xref: /netbsd-src/sys/netinet/tcp_input.c (revision e39ef1d61eee3ccba837ee281f1e098c864487aa)
1 /*	$NetBSD: tcp_input.c,v 1.321 2012/01/11 14:39:08 drochner Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74  * 2011 The NetBSD Foundation, Inc.
75  * All rights reserved.
76  *
77  * This code is derived from software contributed to The NetBSD Foundation
78  * by Coyote Point Systems, Inc.
79  * This code is derived from software contributed to The NetBSD Foundation
80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81  * Facility, NASA Ames Research Center.
82  * This code is derived from software contributed to The NetBSD Foundation
83  * by Charles M. Hannum.
84  * This code is derived from software contributed to The NetBSD Foundation
85  * by Rui Paulo.
86  *
87  * Redistribution and use in source and binary forms, with or without
88  * modification, are permitted provided that the following conditions
89  * are met:
90  * 1. Redistributions of source code must retain the above copyright
91  *    notice, this list of conditions and the following disclaimer.
92  * 2. Redistributions in binary form must reproduce the above copyright
93  *    notice, this list of conditions and the following disclaimer in the
94  *    documentation and/or other materials provided with the distribution.
95  *
96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106  * POSSIBILITY OF SUCH DAMAGE.
107  */
108 
109 /*
110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111  *	The Regents of the University of California.  All rights reserved.
112  *
113  * Redistribution and use in source and binary forms, with or without
114  * modification, are permitted provided that the following conditions
115  * are met:
116  * 1. Redistributions of source code must retain the above copyright
117  *    notice, this list of conditions and the following disclaimer.
118  * 2. Redistributions in binary form must reproduce the above copyright
119  *    notice, this list of conditions and the following disclaimer in the
120  *    documentation and/or other materials provided with the distribution.
121  * 3. Neither the name of the University nor the names of its contributors
122  *    may be used to endorse or promote products derived from this software
123  *    without specific prior written permission.
124  *
125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135  * SUCH DAMAGE.
136  *
137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
138  */
139 
140 /*
141  *	TODO list for SYN cache stuff:
142  *
143  *	Find room for a "state" field, which is needed to keep a
144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
145  *	that this is fairly important for very high-volume web and
146  *	mail servers, which use a large number of short-lived
147  *	connections.
148  */
149 
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.321 2012/01/11 14:39:08 drochner Exp $");
152 
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157 
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170 #ifdef TCP_SIGNATURE
171 #include <sys/md5.h>
172 #endif
173 #include <sys/lwp.h> /* for lwp0 */
174 #include <sys/cprng.h>
175 
176 #include <net/if.h>
177 #include <net/route.h>
178 #include <net/if_types.h>
179 
180 #include <netinet/in.h>
181 #include <netinet/in_systm.h>
182 #include <netinet/ip.h>
183 #include <netinet/in_pcb.h>
184 #include <netinet/in_var.h>
185 #include <netinet/ip_var.h>
186 #include <netinet/in_offload.h>
187 
188 #ifdef INET6
189 #ifndef INET
190 #include <netinet/in.h>
191 #endif
192 #include <netinet/ip6.h>
193 #include <netinet6/ip6_var.h>
194 #include <netinet6/in6_pcb.h>
195 #include <netinet6/ip6_var.h>
196 #include <netinet6/in6_var.h>
197 #include <netinet/icmp6.h>
198 #include <netinet6/nd6.h>
199 #ifdef TCP_SIGNATURE
200 #include <netinet6/scope6_var.h>
201 #endif
202 #endif
203 
204 #ifndef INET6
205 /* always need ip6.h for IP6_EXTHDR_GET */
206 #include <netinet/ip6.h>
207 #endif
208 
209 #include <netinet/tcp.h>
210 #include <netinet/tcp_fsm.h>
211 #include <netinet/tcp_seq.h>
212 #include <netinet/tcp_timer.h>
213 #include <netinet/tcp_var.h>
214 #include <netinet/tcp_private.h>
215 #include <netinet/tcpip.h>
216 #include <netinet/tcp_congctl.h>
217 #include <netinet/tcp_debug.h>
218 
219 #ifdef KAME_IPSEC
220 #include <netinet6/ipsec.h>
221 #include <netinet6/ipsec_private.h>
222 #include <netkey/key.h>
223 #endif /*KAME_IPSEC*/
224 #ifdef INET6
225 #include "faith.h"
226 #if defined(NFAITH) && NFAITH > 0
227 #include <net/if_faith.h>
228 #endif
229 #endif	/* INET6 */
230 
231 #ifdef FAST_IPSEC
232 #include <netipsec/ipsec.h>
233 #include <netipsec/ipsec_var.h>
234 #include <netipsec/ipsec_private.h>
235 #include <netipsec/key.h>
236 #ifdef INET6
237 #include <netipsec/ipsec6.h>
238 #endif
239 #endif	/* FAST_IPSEC*/
240 
241 #include <netinet/tcp_vtw.h>
242 
243 int	tcprexmtthresh = 3;
244 int	tcp_log_refused;
245 
246 int	tcp_do_autorcvbuf = 1;
247 int	tcp_autorcvbuf_inc = 16 * 1024;
248 int	tcp_autorcvbuf_max = 256 * 1024;
249 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
250 
251 static int tcp_rst_ppslim_count = 0;
252 static struct timeval tcp_rst_ppslim_last;
253 static int tcp_ackdrop_ppslim_count = 0;
254 static struct timeval tcp_ackdrop_ppslim_last;
255 
256 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
257 
258 /* for modulo comparisons of timestamps */
259 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
260 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
261 
262 /*
263  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
264  */
265 #ifdef INET6
266 static inline void
267 nd6_hint(struct tcpcb *tp)
268 {
269 	struct rtentry *rt;
270 
271 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
272 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
273 		nd6_nud_hint(rt, NULL, 0);
274 }
275 #else
276 static inline void
277 nd6_hint(struct tcpcb *tp)
278 {
279 }
280 #endif
281 
282 /*
283  * Compute ACK transmission behavior.  Delay the ACK unless
284  * we have already delayed an ACK (must send an ACK every two segments).
285  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
286  * option is enabled.
287  */
288 static void
289 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
290 {
291 
292 	if (tp->t_flags & TF_DELACK ||
293 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
294 		tp->t_flags |= TF_ACKNOW;
295 	else
296 		TCP_SET_DELACK(tp);
297 }
298 
299 static void
300 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
301 {
302 
303 	/*
304 	 * If we had a pending ICMP message that refers to data that have
305 	 * just been acknowledged, disregard the recorded ICMP message.
306 	 */
307 	if ((tp->t_flags & TF_PMTUD_PEND) &&
308 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
309 		tp->t_flags &= ~TF_PMTUD_PEND;
310 
311 	/*
312 	 * Keep track of the largest chunk of data
313 	 * acknowledged since last PMTU update
314 	 */
315 	if (tp->t_pmtud_mss_acked < acked)
316 		tp->t_pmtud_mss_acked = acked;
317 }
318 
319 /*
320  * Convert TCP protocol fields to host order for easier processing.
321  */
322 static void
323 tcp_fields_to_host(struct tcphdr *th)
324 {
325 
326 	NTOHL(th->th_seq);
327 	NTOHL(th->th_ack);
328 	NTOHS(th->th_win);
329 	NTOHS(th->th_urp);
330 }
331 
332 /*
333  * ... and reverse the above.
334  */
335 static void
336 tcp_fields_to_net(struct tcphdr *th)
337 {
338 
339 	HTONL(th->th_seq);
340 	HTONL(th->th_ack);
341 	HTONS(th->th_win);
342 	HTONS(th->th_urp);
343 }
344 
345 #ifdef TCP_CSUM_COUNTERS
346 #include <sys/device.h>
347 
348 #if defined(INET)
349 extern struct evcnt tcp_hwcsum_ok;
350 extern struct evcnt tcp_hwcsum_bad;
351 extern struct evcnt tcp_hwcsum_data;
352 extern struct evcnt tcp_swcsum;
353 #endif /* defined(INET) */
354 #if defined(INET6)
355 extern struct evcnt tcp6_hwcsum_ok;
356 extern struct evcnt tcp6_hwcsum_bad;
357 extern struct evcnt tcp6_hwcsum_data;
358 extern struct evcnt tcp6_swcsum;
359 #endif /* defined(INET6) */
360 
361 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
362 
363 #else
364 
365 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
366 
367 #endif /* TCP_CSUM_COUNTERS */
368 
369 #ifdef TCP_REASS_COUNTERS
370 #include <sys/device.h>
371 
372 extern struct evcnt tcp_reass_;
373 extern struct evcnt tcp_reass_empty;
374 extern struct evcnt tcp_reass_iteration[8];
375 extern struct evcnt tcp_reass_prependfirst;
376 extern struct evcnt tcp_reass_prepend;
377 extern struct evcnt tcp_reass_insert;
378 extern struct evcnt tcp_reass_inserttail;
379 extern struct evcnt tcp_reass_append;
380 extern struct evcnt tcp_reass_appendtail;
381 extern struct evcnt tcp_reass_overlaptail;
382 extern struct evcnt tcp_reass_overlapfront;
383 extern struct evcnt tcp_reass_segdup;
384 extern struct evcnt tcp_reass_fragdup;
385 
386 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
387 
388 #else
389 
390 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
391 
392 #endif /* TCP_REASS_COUNTERS */
393 
394 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
395     int *);
396 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
397     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
398 
399 #ifdef INET
400 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
401 #endif
402 #ifdef INET6
403 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
404 #endif
405 
406 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
407 
408 #if defined(MBUFTRACE)
409 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
410 #endif /* defined(MBUFTRACE) */
411 
412 static struct pool tcpipqent_pool;
413 
414 void
415 tcpipqent_init(void)
416 {
417 
418 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
419 	    NULL, IPL_VM);
420 }
421 
422 struct ipqent *
423 tcpipqent_alloc(void)
424 {
425 	struct ipqent *ipqe;
426 	int s;
427 
428 	s = splvm();
429 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
430 	splx(s);
431 
432 	return ipqe;
433 }
434 
435 void
436 tcpipqent_free(struct ipqent *ipqe)
437 {
438 	int s;
439 
440 	s = splvm();
441 	pool_put(&tcpipqent_pool, ipqe);
442 	splx(s);
443 }
444 
445 static int
446 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
447 {
448 	struct ipqent *p, *q, *nq, *tiqe = NULL;
449 	struct socket *so = NULL;
450 	int pkt_flags;
451 	tcp_seq pkt_seq;
452 	unsigned pkt_len;
453 	u_long rcvpartdupbyte = 0;
454 	u_long rcvoobyte;
455 #ifdef TCP_REASS_COUNTERS
456 	u_int count = 0;
457 #endif
458 	uint64_t *tcps;
459 
460 	if (tp->t_inpcb)
461 		so = tp->t_inpcb->inp_socket;
462 #ifdef INET6
463 	else if (tp->t_in6pcb)
464 		so = tp->t_in6pcb->in6p_socket;
465 #endif
466 
467 	TCP_REASS_LOCK_CHECK(tp);
468 
469 	/*
470 	 * Call with th==0 after become established to
471 	 * force pre-ESTABLISHED data up to user socket.
472 	 */
473 	if (th == 0)
474 		goto present;
475 
476 	m_claimm(m, &tcp_reass_mowner);
477 
478 	rcvoobyte = *tlen;
479 	/*
480 	 * Copy these to local variables because the tcpiphdr
481 	 * gets munged while we are collapsing mbufs.
482 	 */
483 	pkt_seq = th->th_seq;
484 	pkt_len = *tlen;
485 	pkt_flags = th->th_flags;
486 
487 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
488 
489 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
490 		/*
491 		 * When we miss a packet, the vast majority of time we get
492 		 * packets that follow it in order.  So optimize for that.
493 		 */
494 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
495 			p->ipqe_len += pkt_len;
496 			p->ipqe_flags |= pkt_flags;
497 			m_cat(p->ipre_mlast, m);
498 			TRAVERSE(p->ipre_mlast);
499 			m = NULL;
500 			tiqe = p;
501 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
502 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
503 			goto skip_replacement;
504 		}
505 		/*
506 		 * While we're here, if the pkt is completely beyond
507 		 * anything we have, just insert it at the tail.
508 		 */
509 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
510 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
511 			goto insert_it;
512 		}
513 	}
514 
515 	q = TAILQ_FIRST(&tp->segq);
516 
517 	if (q != NULL) {
518 		/*
519 		 * If this segment immediately precedes the first out-of-order
520 		 * block, simply slap the segment in front of it and (mostly)
521 		 * skip the complicated logic.
522 		 */
523 		if (pkt_seq + pkt_len == q->ipqe_seq) {
524 			q->ipqe_seq = pkt_seq;
525 			q->ipqe_len += pkt_len;
526 			q->ipqe_flags |= pkt_flags;
527 			m_cat(m, q->ipqe_m);
528 			q->ipqe_m = m;
529 			q->ipre_mlast = m; /* last mbuf may have changed */
530 			TRAVERSE(q->ipre_mlast);
531 			tiqe = q;
532 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
533 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
534 			goto skip_replacement;
535 		}
536 	} else {
537 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
538 	}
539 
540 	/*
541 	 * Find a segment which begins after this one does.
542 	 */
543 	for (p = NULL; q != NULL; q = nq) {
544 		nq = TAILQ_NEXT(q, ipqe_q);
545 #ifdef TCP_REASS_COUNTERS
546 		count++;
547 #endif
548 		/*
549 		 * If the received segment is just right after this
550 		 * fragment, merge the two together and then check
551 		 * for further overlaps.
552 		 */
553 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
554 #ifdef TCPREASS_DEBUG
555 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
556 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
557 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
558 #endif
559 			pkt_len += q->ipqe_len;
560 			pkt_flags |= q->ipqe_flags;
561 			pkt_seq = q->ipqe_seq;
562 			m_cat(q->ipre_mlast, m);
563 			TRAVERSE(q->ipre_mlast);
564 			m = q->ipqe_m;
565 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
566 			goto free_ipqe;
567 		}
568 		/*
569 		 * If the received segment is completely past this
570 		 * fragment, we need to go the next fragment.
571 		 */
572 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
573 			p = q;
574 			continue;
575 		}
576 		/*
577 		 * If the fragment is past the received segment,
578 		 * it (or any following) can't be concatenated.
579 		 */
580 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
581 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
582 			break;
583 		}
584 
585 		/*
586 		 * We've received all the data in this segment before.
587 		 * mark it as a duplicate and return.
588 		 */
589 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
590 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
591 			tcps = TCP_STAT_GETREF();
592 			tcps[TCP_STAT_RCVDUPPACK]++;
593 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
594 			TCP_STAT_PUTREF();
595 			tcp_new_dsack(tp, pkt_seq, pkt_len);
596 			m_freem(m);
597 			if (tiqe != NULL) {
598 				tcpipqent_free(tiqe);
599 			}
600 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
601 			goto out;
602 		}
603 		/*
604 		 * Received segment completely overlaps this fragment
605 		 * so we drop the fragment (this keeps the temporal
606 		 * ordering of segments correct).
607 		 */
608 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
609 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
610 			rcvpartdupbyte += q->ipqe_len;
611 			m_freem(q->ipqe_m);
612 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
613 			goto free_ipqe;
614 		}
615 		/*
616 		 * RX'ed segment extends past the end of the
617 		 * fragment.  Drop the overlapping bytes.  Then
618 		 * merge the fragment and segment then treat as
619 		 * a longer received packet.
620 		 */
621 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
622 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
623 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
624 #ifdef TCPREASS_DEBUG
625 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
626 			       tp, overlap,
627 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
628 #endif
629 			m_adj(m, overlap);
630 			rcvpartdupbyte += overlap;
631 			m_cat(q->ipre_mlast, m);
632 			TRAVERSE(q->ipre_mlast);
633 			m = q->ipqe_m;
634 			pkt_seq = q->ipqe_seq;
635 			pkt_len += q->ipqe_len - overlap;
636 			rcvoobyte -= overlap;
637 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
638 			goto free_ipqe;
639 		}
640 		/*
641 		 * RX'ed segment extends past the front of the
642 		 * fragment.  Drop the overlapping bytes on the
643 		 * received packet.  The packet will then be
644 		 * contatentated with this fragment a bit later.
645 		 */
646 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
647 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
648 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
649 #ifdef TCPREASS_DEBUG
650 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
651 			       tp, overlap,
652 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
653 #endif
654 			m_adj(m, -overlap);
655 			pkt_len -= overlap;
656 			rcvpartdupbyte += overlap;
657 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
658 			rcvoobyte -= overlap;
659 		}
660 		/*
661 		 * If the received segment immediates precedes this
662 		 * fragment then tack the fragment onto this segment
663 		 * and reinsert the data.
664 		 */
665 		if (q->ipqe_seq == pkt_seq + pkt_len) {
666 #ifdef TCPREASS_DEBUG
667 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
668 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
669 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
670 #endif
671 			pkt_len += q->ipqe_len;
672 			pkt_flags |= q->ipqe_flags;
673 			m_cat(m, q->ipqe_m);
674 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
675 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
676 			tp->t_segqlen--;
677 			KASSERT(tp->t_segqlen >= 0);
678 			KASSERT(tp->t_segqlen != 0 ||
679 			    (TAILQ_EMPTY(&tp->segq) &&
680 			    TAILQ_EMPTY(&tp->timeq)));
681 			if (tiqe == NULL) {
682 				tiqe = q;
683 			} else {
684 				tcpipqent_free(q);
685 			}
686 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
687 			break;
688 		}
689 		/*
690 		 * If the fragment is before the segment, remember it.
691 		 * When this loop is terminated, p will contain the
692 		 * pointer to fragment that is right before the received
693 		 * segment.
694 		 */
695 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
696 			p = q;
697 
698 		continue;
699 
700 		/*
701 		 * This is a common operation.  It also will allow
702 		 * to save doing a malloc/free in most instances.
703 		 */
704 	  free_ipqe:
705 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
706 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
707 		tp->t_segqlen--;
708 		KASSERT(tp->t_segqlen >= 0);
709 		KASSERT(tp->t_segqlen != 0 ||
710 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
711 		if (tiqe == NULL) {
712 			tiqe = q;
713 		} else {
714 			tcpipqent_free(q);
715 		}
716 	}
717 
718 #ifdef TCP_REASS_COUNTERS
719 	if (count > 7)
720 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
721 	else if (count > 0)
722 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
723 #endif
724 
725     insert_it:
726 
727 	/*
728 	 * Allocate a new queue entry since the received segment did not
729 	 * collapse onto any other out-of-order block; thus we are allocating
730 	 * a new block.  If it had collapsed, tiqe would not be NULL and
731 	 * we would be reusing it.
732 	 * XXX If we can't, just drop the packet.  XXX
733 	 */
734 	if (tiqe == NULL) {
735 		tiqe = tcpipqent_alloc();
736 		if (tiqe == NULL) {
737 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
738 			m_freem(m);
739 			goto out;
740 		}
741 	}
742 
743 	/*
744 	 * Update the counters.
745 	 */
746 	tcps = TCP_STAT_GETREF();
747 	tcps[TCP_STAT_RCVOOPACK]++;
748 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
749 	if (rcvpartdupbyte) {
750 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
751 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
752 	}
753 	TCP_STAT_PUTREF();
754 
755 	/*
756 	 * Insert the new fragment queue entry into both queues.
