xref: /netbsd-src/sys/netinet/tcp_input.c (revision c42dbd0ed2e61fe6eda8590caa852ccf34719964)
1 /*	$NetBSD: tcp_input.c,v 1.439 2024/06/29 12:59:08 riastradh Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74  * 2011 The NetBSD Foundation, Inc.
75  * All rights reserved.
76  *
77  * This code is derived from software contributed to The NetBSD Foundation
78  * by Coyote Point Systems, Inc.
79  * This code is derived from software contributed to The NetBSD Foundation
80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81  * Facility, NASA Ames Research Center.
82  * This code is derived from software contributed to The NetBSD Foundation
83  * by Charles M. Hannum.
84  * This code is derived from software contributed to The NetBSD Foundation
85  * by Rui Paulo.
86  *
87  * Redistribution and use in source and binary forms, with or without
88  * modification, are permitted provided that the following conditions
89  * are met:
90  * 1. Redistributions of source code must retain the above copyright
91  *    notice, this list of conditions and the following disclaimer.
92  * 2. Redistributions in binary form must reproduce the above copyright
93  *    notice, this list of conditions and the following disclaimer in the
94  *    documentation and/or other materials provided with the distribution.
95  *
96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106  * POSSIBILITY OF SUCH DAMAGE.
107  */
108 
109 /*
110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111  *	The Regents of the University of California.  All rights reserved.
112  *
113  * Redistribution and use in source and binary forms, with or without
114  * modification, are permitted provided that the following conditions
115  * are met:
116  * 1. Redistributions of source code must retain the above copyright
117  *    notice, this list of conditions and the following disclaimer.
118  * 2. Redistributions in binary form must reproduce the above copyright
119  *    notice, this list of conditions and the following disclaimer in the
120  *    documentation and/or other materials provided with the distribution.
121  * 3. Neither the name of the University nor the names of its contributors
122  *    may be used to endorse or promote products derived from this software
123  *    without specific prior written permission.
124  *
125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135  * SUCH DAMAGE.
136  *
137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
138  */
139 
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.439 2024/06/29 12:59:08 riastradh Exp $");
142 
143 #ifdef _KERNEL_OPT
144 #include "opt_inet.h"
145 #include "opt_ipsec.h"
146 #include "opt_inet_csum.h"
147 #include "opt_tcp_debug.h"
148 #endif
149 
150 #include <sys/param.h>
151 #include <sys/systm.h>
152 #include <sys/malloc.h>
153 #include <sys/mbuf.h>
154 #include <sys/protosw.h>
155 #include <sys/socket.h>
156 #include <sys/socketvar.h>
157 #include <sys/errno.h>
158 #include <sys/syslog.h>
159 #include <sys/pool.h>
160 #include <sys/domain.h>
161 #include <sys/kernel.h>
162 #ifdef TCP_SIGNATURE
163 #include <sys/md5.h>
164 #endif
165 #include <sys/lwp.h> /* for lwp0 */
166 #include <sys/cprng.h>
167 
168 #include <net/if.h>
169 #include <net/if_types.h>
170 
171 #include <netinet/in.h>
172 #include <netinet/in_systm.h>
173 #include <netinet/ip.h>
174 #include <netinet/in_pcb.h>
175 #include <netinet/in_var.h>
176 #include <netinet/ip_var.h>
177 #include <netinet/in_offload.h>
178 
179 #if NARP > 0
180 #include <netinet/if_inarp.h>
181 #endif
182 #ifdef INET6
183 #include <netinet/ip6.h>
184 #include <netinet6/ip6_var.h>
185 #include <netinet6/in6_pcb.h>
186 #include <netinet6/ip6_var.h>
187 #include <netinet6/in6_var.h>
188 #include <netinet/icmp6.h>
189 #include <netinet6/nd6.h>
190 #ifdef TCP_SIGNATURE
191 #include <netinet6/scope6_var.h>
192 #endif
193 #endif
194 
195 #ifndef INET6
196 #include <netinet/ip6.h>
197 #endif
198 
199 #include <netinet/tcp.h>
200 #include <netinet/tcp_fsm.h>
201 #include <netinet/tcp_seq.h>
202 #include <netinet/tcp_timer.h>
203 #include <netinet/tcp_var.h>
204 #include <netinet/tcp_private.h>
205 #include <netinet/tcp_congctl.h>
206 #include <netinet/tcp_debug.h>
207 #include <netinet/tcp_syncache.h>
208 
209 #ifdef INET6
210 #include "faith.h"
211 #if defined(NFAITH) && NFAITH > 0
212 #include <net/if_faith.h>
213 #endif
214 #endif
215 
216 #ifdef IPSEC
217 #include <netipsec/ipsec.h>
218 #include <netipsec/key.h>
219 #ifdef INET6
220 #include <netipsec/ipsec6.h>
221 #endif
222 #endif	/* IPSEC*/
223 
224 #include <netinet/tcp_vtw.h>
225 
226 int	tcprexmtthresh = 3;
227 int	tcp_log_refused;
228 
229 int	tcp_do_autorcvbuf = 1;
230 int	tcp_autorcvbuf_inc = 16 * 1024;
231 int	tcp_autorcvbuf_max = 256 * 1024;
232 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
233 
234 static int tcp_rst_ppslim_count = 0;
235 static struct timeval tcp_rst_ppslim_last;
236 static int tcp_ackdrop_ppslim_count = 0;
237 static struct timeval tcp_ackdrop_ppslim_last;
238 
239 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
240 
241 /* for modulo comparisons of timestamps */
242 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
243 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
244 
245 /*
246  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
247  */
248 static void
249 nd_hint(struct tcpcb *tp)
250 {
251 	struct route *ro = NULL;
252 	struct rtentry *rt;
253 
254 	if (tp == NULL)
255 		return;
256 
257 	ro = &tp->t_inpcb->inp_route;
258 	if (ro == NULL)
259 		return;
260 
261 	rt = rtcache_validate(ro);
262 	if (rt == NULL)
263 		return;
264 
265 	switch (tp->t_family) {
266 #if NARP > 0
267 	case AF_INET:
268 		arp_nud_hint(rt);
269 		break;
270 #endif
271 #ifdef INET6
272 	case AF_INET6:
273 		nd6_nud_hint(rt);
274 		break;
275 #endif
276 	}
277 
278 	rtcache_unref(rt, ro);
279 }
280 
281 /*
282  * Compute ACK transmission behavior.  Delay the ACK unless
283  * we have already delayed an ACK (must send an ACK every two segments).
284  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
285  * option is enabled.
286  */
287 static void
288 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
289 {
290 
291 	if (tp->t_flags & TF_DELACK ||
292 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
293 		tp->t_flags |= TF_ACKNOW;
294 	else
295 		TCP_SET_DELACK(tp);
296 }
297 
298 static void
299 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
300 {
301 
302 	/*
303 	 * If we had a pending ICMP message that refers to data that have
304 	 * just been acknowledged, disregard the recorded ICMP message.
305 	 */
306 	if ((tp->t_flags & TF_PMTUD_PEND) &&
307 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
308 		tp->t_flags &= ~TF_PMTUD_PEND;
309 
310 	/*
311 	 * Keep track of the largest chunk of data
312 	 * acknowledged since last PMTU update
313 	 */
314 	if (tp->t_pmtud_mss_acked < acked)
315 		tp->t_pmtud_mss_acked = acked;
316 }
317 
318 /*
319  * Convert TCP protocol fields to host order for easier processing.
320  */
321 static void
322 tcp_fields_to_host(struct tcphdr *th)
323 {
324 
325 	NTOHL(th->th_seq);
326 	NTOHL(th->th_ack);
327 	NTOHS(th->th_win);
328 	NTOHS(th->th_urp);
329 }
330 
331 /*
332  * ... and reverse the above.
333  */
334 static void
335 tcp_fields_to_net(struct tcphdr *th)
336 {
337 
338 	HTONL(th->th_seq);
339 	HTONL(th->th_ack);
340 	HTONS(th->th_win);
341 	HTONS(th->th_urp);
342 }
343 
344 static void
345 tcp_urp_drop(struct tcphdr *th, int todrop, int *tiflags)
346 {
347 	if (th->th_urp > todrop) {
348 		th->th_urp -= todrop;
349 	} else {
350 		*tiflags &= ~TH_URG;
351 		th->th_urp = 0;
352 	}
353 }
354 
355 #ifdef TCP_CSUM_COUNTERS
356 #include <sys/device.h>
357 
358 extern struct evcnt tcp_hwcsum_ok;
359 extern struct evcnt tcp_hwcsum_bad;
360 extern struct evcnt tcp_hwcsum_data;
361 extern struct evcnt tcp_swcsum;
362 #if defined(INET6)
363 extern struct evcnt tcp6_hwcsum_ok;
364 extern struct evcnt tcp6_hwcsum_bad;
365 extern struct evcnt tcp6_hwcsum_data;
366 extern struct evcnt tcp6_swcsum;
367 #endif /* defined(INET6) */
368 
369 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
370 
371 #else
372 
373 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
374 
375 #endif /* TCP_CSUM_COUNTERS */
376 
377 #ifdef TCP_REASS_COUNTERS
378 #include <sys/device.h>
379 
380 extern struct evcnt tcp_reass_;
381 extern struct evcnt tcp_reass_empty;
382 extern struct evcnt tcp_reass_iteration[8];
383 extern struct evcnt tcp_reass_prependfirst;
384 extern struct evcnt tcp_reass_prepend;
385 extern struct evcnt tcp_reass_insert;
386 extern struct evcnt tcp_reass_inserttail;
387 extern struct evcnt tcp_reass_append;
388 extern struct evcnt tcp_reass_appendtail;
389 extern struct evcnt tcp_reass_overlaptail;
390 extern struct evcnt tcp_reass_overlapfront;
391 extern struct evcnt tcp_reass_segdup;
392 extern struct evcnt tcp_reass_fragdup;
393 
394 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
395 
396 #else
397 
398 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
399 
400 #endif /* TCP_REASS_COUNTERS */
401 
402 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
403     int);
404 
405 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
406 #ifdef INET6
407 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
408 #endif
409 
410 #if defined(MBUFTRACE)
411 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
412 #endif /* defined(MBUFTRACE) */
413 
414 static struct pool tcpipqent_pool;
415 
416 void
417 tcpipqent_init(void)
418 {
419 
420 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
421 	    NULL, IPL_VM);
422 }
423 
424 struct ipqent *
425 tcpipqent_alloc(void)
426 {
427 	struct ipqent *ipqe;
428 	int s;
429 
430 	s = splvm();
431 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
432 	splx(s);
433 
434 	return ipqe;
435 }
436 
437 void
438 tcpipqent_free(struct ipqent *ipqe)
439 {
440 	int s;
441 
442 	s = splvm();
443 	pool_put(&tcpipqent_pool, ipqe);
444 	splx(s);
445 }
446 
447 /*
448  * Insert segment ti into reassembly queue of tcp with
449  * control block tp.  Return TH_FIN if reassembly now includes
450  * a segment with FIN.
451  */
452 static int
453 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int tlen)
454 {
455 	struct ipqent *p, *q, *nq, *tiqe = NULL;
456 	struct socket *so = NULL;
457 	int pkt_flags;
458 	tcp_seq pkt_seq;
459 	unsigned pkt_len;
460 	u_long rcvpartdupbyte = 0;
461 	u_long rcvoobyte;
462 #ifdef TCP_REASS_COUNTERS
463 	u_int count = 0;
464 #endif
465 	net_stat_ref_t tcps;
466 
467 	so = tp->t_inpcb->inp_socket;
468 
469 	TCP_REASS_LOCK_CHECK(tp);
470 
471 	/*
472 	 * Call with th==NULL after become established to
473 	 * force pre-ESTABLISHED data up to user socket.
474 	 */
475 	if (th == NULL)
476 		goto present;
477 
478 	m_claimm(m, &tcp_reass_mowner);
479 
480 	rcvoobyte = tlen;
481 	/*
482 	 * Copy these to local variables because the TCP header gets munged
483 	 * while we are collapsing mbufs.
484 	 */
485 	pkt_seq = th->th_seq;
486 	pkt_len = tlen;
487 	pkt_flags = th->th_flags;
488 
489 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
490 
491 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
492 		/*
493 		 * When we miss a packet, the vast majority of time we get
494 		 * packets that follow it in order.  So optimize for that.
495 		 */
496 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
497 			p->ipqe_len += pkt_len;
498 			p->ipqe_flags |= pkt_flags;
499 			m_cat(p->ipqe_m, m);
500 			m = NULL;
501 			tiqe = p;
502 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
503 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
504 			goto skip_replacement;
505 		}
506 		/*
507 		 * While we're here, if the pkt is completely beyond
508 		 * anything we have, just insert it at the tail.
509 		 */
510 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
511 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
512 			goto insert_it;
513 		}
514 	}
515 
516 	q = TAILQ_FIRST(&tp->segq);
517 
518 	if (q != NULL) {
519 		/*
520 		 * If this segment immediately precedes the first out-of-order
521 		 * block, simply slap the segment in front of it and (mostly)
522 		 * skip the complicated logic.
523 		 */
524 		if (pkt_seq + pkt_len == q->ipqe_seq) {
525 			q->ipqe_seq = pkt_seq;
526 			q->ipqe_len += pkt_len;
527 			q->ipqe_flags |= pkt_flags;
528 			m_cat(m, q->ipqe_m);
529 			q->ipqe_m = m;
530 			tiqe = q;
531 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
532 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
533 			goto skip_replacement;
534 		}
535 	} else {
536 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
537 	}
538 
539 	/*
540 	 * Find a segment which begins after this one does.
541 	 */
542 	for (p = NULL; q != NULL; q = nq) {
543 		nq = TAILQ_NEXT(q, ipqe_q);
544 #ifdef TCP_REASS_COUNTERS
545 		count++;
546 #endif
547 
548 		/*
549 		 * If the received segment is just right after this
550 		 * fragment, merge the two together and then check
551 		 * for further overlaps.
552 		 */
553 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
554 			pkt_len += q->ipqe_len;
555 			pkt_flags |= q->ipqe_flags;
556 			pkt_seq = q->ipqe_seq;
557 			m_cat(q->ipqe_m, m);
558 			m = q->ipqe_m;
559 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
560 			goto free_ipqe;
561 		}
562 
563 		/*
564 		 * If the received segment is completely past this
565 		 * fragment, we need to go to the next fragment.
