xref: /netbsd-src/sys/netinet/tcp_input.c (revision c3de1627bea3f8145539ecad5cb08e7d93cd83ac)
1 /*	$NetBSD: tcp_input.c,v 1.140 2002/03/24 17:09:01 christos Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74  * All rights reserved.
75  *
76  * This code is derived from software contributed to The NetBSD Foundation
77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78  * Facility, NASA Ames Research Center.
79  *
80  * Redistribution and use in source and binary forms, with or without
81  * modification, are permitted provided that the following conditions
82  * are met:
83  * 1. Redistributions of source code must retain the above copyright
84  *    notice, this list of conditions and the following disclaimer.
85  * 2. Redistributions in binary form must reproduce the above copyright
86  *    notice, this list of conditions and the following disclaimer in the
87  *    documentation and/or other materials provided with the distribution.
88  * 3. All advertising materials mentioning features or use of this software
89  *    must display the following acknowledgement:
90  *	This product includes software developed by the NetBSD
91  *	Foundation, Inc. and its contributors.
92  * 4. Neither the name of The NetBSD Foundation nor the names of its
93  *    contributors may be used to endorse or promote products derived
94  *    from this software without specific prior written permission.
95  *
96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106  * POSSIBILITY OF SUCH DAMAGE.
107  */
108 
109 /*
110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111  *	The Regents of the University of California.  All rights reserved.
112  *
113  * Redistribution and use in source and binary forms, with or without
114  * modification, are permitted provided that the following conditions
115  * are met:
116  * 1. Redistributions of source code must retain the above copyright
117  *    notice, this list of conditions and the following disclaimer.
118  * 2. Redistributions in binary form must reproduce the above copyright
119  *    notice, this list of conditions and the following disclaimer in the
120  *    documentation and/or other materials provided with the distribution.
121  * 3. All advertising materials mentioning features or use of this software
122  *    must display the following acknowledgement:
123  *	This product includes software developed by the University of
124  *	California, Berkeley and its contributors.
125  * 4. Neither the name of the University nor the names of its contributors
126  *    may be used to endorse or promote products derived from this software
127  *    without specific prior written permission.
128  *
129  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
130  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
131  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
132  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
133  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
134  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
135  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
136  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
137  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
138  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
139  * SUCH DAMAGE.
140  *
141  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
142  */
143 
144 /*
145  *	TODO list for SYN cache stuff:
146  *
147  *	Find room for a "state" field, which is needed to keep a
148  *	compressed state for TIME_WAIT TCBs.  It's been noted already
149  *	that this is fairly important for very high-volume web and
150  *	mail servers, which use a large number of short-lived
151  *	connections.
152  */
153 
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.140 2002/03/24 17:09:01 christos Exp $");
156 
157 #include "opt_inet.h"
158 #include "opt_ipsec.h"
159 #include "opt_inet_csum.h"
160 #include "opt_tcp_debug.h"
161 
162 #include <sys/param.h>
163 #include <sys/systm.h>
164 #include <sys/malloc.h>
165 #include <sys/mbuf.h>
166 #include <sys/protosw.h>
167 #include <sys/socket.h>
168 #include <sys/socketvar.h>
169 #include <sys/errno.h>
170 #include <sys/syslog.h>
171 #include <sys/pool.h>
172 #include <sys/domain.h>
173 #include <sys/kernel.h>
174 
175 #include <net/if.h>
176 #include <net/route.h>
177 #include <net/if_types.h>
178 
179 #include <netinet/in.h>
180 #include <netinet/in_systm.h>
181 #include <netinet/ip.h>
182 #include <netinet/in_pcb.h>
183 #include <netinet/ip_var.h>
184 
185 #ifdef INET6
186 #ifndef INET
187 #include <netinet/in.h>
188 #endif
189 #include <netinet/ip6.h>
190 #include <netinet6/ip6_var.h>
191 #include <netinet6/in6_pcb.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_var.h>
194 #include <netinet/icmp6.h>
195 #include <netinet6/nd6.h>
196 #endif
197 
198 #ifdef PULLDOWN_TEST
199 #ifndef INET6
200 /* always need ip6.h for IP6_EXTHDR_GET */
201 #include <netinet/ip6.h>
202 #endif
203 #endif
204 
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcpip.h>
211 #include <netinet/tcp_debug.h>
212 
213 #include <machine/stdarg.h>
214 
215 #ifdef IPSEC
216 #include <netinet6/ipsec.h>
217 #include <netkey/key.h>
218 #endif /*IPSEC*/
219 #ifdef INET6
220 #include "faith.h"
221 #if defined(NFAITH) && NFAITH > 0
222 #include <net/if_faith.h>
223 #endif
224 #endif
225 
226 int	tcprexmtthresh = 3;
227 int	tcp_log_refused;
228 
229 static int tcp_rst_ppslim_count = 0;
230 static struct timeval tcp_rst_ppslim_last;
231 
232 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
233 
234 /* for modulo comparisons of timestamps */
235 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
236 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
237 
238 /*
239  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
240  */
241 #ifdef INET6
242 #define ND6_HINT(tp) \
243 do { \
244 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
245 	 && tp->t_in6pcb->in6p_route.ro_rt) { \
246 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
247 	} \
248 } while (0)
249 #else
250 #define ND6_HINT(tp)
251 #endif
252 
253 /*
254  * Macro to compute ACK transmission behavior.  Delay the ACK unless
255  * we have already delayed an ACK (must send an ACK every two segments).
256  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
257  * option is enabled.
258  */
259 #define	TCP_SETUP_ACK(tp, th) \
260 do { \
261 	if ((tp)->t_flags & TF_DELACK || \
262 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
263 		tp->t_flags |= TF_ACKNOW; \
264 	else \
265 		TCP_SET_DELACK(tp); \
266 } while (0)
267 
268 /*
269  * Convert TCP protocol fields to host order for easier processing.
270  */
271 #define	TCP_FIELDS_TO_HOST(th)						\
272 do {									\
273 	NTOHL((th)->th_seq);						\
274 	NTOHL((th)->th_ack);						\
275 	NTOHS((th)->th_win);						\
276 	NTOHS((th)->th_urp);						\
277 } while (0)
278 
279 #ifdef TCP_CSUM_COUNTERS
280 #include <sys/device.h>
281 
282 extern struct evcnt tcp_hwcsum_ok;
283 extern struct evcnt tcp_hwcsum_bad;
284 extern struct evcnt tcp_hwcsum_data;
285 extern struct evcnt tcp_swcsum;
286 
287 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
288 
289 #else
290 
291 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
292 
293 #endif /* TCP_CSUM_COUNTERS */
294 
295 int
296 tcp_reass(tp, th, m, tlen)
297 	struct tcpcb *tp;
298 	struct tcphdr *th;
299 	struct mbuf *m;
300 	int *tlen;
301 {
302 	struct ipqent *p, *q, *nq, *tiqe = NULL;
303 	struct socket *so = NULL;
304 	int pkt_flags;
305 	tcp_seq pkt_seq;
306 	unsigned pkt_len;
307 	u_long rcvpartdupbyte = 0;
308 	u_long rcvoobyte;
309 
310 	if (tp->t_inpcb)
311 		so = tp->t_inpcb->inp_socket;
312 #ifdef INET6
313 	else if (tp->t_in6pcb)
314 		so = tp->t_in6pcb->in6p_socket;
315 #endif
316 
317 	TCP_REASS_LOCK_CHECK(tp);
318 
319 	/*
320 	 * Call with th==0 after become established to
321 	 * force pre-ESTABLISHED data up to user socket.