757 	 */
758 	tiqe->ipqe_m = m;
759 	tiqe->ipre_mlast = m;
760 	tiqe->ipqe_seq = pkt_seq;
761 	tiqe->ipqe_len = pkt_len;
762 	tiqe->ipqe_flags = pkt_flags;
763 	if (p == NULL) {
764 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
765 #ifdef TCPREASS_DEBUG
766 		if (tiqe->ipqe_seq != tp->rcv_nxt)
767 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
768 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
769 #endif
770 	} else {
771 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
772 #ifdef TCPREASS_DEBUG
773 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
774 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
775 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
776 #endif
777 	}
778 	tp->t_segqlen++;
779 
780 skip_replacement:
781 
782 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
783 
784 present:
785 	/*
786 	 * Present data to user, advancing rcv_nxt through
787 	 * completed sequence space.
788 	 */
789 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
790 		goto out;
791 	q = TAILQ_FIRST(&tp->segq);
792 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
793 		goto out;
794 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
795 		goto out;
796 
797 	tp->rcv_nxt += q->ipqe_len;
798 	pkt_flags = q->ipqe_flags & TH_FIN;
799 	nd6_hint(tp);
800 
801 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
802 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
803 	tp->t_segqlen--;
804 	KASSERT(tp->t_segqlen >= 0);
805 	KASSERT(tp->t_segqlen != 0 ||
806 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
807 	if (so->so_state & SS_CANTRCVMORE)
808 		m_freem(q->ipqe_m);
809 	else
810 		sbappendstream(&so->so_rcv, q->ipqe_m);
811 	tcpipqent_free(q);
812 	TCP_REASS_UNLOCK(tp);
813 	sorwakeup(so);
814 	return (pkt_flags);
815 out:
816 	TCP_REASS_UNLOCK(tp);
817 	return (0);
818 }
819 
820 #ifdef INET6
821 int
822 tcp6_input(struct mbuf **mp, int *offp, int proto)
823 {
824 	struct mbuf *m = *mp;
825 
826 	/*
827 	 * draft-itojun-ipv6-tcp-to-anycast
828 	 * better place to put this in?
829 	 */
830 	if (m->m_flags & M_ANYCAST6) {
831 		struct ip6_hdr *ip6;
832 		if (m->m_len < sizeof(struct ip6_hdr)) {
833 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
834 				TCP_STATINC(TCP_STAT_RCVSHORT);
835 				return IPPROTO_DONE;
836 			}
837 		}
838 		ip6 = mtod(m, struct ip6_hdr *);
839 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
840 		    (char *)&ip6->ip6_dst - (char *)ip6);
841 		return IPPROTO_DONE;
842 	}
843 
844 	tcp_input(m, *offp, proto);
845 	return IPPROTO_DONE;
846 }
847 #endif
848 
849 #ifdef INET
850 static void
851 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
852 {
853 	char src[4*sizeof "123"];
854 	char dst[4*sizeof "123"];
855 
856 	if (ip) {
857 		strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
858 		strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
859 	}
860 	else {
861 		strlcpy(src, "(unknown)", sizeof(src));
862 		strlcpy(dst, "(unknown)", sizeof(dst));
863 	}
864 	log(LOG_INFO,
865 	    "Connection attempt to TCP %s:%d from %s:%d\n",
866 	    dst, ntohs(th->th_dport),
867 	    src, ntohs(th->th_sport));
868 }
869 #endif
870 
871 #ifdef INET6
872 static void
873 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
874 {
875 	char src[INET6_ADDRSTRLEN];
876 	char dst[INET6_ADDRSTRLEN];
877 
878 	if (ip6) {
879 		strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
880 		strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
881 	}
882 	else {
883 		strlcpy(src, "(unknown v6)", sizeof(src));
884 		strlcpy(dst, "(unknown v6)", sizeof(dst));
885 	}
886 	log(LOG_INFO,
887 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
888 	    dst, ntohs(th->th_dport),
889 	    src, ntohs(th->th_sport));
890 }
891 #endif
892 
893 /*
894  * Checksum extended TCP header and data.
895  */
896 int
897 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
898     int toff, int off, int tlen)
899 {
900 
901 	/*
902 	 * XXX it's better to record and check if this mbuf is
903 	 * already checked.
904 	 */
905 
906 	switch (af) {
907 #ifdef INET
908 	case AF_INET:
909 		switch (m->m_pkthdr.csum_flags &
910 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
911 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
912 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
913 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
914 			goto badcsum;
915 
916 		case M_CSUM_TCPv4|M_CSUM_DATA: {
917 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
918 
919 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
920 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
921 				const struct ip *ip =
922 				    mtod(m, const struct ip *);
923 
924 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
925 				    ip->ip_dst.s_addr,
926 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
927 			}
928 			if ((hw_csum ^ 0xffff) != 0)
929 				goto badcsum;
930 			break;
931 		}
932 
933 		case M_CSUM_TCPv4:
934 			/* Checksum was okay. */
935 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
936 			break;
937 
938 		default:
939 			/*
940 			 * Must compute it ourselves.  Maybe skip checksum
941 			 * on loopback interfaces.
942 			 */
943 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
944 					     IFF_LOOPBACK) ||
945 					   tcp_do_loopback_cksum)) {
946 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
947 				if (in4_cksum(m, IPPROTO_TCP, toff,
948 					      tlen + off) != 0)
949 					goto badcsum;
950 			}
951 			break;
952 		}
953 		break;
954 #endif /* INET4 */
955 
956 #ifdef INET6
957 	case AF_INET6:
958 		switch (m->m_pkthdr.csum_flags &
959 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
960 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
961 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
962 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
963 			goto badcsum;
964 
965 #if 0 /* notyet */
966 		case M_CSUM_TCPv6|M_CSUM_DATA:
967 #endif
968 
969 		case M_CSUM_TCPv6:
970 			/* Checksum was okay. */
971 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
972 			break;
973 
974 		default:
975 			/*
976 			 * Must compute it ourselves.  Maybe skip checksum
977 			 * on loopback interfaces.
978 			 */
979 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
980 			    tcp_do_loopback_cksum)) {
981 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
982 				if (in6_cksum(m, IPPROTO_TCP, toff,
983 				    tlen + off) != 0)
984 					goto badcsum;
985 			}
986 		}
987 		break;
988 #endif /* INET6 */
989 	}
990 
991 	return 0;
992 
993 badcsum:
994 	TCP_STATINC(TCP_STAT_RCVBADSUM);
995 	return -1;
996 }
997 
998 /* When a packet arrives addressed to a vestigial tcpbp, we
999  * nevertheless have to respond to it per the spec.
1000  */
1001 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
1002 			  struct mbuf *m, int tlen, int multicast)
1003 {
1004 	int		tiflags;
1005 	int		todrop, dupseg;
1006 	uint32_t	t_flags = 0;
1007 	uint64_t	*tcps;
1008 
1009 	tiflags = th->th_flags;
1010 	todrop  = vp->rcv_nxt - th->th_seq;
1011 	dupseg  = false;
1012 
1013 	if (todrop > 0) {
1014 		if (tiflags & TH_SYN) {
1015 			tiflags &= ~TH_SYN;
1016 			++th->th_seq;
1017 			if (th->th_urp > 1)
1018 				--th->th_urp;
1019 			else {
1020 				tiflags &= ~TH_URG;
1021 				th->th_urp = 0;
1022 			}
1023 			--todrop;
1024 		}
1025 		if (todrop > tlen ||
1026 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1027 			/*
1028 			 * Any valid FIN or RST must be to the left of the
1029 			 * window.  At this point the FIN or RST must be a
1030 			 * duplicate or out of sequence; drop it.
1031 			 */
1032 			if (tiflags & TH_RST)
1033 				goto drop;
1034 			tiflags &= ~(TH_FIN|TH_RST);
1035 			/*
1036 			 * Send an ACK to resynchronize and drop any data.
1037 			 * But keep on processing for RST or ACK.
1038 			 */
1039 			t_flags |= TF_ACKNOW;
1040 			todrop = tlen;
1041 			dupseg = true;
1042 			tcps = TCP_STAT_GETREF();
1043 			tcps[TCP_STAT_RCVDUPPACK] += 1;
1044 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1045 			TCP_STAT_PUTREF();
1046 		} else if ((tiflags & TH_RST)
1047 			   && th->th_seq != vp->rcv_nxt) {
1048 			/*
1049 			 * Test for reset before adjusting the sequence
1050 			 * number for overlapping data.
1051 			 */
1052 			goto dropafterack_ratelim;
1053 		} else {
1054 			tcps = TCP_STAT_GETREF();
1055 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1056 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1057 			TCP_STAT_PUTREF();
1058 		}
1059 
1060 //		tcp_new_dsack(tp, th->th_seq, todrop);
1061 //		hdroptlen += todrop;	/*drop from head afterwards*/
1062 
1063 		th->th_seq += todrop;
1064 		tlen -= todrop;
1065 
1066 		if (th->th_urp > todrop)
1067 			th->th_urp -= todrop;
1068 		else {
1069 			tiflags &= ~TH_URG;
1070 			th->th_urp = 0;
1071 		}
1072 	}
1073 
1074 	/*
1075 	 * If new data are received on a connection after the
1076 	 * user processes are gone, then RST the other end.
1077 	 */
1078 	if (tlen) {
1079 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1080 		goto dropwithreset;
1081 	}
1082 
1083 	/*
1084 	 * If segment ends after window, drop trailing data
1085 	 * (and PUSH and FIN); if nothing left, just ACK.
1086 	 */
1087 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
1088 
1089 	if (todrop > 0) {
1090 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1091 		if (todrop >= tlen) {
1092 			/*
1093 			 * The segment actually starts after the window.
1094 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1095 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1096 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1097 			 */
1098 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1099 			/*
1100 			 * If a new connection request is received
1101 			 * while in TIME_WAIT, drop the old connection
1102 			 * and start over if the sequence numbers
1103 			 * are above the previous ones.
1104 			 */
1105 			if ((tiflags & TH_SYN)
1106 			    && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1107 				/* We only support this in the !NOFDREF case, which
1108 				 * is to say: not here.
1109 				 */
1110 				goto dropwithreset;;
1111 			}
1112 			/*
1113 			 * If window is closed can only take segments at
1114 			 * window edge, and have to drop data and PUSH from
1115 			 * incoming segments.  Continue processing, but
1116 			 * remember to ack.  Otherwise, drop segment
1117 			 * and (if not RST) ack.
1118 			 */
1119 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1120 				t_flags |= TF_ACKNOW;
1121 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
1122 			} else
1123 				goto dropafterack;
1124 		} else
1125 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1126 		m_adj(m, -todrop);
1127 		tlen -= todrop;
1128 		tiflags &= ~(TH_PUSH|TH_FIN);
1129 	}
1130 
1131 	if (tiflags & TH_RST) {
1132 		if (th->th_seq != vp->rcv_nxt)
1133 			goto dropafterack_ratelim;
1134 
1135 		vtw_del(vp->ctl, vp->vtw);
1136 		goto drop;
1137 	}
1138 
1139 	/*
1140 	 * If the ACK bit is off we drop the segment and return.
1141 	 */
1142 	if ((tiflags & TH_ACK) == 0) {
1143 		if (t_flags & TF_ACKNOW)
1144 			goto dropafterack;
1145 		else
1146 			goto drop;
1147 	}
1148 
1149 	/*
1150 	 * In TIME_WAIT state the only thing that should arrive
1151 	 * is a retransmission of the remote FIN.  Acknowledge
1152 	 * it and restart the finack timer.
1153 	 */
1154 	vtw_restart(vp);
1155 	goto dropafterack;
1156 
1157 dropafterack:
1158 	/*
1159 	 * Generate an ACK dropping incoming segment if it occupies
1160 	 * sequence space, where the ACK reflects our state.
1161 	 */
1162 	if (tiflags & TH_RST)
1163 		goto drop;
1164 	goto dropafterack2;
1165 
1166 dropafterack_ratelim:
1167 	/*
1168 	 * We may want to rate-limit ACKs against SYN/RST attack.
1169 	 */
1170 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1171 			 tcp_ackdrop_ppslim) == 0) {
1172 		/* XXX stat */
1173 		goto drop;
1174 	}
1175 	/* ...fall into dropafterack2... */
1176 
1177 dropafterack2:
1178 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
1179 			  TH_ACK);
1180 	return;
1181 
1182 dropwithreset:
1183 	/*
1184 	 * Generate a RST, dropping incoming segment.
1185 	 * Make ACK acceptable to originator of segment.
1186 	 */
1187 	if (tiflags & TH_RST)
1188 		goto drop;
1189 
1190 	if (tiflags & TH_ACK)
1191 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1192 	else {
1193 		if (tiflags & TH_SYN)
1194 			++tlen;
1195 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1196 				  TH_RST|TH_ACK);
1197 	}
1198 	return;
1199 drop:
1200 	m_freem(m);
1201 }
1202 
1203 /*
1204  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1205  */
1206 void
1207 tcp_input(struct mbuf *m, ...)
1208 {
1209 	struct tcphdr *th;
1210 	struct ip *ip;
1211 	struct inpcb *inp;
1212 #ifdef INET6
1213 	struct ip6_hdr *ip6;
1214 	struct in6pcb *in6p;
1215 #endif
1216 	u_int8_t *optp = NULL;
1217 	int optlen = 0;
1218 	int len, tlen, toff, hdroptlen = 0;
1219 	struct tcpcb *tp = 0;
1220 	int tiflags;
1221 	struct socket *so = NULL;
1222 	int todrop, acked, ourfinisacked, needoutput = 0;
1223 	bool dupseg;
1224 #ifdef TCP_DEBUG
1225 	short ostate = 0;
1226 #endif
1227 	u_long tiwin;
1228 	struct tcp_opt_info opti;
1229 	int off, iphlen;
1230 	va_list ap;
1231 	int af;		/* af on the wire */
1232 	struct mbuf *tcp_saveti = NULL;
1233 	uint32_t ts_rtt;
1234 	uint8_t iptos;
1235 	uint64_t *tcps;
1236 	vestigial_inpcb_t vestige;
1237 
1238 	vestige.valid = 0;
1239 
1240 	MCLAIM(m, &tcp_rx_mowner);
1241 	va_start(ap, m);
1242 	toff = va_arg(ap, int);
1243 	(void)va_arg(ap, int);		/* ignore value, advance ap */
1244 	va_end(ap);
1245 
1246 	TCP_STATINC(TCP_STAT_RCVTOTAL);
1247 
1248 	memset(&opti, 0, sizeof(opti));
1249 	opti.ts_present = 0;
1250 	opti.maxseg = 0;
1251 
1252 	/*
1253 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1254 	 *
1255 	 * TCP is, by definition, unicast, so we reject all
1256 	 * multicast outright.
1257 	 *
1258 	 * Note, there are additional src/dst address checks in
1259 	 * the AF-specific code below.
1260 	 */
1261 	if (m->m_flags & (M_BCAST|M_MCAST)) {
1262 		/* XXX stat */
1263 		goto drop;
1264 	}
1265 #ifdef INET6
1266 	if (m->m_flags & M_ANYCAST6) {
1267 		/* XXX stat */
1268 		goto drop;
1269 	}
1270 #endif
1271 
1272 	/*
1273 	 * Get IP and TCP header.
1274 	 * Note: IP leaves IP header in first mbuf.
1275 	 */
1276 	ip = mtod(m, struct ip *);
1277 	switch (ip->ip_v) {
1278 #ifdef INET
1279 	case 4:
1280 #ifdef INET6
1281 		ip6 = NULL;
1282 #endif
1283 		af = AF_INET;
1284 		iphlen = sizeof(struct ip);
1285 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1286 			sizeof(struct tcphdr));
1287 		if (th == NULL) {
1288 			TCP_STATINC(TCP_STAT_RCVSHORT);
1289 			return;
1290 		}
1291 		/* We do the checksum after PCB lookup... */
1292 		len = ntohs(ip->ip_len);
1293 		tlen = len - toff;
1294 		iptos = ip->ip_tos;
1295 		break;
1296 #endif
1297 #ifdef INET6
1298 	case 6:
1299 		ip = NULL;
1300 		iphlen = sizeof(struct ip6_hdr);
1301 		af = AF_INET6;
1302 		ip6 = mtod(m, struct ip6_hdr *);
1303 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1304 			sizeof(struct tcphdr));
1305 		if (th == NULL) {
1306 			TCP_STATINC(TCP_STAT_RCVSHORT);
1307 			return;
1308 		}
1309 
1310 		/* Be proactive about malicious use of IPv4 mapped address */
1311 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1312 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1313 			/* XXX stat */
1314 			goto drop;
1315 		}
1316 
1317 		/*
1318 		 * Be proactive about unspecified IPv6 address in source.
1319 		 * As we use all-zero to indicate unbounded/unconnected pcb,
1320 		 * unspecified IPv6 address can be used to confuse us.
1321 		 *
1322 		 * Note that packets with unspecified IPv6 destination is
1323 		 * already dropped in ip6_input.
1324 		 */
1325 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1326 			/* XXX stat */
1327 			goto drop;
1328 		}
1329 
1330 		/*
1331 		 * Make sure destination address is not multicast.
1332 		 * Source address checked in ip6_input().
1333 		 */
1334 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1335 			/* XXX stat */
1336 			goto drop;
1337 		}
1338 
1339 		/* We do the checksum after PCB lookup... */
1340 		len = m->m_pkthdr.len;
1341 		tlen = len - toff;
1342 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1343 		break;
1344 #endif
1345 	default:
1346 		m_freem(m);
1347 		return;
1348 	}
1349 
1350 	KASSERT(TCP_HDR_ALIGNED_P(th));
1351 
1352 	/*
1353 	 * Check that TCP offset makes sense,
1354 	 * pull out TCP options and adjust length.		XXX
1355 	 */
1356 	off = th->th_off << 2;
1357 	if (off < sizeof (struct tcphdr) || off > tlen) {
1358 		TCP_STATINC(TCP_STAT_RCVBADOFF);
1359 		goto drop;
1360 	}
1361 	tlen -= off;
1362 
1363 	/*
1364 	 * tcp_input() has been modified to use tlen to mean the TCP data
1365 	 * length throughout the function.  Other functions can use
1366 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1367 	 * rja
1368 	 */
1369 
1370 	if (off > sizeof (struct tcphdr)) {
1371 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1372 		if (th == NULL) {
1373 			TCP_STATINC(TCP_STAT_RCVSHORT);
1374 			return;
1375 		}
1376 		/*
1377 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
1378 		 * (as they're before toff) and we don't need to update those.
1379 		 */
1380 		KASSERT(TCP_HDR_ALIGNED_P(th));
1381 		optlen = off - sizeof (struct tcphdr);
1382 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1383 		/*
1384 		 * Do quick retrieval of timestamp options ("options
1385 		 * prediction?").  If timestamp is the only option and it's
1386 		 * formatted as recommended in RFC 1323 appendix A, we
1387 		 * quickly get the values now and not bother calling
1388 		 * tcp_dooptions(), etc.
1389 		 */
1390 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1391 		     (optlen > TCPOLEN_TSTAMP_APPA &&
1392 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1393 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1394 		     (th->th_flags & TH_SYN) == 0) {
1395 			opti.ts_present = 1;
1396 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1397 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1398 			optp = NULL;	/* we've parsed the options */
1399 		}
1400 	}
1401 	tiflags = th->th_flags;
1402 
1403 	/*
1404 	 * Locate pcb for segment.
