1 /* $NetBSD: tcp_input.c,v 1.12 1995/04/13 06:36:37 cgd Exp $ */ 2 3 /* 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by the University of 18 * California, Berkeley and its contributors. 19 * 4. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)tcp_input.c 8.5 (Berkeley) 4/10/94 36 */ 37 38 #ifndef TUBA_INCLUDE 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/protosw.h> 44 #include <sys/socket.h> 45 #include <sys/socketvar.h> 46 #include <sys/errno.h> 47 48 #include <net/if.h> 49 #include <net/route.h> 50 51 #include <netinet/in.h> 52 #include <netinet/in_systm.h> 53 #include <netinet/ip.h> 54 #include <netinet/in_pcb.h> 55 #include <netinet/ip_var.h> 56 #include <netinet/tcp.h> 57 #include <netinet/tcp_fsm.h> 58 #include <netinet/tcp_seq.h> 59 #include <netinet/tcp_timer.h> 60 #include <netinet/tcp_var.h> 61 #include <netinet/tcpip.h> 62 #include <netinet/tcp_debug.h> 63 64 int tcprexmtthresh = 3; 65 struct tcpiphdr tcp_saveti; 66 struct inpcb *tcp_last_inpcb = &tcb; 67 68 extern u_long sb_max; 69 70 #endif /* TUBA_INCLUDE */ 71 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ) 72 73 /* for modulo comparisons of timestamps */ 74 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0) 75 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0) 76 77 78 /* 79 * Insert segment ti into reassembly queue of tcp with 80 * control block tp. Return TH_FIN if reassembly now includes 81 * a segment with FIN. The macro form does the common case inline 82 * (segment is the next to be received on an established connection, 83 * and the queue is empty), avoiding linkage into and removal 84 * from the queue and repetition of various conversions. 85 * Set DELACK for segments received in order, but ack immediately 86 * when segments are out of order (so fast retransmit can work). 87 */ 88 #define TCP_REASS(tp, ti, m, so, flags) { \ 89 if ((ti)->ti_seq == (tp)->rcv_nxt && \ 90 (tp)->seg_next == (struct tcpiphdr *)(tp) && \ 91 (tp)->t_state == TCPS_ESTABLISHED) { \ 92 if ((ti)->ti_flags & TH_PUSH) \ 93 tp->t_flags |= TF_ACKNOW; \ 94 else \ 95 tp->t_flags |= TF_DELACK; \ 96 (tp)->rcv_nxt += (ti)->ti_len; \ 97 flags = (ti)->ti_flags & TH_FIN; \ 98 tcpstat.tcps_rcvpack++;\ 99 tcpstat.tcps_rcvbyte += (ti)->ti_len;\ 100 sbappend(&(so)->so_rcv, (m)); \ 101 sorwakeup(so); \ 102 } else { \ 103 (flags) = tcp_reass((tp), (ti), (m)); \ 104 tp->t_flags |= TF_ACKNOW; \ 105 } \ 106 } 107 #ifndef TUBA_INCLUDE 108 109 int 110 tcp_reass(tp, ti, m) 111 register struct tcpcb *tp; 112 register struct tcpiphdr *ti; 113 struct mbuf *m; 114 { 115 register struct tcpiphdr *q; 116 struct socket *so = tp->t_inpcb->inp_socket; 117 int flags; 118 119 /* 120 * Call with ti==0 after become established to 121 * force pre-ESTABLISHED data up to user socket. 122 */ 123 if (ti == 0) 124 goto present; 125 126 /* 127 * Find a segment which begins after this one does. 128 */ 129 for (q = tp->seg_next; q != (struct tcpiphdr *)tp; 130 q = (struct tcpiphdr *)q->ti_next) 131 if (SEQ_GT(q->ti_seq, ti->ti_seq)) 132 break; 133 134 /* 135 * If there is a preceding segment, it may provide some of 136 * our data already. If so, drop the data from the incoming 137 * segment. If it provides all of our data, drop us. 138 */ 139 if ((struct tcpiphdr *)q->ti_prev != (struct tcpiphdr *)tp) { 140 register int i; 141 q = (struct tcpiphdr *)q->ti_prev; 142 /* conversion to int (in i) handles seq wraparound */ 143 i = q->ti_seq + q->ti_len - ti->ti_seq; 144 if (i > 0) { 145 if (i >= ti->ti_len) { 146 tcpstat.tcps_rcvduppack++; 147 tcpstat.tcps_rcvdupbyte += ti->ti_len; 148 m_freem(m); 149 return (0); 150 } 151 m_adj(m, i); 152 ti->ti_len -= i; 153 ti->ti_seq += i; 154 } 155 q = (struct tcpiphdr *)(q->ti_next); 156 } 157 tcpstat.tcps_rcvoopack++; 158 tcpstat.tcps_rcvoobyte += ti->ti_len; 159 REASS_MBUF(ti) = m; /* XXX */ 160 161 /* 162 * While we overlap succeeding segments trim them or, 163 * if they are completely covered, dequeue them. 164 */ 165 while (q != (struct tcpiphdr *)tp) { 166 register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq; 167 if (i <= 0) 168 break; 169 if (i < q->ti_len) { 170 q->ti_seq += i; 171 q->ti_len -= i; 172 m_adj(REASS_MBUF(q), i); 173 break; 174 } 175 q = (struct tcpiphdr *)q->ti_next; 176 m = REASS_MBUF((struct tcpiphdr *)q->ti_prev); 177 remque(q->ti_prev); 178 m_freem(m); 179 } 180 181 /* 182 * Stick new segment in its place. 183 */ 184 insque(ti, q->ti_prev); 185 186 present: 187 /* 188 * Present data to user, advancing rcv_nxt through 189 * completed sequence space. 190 */ 191 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0) 192 return (0); 193 ti = tp->seg_next; 194 if (ti == (struct tcpiphdr *)tp || ti->ti_seq != tp->rcv_nxt) 195 return (0); 196 if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len) 197 return (0); 198 do { 199 tp->rcv_nxt += ti->ti_len; 200 flags = ti->ti_flags & TH_FIN; 201 remque(ti); 202 m = REASS_MBUF(ti); 203 ti = (struct tcpiphdr *)ti->ti_next; 204 if (so->so_state & SS_CANTRCVMORE) 205 m_freem(m); 206 else 207 sbappend(&so->so_rcv, m); 208 } while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt); 209 sorwakeup(so); 210 return (flags); 211 } 212 213 /* 214 * TCP input routine, follows pages 65-76 of the 215 * protocol specification dated September, 1981 very closely. 