322 	 */
323 	if (th == 0)
324 		goto present;
325 
326 	rcvoobyte = *tlen;
327 	/*
328 	 * Copy these to local variables because the tcpiphdr
329 	 * gets munged while we are collapsing mbufs.
330 	 */
331 	pkt_seq = th->th_seq;
332 	pkt_len = *tlen;
333 	pkt_flags = th->th_flags;
334 	/*
335 	 * Find a segment which begins after this one does.
336 	 */
337 	for (p = NULL, q = LIST_FIRST(&tp->segq); q != NULL; q = nq) {
338 		nq = LIST_NEXT(q, ipqe_q);
339 		/*
340 		 * If the received segment is just right after this
341 		 * fragment, merge the two together and then check
342 		 * for further overlaps.
343 		 */
344 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
345 #ifdef TCPREASS_DEBUG
346 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
347 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
348 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
349 #endif
350 			pkt_len += q->ipqe_len;
351 			pkt_flags |= q->ipqe_flags;
352 			pkt_seq = q->ipqe_seq;
353 			m_cat(q->ipqe_m, m);
354 			m = q->ipqe_m;
355 			goto free_ipqe;
356 		}
357 		/*
358 		 * If the received segment is completely past this
359 		 * fragment, we need to go the next fragment.
360 		 */
361 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
362 			p = q;
363 			continue;
364 		}
365 		/*
366 		 * If the fragment is past the received segment,
367 		 * it (or any following) can't be concatenated.
368 		 */
369 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
370 			break;
371 		/*
372 		 * We've received all the data in this segment before.
373 		 * mark it as a duplicate and return.
374 		 */
375 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
376 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
377 			tcpstat.tcps_rcvduppack++;
378 			tcpstat.tcps_rcvdupbyte += pkt_len;
379 			m_freem(m);
380 			if (tiqe != NULL)
381 				pool_put(&ipqent_pool, tiqe);
382 			return (0);
383 		}
384 		/*
385 		 * Received segment completely overlaps this fragment
386 		 * so we drop the fragment (this keeps the temporal
387 		 * ordering of segments correct).
388 		 */
389 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
390 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
391 			rcvpartdupbyte += q->ipqe_len;
392 			m_freem(q->ipqe_m);
393 			goto free_ipqe;
394 		}
395 		/*
396 		 * RX'ed segment extends past the end of the
397 		 * fragment.  Drop the overlapping bytes.  Then
398 		 * merge the fragment and segment then treat as
399 		 * a longer received packet.
400 		 */
401 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
402 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
403 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
404 #ifdef TCPREASS_DEBUG
405 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
406 			       tp, overlap,
407 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
408 #endif
409 			m_adj(m, overlap);
410 			rcvpartdupbyte += overlap;
411 			m_cat(q->ipqe_m, m);
412 			m = q->ipqe_m;
413 			pkt_seq = q->ipqe_seq;
414 			pkt_len += q->ipqe_len - overlap;
415 			rcvoobyte -= overlap;
416 			goto free_ipqe;
417 		}
418 		/*
419 		 * RX'ed segment extends past the front of the
420 		 * fragment.  Drop the overlapping bytes on the
421 		 * received packet.  The packet will then be
422 		 * contatentated with this fragment a bit later.
423 		 */
424 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
425 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
426 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
427 #ifdef TCPREASS_DEBUG
428 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
429 			       tp, overlap,
430 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
431 #endif
432 			m_adj(m, -overlap);
433 			pkt_len -= overlap;
434 			rcvpartdupbyte += overlap;
435 			rcvoobyte -= overlap;
436 		}
437 		/*
438 		 * If the received segment immediates precedes this
439 		 * fragment then tack the fragment onto this segment
440 		 * and reinsert the data.
441 		 */
442 		if (q->ipqe_seq == pkt_seq + pkt_len) {
443 #ifdef TCPREASS_DEBUG
444 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
445 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
446 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
447 #endif
448 			pkt_len += q->ipqe_len;
449 			pkt_flags |= q->ipqe_flags;
450 			m_cat(m, q->ipqe_m);
451 			LIST_REMOVE(q, ipqe_q);
452 			LIST_REMOVE(q, ipqe_timeq);
453 			if (tiqe == NULL) {
454 			    tiqe = q;
455 			} else {
456 			    pool_put(&ipqent_pool, q);
457 			}
458 			break;
459 		}
460 		/*
461 		 * If the fragment is before the segment, remember it.
462 		 * When this loop is terminated, p will contain the
463 		 * pointer to fragment that is right before the received
464 		 * segment.
465 		 */
466 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
467 			p = q;
468 
469 		continue;
470 
471 		/*
472 		 * This is a common operation.  It also will allow
473 		 * to save doing a malloc/free in most instances.
474 		 */
475 	  free_ipqe:
476 		LIST_REMOVE(q, ipqe_q);
477 		LIST_REMOVE(q, ipqe_timeq);
478 		if (tiqe == NULL) {
479 		    tiqe = q;
480 		} else {
481 		    pool_put(&ipqent_pool, q);
482 		}
483 	}
484 
485 	/*
486 	 * Allocate a new queue entry since the received segment did not
487 	 * collapse onto any other out-of-order block; thus we are allocating
488 	 * a new block.  If it had collapsed, tiqe would not be NULL and
489 	 * we would be reusing it.
490 	 * XXX If we can't, just drop the packet.  XXX
491 	 */
492 	if (tiqe == NULL) {
493 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
494 		if (tiqe == NULL) {
495 			tcpstat.tcps_rcvmemdrop++;
496 			m_freem(m);
497 			return (0);
498 		}
499 	}
500 
501 	/*
502 	 * Update the counters.
503 	 */
504 	tcpstat.tcps_rcvoopack++;
505 	tcpstat.tcps_rcvoobyte += rcvoobyte;
506 	if (rcvpartdupbyte) {
507 	    tcpstat.tcps_rcvpartduppack++;
508 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
509 	}
510 
511 	/*
512 	 * Insert the new fragment queue entry into both queues.
513 	 */
514 	tiqe->ipqe_m = m;
515 	tiqe->ipqe_seq = pkt_seq;
516 	tiqe->ipqe_len = pkt_len;
517 	tiqe->ipqe_flags = pkt_flags;
518 	if (p == NULL) {
519 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
520 #ifdef TCPREASS_DEBUG
521 		if (tiqe->ipqe_seq != tp->rcv_nxt)
522 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
523 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
524 #endif
525 	} else {
526 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
527 #ifdef TCPREASS_DEBUG
528 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
529 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
530 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
531 #endif
532 	}
533 
534 	LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
535 
536 present:
537 	/*
538 	 * Present data to user, advancing rcv_nxt through
539 	 * completed sequence space.