1405 	 */
1406 findpcb:
1407 	inp = NULL;
1408 #ifdef INET6
1409 	in6p = NULL;
1410 #endif
1411 	switch (af) {
1412 #ifdef INET
1413 	case AF_INET:
1414 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1415 					   ip->ip_dst, th->th_dport,
1416 					   &vestige);
1417 		if (inp == 0 && !vestige.valid) {
1418 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1419 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1420 		}
1421 #ifdef INET6
1422 		if (inp == 0 && !vestige.valid) {
1423 			struct in6_addr s, d;
1424 
1425 			/* mapped addr case */
1426 			memset(&s, 0, sizeof(s));
1427 			s.s6_addr16[5] = htons(0xffff);
1428 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1429 			memset(&d, 0, sizeof(d));
1430 			d.s6_addr16[5] = htons(0xffff);
1431 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1432 			in6p = in6_pcblookup_connect(&tcbtable, &s,
1433 						     th->th_sport, &d, th->th_dport,
1434 						     0, &vestige);
1435 			if (in6p == 0 && !vestige.valid) {
1436 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
1437 				in6p = in6_pcblookup_bind(&tcbtable, &d,
1438 				    th->th_dport, 0);
1439 			}
1440 		}
1441 #endif
1442 #ifndef INET6
1443 		if (inp == 0 && !vestige.valid)
1444 #else
1445 		if (inp == 0 && in6p == 0 && !vestige.valid)
1446 #endif
1447 		{
1448 			TCP_STATINC(TCP_STAT_NOPORT);
1449 			if (tcp_log_refused &&
1450 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1451 				tcp4_log_refused(ip, th);
1452 			}
1453 			tcp_fields_to_host(th);
1454 			goto dropwithreset_ratelim;
1455 		}
1456 #if defined(KAME_IPSEC) || defined(FAST_IPSEC)
1457 		if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1458 		    ipsec4_in_reject(m, inp)) {
1459 			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1460 			goto drop;
1461 		}
1462 #ifdef INET6
1463 		else if (in6p &&
1464 		    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1465 		    ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1466 			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1467 			goto drop;
1468 		}
1469 #endif
1470 #endif /*IPSEC*/
1471 		break;
1472 #endif /*INET*/
1473 #ifdef INET6
1474 	case AF_INET6:
1475 	    {
1476 		int faith;
1477 
1478 #if defined(NFAITH) && NFAITH > 0
1479 		faith = faithprefix(&ip6->ip6_dst);
1480 #else
1481 		faith = 0;
1482 #endif
1483 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1484 					     th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1485 		if (!in6p && !vestige.valid) {
1486 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1487 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1488 				th->th_dport, faith);
1489 		}
1490 		if (!in6p && !vestige.valid) {
1491 			TCP_STATINC(TCP_STAT_NOPORT);
1492 			if (tcp_log_refused &&
1493 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1494 				tcp6_log_refused(ip6, th);
1495 			}
1496 			tcp_fields_to_host(th);
1497 			goto dropwithreset_ratelim;
1498 		}
1499 #if defined(KAME_IPSEC) || defined(FAST_IPSEC)
1500 		if (in6p
1501 		    && (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1502 		    && ipsec6_in_reject(m, in6p)) {
1503 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1504 			goto drop;
1505 		}
1506 #endif /*IPSEC*/
1507 		break;
1508 	    }
1509 #endif
1510 	}
1511 
1512 	/*
1513 	 * If the state is CLOSED (i.e., TCB does not exist) then
1514 	 * all data in the incoming segment is discarded.
1515 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1516 	 * but should either do a listen or a connect soon.
1517 	 */
1518 	tp = NULL;
1519 	so = NULL;
1520 	if (inp) {
1521 		/* Check the minimum TTL for socket. */
1522 		if (ip->ip_ttl < inp->inp_ip_minttl)
1523 			goto drop;
1524 
1525 		tp = intotcpcb(inp);
1526 		so = inp->inp_socket;
1527 	}
1528 #ifdef INET6
1529 	else if (in6p) {
1530 		tp = in6totcpcb(in6p);
1531 		so = in6p->in6p_socket;
1532 	}
1533 #endif
1534 	else if (vestige.valid) {
1535 		int mc = 0;
1536 
1537 		/* We do not support the resurrection of vtw tcpcps.
1538 		 */
1539 		if (tcp_input_checksum(af, m, th, toff, off, tlen))
1540 			goto badcsum;
1541 
1542 		switch (af) {
1543 #ifdef INET6
1544 		case AF_INET6:
1545 			mc = IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst);
1546 			break;
1547 #endif
1548 
1549 		case AF_INET:
1550 			mc = (IN_MULTICAST(ip->ip_dst.s_addr)
1551 			      || in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif));
1552 			break;
1553 		}
1554 
1555 		tcp_fields_to_host(th);
1556 		tcp_vtw_input(th, &vestige, m, tlen, mc);
1557 		m = 0;
1558 		goto drop;
1559 	}
1560 
1561 	if (tp == 0) {
1562 		tcp_fields_to_host(th);
1563 		goto dropwithreset_ratelim;
1564 	}
1565 	if (tp->t_state == TCPS_CLOSED)
1566 		goto drop;
1567 
1568 	KASSERT(so->so_lock == softnet_lock);
1569 	KASSERT(solocked(so));
1570 
1571 	/*
1572 	 * Checksum extended TCP header and data.
1573 	 */
1574 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
1575 		goto badcsum;
1576 
1577 	tcp_fields_to_host(th);
1578 
1579 	/* Unscale the window into a 32-bit value. */
1580 	if ((tiflags & TH_SYN) == 0)
1581 		tiwin = th->th_win << tp->snd_scale;
1582 	else
1583 		tiwin = th->th_win;
1584 
1585 #ifdef INET6
1586 	/* save packet options if user wanted */
1587 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1588 		if (in6p->in6p_options) {
1589 			m_freem(in6p->in6p_options);
1590 			in6p->in6p_options = 0;
1591 		}
1592 		KASSERT(ip6 != NULL);
1593 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1594 	}
1595 #endif
1596 
1597 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1598 		union syn_cache_sa src;
1599 		union syn_cache_sa dst;
1600 
1601 		memset(&src, 0, sizeof(src));
1602 		memset(&dst, 0, sizeof(dst));
1603 		switch (af) {
1604 #ifdef INET
1605 		case AF_INET:
1606 			src.sin.sin_len = sizeof(struct sockaddr_in);
1607 			src.sin.sin_family = AF_INET;
1608 			src.sin.sin_addr = ip->ip_src;
1609 			src.sin.sin_port = th->th_sport;
1610 
1611 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1612 			dst.sin.sin_family = AF_INET;
1613 			dst.sin.sin_addr = ip->ip_dst;
1614 			dst.sin.sin_port = th->th_dport;
1615 			break;
1616 #endif
1617 #ifdef INET6
1618 		case AF_INET6:
1619 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1620 			src.sin6.sin6_family = AF_INET6;
1621 			src.sin6.sin6_addr = ip6->ip6_src;
1622 			src.sin6.sin6_port = th->th_sport;
1623 
1624 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1625 			dst.sin6.sin6_family = AF_INET6;
1626 			dst.sin6.sin6_addr = ip6->ip6_dst;
1627 			dst.sin6.sin6_port = th->th_dport;
1628 			break;
1629 #endif /* INET6 */
1630 		default:
1631 			goto badsyn;	/*sanity*/
1632 		}
1633 
1634 		if (so->so_options & SO_DEBUG) {
1635 #ifdef TCP_DEBUG
1636 			ostate = tp->t_state;
1637 #endif
1638 
1639 			tcp_saveti = NULL;
1640 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1641 				goto nosave;
1642 
1643 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1644 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1645 				if (!tcp_saveti)
1646 					goto nosave;
1647 			} else {
1648 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1649 				if (!tcp_saveti)
1650 					goto nosave;
1651 				MCLAIM(m, &tcp_mowner);
1652 				tcp_saveti->m_len = iphlen;
1653 				m_copydata(m, 0, iphlen,
1654 				    mtod(tcp_saveti, void *));
1655 			}
1656 
1657 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1658 				m_freem(tcp_saveti);
1659 				tcp_saveti = NULL;
1660 			} else {
1661 				tcp_saveti->m_len += sizeof(struct tcphdr);
1662 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1663 				    sizeof(struct tcphdr));
1664 			}
1665 	nosave:;
1666 		}
1667 		if (so->so_options & SO_ACCEPTCONN) {
1668 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1669 				if (tiflags & TH_RST) {
1670 					syn_cache_reset(&src.sa, &dst.sa, th);
1671 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1672 				    (TH_ACK|TH_SYN)) {
1673 					/*
1674 					 * Received a SYN,ACK.  This should
1675 					 * never happen while we are in
1676 					 * LISTEN.  Send an RST.
1677 					 */
1678 					goto badsyn;
1679 				} else if (tiflags & TH_ACK) {
1680 					so = syn_cache_get(&src.sa, &dst.sa,
1681 						th, toff, tlen, so, m);
1682 					if (so == NULL) {
1683 						/*
1684 						 * We don't have a SYN for
1685 						 * this ACK; send an RST.
1686 						 */
1687 						goto badsyn;
1688 					} else if (so ==
1689 					    (struct socket *)(-1)) {
1690 						/*
1691 						 * We were unable to create
1692 						 * the connection.  If the
1693 						 * 3-way handshake was
1694 						 * completed, and RST has
1695 						 * been sent to the peer.
1696 						 * Since the mbuf might be
1697 						 * in use for the reply,
1698 						 * do not free it.
1699 						 */
1700 						m = NULL;
1701 					} else {
1702 						/*
1703 						 * We have created a
1704 						 * full-blown connection.
1705 						 */
1706 						tp = NULL;
1707 						inp = NULL;
1708 #ifdef INET6
1709 						in6p = NULL;
1710 #endif
1711 						switch (so->so_proto->pr_domain->dom_family) {
1712 #ifdef INET
1713 						case AF_INET:
1714 							inp = sotoinpcb(so);
1715 							tp = intotcpcb(inp);
1716 							break;
1717 #endif
1718 #ifdef INET6
1719 						case AF_INET6:
1720 							in6p = sotoin6pcb(so);
1721 							tp = in6totcpcb(in6p);
1722 							break;
1723 #endif
1724 						}
1725 						if (tp == NULL)
1726 							goto badsyn;	/*XXX*/
1727 						tiwin <<= tp->snd_scale;
1728 						goto after_listen;
1729 					}
1730 				} else {
1731 					/*
1732 					 * None of RST, SYN or ACK was set.
1733 					 * This is an invalid packet for a
1734 					 * TCB in LISTEN state.  Send a RST.
1735 					 */
1736 					goto badsyn;
1737 				}
1738 			} else {
1739 				/*
1740 				 * Received a SYN.
1741 				 *
1742 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1743 				 */
1744 				if (m->m_flags & (M_BCAST|M_MCAST))
1745 					goto drop;
1746 
1747 				switch (af) {
1748 #ifdef INET6
1749 				case AF_INET6:
1750 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1751 						goto drop;
1752 					break;
1753 #endif /* INET6 */
1754 				case AF_INET:
1755 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1756 					    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1757 						goto drop;
1758 				break;
1759 				}
1760 
1761 #ifdef INET6
1762 				/*
1763 				 * If deprecated address is forbidden, we do
1764 				 * not accept SYN to deprecated interface
1765 				 * address to prevent any new inbound
1766 				 * connection from getting established.
1767 				 * When we do not accept SYN, we send a TCP
1768 				 * RST, with deprecated source address (instead
1769 				 * of dropping it).  We compromise it as it is
1770 				 * much better for peer to send a RST, and
1771 				 * RST will be the final packet for the
1772 				 * exchange.
1773 				 *
1774 				 * If we do not forbid deprecated addresses, we
1775 				 * accept the SYN packet.  RFC2462 does not
1776 				 * suggest dropping SYN in this case.
1777 				 * If we decipher RFC2462 5.5.4, it says like
1778 				 * this:
1779 				 * 1. use of deprecated addr with existing
1780 				 *    communication is okay - "SHOULD continue
1781 				 *    to be used"
1782 				 * 2. use of it with new communication:
1783 				 *   (2a) "SHOULD NOT be used if alternate
1784 				 *        address with sufficient scope is
1785 				 *        available"
1786 				 *   (2b) nothing mentioned otherwise.
1787 				 * Here we fall into (2b) case as we have no
1788 				 * choice in our source address selection - we
1789 				 * must obey the peer.
1790 				 *
1791 				 * The wording in RFC2462 is confusing, and
1792 				 * there are multiple description text for
1793 				 * deprecated address handling - worse, they
1794 				 * are not exactly the same.  I believe 5.5.4
1795 				 * is the best one, so we follow 5.5.4.
1796 				 */
1797 				if (af == AF_INET6 && !ip6_use_deprecated) {
1798 					struct in6_ifaddr *ia6;
1799 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1800 					    &ip6->ip6_dst)) &&
1801 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1802 						tp = NULL;
1803 						goto dropwithreset;
1804 					}
1805 				}
1806 #endif
1807 
1808 #if defined(KAME_IPSEC) || defined(FAST_IPSEC)
1809 				switch (af) {
1810 #ifdef INET
1811 				case AF_INET:
1812 					if (ipsec4_in_reject_so(m, so)) {
1813 						IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1814 						tp = NULL;
1815 						goto dropwithreset;
1816 					}
1817 					break;
1818 #endif
1819 #ifdef INET6
1820 				case AF_INET6:
1821 					if (ipsec6_in_reject_so(m, so)) {
1822 						IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1823 						tp = NULL;
1824 						goto dropwithreset;
1825 					}
1826 					break;
1827 #endif /*INET6*/
1828 				}
1829 #endif /*IPSEC*/
1830 
1831 				/*
1832 				 * LISTEN socket received a SYN
1833 				 * from itself?  This can't possibly
1834 				 * be valid; drop the packet.
1835 				 */
1836 				if (th->th_sport == th->th_dport) {
1837 					int i;
1838 
1839 					switch (af) {
1840 #ifdef INET
1841 					case AF_INET:
1842 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1843 						break;
1844 #endif
1845 #ifdef INET6
1846 					case AF_INET6:
1847 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1848 						break;
1849 #endif
1850 					default:
1851 						i = 1;
1852 					}
1853 					if (i) {
1854 						TCP_STATINC(TCP_STAT_BADSYN);
1855 						goto drop;
1856 					}
1857 				}
1858 
1859 				/*
1860 				 * SYN looks ok; create compressed TCP
1861 				 * state for it.
1862 				 */
1863 				if (so->so_qlen <= so->so_qlimit &&
1864 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1865 						so, m, optp, optlen, &opti))
1866 					m = NULL;
1867 			}
1868 			goto drop;
1869 		}
1870 	}
1871 
1872 after_listen:
1873 #ifdef DIAGNOSTIC
1874 	/*
1875 	 * Should not happen now that all embryonic connections
1876 	 * are handled with compressed state.
1877 	 */
1878 	if (tp->t_state == TCPS_LISTEN)
1879 		panic("tcp_input: TCPS_LISTEN");
1880 #endif
1881 
1882 	/*
1883 	 * Segment received on connection.
1884 	 * Reset idle time and keep-alive timer.
1885 	 */
1886 	tp->t_rcvtime = tcp_now;
1887 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1888 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1889 
1890 	/*
1891 	 * Process options.
1892 	 */
1893 #ifdef TCP_SIGNATURE
1894 	if (optp || (tp->t_flags & TF_SIGNATURE))
1895 #else
1896 	if (optp)
1897 #endif
1898 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1899 			goto drop;
1900 
1901 	if (TCP_SACK_ENABLED(tp)) {
1902 		tcp_del_sackholes(tp, th);
1903 	}
1904 
1905 	if (TCP_ECN_ALLOWED(tp)) {
1906 		if (tiflags & TH_CWR) {
1907 			tp->t_flags &= ~TF_ECN_SND_ECE;
1908 		}
1909 		switch (iptos & IPTOS_ECN_MASK) {
1910 		case IPTOS_ECN_CE:
1911 			tp->t_flags |= TF_ECN_SND_ECE;
1912 			TCP_STATINC(TCP_STAT_ECN_CE);
1913 			break;
1914 		case IPTOS_ECN_ECT0:
1915 			TCP_STATINC(TCP_STAT_ECN_ECT);
1916 			break;
1917 		case IPTOS_ECN_ECT1:
1918 			/* XXX: ignore for now -- rpaulo */
1919 			break;
1920 		}
1921 		/*
1922 		 * Congestion experienced.
1923 		 * Ignore if we are already trying to recover.
1924 		 */
1925 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1926 			tp->t_congctl->cong_exp(tp);
1927 	}
1928 
1929 	if (opti.ts_present && opti.ts_ecr) {
1930 		/*
1931 		 * Calculate the RTT from the returned time stamp and the
1932 		 * connection's time base.  If the time stamp is later than
1933 		 * the current time, or is extremely old, fall back to non-1323
1934 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
1935 		 * at the same time.
1936 		 *
1937 		 * Note that ts_rtt is in units of slow ticks (500
1938 		 * ms).  Since most earthbound RTTs are < 500 ms,
1939 		 * observed values will have large quantization noise.
1940 		 * Our smoothed RTT is then the fraction of observed
1941 		 * samples that are 1 tick instead of 0 (times 500
1942 		 * ms).
1943 		 *
1944 		 * ts_rtt is increased by 1 to denote a valid sample,
1945 		 * with 0 indicating an invalid measurement.  This
1946 		 * extra 1 must be removed when ts_rtt is used, or
1947 		 * else an an erroneous extra 500 ms will result.
1948 		 */
1949 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1950 		if (ts_rtt > TCP_PAWS_IDLE)
1951 			ts_rtt = 0;
1952 	} else {
1953 		ts_rtt = 0;
1954 	}
1955 
1956 	/*
1957 	 * Header prediction: check for the two common cases
1958 	 * of a uni-directional data xfer.  If the packet has
1959 	 * no control flags, is in-sequence, the window didn't
1960 	 * change and we're not retransmitting, it's a
1961 	 * candidate.  If the length is zero and the ack moved
1962 	 * forward, we're the sender side of the xfer.  Just
1963 	 * free the data acked & wake any higher level process
1964 	 * that was blocked waiting for space.  If the length
1965 	 * is non-zero and the ack didn't move, we're the
1966 	 * receiver side.  If we're getting packets in-order
1967 	 * (the reassembly queue is empty), add the data to
1968 	 * the socket buffer and note that we need a delayed ack.
1969 	 */
1970 	if (tp->t_state == TCPS_ESTABLISHED &&
1971 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1972 	        == TH_ACK &&
1973 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1974 	    th->th_seq == tp->rcv_nxt &&
1975 	    tiwin && tiwin == tp->snd_wnd &&
1976 	    tp->snd_nxt == tp->snd_max) {
1977 
1978 		/*
1979 		 * If last ACK falls within this segment's sequence numbers,
1980 		 * record the timestamp.
1981 		 * NOTE that the test is modified according to the latest
1982 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1983 		 *
1984 		 * note that we already know
1985 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1986 		 */
1987 		if (opti.ts_present &&
1988 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1989 			tp->ts_recent_age = tcp_now;
1990 			tp->ts_recent = opti.ts_val;
1991 		}
1992 
1993 		if (tlen == 0) {
1994 			/* Ack prediction. */
1995 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1996 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1997 			    tp->snd_cwnd >= tp->snd_wnd &&
1998 			    tp->t_partialacks < 0) {
1999 				/*
2000 				 * this is a pure ack for outstanding data.