566 		 */
567 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
568 			p = q;
569 			continue;
570 		}
571 
572 		/*
573 		 * If the fragment is past the received segment,
574 		 * it (or any following) can't be concatenated.
575 		 */
576 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
577 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
578 			break;
579 		}
580 
581 		/*
582 		 * We've received all the data in this segment before.
583 		 * Mark it as a duplicate and return.
584 		 */
585 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
586 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
587 			tcps = TCP_STAT_GETREF();
588 			_NET_STATINC_REF(tcps, TCP_STAT_RCVDUPPACK);
589 			_NET_STATADD_REF(tcps, TCP_STAT_RCVDUPBYTE, pkt_len);
590 			TCP_STAT_PUTREF();
591 			tcp_new_dsack(tp, pkt_seq, pkt_len);
592 			m_freem(m);
593 			if (tiqe != NULL) {
594 				tcpipqent_free(tiqe);
595 			}
596 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
597 			goto out;
598 		}
599 
600 		/*
601 		 * Received segment completely overlaps this fragment
602 		 * so we drop the fragment (this keeps the temporal
603 		 * ordering of segments correct).
604 		 */
605 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
606 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
607 			rcvpartdupbyte += q->ipqe_len;
608 			m_freem(q->ipqe_m);
609 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
610 			goto free_ipqe;
611 		}
612 
613 		/*
614 		 * Received segment extends past the end of the fragment.
615 		 * Drop the overlapping bytes, merge the fragment and
616 		 * segment, and treat as a longer received packet.
617 		 */
618 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
619 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
620 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
621 			m_adj(m, overlap);
622 			rcvpartdupbyte += overlap;
623 			m_cat(q->ipqe_m, m);
624 			m = q->ipqe_m;
625 			pkt_seq = q->ipqe_seq;
626 			pkt_len += q->ipqe_len - overlap;
627 			rcvoobyte -= overlap;
628 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
629 			goto free_ipqe;
630 		}
631 
632 		/*
633 		 * Received segment extends past the front of the fragment.
634 		 * Drop the overlapping bytes on the received packet. The
635 		 * packet will then be concatenated with this fragment a
636 		 * bit later.
637 		 */
638 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
639 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
640 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
641 			m_adj(m, -overlap);
642 			pkt_len -= overlap;
643 			rcvpartdupbyte += overlap;
644 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
645 			rcvoobyte -= overlap;
646 		}
647 
648 		/*
649 		 * If the received segment immediately precedes this
650 		 * fragment then tack the fragment onto this segment
651 		 * and reinsert the data.
652 		 */
653 		if (q->ipqe_seq == pkt_seq + pkt_len) {
654 			pkt_len += q->ipqe_len;
655 			pkt_flags |= q->ipqe_flags;
656 			m_cat(m, q->ipqe_m);
657 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
658 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
659 			tp->t_segqlen--;
660 			KASSERT(tp->t_segqlen >= 0);
661 			KASSERT(tp->t_segqlen != 0 ||
662 			    (TAILQ_EMPTY(&tp->segq) &&
663 			    TAILQ_EMPTY(&tp->timeq)));
664 			if (tiqe == NULL) {
665 				tiqe = q;
666 			} else {
667 				tcpipqent_free(q);
668 			}
669 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
670 			break;
671 		}
672 
673 		/*
674 		 * If the fragment is before the segment, remember it.
675 		 * When this loop is terminated, p will contain the
676 		 * pointer to the fragment that is right before the
677 		 * received segment.
678 		 */
679 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
680 			p = q;
681 
682 		continue;
683 
684 		/*
685 		 * This is a common operation.  It also will allow
686 		 * to save doing a malloc/free in most instances.
687 		 */
688 	  free_ipqe:
689 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
690 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
691 		tp->t_segqlen--;
692 		KASSERT(tp->t_segqlen >= 0);
693 		KASSERT(tp->t_segqlen != 0 ||
694 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
695 		if (tiqe == NULL) {
696 			tiqe = q;
697 		} else {
698 			tcpipqent_free(q);
699 		}
700 	}
701 
702 #ifdef TCP_REASS_COUNTERS
703 	if (count > 7)
704 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
705 	else if (count > 0)
706 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
707 #endif
708 
709 insert_it:
710 	/*
711 	 * Allocate a new queue entry (block) since the received segment
712 	 * did not collapse onto any other out-of-order block. If it had
713 	 * collapsed, tiqe would not be NULL and we would be reusing it.
714 	 *
715 	 * If the allocation fails, drop the packet.
716 	 */
717 	if (tiqe == NULL) {
718 		tiqe = tcpipqent_alloc();
719 		if (tiqe == NULL) {
720 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
721 			m_freem(m);
722 			goto out;
723 		}
724 	}
725 
726 	/*
727 	 * Update the counters.
728 	 */
729 	tp->t_rcvoopack++;
730 	tcps = TCP_STAT_GETREF();
731 	_NET_STATINC_REF(tcps, TCP_STAT_RCVOOPACK);
732 	_NET_STATADD_REF(tcps, TCP_STAT_RCVOOBYTE, rcvoobyte);
733 	if (rcvpartdupbyte) {
734 		_NET_STATINC_REF(tcps, TCP_STAT_RCVPARTDUPPACK);
735 		_NET_STATADD_REF(tcps, TCP_STAT_RCVPARTDUPBYTE,
736 		    rcvpartdupbyte);
737 	}
738 	TCP_STAT_PUTREF();
739 
740 	/*
741 	 * Insert the new fragment queue entry into both queues.
742 	 */
743 	tiqe->ipqe_m = m;
744 	tiqe->ipqe_seq = pkt_seq;
745 	tiqe->ipqe_len = pkt_len;
746 	tiqe->ipqe_flags = pkt_flags;
747 	if (p == NULL) {
748 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
749 	} else {
750 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
751 	}
752 	tp->t_segqlen++;
753 
754 skip_replacement:
755 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
756 
757 present:
758 	/*
759 	 * Present data to user, advancing rcv_nxt through
760 	 * completed sequence space.
761 	 */
762 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
763 		goto out;
764 	q = TAILQ_FIRST(&tp->segq);
765 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
766 		goto out;
767 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
768 		goto out;
769 
770 	tp->rcv_nxt += q->ipqe_len;
771 	pkt_flags = q->ipqe_flags & TH_FIN;
772 	nd_hint(tp);
773 
774 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
775 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
776 	tp->t_segqlen--;
777 	KASSERT(tp->t_segqlen >= 0);
778 	KASSERT(tp->t_segqlen != 0 ||
779 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
780 	if (so->so_state & SS_CANTRCVMORE)
781 		m_freem(q->ipqe_m);
782 	else
783 		sbappendstream(&so->so_rcv, q->ipqe_m);
784 	tcpipqent_free(q);
785 	TCP_REASS_UNLOCK(tp);
786 	sorwakeup(so);
787 	return pkt_flags;
788 
789 out:
790 	TCP_REASS_UNLOCK(tp);
791 	return 0;
792 }
793 
794 #ifdef INET6
795 int
796 tcp6_input(struct mbuf **mp, int *offp, int proto)
797 {
798 	struct mbuf *m = *mp;
799 
800 	/*
801 	 * draft-itojun-ipv6-tcp-to-anycast
802 	 * better place to put this in?
803 	 */
804 	if (m->m_flags & M_ANYCAST6) {
805 		struct ip6_hdr *ip6;
806 		if (m->m_len < sizeof(struct ip6_hdr)) {
807 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
808 				TCP_STATINC(TCP_STAT_RCVSHORT);
809 				return IPPROTO_DONE;
810 			}
811 		}
812 		ip6 = mtod(m, struct ip6_hdr *);
813 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
814 		    (char *)&ip6->ip6_dst - (char *)ip6);
815 		return IPPROTO_DONE;
816 	}
817 
818 	tcp_input(m, *offp, proto);
819 	return IPPROTO_DONE;
820 }
821 #endif
822 
823 static void
824 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
825 {
826 	char src[INET_ADDRSTRLEN];
827 	char dst[INET_ADDRSTRLEN];
828 
829 	if (ip) {
830 		in_print(src, sizeof(src), &ip->ip_src);
831 		in_print(dst, sizeof(dst), &ip->ip_dst);
832 	} else {
833 		strlcpy(src, "(unknown)", sizeof(src));
834 		strlcpy(dst, "(unknown)", sizeof(dst));
835 	}
836 	log(LOG_INFO,
837 	    "Connection attempt to TCP %s:%d from %s:%d\n",
838 	    dst, ntohs(th->th_dport),
839 	    src, ntohs(th->th_sport));
840 }
841 
842 #ifdef INET6
843 static void
844 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
845 {
846 	char src[INET6_ADDRSTRLEN];
847 	char dst[INET6_ADDRSTRLEN];
848 
849 	if (ip6) {
850 		in6_print(src, sizeof(src), &ip6->ip6_src);
851 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
852 	} else {
853 		strlcpy(src, "(unknown v6)", sizeof(src));
854 		strlcpy(dst, "(unknown v6)", sizeof(dst));
855 	}
856 	log(LOG_INFO,
857 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
858 	    dst, ntohs(th->th_dport),
859 	    src, ntohs(th->th_sport));
860 }
861 #endif
862 
863 /*
864  * Checksum extended TCP header and data.
865  */
866 int
867 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
868     int toff, int off, int tlen)
869 {
870 	struct ifnet *rcvif;
871 	int s;
872 
873 	/*
874 	 * XXX it's better to record and check if this mbuf is
875 	 * already checked.
876 	 */
877 
878 	rcvif = m_get_rcvif(m, &s);
879 	if (__predict_false(rcvif == NULL))
880 		goto badcsum; /* XXX */
881 
882 	switch (af) {
883 	case AF_INET:
884 		switch (m->m_pkthdr.csum_flags &
885 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
886 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
887 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
888 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
889 			goto badcsum;
890 
891 		case M_CSUM_TCPv4|M_CSUM_DATA: {
892 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
893 
894 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
895 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
896 				const struct ip *ip =
897 				    mtod(m, const struct ip *);
898 
899 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
900 				    ip->ip_dst.s_addr,
901 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
902 			}
903 			if ((hw_csum ^ 0xffff) != 0)
904 				goto badcsum;
905 			break;
906 		}
907 
908 		case M_CSUM_TCPv4:
909 			/* Checksum was okay. */
910 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
911 			break;
912 
913 		default:
914 			/*
915 			 * Must compute it ourselves.  Maybe skip checksum
916 			 * on loopback interfaces.
917 			 */
918 			if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
919 					   tcp_do_loopback_cksum)) {
920 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
921 				if (in4_cksum(m, IPPROTO_TCP, toff,
922 					      tlen + off) != 0)
923 					goto badcsum;
924 			}
925 			break;
926 		}
927 		break;
928 
929 #ifdef INET6
930 	case AF_INET6:
931 		switch (m->m_pkthdr.csum_flags &
932 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
933 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
934 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
935 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
936 			goto badcsum;
937 
938 #if 0 /* notyet */
939 		case M_CSUM_TCPv6|M_CSUM_DATA:
940 #endif
941 
942 		case M_CSUM_TCPv6:
943 			/* Checksum was okay. */
944 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
945 			break;
946 
947 		default:
948 			/*
949 			 * Must compute it ourselves.  Maybe skip checksum
950 			 * on loopback interfaces.
951 			 */
952 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
953 			    tcp_do_loopback_cksum)) {
954 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
955 				if (in6_cksum(m, IPPROTO_TCP, toff,
956 				    tlen + off) != 0)
957 					goto badcsum;
958 			}
959 		}
960 		break;
961 #endif /* INET6 */
962 	}
963 	m_put_rcvif(rcvif, &s);
964 
965 	return 0;
966 
967 badcsum:
968 	m_put_rcvif(rcvif, &s);
969 	TCP_STATINC(TCP_STAT_RCVBADSUM);
970 	return -1;
971 }
972 
973 /*
974  * When a packet arrives addressed to a vestigial tcpbp, we
975  * nevertheless have to respond to it per the spec.
976  *
977  * This code is duplicated from the one in tcp_input().
978  */
979 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
980     struct mbuf *m, int tlen)
981 {
982 	int tiflags;
983 	int todrop;
984 	uint32_t t_flags = 0;
985 	net_stat_ref_t tcps;
986 
987 	tiflags = th->th_flags;
988 	todrop  = vp->rcv_nxt - th->th_seq;
989 
990 	if (todrop > 0) {
991 		if (tiflags & TH_SYN) {
992 			tiflags &= ~TH_SYN;
993 			th->th_seq++;
994 			tcp_urp_drop(th, 1, &tiflags);
995 			todrop--;
996 		}
997 		if (todrop > tlen ||
998 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
999 			/*
1000 			 * Any valid FIN or RST must be to the left of the
1001 			 * window.  At this point the FIN or RST must be a
1002 			 * duplicate or out of sequence; drop it.
1003 			 */
1004 			if (tiflags & TH_RST)
1005 				goto drop;
1006 			tiflags &= ~(TH_FIN|TH_RST);
1007 
1008 			/*
1009 			 * Send an ACK to resynchronize and drop any data.
1010 			 * But keep on processing for RST or ACK.
1011 			 */
1012 			t_flags |= TF_ACKNOW;
1013 			todrop = tlen;
1014 			tcps = TCP_STAT_GETREF();
1015 			_NET_STATINC_REF(tcps, TCP_STAT_RCVDUPPACK);
1016 			_NET_STATADD_REF(tcps, TCP_STAT_RCVDUPBYTE, todrop);
1017 			TCP_STAT_PUTREF();
1018 		} else if ((tiflags & TH_RST) &&
1019 		    th->th_seq != vp->rcv_nxt) {
1020 			/*
1021 			 * Test for reset before adjusting the sequence
1022 			 * number for overlapping data.
1023 			 */
1024 			goto dropafterack_ratelim;
1025 		} else {
1026 			tcps = TCP_STAT_GETREF();
1027 			_NET_STATINC_REF(tcps, TCP_STAT_RCVPARTDUPPACK);
1028 			_NET_STATADD_REF(tcps, TCP_STAT_RCVPARTDUPBYTE,
1029 			    todrop);
1030 			TCP_STAT_PUTREF();
1031 		}
1032 
1033 //		tcp_new_dsack(tp, th->th_seq, todrop);
1034 //		hdroptlen += todrop;	/*drop from head afterwards*/
1035 
1036 		th->th_seq += todrop;
1037 		tlen -= todrop;
1038 		tcp_urp_drop(th, todrop, &tiflags);
1039 	}
1040 
1041 	/*
1042 	 * If new data are received on a connection after the
1043 	 * user processes are gone, then RST the other end.