540 	 */
541 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
542 		return (0);
543 	q = LIST_FIRST(&tp->segq);
544 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
545 		return (0);
546 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
547 		return (0);
548 
549 	tp->rcv_nxt += q->ipqe_len;
550 	pkt_flags = q->ipqe_flags & TH_FIN;
551 	ND6_HINT(tp);
552 
553 	LIST_REMOVE(q, ipqe_q);
554 	LIST_REMOVE(q, ipqe_timeq);
555 	if (so->so_state & SS_CANTRCVMORE)
556 		m_freem(q->ipqe_m);
557 	else
558 		sbappend(&so->so_rcv, q->ipqe_m);
559 	pool_put(&ipqent_pool, q);
560 	sorwakeup(so);
561 	return (pkt_flags);
562 }
563 
564 #ifdef INET6
565 int
566 tcp6_input(mp, offp, proto)
567 	struct mbuf **mp;
568 	int *offp, proto;
569 {
570 	struct mbuf *m = *mp;
571 
572 	/*
573 	 * draft-itojun-ipv6-tcp-to-anycast
574 	 * better place to put this in?
575 	 */
576 	if (m->m_flags & M_ANYCAST6) {
577 		struct ip6_hdr *ip6;
578 		if (m->m_len < sizeof(struct ip6_hdr)) {
579 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
580 				tcpstat.tcps_rcvshort++;
581 				return IPPROTO_DONE;
582 			}
583 		}
584 		ip6 = mtod(m, struct ip6_hdr *);
585 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
586 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
587 		return IPPROTO_DONE;
588 	}
589 
590 	tcp_input(m, *offp, proto);
591 	return IPPROTO_DONE;
592 }
593 #endif
594 
595 /*
596  * TCP input routine, follows pages 65-76 of the
597  * protocol specification dated September, 1981 very closely.
598  */
599 void
600 #if __STDC__
601 tcp_input(struct mbuf *m, ...)
602 #else
603 tcp_input(m, va_alist)
604 	struct mbuf *m;
605 #endif
606 {
607 	int proto;
608 	struct tcphdr *th;
609 	struct ip *ip;
610 	struct inpcb *inp;
611 #ifdef INET6
612 	struct ip6_hdr *ip6;
613 	struct in6pcb *in6p;
614 #endif
615 	caddr_t optp = NULL;
616 	int optlen = 0;
617 	int len, tlen, toff, hdroptlen = 0;
618 	struct tcpcb *tp = 0;
619 	int tiflags;
620 	struct socket *so = NULL;
621 	int todrop, acked, ourfinisacked, needoutput = 0;
622 	short ostate = 0;
623 	int iss = 0;
624 	u_long tiwin;
625 	struct tcp_opt_info opti;
626 	int off, iphlen;
627 	va_list ap;
628 	int af;		/* af on the wire */
629 	struct mbuf *tcp_saveti = NULL;
630 
631 	va_start(ap, m);
632 	toff = va_arg(ap, int);
633 	proto = va_arg(ap, int);
634 	va_end(ap);
635 
636 	tcpstat.tcps_rcvtotal++;
637 
638 	bzero(&opti, sizeof(opti));
639 	opti.ts_present = 0;
640 	opti.maxseg = 0;
641 
642 	/*
643 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
644 	 *
645 	 * TCP is, by definition, unicast, so we reject all
646 	 * multicast outright.
647 	 *
648 	 * Note, there are additional src/dst address checks in
649 	 * the AF-specific code below.
650 	 */
651 	if (m->m_flags & (M_BCAST|M_MCAST)) {
652 		/* XXX stat */
653 		goto drop;
654 	}
655 #ifdef INET6
656 	if (m->m_flags & M_ANYCAST6) {
657 		/* XXX stat */
658 		goto drop;
659 	}
660 #endif
661 
662 	/*
663 	 * Get IP and TCP header together in first mbuf.
664 	 * Note: IP leaves IP header in first mbuf.
665 	 */
666 	ip = mtod(m, struct ip *);
667 #ifdef INET6
668 	ip6 = NULL;
669 #endif
670 	switch (ip->ip_v) {
671 #ifdef INET
672 	case 4:
673 		af = AF_INET;
674 		iphlen = sizeof(struct ip);
675 #ifndef PULLDOWN_TEST
676 		/* would like to get rid of this... */
677 		if (toff > sizeof (struct ip)) {
678 			ip_stripoptions(m, (struct mbuf *)0);
679 			toff = sizeof(struct ip);
680 		}
681 		if (m->m_len < toff + sizeof (struct tcphdr)) {
682 			if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
683 				tcpstat.tcps_rcvshort++;
684 				return;
685 			}
686 		}
687 		ip = mtod(m, struct ip *);
688 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
689 #else
690 		ip = mtod(m, struct ip *);
691 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
692 			sizeof(struct tcphdr));
693 		if (th == NULL) {
694 			tcpstat.tcps_rcvshort++;
695 			return;
696 		}
697 #endif
698 		/* We do the checksum after PCB lookup... */
699 		len = ip->ip_len;
700 		tlen = len - toff;
701 		break;
702 #endif
703 #ifdef INET6
704 	case 6:
705 		ip = NULL;
706 		iphlen = sizeof(struct ip6_hdr);
707 		af = AF_INET6;
708 #ifndef PULLDOWN_TEST
709 		if (m->m_len < toff + sizeof(struct tcphdr)) {
710 			m = m_pullup(m, toff + sizeof(struct tcphdr));	/*XXX*/
711 			if (m == NULL) {
712 				tcpstat.tcps_rcvshort++;
713 				return;
714 			}
715 		}
716 		ip6 = mtod(m, struct ip6_hdr *);
717 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
718 #else
719 		ip6 = mtod(m, struct ip6_hdr *);
720 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
721 			sizeof(struct tcphdr));
722 		if (th == NULL) {
723 			tcpstat.tcps_rcvshort++;
724 			return;
725 		}
726 #endif
727 
728 		/* Be proactive about malicious use of IPv4 mapped address */
729 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
730 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
731 			/* XXX stat */
732 			goto drop;
733 		}
734 
735 		/*
736 		 * Be proactive about unspecified IPv6 address in source.
737 		 * As we use all-zero to indicate unbounded/unconnected pcb,
738 		 * unspecified IPv6 address can be used to confuse us.
739 		 *
740 		 * Note that packets with unspecified IPv6 destination is
741 		 * already dropped in ip6_input.
742 		 */
743 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
744 			/* XXX stat */
745 			goto drop;
746 		}
747 
748 		/*
749 		 * Make sure destination address is not multicast.
750 		 * Source address checked in ip6_input().