2001 				 */
2002 				if (ts_rtt)
2003 					tcp_xmit_timer(tp, ts_rtt - 1);
2004 				else if (tp->t_rtttime &&
2005 				    SEQ_GT(th->th_ack, tp->t_rtseq))
2006 					tcp_xmit_timer(tp,
2007 					  tcp_now - tp->t_rtttime);
2008 				acked = th->th_ack - tp->snd_una;
2009 				tcps = TCP_STAT_GETREF();
2010 				tcps[TCP_STAT_PREDACK]++;
2011 				tcps[TCP_STAT_RCVACKPACK]++;
2012 				tcps[TCP_STAT_RCVACKBYTE] += acked;
2013 				TCP_STAT_PUTREF();
2014 				nd6_hint(tp);
2015 
2016 				if (acked > (tp->t_lastoff - tp->t_inoff))
2017 					tp->t_lastm = NULL;
2018 				sbdrop(&so->so_snd, acked);
2019 				tp->t_lastoff -= acked;
2020 
2021 				icmp_check(tp, th, acked);
2022 
2023 				tp->snd_una = th->th_ack;
2024 				tp->snd_fack = tp->snd_una;
2025 				if (SEQ_LT(tp->snd_high, tp->snd_una))
2026 					tp->snd_high = tp->snd_una;
2027 				m_freem(m);
2028 
2029 				/*
2030 				 * If all outstanding data are acked, stop
2031 				 * retransmit timer, otherwise restart timer
2032 				 * using current (possibly backed-off) value.
2033 				 * If process is waiting for space,
2034 				 * wakeup/selnotify/signal.  If data
2035 				 * are ready to send, let tcp_output
2036 				 * decide between more output or persist.
2037 				 */
2038 				if (tp->snd_una == tp->snd_max)
2039 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
2040 				else if (TCP_TIMER_ISARMED(tp,
2041 				    TCPT_PERSIST) == 0)
2042 					TCP_TIMER_ARM(tp, TCPT_REXMT,
2043 					    tp->t_rxtcur);
2044 
2045 				sowwakeup(so);
2046 				if (so->so_snd.sb_cc) {
2047 					KERNEL_LOCK(1, NULL);
2048 					(void) tcp_output(tp);
2049 					KERNEL_UNLOCK_ONE(NULL);
2050 				}
2051 				if (tcp_saveti)
2052 					m_freem(tcp_saveti);
2053 				return;
2054 			}
2055 		} else if (th->th_ack == tp->snd_una &&
2056 		    TAILQ_FIRST(&tp->segq) == NULL &&
2057 		    tlen <= sbspace(&so->so_rcv)) {
2058 			int newsize = 0;	/* automatic sockbuf scaling */
2059 
2060 			/*
2061 			 * this is a pure, in-sequence data packet
2062 			 * with nothing on the reassembly queue and
2063 			 * we have enough buffer space to take it.
2064 			 */
2065 			tp->rcv_nxt += tlen;
2066 			tcps = TCP_STAT_GETREF();
2067 			tcps[TCP_STAT_PREDDAT]++;
2068 			tcps[TCP_STAT_RCVPACK]++;
2069 			tcps[TCP_STAT_RCVBYTE] += tlen;
2070 			TCP_STAT_PUTREF();
2071 			nd6_hint(tp);
2072 
2073 		/*
2074 		 * Automatic sizing enables the performance of large buffers
2075 		 * and most of the efficiency of small ones by only allocating
2076 		 * space when it is needed.
2077 		 *
2078 		 * On the receive side the socket buffer memory is only rarely
2079 		 * used to any significant extent.  This allows us to be much
2080 		 * more aggressive in scaling the receive socket buffer.  For
2081 		 * the case that the buffer space is actually used to a large
2082 		 * extent and we run out of kernel memory we can simply drop
2083 		 * the new segments; TCP on the sender will just retransmit it
2084 		 * later.  Setting the buffer size too big may only consume too
2085 		 * much kernel memory if the application doesn't read() from
2086 		 * the socket or packet loss or reordering makes use of the
2087 		 * reassembly queue.
2088 		 *
2089 		 * The criteria to step up the receive buffer one notch are:
2090 		 *  1. the number of bytes received during the time it takes
2091 		 *     one timestamp to be reflected back to us (the RTT);
2092 		 *  2. received bytes per RTT is within seven eighth of the
2093 		 *     current socket buffer size;
2094 		 *  3. receive buffer size has not hit maximal automatic size;
2095 		 *
2096 		 * This algorithm does one step per RTT at most and only if
2097 		 * we receive a bulk stream w/o packet losses or reorderings.
2098 		 * Shrinking the buffer during idle times is not necessary as
2099 		 * it doesn't consume any memory when idle.
2100 		 *
2101 		 * TODO: Only step up if the application is actually serving
2102 		 * the buffer to better manage the socket buffer resources.
2103 		 */
2104 			if (tcp_do_autorcvbuf &&
2105 			    opti.ts_ecr &&
2106 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
2107 				if (opti.ts_ecr > tp->rfbuf_ts &&
2108 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
2109 					if (tp->rfbuf_cnt >
2110 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
2111 					    so->so_rcv.sb_hiwat <
2112 					    tcp_autorcvbuf_max) {
2113 						newsize =
2114 						    min(so->so_rcv.sb_hiwat +
2115 						    tcp_autorcvbuf_inc,
2116 						    tcp_autorcvbuf_max);
2117 					}
2118 					/* Start over with next RTT. */
2119 					tp->rfbuf_ts = 0;
2120 					tp->rfbuf_cnt = 0;
2121 				} else
2122 					tp->rfbuf_cnt += tlen;	/* add up */
2123 			}
2124 
2125 			/*
2126 			 * Drop TCP, IP headers and TCP options then add data
2127 			 * to socket buffer.
2128 			 */
2129 			if (so->so_state & SS_CANTRCVMORE)
2130 				m_freem(m);
2131 			else {
2132 				/*
2133 				 * Set new socket buffer size.
2134 				 * Give up when limit is reached.
2135 				 */
2136 				if (newsize)
2137 					if (!sbreserve(&so->so_rcv,
2138 					    newsize, so))
2139 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2140 				m_adj(m, toff + off);
2141 				sbappendstream(&so->so_rcv, m);
2142 			}
2143 			sorwakeup(so);
2144 			tcp_setup_ack(tp, th);
2145 			if (tp->t_flags & TF_ACKNOW) {
2146 				KERNEL_LOCK(1, NULL);
2147 				(void) tcp_output(tp);
2148 				KERNEL_UNLOCK_ONE(NULL);
2149 			}
2150 			if (tcp_saveti)
2151 				m_freem(tcp_saveti);
2152 			return;
2153 		}
2154 	}
2155 
2156 	/*
2157 	 * Compute mbuf offset to TCP data segment.
2158 	 */
2159 	hdroptlen = toff + off;
2160 
2161 	/*
2162 	 * Calculate amount of space in receive window,
2163 	 * and then do TCP input processing.
2164 	 * Receive window is amount of space in rcv queue,
2165 	 * but not less than advertised window.
2166 	 */
2167 	{ int win;
2168 
2169 	win = sbspace(&so->so_rcv);
2170 	if (win < 0)
2171 		win = 0;
2172 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2173 	}
2174 
2175 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
2176 	tp->rfbuf_ts = 0;
2177 	tp->rfbuf_cnt = 0;
2178 
2179 	switch (tp->t_state) {
2180 	/*
2181 	 * If the state is SYN_SENT:
2182 	 *	if seg contains an ACK, but not for our SYN, drop the input.
2183 	 *	if seg contains a RST, then drop the connection.
2184 	 *	if seg does not contain SYN, then drop it.
2185 	 * Otherwise this is an acceptable SYN segment
2186 	 *	initialize tp->rcv_nxt and tp->irs
2187 	 *	if seg contains ack then advance tp->snd_una
2188 	 *	if seg contains a ECE and ECN support is enabled, the stream
2189 	 *	    is ECN capable.
2190 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2191 	 *	arrange for segment to be acked (eventually)
2192 	 *	continue processing rest of data/controls, beginning with URG
2193 	 */
2194 	case TCPS_SYN_SENT:
2195 		if ((tiflags & TH_ACK) &&
2196 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2197 		     SEQ_GT(th->th_ack, tp->snd_max)))
2198 			goto dropwithreset;
2199 		if (tiflags & TH_RST) {
2200 			if (tiflags & TH_ACK)
2201 				tp = tcp_drop(tp, ECONNREFUSED);
2202 			goto drop;
2203 		}
2204 		if ((tiflags & TH_SYN) == 0)
2205 			goto drop;
2206 		if (tiflags & TH_ACK) {
2207 			tp->snd_una = th->th_ack;
2208 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2209 				tp->snd_nxt = tp->snd_una;
2210 			if (SEQ_LT(tp->snd_high, tp->snd_una))
2211 				tp->snd_high = tp->snd_una;
2212 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2213 
2214 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
2215 				tp->t_flags |= TF_ECN_PERMIT;
2216 				TCP_STATINC(TCP_STAT_ECN_SHS);
2217 			}
2218 
2219 		}
2220 		tp->irs = th->th_seq;
2221 		tcp_rcvseqinit(tp);
2222 		tp->t_flags |= TF_ACKNOW;
2223 		tcp_mss_from_peer(tp, opti.maxseg);
2224 
2225 		/*
2226 		 * Initialize the initial congestion window.  If we
2227 		 * had to retransmit the SYN, we must initialize cwnd
2228 		 * to 1 segment (i.e. the Loss Window).
2229 		 */
2230 		if (tp->t_flags & TF_SYN_REXMT)
2231 			tp->snd_cwnd = tp->t_peermss;
2232 		else {
2233 			int ss = tcp_init_win;
2234 #ifdef INET
2235 			if (inp != NULL && in_localaddr(inp->inp_faddr))
2236 				ss = tcp_init_win_local;
2237 #endif
2238 #ifdef INET6
2239 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2240 				ss = tcp_init_win_local;
2241 #endif
2242 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2243 		}
2244 
2245 		tcp_rmx_rtt(tp);
2246 		if (tiflags & TH_ACK) {
2247 			TCP_STATINC(TCP_STAT_CONNECTS);
2248 			/*
2249 			 * move tcp_established before soisconnected
2250 			 * because upcall handler can drive tcp_output
2251 			 * functionality.
2252 			 * XXX we might call soisconnected at the end of
2253 			 * all processing
2254 			 */
2255 			tcp_established(tp);
2256 			soisconnected(so);
2257 			/* Do window scaling on this connection? */
2258 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2259 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2260 				tp->snd_scale = tp->requested_s_scale;
2261 				tp->rcv_scale = tp->request_r_scale;
2262 			}
2263 			TCP_REASS_LOCK(tp);
2264 			(void) tcp_reass(tp, NULL, NULL, &tlen);
2265 			/*
2266 			 * if we didn't have to retransmit the SYN,
2267 			 * use its rtt as our initial srtt & rtt var.
2268 			 */
2269 			if (tp->t_rtttime)
2270 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2271 		} else
2272 			tp->t_state = TCPS_SYN_RECEIVED;
2273 
2274 		/*
2275 		 * Advance th->th_seq to correspond to first data byte.
2276 		 * If data, trim to stay within window,
2277 		 * dropping FIN if necessary.
2278 		 */
2279 		th->th_seq++;
2280 		if (tlen > tp->rcv_wnd) {
2281 			todrop = tlen - tp->rcv_wnd;
2282 			m_adj(m, -todrop);
2283 			tlen = tp->rcv_wnd;
2284 			tiflags &= ~TH_FIN;
2285 			tcps = TCP_STAT_GETREF();
2286 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2287 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2288 			TCP_STAT_PUTREF();
2289 		}
2290 		tp->snd_wl1 = th->th_seq - 1;
2291 		tp->rcv_up = th->th_seq;
2292 		goto step6;
2293 
2294 	/*
2295 	 * If the state is SYN_RECEIVED:
2296 	 *	If seg contains an ACK, but not for our SYN, drop the input
2297 	 *	and generate an RST.  See page 36, rfc793
2298 	 */
2299 	case TCPS_SYN_RECEIVED:
2300 		if ((tiflags & TH_ACK) &&
2301 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2302 		     SEQ_GT(th->th_ack, tp->snd_max)))
2303 			goto dropwithreset;
2304 		break;
2305 	}
2306 
2307 	/*
2308 	 * States other than LISTEN or SYN_SENT.
2309 	 * First check timestamp, if present.
2310 	 * Then check that at least some bytes of segment are within
2311 	 * receive window.  If segment begins before rcv_nxt,
2312 	 * drop leading data (and SYN); if nothing left, just ack.
2313 	 *
2314 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2315 	 * and it's less than ts_recent, drop it.
2316 	 */
2317 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2318 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2319 
2320 		/* Check to see if ts_recent is over 24 days old.  */
2321 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2322 			/*
2323 			 * Invalidate ts_recent.  If this segment updates
2324 			 * ts_recent, the age will be reset later and ts_recent
2325 			 * will get a valid value.  If it does not, setting
2326 			 * ts_recent to zero will at least satisfy the
2327 			 * requirement that zero be placed in the timestamp
2328 			 * echo reply when ts_recent isn't valid.  The
2329 			 * age isn't reset until we get a valid ts_recent
2330 			 * because we don't want out-of-order segments to be
2331 			 * dropped when ts_recent is old.
2332 			 */
2333 			tp->ts_recent = 0;
2334 		} else {
2335 			tcps = TCP_STAT_GETREF();
2336 			tcps[TCP_STAT_RCVDUPPACK]++;
2337 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2338 			tcps[TCP_STAT_PAWSDROP]++;
2339 			TCP_STAT_PUTREF();
2340 			tcp_new_dsack(tp, th->th_seq, tlen);
2341 			goto dropafterack;
2342 		}
2343 	}
2344 
2345 	todrop = tp->rcv_nxt - th->th_seq;
2346 	dupseg = false;
2347 	if (todrop > 0) {
2348 		if (tiflags & TH_SYN) {
2349 			tiflags &= ~TH_SYN;
2350 			th->th_seq++;
2351 			if (th->th_urp > 1)
2352 				th->th_urp--;
2353 			else {
2354 				tiflags &= ~TH_URG;
2355 				th->th_urp = 0;
2356 			}
2357 			todrop--;
2358 		}
2359 		if (todrop > tlen ||
2360 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2361 			/*
2362 			 * Any valid FIN or RST must be to the left of the
2363 			 * window.  At this point the FIN or RST must be a
2364 			 * duplicate or out of sequence; drop it.
2365 			 */
2366 			if (tiflags & TH_RST)
2367 				goto drop;
2368 			tiflags &= ~(TH_FIN|TH_RST);
2369 			/*
2370 			 * Send an ACK to resynchronize and drop any data.
2371 			 * But keep on processing for RST or ACK.
2372 			 */
2373 			tp->t_flags |= TF_ACKNOW;
2374 			todrop = tlen;
2375 			dupseg = true;
2376 			tcps = TCP_STAT_GETREF();
2377 			tcps[TCP_STAT_RCVDUPPACK]++;
2378 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2379 			TCP_STAT_PUTREF();
2380 		} else if ((tiflags & TH_RST) &&
2381 			   th->th_seq != tp->rcv_nxt) {
2382 			/*
2383 			 * Test for reset before adjusting the sequence
2384 			 * number for overlapping data.
2385 			 */
2386 			goto dropafterack_ratelim;
2387 		} else {
2388 			tcps = TCP_STAT_GETREF();
2389 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
2390 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2391 			TCP_STAT_PUTREF();
2392 		}
2393 		tcp_new_dsack(tp, th->th_seq, todrop);
2394 		hdroptlen += todrop;	/*drop from head afterwards*/
2395 		th->th_seq += todrop;
2396 		tlen -= todrop;
2397 		if (th->th_urp > todrop)
2398 			th->th_urp -= todrop;
2399 		else {
2400 			tiflags &= ~TH_URG;
2401 			th->th_urp = 0;
2402 		}
2403 	}
2404 
2405 	/*
2406 	 * If new data are received on a connection after the
2407 	 * user processes are gone, then RST the other end.
2408 	 */
2409 	if ((so->so_state & SS_NOFDREF) &&
2410 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2411 		tp = tcp_close(tp);
2412 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2413 		goto dropwithreset;
2414 	}
2415 
2416 	/*
2417 	 * If segment ends after window, drop trailing data
2418 	 * (and PUSH and FIN); if nothing left, just ACK.
2419 	 */
2420 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2421 	if (todrop > 0) {
2422 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2423 		if (todrop >= tlen) {
2424 			/*
2425 			 * The segment actually starts after the window.
2426 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2427 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2428 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2429 			 */
2430 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2431 			/*
2432 			 * If a new connection request is received
2433 			 * while in TIME_WAIT, drop the old connection
2434 			 * and start over if the sequence numbers
2435 			 * are above the previous ones.
2436 			 *
2437 			 * NOTE: We will checksum the packet again, and
2438 			 * so we need to put the header fields back into
2439 			 * network order!
2440 			 * XXX This kind of sucks, but we don't expect
2441 			 * XXX this to happen very often, so maybe it
2442 			 * XXX doesn't matter so much.
2443 			 */
2444 			if (tiflags & TH_SYN &&
2445 			    tp->t_state == TCPS_TIME_WAIT &&
2446 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2447 				tp = tcp_close(tp);
2448 				tcp_fields_to_net(th);
2449 				goto findpcb;
2450 			}
2451 			/*
2452 			 * If window is closed can only take segments at
2453 			 * window edge, and have to drop data and PUSH from
2454 			 * incoming segments.  Continue processing, but
2455 			 * remember to ack.  Otherwise, drop segment
2456 			 * and (if not RST) ack.
2457 			 */
2458 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2459 				tp->t_flags |= TF_ACKNOW;
2460 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
2461 			} else
2462 				goto dropafterack;
2463 		} else
2464 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2465 		m_adj(m, -todrop);
2466 		tlen -= todrop;
2467 		tiflags &= ~(TH_PUSH|TH_FIN);
2468 	}
2469 
2470 	/*
2471 	 * If last ACK falls within this segment's sequence numbers,
2472 	 *  record the timestamp.
2473 	 * NOTE:
2474 	 * 1) That the test incorporates suggestions from the latest
2475 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2476 	 * 2) That updating only on newer timestamps interferes with
2477 	 *    our earlier PAWS tests, so this check should be solely
2478 	 *    predicated on the sequence space of this segment.
2479 	 * 3) That we modify the segment boundary check to be
2480 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2481 	 *    instead of RFC1323's
2482 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2483 	 *    This modified check allows us to overcome RFC1323's
2484 	 *    limitations as described in Stevens TCP/IP Illustrated
2485 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2486 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2487 	 */
2488 	if (opti.ts_present &&
2489 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2490 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2491 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2492 		tp->ts_recent_age = tcp_now;
2493 		tp->ts_recent = opti.ts_val;
2494 	}
2495 
2496 	/*
2497 	 * If the RST bit is set examine the state:
2498 	 *    SYN_RECEIVED STATE:
2499 	 *	If passive open, return to LISTEN state.
2500 	 *	If active open, inform user that connection was refused.
2501 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2502 	 *	Inform user that connection was reset, and close tcb.
2503 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
2504 	 *	Close the tcb.