216 */ 217 void 218 tcp_input(m, iphlen) 219 register struct mbuf *m; 220 int iphlen; 221 { 222 register struct tcpiphdr *ti; 223 register struct inpcb *inp; 224 caddr_t optp = NULL; 225 int optlen; 226 int len, tlen, off; 227 register struct tcpcb *tp = 0; 228 register int tiflags; 229 struct socket *so; 230 int todrop, acked, ourfinisacked, needoutput = 0; 231 short ostate; 232 struct in_addr laddr; 233 int dropsocket = 0; 234 int iss = 0; 235 u_long tiwin; 236 u_int32_t ts_val, ts_ecr; 237 int ts_present = 0; 238 239 tcpstat.tcps_rcvtotal++; 240 /* 241 * Get IP and TCP header together in first mbuf. 242 * Note: IP leaves IP header in first mbuf. 243 */ 244 ti = mtod(m, struct tcpiphdr *); 245 if (iphlen > sizeof (struct ip)) 246 ip_stripoptions(m, (struct mbuf *)0); 247 if (m->m_len < sizeof (struct tcpiphdr)) { 248 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) { 249 tcpstat.tcps_rcvshort++; 250 return; 251 } 252 ti = mtod(m, struct tcpiphdr *); 253 } 254 255 /* 256 * Checksum extended TCP header and data. 257 */ 258 tlen = ((struct ip *)ti)->ip_len; 259 len = sizeof (struct ip) + tlen; 260 ti->ti_next = ti->ti_prev = 0; 261 ti->ti_x1 = 0; 262 ti->ti_len = (u_int16_t)tlen; 263 HTONS(ti->ti_len); 264 if (ti->ti_sum = in_cksum(m, len)) { 265 tcpstat.tcps_rcvbadsum++; 266 goto drop; 267 } 268 #endif /* TUBA_INCLUDE */ 269 270 /* 271 * Check that TCP offset makes sense, 272 * pull out TCP options and adjust length. XXX 273 */ 274 off = ti->ti_off << 2; 275 if (off < sizeof (struct tcphdr) || off > tlen) { 276 tcpstat.tcps_rcvbadoff++; 277 goto drop; 278 } 279 tlen -= off; 280 ti->ti_len = tlen; 281 if (off > sizeof (struct tcphdr)) { 282 if (m->m_len < sizeof(struct ip) + off) { 283 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) { 284 tcpstat.tcps_rcvshort++; 285 return; 286 } 287 ti = mtod(m, struct tcpiphdr *); 288 } 289 optlen = off - sizeof (struct tcphdr); 290 optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr); 291 /* 292 * Do quick retrieval of timestamp options ("options 293 * prediction?"). If timestamp is the only option and it's 294 * formatted as recommended in RFC 1323 appendix A, we 295 * quickly get the values now and not bother calling 296 * tcp_dooptions(), etc. 297 */ 298 if ((optlen == TCPOLEN_TSTAMP_APPA || 299 (optlen > TCPOLEN_TSTAMP_APPA && 300 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) && 301 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) && 302 (ti->ti_flags & TH_SYN) == 0) { 303 ts_present = 1; 304 ts_val = ntohl(*(u_int32_t *)(optp + 4)); 305 ts_ecr = ntohl(*(u_int32_t *)(optp + 8)); 306 optp = NULL; /* we've parsed the options */ 307 } 308 } 309 tiflags = ti->ti_flags; 310 311 /* 312 * Convert TCP protocol specific fields to host format. 313 */ 314 NTOHL(ti->ti_seq); 315 NTOHL(ti->ti_ack); 316 NTOHS(ti->ti_win); 317 NTOHS(ti->ti_urp); 318 319 /* 320 * Locate pcb for segment. 321 */ 322 findpcb: 323 inp = tcp_last_inpcb; 324 if (inp->inp_lport != ti->ti_dport || 325 inp->inp_fport != ti->ti_sport || 326 inp->inp_faddr.s_addr != ti->ti_src.s_addr || 327 inp->inp_laddr.s_addr != ti->ti_dst.s_addr) { 328 inp = in_pcblookup(&tcb, ti->ti_src, ti->ti_sport, 329 ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD); 330 if (inp) 331 tcp_last_inpcb = inp; 332 ++tcpstat.tcps_pcbcachemiss; 333 } 334 335 /* 336 * If the state is CLOSED (i.e., TCB does not exist) then 337 * all data in the incoming segment is discarded. 338 * If the TCB exists but is in CLOSED state, it is embryonic, 339 * but should either do a listen or a connect soon. 340 */ 341 if (inp == 0) 342 goto dropwithreset; 343 tp = intotcpcb(inp); 344 if (tp == 0) 345 goto dropwithreset; 346 if (tp->t_state == TCPS_CLOSED) 347 goto drop; 348 349 /* Unscale the window into a 32-bit value. */ 350 if ((tiflags & TH_SYN) == 0) 351 tiwin = ti->ti_win << tp->snd_scale; 352 else 353 tiwin = ti->ti_win; 354 355 so = inp->inp_socket; 356 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) { 357 if (so->so_options & SO_DEBUG) { 358 ostate = tp->t_state; 359 tcp_saveti = *ti; 360 } 361 if (so->so_options & SO_ACCEPTCONN) { 362 so = sonewconn(so, 0); 363 if (so == 0) 364 goto drop; 365 /* 366 * This is ugly, but .... 367 * 368 * Mark socket as temporary until we're 369 * committed to keeping it. The code at 370 * ``drop'' and ``dropwithreset'' check the 371 * flag dropsocket to see if the temporary 372 * socket created here should be discarded. 373 * We mark the socket as discardable until 374 * we're committed to it below in TCPS_LISTEN. 375 */ 376 dropsocket++; 377 inp = (struct inpcb *)so->so_pcb; 378 inp->inp_laddr = ti->ti_dst; 379 inp->inp_lport = ti->ti_dport; 380 #if BSD>=43 381 inp->inp_options = ip_srcroute(); 382 #endif 383 tp = intotcpcb(inp); 384 tp->t_state = TCPS_LISTEN; 385 386 /* Compute proper scaling value from buffer space 387 */ 388 while (tp->request_r_scale < TCP_MAX_WINSHIFT && 389 TCP_MAXWIN << tp->request_r_scale < so->so_rcv.sb_hiwat) 390 tp->request_r_scale++; 391 } 392 } 393 394 /* 395 * Segment received on connection. 396 * Reset idle time and keep-alive timer. 397 */ 398 tp->t_idle = 0; 399 tp->t_timer[TCPT_KEEP] = tcp_keepidle; 400 401 /* 402 * Process options if not in LISTEN state, 403 * else do it below (after getting remote address). 404 */ 405 if (optp && tp->t_state != TCPS_LISTEN) 406 tcp_dooptions(tp, optp, optlen, ti, 407 &ts_present, &ts_val, &ts_ecr); 408 409 /* 410 * Header prediction: check for the two common cases 411 * of a uni-directional data xfer. If the packet has 412 * no control flags, is in-sequence, the window didn't 413 * change and we're not retransmitting, it's a 414 * candidate. If the length is zero and the ack moved 415 * forward, we're the sender side of the xfer. Just 416 * free the data acked & wake any higher level process 417 * that was blocked waiting for space. If the length 418 * is non-zero and the ack didn't move, we're the 419 * receiver side. If we're getting packets in-order 420 * (the reassembly queue is empty), add the data to 421 * the socket buffer and note that we need a delayed ack. 422 */ 423 if (tp->t_state == TCPS_ESTABLISHED && 424 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK && 425 (!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) && 426 ti->ti_seq == tp->rcv_nxt && 427 tiwin && tiwin == tp->snd_wnd && 428 tp->snd_nxt == tp->snd_max) { 429 430 /* 431 * If last ACK falls within this segment's sequence numbers, 432 * record the timestamp. 