			sc->sc_request_r_scale++;
3292 	} else {
3293 		sc->sc_requested_s_scale = 15;
3294 		sc->sc_request_r_scale = 15;
3295 	}
3296 	sc->sc_tp = tp;
3297 	if (syn_cache_respond(sc, m) == 0) {
3298 		syn_cache_insert(sc, tp);
3299 		tcpstat.tcps_sndacks++;
3300 		tcpstat.tcps_sndtotal++;
3301 	} else {
3302 		SYN_CACHE_PUT(sc);
3303 		tcpstat.tcps_sc_dropped++;
3304 	}
3305 	return (1);
3306 }
3307 
3308 int
3309 syn_cache_respond(sc, m)
3310 	struct syn_cache *sc;
3311 	struct mbuf *m;
3312 {
3313 	struct route *ro;
3314 	struct rtentry *rt;
3315 	u_int8_t *optp;
3316 	int optlen, error;
3317 	u_int16_t tlen;
3318 	struct ip *ip = NULL;
3319 #ifdef INET6
3320 	struct ip6_hdr *ip6 = NULL;
3321 #endif
3322 	struct tcphdr *th;
3323 	u_int hlen;
3324 
3325 	switch (sc->sc_src.sa.sa_family) {
3326 	case AF_INET:
3327 		hlen = sizeof(struct ip);
3328 		ro = &sc->sc_route4;
3329 		break;
3330 #ifdef INET6
3331 	case AF_INET6:
3332 		hlen = sizeof(struct ip6_hdr);
3333 		ro = (struct route *)&sc->sc_route6;
3334 		break;
3335 #endif
3336 	default:
3337 		if (m)
3338 			m_freem(m);
3339 		return EAFNOSUPPORT;
3340 	}
3341 
3342 	/* Compute the size of the TCP options. */
3343 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3344 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3345 
3346 	tlen = hlen + sizeof(struct tcphdr) + optlen;
3347 
3348 	/*
3349 	 * Create the IP+TCP header from scratch.  Reuse the received mbuf
3350 	 * if possible.
3351 	 */
3352 	if (m != NULL) {
3353 		m_freem(m->m_next);
3354 		m->m_next = NULL;
3355 		MRESETDATA(m);
3356 	} else {
3357 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3358 		if (m == NULL)
3359 			return (ENOBUFS);
3360 	}
3361 
3362 	/* Fixup the mbuf. */
3363 	m->m_data += max_linkhdr;
3364 	m->m_len = m->m_pkthdr.len = tlen;
3365 #ifdef IPSEC
3366 	if (sc->sc_tp) {
3367 		struct tcpcb *tp;
3368 		struct socket *so;
3369 
3370 		tp = sc->sc_tp;
3371 		if (tp->t_inpcb)
3372 			so = tp->t_inpcb->inp_socket;
3373 #ifdef INET6
3374 		else if (tp->t_in6pcb)
3375 			so = tp->t_in6pcb->in6p_socket;
3376 #endif
3377 		else
3378 			so = NULL;
3379 		/* use IPsec policy on listening socket, on SYN ACK */
3380 		ipsec_setsocket(m, so);
3381 	}
3382 #endif
3383 	memset(mtod(m, u_char *), 0, tlen);
3384 
3385 	switch (sc->sc_src.sa.sa_family) {
3386 	case AF_INET:
3387 		ip = mtod(m, struct ip *);
3388 		ip->ip_dst = sc->sc_src.sin.sin_addr;
3389 		ip->ip_src = sc->sc_dst.sin.sin_addr;
3390 		ip->ip_p = IPPROTO_TCP;
3391 		th = (struct tcphdr *)(ip + 1);
3392 		th->th_dport = sc->sc_src.sin.sin_port;
3393 		th->th_sport = sc->sc_dst.sin.sin_port;
3394 		break;
3395 #ifdef INET6
3396 	case AF_INET6:
3397 		ip6 = mtod(m, struct ip6_hdr *);
3398 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3399 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3400 		ip6->ip6_nxt = IPPROTO_TCP;
3401 		/* ip6_plen will be updated in ip6_output() */
3402 		th = (struct tcphdr *)(ip6 + 1);
3403 		th->th_dport = sc->sc_src.sin6.sin6_port;
3404 		th->th_sport = sc->sc_dst.sin6.sin6_port;
3405 		break;
3406 #endif
3407 	default:
3408 		th = NULL;
3409 	}
3410 
3411 	th->th_seq = htonl(sc->sc_iss);
3412 	th->th_ack = htonl(sc->sc_irs + 1);
3413 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3414 	th->th_flags = TH_SYN|TH_ACK;
3415 	th->th_win = htons(sc->sc_win);