751 		 */
752 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
753 			/* XXX stat */
754 			goto drop;
755 		}
756 
757 		/* We do the checksum after PCB lookup... */
758 		len = m->m_pkthdr.len;
759 		tlen = len - toff;
760 		break;
761 #endif
762 	default:
763 		m_freem(m);
764 		return;
765 	}
766 
767 	/*
768 	 * Check that TCP offset makes sense,
769 	 * pull out TCP options and adjust length.		XXX
770 	 */
771 	off = th->th_off << 2;
772 	if (off < sizeof (struct tcphdr) || off > tlen) {
773 		tcpstat.tcps_rcvbadoff++;
774 		goto drop;
775 	}
776 	tlen -= off;
777 
778 	/*
779 	 * tcp_input() has been modified to use tlen to mean the TCP data
780 	 * length throughout the function.  Other functions can use
781 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
782 	 * rja
783 	 */
784 
785 	if (off > sizeof (struct tcphdr)) {
786 #ifndef PULLDOWN_TEST
787 		if (m->m_len < toff + off) {
788 			if ((m = m_pullup(m, toff + off)) == 0) {
789 				tcpstat.tcps_rcvshort++;
790 				return;
791 			}
792 			switch (af) {
793 #ifdef INET
794 			case AF_INET:
795 				ip = mtod(m, struct ip *);
796 				break;
797 #endif
798 #ifdef INET6
799 			case AF_INET6:
800 				ip6 = mtod(m, struct ip6_hdr *);
801 				break;
802 #endif
803 			}
804 			th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
805 		}
806 #else
807 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
808 		if (th == NULL) {
809 			tcpstat.tcps_rcvshort++;
810 			return;
811 		}
812 		/*
813 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
814 		 * (as they're before toff) and we don't need to update those.
815 		 */
816 #endif
817 		optlen = off - sizeof (struct tcphdr);
818 		optp = ((caddr_t)th) + sizeof(struct tcphdr);
819 		/*
820 		 * Do quick retrieval of timestamp options ("options
821 		 * prediction?").  If timestamp is the only option and it's
822 		 * formatted as recommended in RFC 1323 appendix A, we
823 		 * quickly get the values now and not bother calling
824 		 * tcp_dooptions(), etc.
825 		 */
826 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
827 		     (optlen > TCPOLEN_TSTAMP_APPA &&
828 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
829 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
830 		     (th->th_flags & TH_SYN) == 0) {
831 			opti.ts_present = 1;
832 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
833 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
834 			optp = NULL;	/* we've parsed the options */
835 		}
836 	}
837 	tiflags = th->th_flags;
838 
839 	/*
840 	 * Locate pcb for segment.
841 	 */
842 findpcb:
843 	inp = NULL;
844 #ifdef INET6
845 	in6p = NULL;
846 #endif
847 	switch (af) {
848 #ifdef INET
849 	case AF_INET:
850 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
851 		    ip->ip_dst, th->th_dport);
852 		if (inp == 0) {
853 			++tcpstat.tcps_pcbhashmiss;
854 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
855 		}
856 #ifdef INET6
857 		if (inp == 0) {
858 			struct in6_addr s, d;
859 
860 			/* mapped addr case */
861 			bzero(&s, sizeof(s));
862 			s.s6_addr16[5] = htons(0xffff);
863 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
864 			bzero(&d, sizeof(d));
865 			d.s6_addr16[5] = htons(0xffff);
866 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
867 			in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
868 				&d, th->th_dport, 0);
869 			if (in6p == 0) {
870 				++tcpstat.tcps_pcbhashmiss;
871 				in6p = in6_pcblookup_bind(&tcb6, &d,
872 					th->th_dport, 0);
873 			}
874 		}
875 #endif
876 #ifndef INET6
877 		if (inp == 0)
878 #else
879 		if (inp == 0 && in6p == 0)
880 #endif
881 		{
882 			++tcpstat.tcps_noport;
883 			if (tcp_log_refused && (tiflags & TH_SYN)) {
884 				char src[4*sizeof "123"];
885 				char dst[4*sizeof "123"];
886 
887 				if (ip) {
888 					strcpy(src, inet_ntoa(ip->ip_src));
889 					strcpy(dst, inet_ntoa(ip->ip_dst));
890 				}
891 				else {
892 					strcpy(src, "(unknown)");
893 					strcpy(dst, "(unknown)");
894 				}
895 				log(LOG_INFO,
896 				    "Connection attempt to TCP %s:%d from %s:%d\n",
897 				    dst, ntohs(th->th_dport),
898 				    src, ntohs(th->th_sport));
899 			}
900 			TCP_FIELDS_TO_HOST(th);
901 			goto dropwithreset_ratelim;
902 		}
903 #ifdef IPSEC
904 		if (inp && ipsec4_in_reject(m, inp)) {
905 			ipsecstat.in_polvio++;
906 			goto drop;
907 		}
908 #ifdef INET6
909 		else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
910 			ipsecstat.in_polvio++;
911 			goto drop;
912 		}
913 #endif
914 #endif /*IPSEC*/
915 		break;
916 #endif /*INET*/
917 #ifdef INET6
918 	case AF_INET6:
919 	    {
920 		int faith;
921 
922 #if defined(NFAITH) && NFAITH > 0
923 		faith = faithprefix(&ip6->ip6_dst);
924 #else
925 		faith = 0;
926 #endif
927 		in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
928 			&ip6->ip6_dst, th->th_dport, faith);
929 		if (in6p == NULL) {
930 			++tcpstat.tcps_pcbhashmiss;
931 			in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
932 				th->th_dport, faith);
933 		}
934 		if (in6p == NULL) {
935 			++tcpstat.tcps_noport;
936 			if (tcp_log_refused && (tiflags & TH_SYN)) {
937 				char src[INET6_ADDRSTRLEN];
938 				char dst[INET6_ADDRSTRLEN];
939 
940 				if (ip6) {
941 					strcpy(src, ip6_sprintf(&ip6->ip6_src));
942 					strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
943 				}
944 				else {
945 					strcpy(src, "(unknown v6)");
946 					strcpy(dst, "(unknown v6)");
947 				}
948 				log(LOG_INFO,
949 				    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
950 				    dst, ntohs(th->th_dport),
951 				    src, ntohs(th->th_sport));
952 			}
953 			TCP_FIELDS_TO_HOST(th);
954 			goto dropwithreset_ratelim;
955 		}
956 #ifdef IPSEC
957 		if (ipsec6_in_reject(m, in6p)) {
958 			ipsec6stat.in_polvio++;
959 			goto drop;
960 		}
961 #endif /*IPSEC*/
962 		break;
963 	    }
964 #endif
965 	}
966 
967 	/*
968 	 * If the state is CLOSED (i.e., TCB does not exist) then
969 	 * all data in the incoming segment is discarded.
970 	 * If the TCB exists but is in CLOSED state, it is embryonic,
971 	 * but should either do a listen or a connect soon.
972 	 */
973 	tp = NULL;
974 	so = NULL;
975 	if (inp) {
976 		tp = intotcpcb(inp);
977 		so = inp->inp_socket;
978 	}
979 #ifdef INET6
980 	else if (in6p) {
981 		tp = in6totcpcb(in6p);
982 		so = in6p->in6p_socket;
983 	}
984 #endif
985 	if (tp == 0) {
986 		TCP_FIELDS_TO_HOST(th);
987 		goto dropwithreset_ratelim;
988 	}
989 	if (tp->t_state == TCPS_CLOSED)
990 		goto drop;
991 
992 	/*
993 	 * Checksum extended TCP header and data.