433 */ 434 if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) && 435 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) { 436 tp->ts_recent_age = tcp_now; 437 tp->ts_recent = ts_val; 438 } 439 440 if (ti->ti_len == 0) { 441 if (SEQ_GT(ti->ti_ack, tp->snd_una) && 442 SEQ_LEQ(ti->ti_ack, tp->snd_max) && 443 tp->snd_cwnd >= tp->snd_wnd) { 444 /* 445 * this is a pure ack for outstanding data. 446 */ 447 ++tcpstat.tcps_predack; 448 if (ts_present) 449 tcp_xmit_timer(tp, tcp_now-ts_ecr+1); 450 else if (tp->t_rtt && 451 SEQ_GT(ti->ti_ack, tp->t_rtseq)) 452 tcp_xmit_timer(tp, tp->t_rtt); 453 acked = ti->ti_ack - tp->snd_una; 454 tcpstat.tcps_rcvackpack++; 455 tcpstat.tcps_rcvackbyte += acked; 456 sbdrop(&so->so_snd, acked); 457 tp->snd_una = ti->ti_ack; 458 m_freem(m); 459 460 /* 461 * If all outstanding data are acked, stop 462 * retransmit timer, otherwise restart timer 463 * using current (possibly backed-off) value. 464 * If process is waiting for space, 465 * wakeup/selwakeup/signal. If data 466 * are ready to send, let tcp_output 467 * decide between more output or persist. 468 */ 469 if (tp->snd_una == tp->snd_max) 470 tp->t_timer[TCPT_REXMT] = 0; 471 else if (tp->t_timer[TCPT_PERSIST] == 0) 472 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur; 473 474 if (so->so_snd.sb_flags & SB_NOTIFY) 475 sowwakeup(so); 476 if (so->so_snd.sb_cc) 477 (void) tcp_output(tp); 478 return; 479 } 480 } else if (ti->ti_ack == tp->snd_una && 481 tp->seg_next == (struct tcpiphdr *)tp && 482 ti->ti_len <= sbspace(&so->so_rcv)) { 483 /* 484 * this is a pure, in-sequence data packet 485 * with nothing on the reassembly queue and 486 * we have enough buffer space to take it. 487 */ 488 ++tcpstat.tcps_preddat; 489 tp->rcv_nxt += ti->ti_len; 490 tcpstat.tcps_rcvpack++; 491 tcpstat.tcps_rcvbyte += ti->ti_len; 492 /* 493 * Drop TCP, IP headers and TCP options then add data 494 * to socket buffer. 495 */ 496 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); 497 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); 498 sbappend(&so->so_rcv, m); 499 sorwakeup(so); 500 if (ti->ti_flags & TH_PUSH) 501 tp->t_flags |= TF_ACKNOW; 502 else 503 tp->t_flags |= TF_DELACK; 504 return; 505 } 506 } 507 508 /* 509 * Drop TCP, IP headers and TCP options. 510 */ 511 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); 512 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr); 513 514 /* 515 * Calculate amount of space in receive window, 516 * and then do TCP input processing. 517 * Receive window is amount of space in rcv queue, 518 * but not less than advertised window. 519 */ 520 { int win; 521 522 win = sbspace(&so->so_rcv); 523 if (win < 0) 524 win = 0; 525 tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt)); 526 } 527 528 switch (tp->t_state) { 529 530 /* 531 * If the state is LISTEN then ignore segment if it contains an RST. 532 * If the segment contains an ACK then it is bad and send a RST. 533 * If it does not contain a SYN then it is not interesting; drop it. 534 * Don't bother responding if the destination was a broadcast. 535 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial 536 * tp->iss, and send a segment: 537 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK> 538 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss. 539 * Fill in remote peer address fields if not previously specified. 540 * Enter SYN_RECEIVED state, and process any other fields of this 541 * segment in this state. 542 */ 543 case TCPS_LISTEN: { 544 struct mbuf *am; 545 register struct sockaddr_in *sin; 546 547 if (tiflags & TH_RST) 548 goto drop; 549 if (tiflags & TH_ACK) 550 goto dropwithreset; 551 if ((tiflags & TH_SYN) == 0) 552 goto drop; 553 /* 554 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN 555 * in_broadcast() should never return true on a received 556 * packet with M_BCAST not set. 557 */ 558 if (m->m_flags & (M_BCAST|M_MCAST) || 559 IN_MULTICAST(ntohl(ti->ti_dst.s_addr))) 560 goto drop; 561 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */ 562 if (am == NULL) 563 goto drop; 564 am->m_len = sizeof (struct sockaddr_in); 565 sin = mtod(am, struct sockaddr_in *); 566 sin->sin_family = AF_INET; 567 sin->sin_len = sizeof(*sin); 568 sin->sin_addr = ti->ti_src; 569 sin->sin_port = ti->ti_sport; 570 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero)); 571 laddr = inp->inp_laddr; 572 if (inp->inp_laddr.s_addr == INADDR_ANY) 573 inp->inp_laddr = ti->ti_dst; 574 if (in_pcbconnect(inp, am)) { 575 inp->inp_laddr = laddr; 576 (void) m_free(am); 577 goto drop; 578 } 579 (void) m_free(am); 580 tp->t_template = tcp_template(tp); 581 if (tp->t_template == 0) { 582 tp = tcp_drop(tp, ENOBUFS); 583 dropsocket = 0; /* socket is already gone */ 584 goto drop; 585 } 586 if (optp) 587 tcp_dooptions(tp, optp, optlen, ti, 588 &ts_present, &ts_val, &ts_ecr); 589 if (iss) 590 tp->iss = iss; 591 else 592 tp->iss = tcp_iss; 593 tcp_iss += TCP_ISSINCR/2; 594 tp->irs = ti->ti_seq; 595 tcp_sendseqinit(tp); 596 tcp_rcvseqinit(tp); 597 tp->t_flags |= TF_ACKNOW; 598 tp->t_state = TCPS_SYN_RECEIVED; 599 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT; 600 dropsocket = 0; /* committed to socket */ 601 tcpstat.tcps_accepts++; 602 goto trimthenstep6; 603 } 604 605 /* 606 * If the state is SYN_SENT: 607 * if seg contains an ACK, but not for our SYN, drop the input. 608 * if seg contains a RST, then drop the connection. 609 * if seg does not contain SYN, then drop it. 610 * Otherwise this is an acceptable SYN segment 611 * initialize tp->rcv_nxt and tp->irs 612 * if seg contains ack then advance tp->snd_una 613 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state 614 * arrange for segment to be acked (eventually) 615 * continue processing rest of data/controls, beginning with URG 616 */ 617 case TCPS_SYN_SENT: 618 if ((tiflags & TH_ACK) && 619 (SEQ_LEQ(ti->ti_ack, tp->iss) || 620 SEQ_GT(ti->ti_ack, tp->snd_max))) 621 goto dropwithreset; 622 if (tiflags & TH_RST) { 623 if (tiflags & TH_ACK) 624 tp = tcp_drop(tp, ECONNREFUSED); 625 goto drop; 626 } 627 if ((tiflags & TH_SYN) == 0) 628 goto drop; 629 if (tiflags & TH_ACK) { 630 tp->snd_una = ti->ti_ack; 631 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) 632 tp->snd_nxt = tp->snd_una; 633 } 634 tp->t_timer[TCPT_REXMT] = 0; 635 tp->irs = ti->ti_seq; 636 tcp_rcvseqinit(tp); 637 tp->t_flags |= TF_ACKNOW; 638 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) { 639 tcpstat.tcps_connects++; 640 soisconnected(so); 641 tp->t_state = TCPS_ESTABLISHED; 642 /* Do window scaling on this connection? */ 643 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 644 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 645 tp->snd_scale = tp->requested_s_scale; 646 tp->rcv_scale = tp->request_r_scale; 647 } 648 (void) tcp_reass(tp, (struct tcpiphdr *)0, 649 (struct mbuf *)0); 650 /* 651 * if we didn't have to retransmit the SYN, 652 * use its rtt as our initial srtt & rtt var. 653 */ 654 if (tp->t_rtt) 655 tcp_xmit_timer(tp, tp->t_rtt); 656 } else 657 tp->t_state = TCPS_SYN_RECEIVED; 658 659 trimthenstep6: 660 /* 661 * Advance ti->ti_seq to correspond to first data byte. 662 * If data, trim to stay within window, 663 * dropping FIN if necessary. 