2505 	 */
2506 	if (tiflags & TH_RST) {
2507 		if (th->th_seq != tp->rcv_nxt)
2508 			goto dropafterack_ratelim;
2509 
2510 		switch (tp->t_state) {
2511 		case TCPS_SYN_RECEIVED:
2512 			so->so_error = ECONNREFUSED;
2513 			goto close;
2514 
2515 		case TCPS_ESTABLISHED:
2516 		case TCPS_FIN_WAIT_1:
2517 		case TCPS_FIN_WAIT_2:
2518 		case TCPS_CLOSE_WAIT:
2519 			so->so_error = ECONNRESET;
2520 		close:
2521 			tp->t_state = TCPS_CLOSED;
2522 			TCP_STATINC(TCP_STAT_DROPS);
2523 			tp = tcp_close(tp);
2524 			goto drop;
2525 
2526 		case TCPS_CLOSING:
2527 		case TCPS_LAST_ACK:
2528 		case TCPS_TIME_WAIT:
2529 			tp = tcp_close(tp);
2530 			goto drop;
2531 		}
2532 	}
2533 
2534 	/*
2535 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2536 	 * we must be in a synchronized state.  RFC791 states (under RST
2537 	 * generation) that any unacceptable segment (an out-of-order SYN
2538 	 * qualifies) received in a synchronized state must elicit only an
2539 	 * empty acknowledgment segment ... and the connection remains in
2540 	 * the same state.
2541 	 */
2542 	if (tiflags & TH_SYN) {
2543 		if (tp->rcv_nxt == th->th_seq) {
2544 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2545 			    TH_ACK);
2546 			if (tcp_saveti)
2547 				m_freem(tcp_saveti);
2548 			return;
2549 		}
2550 
2551 		goto dropafterack_ratelim;
2552 	}
2553 
2554 	/*
2555 	 * If the ACK bit is off we drop the segment and return.
2556 	 */
2557 	if ((tiflags & TH_ACK) == 0) {
2558 		if (tp->t_flags & TF_ACKNOW)
2559 			goto dropafterack;
2560 		else
2561 			goto drop;
2562 	}
2563 
2564 	/*
2565 	 * Ack processing.
2566 	 */
2567 	switch (tp->t_state) {
2568 
2569 	/*
2570 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2571 	 * ESTABLISHED state and continue processing, otherwise
2572 	 * send an RST.
2573 	 */
2574 	case TCPS_SYN_RECEIVED:
2575 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
2576 		    SEQ_GT(th->th_ack, tp->snd_max))
2577 			goto dropwithreset;
2578 		TCP_STATINC(TCP_STAT_CONNECTS);
2579 		soisconnected(so);
2580 		tcp_established(tp);
2581 		/* Do window scaling? */
2582 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2583 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2584 			tp->snd_scale = tp->requested_s_scale;
2585 			tp->rcv_scale = tp->request_r_scale;
2586 		}
2587 		TCP_REASS_LOCK(tp);
2588 		(void) tcp_reass(tp, NULL, NULL, &tlen);
2589 		tp->snd_wl1 = th->th_seq - 1;
2590 		/* fall into ... */
2591 
2592 	/*
2593 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2594 	 * ACKs.  If the ack is in the range
2595 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2596 	 * then advance tp->snd_una to th->th_ack and drop
2597 	 * data from the retransmission queue.  If this ACK reflects
2598 	 * more up to date window information we update our window information.
2599 	 */
2600 	case TCPS_ESTABLISHED:
2601 	case TCPS_FIN_WAIT_1:
2602 	case TCPS_FIN_WAIT_2:
2603 	case TCPS_CLOSE_WAIT:
2604 	case TCPS_CLOSING:
2605 	case TCPS_LAST_ACK:
2606 	case TCPS_TIME_WAIT:
2607 
2608 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2609 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2610 				TCP_STATINC(TCP_STAT_RCVDUPACK);
2611 				/*
2612 				 * If we have outstanding data (other than
2613 				 * a window probe), this is a completely
2614 				 * duplicate ack (ie, window info didn't
2615 				 * change), the ack is the biggest we've
2616 				 * seen and we've seen exactly our rexmt
2617 				 * threshhold of them, assume a packet
2618 				 * has been dropped and retransmit it.
2619 				 * Kludge snd_nxt & the congestion
2620 				 * window so we send only this one
2621 				 * packet.
2622 				 */
2623 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2624 				    th->th_ack != tp->snd_una)
2625 					tp->t_dupacks = 0;
2626 				else if (tp->t_partialacks < 0 &&
2627 					 (++tp->t_dupacks == tcprexmtthresh ||
2628 					 TCP_FACK_FASTRECOV(tp))) {
2629 					/*
2630 					 * Do the fast retransmit, and adjust
2631 					 * congestion control paramenters.
2632 					 */
2633 					if (tp->t_congctl->fast_retransmit(tp, th)) {
2634 						/* False fast retransmit */
2635 						break;
2636 					} else
2637 						goto drop;
2638 				} else if (tp->t_dupacks > tcprexmtthresh) {
2639 					tp->snd_cwnd += tp->t_segsz;
2640 					KERNEL_LOCK(1, NULL);
2641 					(void) tcp_output(tp);
2642 					KERNEL_UNLOCK_ONE(NULL);
2643 					goto drop;
2644 				}
2645 			} else {
2646 				/*
2647 				 * If the ack appears to be very old, only
2648 				 * allow data that is in-sequence.  This
2649 				 * makes it somewhat more difficult to insert
2650 				 * forged data by guessing sequence numbers.
2651 				 * Sent an ack to try to update the send
2652 				 * sequence number on the other side.
2653 				 */
2654 				if (tlen && th->th_seq != tp->rcv_nxt &&
2655 				    SEQ_LT(th->th_ack,
2656 				    tp->snd_una - tp->max_sndwnd))
2657 					goto dropafterack;
2658 			}
2659 			break;
2660 		}
2661 		/*
2662 		 * If the congestion window was inflated to account
2663 		 * for the other side's cached packets, retract it.
2664 		 */
2665 		/* XXX: make SACK have his own congestion control
2666 		 * struct -- rpaulo */
2667 		if (TCP_SACK_ENABLED(tp))
2668 			tcp_sack_newack(tp, th);
2669 		else
2670 			tp->t_congctl->fast_retransmit_newack(tp, th);
2671 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2672 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2673 			goto dropafterack;
2674 		}
2675 		acked = th->th_ack - tp->snd_una;
2676 		tcps = TCP_STAT_GETREF();
2677 		tcps[TCP_STAT_RCVACKPACK]++;
2678 		tcps[TCP_STAT_RCVACKBYTE] += acked;
2679 		TCP_STAT_PUTREF();
2680 
2681 		/*
2682 		 * If we have a timestamp reply, update smoothed
2683 		 * round trip time.  If no timestamp is present but
2684 		 * transmit timer is running and timed sequence
2685 		 * number was acked, update smoothed round trip time.
2686 		 * Since we now have an rtt measurement, cancel the
2687 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2688 		 * Recompute the initial retransmit timer.
2689 		 */
2690 		if (ts_rtt)
2691 			tcp_xmit_timer(tp, ts_rtt - 1);
2692 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2693 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2694 
2695 		/*
2696 		 * If all outstanding data is acked, stop retransmit
2697 		 * timer and remember to restart (more output or persist).
2698 		 * If there is more data to be acked, restart retransmit
2699 		 * timer, using current (possibly backed-off) value.
2700 		 */
2701 		if (th->th_ack == tp->snd_max) {
2702 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2703 			needoutput = 1;
2704 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2705 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2706 
2707 		/*
2708 		 * New data has been acked, adjust the congestion window.
2709 		 */
2710 		tp->t_congctl->newack(tp, th);
2711 
2712 		nd6_hint(tp);
2713 		if (acked > so->so_snd.sb_cc) {
2714 			tp->snd_wnd -= so->so_snd.sb_cc;
2715 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2716 			ourfinisacked = 1;
2717 		} else {
2718 			if (acked > (tp->t_lastoff - tp->t_inoff))
2719 				tp->t_lastm = NULL;
2720 			sbdrop(&so->so_snd, acked);
2721 			tp->t_lastoff -= acked;
2722 			tp->snd_wnd -= acked;
2723 			ourfinisacked = 0;
2724 		}
2725 		sowwakeup(so);
2726 
2727 		icmp_check(tp, th, acked);
2728 
2729 		tp->snd_una = th->th_ack;
2730 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
2731 			tp->snd_fack = tp->snd_una;
2732 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2733 			tp->snd_nxt = tp->snd_una;
2734 		if (SEQ_LT(tp->snd_high, tp->snd_una))
2735 			tp->snd_high = tp->snd_una;
2736 
2737 		switch (tp->t_state) {
2738 
2739 		/*
2740 		 * In FIN_WAIT_1 STATE in addition to the processing
2741 		 * for the ESTABLISHED state if our FIN is now acknowledged
2742 		 * then enter FIN_WAIT_2.
2743 		 */
2744 		case TCPS_FIN_WAIT_1:
2745 			if (ourfinisacked) {
2746 				/*
2747 				 * If we can't receive any more
2748 				 * data, then closing user can proceed.
2749 				 * Starting the timer is contrary to the
2750 				 * specification, but if we don't get a FIN
2751 				 * we'll hang forever.
2752 				 */
2753 				if (so->so_state & SS_CANTRCVMORE) {
2754 					soisdisconnected(so);
2755 					if (tp->t_maxidle > 0)
2756 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2757 						    tp->t_maxidle);
2758 				}
2759 				tp->t_state = TCPS_FIN_WAIT_2;
2760 			}
2761 			break;
2762 
2763 	 	/*
2764 		 * In CLOSING STATE in addition to the processing for
2765 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2766 		 * then enter the TIME-WAIT state, otherwise ignore
2767 		 * the segment.
2768 		 */
2769 		case TCPS_CLOSING:
2770 			if (ourfinisacked) {
2771 				tp->t_state = TCPS_TIME_WAIT;
2772 				tcp_canceltimers(tp);
2773 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2774 				soisdisconnected(so);
2775 			}
2776 			break;
2777 
2778 		/*
2779 		 * In LAST_ACK, we may still be waiting for data to drain
2780 		 * and/or to be acked, as well as for the ack of our FIN.
2781 		 * If our FIN is now acknowledged, delete the TCB,
2782 		 * enter the closed state and return.
2783 		 */
2784 		case TCPS_LAST_ACK:
2785 			if (ourfinisacked) {
2786 				tp = tcp_close(tp);
2787 				goto drop;
2788 			}
2789 			break;
2790 
2791 		/*
2792 		 * In TIME_WAIT state the only thing that should arrive
2793 		 * is a retransmission of the remote FIN.  Acknowledge
2794 		 * it and restart the finack timer.
2795 		 */
2796 		case TCPS_TIME_WAIT:
2797 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2798 			goto dropafterack;
2799 		}
2800 	}
2801 
2802 step6:
2803 	/*
2804 	 * Update window information.
2805 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2806 	 */
2807 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2808 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2809 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2810 		/* keep track of pure window updates */
2811 		if (tlen == 0 &&
2812 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2813 			TCP_STATINC(TCP_STAT_RCVWINUPD);
2814 		tp->snd_wnd = tiwin;
2815 		tp->snd_wl1 = th->th_seq;
2816 		tp->snd_wl2 = th->th_ack;
2817 		if (tp->snd_wnd > tp->max_sndwnd)
2818 			tp->max_sndwnd = tp->snd_wnd;
2819 		needoutput = 1;
2820 	}
2821 
2822 	/*
2823 	 * Process segments with URG.
2824 	 */
2825 	if ((tiflags & TH_URG) && th->th_urp &&
2826 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2827 		/*
2828 		 * This is a kludge, but if we receive and accept
2829 		 * random urgent pointers, we'll crash in
2830 		 * soreceive.  It's hard to imagine someone
2831 		 * actually wanting to send this much urgent data.
2832 		 */
2833 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2834 			th->th_urp = 0;			/* XXX */
2835 			tiflags &= ~TH_URG;		/* XXX */
2836 			goto dodata;			/* XXX */
2837 		}
2838 		/*
2839 		 * If this segment advances the known urgent pointer,
2840 		 * then mark the data stream.  This should not happen
2841 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2842 		 * a FIN has been received from the remote side.
2843 		 * In these states we ignore the URG.
2844 		 *
2845 		 * According to RFC961 (Assigned Protocols),
2846 		 * the urgent pointer points to the last octet
2847 		 * of urgent data.  We continue, however,
2848 		 * to consider it to indicate the first octet
2849 		 * of data past the urgent section as the original
2850 		 * spec states (in one of two places).
2851 		 */
2852 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2853 			tp->rcv_up = th->th_seq + th->th_urp;
2854 			so->so_oobmark = so->so_rcv.sb_cc +
2855 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2856 			if (so->so_oobmark == 0)
2857 				so->so_state |= SS_RCVATMARK;
2858 			sohasoutofband(so);
2859 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2860 		}
2861 		/*
2862 		 * Remove out of band data so doesn't get presented to user.
2863 		 * This can happen independent of advancing the URG pointer,
2864 		 * but if two URG's are pending at once, some out-of-band
2865 		 * data may creep in... ick.
2866 		 */
2867 		if (th->th_urp <= (u_int16_t) tlen
2868 #ifdef SO_OOBINLINE
2869 		     && (so->so_options & SO_OOBINLINE) == 0
2870 #endif
2871 		     )
2872 			tcp_pulloutofband(so, th, m, hdroptlen);
2873 	} else
2874 		/*
2875 		 * If no out of band data is expected,
2876 		 * pull receive urgent pointer along
2877 		 * with the receive window.
2878 		 */
2879 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2880 			tp->rcv_up = tp->rcv_nxt;
2881 dodata:							/* XXX */
2882 
2883 	/*
2884 	 * Process the segment text, merging it into the TCP sequencing queue,
2885 	 * and arranging for acknowledgement of receipt if necessary.
2886 	 * This process logically involves adjusting tp->rcv_wnd as data
2887 	 * is presented to the user (this happens in tcp_usrreq.c,
2888 	 * case PRU_RCVD).  If a FIN has already been received on this
2889 	 * connection then we just ignore the text.
2890 	 */
2891 	if ((tlen || (tiflags & TH_FIN)) &&
2892 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2893 		/*
2894 		 * Insert segment ti into reassembly queue of tcp with
2895 		 * control block tp.  Return TH_FIN if reassembly now includes
2896 		 * a segment with FIN.  The macro form does the common case
2897 		 * inline (segment is the next to be received on an
2898 		 * established connection, and the queue is empty),
2899 		 * avoiding linkage into and removal from the queue and
2900 		 * repetition of various conversions.
2901 		 * Set DELACK for segments received in order, but ack
2902 		 * immediately when segments are out of order
2903 		 * (so fast retransmit can work).
2904 		 */
2905 		/* NOTE: this was TCP_REASS() macro, but used only once */
2906 		TCP_REASS_LOCK(tp);
2907 		if (th->th_seq == tp->rcv_nxt &&
2908 		    TAILQ_FIRST(&tp->segq) == NULL &&
2909 		    tp->t_state == TCPS_ESTABLISHED) {
2910 			tcp_setup_ack(tp, th);
2911 			tp->rcv_nxt += tlen;
2912 			tiflags = th->th_flags & TH_FIN;
2913 			tcps = TCP_STAT_GETREF();
2914 			tcps[TCP_STAT_RCVPACK]++;
2915 			tcps[TCP_STAT_RCVBYTE] += tlen;
2916 			TCP_STAT_PUTREF();
2917 			nd6_hint(tp);
2918 			if (so->so_state & SS_CANTRCVMORE)
2919 				m_freem(m);
2920 			else {
2921 				m_adj(m, hdroptlen);
2922 				sbappendstream(&(so)->so_rcv, m);
2923 			}
2924 			TCP_REASS_UNLOCK(tp);
2925 			sorwakeup(so);
2926 		} else {
2927 			m_adj(m, hdroptlen);
2928 			tiflags = tcp_reass(tp, th, m, &tlen);
2929 			tp->t_flags |= TF_ACKNOW;
2930 		}
2931 
2932 		/*
2933 		 * Note the amount of data that peer has sent into
2934 		 * our window, in order to estimate the sender's
2935 		 * buffer size.
2936 		 */
2937 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2938 	} else {
2939 		m_freem(m);
2940 		m = NULL;
2941 		tiflags &= ~TH_FIN;
2942 	}
2943 
2944 	/*
2945 	 * If FIN is received ACK the FIN and let the user know
2946 	 * that the connection is closing.  Ignore a FIN received before
2947 	 * the connection is fully established.
2948 	 */
2949 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2950 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2951 			socantrcvmore(so);
2952 			tp->t_flags |= TF_ACKNOW;
2953 			tp->rcv_nxt++;
2954 		}
2955 		switch (tp->t_state) {
2956 
2957 	 	/*
2958 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2959 		 */
2960 		case TCPS_ESTABLISHED:
2961 			tp->t_state = TCPS_CLOSE_WAIT;
2962 			break;
2963 
2964 	 	/*
2965 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2966 		 * enter the CLOSING state.
2967 		 */
2968 		case TCPS_FIN_WAIT_1:
2969 			tp->t_state = TCPS_CLOSING;
2970 			break;
2971 
2972 	 	/*
2973 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2974 		 * starting the time-wait timer, turning off the other
2975 		 * standard timers.
2976 		 */
2977 		case TCPS_FIN_WAIT_2:
2978 			tp->t_state = TCPS_TIME_WAIT;
2979 			tcp_canceltimers(tp);
2980 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2981 			soisdisconnected(so);
2982 			break;
2983 
2984 		/*
2985 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2986 		 */
2987 		case TCPS_TIME_WAIT:
2988 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2989 			break;
2990 		}
2991 	}
2992 #ifdef TCP_DEBUG
2993 	if (so->so_options & SO_DEBUG)
2994 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2995 #endif
2996 
2997 	/*
2998 	 * Return any desired output.
2999 	 */
3000 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
3001 		KERNEL_LOCK(1, NULL);
3002 		(void) tcp_output(tp);
3003 		KERNEL_UNLOCK_ONE(NULL);
3004 	}
3005 	if (tcp_saveti)
3006 		m_freem(tcp_saveti);
3007 
3008 	if (tp->t_state == TCPS_TIME_WAIT
3009 	    && (so->so_state & SS_NOFDREF)
3010 	    && (tp->t_inpcb || af != AF_INET)
3011 	    && (tp->t_in6pcb || af != AF_INET6)
3012 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
3013 	    && TAILQ_EMPTY(&tp->segq)
3014 	    && vtw_add(af, tp)) {
3015 		;
3016 	}
3017 	return;
3018 
3019 badsyn:
3020 	/*
3021 	 * Received a bad SYN.  Increment counters and dropwithreset.
3022 	 */
3023 	TCP_STATINC(TCP_STAT_BADSYN);
3024 	tp = NULL;
3025 	goto dropwithreset;
3026 
3027 dropafterack:
3028 	/*
3029 	 * Generate an ACK dropping incoming segment if it occupies
3030 	 * sequence space, where the ACK reflects our state.
3031 	 */
3032 	if (tiflags & TH_RST)
3033 		goto drop;
3034 	goto dropafterack2;
3035 
3036 dropafterack_ratelim:
3037 	/*
3038 	 * We may want to rate-limit ACKs against SYN/RST attack.
3039 	 */
3040 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
3041 	    tcp_ackdrop_ppslim) == 0) {
3042 		/* XXX stat */
3043 		goto drop;
3044 	}
3045 	/* ...fall into dropafterack2... */
3046 
3047 dropafterack2:
3048 	m_freem(m);
3049 	tp->t_flags |= TF_ACKNOW;
3050 	KERNEL_LOCK(1, NULL);
3051 	(void) tcp_output(tp);
3052 	KERNEL_UNLOCK_ONE(NULL);
3053 	if (tcp_saveti)
3054 		m_freem(tcp_saveti);
3055 	return;
3056 
3057 dropwithreset_ratelim:
3058 	/*
3059 	 * We may want to rate-limit RSTs in certain situations,
3060 	 * particularly if we are sending an RST in response to
3061 	 * an attempt to connect to or otherwise communicate with
3062 	 * a port for which we have no socket.