1044 	 */
1045 	if (tlen) {
1046 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1047 		goto dropwithreset;
1048 	}
1049 
1050 	/*
1051 	 * If segment ends after window, drop trailing data
1052 	 * (and PUSH and FIN); if nothing left, just ACK.
1053 	 */
1054 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt + vp->rcv_wnd);
1055 
1056 	if (todrop > 0) {
1057 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1058 		if (todrop >= tlen) {
1059 			/*
1060 			 * The segment actually starts after the window.
1061 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1062 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1063 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1064 			 */
1065 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1066 
1067 			/*
1068 			 * If a new connection request is received
1069 			 * while in TIME_WAIT, drop the old connection
1070 			 * and start over if the sequence numbers
1071 			 * are above the previous ones.
1072 			 */
1073 			if ((tiflags & TH_SYN) &&
1074 			    SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1075 				/*
1076 				 * We only support this in the !NOFDREF case, which
1077 				 * is to say: not here.
1078 				 */
1079 				goto dropwithreset;
1080 			}
1081 
1082 			/*
1083 			 * If window is closed can only take segments at
1084 			 * window edge, and have to drop data and PUSH from
1085 			 * incoming segments.  Continue processing, but
1086 			 * remember to ack.  Otherwise, drop segment
1087 			 * and (if not RST) ack.
1088 			 */
1089 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1090 				t_flags |= TF_ACKNOW;
1091 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
1092 			} else {
1093 				goto dropafterack;
1094 			}
1095 		} else {
1096 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1097 		}
1098 		m_adj(m, -todrop);
1099 		tlen -= todrop;
1100 		tiflags &= ~(TH_PUSH|TH_FIN);
1101 	}
1102 
1103 	if (tiflags & TH_RST) {
1104 		if (th->th_seq != vp->rcv_nxt)
1105 			goto dropafterack_ratelim;
1106 
1107 		vtw_del(vp->ctl, vp->vtw);
1108 		goto drop;
1109 	}
1110 
1111 	/*
1112 	 * If the ACK bit is off we drop the segment and return.
1113 	 */
1114 	if ((tiflags & TH_ACK) == 0) {
1115 		if (t_flags & TF_ACKNOW)
1116 			goto dropafterack;
1117 		goto drop;
1118 	}
1119 
1120 	/*
1121 	 * In TIME_WAIT state the only thing that should arrive
1122 	 * is a retransmission of the remote FIN.  Acknowledge
1123 	 * it and restart the finack timer.
1124 	 */
1125 	vtw_restart(vp);
1126 	goto dropafterack;
1127 
1128 dropafterack:
1129 	/*
1130 	 * Generate an ACK dropping incoming segment if it occupies
1131 	 * sequence space, where the ACK reflects our state.
1132 	 */
1133 	if (tiflags & TH_RST)
1134 		goto drop;
1135 	goto dropafterack2;
1136 
1137 dropafterack_ratelim:
1138 	/*
1139 	 * We may want to rate-limit ACKs against SYN/RST attack.
1140 	 */
1141 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1142 	    tcp_ackdrop_ppslim) == 0) {
1143 		/* XXX stat */
1144 		goto drop;
1145 	}
1146 	/* ...fall into dropafterack2... */
1147 
1148 dropafterack2:
1149 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack, TH_ACK);
1150 	return;
1151 
1152 dropwithreset:
1153 	/*
1154 	 * Generate a RST, dropping incoming segment.
1155 	 * Make ACK acceptable to originator of segment.
1156 	 */
1157 	if (tiflags & TH_RST)
1158 		goto drop;
1159 
1160 	if (tiflags & TH_ACK) {
1161 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1162 	} else {
1163 		if (tiflags & TH_SYN)
1164 			++tlen;
1165 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1166 		    TH_RST|TH_ACK);
1167 	}
1168 	return;
1169 drop:
1170 	m_freem(m);
1171 }
1172 
1173 /*
1174  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1175  */
1176 void
1177 tcp_input(struct mbuf *m, int off, int proto)
1178 {
1179 	struct tcphdr *th;
1180 	struct ip *ip;
1181 	struct inpcb *inp;
1182 #ifdef INET6
1183 	struct ip6_hdr *ip6;
1184 #endif
1185 	u_int8_t *optp = NULL;
1186 	int optlen = 0;
1187 	int len, tlen, hdroptlen = 0;
1188 	struct tcpcb *tp = NULL;
1189 	int tiflags;
1190 	struct socket *so = NULL;
1191 	int todrop, acked, ourfinisacked, needoutput = 0;
1192 	bool dupseg;
1193 #ifdef TCP_DEBUG
1194 	short ostate = 0;
1195 #endif
1196 	u_long tiwin;
1197 	struct tcp_opt_info opti;
1198 	int thlen, iphlen;
1199 	int af;		/* af on the wire */
1200 	struct mbuf *tcp_saveti = NULL;
1201 	uint32_t ts_rtt;
1202 	uint8_t iptos;
1203 	net_stat_ref_t tcps;
1204 	vestigial_inpcb_t vestige;
1205 
1206 	vestige.valid = 0;
1207 
1208 	MCLAIM(m, &tcp_rx_mowner);
1209 
1210 	TCP_STATINC(TCP_STAT_RCVTOTAL);
1211 
1212 	memset(&opti, 0, sizeof(opti));
1213 	opti.ts_present = 0;
1214 	opti.maxseg = 0;
1215 
1216 	/*
1217 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1218 	 *
1219 	 * TCP is, by definition, unicast, so we reject all
1220 	 * multicast outright.
1221 	 *
1222 	 * Note, there are additional src/dst address checks in
1223 	 * the AF-specific code below.
1224 	 */
1225 	if (m->m_flags & (M_BCAST|M_MCAST)) {
1226 		/* XXX stat */
1227 		goto drop;
1228 	}
1229 #ifdef INET6
1230 	if (m->m_flags & M_ANYCAST6) {
1231 		/* XXX stat */
1232 		goto drop;
1233 	}
1234 #endif
1235 
1236 	M_REGION_GET(th, struct tcphdr *, m, off, sizeof(struct tcphdr));
1237 	if (th == NULL) {
1238 		TCP_STATINC(TCP_STAT_RCVSHORT);
1239 		return;
1240 	}
1241 
1242 	/*
1243 	 * Enforce alignment requirements that are violated in
1244 	 * some cases, see kern/50766 for details.
1245 	 */
1246 	if (ACCESSIBLE_POINTER(th, struct tcphdr) == 0) {
1247 		m = m_copyup(m, off + sizeof(struct tcphdr), 0);
1248 		if (m == NULL) {
1249 			TCP_STATINC(TCP_STAT_RCVSHORT);
1250 			return;
1251 		}
1252 		th = (struct tcphdr *)(mtod(m, char *) + off);
1253 	}
1254 	KASSERT(ACCESSIBLE_POINTER(th, struct tcphdr));
1255 
1256 	/*
1257 	 * Get IP and TCP header.
1258 	 * Note: IP leaves IP header in first mbuf.
1259 	 */
1260 	ip = mtod(m, struct ip *);
1261 #ifdef INET6
1262 	ip6 = mtod(m, struct ip6_hdr *);
1263 #endif
1264 	switch (ip->ip_v) {
1265 	case 4:
1266 		af = AF_INET;
1267 		iphlen = sizeof(struct ip);
1268 
1269 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1270 		    in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
1271 			goto drop;
1272 
1273 		/* We do the checksum after PCB lookup... */
1274 		len = ntohs(ip->ip_len);
1275 		tlen = len - off;
1276 		iptos = ip->ip_tos;
1277 		break;
1278 #ifdef INET6
1279 	case 6:
1280 		iphlen = sizeof(struct ip6_hdr);
1281 		af = AF_INET6;
1282 
1283 		/*
1284 		 * Be proactive about unspecified IPv6 address in source.
1285 		 * As we use all-zero to indicate unbounded/unconnected pcb,
1286 		 * unspecified IPv6 address can be used to confuse us.
1287 		 *
1288 		 * Note that packets with unspecified IPv6 destination is
1289 		 * already dropped in ip6_input.
1290 		 */
1291 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1292 			/* XXX stat */
1293 			goto drop;
1294 		}
1295 
1296 		/*
1297 		 * Make sure destination address is not multicast.
1298 		 * Source address checked in ip6_input().
1299 		 */
1300 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1301 			/* XXX stat */
1302 			goto drop;
1303 		}
1304 
1305 		/* We do the checksum after PCB lookup... */
1306 		len = m->m_pkthdr.len;
1307 		tlen = len - off;
1308 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1309 		break;
1310 #endif
1311 	default:
1312 		m_freem(m);
1313 		return;
1314 	}
1315 
1316 
1317 	/*
1318 	 * Check that TCP offset makes sense, pull out TCP options and
1319 	 * adjust length.
1320 	 */
1321 	thlen = th->th_off << 2;
1322 	if (thlen < sizeof(struct tcphdr) || thlen > tlen) {
1323 		TCP_STATINC(TCP_STAT_RCVBADOFF);
1324 		goto drop;
1325 	}
1326 	tlen -= thlen;
1327 
1328 	if (thlen > sizeof(struct tcphdr)) {
1329 		M_REGION_GET(th, struct tcphdr *, m, off, thlen);
1330 		if (th == NULL) {
1331 			TCP_STATINC(TCP_STAT_RCVSHORT);
1332 			return;
1333 		}
1334 		KASSERT(ACCESSIBLE_POINTER(th, struct tcphdr));
1335 		optlen = thlen - sizeof(struct tcphdr);
1336 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1337 
1338 		/*
1339 		 * Do quick retrieval of timestamp options.
1340 		 *
1341 		 * If timestamp is the only option and it's formatted as
1342 		 * recommended in RFC 1323 appendix A, we quickly get the
1343 		 * values now and don't bother calling tcp_dooptions(),
1344 		 * etc.
1345 		 */
1346 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1347 		     (optlen > TCPOLEN_TSTAMP_APPA &&
1348 		      optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1349 		    be32dec(optp) == TCPOPT_TSTAMP_HDR &&
1350 		    (th->th_flags & TH_SYN) == 0) {
1351 			opti.ts_present = 1;
1352 			opti.ts_val = be32dec(optp + 4);
1353 			opti.ts_ecr = be32dec(optp + 8);
1354 			optp = NULL;	/* we've parsed the options */
1355 		}
1356 	}
1357 	tiflags = th->th_flags;
1358 
1359 	/*
1360 	 * Checksum extended TCP header and data
1361 	 */
1362 	if (tcp_input_checksum(af, m, th, off, thlen, tlen))
1363 		goto badcsum;
1364 
1365 	/*
1366 	 * Locate pcb for segment.
1367 	 */
1368 findpcb:
1369 	inp = NULL;
1370 	switch (af) {
1371 	case AF_INET:
1372 		inp = inpcb_lookup(&tcbtable, ip->ip_src, th->th_sport,
1373 		    ip->ip_dst, th->th_dport, &vestige);
1374 		if (inp == NULL && !vestige.valid) {
1375 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1376 			inp = inpcb_lookup_bound(&tcbtable, ip->ip_dst,
1377 			    th->th_dport);
1378 		}
1379 #ifdef INET6
1380 		if (inp == NULL && !vestige.valid) {
1381 			struct in6_addr s, d;
1382 
1383 			/* mapped addr case */
1384 			in6_in_2_v4mapin6(&ip->ip_src, &s);
1385 			in6_in_2_v4mapin6(&ip->ip_dst, &d);
1386 			inp = in6pcb_lookup(&tcbtable, &s,
1387 			    th->th_sport, &d, th->th_dport, 0, &vestige);
1388 			if (inp == NULL && !vestige.valid) {
1389 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
1390 				inp = in6pcb_lookup_bound(&tcbtable, &d,
1391 				    th->th_dport, 0);
1392 			}
1393 		}
1394 #endif
1395 		if (inp == NULL && !vestige.valid) {
1396 			TCP_STATINC(TCP_STAT_NOPORT);
1397 			if (tcp_log_refused &&
1398 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1399 				tcp4_log_refused(ip, th);
1400 			}
1401 			tcp_fields_to_host(th);
1402 			goto dropwithreset_ratelim;
1403 		}
1404 #if defined(IPSEC)
1405 		if (ipsec_used) {
1406 			if (inp && ipsec_in_reject(m, inp))
1407 				goto drop;
1408 		}
1409 #endif /*IPSEC*/
1410 		break;
1411 #ifdef INET6
1412 	case AF_INET6:
1413 	    {
1414 		int faith;
1415 
1416 #if defined(NFAITH) && NFAITH > 0
1417 		faith = faithprefix(&ip6->ip6_dst);
1418 #else
1419 		faith = 0;
1420 #endif
1421 		inp = in6pcb_lookup(&tcbtable, &ip6->ip6_src,
1422 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1423 		if (inp == NULL && !vestige.valid) {
1424 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1425 			inp = in6pcb_lookup_bound(&tcbtable, &ip6->ip6_dst,
1426 			    th->th_dport, faith);
1427 		}
1428 		if (inp == NULL && !vestige.valid) {
1429 			TCP_STATINC(TCP_STAT_NOPORT);
1430 			if (tcp_log_refused &&
1431 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1432 				tcp6_log_refused(ip6, th);
1433 			}
1434 			tcp_fields_to_host(th);
1435 			goto dropwithreset_ratelim;
1436 		}
1437 #if defined(IPSEC)
1438 		if (ipsec_used && inp && ipsec_in_reject(m, inp))
1439 			goto drop;
1440 #endif
1441 		break;
1442 	    }
1443 #endif
1444 	}
1445 
1446 	tcp_fields_to_host(th);
1447 
1448 	/*
1449 	 * If the state is CLOSED (i.e., TCB does not exist) then
1450 	 * all data in the incoming segment is discarded.
1451 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1452 	 * but should either do a listen or a connect soon.