664 */ 665 ti->ti_seq++; 666 if (ti->ti_len > tp->rcv_wnd) { 667 todrop = ti->ti_len - tp->rcv_wnd; 668 m_adj(m, -todrop); 669 ti->ti_len = tp->rcv_wnd; 670 tiflags &= ~TH_FIN; 671 tcpstat.tcps_rcvpackafterwin++; 672 tcpstat.tcps_rcvbyteafterwin += todrop; 673 } 674 tp->snd_wl1 = ti->ti_seq - 1; 675 tp->rcv_up = ti->ti_seq; 676 goto step6; 677 } 678 679 /* 680 * States other than LISTEN or SYN_SENT. 681 * First check timestamp, if present. 682 * Then check that at least some bytes of segment are within 683 * receive window. If segment begins before rcv_nxt, 684 * drop leading data (and SYN); if nothing left, just ack. 685 * 686 * RFC 1323 PAWS: If we have a timestamp reply on this segment 687 * and it's less than ts_recent, drop it. 688 */ 689 if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent && 690 TSTMP_LT(ts_val, tp->ts_recent)) { 691 692 /* Check to see if ts_recent is over 24 days old. */ 693 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) { 694 /* 695 * Invalidate ts_recent. If this segment updates 696 * ts_recent, the age will be reset later and ts_recent 697 * will get a valid value. If it does not, setting 698 * ts_recent to zero will at least satisfy the 699 * requirement that zero be placed in the timestamp 700 * echo reply when ts_recent isn't valid. The 701 * age isn't reset until we get a valid ts_recent 702 * because we don't want out-of-order segments to be 703 * dropped when ts_recent is old. 704 */ 705 tp->ts_recent = 0; 706 } else { 707 tcpstat.tcps_rcvduppack++; 708 tcpstat.tcps_rcvdupbyte += ti->ti_len; 709 tcpstat.tcps_pawsdrop++; 710 goto dropafterack; 711 } 712 } 713 714 todrop = tp->rcv_nxt - ti->ti_seq; 715 if (todrop > 0) { 716 if (tiflags & TH_SYN) { 717 tiflags &= ~TH_SYN; 718 ti->ti_seq++; 719 if (ti->ti_urp > 1) 720 ti->ti_urp--; 721 else 722 tiflags &= ~TH_URG; 723 todrop--; 724 } 725 if (todrop >= ti->ti_len) { 726 /* 727 * Any valid FIN must be to the left of the 728 * window. At this point, FIN must be a 729 * duplicate or out-of-sequence, so drop it. 730 */ 731 tiflags &= ~TH_FIN; 732 /* 733 * Send ACK to resynchronize, and drop any data, 734 * but keep on processing for RST or ACK. 735 */ 736 tp->t_flags |= TF_ACKNOW; 737 tcpstat.tcps_rcvdupbyte += todrop = ti->ti_len; 738 tcpstat.tcps_rcvduppack++; 739 } else { 740 tcpstat.tcps_rcvpartduppack++; 741 tcpstat.tcps_rcvpartdupbyte += todrop; 742 } 743 m_adj(m, todrop); 744 ti->ti_seq += todrop; 745 ti->ti_len -= todrop; 746 if (ti->ti_urp > todrop) 747 ti->ti_urp -= todrop; 748 else { 749 tiflags &= ~TH_URG; 750 ti->ti_urp = 0; 751 } 752 } 753 754 /* 755 * If new data are received on a connection after the 756 * user processes are gone, then RST the other end. 757 */ 758 if ((so->so_state & SS_NOFDREF) && 759 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) { 760 tp = tcp_close(tp); 761 tcpstat.tcps_rcvafterclose++; 762 goto dropwithreset; 763 } 764 765 /* 766 * If segment ends after window, drop trailing data 767 * (and PUSH and FIN); if nothing left, just ACK. 768 */ 769 todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd); 770 if (todrop > 0) { 771 tcpstat.tcps_rcvpackafterwin++; 772 if (todrop >= ti->ti_len) { 773 tcpstat.tcps_rcvbyteafterwin += ti->ti_len; 774 /* 775 * If a new connection request is received 776 * while in TIME_WAIT, drop the old connection 777 * and start over if the sequence numbers 778 * are above the previous ones. 779 */ 780 if (tiflags & TH_SYN && 781 tp->t_state == TCPS_TIME_WAIT && 782 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) { 783 iss = tp->rcv_nxt + TCP_ISSINCR; 784 tp = tcp_close(tp); 785 goto findpcb; 786 } 787 /* 788 * If window is closed can only take segments at 789 * window edge, and have to drop data and PUSH from 790 * incoming segments. Continue processing, but 791 * remember to ack. Otherwise, drop segment 792 * and ack. 793 */ 794 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) { 795 tp->t_flags |= TF_ACKNOW; 796 tcpstat.tcps_rcvwinprobe++; 797 } else 798 goto dropafterack; 799 } else 800 tcpstat.tcps_rcvbyteafterwin += todrop; 801 m_adj(m, -todrop); 802 ti->ti_len -= todrop; 803 tiflags &= ~(TH_PUSH|TH_FIN); 804 } 805 806 /* 807 * If last ACK falls within this segment's sequence numbers, 808 * record its timestamp. 809 */ 810 if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) && 811 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len + 812 ((tiflags & (TH_SYN|TH_FIN)) != 0))) { 813 tp->ts_recent_age = tcp_now; 814 tp->ts_recent = ts_val; 815 } 816 817 /* 818 * If the RST bit is set examine the state: 819 * SYN_RECEIVED STATE: 820 * If passive open, return to LISTEN state. 821 * If active open, inform user that connection was refused. 822 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES: 823 * Inform user that connection was reset, and close tcb. 824 * CLOSING, LAST_ACK, TIME_WAIT STATES 825 * Close the tcb. 826 */ 827 if (tiflags&TH_RST) switch (tp->t_state) { 828 829 case TCPS_SYN_RECEIVED: 830 so->so_error = ECONNREFUSED; 831 goto close; 832 833 case TCPS_ESTABLISHED: 834 case TCPS_FIN_WAIT_1: 835 case TCPS_FIN_WAIT_2: 836 case TCPS_CLOSE_WAIT: 837 so->so_error = ECONNRESET; 838 close: 839 tp->t_state = TCPS_CLOSED; 840 tcpstat.tcps_drops++; 841 tp = tcp_close(tp); 842 goto drop; 843 844 case TCPS_CLOSING: 845 case TCPS_LAST_ACK: 846 case TCPS_TIME_WAIT: 847 tp = tcp_close(tp); 848 goto drop; 849 } 850 851 /* 852 * If a SYN is in the window, then this is an 853 * error and we send an RST and drop the connection. 