994 	 */
995 	switch (af) {
996 #ifdef INET
997 	case AF_INET:
998 		switch (m->m_pkthdr.csum_flags &
999 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1000 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1001 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1002 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1003 			goto badcsum;
1004 
1005 		case M_CSUM_TCPv4|M_CSUM_DATA:
1006 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1007 			if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
1008 				goto badcsum;
1009 			break;
1010 
1011 		case M_CSUM_TCPv4:
1012 			/* Checksum was okay. */
1013 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1014 			break;
1015 
1016 		default:
1017 			/* Must compute it ourselves. */
1018 			TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1019 #ifndef PULLDOWN_TEST
1020 		    {
1021 			struct ipovly *ipov;
1022 			ipov = (struct ipovly *)ip;
1023 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
1024 			ipov->ih_len = htons(tlen + off);
1025 
1026 			if (in_cksum(m, len) != 0)
1027 				goto badcsum;
1028 		    }
1029 #else
1030 			if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1031 				goto badcsum;
1032 #endif /* ! PULLDOWN_TEST */
1033 			break;
1034 		}
1035 		break;
1036 #endif /* INET4 */
1037 
1038 #ifdef INET6
1039 	case AF_INET6:
1040 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1041 			goto badcsum;
1042 		break;
1043 #endif /* INET6 */
1044 	}
1045 
1046 	TCP_FIELDS_TO_HOST(th);
1047 
1048 	/* Unscale the window into a 32-bit value. */
1049 	if ((tiflags & TH_SYN) == 0)
1050 		tiwin = th->th_win << tp->snd_scale;
1051 	else
1052 		tiwin = th->th_win;
1053 
1054 #ifdef INET6
1055 	/* save packet options if user wanted */
1056 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1057 		if (in6p->in6p_options) {
1058 			m_freem(in6p->in6p_options);
1059 			in6p->in6p_options = 0;
1060 		}
1061 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1062 	}
1063 #endif
1064 
1065 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1066 		union syn_cache_sa src;
1067 		union syn_cache_sa dst;
1068 
1069 		bzero(&src, sizeof(src));
1070 		bzero(&dst, sizeof(dst));
1071 		switch (af) {
1072 #ifdef INET
1073 		case AF_INET:
1074 			src.sin.sin_len = sizeof(struct sockaddr_in);
1075 			src.sin.sin_family = AF_INET;
1076 			src.sin.sin_addr = ip->ip_src;
1077 			src.sin.sin_port = th->th_sport;
1078 
1079 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1080 			dst.sin.sin_family = AF_INET;
1081 			dst.sin.sin_addr = ip->ip_dst;
1082 			dst.sin.sin_port = th->th_dport;
1083 			break;
1084 #endif
1085 #ifdef INET6
1086 		case AF_INET6:
1087 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1088 			src.sin6.sin6_family = AF_INET6;
1089 			src.sin6.sin6_addr = ip6->ip6_src;
1090 			src.sin6.sin6_port = th->th_sport;
1091 
1092 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1093 			dst.sin6.sin6_family = AF_INET6;
1094 			dst.sin6.sin6_addr = ip6->ip6_dst;
1095 			dst.sin6.sin6_port = th->th_dport;
1096 			break;
1097 #endif /* INET6 */
1098 		default:
1099 			goto badsyn;	/*sanity*/
1100 		}
1101 
1102 		if (so->so_options & SO_DEBUG) {
1103 			ostate = tp->t_state;
1104 
1105 			tcp_saveti = NULL;
1106 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1107 				goto nosave;
1108 
1109 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1110 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1111 				if (!tcp_saveti)
1112 					goto nosave;
1113 			} else {
1114 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1115 				if (!tcp_saveti)
1116 					goto nosave;
1117 				tcp_saveti->m_len = iphlen;
1118 				m_copydata(m, 0, iphlen,
1119 				    mtod(tcp_saveti, caddr_t));
1120 			}
1121 
1122 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1123 				m_freem(tcp_saveti);
1124 				tcp_saveti = NULL;
1125 			} else {
1126 				tcp_saveti->m_len += sizeof(struct tcphdr);
1127 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1128 				    sizeof(struct tcphdr));
1129 			}
1130 			if (tcp_saveti) {
1131 				/*
1132 				 * need to recover version # field, which was
1133 				 * overwritten on ip_cksum computation.
1134 				 */
1135 				struct ip *sip;
1136 				sip = mtod(tcp_saveti, struct ip *);
1137 				switch (af) {
1138 #ifdef INET
1139 				case AF_INET:
1140 					sip->ip_v = 4;
1141 					break;
1142 #endif
1143 #ifdef INET6
1144 				case AF_INET6:
1145 					sip->ip_v = 6;
1146 					break;
1147 #endif
1148 				}
1149 			}
1150 	nosave:;
1151 		}
1152 		if (so->so_options & SO_ACCEPTCONN) {
1153   			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1154 				if (tiflags & TH_RST) {
1155 					syn_cache_reset(&src.sa, &dst.sa, th);
1156 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1157 				    (TH_ACK|TH_SYN)) {
1158 					/*
1159 					 * Received a SYN,ACK.  This should
1160 					 * never happen while we are in
1161 					 * LISTEN.  Send an RST.
1162 					 */
1163 					goto badsyn;
1164 				} else if (tiflags & TH_ACK) {
1165 					so = syn_cache_get(&src.sa, &dst.sa,
1166 						th, toff, tlen, so, m);
1167 					if (so == NULL) {
1168 						/*
1169 						 * We don't have a SYN for
1170 						 * this ACK; send an RST.
1171 						 */
1172 						goto badsyn;
1173 					} else if (so ==
1174 					    (struct socket *)(-1)) {
1175 						/*
1176 						 * We were unable to create
1177 						 * the connection.  If the
1178 						 * 3-way handshake was
1179 						 * completed, and RST has
1180 						 * been sent to the peer.
1181 						 * Since the mbuf might be
1182 						 * in use for the reply,
1183 						 * do not free it.
1184 						 */
1185 						m = NULL;
1186 					} else {
1187 						/*
1188 						 * We have created a
1189 						 * full-blown connection.
1190 						 */
1191 						tp = NULL;
1192 						inp = NULL;
1193 #ifdef INET6
1194 						in6p = NULL;
1195 #endif
1196 						switch (so->so_proto->pr_domain->dom_family) {
1197 #ifdef INET
1198 						case AF_INET:
1199 							inp = sotoinpcb(so);
1200 							tp = intotcpcb(inp);
1201 							break;
1202 #endif
1203 #ifdef INET6
1204 						case AF_INET6:
1205 							in6p = sotoin6pcb(so);
1206 							tp = in6totcpcb(in6p);
1207 							break;
1208 #endif
1209 						}
1210 						if (tp == NULL)
1211 							goto badsyn;	/*XXX*/
1212 						tiwin <<= tp->snd_scale;
1213 						goto after_listen;
1214 					}
1215   				} else {
1216 					/*
1217 					 * None of RST, SYN or ACK was set.