1453 	 */
1454 	tp = NULL;
1455 	so = NULL;
1456 	if (inp) {
1457 		/* Check the minimum TTL for socket. */
1458 		if (inp->inp_af == AF_INET && ip->ip_ttl < in4p_ip_minttl(inp))
1459 			goto drop;
1460 
1461 		tp = intotcpcb(inp);
1462 		so = inp->inp_socket;
1463 	} else if (vestige.valid) {
1464 		/* We do not support the resurrection of vtw tcpcps. */
1465 		tcp_vtw_input(th, &vestige, m, tlen);
1466 		m = NULL;
1467 		goto drop;
1468 	}
1469 
1470 	if (tp == NULL)
1471 		goto dropwithreset_ratelim;
1472 	if (tp->t_state == TCPS_CLOSED)
1473 		goto drop;
1474 
1475 	KASSERT(so->so_lock == softnet_lock);
1476 	KASSERT(solocked(so));
1477 
1478 	/* Unscale the window into a 32-bit value. */
1479 	if ((tiflags & TH_SYN) == 0)
1480 		tiwin = th->th_win << tp->snd_scale;
1481 	else
1482 		tiwin = th->th_win;
1483 
1484 #ifdef INET6
1485 	/* save packet options if user wanted */
1486 	if (inp->inp_af == AF_INET6 && (inp->inp_flags & IN6P_CONTROLOPTS)) {
1487 		if (inp->inp_options) {
1488 			m_freem(inp->inp_options);
1489 			inp->inp_options = NULL;
1490 		}
1491 		ip6_savecontrol(inp, &inp->inp_options, ip6, m);
1492 	}
1493 #endif
1494 
1495 	if (so->so_options & SO_DEBUG) {
1496 #ifdef TCP_DEBUG
1497 		ostate = tp->t_state;
1498 #endif
1499 
1500 		tcp_saveti = NULL;
1501 		if (iphlen + sizeof(struct tcphdr) > MHLEN)
1502 			goto nosave;
1503 
1504 		if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1505 			tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1506 			if (tcp_saveti == NULL)
1507 				goto nosave;
1508 		} else {
1509 			MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1510 			if (tcp_saveti == NULL)
1511 				goto nosave;
1512 			MCLAIM(m, &tcp_mowner);
1513 			tcp_saveti->m_len = iphlen;
1514 			m_copydata(m, 0, iphlen,
1515 			    mtod(tcp_saveti, void *));
1516 		}
1517 
1518 		if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1519 			m_freem(tcp_saveti);
1520 			tcp_saveti = NULL;
1521 		} else {
1522 			tcp_saveti->m_len += sizeof(struct tcphdr);
1523 			memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1524 			    sizeof(struct tcphdr));
1525 		}
1526 nosave:;
1527 	}
1528 
1529 	if (so->so_options & SO_ACCEPTCONN) {
1530 		union syn_cache_sa src;
1531 		union syn_cache_sa dst;
1532 
1533 		KASSERT(tp->t_state == TCPS_LISTEN);
1534 
1535 		memset(&src, 0, sizeof(src));
1536 		memset(&dst, 0, sizeof(dst));
1537 		switch (af) {
1538 		case AF_INET:
1539 			src.sin.sin_len = sizeof(struct sockaddr_in);
1540 			src.sin.sin_family = AF_INET;
1541 			src.sin.sin_addr = ip->ip_src;
1542 			src.sin.sin_port = th->th_sport;
1543 
1544 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1545 			dst.sin.sin_family = AF_INET;
1546 			dst.sin.sin_addr = ip->ip_dst;
1547 			dst.sin.sin_port = th->th_dport;
1548 			break;
1549 #ifdef INET6
1550 		case AF_INET6:
1551 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1552 			src.sin6.sin6_family = AF_INET6;
1553 			src.sin6.sin6_addr = ip6->ip6_src;
1554 			src.sin6.sin6_port = th->th_sport;
1555 
1556 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1557 			dst.sin6.sin6_family = AF_INET6;
1558 			dst.sin6.sin6_addr = ip6->ip6_dst;
1559 			dst.sin6.sin6_port = th->th_dport;
1560 			break;
1561 #endif
1562 		}
1563 
1564 		if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1565 			if (tiflags & TH_RST) {
1566 				syn_cache_reset(&src.sa, &dst.sa, th);
1567 			} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1568 			    (TH_ACK|TH_SYN)) {
1569 				/*
1570 				 * Received a SYN,ACK. This should never
1571 				 * happen while we are in LISTEN. Send an RST.
1572 				 */
1573 				goto badsyn;
1574 			} else if (tiflags & TH_ACK) {
1575 				so = syn_cache_get(&src.sa, &dst.sa, th, so, m);
1576 				if (so == NULL) {
1577 					/*
1578 					 * We don't have a SYN for this ACK;
1579 					 * send an RST.
1580 					 */
1581 					goto badsyn;
1582 				} else if (so == (struct socket *)(-1)) {
1583 					/*
1584 					 * We were unable to create the
1585 					 * connection. If the 3-way handshake
1586 					 * was completed, and RST has been
1587 					 * sent to the peer. Since the mbuf
1588 					 * might be in use for the reply, do
1589 					 * not free it.
1590 					 */
1591 					m = NULL;
1592 				} else {
1593 					/*
1594 					 * We have created a full-blown
1595 					 * connection.
1596 					 */
1597 					inp = sotoinpcb(so);
1598 					tp = intotcpcb(inp);
1599 					if (tp == NULL)
1600 						goto badsyn;	/*XXX*/
1601 					tiwin <<= tp->snd_scale;
1602 					goto after_listen;
1603 				}
1604 			} else {
1605 				/*
1606 				 * None of RST, SYN or ACK was set.
1607 				 * This is an invalid packet for a
1608 				 * TCB in LISTEN state.  Send a RST.
1609 				 */
1610 				goto badsyn;
1611 			}
1612 		} else {
1613 			/*
1614 			 * Received a SYN.
1615 			 */
1616 
1617 #ifdef INET6
1618 			/*
1619 			 * If deprecated address is forbidden, we do
1620 			 * not accept SYN to deprecated interface
1621 			 * address to prevent any new inbound
1622 			 * connection from getting established.
1623 			 * When we do not accept SYN, we send a TCP
1624 			 * RST, with deprecated source address (instead
1625 			 * of dropping it).  We compromise it as it is
1626 			 * much better for peer to send a RST, and
1627 			 * RST will be the final packet for the
1628 			 * exchange.
1629 			 *
1630 			 * If we do not forbid deprecated addresses, we
1631 			 * accept the SYN packet.  RFC2462 does not
1632 			 * suggest dropping SYN in this case.
1633 			 * If we decipher RFC2462 5.5.4, it says like
1634 			 * this:
1635 			 * 1. use of deprecated addr with existing
1636 			 *    communication is okay - "SHOULD continue
1637 			 *    to be used"
1638 			 * 2. use of it with new communication:
1639 			 *   (2a) "SHOULD NOT be used if alternate
1640 			 *        address with sufficient scope is
1641 			 *        available"
1642 			 *   (2b) nothing mentioned otherwise.
1643 			 * Here we fall into (2b) case as we have no
1644 			 * choice in our source address selection - we
1645 			 * must obey the peer.
1646 			 *
1647 			 * The wording in RFC2462 is confusing, and
1648 			 * there are multiple description text for
1649 			 * deprecated address handling - worse, they
1650 			 * are not exactly the same.  I believe 5.5.4
1651 			 * is the best one, so we follow 5.5.4.
1652 			 */
1653 			if (af == AF_INET6 && !ip6_use_deprecated) {
1654 				struct in6_ifaddr *ia6;
1655 				int s;
1656 				struct ifnet *rcvif = m_get_rcvif(m, &s);
1657 				if (rcvif == NULL)
1658 					goto dropwithreset; /* XXX */
1659 				if ((ia6 = in6ifa_ifpwithaddr(rcvif,
1660 				    &ip6->ip6_dst)) &&
1661 				    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1662 					tp = NULL;
1663 					m_put_rcvif(rcvif, &s);
1664 					goto dropwithreset;
1665 				}
1666 				m_put_rcvif(rcvif, &s);
1667 			}
1668 #endif
1669 
1670 			/*
1671 			 * LISTEN socket received a SYN from itself? This
1672 			 * can't possibly be valid; drop the packet.
1673 			 */
1674 			if (th->th_sport == th->th_dport) {
1675 				int eq = 0;
1676 
1677 				switch (af) {
1678 				case AF_INET:
1679 					eq = in_hosteq(ip->ip_src, ip->ip_dst);
1680 					break;
1681 #ifdef INET6
1682 				case AF_INET6:
1683 					eq = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
1684 					    &ip6->ip6_dst);
1685 					break;
1686 #endif
1687 				}
1688 				if (eq) {
1689 					TCP_STATINC(TCP_STAT_BADSYN);
1690 					goto drop;
1691 				}
1692 			}
1693 
1694 			/*
1695 			 * SYN looks ok; create compressed TCP
1696 			 * state for it.
1697 			 */
1698 			if (so->so_qlen <= so->so_qlimit &&
1699 			    syn_cache_add(&src.sa, &dst.sa, th, off,
1700 			    so, m, optp, optlen, &opti))
1701 				m = NULL;
1702 		}
1703 
1704 		goto drop;
1705 	}
1706 
1707 after_listen:
1708 	/*
1709 	 * From here on, we're dealing with !LISTEN.
1710 	 */
1711 	KASSERT(tp->t_state != TCPS_LISTEN);
1712 
1713 	/*
1714 	 * Segment received on connection.
1715 	 * Reset idle time and keep-alive timer.
1716 	 */
1717 	tp->t_rcvtime = tcp_now;
1718 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1719 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1720 
1721 	/*
1722 	 * Process options.
1723 	 */
1724 #ifdef TCP_SIGNATURE
1725 	if (optp || (tp->t_flags & TF_SIGNATURE))
1726 #else
1727 	if (optp)
1728 #endif
1729 		if (tcp_dooptions(tp, optp, optlen, th, m, off, &opti) < 0)
1730 			goto drop;
1731 
1732 	if (TCP_SACK_ENABLED(tp)) {
1733 		tcp_del_sackholes(tp, th);
1734 	}
1735 
1736 	if (TCP_ECN_ALLOWED(tp)) {
1737 		if (tiflags & TH_CWR) {
1738 			tp->t_flags &= ~TF_ECN_SND_ECE;
1739 		}
1740 		switch (iptos & IPTOS_ECN_MASK) {
1741 		case IPTOS_ECN_CE:
1742 			tp->t_flags |= TF_ECN_SND_ECE;
1743 			TCP_STATINC(TCP_STAT_ECN_CE);
1744 			break;
1745 		case IPTOS_ECN_ECT0:
1746 			TCP_STATINC(TCP_STAT_ECN_ECT);
1747 			break;
1748 		case IPTOS_ECN_ECT1:
1749 			/* XXX: ignore for now -- rpaulo */
1750 			break;
1751 		}
1752 		/*
1753 		 * Congestion experienced.
1754 		 * Ignore if we are already trying to recover.
1755 		 */
1756 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1757 			tp->t_congctl->cong_exp(tp);
1758 	}
1759 
1760 	if (opti.ts_present && opti.ts_ecr) {
1761 		/*
1762 		 * Calculate the RTT from the returned time stamp and the
1763 		 * connection's time base.  If the time stamp is later than
1764 		 * the current time, or is extremely old, fall back to non-1323
1765 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
1766 		 * at the same time.
1767 		 *
1768 		 * Note that ts_rtt is in units of slow ticks (500
1769 		 * ms).  Since most earthbound RTTs are < 500 ms,
1770 		 * observed values will have large quantization noise.
1771 		 * Our smoothed RTT is then the fraction of observed
1772 		 * samples that are 1 tick instead of 0 (times 500
1773 		 * ms).
1774 		 *
1775 		 * ts_rtt is increased by 1 to denote a valid sample,
1776 		 * with 0 indicating an invalid measurement.  This
1777 		 * extra 1 must be removed when ts_rtt is used, or
1778 		 * else an erroneous extra 500 ms will result.
1779 		 */
1780 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1781 		if (ts_rtt > TCP_PAWS_IDLE)
1782 			ts_rtt = 0;
1783 	} else {
1784 		ts_rtt = 0;
1785 	}
1786 
1787 	/*
1788 	 * Fast path: check for the two common cases of a uni-directional
1789 	 * data transfer. If:
1790 	 *    o We are in the ESTABLISHED state, and
1791 	 *    o The packet has no control flags, and
1792 	 *    o The packet is in-sequence, and
1793 	 *    o The window didn't change, and
1794 	 *    o We are not retransmitting
1795 	 * It's a candidate.
1796 	 *
1797 	 * If the length (tlen) is zero and the ack moved forward, we're
1798 	 * the sender side of the transfer. Just free the data acked and
1799 	 * wake any higher level process that was blocked waiting for
1800 	 * space.
1801 	 *
1802 	 * If the length is non-zero and the ack didn't move, we're the
1803 	 * receiver side. If we're getting packets in-order (the reassembly
1804 	 * queue is empty), add the data to the socket buffer and note
1805 	 * that we need a delayed ack.
1806 	 */
1807 	if (tp->t_state == TCPS_ESTABLISHED &&
1808 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1809 	        == TH_ACK &&
1810 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1811 	    th->th_seq == tp->rcv_nxt &&
1812 	    tiwin && tiwin == tp->snd_wnd &&
1813 	    tp->snd_nxt == tp->snd_max) {
1814 
1815 		/*
1816 		 * If last ACK falls within this segment's sequence numbers,
1817 		 * record the timestamp.
1818 		 * NOTE that the test is modified according to the latest
1819 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1820 		 *
1821 		 * note that we already know
1822 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1823 		 */
1824 		if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1825 			tp->ts_recent_age = tcp_now;
1826 			tp->ts_recent = opti.ts_val;
1827 		}
1828 
1829 		if (tlen == 0) {
1830 			/* Ack prediction. */
1831 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1832 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1833 			    tp->snd_cwnd >= tp->snd_wnd &&
1834 			    tp->t_partialacks < 0) {
1835 				/*
1836 				 * this is a pure ack for outstanding data.