854 */ 855 if (tiflags & TH_SYN) { 856 tp = tcp_drop(tp, ECONNRESET); 857 goto dropwithreset; 858 } 859 860 /* 861 * If the ACK bit is off we drop the segment and return. 862 */ 863 if ((tiflags & TH_ACK) == 0) 864 goto drop; 865 866 /* 867 * Ack processing. 868 */ 869 switch (tp->t_state) { 870 871 /* 872 * In SYN_RECEIVED state if the ack ACKs our SYN then enter 873 * ESTABLISHED state and continue processing, otherwise 874 * send an RST. 875 */ 876 case TCPS_SYN_RECEIVED: 877 if (SEQ_GT(tp->snd_una, ti->ti_ack) || 878 SEQ_GT(ti->ti_ack, tp->snd_max)) 879 goto dropwithreset; 880 tcpstat.tcps_connects++; 881 soisconnected(so); 882 tp->t_state = TCPS_ESTABLISHED; 883 /* Do window scaling? */ 884 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 885 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 886 tp->snd_scale = tp->requested_s_scale; 887 tp->rcv_scale = tp->request_r_scale; 888 } 889 (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0); 890 tp->snd_wl1 = ti->ti_seq - 1; 891 /* fall into ... */ 892 893 /* 894 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range 895 * ACKs. If the ack is in the range 896 * tp->snd_una < ti->ti_ack <= tp->snd_max 897 * then advance tp->snd_una to ti->ti_ack and drop 898 * data from the retransmission queue. If this ACK reflects 899 * more up to date window information we update our window information. 900 */ 901 case TCPS_ESTABLISHED: 902 case TCPS_FIN_WAIT_1: 903 case TCPS_FIN_WAIT_2: 904 case TCPS_CLOSE_WAIT: 905 case TCPS_CLOSING: 906 case TCPS_LAST_ACK: 907 case TCPS_TIME_WAIT: 908 909 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) { 910 if (ti->ti_len == 0 && tiwin == tp->snd_wnd) { 911 tcpstat.tcps_rcvdupack++; 912 /* 913 * If we have outstanding data (other than 914 * a window probe), this is a completely 915 * duplicate ack (ie, window info didn't 916 * change), the ack is the biggest we've 917 * seen and we've seen exactly our rexmt 918 * threshhold of them, assume a packet 919 * has been dropped and retransmit it. 920 * Kludge snd_nxt & the congestion 921 * window so we send only this one 922 * packet. 923 * 924 * We know we're losing at the current 925 * window size so do congestion avoidance 926 * (set ssthresh to half the current window 927 * and pull our congestion window back to 928 * the new ssthresh). 929 * 930 * Dup acks mean that packets have left the 931 * network (they're now cached at the receiver) 932 * so bump cwnd by the amount in the receiver 933 * to keep a constant cwnd packets in the 934 * network. 935 */ 936 if (tp->t_timer[TCPT_REXMT] == 0 || 937 ti->ti_ack != tp->snd_una) 938 tp->t_dupacks = 0; 939 else if (++tp->t_dupacks == tcprexmtthresh) { 940 tcp_seq onxt = tp->snd_nxt; 941 u_int win = 942 min(tp->snd_wnd, tp->snd_cwnd) / 2 / 943 tp->t_maxseg; 944 945 if (win < 2) 946 win = 2; 947 tp->snd_ssthresh = win * tp->t_maxseg; 948 tp->t_timer[TCPT_REXMT] = 0; 949 tp->t_rtt = 0; 950 tp->snd_nxt = ti->ti_ack; 951 tp->snd_cwnd = tp->t_maxseg; 952 (void) tcp_output(tp); 953 tp->snd_cwnd = tp->snd_ssthresh + 954 tp->t_maxseg * tp->t_dupacks; 955 if (SEQ_GT(onxt, tp->snd_nxt)) 956 tp->snd_nxt = onxt; 957 goto drop; 958 } else if (tp->t_dupacks > tcprexmtthresh) { 959 tp->snd_cwnd += tp->t_maxseg; 960 (void) tcp_output(tp); 961 goto drop; 962 } 963 } else 964 tp->t_dupacks = 0; 965 break; 966 } 967 /* 968 * If the congestion window was inflated to account 969 * for the other side's cached packets, retract it. 970 */ 971 if (tp->t_dupacks > tcprexmtthresh && 972 tp->snd_cwnd > tp->snd_ssthresh) 973 tp->snd_cwnd = tp->snd_ssthresh; 974 tp->t_dupacks = 0; 975 if (SEQ_GT(ti->ti_ack, tp->snd_max)) { 976 tcpstat.tcps_rcvacktoomuch++; 977 goto dropafterack; 978 } 979 acked = ti->ti_ack - tp->snd_una; 980 tcpstat.tcps_rcvackpack++; 981 tcpstat.tcps_rcvackbyte += acked; 982 983 /* 984 * If we have a timestamp reply, update smoothed 985 * round trip time. If no timestamp is present but 986 * transmit timer is running and timed sequence 987 * number was acked, update smoothed round trip time. 988 * Since we now have an rtt measurement, cancel the 989 * timer backoff (cf., Phil Karn's retransmit alg.). 990 * Recompute the initial retransmit timer. 991 */ 992 if (ts_present) 993 tcp_xmit_timer(tp, tcp_now-ts_ecr+1); 994 else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq)) 995 tcp_xmit_timer(tp,tp->t_rtt); 996 997 /* 998 * If all outstanding data is acked, stop retransmit 999 * timer and remember to restart (more output or persist). 1000 * If there is more data to be acked, restart retransmit 1001 * timer, using current (possibly backed-off) value. 1002 */ 1003 if (ti->ti_ack == tp->snd_max) { 1004 tp->t_timer[TCPT_REXMT] = 0; 1005 needoutput = 1; 1006 } else if (tp->t_timer[TCPT_PERSIST] == 0) 1007 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur; 1008 /* 1009 * When new data is acked, open the congestion window. 1010 * If the window gives us less than ssthresh packets 1011 * in flight, open exponentially (maxseg per packet). 1012 * Otherwise open linearly: maxseg per window 1013 * (maxseg^2 / cwnd per packet), plus a constant 1014 * fraction of a packet (maxseg/8) to help larger windows 1015 * open quickly enough. 1016 */ 1017 { 1018 register u_int cw = tp->snd_cwnd; 1019 register u_int incr = tp->t_maxseg; 1020 1021 if (cw > tp->snd_ssthresh) 1022 incr = incr * incr / cw + incr / 8; 1023 tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale); 1024 } 1025 if (acked > so->so_snd.sb_cc) { 1026 tp->snd_wnd -= so->so_snd.sb_cc; 1027 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc); 1028 ourfinisacked = 1; 1029 } else { 1030 sbdrop(&so->so_snd, acked); 1031 tp->snd_wnd -= acked; 1032 ourfinisacked = 0; 1033 } 1034 if (so->so_snd.sb_flags & SB_NOTIFY) 1035 sowwakeup(so); 1036 tp->snd_una = ti->ti_ack; 1037 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) 1038 tp->snd_nxt = tp->snd_una; 1039 1040 switch (tp->t_state) { 1041 1042 /* 1043 * In FIN_WAIT_1 STATE in addition to the processing 1044 * for the ESTABLISHED state if our FIN is now acknowledged 1045 * then enter FIN_WAIT_2. 