3416 	/* th_sum already 0 */
3417 	/* th_urp already 0 */
3418 
3419 	/* Tack on the TCP options. */
3420 	optp = (u_int8_t *)(th + 1);
3421 	*optp++ = TCPOPT_MAXSEG;
3422 	*optp++ = 4;
3423 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3424 	*optp++ = sc->sc_ourmaxseg & 0xff;
3425 
3426 	if (sc->sc_request_r_scale != 15) {
3427 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3428 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3429 		    sc->sc_request_r_scale);
3430 		optp += 4;
3431 	}
3432 
3433 	if (sc->sc_flags & SCF_TIMESTAMP) {
3434 		u_int32_t *lp = (u_int32_t *)(optp);
3435 		/* Form timestamp option as shown in appendix A of RFC 1323. */
3436 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
3437 		*lp++ = htonl(tcp_now);
3438 		*lp   = htonl(sc->sc_timestamp);
3439 		optp += TCPOLEN_TSTAMP_APPA;
3440 	}
3441 
3442 	/* Compute the packet's checksum. */
3443 	switch (sc->sc_src.sa.sa_family) {
3444 	case AF_INET:
3445 		ip->ip_len = htons(tlen - hlen);
3446 		th->th_sum = 0;
3447 		th->th_sum = in_cksum(m, tlen);
3448 		break;
3449 #ifdef INET6
3450 	case AF_INET6:
3451 		ip6->ip6_plen = htons(tlen - hlen);
3452 		th->th_sum = 0;
3453 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3454 		break;
3455 #endif
3456 	}
3457 
3458 	/*
3459 	 * Fill in some straggling IP bits.  Note the stack expects
3460 	 * ip_len to be in host order, for convenience.
3461 	 */
3462 	switch (sc->sc_src.sa.sa_family) {
3463 	case AF_INET:
3464 		ip->ip_len = tlen;
3465 		ip->ip_ttl = ip_defttl;
3466 		/* XXX tos? */
3467 		break;
3468 #ifdef INET6
3469 	case AF_INET6:
3470 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3471 		ip6->ip6_vfc |= IPV6_VERSION;
3472 		ip6->ip6_plen = htons(tlen - hlen);
3473 		/* ip6_hlim will be initialized afterwards */
3474 		/* XXX flowlabel? */
3475 		break;
3476 #endif
3477 	}
3478 
3479 	/*
3480 	 * If we're doing Path MTU discovery, we need to set DF unless
3481 	 * the route's MTU is locked.  If we don't yet know the route,
3482 	 * look it up now.  We will copy this reference to the inpcb
3483 	 * when we finish creating the connection.
3484 	 */
3485 	if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
3486 		if (ro->ro_rt != NULL) {
3487 			RTFREE(ro->ro_rt);
3488 			ro->ro_rt = NULL;
3489 		}
3490 		bcopy(&sc->sc_src, &ro->ro_dst, sc->sc_src.sa.sa_len);
3491 		rtalloc(ro);
3492 		if ((rt = ro->ro_rt) == NULL) {
3493 			m_freem(m);
3494 			switch (sc->sc_src.sa.sa_family) {
3495 			case AF_INET:
3496 				ipstat.ips_noroute++;
3497 				break;
3498 #ifdef INET6
3499 			case AF_INET6:
3500 				ip6stat.ip6s_noroute++;
3501 				break;
3502 #endif
3503 			}
3504 			return (EHOSTUNREACH);
3505 		}
3506 	}
3507 
3508 	switch (sc->sc_src.sa.sa_family) {
3509 	case AF_INET:
3510 		if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
3511 			ip->ip_off |= IP_DF;
3512 
3513 		/* ...and send it off! */
3514 		error = ip_output(m, sc->sc_ipopts, ro, 0, NULL);
3515 		break;
3516 #ifdef INET6
3517 	case AF_INET6:
3518 		ip6->ip6_hlim = in6_selecthlim(NULL,
3519 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3520 
3521 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3522 			0, NULL, NULL);
3523 		break;
3524 #endif
3525 	default:
3526 		error = EAFNOSUPPORT;
3527 		break;
3528 	}
3529 	return (error);
3530 }
3531