1837 				 */
1838 				if (ts_rtt)
1839 					tcp_xmit_timer(tp, ts_rtt - 1);
1840 				else if (tp->t_rtttime &&
1841 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1842 					tcp_xmit_timer(tp,
1843 					  tcp_now - tp->t_rtttime);
1844 				acked = th->th_ack - tp->snd_una;
1845 				tcps = TCP_STAT_GETREF();
1846 				_NET_STATINC_REF(tcps, TCP_STAT_PREDACK);
1847 				_NET_STATINC_REF(tcps, TCP_STAT_RCVACKPACK);
1848 				_NET_STATADD_REF(tcps, TCP_STAT_RCVACKBYTE,
1849 				    acked);
1850 				TCP_STAT_PUTREF();
1851 				nd_hint(tp);
1852 
1853 				if (acked > (tp->t_lastoff - tp->t_inoff))
1854 					tp->t_lastm = NULL;
1855 				sbdrop(&so->so_snd, acked);
1856 				tp->t_lastoff -= acked;
1857 
1858 				icmp_check(tp, th, acked);
1859 
1860 				tp->snd_una = th->th_ack;
1861 				tp->snd_fack = tp->snd_una;
1862 				if (SEQ_LT(tp->snd_high, tp->snd_una))
1863 					tp->snd_high = tp->snd_una;
1864 				/*
1865 				 * drag snd_wl2 along so only newer
1866 				 * ACKs can update the window size.
1867 				 * also avoids the state where snd_wl2
1868 				 * is eventually larger than th_ack and thus
1869 				 * blocking the window update mechanism and
1870 				 * the connection gets stuck for a loooong
1871 				 * time in the zero sized send window state.
1872 				 *
1873 				 * see PR/kern 55567
1874 				 */
1875 				tp->snd_wl2 = tp->snd_una;
1876 
1877 				m_freem(m);
1878 
1879 				/*
1880 				 * If all outstanding data are acked, stop
1881 				 * retransmit timer, otherwise restart timer
1882 				 * using current (possibly backed-off) value.
1883 				 * If process is waiting for space,
1884 				 * wakeup/selnotify/signal.  If data
1885 				 * are ready to send, let tcp_output
1886 				 * decide between more output or persist.
1887 				 */
1888 				if (tp->snd_una == tp->snd_max)
1889 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1890 				else if (TCP_TIMER_ISARMED(tp,
1891 				    TCPT_PERSIST) == 0)
1892 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1893 					    tp->t_rxtcur);
1894 
1895 				sowwakeup(so);
1896 				if (so->so_snd.sb_cc) {
1897 					KERNEL_LOCK(1, NULL);
1898 					(void)tcp_output(tp);
1899 					KERNEL_UNLOCK_ONE(NULL);
1900 				}
1901 				if (tcp_saveti)
1902 					m_freem(tcp_saveti);
1903 				return;
1904 			}
1905 		} else if (th->th_ack == tp->snd_una &&
1906 		    TAILQ_FIRST(&tp->segq) == NULL &&
1907 		    tlen <= sbspace(&so->so_rcv)) {
1908 			int newsize = 0;
1909 
1910 			/*
1911 			 * this is a pure, in-sequence data packet
1912 			 * with nothing on the reassembly queue and
1913 			 * we have enough buffer space to take it.
1914 			 */
1915 			tp->rcv_nxt += tlen;
1916 
1917 			/*
1918 			 * Pull rcv_up up to prevent seq wrap relative to
1919 			 * rcv_nxt.
1920 			 */
1921 			tp->rcv_up = tp->rcv_nxt;
1922 
1923 			/*
1924 			 * Pull snd_wl1 up to prevent seq wrap relative to
1925 			 * th_seq.
1926 			 */
1927 			tp->snd_wl1 = th->th_seq;
1928 
1929 			tcps = TCP_STAT_GETREF();
1930 			_NET_STATINC_REF(tcps, TCP_STAT_PREDDAT);
1931 			_NET_STATINC_REF(tcps, TCP_STAT_RCVPACK);
1932 			_NET_STATADD_REF(tcps, TCP_STAT_RCVBYTE, tlen);
1933 			TCP_STAT_PUTREF();
1934 			nd_hint(tp);
1935 		/*
1936 		 * Automatic sizing enables the performance of large buffers
1937 		 * and most of the efficiency of small ones by only allocating
1938 		 * space when it is needed.
1939 		 *
1940 		 * On the receive side the socket buffer memory is only rarely
1941 		 * used to any significant extent.  This allows us to be much
1942 		 * more aggressive in scaling the receive socket buffer.  For
1943 		 * the case that the buffer space is actually used to a large
1944 		 * extent and we run out of kernel memory we can simply drop
1945 		 * the new segments; TCP on the sender will just retransmit it
1946 		 * later.  Setting the buffer size too big may only consume too
1947 		 * much kernel memory if the application doesn't read() from
1948 		 * the socket or packet loss or reordering makes use of the
1949 		 * reassembly queue.
1950 		 *
1951 		 * The criteria to step up the receive buffer one notch are:
1952 		 *  1. the number of bytes received during the time it takes
1953 		 *     one timestamp to be reflected back to us (the RTT);
1954 		 *  2. received bytes per RTT is within seven eighth of the
1955 		 *     current socket buffer size;
1956 		 *  3. receive buffer size has not hit maximal automatic size;
1957 		 *
1958 		 * This algorithm does one step per RTT at most and only if
1959 		 * we receive a bulk stream w/o packet losses or reorderings.
1960 		 * Shrinking the buffer during idle times is not necessary as
1961 		 * it doesn't consume any memory when idle.
1962 		 *
1963 		 * TODO: Only step up if the application is actually serving
1964 		 * the buffer to better manage the socket buffer resources.
1965 		 */
1966 			if (tcp_do_autorcvbuf &&
1967 			    opti.ts_ecr &&
1968 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1969 				if (opti.ts_ecr > tp->rfbuf_ts &&
1970 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1971 					if (tp->rfbuf_cnt >
1972 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1973 					    so->so_rcv.sb_hiwat <
1974 					    tcp_autorcvbuf_max) {
1975 						newsize =
1976 						    uimin(so->so_rcv.sb_hiwat +
1977 						    tcp_autorcvbuf_inc,
1978 						    tcp_autorcvbuf_max);
1979 					}
1980 					/* Start over with next RTT. */
1981 					tp->rfbuf_ts = 0;
1982 					tp->rfbuf_cnt = 0;
1983 				} else
1984 					tp->rfbuf_cnt += tlen;	/* add up */
1985 			}
1986 
1987 			/*
1988 			 * Drop TCP, IP headers and TCP options then add data
1989 			 * to socket buffer.
1990 			 */
1991 			if (so->so_state & SS_CANTRCVMORE) {
1992 				m_freem(m);
1993 			} else {
1994 				/*
1995 				 * Set new socket buffer size.
1996 				 * Give up when limit is reached.
1997 				 */
1998 				if (newsize)
1999 					if (!sbreserve(&so->so_rcv,
2000 					    newsize, so))
2001 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2002 				m_adj(m, off + thlen);
2003 				sbappendstream(&so->so_rcv, m);
2004 			}
2005 			sorwakeup(so);
2006 			tcp_setup_ack(tp, th);
2007 			if (tp->t_flags & TF_ACKNOW) {
2008 				KERNEL_LOCK(1, NULL);
2009 				(void)tcp_output(tp);
2010 				KERNEL_UNLOCK_ONE(NULL);
2011 			}
2012 			if (tcp_saveti)
2013 				m_freem(tcp_saveti);
2014 			return;
2015 		}
2016 	}
2017 
2018 	/*
2019 	 * Compute mbuf offset to TCP data segment.
2020 	 */
2021 	hdroptlen = off + thlen;
2022 
2023 	/*
2024 	 * Calculate amount of space in receive window. Receive window is
2025 	 * amount of space in rcv queue, but not less than advertised
2026 	 * window.
2027 	 */
2028 	{
2029 		int win;
2030 		win = sbspace(&so->so_rcv);
2031 		if (win < 0)
2032 			win = 0;
2033 		tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2034 	}
2035 
2036 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
2037 	tp->rfbuf_ts = 0;
2038 	tp->rfbuf_cnt = 0;
2039 
2040 	switch (tp->t_state) {
2041 	/*
2042 	 * If the state is SYN_SENT:
2043 	 *	if seg contains an ACK, but not for our SYN, drop the input.
2044 	 *	if seg contains a RST, then drop the connection.
2045 	 *	if seg does not contain SYN, then drop it.
2046 	 * Otherwise this is an acceptable SYN segment
2047 	 *	initialize tp->rcv_nxt and tp->irs
2048 	 *	if seg contains ack then advance tp->snd_una
2049 	 *	if seg contains a ECE and ECN support is enabled, the stream
2050 	 *	    is ECN capable.
2051 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2052 	 *	arrange for segment to be acked (eventually)
2053 	 *	continue processing rest of data/controls, beginning with URG
2054 	 */
2055 	case TCPS_SYN_SENT:
2056 		if ((tiflags & TH_ACK) &&
2057 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2058 		     SEQ_GT(th->th_ack, tp->snd_max)))
2059 			goto dropwithreset;
2060 		if (tiflags & TH_RST) {
2061 			if (tiflags & TH_ACK)
2062 				tp = tcp_drop(tp, ECONNREFUSED);
2063 			goto drop;
2064 		}
2065 		if ((tiflags & TH_SYN) == 0)
2066 			goto drop;
2067 		if (tiflags & TH_ACK) {
2068 			tp->snd_una = th->th_ack;
2069 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2070 				tp->snd_nxt = tp->snd_una;
2071 			if (SEQ_LT(tp->snd_high, tp->snd_una))
2072 				tp->snd_high = tp->snd_una;
2073 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2074 
2075 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
2076 				tp->t_flags |= TF_ECN_PERMIT;
2077 				TCP_STATINC(TCP_STAT_ECN_SHS);
2078 			}
2079 		}
2080 		tp->irs = th->th_seq;
2081 		tcp_rcvseqinit(tp);
2082 		tp->t_flags |= TF_ACKNOW;
2083 		tcp_mss_from_peer(tp, opti.maxseg);
2084 
2085 		/*
2086 		 * Initialize the initial congestion window.  If we
2087 		 * had to retransmit the SYN, we must initialize cwnd
2088 		 * to 1 segment (i.e. the Loss Window).
2089 		 */
2090 		if (tp->t_flags & TF_SYN_REXMT)
2091 			tp->snd_cwnd = tp->t_peermss;
2092 		else {
2093 			int ss = tcp_init_win;
2094 			if (inp->inp_af == AF_INET && in_localaddr(in4p_faddr(inp)))
2095 				ss = tcp_init_win_local;
2096 #ifdef INET6
2097 			else if (inp->inp_af == AF_INET6 && in6_localaddr(&in6p_faddr(inp)))
2098 				ss = tcp_init_win_local;
2099 #endif
2100 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2101 		}
2102 
2103 		tcp_rmx_rtt(tp);
2104 		if (tiflags & TH_ACK) {
2105 			TCP_STATINC(TCP_STAT_CONNECTS);
2106 			/*
2107 			 * move tcp_established before soisconnected
2108 			 * because upcall handler can drive tcp_output
2109 			 * functionality.
2110 			 * XXX we might call soisconnected at the end of
2111 			 * all processing
2112 			 */
2113 			tcp_established(tp);
2114 			soisconnected(so);
2115 			/* Do window scaling on this connection? */
2116 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2117 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2118 				tp->snd_scale = tp->requested_s_scale;
2119 				tp->rcv_scale = tp->request_r_scale;
2120 			}
2121 			TCP_REASS_LOCK(tp);
2122 			(void)tcp_reass(tp, NULL, NULL, tlen);
2123 			/*
2124 			 * if we didn't have to retransmit the SYN,
2125 			 * use its rtt as our initial srtt & rtt var.
2126 			 */
2127 			if (tp->t_rtttime)
2128 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2129 		} else {
2130 			tp->t_state = TCPS_SYN_RECEIVED;
2131 		}
2132 
2133 		/*
2134 		 * Advance th->th_seq to correspond to first data byte.
2135 		 * If data, trim to stay within window,
2136 		 * dropping FIN if necessary.
2137 		 */
2138 		th->th_seq++;
2139 		if (tlen > tp->rcv_wnd) {
2140 			todrop = tlen - tp->rcv_wnd;
2141 			m_adj(m, -todrop);
2142 			tlen = tp->rcv_wnd;
2143 			tiflags &= ~TH_FIN;
2144 			tcps = TCP_STAT_GETREF();
2145 			_NET_STATINC_REF(tcps, TCP_STAT_RCVPACKAFTERWIN);
2146 			_NET_STATADD_REF(tcps, TCP_STAT_RCVBYTEAFTERWIN,
2147 			    todrop);
2148 			TCP_STAT_PUTREF();
2149 		}
2150 		tp->snd_wl1 = th->th_seq - 1;
2151 		tp->rcv_up = th->th_seq;
2152 		goto step6;
2153 
2154 	/*
2155 	 * If the state is SYN_RECEIVED:
2156 	 *	If seg contains an ACK, but not for our SYN, drop the input
2157 	 *	and generate an RST.  See page 36, rfc793
2158 	 */
2159 	case TCPS_SYN_RECEIVED:
2160 		if ((tiflags & TH_ACK) &&
2161 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2162 		     SEQ_GT(th->th_ack, tp->snd_max)))
2163 			goto dropwithreset;
2164 		break;
2165 	}
2166 
2167 	/*
2168 	 * From here on, we're dealing with !LISTEN and !SYN_SENT.
2169 	 */
2170 	KASSERT(tp->t_state != TCPS_LISTEN &&
2171 	    tp->t_state != TCPS_SYN_SENT);
2172 
2173 	/*
2174 	 * RFC1323 PAWS: if we have a timestamp reply on this segment and
2175 	 * it's less than ts_recent, drop it.
2176 	 */
2177 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2178 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2179 		/* Check to see if ts_recent is over 24 days old.  */
2180 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2181 			/*
2182 			 * Invalidate ts_recent.  If this segment updates
2183 			 * ts_recent, the age will be reset later and ts_recent
2184 			 * will get a valid value.  If it does not, setting
2185 			 * ts_recent to zero will at least satisfy the
2186 			 * requirement that zero be placed in the timestamp
2187 			 * echo reply when ts_recent isn't valid.  The
2188 			 * age isn't reset until we get a valid ts_recent
2189 			 * because we don't want out-of-order segments to be
2190 			 * dropped when ts_recent is old.