3063 	 */
3064 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
3065 	    tcp_rst_ppslim) == 0) {
3066 		/* XXX stat */
3067 		goto drop;
3068 	}
3069 	/* ...fall into dropwithreset... */
3070 
3071 dropwithreset:
3072 	/*
3073 	 * Generate a RST, dropping incoming segment.
3074 	 * Make ACK acceptable to originator of segment.
3075 	 */
3076 	if (tiflags & TH_RST)
3077 		goto drop;
3078 
3079 	switch (af) {
3080 #ifdef INET6
3081 	case AF_INET6:
3082 		/* For following calls to tcp_respond */
3083 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
3084 			goto drop;
3085 		break;
3086 #endif /* INET6 */
3087 	case AF_INET:
3088 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
3089 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3090 			goto drop;
3091 	}
3092 
3093 	if (tiflags & TH_ACK)
3094 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3095 	else {
3096 		if (tiflags & TH_SYN)
3097 			tlen++;
3098 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
3099 		    TH_RST|TH_ACK);
3100 	}
3101 	if (tcp_saveti)
3102 		m_freem(tcp_saveti);
3103 	return;
3104 
3105 badcsum:
3106 drop:
3107 	/*
3108 	 * Drop space held by incoming segment and return.
3109 	 */
3110 	if (tp) {
3111 		if (tp->t_inpcb)
3112 			so = tp->t_inpcb->inp_socket;
3113 #ifdef INET6
3114 		else if (tp->t_in6pcb)
3115 			so = tp->t_in6pcb->in6p_socket;
3116 #endif
3117 		else
3118 			so = NULL;
3119 #ifdef TCP_DEBUG
3120 		if (so && (so->so_options & SO_DEBUG) != 0)
3121 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
3122 #endif
3123 	}
3124 	if (tcp_saveti)
3125 		m_freem(tcp_saveti);
3126 	m_freem(m);
3127 	return;
3128 }
3129 
3130 #ifdef TCP_SIGNATURE
3131 int
3132 tcp_signature_apply(void *fstate, void *data, u_int len)
3133 {
3134 
3135 	MD5Update(fstate, (u_char *)data, len);
3136 	return (0);
3137 }
3138 
3139 struct secasvar *
3140 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
3141 {
3142 	struct secasvar *sav;
3143 #ifdef FAST_IPSEC
3144 	union sockaddr_union dst;
3145 #endif
3146 	struct ip *ip;
3147 	struct ip6_hdr *ip6;
3148 
3149 	ip = mtod(m, struct ip *);
3150 	switch (ip->ip_v) {
3151 	case 4:
3152 		ip = mtod(m, struct ip *);
3153 		ip6 = NULL;
3154 		break;
3155 	case 6:
3156 		ip = NULL;
3157 		ip6 = mtod(m, struct ip6_hdr *);
3158 		break;
3159 	default:
3160 		return (NULL);
3161 	}
3162 
3163 #ifdef FAST_IPSEC
3164 	/* Extract the destination from the IP header in the mbuf. */
3165 	memset(&dst, 0, sizeof(union sockaddr_union));
3166 	if (ip !=NULL) {
3167 		dst.sa.sa_len = sizeof(struct sockaddr_in);
3168 		dst.sa.sa_family = AF_INET;
3169 		dst.sin.sin_addr = ip->ip_dst;
3170 	} else {
3171 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
3172 		dst.sa.sa_family = AF_INET6;
3173 		dst.sin6.sin6_addr = ip6->ip6_dst;
3174 	}
3175 
3176 	/*
3177 	 * Look up an SADB entry which matches the address of the peer.
3178 	 */
3179 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3180 #else
3181 	if (ip)
3182 		sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
3183 		    (void *)&ip->ip_dst, IPPROTO_TCP,
3184 		    htonl(TCP_SIG_SPI), 0, 0);
3185 	else
3186 		sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
3187 		    (void *)&ip6->ip6_dst, IPPROTO_TCP,
3188 		    htonl(TCP_SIG_SPI), 0, 0);
3189 #endif
3190 
3191 	return (sav);	/* freesav must be performed by caller */
3192 }
3193 
3194 int
3195 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3196     struct secasvar *sav, char *sig)
3197 {
3198 	MD5_CTX ctx;
3199 	struct ip *ip;
3200 	struct ipovly *ipovly;
3201 	struct ip6_hdr *ip6;
3202 	struct ippseudo ippseudo;
3203 	struct ip6_hdr_pseudo ip6pseudo;
3204 	struct tcphdr th0;
3205 	int l, tcphdrlen;
3206 
3207 	if (sav == NULL)
3208 		return (-1);
3209 
3210 	tcphdrlen = th->th_off * 4;
3211 
3212 	switch (mtod(m, struct ip *)->ip_v) {
3213 	case 4:
3214 		ip = mtod(m, struct ip *);
3215 		ip6 = NULL;
3216 		break;
3217 	case 6:
3218 		ip = NULL;
3219 		ip6 = mtod(m, struct ip6_hdr *);
3220 		break;
3221 	default:
3222 		return (-1);
3223 	}
3224 
3225 	MD5Init(&ctx);
3226 
3227 	if (ip) {
3228 		memset(&ippseudo, 0, sizeof(ippseudo));
3229 		ipovly = (struct ipovly *)ip;
3230 		ippseudo.ippseudo_src = ipovly->ih_src;
3231 		ippseudo.ippseudo_dst = ipovly->ih_dst;
3232 		ippseudo.ippseudo_pad = 0;
3233 		ippseudo.ippseudo_p = IPPROTO_TCP;
3234 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3235 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3236 	} else {
3237 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3238 		ip6pseudo.ip6ph_src = ip6->ip6_src;
3239 		in6_clearscope(&ip6pseudo.ip6ph_src);
3240 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3241 		in6_clearscope(&ip6pseudo.ip6ph_dst);
3242 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3243 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3244 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3245 	}
3246 
3247 	th0 = *th;
3248 	th0.th_sum = 0;
3249 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
3250 
3251 	l = m->m_pkthdr.len - thoff - tcphdrlen;
3252 	if (l > 0)
3253 		m_apply(m, thoff + tcphdrlen,
3254 		    m->m_pkthdr.len - thoff - tcphdrlen,
3255 		    tcp_signature_apply, &ctx);
3256 
3257 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3258 	MD5Final(sig, &ctx);
3259 
3260 	return (0);
3261 }
3262 #endif
3263 
3264 /*
3265  * tcp_dooptions: parse and process tcp options.
3266  *
3267  * returns -1 if this segment should be dropped.  (eg. wrong signature)
3268  * otherwise returns 0.
3269  */
3270 
3271 static int
3272 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
3273     struct tcphdr *th,
3274     struct mbuf *m, int toff, struct tcp_opt_info *oi)
3275 {
3276 	u_int16_t mss;
3277 	int opt, optlen = 0;
3278 #ifdef TCP_SIGNATURE
3279 	void *sigp = NULL;
3280 	char sigbuf[TCP_SIGLEN];
3281 	struct secasvar *sav = NULL;
3282 #endif
3283 
3284 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3285 		opt = cp[0];
3286 		if (opt == TCPOPT_EOL)
3287 			break;
3288 		if (opt == TCPOPT_NOP)
3289 			optlen = 1;
3290 		else {
3291 			if (cnt < 2)
3292 				break;
3293 			optlen = cp[1];
3294 			if (optlen < 2 || optlen > cnt)
3295 				break;
3296 		}
3297 		switch (opt) {
3298 
3299 		default:
3300 			continue;
3301 
3302 		case TCPOPT_MAXSEG:
3303 			if (optlen != TCPOLEN_MAXSEG)
3304 				continue;
3305 			if (!(th->th_flags & TH_SYN))
3306 				continue;
3307 			if (TCPS_HAVERCVDSYN(tp->t_state))
3308 				continue;
3309 			bcopy(cp + 2, &mss, sizeof(mss));
3310 			oi->maxseg = ntohs(mss);
3311 			break;
3312 
3313 		case TCPOPT_WINDOW:
3314 			if (optlen != TCPOLEN_WINDOW)
3315 				continue;
3316 			if (!(th->th_flags & TH_SYN))
3317 				continue;
3318 			if (TCPS_HAVERCVDSYN(tp->t_state))
3319 				continue;
3320 			tp->t_flags |= TF_RCVD_SCALE;
3321 			tp->requested_s_scale = cp[2];
3322 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3323 #if 0	/*XXX*/
3324 				char *p;
3325 
3326 				if (ip)
3327 					p = ntohl(ip->ip_src);
3328 #ifdef INET6
3329 				else if (ip6)
3330 					p = ip6_sprintf(&ip6->ip6_src);
3331 #endif
3332 				else
3333 					p = "(unknown)";
3334 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3335 				    "assuming %d\n",
3336 				    tp->requested_s_scale, p,
3337 				    TCP_MAX_WINSHIFT);
3338 #else
3339 				log(LOG_ERR, "TCP: invalid wscale %d, "
3340 				    "assuming %d\n",
3341 				    tp->requested_s_scale,
3342 				    TCP_MAX_WINSHIFT);
3343 #endif
3344 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
3345 			}
3346 			break;
3347 
3348 		case TCPOPT_TIMESTAMP:
3349 			if (optlen != TCPOLEN_TIMESTAMP)
3350 				continue;
3351 			oi->ts_present = 1;
3352 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3353 			NTOHL(oi->ts_val);
3354 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3355 			NTOHL(oi->ts_ecr);
3356 
3357 			if (!(th->th_flags & TH_SYN))
3358 				continue;
3359 			if (TCPS_HAVERCVDSYN(tp->t_state))
3360 				continue;
3361 			/*
3362 			 * A timestamp received in a SYN makes
3363 			 * it ok to send timestamp requests and replies.
3364 			 */
3365 			tp->t_flags |= TF_RCVD_TSTMP;
3366 			tp->ts_recent = oi->ts_val;
3367 			tp->ts_recent_age = tcp_now;
3368                         break;
3369 
3370 		case TCPOPT_SACK_PERMITTED:
3371 			if (optlen != TCPOLEN_SACK_PERMITTED)
3372 				continue;
3373 			if (!(th->th_flags & TH_SYN))
3374 				continue;
3375 			if (TCPS_HAVERCVDSYN(tp->t_state))
3376 				continue;
3377 			if (tcp_do_sack) {
3378 				tp->t_flags |= TF_SACK_PERMIT;
3379 				tp->t_flags |= TF_WILL_SACK;
3380 			}
3381 			break;
3382 
3383 		case TCPOPT_SACK:
3384 			tcp_sack_option(tp, th, cp, optlen);
3385 			break;
3386 #ifdef TCP_SIGNATURE
3387 		case TCPOPT_SIGNATURE:
3388 			if (optlen != TCPOLEN_SIGNATURE)
3389 				continue;
3390 			if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
3391 				return (-1);
3392 
3393 			sigp = sigbuf;
3394 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3395 			tp->t_flags |= TF_SIGNATURE;
3396 			break;
3397 #endif
3398 		}
3399 	}
3400 
3401 #ifdef TCP_SIGNATURE
3402 	if (tp->t_flags & TF_SIGNATURE) {
3403 
3404 		sav = tcp_signature_getsav(m, th);
3405 
3406 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
3407 			return (-1);
3408 	}
3409 
3410 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
3411 		if (sav == NULL)
3412 			return (-1);
3413 #ifdef FAST_IPSEC
3414 		KEY_FREESAV(&sav);
3415 #else
3416 		key_freesav(sav);
3417 #endif
3418 		return (-1);
3419 	}
3420 
3421 	if (sigp) {
3422 		char sig[TCP_SIGLEN];
3423 
3424 		tcp_fields_to_net(th);
3425 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
3426 			tcp_fields_to_host(th);
3427 			if (sav == NULL)
3428 				return (-1);
3429 #ifdef FAST_IPSEC
3430 			KEY_FREESAV(&sav);
3431 #else
3432 			key_freesav(sav);
3433 #endif
3434 			return (-1);
3435 		}
3436 		tcp_fields_to_host(th);
3437 
3438 		if (memcmp(sig, sigp, TCP_SIGLEN)) {
3439 			TCP_STATINC(TCP_STAT_BADSIG);
3440 			if (sav == NULL)
3441 				return (-1);
3442 #ifdef FAST_IPSEC
3443 			KEY_FREESAV(&sav);
3444 #else
3445 			key_freesav(sav);
3446 #endif
3447 			return (-1);
3448 		} else
3449 			TCP_STATINC(TCP_STAT_GOODSIG);
3450 
3451 		key_sa_recordxfer(sav, m);
3452 #ifdef FAST_IPSEC
3453 		KEY_FREESAV(&sav);
3454 #else
3455 		key_freesav(sav);
3456 #endif
3457 	}
3458 #endif
3459 
3460 	return (0);
3461 }
3462 
3463 /*
3464  * Pull out of band byte out of a segment so
3465  * it doesn't appear in the user's data queue.
3466  * It is still reflected in the segment length for
3467  * sequencing purposes.
3468  */
3469 void
3470 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3471     struct mbuf *m, int off)
3472 {
3473 	int cnt = off + th->th_urp - 1;
3474 
3475 	while (cnt >= 0) {
3476 		if (m->m_len > cnt) {
3477 			char *cp = mtod(m, char *) + cnt;
3478 			struct tcpcb *tp = sototcpcb(so);
3479 
3480 			tp->t_iobc = *cp;
3481 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3482 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3483 			m->m_len--;
3484 			return;
3485 		}
3486 		cnt -= m->m_len;
3487 		m = m->m_next;
3488 		if (m == 0)
3489 			break;
3490 	}
3491 	panic("tcp_pulloutofband");
3492 }
3493 
3494 /*
3495  * Collect new round-trip time estimate
3496  * and update averages and current timeout.
3497  *
3498  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3499  * difference of two timestamps.
3500  */
3501 void
3502 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3503 {
3504 	int32_t delta;
3505 
3506 	TCP_STATINC(TCP_STAT_RTTUPDATED);
3507 	if (tp->t_srtt != 0) {
3508 		/*
3509 		 * Compute the amount to add to srtt for smoothing,
3510 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
3511 		 * srtt is stored in 1/32 slow ticks, we conceptually
3512 		 * shift left 5 bits, subtract srtt to get the
3513 		 * diference, and then shift right by TCP_RTT_SHIFT
3514 		 * (3) to obtain 1/8 of the difference.
3515 		 */
3516 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3517 		/*
3518 		 * This can never happen, because delta's lowest
3519 		 * possible value is 1/8 of t_srtt.  But if it does,
3520 		 * set srtt to some reasonable value, here chosen
3521 		 * as 1/8 tick.
3522 		 */
3523 		if ((tp->t_srtt += delta) <= 0)
3524 			tp->t_srtt = 1 << 2;
3525 		/*
3526 		 * RFC2988 requires that rttvar be updated first.
3527 		 * This code is compliant because "delta" is the old
3528 		 * srtt minus the new observation (scaled).
3529 		 *
3530 		 * RFC2988 says:
3531 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3532 		 *
3533 		 * delta is in units of 1/32 ticks, and has then been
3534 		 * divided by 8.  This is equivalent to being in 1/16s
3535 		 * units and divided by 4.  Subtract from it 1/4 of
3536 		 * the existing rttvar to form the (signed) amount to
3537 		 * adjust.
3538 		 */
3539 		if (delta < 0)
3540 			delta = -delta;
3541 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3542 		/*
3543 		 * As with srtt, this should never happen.  There is
3544 		 * no support in RFC2988 for this operation.  But 1/4s
3545 		 * as rttvar when faced with something arguably wrong
3546 		 * is ok.
3547 		 */
3548 		if ((tp->t_rttvar += delta) <= 0)
3549 			tp->t_rttvar = 1 << 2;
3550 
3551 		/*
3552 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3553 		 * Problem is: it doesn't work.  Disabled by defaulting
3554 		 * tcp_rttlocal to 0; see corresponding code in
3555 		 * tcp_subr that selects local vs remote in a different way.
3556 		 *
3557 		 * The static branch prediction hint here should be removed
3558 		 * when the rtt estimator is fixed and the rtt_enable code
3559 		 * is turned back on.
3560 		 */
3561 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3562 		    && tp->t_srtt > tcp_msl_remote_threshold
3563 		    && tp->t_msl  < tcp_msl_remote) {
3564 			tp->t_msl = tcp_msl_remote;
3565 		}
3566 	} else {
3567 		/*
3568 		 * This is the first measurement.  Per RFC2988, 2.2,
3569 		 * set rtt=R and srtt=R/2.
3570 		 * For srtt, storage representation is 1/32 ticks,
3571 		 * so shift left by 5.
3572 		 * For rttvar, storage representation is 1/16 ticks,
3573 		 * So shift left by 4, but then right by 1 to halve.
3574 		 */
3575 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3576 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3577 	}
3578 	tp->t_rtttime = 0;
3579 	tp->t_rxtshift = 0;
3580 
3581 	/*
3582 	 * the retransmit should happen at rtt + 4 * rttvar.
3583 	 * Because of the way we do the smoothing, srtt and rttvar
3584 	 * will each average +1/2 tick of bias.  When we compute
3585 	 * the retransmit timer, we want 1/2 tick of rounding and
3586 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3587 	 * firing of the timer.  The bias will give us exactly the
3588 	 * 1.5 tick we need.  But, because the bias is
3589 	 * statistical, we have to test that we don't drop below
3590 	 * the minimum feasible timer (which is 2 ticks).
3591 	 */
3592 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3593 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3594 
3595 	/*
3596 	 * We received an ack for a packet that wasn't retransmitted;
3597 	 * it is probably safe to discard any error indications we've
3598 	 * received recently.  This isn't quite right, but close enough
3599 	 * for now (a route might have failed after we sent a segment,
3600 	 * and the return path might not be symmetrical).
3601 	 */
3602 	tp->t_softerror = 0;
3603 }
3604 
3605 
3606 /*
3607  * TCP compressed state engine.  Currently used to hold compressed
3608  * state for SYN_RECEIVED.
3609  */
3610 
3611 u_long	syn_cache_count;
3612 u_int32_t syn_hash1, syn_hash2;
3613 
3614 #define SYN_HASH(sa, sp, dp) \
3615 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3616 				     ((u_int32_t)(sp)))^syn_hash2)))
3617 #ifndef INET6
3618 #define	SYN_HASHALL(hash, src, dst) \
3619 do {									\
3620 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
3621 		((const struct sockaddr_in *)(src))->sin_port,		\
3622 		((const struct sockaddr_in *)(dst))->sin_port);		\
3623 } while (/*CONSTCOND*/ 0)
3624 #else
3625 #define SYN_HASH6(sa, sp, dp) \
3626 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3627 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3628 	 & 0x7fffffff)
3629 
3630 #define SYN_HASHALL(hash, src, dst) \
3631 do {									\
3632 	switch ((src)->sa_family) {					\
3633 	case AF_INET:							\
3634 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3635 			((const struct sockaddr_in *)(src))->sin_port,	\
3636 			((const struct sockaddr_in *)(dst))->sin_port);	\
3637 		break;							\
3638 	case AF_INET6:							\
3639 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3640 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
3641 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
3642 		break;							\
3643 	default:							\
3644 		hash = 0;						\
3645 	}								\
3646 } while (/*CONSTCOND*/0)
3647 #endif /* INET6 */
3648 
3649 static struct pool syn_cache_pool;
3650 
3651 /*
3652  * We don't estimate RTT with SYNs, so each packet starts with the default
3653  * RTT and each timer step has a fixed timeout value.