1218 					 * This is an invalid packet for a
1219 					 * TCB in LISTEN state.  Send a RST.
1220 					 */
1221 					goto badsyn;
1222 				}
1223   			} else {
1224 				/*
1225 				 * Received a SYN.
1226 				 */
1227 
1228 				/*
1229 				 * LISTEN socket received a SYN
1230 				 * from itself?  This can't possibly
1231 				 * be valid; drop the packet.
1232 				 */
1233 				if (th->th_sport == th->th_dport) {
1234 					int i;
1235 
1236 					switch (af) {
1237 #ifdef INET
1238 					case AF_INET:
1239 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1240 						break;
1241 #endif
1242 #ifdef INET6
1243 					case AF_INET6:
1244 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1245 						break;
1246 #endif
1247 					default:
1248 						i = 1;
1249 					}
1250 					if (i) {
1251 						tcpstat.tcps_badsyn++;
1252 						goto drop;
1253 					}
1254 				}
1255 
1256 				/*
1257 				 * SYN looks ok; create compressed TCP
1258 				 * state for it.
1259 				 */
1260 				if (so->so_qlen <= so->so_qlimit &&
1261 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1262 						so, m, optp, optlen, &opti))
1263 					m = NULL;
1264 			}
1265 			goto drop;
1266 		}
1267 	}
1268 
1269 after_listen:
1270 #ifdef DIAGNOSTIC
1271 	/*
1272 	 * Should not happen now that all embryonic connections
1273 	 * are handled with compressed state.
1274 	 */
1275 	if (tp->t_state == TCPS_LISTEN)
1276 		panic("tcp_input: TCPS_LISTEN");
1277 #endif
1278 
1279 	/*
1280 	 * Segment received on connection.
1281 	 * Reset idle time and keep-alive timer.
1282 	 */
1283 	tp->t_rcvtime = tcp_now;
1284 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1285 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1286 
1287 	/*
1288 	 * Process options.
1289 	 */
1290 	if (optp)
1291 		tcp_dooptions(tp, optp, optlen, th, &opti);
1292 
1293 	/*
1294 	 * Header prediction: check for the two common cases
1295 	 * of a uni-directional data xfer.  If the packet has
1296 	 * no control flags, is in-sequence, the window didn't
1297 	 * change and we're not retransmitting, it's a
1298 	 * candidate.  If the length is zero and the ack moved
1299 	 * forward, we're the sender side of the xfer.  Just
1300 	 * free the data acked & wake any higher level process
1301 	 * that was blocked waiting for space.  If the length
1302 	 * is non-zero and the ack didn't move, we're the
1303 	 * receiver side.  If we're getting packets in-order
1304 	 * (the reassembly queue is empty), add the data to
1305 	 * the socket buffer and note that we need a delayed ack.
1306 	 */
1307 	if (tp->t_state == TCPS_ESTABLISHED &&
1308 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1309 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1310 	    th->th_seq == tp->rcv_nxt &&
1311 	    tiwin && tiwin == tp->snd_wnd &&
1312 	    tp->snd_nxt == tp->snd_max) {
1313 
1314 		/*
1315 		 * If last ACK falls within this segment's sequence numbers,
1316 		 *  record the timestamp.
1317 		 */
1318 		if (opti.ts_present &&
1319 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1320 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1321 			tp->ts_recent_age = TCP_TIMESTAMP(tp);
1322 			tp->ts_recent = opti.ts_val;
1323 		}
1324 
1325 		if (tlen == 0) {
1326 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1327 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1328 			    tp->snd_cwnd >= tp->snd_wnd &&
1329 			    tp->t_dupacks < tcprexmtthresh) {
1330 				/*
1331 				 * this is a pure ack for outstanding data.
1332 				 */
1333 				++tcpstat.tcps_predack;
1334 				if (opti.ts_present && opti.ts_ecr)
1335 					tcp_xmit_timer(tp,
1336 					  TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1337 				else if (tp->t_rtttime &&
1338 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1339 					tcp_xmit_timer(tp,
1340 					tcp_now - tp->t_rtttime);
1341 				acked = th->th_ack - tp->snd_una;
1342 				tcpstat.tcps_rcvackpack++;
1343 				tcpstat.tcps_rcvackbyte += acked;
1344 				ND6_HINT(tp);
1345 				sbdrop(&so->so_snd, acked);
1346 				/*
1347 				 * We want snd_recover to track snd_una to
1348 				 * avoid sequence wraparound problems for
1349 				 * very large transfers.
1350 				 */
1351 				tp->snd_una = tp->snd_recover = th->th_ack;
1352 				m_freem(m);
1353 
1354 				/*
1355 				 * If all outstanding data are acked, stop
1356 				 * retransmit timer, otherwise restart timer
1357 				 * using current (possibly backed-off) value.
1358 				 * If process is waiting for space,
1359 				 * wakeup/selwakeup/signal.  If data
1360 				 * are ready to send, let tcp_output
1361 				 * decide between more output or persist.
1362 				 */
1363 				if (tp->snd_una == tp->snd_max)
1364 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1365 				else if (TCP_TIMER_ISARMED(tp,
1366 				    TCPT_PERSIST) == 0)
1367 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1368 					    tp->t_rxtcur);
1369 
1370 				sowwakeup(so);
1371 				if (so->so_snd.sb_cc)
1372 					(void) tcp_output(tp);
1373 				if (tcp_saveti)
1374 					m_freem(tcp_saveti);
1375 				return;
1376 			}
1377 		} else if (th->th_ack == tp->snd_una &&
1378 		    LIST_FIRST(&tp->segq) == NULL &&
1379 		    tlen <= sbspace(&so->so_rcv)) {
1380 			/*
1381 			 * this is a pure, in-sequence data packet
1382 			 * with nothing on the reassembly queue and
1383 			 * we have enough buffer space to take it.
1384 			 */
1385 			++tcpstat.tcps_preddat;
1386 			tp->rcv_nxt += tlen;
1387 			tcpstat.tcps_rcvpack++;
1388 			tcpstat.tcps_rcvbyte += tlen;
1389 			ND6_HINT(tp);
1390 			/*
1391 			 * Drop TCP, IP headers and TCP options then add data
1392 			 * to socket buffer.
1393 			 */
1394 			m_adj(m, toff + off);
1395 			sbappend(&so->so_rcv, m);
1396 			sorwakeup(so);
1397 			TCP_SETUP_ACK(tp, th);
1398 			if (tp->t_flags & TF_ACKNOW)
1399 				(void) tcp_output(tp);
1400 			if (tcp_saveti)
1401 				m_freem(tcp_saveti);
1402 			return;
1403 		}
1404 	}
1405 
1406 	/*
1407 	 * Compute mbuf offset to TCP data segment.
1408 	 */
1409 	hdroptlen = toff + off;
1410 
1411 	/*
1412 	 * Calculate amount of space in receive window,
1413 	 * and then do TCP input processing.
1414 	 * Receive window is amount of space in rcv queue,
1415 	 * but not less than advertised window.