2191 			 */
2192 			tp->ts_recent = 0;
2193 		} else {
2194 			tcps = TCP_STAT_GETREF();
2195 			_NET_STATINC_REF(tcps, TCP_STAT_RCVDUPPACK);
2196 			_NET_STATADD_REF(tcps, TCP_STAT_RCVDUPBYTE, tlen);
2197 			_NET_STATINC_REF(tcps, TCP_STAT_PAWSDROP);
2198 			TCP_STAT_PUTREF();
2199 			tcp_new_dsack(tp, th->th_seq, tlen);
2200 			goto dropafterack;
2201 		}
2202 	}
2203 
2204 	/*
2205 	 * Check that at least some bytes of the segment are within the
2206 	 * receive window. If segment begins before rcv_nxt, drop leading
2207 	 * data (and SYN); if nothing left, just ack.
2208 	 */
2209 	todrop = tp->rcv_nxt - th->th_seq;
2210 	dupseg = false;
2211 	if (todrop > 0) {
2212 		if (tiflags & TH_SYN) {
2213 			tiflags &= ~TH_SYN;
2214 			th->th_seq++;
2215 			tcp_urp_drop(th, 1, &tiflags);
2216 			todrop--;
2217 		}
2218 		if (todrop > tlen ||
2219 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2220 			/*
2221 			 * Any valid FIN or RST must be to the left of the
2222 			 * window.  At this point the FIN or RST must be a
2223 			 * duplicate or out of sequence; drop it.
2224 			 */
2225 			if (tiflags & TH_RST)
2226 				goto drop;
2227 			tiflags &= ~(TH_FIN|TH_RST);
2228 
2229 			/*
2230 			 * Send an ACK to resynchronize and drop any data.
2231 			 * But keep on processing for RST or ACK.
2232 			 */
2233 			tp->t_flags |= TF_ACKNOW;
2234 			todrop = tlen;
2235 			dupseg = true;
2236 			tcps = TCP_STAT_GETREF();
2237 			_NET_STATINC_REF(tcps, TCP_STAT_RCVDUPPACK);
2238 			_NET_STATADD_REF(tcps, TCP_STAT_RCVDUPBYTE, todrop);
2239 			TCP_STAT_PUTREF();
2240 		} else if ((tiflags & TH_RST) && th->th_seq != tp->rcv_nxt) {
2241 			/*
2242 			 * Test for reset before adjusting the sequence
2243 			 * number for overlapping data.
2244 			 */
2245 			goto dropafterack_ratelim;
2246 		} else {
2247 			tcps = TCP_STAT_GETREF();
2248 			_NET_STATINC_REF(tcps, TCP_STAT_RCVPARTDUPPACK);
2249 			_NET_STATADD_REF(tcps, TCP_STAT_RCVPARTDUPBYTE,
2250 			    todrop);
2251 			TCP_STAT_PUTREF();
2252 		}
2253 		tcp_new_dsack(tp, th->th_seq, todrop);
2254 		hdroptlen += todrop;	/* drop from head afterwards (m_adj) */
2255 		th->th_seq += todrop;
2256 		tlen -= todrop;
2257 		tcp_urp_drop(th, todrop, &tiflags);
2258 	}
2259 
2260 	/*
2261 	 * If new data is received on a connection after the user processes
2262 	 * are gone, then RST the other end.
2263 	 */
2264 	if ((so->so_state & SS_NOFDREF) &&
2265 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2266 		tp = tcp_close(tp);
2267 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2268 		goto dropwithreset;
2269 	}
2270 
2271 	/*
2272 	 * If the segment ends after the window, drop trailing data (and
2273 	 * PUSH and FIN); if nothing left, just ACK.
2274 	 */
2275 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2276 	if (todrop > 0) {
2277 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2278 		if (todrop >= tlen) {
2279 			/*
2280 			 * The segment actually starts after the window.
2281 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2282 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2283 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2284 			 */
2285 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2286 
2287 			/*
2288 			 * If a new connection request is received while in
2289 			 * TIME_WAIT, drop the old connection and start over
2290 			 * if the sequence numbers are above the previous
2291 			 * ones.
2292 			 *
2293 			 * NOTE: We need to put the header fields back into
2294 			 * network order.
2295 			 */
2296 			if ((tiflags & TH_SYN) &&
2297 			    tp->t_state == TCPS_TIME_WAIT &&
2298 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2299 				tp = tcp_close(tp);
2300 				tcp_fields_to_net(th);
2301 				m_freem(tcp_saveti);
2302 				tcp_saveti = NULL;
2303 				goto findpcb;
2304 			}
2305 
2306 			/*
2307 			 * If window is closed can only take segments at
2308 			 * window edge, and have to drop data and PUSH from
2309 			 * incoming segments.  Continue processing, but
2310 			 * remember to ack.  Otherwise, drop segment
2311 			 * and (if not RST) ack.
2312 			 */
2313 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2314 				KASSERT(todrop == tlen);
2315 				tp->t_flags |= TF_ACKNOW;
2316 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
2317 			} else {
2318 				goto dropafterack;
2319 			}
2320 		} else {
2321 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2322 		}
2323 		m_adj(m, -todrop);
2324 		tlen -= todrop;
2325 		tiflags &= ~(TH_PUSH|TH_FIN);
2326 	}
2327 
2328 	/*
2329 	 * If last ACK falls within this segment's sequence numbers,
2330 	 *  record the timestamp.
2331 	 * NOTE:
2332 	 * 1) That the test incorporates suggestions from the latest
2333 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2334 	 * 2) That updating only on newer timestamps interferes with
2335 	 *    our earlier PAWS tests, so this check should be solely
2336 	 *    predicated on the sequence space of this segment.
2337 	 * 3) That we modify the segment boundary check to be
2338 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2339 	 *    instead of RFC1323's
2340 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2341 	 *    This modified check allows us to overcome RFC1323's
2342 	 *    limitations as described in Stevens TCP/IP Illustrated
2343 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2344 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2345 	 */
2346 	if (opti.ts_present &&
2347 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2348 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2349 	         ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2350 		tp->ts_recent_age = tcp_now;
2351 		tp->ts_recent = opti.ts_val;
2352 	}
2353 
2354 	/*
2355 	 * If the RST bit is set examine the state:
2356 	 *    RECEIVED state:
2357 	 *        If passive open, return to LISTEN state.
2358 	 *        If active open, inform user that connection was refused.
2359 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT states:
2360 	 *        Inform user that connection was reset, and close tcb.
2361 	 *    CLOSING, LAST_ACK, TIME_WAIT states:
2362 	 *        Close the tcb.
2363 	 */
2364 	if (tiflags & TH_RST) {
2365 		if (th->th_seq != tp->rcv_nxt)
2366 			goto dropafterack_ratelim;
2367 
2368 		switch (tp->t_state) {
2369 		case TCPS_SYN_RECEIVED:
2370 			so->so_error = ECONNREFUSED;
2371 			goto close;
2372 
2373 		case TCPS_ESTABLISHED:
2374 		case TCPS_FIN_WAIT_1:
2375 		case TCPS_FIN_WAIT_2:
2376 		case TCPS_CLOSE_WAIT:
2377 			so->so_error = ECONNRESET;
2378 		close:
2379 			tp->t_state = TCPS_CLOSED;
2380 			TCP_STATINC(TCP_STAT_DROPS);
2381 			tp = tcp_close(tp);
2382 			goto drop;
2383 
2384 		case TCPS_CLOSING:
2385 		case TCPS_LAST_ACK:
2386 		case TCPS_TIME_WAIT:
2387 			tp = tcp_close(tp);
2388 			goto drop;
2389 		}
2390 	}
2391 
2392 	/*
2393 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2394 	 * we must be in a synchronized state.  RFC793 states (under Reset
2395 	 * Generation) that any unacceptable segment (an out-of-order SYN
2396 	 * qualifies) received in a synchronized state must elicit only an
2397 	 * empty acknowledgment segment ... and the connection remains in
2398 	 * the same state.
2399 	 */
2400 	if (tiflags & TH_SYN) {
2401 		if (tp->rcv_nxt == th->th_seq) {
2402 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2403 			    TH_ACK);
2404 			if (tcp_saveti)
2405 				m_freem(tcp_saveti);
2406 			return;
2407 		}
2408 
2409 		goto dropafterack_ratelim;
2410 	}
2411 
2412 	/*
2413 	 * If the ACK bit is off we drop the segment and return.
2414 	 */
2415 	if ((tiflags & TH_ACK) == 0) {
2416 		if (tp->t_flags & TF_ACKNOW)
2417 			goto dropafterack;
2418 		goto drop;
2419 	}
2420 
2421 	/*
2422 	 * From here on, we're doing ACK processing.
2423 	 */
2424 
2425 	switch (tp->t_state) {
2426 	/*
2427 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2428 	 * ESTABLISHED state and continue processing, otherwise
2429 	 * send an RST.
2430 	 */
2431 	case TCPS_SYN_RECEIVED:
2432 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
2433 		    SEQ_GT(th->th_ack, tp->snd_max))
2434 			goto dropwithreset;
2435 		TCP_STATINC(TCP_STAT_CONNECTS);
2436 		soisconnected(so);
2437 		tcp_established(tp);
2438 		/* Do window scaling? */
2439 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2440 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2441 			tp->snd_scale = tp->requested_s_scale;
2442 			tp->rcv_scale = tp->request_r_scale;
2443 		}
2444 		TCP_REASS_LOCK(tp);
2445 		(void)tcp_reass(tp, NULL, NULL, tlen);
2446 		tp->snd_wl1 = th->th_seq - 1;
2447 		/* FALLTHROUGH */
2448 
2449 	/*
2450 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2451 	 * ACKs.  If the ack is in the range
2452 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2453 	 * then advance tp->snd_una to th->th_ack and drop
2454 	 * data from the retransmission queue.  If this ACK reflects
2455 	 * more up to date window information we update our window information.
2456 	 */
2457 	case TCPS_ESTABLISHED:
2458 	case TCPS_FIN_WAIT_1:
2459 	case TCPS_FIN_WAIT_2:
2460 	case TCPS_CLOSE_WAIT:
2461 	case TCPS_CLOSING:
2462 	case TCPS_LAST_ACK:
2463 	case TCPS_TIME_WAIT:
2464 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2465 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2466 				TCP_STATINC(TCP_STAT_RCVDUPACK);
2467 				/*
2468 				 * If we have outstanding data (other than
2469 				 * a window probe), this is a completely
2470 				 * duplicate ack (ie, window info didn't
2471 				 * change), the ack is the biggest we've
2472 				 * seen and we've seen exactly our rexmt
2473 				 * threshold of them, assume a packet
2474 				 * has been dropped and retransmit it.
2475 				 * Kludge snd_nxt & the congestion
2476 				 * window so we send only this one
2477 				 * packet.
2478 				 */
2479 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2480 				    th->th_ack != tp->snd_una)
2481 					tp->t_dupacks = 0;
2482 				else if (tp->t_partialacks < 0 &&
2483 				    (++tp->t_dupacks == tcprexmtthresh ||
2484 				     TCP_FACK_FASTRECOV(tp))) {
2485 					/*
2486 					 * Do the fast retransmit, and adjust
2487 					 * congestion control parameters.
2488 					 */
2489 					if (tp->t_congctl->fast_retransmit(tp, th)) {
2490 						/* False fast retransmit */
2491 						break;
2492 					}
2493 					goto drop;
2494 				} else if (tp->t_dupacks > tcprexmtthresh) {
2495 					tp->snd_cwnd += tp->t_segsz;
2496 					KERNEL_LOCK(1, NULL);
2497 					(void)tcp_output(tp);
2498 					KERNEL_UNLOCK_ONE(NULL);
2499 					goto drop;
2500 				}
2501 			} else {
2502 				/*
2503 				 * If the ack appears to be very old, only
2504 				 * allow data that is in-sequence.  This
2505 				 * makes it somewhat more difficult to insert
2506 				 * forged data by guessing sequence numbers.
2507 				 * Sent an ack to try to update the send
2508 				 * sequence number on the other side.
2509 				 */
2510 				if (tlen && th->th_seq != tp->rcv_nxt &&
2511 				    SEQ_LT(th->th_ack,
2512 				    tp->snd_una - tp->max_sndwnd))
2513 					goto dropafterack;
2514 			}
2515 			break;
2516 		}
2517 		/*
2518 		 * If the congestion window was inflated to account
2519 		 * for the other side's cached packets, retract it.
2520 		 */
2521 		tp->t_congctl->fast_retransmit_newack(tp, th);
2522 
2523 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2524 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2525 			goto dropafterack;
2526 		}
2527 		acked = th->th_ack - tp->snd_una;
2528 		tcps = TCP_STAT_GETREF();
2529 		_NET_STATINC_REF(tcps, TCP_STAT_RCVACKPACK);
2530 		_NET_STATADD_REF(tcps, TCP_STAT_RCVACKBYTE, acked);
2531 		TCP_STAT_PUTREF();
2532 
2533 		/*
2534 		 * If we have a timestamp reply, update smoothed
2535 		 * round trip time.  If no timestamp is present but
2536 		 * transmit timer is running and timed sequence
2537 		 * number was acked, update smoothed round trip time.
2538 		 * Since we now have an rtt measurement, cancel the
2539 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2540 		 * Recompute the initial retransmit timer.
2541 		 */
2542 		if (ts_rtt)
2543 			tcp_xmit_timer(tp, ts_rtt - 1);
2544 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2545 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2546 
2547 		/*
2548 		 * If all outstanding data is acked, stop retransmit
2549 		 * timer and remember to restart (more output or persist).
2550 		 * If there is more data to be acked, restart retransmit
2551 		 * timer, using current (possibly backed-off) value.
2552 		 */
2553 		if (th->th_ack == tp->snd_max) {
2554 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2555 			needoutput = 1;
2556 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2557 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2558 
2559 		/*
2560 		 * New data has been acked, adjust the congestion window.