3654  */
3655 #define	SYN_CACHE_TIMER_ARM(sc)						\
3656 do {									\
3657 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3658 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3659 	    TCPTV_REXMTMAX);						\
3660 	callout_reset(&(sc)->sc_timer,					\
3661 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
3662 } while (/*CONSTCOND*/0)
3663 
3664 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
3665 
3666 static inline void
3667 syn_cache_rm(struct syn_cache *sc)
3668 {
3669 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3670 	    sc, sc_bucketq);
3671 	sc->sc_tp = NULL;
3672 	LIST_REMOVE(sc, sc_tpq);
3673 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3674 	callout_stop(&sc->sc_timer);
3675 	syn_cache_count--;
3676 }
3677 
3678 static inline void
3679 syn_cache_put(struct syn_cache *sc)
3680 {
3681 	if (sc->sc_ipopts)
3682 		(void) m_free(sc->sc_ipopts);
3683 	rtcache_free(&sc->sc_route);
3684 	sc->sc_flags |= SCF_DEAD;
3685 	if (!callout_invoking(&sc->sc_timer))
3686 		callout_schedule(&(sc)->sc_timer, 1);
3687 }
3688 
3689 void
3690 syn_cache_init(void)
3691 {
3692 	int i;
3693 
3694 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3695 	    "synpl", NULL, IPL_SOFTNET);
3696 
3697 	/* Initialize the hash buckets. */
3698 	for (i = 0; i < tcp_syn_cache_size; i++)
3699 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3700 }
3701 
3702 void
3703 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3704 {
3705 	struct syn_cache_head *scp;
3706 	struct syn_cache *sc2;
3707 	int s;
3708 
3709 	/*
3710 	 * If there are no entries in the hash table, reinitialize
3711 	 * the hash secrets.
3712 	 */
3713 	if (syn_cache_count == 0) {
3714 		syn_hash1 = cprng_fast32();
3715 		syn_hash2 = cprng_fast32();
3716 	}
3717 
3718 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3719 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3720 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3721 
3722 	/*
3723 	 * Make sure that we don't overflow the per-bucket
3724 	 * limit or the total cache size limit.
3725 	 */
3726 	s = splsoftnet();
3727 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3728 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3729 		/*
3730 		 * The bucket is full.  Toss the oldest element in the
3731 		 * bucket.  This will be the first entry in the bucket.
3732 		 */
3733 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3734 #ifdef DIAGNOSTIC
3735 		/*
3736 		 * This should never happen; we should always find an
3737 		 * entry in our bucket.
3738 		 */
3739 		if (sc2 == NULL)
3740 			panic("syn_cache_insert: bucketoverflow: impossible");
3741 #endif
3742 		syn_cache_rm(sc2);
3743 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3744 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3745 		struct syn_cache_head *scp2, *sce;
3746 
3747 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3748 		/*
3749 		 * The cache is full.  Toss the oldest entry in the
3750 		 * first non-empty bucket we can find.
3751 		 *
3752 		 * XXX We would really like to toss the oldest
3753 		 * entry in the cache, but we hope that this
3754 		 * condition doesn't happen very often.
3755 		 */
3756 		scp2 = scp;
3757 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3758 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3759 			for (++scp2; scp2 != scp; scp2++) {
3760 				if (scp2 >= sce)
3761 					scp2 = &tcp_syn_cache[0];
3762 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3763 					break;
3764 			}
3765 #ifdef DIAGNOSTIC
3766 			/*
3767 			 * This should never happen; we should always find a
3768 			 * non-empty bucket.
3769 			 */
3770 			if (scp2 == scp)
3771 				panic("syn_cache_insert: cacheoverflow: "
3772 				    "impossible");
3773 #endif
3774 		}
3775 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3776 		syn_cache_rm(sc2);
3777 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3778 	}
3779 
3780 	/*
3781 	 * Initialize the entry's timer.
3782 	 */
3783 	sc->sc_rxttot = 0;
3784 	sc->sc_rxtshift = 0;
3785 	SYN_CACHE_TIMER_ARM(sc);
3786 
3787 	/* Link it from tcpcb entry */
3788 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3789 
3790 	/* Put it into the bucket. */
3791 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3792 	scp->sch_length++;
3793 	syn_cache_count++;
3794 
3795 	TCP_STATINC(TCP_STAT_SC_ADDED);
3796 	splx(s);
3797 }
3798 
3799 /*
3800  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3801  * If we have retransmitted an entry the maximum number of times, expire
3802  * that entry.
3803  */
3804 void
3805 syn_cache_timer(void *arg)
3806 {
3807 	struct syn_cache *sc = arg;
3808 
3809 	mutex_enter(softnet_lock);
3810 	KERNEL_LOCK(1, NULL);
3811 	callout_ack(&sc->sc_timer);
3812 
3813 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3814 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3815 		callout_destroy(&sc->sc_timer);
3816 		pool_put(&syn_cache_pool, sc);
3817 		KERNEL_UNLOCK_ONE(NULL);
3818 		mutex_exit(softnet_lock);
3819 		return;
3820 	}
3821 
3822 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3823 		/* Drop it -- too many retransmissions. */
3824 		goto dropit;
3825 	}
3826 
3827 	/*
3828 	 * Compute the total amount of time this entry has
3829 	 * been on a queue.  If this entry has been on longer
3830 	 * than the keep alive timer would allow, expire it.
3831 	 */
3832 	sc->sc_rxttot += sc->sc_rxtcur;
3833 	if (sc->sc_rxttot >= tcp_keepinit)
3834 		goto dropit;
3835 
3836 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3837 	(void) syn_cache_respond(sc, NULL);
3838 
3839 	/* Advance the timer back-off. */
3840 	sc->sc_rxtshift++;
3841 	SYN_CACHE_TIMER_ARM(sc);
3842 
3843 	KERNEL_UNLOCK_ONE(NULL);
3844 	mutex_exit(softnet_lock);
3845 	return;
3846 
3847  dropit:
3848 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3849 	syn_cache_rm(sc);
3850 	if (sc->sc_ipopts)
3851 		(void) m_free(sc->sc_ipopts);
3852 	rtcache_free(&sc->sc_route);
3853 	callout_destroy(&sc->sc_timer);
3854 	pool_put(&syn_cache_pool, sc);
3855 	KERNEL_UNLOCK_ONE(NULL);
3856 	mutex_exit(softnet_lock);
3857 }
3858 
3859 /*
3860  * Remove syn cache created by the specified tcb entry,
3861  * because this does not make sense to keep them
3862  * (if there's no tcb entry, syn cache entry will never be used)
3863  */
3864 void
3865 syn_cache_cleanup(struct tcpcb *tp)
3866 {
3867 	struct syn_cache *sc, *nsc;
3868 	int s;
3869 
3870 	s = splsoftnet();
3871 
3872 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3873 		nsc = LIST_NEXT(sc, sc_tpq);
3874 
3875 #ifdef DIAGNOSTIC
3876 		if (sc->sc_tp != tp)
3877 			panic("invalid sc_tp in syn_cache_cleanup");
3878 #endif
3879 		syn_cache_rm(sc);
3880 		syn_cache_put(sc);	/* calls pool_put but see spl above */
3881 	}
3882 	/* just for safety */
3883 	LIST_INIT(&tp->t_sc);
3884 
3885 	splx(s);
3886 }
3887 
3888 /*
3889  * Find an entry in the syn cache.
3890  */
3891 struct syn_cache *
3892 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3893     struct syn_cache_head **headp)
3894 {
3895 	struct syn_cache *sc;
3896 	struct syn_cache_head *scp;
3897 	u_int32_t hash;
3898 	int s;
3899 
3900 	SYN_HASHALL(hash, src, dst);
3901 
3902 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3903 	*headp = scp;
3904 	s = splsoftnet();
3905 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3906 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3907 		if (sc->sc_hash != hash)
3908 			continue;
3909 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3910 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3911 			splx(s);
3912 			return (sc);
3913 		}
3914 	}
3915 	splx(s);
3916 	return (NULL);
3917 }
3918 
3919 /*
3920  * This function gets called when we receive an ACK for a
3921  * socket in the LISTEN state.  We look up the connection
3922  * in the syn cache, and if its there, we pull it out of
3923  * the cache and turn it into a full-blown connection in
3924  * the SYN-RECEIVED state.
3925  *
3926  * The return values may not be immediately obvious, and their effects
3927  * can be subtle, so here they are:
3928  *
3929  *	NULL	SYN was not found in cache; caller should drop the
3930  *		packet and send an RST.
3931  *
3932  *	-1	We were unable to create the new connection, and are
3933  *		aborting it.  An ACK,RST is being sent to the peer
3934  *		(unless we got screwey sequence numbners; see below),
3935  *		because the 3-way handshake has been completed.  Caller
3936  *		should not free the mbuf, since we may be using it.  If
3937  *		we are not, we will free it.
3938  *
3939  *	Otherwise, the return value is a pointer to the new socket
3940  *	associated with the connection.
3941  */
3942 struct socket *
3943 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3944     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3945     struct socket *so, struct mbuf *m)
3946 {
3947 	struct syn_cache *sc;
3948 	struct syn_cache_head *scp;
3949 	struct inpcb *inp = NULL;
3950 #ifdef INET6
3951 	struct in6pcb *in6p = NULL;
3952 #endif
3953 	struct tcpcb *tp = 0;
3954 	struct mbuf *am;
3955 	int s;
3956 	struct socket *oso;
3957 
3958 	s = splsoftnet();
3959 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3960 		splx(s);
3961 		return (NULL);
3962 	}
3963 
3964 	/*
3965 	 * Verify the sequence and ack numbers.  Try getting the correct
3966 	 * response again.
3967 	 */
3968 	if ((th->th_ack != sc->sc_iss + 1) ||
3969 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3970 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3971 		(void) syn_cache_respond(sc, m);
3972 		splx(s);
3973 		return ((struct socket *)(-1));
3974 	}
3975 
3976 	/* Remove this cache entry */
3977 	syn_cache_rm(sc);
3978 	splx(s);
3979 
3980 	/*
3981 	 * Ok, create the full blown connection, and set things up
3982 	 * as they would have been set up if we had created the
3983 	 * connection when the SYN arrived.  If we can't create
3984 	 * the connection, abort it.
3985 	 */
3986 	/*
3987 	 * inp still has the OLD in_pcb stuff, set the
3988 	 * v6-related flags on the new guy, too.   This is
3989 	 * done particularly for the case where an AF_INET6
3990 	 * socket is bound only to a port, and a v4 connection
3991 	 * comes in on that port.
3992 	 * we also copy the flowinfo from the original pcb
3993 	 * to the new one.
3994 	 */
3995 	oso = so;
3996 	so = sonewconn(so, SS_ISCONNECTED);
3997 	if (so == NULL)
3998 		goto resetandabort;
3999 
4000 	switch (so->so_proto->pr_domain->dom_family) {
4001 #ifdef INET
4002 	case AF_INET:
4003 		inp = sotoinpcb(so);
4004 		break;
4005 #endif
4006 #ifdef INET6
4007 	case AF_INET6:
4008 		in6p = sotoin6pcb(so);
4009 		break;
4010 #endif
4011 	}
4012 	switch (src->sa_family) {
4013 #ifdef INET
4014 	case AF_INET:
4015 		if (inp) {
4016 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
4017 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
4018 			inp->inp_options = ip_srcroute();
4019 			in_pcbstate(inp, INP_BOUND);
4020 			if (inp->inp_options == NULL) {
4021 				inp->inp_options = sc->sc_ipopts;
4022 				sc->sc_ipopts = NULL;
4023 			}
4024 		}
4025 #ifdef INET6
4026 		else if (in6p) {
4027 			/* IPv4 packet to AF_INET6 socket */
4028 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
4029 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
4030 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
4031 				&in6p->in6p_laddr.s6_addr32[3],
4032 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
4033 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
4034 			in6totcpcb(in6p)->t_family = AF_INET;
4035 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
4036 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
4037 			else
4038 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
4039 			in6_pcbstate(in6p, IN6P_BOUND);
4040 		}
4041 #endif
4042 		break;
4043 #endif
4044 #ifdef INET6
4045 	case AF_INET6:
4046 		if (in6p) {
4047 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
4048 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
4049 			in6_pcbstate(in6p, IN6P_BOUND);
4050 		}
4051 		break;
4052 #endif
4053 	}
4054 #ifdef INET6
4055 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
4056 		struct in6pcb *oin6p = sotoin6pcb(oso);
4057 		/* inherit socket options from the listening socket */
4058 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
4059 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
4060 			m_freem(in6p->in6p_options);
4061 			in6p->in6p_options = 0;
4062 		}
4063 		ip6_savecontrol(in6p, &in6p->in6p_options,
4064 			mtod(m, struct ip6_hdr *), m);
4065 	}
4066 #endif
4067 
4068 #if defined(KAME_IPSEC) || defined(FAST_IPSEC)
4069 	/*
4070 	 * we make a copy of policy, instead of sharing the policy,
4071 	 * for better behavior in terms of SA lookup and dead SA removal.
4072 	 */
4073 	if (inp) {
4074 		/* copy old policy into new socket's */
4075 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
4076 			printf("tcp_input: could not copy policy\n");
4077 	}
4078 #ifdef INET6
4079 	else if (in6p) {
4080 		/* copy old policy into new socket's */
4081 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
4082 		    in6p->in6p_sp))
4083 			printf("tcp_input: could not copy policy\n");
4084 	}
4085 #endif
4086 #endif
4087 
4088 	/*
4089 	 * Give the new socket our cached route reference.
4090 	 */
4091 	if (inp) {
4092 		rtcache_copy(&inp->inp_route, &sc->sc_route);
4093 		rtcache_free(&sc->sc_route);
4094 	}
4095 #ifdef INET6
4096 	else {
4097 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
4098 		rtcache_free(&sc->sc_route);
4099 	}
4100 #endif
4101 
4102 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
4103 	if (am == NULL)
4104 		goto resetandabort;
4105 	MCLAIM(am, &tcp_mowner);
4106 	am->m_len = src->sa_len;
4107 	bcopy(src, mtod(am, void *), src->sa_len);
4108 	if (inp) {
4109 		if (in_pcbconnect(inp, am, &lwp0)) {
4110 			(void) m_free(am);
4111 			goto resetandabort;
4112 		}
4113 	}
4114 #ifdef INET6
4115 	else if (in6p) {
4116 		if (src->sa_family == AF_INET) {
4117 			/* IPv4 packet to AF_INET6 socket */
4118 			struct sockaddr_in6 *sin6;
4119 			sin6 = mtod(am, struct sockaddr_in6 *);
4120 			am->m_len = sizeof(*sin6);
4121 			memset(sin6, 0, sizeof(*sin6));
4122 			sin6->sin6_family = AF_INET6;
4123 			sin6->sin6_len = sizeof(*sin6);
4124 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
4125 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
4126 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
4127 				&sin6->sin6_addr.s6_addr32[3],
4128 				sizeof(sin6->sin6_addr.s6_addr32[3]));
4129 		}
4130 		if (in6_pcbconnect(in6p, am, NULL)) {
4131 			(void) m_free(am);
4132 			goto resetandabort;
4133 		}
4134 	}
4135 #endif
4136 	else {
4137 		(void) m_free(am);
4138 		goto resetandabort;
4139 	}
4140 	(void) m_free(am);
4141 
4142 	if (inp)
4143 		tp = intotcpcb(inp);
4144 #ifdef INET6
4145 	else if (in6p)
4146 		tp = in6totcpcb(in6p);
4147 #endif
4148 	else
4149 		tp = NULL;
4150 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
4151 	if (sc->sc_request_r_scale != 15) {
4152 		tp->requested_s_scale = sc->sc_requested_s_scale;
4153 		tp->request_r_scale = sc->sc_request_r_scale;
4154 		tp->snd_scale = sc->sc_requested_s_scale;
4155 		tp->rcv_scale = sc->sc_request_r_scale;
4156 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
4157 	}
4158 	if (sc->sc_flags & SCF_TIMESTAMP)
4159 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
4160 	tp->ts_timebase = sc->sc_timebase;
4161 
4162 	tp->t_template = tcp_template(tp);
4163 	if (tp->t_template == 0) {
4164 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
4165 		so = NULL;
4166 		m_freem(m);
4167 		goto abort;
4168 	}
4169 
4170 	tp->iss = sc->sc_iss;
4171 	tp->irs = sc->sc_irs;
4172 	tcp_sendseqinit(tp);
4173 	tcp_rcvseqinit(tp);
4174 	tp->t_state = TCPS_SYN_RECEIVED;
4175 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
4176 	TCP_STATINC(TCP_STAT_ACCEPTS);
4177 
4178 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
4179 		tp->t_flags |= TF_WILL_SACK;
4180 
4181 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
4182 		tp->t_flags |= TF_ECN_PERMIT;
4183 
4184 #ifdef TCP_SIGNATURE
4185 	if (sc->sc_flags & SCF_SIGNATURE)
4186 		tp->t_flags |= TF_SIGNATURE;
4187 #endif
4188 
4189 	/* Initialize tp->t_ourmss before we deal with the peer's! */
4190 	tp->t_ourmss = sc->sc_ourmaxseg;
4191 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
4192 
4193 	/*
4194 	 * Initialize the initial congestion window.  If we
4195 	 * had to retransmit the SYN,ACK, we must initialize cwnd
4196 	 * to 1 segment (i.e. the Loss Window).
4197 	 */
4198 	if (sc->sc_rxtshift)
4199 		tp->snd_cwnd = tp->t_peermss;
4200 	else {
4201 		int ss = tcp_init_win;
4202 #ifdef INET
4203 		if (inp != NULL && in_localaddr(inp->inp_faddr))
4204 			ss = tcp_init_win_local;
4205 #endif
4206 #ifdef INET6
4207 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
4208 			ss = tcp_init_win_local;
4209 #endif
4210 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
4211 	}
4212 
4213 	tcp_rmx_rtt(tp);
4214 	tp->snd_wl1 = sc->sc_irs;
4215 	tp->rcv_up = sc->sc_irs + 1;
4216 
4217 	/*
4218 	 * This is what whould have happened in tcp_output() when
4219 	 * the SYN,ACK was sent.
4220 	 */
4221 	tp->snd_up = tp->snd_una;
4222 	tp->snd_max = tp->snd_nxt = tp->iss+1;
4223 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4224 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4225 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4226 	tp->last_ack_sent = tp->rcv_nxt;
4227 	tp->t_partialacks = -1;
4228 	tp->t_dupacks = 0;
4229 
4230 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
4231 	s = splsoftnet();
4232 	syn_cache_put(sc);
4233 	splx(s);
4234 	return (so);
4235 
4236 resetandabort:
4237 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4238 abort:
4239 	if (so != NULL) {
4240 		(void) soqremque(so, 1);
4241 		(void) soabort(so);
4242 		mutex_enter(softnet_lock);
4243 	}
4244 	s = splsoftnet();
4245 	syn_cache_put(sc);
4246 	splx(s);
4247 	TCP_STATINC(TCP_STAT_SC_ABORTED);
4248 	return ((struct socket *)(-1));
4249 }
4250 
4251 /*
4252  * This function is called when we get a RST for a
4253  * non-existent connection, so that we can see if the
4254  * connection is in the syn cache.  If it is, zap it.