1046 */ 1047 case TCPS_FIN_WAIT_1: 1048 if (ourfinisacked) { 1049 /* 1050 * If we can't receive any more 1051 * data, then closing user can proceed. 1052 * Starting the timer is contrary to the 1053 * specification, but if we don't get a FIN 1054 * we'll hang forever. 1055 */ 1056 if (so->so_state & SS_CANTRCVMORE) { 1057 soisdisconnected(so); 1058 tp->t_timer[TCPT_2MSL] = tcp_maxidle; 1059 } 1060 tp->t_state = TCPS_FIN_WAIT_2; 1061 } 1062 break; 1063 1064 /* 1065 * In CLOSING STATE in addition to the processing for 1066 * the ESTABLISHED state if the ACK acknowledges our FIN 1067 * then enter the TIME-WAIT state, otherwise ignore 1068 * the segment. 1069 */ 1070 case TCPS_CLOSING: 1071 if (ourfinisacked) { 1072 tp->t_state = TCPS_TIME_WAIT; 1073 tcp_canceltimers(tp); 1074 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; 1075 soisdisconnected(so); 1076 } 1077 break; 1078 1079 /* 1080 * In LAST_ACK, we may still be waiting for data to drain 1081 * and/or to be acked, as well as for the ack of our FIN. 1082 * If our FIN is now acknowledged, delete the TCB, 1083 * enter the closed state and return. 1084 */ 1085 case TCPS_LAST_ACK: 1086 if (ourfinisacked) { 1087 tp = tcp_close(tp); 1088 goto drop; 1089 } 1090 break; 1091 1092 /* 1093 * In TIME_WAIT state the only thing that should arrive 1094 * is a retransmission of the remote FIN. Acknowledge 1095 * it and restart the finack timer. 1096 */ 1097 case TCPS_TIME_WAIT: 1098 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; 1099 goto dropafterack; 1100 } 1101 } 1102 1103 step6: 1104 /* 1105 * Update window information. 1106 * Don't look at window if no ACK: TAC's send garbage on first SYN. 1107 */ 1108 if ((tiflags & TH_ACK) && 1109 (SEQ_LT(tp->snd_wl1, ti->ti_seq) || tp->snd_wl1 == ti->ti_seq && 1110 (SEQ_LT(tp->snd_wl2, ti->ti_ack) || 1111 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))) { 1112 /* keep track of pure window updates */ 1113 if (ti->ti_len == 0 && 1114 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd) 1115 tcpstat.tcps_rcvwinupd++; 1116 tp->snd_wnd = tiwin; 1117 tp->snd_wl1 = ti->ti_seq; 1118 tp->snd_wl2 = ti->ti_ack; 1119 if (tp->snd_wnd > tp->max_sndwnd) 1120 tp->max_sndwnd = tp->snd_wnd; 1121 needoutput = 1; 1122 } 1123 1124 /* 1125 * Process segments with URG. 1126 */ 1127 if ((tiflags & TH_URG) && ti->ti_urp && 1128 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 1129 /* 1130 * This is a kludge, but if we receive and accept 1131 * random urgent pointers, we'll crash in 1132 * soreceive. It's hard to imagine someone 1133 * actually wanting to send this much urgent data. 1134 */ 1135 if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) { 1136 ti->ti_urp = 0; /* XXX */ 1137 tiflags &= ~TH_URG; /* XXX */ 1138 goto dodata; /* XXX */ 1139 } 1140 /* 1141 * If this segment advances the known urgent pointer, 1142 * then mark the data stream. This should not happen 1143 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since 1144 * a FIN has been received from the remote side. 1145 * In these states we ignore the URG. 1146 * 1147 * According to RFC961 (Assigned Protocols), 1148 * the urgent pointer points to the last octet 1149 * of urgent data. We continue, however, 1150 * to consider it to indicate the first octet 1151 * of data past the urgent section as the original 1152 * spec states (in one of two places). 1153 */ 1154 if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) { 1155 tp->rcv_up = ti->ti_seq + ti->ti_urp; 1156 so->so_oobmark = so->so_rcv.sb_cc + 1157 (tp->rcv_up - tp->rcv_nxt) - 1; 1158 if (so->so_oobmark == 0) 1159 so->so_state |= SS_RCVATMARK; 1160 sohasoutofband(so); 1161 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA); 1162 } 1163 /* 1164 * Remove out of band data so doesn't get presented to user. 1165 * This can happen independent of advancing the URG pointer, 1166 * but if two URG's are pending at once, some out-of-band 1167 * data may creep in... ick. 1168 */ 1169 if (ti->ti_urp <= ti->ti_len 1170 #ifdef SO_OOBINLINE 1171 && (so->so_options & SO_OOBINLINE) == 0 1172 #endif 1173 ) 1174 tcp_pulloutofband(so, ti, m); 1175 } else 1176 /* 1177 * If no out of band data is expected, 1178 * pull receive urgent pointer along 1179 * with the receive window. 1180 */ 1181 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) 1182 tp->rcv_up = tp->rcv_nxt; 1183 dodata: /* XXX */ 1184 1185 /* 1186 * Process the segment text, merging it into the TCP sequencing queue, 1187 * and arranging for acknowledgment of receipt if necessary. 1188 * This process logically involves adjusting tp->rcv_wnd as data 1189 * is presented to the user (this happens in tcp_usrreq.c, 1190 * case PRU_RCVD). If a FIN has already been received on this 1191 * connection then we just ignore the text. 1192 */ 1193 if ((ti->ti_len || (tiflags&TH_FIN)) && 1194 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 1195 TCP_REASS(tp, ti, m, so, tiflags); 1196 /* 1197 * Note the amount of data that peer has sent into 1198 * our window, in order to estimate the sender's 1199 * buffer size. 1200 */ 1201 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt); 1202 } else { 1203 m_freem(m); 1204 tiflags &= ~TH_FIN; 1205 } 1206 1207 /* 1208 * If FIN is received ACK the FIN and let the user know 1209 * that the connection is closing. 1210 */ 1211 if (tiflags & TH_FIN) { 1212 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { 1213 socantrcvmore(so); 1214 tp->t_flags |= TF_ACKNOW; 1215 tp->rcv_nxt++; 1216 } 1217 switch (tp->t_state) { 1218 1219 /* 1220 * In SYN_RECEIVED and ESTABLISHED STATES 1221 * enter the CLOSE_WAIT state. 1222 */ 1223 case TCPS_SYN_RECEIVED: 1224 case TCPS_ESTABLISHED: 1225 tp->t_state = TCPS_CLOSE_WAIT; 1226 break; 1227 1228 /* 1229 * If still in FIN_WAIT_1 STATE FIN has not been acked so 1230 * enter the CLOSING state. 1231 */ 1232 case TCPS_FIN_WAIT_1: 1233 tp->t_state = TCPS_CLOSING; 1234 break; 1235 1236 /* 1237 * In FIN_WAIT_2 state enter the TIME_WAIT state, 1238 * starting the time-wait timer, turning off the other 1239 * standard timers. 