1416 	 */
1417 	{ int win;
1418 
1419 	win = sbspace(&so->so_rcv);
1420 	if (win < 0)
1421 		win = 0;
1422 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1423 	}
1424 
1425 	switch (tp->t_state) {
1426 	case TCPS_LISTEN:
1427 		/*
1428 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1429 		 */
1430 		if (m->m_flags & (M_BCAST|M_MCAST))
1431 			goto drop;
1432 		switch (af) {
1433 #ifdef INET6
1434 		case AF_INET6:
1435 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1436 				goto drop;
1437 			break;
1438 #endif /* INET6 */
1439 		case AF_INET:
1440 			if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1441 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1442 				goto drop;
1443 			break;
1444 		}
1445 		break;
1446 
1447 	/*
1448 	 * If the state is SYN_SENT:
1449 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1450 	 *	if seg contains a RST, then drop the connection.
1451 	 *	if seg does not contain SYN, then drop it.
1452 	 * Otherwise this is an acceptable SYN segment
1453 	 *	initialize tp->rcv_nxt and tp->irs
1454 	 *	if seg contains ack then advance tp->snd_una
1455 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1456 	 *	arrange for segment to be acked (eventually)
1457 	 *	continue processing rest of data/controls, beginning with URG
1458 	 */
1459 	case TCPS_SYN_SENT:
1460 		if ((tiflags & TH_ACK) &&
1461 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1462 		     SEQ_GT(th->th_ack, tp->snd_max)))
1463 			goto dropwithreset;
1464 		if (tiflags & TH_RST) {
1465 			if (tiflags & TH_ACK)
1466 				tp = tcp_drop(tp, ECONNREFUSED);
1467 			goto drop;
1468 		}
1469 		if ((tiflags & TH_SYN) == 0)
1470 			goto drop;
1471 		if (tiflags & TH_ACK) {
1472 			tp->snd_una = tp->snd_recover = th->th_ack;
1473 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1474 				tp->snd_nxt = tp->snd_una;
1475 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1476 		}
1477 		tp->irs = th->th_seq;
1478 		tcp_rcvseqinit(tp);
1479 		tp->t_flags |= TF_ACKNOW;
1480 		tcp_mss_from_peer(tp, opti.maxseg);
1481 
1482 		/*
1483 		 * Initialize the initial congestion window.  If we
1484 		 * had to retransmit the SYN, we must initialize cwnd
1485 		 * to 1 segment (i.e. the Loss Window).
1486 		 */
1487 		if (tp->t_flags & TF_SYN_REXMT)
1488 			tp->snd_cwnd = tp->t_peermss;
1489 		else
1490 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1491 			    tp->t_peermss);
1492 
1493 		tcp_rmx_rtt(tp);
1494 		if (tiflags & TH_ACK) {
1495 			tcpstat.tcps_connects++;
1496 			soisconnected(so);
1497 			tcp_established(tp);
1498 			/* Do window scaling on this connection? */
1499 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1500 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1501 				tp->snd_scale = tp->requested_s_scale;
1502 				tp->rcv_scale = tp->request_r_scale;
1503 			}
1504 			TCP_REASS_LOCK(tp);
1505 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1506 			TCP_REASS_UNLOCK(tp);
1507 			/*
1508 			 * if we didn't have to retransmit the SYN,
1509 			 * use its rtt as our initial srtt & rtt var.
1510 			 */
1511 			if (tp->t_rtttime)
1512 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1513 		} else
1514 			tp->t_state = TCPS_SYN_RECEIVED;
1515 
1516 		/*
1517 		 * Advance th->th_seq to correspond to first data byte.
1518 		 * If data, trim to stay within window,
1519 		 * dropping FIN if necessary.
1520 		 */
1521 		th->th_seq++;
1522 		if (tlen > tp->rcv_wnd) {
1523 			todrop = tlen - tp->rcv_wnd;
1524 			m_adj(m, -todrop);
1525 			tlen = tp->rcv_wnd;
1526 			tiflags &= ~TH_FIN;
1527 			tcpstat.tcps_rcvpackafterwin++;
1528 			tcpstat.tcps_rcvbyteafterwin += todrop;
1529 		}
1530 		tp->snd_wl1 = th->th_seq - 1;
1531 		tp->rcv_up = th->th_seq;
1532 		goto step6;
1533 
1534 	/*
1535 	 * If the state is SYN_RECEIVED:
1536 	 *	If seg contains an ACK, but not for our SYN, drop the input
1537 	 *	and generate an RST.  See page 36, rfc793
1538 	 */
1539 	case TCPS_SYN_RECEIVED:
1540 		if ((tiflags & TH_ACK) &&
1541 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1542 		     SEQ_GT(th->th_ack, tp->snd_max)))
1543 			goto dropwithreset;
1544 		break;
1545 	}
1546 
1547 	/*
1548 	 * States other than LISTEN or SYN_SENT.
1549 	 * First check timestamp, if present.
1550 	 * Then check that at least some bytes of segment are within
1551 	 * receive window.  If segment begins before rcv_nxt,
1552 	 * drop leading data (and SYN); if nothing left, just ack.
1553 	 *
1554 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1555 	 * and it's less than ts_recent, drop it.
1556 	 */
1557 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1558 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1559 
1560 		/* Check to see if ts_recent is over 24 days old.  */
1561 		if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1562 		    TCP_PAWS_IDLE) {
1563 			/*
1564 			 * Invalidate ts_recent.  If this segment updates
1565 			 * ts_recent, the age will be reset later and ts_recent
1566 			 * will get a valid value.  If it does not, setting
1567 			 * ts_recent to zero will at least satisfy the
1568 			 * requirement that zero be placed in the timestamp
1569 			 * echo reply when ts_recent isn't valid.  The
1570 			 * age isn't reset until we get a valid ts_recent
1571 			 * because we don't want out-of-order segments to be
1572 			 * dropped when ts_recent is old.
1573 			 */
1574 			tp->ts_recent = 0;
1575 		} else {
1576 			tcpstat.tcps_rcvduppack++;
1577 			tcpstat.tcps_rcvdupbyte += tlen;
1578 			tcpstat.tcps_pawsdrop++;
1579 			goto dropafterack;
1580 		}
1581 	}
1582 
1583 	todrop = tp->rcv_nxt - th->th_seq;
1584 	if (todrop > 0) {
1585 		if (tiflags & TH_SYN) {
1586 			tiflags &= ~TH_SYN;
1587 			th->th_seq++;
1588 			if (th->th_urp > 1)
1589 				th->th_urp--;
1590 			else {
1591 				tiflags &= ~TH_URG;
1592 				th->th_urp = 0;
1593 			}
1594 			todrop--;
1595 		}
1596 		if (todrop > tlen ||
1597 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1598 			/*
1599 			 * Any valid FIN must be to the left of the window.
1600 			 * At this point the FIN must be a duplicate or
1601 			 * out of sequence; drop it.
1602 			 */
1603 			tiflags &= ~TH_FIN;
1604 			/*
1605 			 * Send an ACK to resynchronize and drop any data.