4255  */
4256 
4257 void
4258 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4259 {
4260 	struct syn_cache *sc;
4261 	struct syn_cache_head *scp;
4262 	int s = splsoftnet();
4263 
4264 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4265 		splx(s);
4266 		return;
4267 	}
4268 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4269 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4270 		splx(s);
4271 		return;
4272 	}
4273 	syn_cache_rm(sc);
4274 	TCP_STATINC(TCP_STAT_SC_RESET);
4275 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4276 	splx(s);
4277 }
4278 
4279 void
4280 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4281     struct tcphdr *th)
4282 {
4283 	struct syn_cache *sc;
4284 	struct syn_cache_head *scp;
4285 	int s;
4286 
4287 	s = splsoftnet();
4288 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4289 		splx(s);
4290 		return;
4291 	}
4292 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4293 	if (ntohl (th->th_seq) != sc->sc_iss) {
4294 		splx(s);
4295 		return;
4296 	}
4297 
4298 	/*
4299 	 * If we've retransmitted 3 times and this is our second error,
4300 	 * we remove the entry.  Otherwise, we allow it to continue on.
4301 	 * This prevents us from incorrectly nuking an entry during a
4302 	 * spurious network outage.
4303 	 *
4304 	 * See tcp_notify().
4305 	 */
4306 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4307 		sc->sc_flags |= SCF_UNREACH;
4308 		splx(s);
4309 		return;
4310 	}
4311 
4312 	syn_cache_rm(sc);
4313 	TCP_STATINC(TCP_STAT_SC_UNREACH);
4314 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4315 	splx(s);
4316 }
4317 
4318 /*
4319  * Given a LISTEN socket and an inbound SYN request, add
4320  * this to the syn cache, and send back a segment:
4321  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4322  * to the source.
4323  *
4324  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4325  * Doing so would require that we hold onto the data and deliver it
4326  * to the application.  However, if we are the target of a SYN-flood
4327  * DoS attack, an attacker could send data which would eventually
4328  * consume all available buffer space if it were ACKed.  By not ACKing
4329  * the data, we avoid this DoS scenario.
4330  */
4331 
4332 int
4333 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4334     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
4335     int optlen, struct tcp_opt_info *oi)
4336 {
4337 	struct tcpcb tb, *tp;
4338 	long win;
4339 	struct syn_cache *sc;
4340 	struct syn_cache_head *scp;
4341 	struct mbuf *ipopts;
4342 	struct tcp_opt_info opti;
4343 	int s;
4344 
4345 	tp = sototcpcb(so);
4346 
4347 	memset(&opti, 0, sizeof(opti));
4348 
4349 	/*
4350 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4351 	 *
4352 	 * Note this check is performed in tcp_input() very early on.
4353 	 */
4354 
4355 	/*
4356 	 * Initialize some local state.
4357 	 */
4358 	win = sbspace(&so->so_rcv);
4359 	if (win > TCP_MAXWIN)
4360 		win = TCP_MAXWIN;
4361 
4362 	switch (src->sa_family) {
4363 #ifdef INET
4364 	case AF_INET:
4365 		/*
4366 		 * Remember the IP options, if any.
4367 		 */
4368 		ipopts = ip_srcroute();
4369 		break;
4370 #endif
4371 	default:
4372 		ipopts = NULL;
4373 	}
4374 
4375 #ifdef TCP_SIGNATURE
4376 	if (optp || (tp->t_flags & TF_SIGNATURE))
4377 #else
4378 	if (optp)
4379 #endif
4380 	{
4381 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4382 #ifdef TCP_SIGNATURE
4383 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4384 #endif
4385 		tb.t_state = TCPS_LISTEN;
4386 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4387 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4388 			return (0);
4389 	} else
4390 		tb.t_flags = 0;
4391 
4392 	/*
4393 	 * See if we already have an entry for this connection.
4394 	 * If we do, resend the SYN,ACK.  We do not count this
4395 	 * as a retransmission (XXX though maybe we should).
4396 	 */
4397 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4398 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
4399 		if (ipopts) {
4400 			/*
4401 			 * If we were remembering a previous source route,
4402 			 * forget it and use the new one we've been given.
4403 			 */
4404 			if (sc->sc_ipopts)
4405 				(void) m_free(sc->sc_ipopts);
4406 			sc->sc_ipopts = ipopts;
4407 		}
4408 		sc->sc_timestamp = tb.ts_recent;
4409 		if (syn_cache_respond(sc, m) == 0) {
4410 			uint64_t *tcps = TCP_STAT_GETREF();
4411 			tcps[TCP_STAT_SNDACKS]++;
4412 			tcps[TCP_STAT_SNDTOTAL]++;
4413 			TCP_STAT_PUTREF();
4414 		}
4415 		return (1);
4416 	}
4417 
4418 	s = splsoftnet();
4419 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4420 	splx(s);
4421 	if (sc == NULL) {
4422 		if (ipopts)
4423 			(void) m_free(ipopts);
4424 		return (0);
4425 	}
4426 
4427 	/*
4428 	 * Fill in the cache, and put the necessary IP and TCP
4429 	 * options into the reply.
4430 	 */
4431 	memset(sc, 0, sizeof(struct syn_cache));
4432 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4433 	bcopy(src, &sc->sc_src, src->sa_len);
4434 	bcopy(dst, &sc->sc_dst, dst->sa_len);
4435 	sc->sc_flags = 0;
4436 	sc->sc_ipopts = ipopts;
4437 	sc->sc_irs = th->th_seq;
4438 	switch (src->sa_family) {
4439 #ifdef INET
4440 	case AF_INET:
4441 	    {
4442 		struct sockaddr_in *srcin = (void *) src;
4443 		struct sockaddr_in *dstin = (void *) dst;
4444 
4445 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4446 		    &srcin->sin_addr, dstin->sin_port,
4447 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
4448 		break;
4449 	    }
4450 #endif /* INET */
4451 #ifdef INET6
4452 	case AF_INET6:
4453 	    {
4454 		struct sockaddr_in6 *srcin6 = (void *) src;
4455 		struct sockaddr_in6 *dstin6 = (void *) dst;
4456 
4457 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4458 		    &srcin6->sin6_addr, dstin6->sin6_port,
4459 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4460 		break;
4461 	    }
4462 #endif /* INET6 */
4463 	}
4464 	sc->sc_peermaxseg = oi->maxseg;
4465 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4466 						m->m_pkthdr.rcvif : NULL,
4467 						sc->sc_src.sa.sa_family);
4468 	sc->sc_win = win;
4469 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
4470 	sc->sc_timestamp = tb.ts_recent;
4471 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4472 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4473 		sc->sc_flags |= SCF_TIMESTAMP;
4474 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4475 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4476 		sc->sc_requested_s_scale = tb.requested_s_scale;
4477 		sc->sc_request_r_scale = 0;
4478 		/*
4479 		 * Pick the smallest possible scaling factor that
4480 		 * will still allow us to scale up to sb_max.
4481 		 *
4482 		 * We do this because there are broken firewalls that
4483 		 * will corrupt the window scale option, leading to
4484 		 * the other endpoint believing that our advertised
4485 		 * window is unscaled.  At scale factors larger than
4486 		 * 5 the unscaled window will drop below 1500 bytes,
4487 		 * leading to serious problems when traversing these
4488 		 * broken firewalls.
4489 		 *
4490 		 * With the default sbmax of 256K, a scale factor
4491 		 * of 3 will be chosen by this algorithm.  Those who
4492 		 * choose a larger sbmax should watch out
4493 		 * for the compatiblity problems mentioned above.
4494 		 *
4495 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4496 		 * or <SYN,ACK>) segment itself is never scaled.
4497 		 */
4498 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4499 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4500 			sc->sc_request_r_scale++;
4501 	} else {
4502 		sc->sc_requested_s_scale = 15;
4503 		sc->sc_request_r_scale = 15;
4504 	}
4505 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4506 		sc->sc_flags |= SCF_SACK_PERMIT;
4507 
4508 	/*
4509 	 * ECN setup packet recieved.
4510 	 */
4511 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4512 		sc->sc_flags |= SCF_ECN_PERMIT;
4513 
4514 #ifdef TCP_SIGNATURE
4515 	if (tb.t_flags & TF_SIGNATURE)
4516 		sc->sc_flags |= SCF_SIGNATURE;
4517 #endif
4518 	sc->sc_tp = tp;
4519 	if (syn_cache_respond(sc, m) == 0) {
4520 		uint64_t *tcps = TCP_STAT_GETREF();
4521 		tcps[TCP_STAT_SNDACKS]++;
4522 		tcps[TCP_STAT_SNDTOTAL]++;
4523 		TCP_STAT_PUTREF();
4524 		syn_cache_insert(sc, tp);
4525 	} else {
4526 		s = splsoftnet();
4527 		/*
4528 		 * syn_cache_put() will try to schedule the timer, so
4529 		 * we need to initialize it
4530 		 */
4531 		SYN_CACHE_TIMER_ARM(sc);
4532 		syn_cache_put(sc);
4533 		splx(s);
4534 		TCP_STATINC(TCP_STAT_SC_DROPPED);
4535 	}
4536 	return (1);
4537 }
4538 
4539 int
4540 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4541 {
4542 #ifdef INET6
4543 	struct rtentry *rt;
4544 #endif
4545 	struct route *ro;
4546 	u_int8_t *optp;
4547 	int optlen, error;
4548 	u_int16_t tlen;
4549 	struct ip *ip = NULL;
4550 #ifdef INET6
4551 	struct ip6_hdr *ip6 = NULL;
4552 #endif
4553 	struct tcpcb *tp = NULL;
4554 	struct tcphdr *th;
4555 	u_int hlen;
4556 	struct socket *so;
4557 
4558 	ro = &sc->sc_route;
4559 	switch (sc->sc_src.sa.sa_family) {
4560 	case AF_INET:
4561 		hlen = sizeof(struct ip);
4562 		break;
4563 #ifdef INET6
4564 	case AF_INET6:
4565 		hlen = sizeof(struct ip6_hdr);
4566 		break;
4567 #endif
4568 	default:
4569 		if (m)
4570 			m_freem(m);
4571 		return (EAFNOSUPPORT);
4572 	}
4573 
4574 	/* Compute the size of the TCP options. */
4575 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4576 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4577 #ifdef TCP_SIGNATURE
4578 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4579 #endif
4580 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4581 
4582 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4583 
4584 	/*
4585 	 * Create the IP+TCP header from scratch.
4586 	 */
4587 	if (m)
4588 		m_freem(m);
4589 #ifdef DIAGNOSTIC
4590 	if (max_linkhdr + tlen > MCLBYTES)
4591 		return (ENOBUFS);
4592 #endif
4593 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4594 	if (m && (max_linkhdr + tlen) > MHLEN) {
4595 		MCLGET(m, M_DONTWAIT);
4596 		if ((m->m_flags & M_EXT) == 0) {
4597 			m_freem(m);
4598 			m = NULL;
4599 		}
4600 	}
4601 	if (m == NULL)
4602 		return (ENOBUFS);
4603 	MCLAIM(m, &tcp_tx_mowner);
4604 
4605 	/* Fixup the mbuf. */
4606 	m->m_data += max_linkhdr;
4607 	m->m_len = m->m_pkthdr.len = tlen;
4608 	if (sc->sc_tp) {
4609 		tp = sc->sc_tp;
4610 		if (tp->t_inpcb)
4611 			so = tp->t_inpcb->inp_socket;
4612 #ifdef INET6
4613 		else if (tp->t_in6pcb)
4614 			so = tp->t_in6pcb->in6p_socket;
4615 #endif
4616 		else
4617 			so = NULL;
4618 	} else
4619 		so = NULL;
4620 	m->m_pkthdr.rcvif = NULL;
4621 	memset(mtod(m, u_char *), 0, tlen);
4622 
4623 	switch (sc->sc_src.sa.sa_family) {
4624 	case AF_INET:
4625 		ip = mtod(m, struct ip *);
4626 		ip->ip_v = 4;
4627 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4628 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4629 		ip->ip_p = IPPROTO_TCP;
4630 		th = (struct tcphdr *)(ip + 1);
4631 		th->th_dport = sc->sc_src.sin.sin_port;
4632 		th->th_sport = sc->sc_dst.sin.sin_port;
4633 		break;
4634 #ifdef INET6
4635 	case AF_INET6:
4636 		ip6 = mtod(m, struct ip6_hdr *);
4637 		ip6->ip6_vfc = IPV6_VERSION;
4638 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4639 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4640 		ip6->ip6_nxt = IPPROTO_TCP;
4641 		/* ip6_plen will be updated in ip6_output() */
4642 		th = (struct tcphdr *)(ip6 + 1);
4643 		th->th_dport = sc->sc_src.sin6.sin6_port;
4644 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4645 		break;
4646 #endif
4647 	default:
4648 		th = NULL;
4649 	}
4650 
4651 	th->th_seq = htonl(sc->sc_iss);
4652 	th->th_ack = htonl(sc->sc_irs + 1);
4653 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4654 	th->th_flags = TH_SYN|TH_ACK;
4655 	th->th_win = htons(sc->sc_win);
4656 	/* th_sum already 0 */
4657 	/* th_urp already 0 */
4658 
4659 	/* Tack on the TCP options. */
4660 	optp = (u_int8_t *)(th + 1);
4661 	*optp++ = TCPOPT_MAXSEG;
4662 	*optp++ = 4;
4663 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4664 	*optp++ = sc->sc_ourmaxseg & 0xff;
4665 
4666 	if (sc->sc_request_r_scale != 15) {
4667 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4668 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4669 		    sc->sc_request_r_scale);
4670 		optp += 4;
4671 	}
4672 
4673 	if (sc->sc_flags & SCF_TIMESTAMP) {
4674 		u_int32_t *lp = (u_int32_t *)(optp);
4675 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4676 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
4677 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4678 		*lp   = htonl(sc->sc_timestamp);
4679 		optp += TCPOLEN_TSTAMP_APPA;
4680 	}
4681 
4682 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4683 		u_int8_t *p = optp;
4684 
4685 		/* Let the peer know that we will SACK. */
4686 		p[0] = TCPOPT_SACK_PERMITTED;
4687 		p[1] = 2;
4688 		p[2] = TCPOPT_NOP;
4689 		p[3] = TCPOPT_NOP;
4690 		optp += 4;
4691 	}
4692 
4693 	/*
4694 	 * Send ECN SYN-ACK setup packet.
4695 	 * Routes can be asymetric, so, even if we receive a packet
4696 	 * with ECE and CWR set, we must not assume no one will block
4697 	 * the ECE packet we are about to send.
4698 	 */
4699 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4700 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4701 		th->th_flags |= TH_ECE;
4702 		TCP_STATINC(TCP_STAT_ECN_SHS);
4703 
4704 		/*
4705 		 * draft-ietf-tcpm-ecnsyn-00.txt
4706 		 *
4707 		 * "[...] a TCP node MAY respond to an ECN-setup
4708 		 * SYN packet by setting ECT in the responding
4709 		 * ECN-setup SYN/ACK packet, indicating to routers
4710 		 * that the SYN/ACK packet is ECN-Capable.
4711 		 * This allows a congested router along the path
4712 		 * to mark the packet instead of dropping the
4713 		 * packet as an indication of congestion."
4714 		 *
4715 		 * "[...] There can be a great benefit in setting
4716 		 * an ECN-capable codepoint in SYN/ACK packets [...]
4717 		 * Congestion is  most likely to occur in
4718 		 * the server-to-client direction.  As a result,
4719 		 * setting an ECN-capable codepoint in SYN/ACK
4720 		 * packets can reduce the occurence of three-second
4721 		 * retransmit timeouts resulting from the drop
4722 		 * of SYN/ACK packets."
4723 		 *
4724 		 * Page 4 and 6, January 2006.
4725 		 */
4726 
4727 		switch (sc->sc_src.sa.sa_family) {
4728 #ifdef INET
4729 		case AF_INET:
4730 			ip->ip_tos |= IPTOS_ECN_ECT0;
4731 			break;
4732 #endif
4733 #ifdef INET6
4734 		case AF_INET6:
4735 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4736 			break;
4737 #endif
4738 		}
4739 		TCP_STATINC(TCP_STAT_ECN_ECT);
4740 	}
4741 
4742 #ifdef TCP_SIGNATURE
4743 	if (sc->sc_flags & SCF_SIGNATURE) {
4744 		struct secasvar *sav;
4745 		u_int8_t *sigp;
4746 
4747 		sav = tcp_signature_getsav(m, th);
4748 
4749 		if (sav == NULL) {
4750 			if (m)
4751 				m_freem(m);
4752 			return (EPERM);
4753 		}
4754 
4755 		*optp++ = TCPOPT_SIGNATURE;
4756 		*optp++ = TCPOLEN_SIGNATURE;
4757 		sigp = optp;
4758 		memset(optp, 0, TCP_SIGLEN);
4759 		optp += TCP_SIGLEN;
4760 		*optp++ = TCPOPT_NOP;
4761 		*optp++ = TCPOPT_EOL;
4762 
4763 		(void)tcp_signature(m, th, hlen, sav, sigp);
4764 
4765 		key_sa_recordxfer(sav, m);
4766 #ifdef FAST_IPSEC
4767 		KEY_FREESAV(&sav);
4768 #else
4769 		key_freesav(sav);
4770 #endif
4771 	}
4772 #endif
4773 
4774 	/* Compute the packet's checksum. */
4775 	switch (sc->sc_src.sa.sa_family) {
4776 	case AF_INET:
4777 		ip->ip_len = htons(tlen - hlen);
4778 		th->th_sum = 0;
4779 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4780 		break;
4781 #ifdef INET6
4782 	case AF_INET6:
4783 		ip6->ip6_plen = htons(tlen - hlen);
4784 		th->th_sum = 0;
4785 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4786 		break;
4787 #endif
4788 	}
4789 
4790 	/*
4791 	 * Fill in some straggling IP bits.  Note the stack expects
4792 	 * ip_len to be in host order, for convenience.
4793 	 */
4794 	switch (sc->sc_src.sa.sa_family) {
4795 #ifdef INET
4796 	case AF_INET:
4797 		ip->ip_len = htons(tlen);
4798 		ip->ip_ttl = ip_defttl;
4799 		/* XXX tos? */
4800 		break;
4801 #endif
4802 #ifdef INET6
4803 	case AF_INET6:
4804 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4805 		ip6->ip6_vfc |= IPV6_VERSION;
4806 		ip6->ip6_plen = htons(tlen - hlen);
4807 		/* ip6_hlim will be initialized afterwards */
4808 		/* XXX flowlabel? */
4809 		break;
4810 #endif
4811 	}
4812 
4813 	/* XXX use IPsec policy on listening socket, on SYN ACK */
4814 	tp = sc->sc_tp;
4815 
4816 	switch (sc->sc_src.sa.sa_family) {
4817 #ifdef INET
4818 	case AF_INET:
4819 		error = ip_output(m, sc->sc_ipopts, ro,
4820 		    (ip_mtudisc ? IP_MTUDISC : 0),
4821 		    NULL, so);
4822 		break;
4823 #endif
4824 #ifdef INET6
4825 	case AF_INET6:
4826 		ip6->ip6_hlim = in6_selecthlim(NULL,
4827 				(rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
4828 				                                    : NULL);
4829 
4830 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4831 		break;
4832 #endif
4833 	default:
4834 		error = EAFNOSUPPORT;
4835 		break;
4836 	}
4837 	return (error);
4838 }
4839