1240 */ 1241 case TCPS_FIN_WAIT_2: 1242 tp->t_state = TCPS_TIME_WAIT; 1243 tcp_canceltimers(tp); 1244 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; 1245 soisdisconnected(so); 1246 break; 1247 1248 /* 1249 * In TIME_WAIT state restart the 2 MSL time_wait timer. 1250 */ 1251 case TCPS_TIME_WAIT: 1252 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; 1253 break; 1254 } 1255 } 1256 if (so->so_options & SO_DEBUG) 1257 tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0); 1258 1259 /* 1260 * Return any desired output. 1261 */ 1262 if (needoutput || (tp->t_flags & TF_ACKNOW)) 1263 (void) tcp_output(tp); 1264 return; 1265 1266 dropafterack: 1267 /* 1268 * Generate an ACK dropping incoming segment if it occupies 1269 * sequence space, where the ACK reflects our state. 1270 */ 1271 if (tiflags & TH_RST) 1272 goto drop; 1273 m_freem(m); 1274 tp->t_flags |= TF_ACKNOW; 1275 (void) tcp_output(tp); 1276 return; 1277 1278 dropwithreset: 1279 /* 1280 * Generate a RST, dropping incoming segment. 1281 * Make ACK acceptable to originator of segment. 1282 * Don't bother to respond if destination was broadcast/multicast. 1283 */ 1284 if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) || 1285 IN_MULTICAST(ntohl(ti->ti_dst.s_addr))) 1286 goto drop; 1287 if (tiflags & TH_ACK) 1288 tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST); 1289 else { 1290 if (tiflags & TH_SYN) 1291 ti->ti_len++; 1292 tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0, 1293 TH_RST|TH_ACK); 1294 } 1295 /* destroy temporarily created socket */ 1296 if (dropsocket) 1297 (void) soabort(so); 1298 return; 1299 1300 drop: 1301 /* 1302 * Drop space held by incoming segment and return. 1303 */ 1304 if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) 1305 tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0); 1306 m_freem(m); 1307 /* destroy temporarily created socket */ 1308 if (dropsocket) 1309 (void) soabort(so); 1310 return; 1311 #ifndef TUBA_INCLUDE 1312 } 1313 1314 void 1315 tcp_dooptions(tp, cp, cnt, ti, ts_present, ts_val, ts_ecr) 1316 struct tcpcb *tp; 1317 u_char *cp; 1318 int cnt; 1319 struct tcpiphdr *ti; 1320 int *ts_present; 1321 u_int32_t *ts_val, *ts_ecr; 1322 { 1323 u_int16_t mss; 1324 int opt, optlen; 1325 1326 for (; cnt > 0; cnt -= optlen, cp += optlen) { 1327 opt = cp[0]; 1328 if (opt == TCPOPT_EOL) 1329 break; 1330 if (opt == TCPOPT_NOP) 1331 optlen = 1; 1332 else { 1333 optlen = cp[1]; 1334 if (optlen <= 0) 1335 break; 1336 } 1337 switch (opt) { 1338 1339 default: 1340 continue; 1341 1342 case TCPOPT_MAXSEG: 1343 if (optlen != TCPOLEN_MAXSEG) 1344 continue; 1345 if (!(ti->ti_flags & TH_SYN)) 1346 continue; 1347 bcopy((char *) cp + 2, (char *) &mss, sizeof(mss)); 1348 NTOHS(mss); 1349 (void) tcp_mss(tp, mss); /* sets t_maxseg */ 1350 break; 1351 1352 case TCPOPT_WINDOW: 1353 if (optlen != TCPOLEN_WINDOW) 1354 continue; 1355 if (!(ti->ti_flags & TH_SYN)) 1356 continue; 1357 tp->t_flags |= TF_RCVD_SCALE; 1358 tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT); 1359 break; 1360 1361 case TCPOPT_TIMESTAMP: 1362 if (optlen != TCPOLEN_TIMESTAMP) 1363 continue; 1364 *ts_present = 1; 1365 bcopy((char *)cp + 2, (char *) ts_val, sizeof(*ts_val)); 1366 NTOHL(*ts_val); 1367 bcopy((char *)cp + 6, (char *) ts_ecr, sizeof(*ts_ecr)); 1368 NTOHL(*ts_ecr); 1369 1370 /* 1371 * A timestamp received in a SYN makes 1372 * it ok to send timestamp requests and replies. 1373 */ 1374 if (ti->ti_flags & TH_SYN) { 1375 tp->t_flags |= TF_RCVD_TSTMP; 1376 tp->ts_recent = *ts_val; 1377 tp->ts_recent_age = tcp_now; 1378 } 1379 break; 1380 } 1381 } 1382 } 1383 1384 /* 1385 * Pull out of band byte out of a segment so 1386 * it doesn't appear in the user's data queue. 1387 * It is still reflected in the segment length for 1388 * sequencing purposes. 1389 */ 1390 void 1391 tcp_pulloutofband(so, ti, m) 1392 struct socket *so; 1393 struct tcpiphdr *ti; 1394 register struct mbuf *m; 1395 { 1396 int cnt = ti->ti_urp - 1; 1397 1398 while (cnt >= 0) { 1399 if (m->m_len > cnt) { 1400 char *cp = mtod(m, caddr_t) + cnt; 1401 struct tcpcb *tp = sototcpcb(so); 1402 1403 tp->t_iobc = *cp; 1404 tp->t_oobflags |= TCPOOB_HAVEDATA; 1405 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1)); 1406 m->m_len--; 1407 return; 1408 } 1409 cnt -= m->m_len; 1410 m = m->m_next; 1411 if (m == 0) 1412 break; 1413 } 1414 panic("tcp_pulloutofband"); 1415 } 1416 1417 /* 1418 * Collect new round-trip time estimate 1419 * and update averages and current timeout. 1420 */ 1421 void 1422 tcp_xmit_timer(tp, rtt) 1423 register struct tcpcb *tp; 1424 short rtt; 1425 { 1426 register short delta; 1427 1428 tcpstat.tcps_rttupdated++; 1429 if (tp->t_srtt != 0) { 1430 /* 1431 * srtt is stored as fixed point with 3 bits after the 1432 * binary point (i.e., scaled by 8). The following magic 1433 * is equivalent to the smoothing algorithm in rfc793 with 1434 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed 1435 * point). Adjust rtt to origin 0. 1436 */ 1437 delta = rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT); 1438 if ((tp->t_srtt += delta) <= 0) 1439 tp->t_srtt = 1; 1440 /* 1441 * We accumulate a smoothed rtt variance (actually, a 1442 * smoothed mean difference), then set the retransmit 1443 * timer to smoothed rtt + 4 times the smoothed variance. 1444 * rttvar is stored as fixed point with 2 bits after the 1445 * binary point (scaled by 4). The following is 1446 * equivalent to rfc793 smoothing with an alpha of .75 1447 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces 1448 * rfc793's wired-in beta. 1449 */ 1450 if (delta < 0) 1451 delta = -delta; 1452 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT); 1453 if ((tp->t_rttvar += delta) <= 0) 1454 tp->t_rttvar = 1; 1455 } else { 1456 /* 1457 * No rtt measurement yet - use the unsmoothed rtt. 1458 * Set the variance to half the rtt (so our first 1459 * retransmit happens at 3*rtt). 1460 */ 1461 tp->t_srtt = rtt << TCP_RTT_SHIFT; 1462 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1); 1463 } 1464 tp->t_rtt = 0; 1465 tp->t_rxtshift = 0; 1466 1467 /* 1468 * the retransmit should happen at rtt + 4 * rttvar. 