2561 		 */
2562 		tp->t_congctl->newack(tp, th);
2563 
2564 		nd_hint(tp);
2565 		if (acked > so->so_snd.sb_cc) {
2566 			tp->snd_wnd -= so->so_snd.sb_cc;
2567 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2568 			ourfinisacked = 1;
2569 		} else {
2570 			if (acked > (tp->t_lastoff - tp->t_inoff))
2571 				tp->t_lastm = NULL;
2572 			sbdrop(&so->so_snd, acked);
2573 			tp->t_lastoff -= acked;
2574 			if (tp->snd_wnd > acked)
2575 				tp->snd_wnd -= acked;
2576 			else
2577 				tp->snd_wnd = 0;
2578 			ourfinisacked = 0;
2579 		}
2580 		sowwakeup(so);
2581 
2582 		icmp_check(tp, th, acked);
2583 
2584 		tp->snd_una = th->th_ack;
2585 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
2586 			tp->snd_fack = tp->snd_una;
2587 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2588 			tp->snd_nxt = tp->snd_una;
2589 		if (SEQ_LT(tp->snd_high, tp->snd_una))
2590 			tp->snd_high = tp->snd_una;
2591 
2592 		switch (tp->t_state) {
2593 
2594 		/*
2595 		 * In FIN_WAIT_1 STATE in addition to the processing
2596 		 * for the ESTABLISHED state if our FIN is now acknowledged
2597 		 * then enter FIN_WAIT_2.
2598 		 */
2599 		case TCPS_FIN_WAIT_1:
2600 			if (ourfinisacked) {
2601 				/*
2602 				 * If we can't receive any more
2603 				 * data, then closing user can proceed.
2604 				 * Starting the timer is contrary to the
2605 				 * specification, but if we don't get a FIN
2606 				 * we'll hang forever.
2607 				 */
2608 				if (so->so_state & SS_CANTRCVMORE) {
2609 					soisdisconnected(so);
2610 					if (tp->t_maxidle > 0)
2611 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2612 						    tp->t_maxidle);
2613 				}
2614 				tp->t_state = TCPS_FIN_WAIT_2;
2615 			}
2616 			break;
2617 
2618 	 	/*
2619 		 * In CLOSING STATE in addition to the processing for
2620 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2621 		 * then enter the TIME-WAIT state, otherwise ignore
2622 		 * the segment.
2623 		 */
2624 		case TCPS_CLOSING:
2625 			if (ourfinisacked) {
2626 				tp->t_state = TCPS_TIME_WAIT;
2627 				tcp_canceltimers(tp);
2628 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2629 				soisdisconnected(so);
2630 			}
2631 			break;
2632 
2633 		/*
2634 		 * In LAST_ACK, we may still be waiting for data to drain
2635 		 * and/or to be acked, as well as for the ack of our FIN.
2636 		 * If our FIN is now acknowledged, delete the TCB,
2637 		 * enter the closed state and return.
2638 		 */
2639 		case TCPS_LAST_ACK:
2640 			if (ourfinisacked) {
2641 				tp = tcp_close(tp);
2642 				goto drop;
2643 			}
2644 			break;
2645 
2646 		/*
2647 		 * In TIME_WAIT state the only thing that should arrive
2648 		 * is a retransmission of the remote FIN.  Acknowledge
2649 		 * it and restart the finack timer.
2650 		 */
2651 		case TCPS_TIME_WAIT:
2652 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2653 			goto dropafterack;
2654 		}
2655 	}
2656 
2657 step6:
2658 	/*
2659 	 * Update window information.
2660 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2661 	 */
2662 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2663 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2664 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2665 		/* keep track of pure window updates */
2666 		if (tlen == 0 &&
2667 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2668 			TCP_STATINC(TCP_STAT_RCVWINUPD);
2669 		tp->snd_wnd = tiwin;
2670 		tp->snd_wl1 = th->th_seq;
2671 		tp->snd_wl2 = th->th_ack;
2672 		if (tp->snd_wnd > tp->max_sndwnd)
2673 			tp->max_sndwnd = tp->snd_wnd;
2674 		needoutput = 1;
2675 	}
2676 
2677 	/*
2678 	 * Process segments with URG.
2679 	 */
2680 	if ((tiflags & TH_URG) && th->th_urp &&
2681 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2682 		/*
2683 		 * This is a kludge, but if we receive and accept
2684 		 * random urgent pointers, we'll crash in
2685 		 * soreceive.  It's hard to imagine someone
2686 		 * actually wanting to send this much urgent data.
2687 		 */
2688 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2689 			th->th_urp = 0;			/* XXX */
2690 			tiflags &= ~TH_URG;		/* XXX */
2691 			goto dodata;			/* XXX */
2692 		}
2693 
2694 		/*
2695 		 * If this segment advances the known urgent pointer,
2696 		 * then mark the data stream.  This should not happen
2697 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2698 		 * a FIN has been received from the remote side.
2699 		 * In these states we ignore the URG.
2700 		 *
2701 		 * According to RFC961 (Assigned Protocols),
2702 		 * the urgent pointer points to the last octet
2703 		 * of urgent data.  We continue, however,
2704 		 * to consider it to indicate the first octet
2705 		 * of data past the urgent section as the original
2706 		 * spec states (in one of two places).
2707 		 */
2708 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2709 			tp->rcv_up = th->th_seq + th->th_urp;
2710 			so->so_oobmark = so->so_rcv.sb_cc +
2711 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2712 			if (so->so_oobmark == 0)
2713 				so->so_state |= SS_RCVATMARK;
2714 			sohasoutofband(so);
2715 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2716 		}
2717 
2718 		/*
2719 		 * Remove out of band data so doesn't get presented to user.
2720 		 * This can happen independent of advancing the URG pointer,
2721 		 * but if two URG's are pending at once, some out-of-band
2722 		 * data may creep in... ick.
2723 		 */
2724 		if (th->th_urp <= (u_int16_t)tlen &&
2725 		    (so->so_options & SO_OOBINLINE) == 0)
2726 			tcp_pulloutofband(so, th, m, hdroptlen);
2727 	} else {
2728 		/*
2729 		 * If no out of band data is expected,
2730 		 * pull receive urgent pointer along
2731 		 * with the receive window.
2732 		 */
2733 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2734 			tp->rcv_up = tp->rcv_nxt;
2735 	}
2736 dodata:
2737 
2738 	/*
2739 	 * Process the segment text, merging it into the TCP sequencing queue,
2740 	 * and arranging for acknowledgement of receipt if necessary.
2741 	 * This process logically involves adjusting tp->rcv_wnd as data
2742 	 * is presented to the user (this happens in tcp_usrreq.c,
2743 	 * tcp_rcvd()).  If a FIN has already been received on this
2744 	 * connection then we just ignore the text.
2745 	 */
2746 	if ((tlen || (tiflags & TH_FIN)) &&
2747 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2748 		/*
2749 		 * Handle the common case:
2750 		 *  o Segment is the next to be received, and
2751 		 *  o The queue is empty, and
2752 		 *  o The connection is established
2753 		 * In this case, we avoid calling tcp_reass.
2754 		 *
2755 		 * tcp_setup_ack: set DELACK for segments received in order,
2756 		 * but ack immediately when segments are out of order (so that
2757 		 * fast retransmit can work).
2758 		 */
2759 		TCP_REASS_LOCK(tp);
2760 		if (th->th_seq == tp->rcv_nxt &&
2761 		    TAILQ_FIRST(&tp->segq) == NULL &&
2762 		    tp->t_state == TCPS_ESTABLISHED) {
2763 			tcp_setup_ack(tp, th);
2764 			tp->rcv_nxt += tlen;
2765 			tiflags = th->th_flags & TH_FIN;
2766 			tcps = TCP_STAT_GETREF();
2767 			_NET_STATINC_REF(tcps, TCP_STAT_RCVPACK);
2768 			_NET_STATADD_REF(tcps, TCP_STAT_RCVBYTE, tlen);
2769 			TCP_STAT_PUTREF();
2770 			nd_hint(tp);
2771 			if (so->so_state & SS_CANTRCVMORE) {
2772 				m_freem(m);
2773 			} else {
2774 				m_adj(m, hdroptlen);
2775 				sbappendstream(&(so)->so_rcv, m);
2776 			}
2777 			TCP_REASS_UNLOCK(tp);
2778 			sorwakeup(so);
2779 		} else {
2780 			m_adj(m, hdroptlen);
2781 			tiflags = tcp_reass(tp, th, m, tlen);
2782 			tp->t_flags |= TF_ACKNOW;
2783 		}
2784 
2785 		/*
2786 		 * Note the amount of data that peer has sent into
2787 		 * our window, in order to estimate the sender's
2788 		 * buffer size.
2789 		 */
2790 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2791 	} else {
2792 		m_freem(m);
2793 		m = NULL;
2794 		tiflags &= ~TH_FIN;
2795 	}
2796 
2797 	/*
2798 	 * If FIN is received ACK the FIN and let the user know
2799 	 * that the connection is closing.  Ignore a FIN received before
2800 	 * the connection is fully established.
2801 	 */
2802 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2803 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2804 			socantrcvmore(so);
2805 			tp->t_flags |= TF_ACKNOW;
2806 			tp->rcv_nxt++;
2807 		}
2808 		switch (tp->t_state) {
2809 
2810 	 	/*
2811 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2812 		 */
2813 		case TCPS_ESTABLISHED:
2814 			tp->t_state = TCPS_CLOSE_WAIT;
2815 			break;
2816 
2817 	 	/*
2818 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2819 		 * enter the CLOSING state.
2820 		 */
2821 		case TCPS_FIN_WAIT_1:
2822 			tp->t_state = TCPS_CLOSING;
2823 			break;
2824 
2825 	 	/*
2826 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2827 		 * starting the time-wait timer, turning off the other
2828 		 * standard timers.
2829 		 */
2830 		case TCPS_FIN_WAIT_2:
2831 			tp->t_state = TCPS_TIME_WAIT;
2832 			tcp_canceltimers(tp);
2833 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2834 			soisdisconnected(so);
2835 			break;
2836 
2837 		/*
2838 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2839 		 */
2840 		case TCPS_TIME_WAIT:
2841 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2842 			break;
2843 		}
2844 	}
2845 #ifdef TCP_DEBUG
2846 	if (so->so_options & SO_DEBUG)
2847 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2848 #endif
2849 
2850 	/*
2851 	 * Return any desired output.
2852 	 */
2853 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2854 		KERNEL_LOCK(1, NULL);
2855 		(void)tcp_output(tp);
2856 		KERNEL_UNLOCK_ONE(NULL);
2857 	}
2858 	if (tcp_saveti)
2859 		m_freem(tcp_saveti);
2860 
2861 	if (tp->t_state == TCPS_TIME_WAIT
2862 	    && (so->so_state & SS_NOFDREF)
2863 	    && (tp->t_inpcb || af != AF_INET || af != AF_INET6)
2864 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
2865 	    && TAILQ_EMPTY(&tp->segq)
2866 	    && vtw_add(af, tp)) {
2867 		;
2868 	}
2869 	return;
2870 
2871 badsyn:
2872 	/*
2873 	 * Received a bad SYN.  Increment counters and dropwithreset.
2874 	 */
2875 	TCP_STATINC(TCP_STAT_BADSYN);
2876 	tp = NULL;
2877 	goto dropwithreset;
2878 
2879 dropafterack:
2880 	/*
2881 	 * Generate an ACK dropping incoming segment if it occupies
2882 	 * sequence space, where the ACK reflects our state.
2883 	 */
2884 	if (tiflags & TH_RST)
2885 		goto drop;
2886 	goto dropafterack2;
2887 
2888 dropafterack_ratelim:
2889 	/*
2890 	 * We may want to rate-limit ACKs against SYN/RST attack.
2891 	 */
2892 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2893 	    tcp_ackdrop_ppslim) == 0) {
2894 		/* XXX stat */
2895 		goto drop;
2896 	}
2897 
2898 dropafterack2:
2899 	m_freem(m);
2900 	tp->t_flags |= TF_ACKNOW;
2901 	KERNEL_LOCK(1, NULL);
2902 	(void)tcp_output(tp);
2903 	KERNEL_UNLOCK_ONE(NULL);
2904 	if (tcp_saveti)
2905 		m_freem(tcp_saveti);
2906 	return;
2907 
2908 dropwithreset_ratelim:
2909 	/*
2910 	 * We may want to rate-limit RSTs in certain situations,
2911 	 * particularly if we are sending an RST in response to
2912 	 * an attempt to connect to or otherwise communicate with
2913 	 * a port for which we have no socket.
2914 	 */
2915 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2916 	    tcp_rst_ppslim) == 0) {
2917 		/* XXX stat */
2918 		goto drop;
2919 	}
2920 
2921 dropwithreset:
2922 	/*
2923 	 * Generate a RST, dropping incoming segment.
2924 	 * Make ACK acceptable to originator of segment.
2925 	 */
2926 	if (tiflags & TH_RST)
2927 		goto drop;
2928 	if (tiflags & TH_ACK) {
2929 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2930 	} else {
2931 		if (tiflags & TH_SYN)
2932 			tlen++;
2933 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2934 		    TH_RST|TH_ACK);
2935 	}
2936 	if (tcp_saveti)
2937 		m_freem(tcp_saveti);
2938 	return;
2939 
2940 badcsum:
2941 drop:
2942 	/*
2943 	 * Drop space held by incoming segment and return.
2944 	 */
2945 	if (tp) {
2946 		so = tp->t_inpcb->inp_socket;
2947 #ifdef TCP_DEBUG
2948 		if (so && (so->so_options & SO_DEBUG) != 0)
2949 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2950 #endif
2951 	}
2952 	if (tcp_saveti)
2953 		m_freem(tcp_saveti);
2954 	m_freem(m);
2955 	return;
2956 }
2957 
2958 #ifdef TCP_SIGNATURE
2959 int
2960 tcp_signature_apply(void *fstate, void *data, u_int len)
2961 {
2962 
2963 	MD5Update(fstate, (u_char *)data, len);
2964 	return (0);
2965 }
2966 
2967 struct secasvar *
2968 tcp_signature_getsav(struct mbuf *m)
2969 {
2970 	struct ip *ip;
2971 	struct ip6_hdr *ip6;
2972 
2973 	ip = mtod(m, struct ip *);
2974 	switch (ip->ip_v) {
2975 	case 4:
2976 		ip = mtod(m, struct ip *);
2977 		ip6 = NULL;
2978 		break;
2979 	case 6:
2980 		ip = NULL;
2981 		ip6 = mtod(m, struct ip6_hdr *);
2982 		break;
2983 	default:
2984 		return (NULL);
2985 	}
2986 
2987 #ifdef IPSEC
2988 	union sockaddr_union dst;
2989 
2990 	/* Extract the destination from the IP header in the mbuf. */
2991 	memset(&dst, 0, sizeof(union sockaddr_union));
2992 	if (ip != NULL) {
2993 		dst.sa.sa_len = sizeof(struct sockaddr_in);
2994 		dst.sa.sa_family = AF_INET;
2995 		dst.sin.sin_addr = ip->ip_dst;
2996 	} else {
2997 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2998 		dst.sa.sa_family = AF_INET6;
2999 		dst.sin6.sin6_addr = ip6->ip6_dst;
3000 	}
3001 
3002 	/*
3003 	 * Look up an SADB entry which matches the address of the peer.