1469 * Because of the way we do the smoothing, srtt and rttvar 1470 * will each average +1/2 tick of bias. When we compute 1471 * the retransmit timer, we want 1/2 tick of rounding and 1472 * 1 extra tick because of +-1/2 tick uncertainty in the 1473 * firing of the timer. The bias will give us exactly the 1474 * 1.5 tick we need. But, because the bias is 1475 * statistical, we have to test that we don't drop below 1476 * the minimum feasible timer (which is 2 ticks). 1477 */ 1478 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), 1479 tp->t_rttmin, TCPTV_REXMTMAX); 1480 1481 /* 1482 * We received an ack for a packet that wasn't retransmitted; 1483 * it is probably safe to discard any error indications we've 1484 * received recently. This isn't quite right, but close enough 1485 * for now (a route might have failed after we sent a segment, 1486 * and the return path might not be symmetrical). 1487 */ 1488 tp->t_softerror = 0; 1489 } 1490 1491 /* 1492 * Determine a reasonable value for maxseg size. 1493 * If the route is known, check route for mtu. 1494 * If none, use an mss that can be handled on the outgoing 1495 * interface without forcing IP to fragment; if bigger than 1496 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES 1497 * to utilize large mbufs. If no route is found, route has no mtu, 1498 * or the destination isn't local, use a default, hopefully conservative 1499 * size (usually 512 or the default IP max size, but no more than the mtu 1500 * of the interface), as we can't discover anything about intervening 1501 * gateways or networks. We also initialize the congestion/slow start 1502 * window to be a single segment if the destination isn't local. 1503 * While looking at the routing entry, we also initialize other path-dependent 1504 * parameters from pre-set or cached values in the routing entry. 1505 */ 1506 int 1507 tcp_mss(tp, offer) 1508 register struct tcpcb *tp; 1509 u_int offer; 1510 { 1511 struct route *ro; 1512 register struct rtentry *rt; 1513 struct ifnet *ifp; 1514 register int rtt, mss; 1515 u_long bufsize; 1516 struct inpcb *inp; 1517 struct socket *so; 1518 extern int tcp_mssdflt; 1519 1520 inp = tp->t_inpcb; 1521 ro = &inp->inp_route; 1522 1523 if ((rt = ro->ro_rt) == (struct rtentry *)0) { 1524 /* No route yet, so try to acquire one */ 1525 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1526 ro->ro_dst.sa_family = AF_INET; 1527 ro->ro_dst.sa_len = sizeof(ro->ro_dst); 1528 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr = 1529 inp->inp_faddr; 1530 rtalloc(ro); 1531 } 1532 if ((rt = ro->ro_rt) == (struct rtentry *)0) 1533 return (tcp_mssdflt); 1534 } 1535 ifp = rt->rt_ifp; 1536 so = inp->inp_socket; 1537 1538 #ifdef RTV_MTU /* if route characteristics exist ... */ 1539 /* 1540 * While we're here, check if there's an initial rtt 1541 * or rttvar. Convert from the route-table units 1542 * to scaled multiples of the slow timeout timer. 1543 */ 1544 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) { 1545 /* 1546 * XXX the lock bit for MTU indicates that the value 1547 * is also a minimum value; this is subject to time. 1548 */ 1549 if (rt->rt_rmx.rmx_locks & RTV_RTT) 1550 tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ); 1551 tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE)); 1552 if (rt->rt_rmx.rmx_rttvar) 1553 tp->t_rttvar = rt->rt_rmx.rmx_rttvar / 1554 (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE)); 1555 else 1556 /* default variation is +- 1 rtt */ 1557 tp->t_rttvar = 1558 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE; 1559 TCPT_RANGESET(tp->t_rxtcur, 1560 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1, 1561 tp->t_rttmin, TCPTV_REXMTMAX); 1562 } 1563 /* 1564 * if there's an mtu associated with the route, use it 1565 */ 1566 if (rt->rt_rmx.rmx_mtu) 1567 mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr); 1568 else 1569 #endif /* RTV_MTU */ 1570 { 1571 mss = ifp->if_mtu - sizeof(struct tcpiphdr); 1572 #if (MCLBYTES & (MCLBYTES - 1)) == 0 1573 if (mss > MCLBYTES) 1574 mss &= ~(MCLBYTES-1); 1575 #else 1576 if (mss > MCLBYTES) 1577 mss = mss / MCLBYTES * MCLBYTES; 1578 #endif 1579 if (!in_localaddr(inp->inp_faddr)) 1580 mss = min(mss, tcp_mssdflt); 1581 } 1582 /* 1583 * The current mss, t_maxseg, is initialized to the default value. 1584 * If we compute a smaller value, reduce the current mss. 1585 * If we compute a larger value, return it for use in sending 1586 * a max seg size option, but don't store it for use 1587 * unless we received an offer at least that large from peer. 1588 * However, do not accept offers under 32 bytes. 1589 */ 1590 if (offer) 1591 mss = min(mss, offer); 1592 mss = max(mss, 32); /* sanity */ 1593 if (mss < tp->t_maxseg || offer != 0) { 1594 /* 1595 * If there's a pipesize, change the socket buffer 1596 * to that size. Make the socket buffers an integral 1597 * number of mss units; if the mss is larger than 1598 * the socket buffer, decrease the mss. 1599 */ 1600 #ifdef RTV_SPIPE 1601 if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0) 1602 #endif 1603 bufsize = so->so_snd.sb_hiwat; 1604 if (bufsize < mss) 1605 mss = bufsize; 1606 else { 1607 bufsize = roundup(bufsize, mss); 1608 if (bufsize > sb_max) 1609 bufsize = sb_max; 1610 (void)sbreserve(&so->so_snd, bufsize); 1611 } 1612 tp->t_maxseg = mss; 1613 1614 #ifdef RTV_RPIPE 1615 if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0) 1616 #endif 1617 bufsize = so->so_rcv.sb_hiwat; 1618 if (bufsize > mss) { 1619 bufsize = roundup(bufsize, mss); 1620 if (bufsize > sb_max) 1621 bufsize = sb_max; 1622 (void)sbreserve(&so->so_rcv, bufsize); 1623 } 1624 } 1625 tp->snd_cwnd = mss; 1626 1627 #ifdef RTV_SSTHRESH 1628 if (rt->rt_rmx.rmx_ssthresh) { 1629 /* 1630 * There's some sort of gateway or interface 1631 * buffer limit on the path. Use this to set 1632 * the slow start threshhold, but set the 1633 * threshold to no less than 2*mss. 1634 */ 1635 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh); 1636 } 1637 #endif /* RTV_MTU */ 1638 return (mss); 1639 } 1640 #endif /* TUBA_INCLUDE */ 1641