3004 	 */
3005 	return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3006 #else
3007 	return NULL;
3008 #endif
3009 }
3010 
3011 int
3012 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3013     struct secasvar *sav, char *sig)
3014 {
3015 	MD5_CTX ctx;
3016 	struct ip *ip;
3017 	struct ipovly *ipovly;
3018 #ifdef INET6
3019 	struct ip6_hdr *ip6;
3020 	struct ip6_hdr_pseudo ip6pseudo;
3021 #endif
3022 	struct ippseudo ippseudo;
3023 	struct tcphdr th0;
3024 	int l, tcphdrlen;
3025 
3026 	if (sav == NULL)
3027 		return (-1);
3028 
3029 	tcphdrlen = th->th_off * 4;
3030 
3031 	switch (mtod(m, struct ip *)->ip_v) {
3032 	case 4:
3033 		MD5Init(&ctx);
3034 		ip = mtod(m, struct ip *);
3035 		memset(&ippseudo, 0, sizeof(ippseudo));
3036 		ipovly = (struct ipovly *)ip;
3037 		ippseudo.ippseudo_src = ipovly->ih_src;
3038 		ippseudo.ippseudo_dst = ipovly->ih_dst;
3039 		ippseudo.ippseudo_pad = 0;
3040 		ippseudo.ippseudo_p = IPPROTO_TCP;
3041 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3042 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3043 		break;
3044 #if INET6
3045 	case 6:
3046 		MD5Init(&ctx);
3047 		ip6 = mtod(m, struct ip6_hdr *);
3048 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3049 		ip6pseudo.ip6ph_src = ip6->ip6_src;
3050 		in6_clearscope(&ip6pseudo.ip6ph_src);
3051 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3052 		in6_clearscope(&ip6pseudo.ip6ph_dst);
3053 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3054 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3055 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3056 		break;
3057 #endif
3058 	default:
3059 		return (-1);
3060 	}
3061 
3062 	th0 = *th;
3063 	th0.th_sum = 0;
3064 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
3065 
3066 	l = m->m_pkthdr.len - thoff - tcphdrlen;
3067 	if (l > 0)
3068 		m_apply(m, thoff + tcphdrlen,
3069 		    m->m_pkthdr.len - thoff - tcphdrlen,
3070 		    tcp_signature_apply, &ctx);
3071 
3072 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3073 	MD5Final(sig, &ctx);
3074 
3075 	return (0);
3076 }
3077 #endif
3078 
3079 /*
3080  * Parse and process tcp options.
3081  *
3082  * Returns -1 if this segment should be dropped.  (eg. wrong signature)
3083  * Otherwise returns 0.
3084  */
3085 int
3086 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt, struct tcphdr *th,
3087     struct mbuf *m, int toff, struct tcp_opt_info *oi)
3088 {
3089 	u_int16_t mss;
3090 	int opt, optlen = 0;
3091 #ifdef TCP_SIGNATURE
3092 	void *sigp = NULL;
3093 	char sigbuf[TCP_SIGLEN];
3094 	struct secasvar *sav = NULL;
3095 #endif
3096 
3097 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3098 		opt = cp[0];
3099 		if (opt == TCPOPT_EOL)
3100 			break;
3101 		if (opt == TCPOPT_NOP)
3102 			optlen = 1;
3103 		else {
3104 			if (cnt < 2)
3105 				break;
3106 			optlen = cp[1];
3107 			if (optlen < 2 || optlen > cnt)
3108 				break;
3109 		}
3110 		switch (opt) {
3111 
3112 		default:
3113 			continue;
3114 
3115 		case TCPOPT_MAXSEG:
3116 			if (optlen != TCPOLEN_MAXSEG)
3117 				continue;
3118 			if (!(th->th_flags & TH_SYN))
3119 				continue;
3120 			if (TCPS_HAVERCVDSYN(tp->t_state))
3121 				continue;
3122 			memcpy(&mss, cp + 2, sizeof(mss));
3123 			oi->maxseg = ntohs(mss);
3124 			break;
3125 
3126 		case TCPOPT_WINDOW:
3127 			if (optlen != TCPOLEN_WINDOW)
3128 				continue;
3129 			if (!(th->th_flags & TH_SYN))
3130 				continue;
3131 			if (TCPS_HAVERCVDSYN(tp->t_state))
3132 				continue;
3133 			tp->t_flags |= TF_RCVD_SCALE;
3134 			tp->requested_s_scale = cp[2];
3135 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3136 				char buf[INET6_ADDRSTRLEN];
3137 				struct ip *ip = mtod(m, struct ip *);
3138 #ifdef INET6
3139 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3140 #endif
3141 
3142 				switch (ip->ip_v) {
3143 				case 4:
3144 					in_print(buf, sizeof(buf),
3145 					    &ip->ip_src);
3146 					break;
3147 #ifdef INET6
3148 				case 6:
3149 					in6_print(buf, sizeof(buf),
3150 					    &ip6->ip6_src);
3151 					break;
3152 #endif
3153 				default:
3154 					strlcpy(buf, "(unknown)", sizeof(buf));
3155 					break;
3156 				}
3157 
3158 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3159 				    "assuming %d\n",
3160 				    tp->requested_s_scale, buf,
3161 				    TCP_MAX_WINSHIFT);
3162 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
3163 			}
3164 			break;
3165 
3166 		case TCPOPT_TIMESTAMP:
3167 			if (optlen != TCPOLEN_TIMESTAMP)
3168 				continue;
3169 			oi->ts_present = 1;
3170 			memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val));
3171 			NTOHL(oi->ts_val);
3172 			memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr));
3173 			NTOHL(oi->ts_ecr);
3174 
3175 			if (!(th->th_flags & TH_SYN))
3176 				continue;
3177 			if (TCPS_HAVERCVDSYN(tp->t_state))
3178 				continue;
3179 			/*
3180 			 * A timestamp received in a SYN makes
3181 			 * it ok to send timestamp requests and replies.
3182 			 */
3183 			tp->t_flags |= TF_RCVD_TSTMP;
3184 			tp->ts_recent = oi->ts_val;
3185 			tp->ts_recent_age = tcp_now;
3186                         break;
3187 
3188 		case TCPOPT_SACK_PERMITTED:
3189 			if (optlen != TCPOLEN_SACK_PERMITTED)
3190 				continue;
3191 			if (!(th->th_flags & TH_SYN))
3192 				continue;
3193 			if (TCPS_HAVERCVDSYN(tp->t_state))
3194 				continue;
3195 			if (tcp_do_sack) {
3196 				tp->t_flags |= TF_SACK_PERMIT;
3197 				tp->t_flags |= TF_WILL_SACK;
3198 			}
3199 			break;
3200 
3201 		case TCPOPT_SACK:
3202 			tcp_sack_option(tp, th, cp, optlen);
3203 			break;
3204 #ifdef TCP_SIGNATURE
3205 		case TCPOPT_SIGNATURE:
3206 			if (optlen != TCPOLEN_SIGNATURE)
3207 				continue;
3208 			if (sigp &&
3209 			    !consttime_memequal(sigp, cp + 2, TCP_SIGLEN))
3210 				return (-1);
3211 
3212 			sigp = sigbuf;
3213 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3214 			tp->t_flags |= TF_SIGNATURE;
3215 			break;
3216 #endif
3217 		}
3218 	}
3219 
3220 #ifndef TCP_SIGNATURE
3221 	return 0;
3222 #else
3223 	if (tp->t_flags & TF_SIGNATURE) {
3224 		sav = tcp_signature_getsav(m);
3225 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
3226 			return (-1);
3227 	}
3228 
3229 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3230 		goto out;
3231 
3232 	if (sigp) {
3233 		char sig[TCP_SIGLEN];
3234 
3235 		tcp_fields_to_net(th);
3236 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
3237 			tcp_fields_to_host(th);
3238 			goto out;
3239 		}
3240 		tcp_fields_to_host(th);
3241 
3242 		if (!consttime_memequal(sig, sigp, TCP_SIGLEN)) {
3243 			TCP_STATINC(TCP_STAT_BADSIG);
3244 			goto out;
3245 		} else
3246 			TCP_STATINC(TCP_STAT_GOODSIG);
3247 
3248 		key_sa_recordxfer(sav, m);
3249 		KEY_SA_UNREF(&sav);
3250 	}
3251 	return 0;
3252 out:
3253 	if (sav != NULL)
3254 		KEY_SA_UNREF(&sav);
3255 	return -1;
3256 #endif
3257 }
3258 
3259 /*
3260  * Pull out of band byte out of a segment so
3261  * it doesn't appear in the user's data queue.
3262  * It is still reflected in the segment length for
3263  * sequencing purposes.
3264  */
3265 void
3266 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3267     struct mbuf *m, int off)
3268 {
3269 	int cnt = off + th->th_urp - 1;
3270 
3271 	while (cnt >= 0) {
3272 		if (m->m_len > cnt) {
3273 			char *cp = mtod(m, char *) + cnt;
3274 			struct tcpcb *tp = sototcpcb(so);
3275 
3276 			tp->t_iobc = *cp;
3277 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3278 			memmove(cp, cp + 1, (unsigned)(m->m_len - cnt - 1));
3279 			m->m_len--;
3280 			return;
3281 		}
3282 		cnt -= m->m_len;
3283 		m = m->m_next;
3284 		if (m == NULL)
3285 			break;
3286 	}
3287 	panic("tcp_pulloutofband");
3288 }
3289 
3290 /*
3291  * Collect new round-trip time estimate
3292  * and update averages and current timeout.
3293  *
3294  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3295  * difference of two timestamps.
3296  */
3297 void
3298 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3299 {
3300 	int32_t delta;
3301 
3302 	TCP_STATINC(TCP_STAT_RTTUPDATED);
3303 	if (tp->t_srtt != 0) {
3304 		/*
3305 		 * Compute the amount to add to srtt for smoothing,
3306 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
3307 		 * srtt is stored in 1/32 slow ticks, we conceptually
3308 		 * shift left 5 bits, subtract srtt to get the
3309 		 * difference, and then shift right by TCP_RTT_SHIFT
3310 		 * (3) to obtain 1/8 of the difference.
3311 		 */
3312 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3313 		/*
3314 		 * This can never happen, because delta's lowest
3315 		 * possible value is 1/8 of t_srtt.  But if it does,
3316 		 * set srtt to some reasonable value, here chosen
3317 		 * as 1/8 tick.
3318 		 */
3319 		if ((tp->t_srtt += delta) <= 0)
3320 			tp->t_srtt = 1 << 2;
3321 		/*
3322 		 * RFC2988 requires that rttvar be updated first.
3323 		 * This code is compliant because "delta" is the old
3324 		 * srtt minus the new observation (scaled).
3325 		 *
3326 		 * RFC2988 says:
3327 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3328 		 *
3329 		 * delta is in units of 1/32 ticks, and has then been
3330 		 * divided by 8.  This is equivalent to being in 1/16s
3331 		 * units and divided by 4.  Subtract from it 1/4 of
3332 		 * the existing rttvar to form the (signed) amount to
3333 		 * adjust.
3334 		 */
3335 		if (delta < 0)
3336 			delta = -delta;
3337 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3338 		/*
3339 		 * As with srtt, this should never happen.  There is
3340 		 * no support in RFC2988 for this operation.  But 1/4s
3341 		 * as rttvar when faced with something arguably wrong
3342 		 * is ok.
3343 		 */
3344 		if ((tp->t_rttvar += delta) <= 0)
3345 			tp->t_rttvar = 1 << 2;
3346 
3347 		/*
3348 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3349 		 * Problem is: it doesn't work.  Disabled by defaulting
3350 		 * tcp_rttlocal to 0; see corresponding code in
3351 		 * tcp_subr that selects local vs remote in a different way.
3352 		 *
3353 		 * The static branch prediction hint here should be removed
3354 		 * when the rtt estimator is fixed and the rtt_enable code
3355 		 * is turned back on.
3356 		 */
3357 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3358 		    && tp->t_srtt > tcp_msl_remote_threshold
3359 		    && tp->t_msl  < tcp_msl_remote) {
3360 			tp->t_msl = MIN(tcp_msl_remote, TCP_MAXMSL);
3361 		}
3362 	} else {
3363 		/*
3364 		 * This is the first measurement.  Per RFC2988, 2.2,
3365 		 * set rtt=R and srtt=R/2.
3366 		 * For srtt, storage representation is 1/32 ticks,
3367 		 * so shift left by 5.
3368 		 * For rttvar, storage representation is 1/16 ticks,
3369 		 * So shift left by 4, but then right by 1 to halve.
3370 		 */
3371 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3372 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3373 	}
3374 	tp->t_rtttime = 0;
3375 	tp->t_rxtshift = 0;
3376 
3377 	/*
3378 	 * the retransmit should happen at rtt + 4 * rttvar.
3379 	 * Because of the way we do the smoothing, srtt and rttvar
3380 	 * will each average +1/2 tick of bias.  When we compute
3381 	 * the retransmit timer, we want 1/2 tick of rounding and
3382 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3383 	 * firing of the timer.  The bias will give us exactly the
3384 	 * 1.5 tick we need.  But, because the bias is
3385 	 * statistical, we have to test that we don't drop below
3386 	 * the minimum feasible timer (which is 2 ticks).
3387 	 */
3388 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3389 	    uimax(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3390 
3391 	/*
3392 	 * We received an ack for a packet that wasn't retransmitted;
3393 	 * it is probably safe to discard any error indications we've
3394 	 * received recently.  This isn't quite right, but close enough
3395 	 * for now (a route might have failed after we sent a segment,
3396 	 * and the return path might not be symmetrical).
3397 	 */
3398 	tp->t_softerror = 0;
3399 }
3400