1606 			 * But keep on processing for RST or ACK.
1607 			 */
1608 			tp->t_flags |= TF_ACKNOW;
1609 			todrop = tlen;
1610 			tcpstat.tcps_rcvdupbyte += todrop;
1611 			tcpstat.tcps_rcvduppack++;
1612 		} else {
1613 			tcpstat.tcps_rcvpartduppack++;
1614 			tcpstat.tcps_rcvpartdupbyte += todrop;
1615 		}
1616 		hdroptlen += todrop;	/*drop from head afterwards*/
1617 		th->th_seq += todrop;
1618 		tlen -= todrop;
1619 		if (th->th_urp > todrop)
1620 			th->th_urp -= todrop;
1621 		else {
1622 			tiflags &= ~TH_URG;
1623 			th->th_urp = 0;
1624 		}
1625 	}
1626 
1627 	/*
1628 	 * If new data are received on a connection after the
1629 	 * user processes are gone, then RST the other end.
1630 	 */
1631 	if ((so->so_state & SS_NOFDREF) &&
1632 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1633 		tp = tcp_close(tp);
1634 		tcpstat.tcps_rcvafterclose++;
1635 		goto dropwithreset;
1636 	}
1637 
1638 	/*
1639 	 * If segment ends after window, drop trailing data
1640 	 * (and PUSH and FIN); if nothing left, just ACK.
1641 	 */
1642 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1643 	if (todrop > 0) {
1644 		tcpstat.tcps_rcvpackafterwin++;
1645 		if (todrop >= tlen) {
1646 			tcpstat.tcps_rcvbyteafterwin += tlen;
1647 			/*
1648 			 * If a new connection request is received
1649 			 * while in TIME_WAIT, drop the old connection
1650 			 * and start over if the sequence numbers
1651 			 * are above the previous ones.
1652 			 */
1653 			if (tiflags & TH_SYN &&
1654 			    tp->t_state == TCPS_TIME_WAIT &&
1655 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1656 				iss = tcp_new_iss(tp, tp->snd_nxt);
1657 				tp = tcp_close(tp);
1658 				goto findpcb;
1659 			}
1660 			/*
1661 			 * If window is closed can only take segments at
1662 			 * window edge, and have to drop data and PUSH from
1663 			 * incoming segments.  Continue processing, but
1664 			 * remember to ack.  Otherwise, drop segment
1665 			 * and ack.
1666 			 */
1667 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1668 				tp->t_flags |= TF_ACKNOW;
1669 				tcpstat.tcps_rcvwinprobe++;
1670 			} else
1671 				goto dropafterack;
1672 		} else
1673 			tcpstat.tcps_rcvbyteafterwin += todrop;
1674 		m_adj(m, -todrop);
1675 		tlen -= todrop;
1676 		tiflags &= ~(TH_PUSH|TH_FIN);
1677 	}
1678 
1679 	/*
1680 	 * If last ACK falls within this segment's sequence numbers,
1681 	 * and the timestamp is newer, record it.
1682 	 */
1683 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1684 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1685 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1686 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1687 		tp->ts_recent_age = TCP_TIMESTAMP(tp);
1688 		tp->ts_recent = opti.ts_val;
1689 	}
1690 
1691 	/*
1692 	 * If the RST bit is set examine the state:
1693 	 *    SYN_RECEIVED STATE:
1694 	 *	If passive open, return to LISTEN state.
1695 	 *	If active open, inform user that connection was refused.
1696 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1697 	 *	Inform user that connection was reset, and close tcb.
1698 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1699 	 *	Close the tcb.
1700 	 */
1701 	if (tiflags&TH_RST) switch (tp->t_state) {
1702 
1703 	case TCPS_SYN_RECEIVED:
1704 		so->so_error = ECONNREFUSED;
1705 		goto close;
1706 
1707 	case TCPS_ESTABLISHED:
1708 	case TCPS_FIN_WAIT_1:
1709 	case TCPS_FIN_WAIT_2:
1710 	case TCPS_CLOSE_WAIT:
1711 		so->so_error = ECONNRESET;
1712 	close:
1713 		tp->t_state = TCPS_CLOSED;
1714 		tcpstat.tcps_drops++;
1715 		tp = tcp_close(tp);
1716 		goto drop;
1717 
1718 	case TCPS_CLOSING:
1719 	case TCPS_LAST_ACK:
1720 	case TCPS_TIME_WAIT:
1721 		tp = tcp_close(tp);
1722 		goto drop;
1723 	}
1724 
1725 	/*
1726 	 * If a SYN is in the window, then this is an
1727 	 * error and we send an RST and drop the connection.
1728 	 */
1729 	if (tiflags & TH_SYN) {
1730 		tp = tcp_drop(tp, ECONNRESET);
1731 		goto dropwithreset;
1732 	}
1733 
1734 	/*
1735 	 * If the ACK bit is off we drop the segment and return.
1736 	 */
1737 	if ((tiflags & TH_ACK) == 0) {
1738 		if (tp->t_flags & TF_ACKNOW)
1739 			goto dropafterack;
1740 		else
1741 			goto drop;
1742 	}
1743 
1744 	/*
1745 	 * Ack processing.
1746 	 */
1747 	switch (tp->t_state) {
1748 
1749 	/*
1750 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1751 	 * ESTABLISHED state and continue processing, otherwise
1752 	 * send an RST.
1753 	 */
1754 	case TCPS_SYN_RECEIVED:
1755 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
1756 		    SEQ_GT(th->th_ack, tp->snd_max))
1757 			goto dropwithreset;
1758 		tcpstat.tcps_connects++;
1759 		soisconnected(so);
1760 		tcp_established(tp);
1761 		/* Do window scaling? */
1762 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1763 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1764 			tp->snd_scale = tp->requested_s_scale;
1765 			tp->rcv_scale = tp->request_r_scale;
1766 		}
1767 		TCP_REASS_LOCK(tp);
1768 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1769 		TCP_REASS_UNLOCK(tp);
1770 		tp->snd_wl1 = th->th_seq - 1;
1771 		/* fall into ... */
1772 
1773 	/*
1774 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1775 	 * ACKs.  If the ack is in the range
1776 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1777 	 * then advance tp->snd_una to th->th_ack and drop
1778 	 * data from the retransmission queue.  If this ACK reflects
1779 	 * more up to date window information we update our window information.
1780 	 */
1781 	case TCPS_ESTABLISHED:
1782 	case TCPS_FIN_WAIT_1:
1783 	case TCPS_FIN_WAIT_2:
1784 	case TCPS_CLOSE_WAIT:
1785 	case TCPS_CLOSING:
1786 	case TCPS_LAST_ACK:
1787 	case TCPS_TIME_WAIT:
1788 
1789 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1790 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1791 				tcpstat.tcps_rcvdupack++;
1792 				/*
1793 				 * If we have outstanding data (other than
1794 				 * a window probe), this is a completely
1795 				 * duplicate ack (ie, window info didn't
1796 				 * change), the ack is the biggest we've
1797 				 * seen and we've seen exactly our rexmt
1798 				 * threshhold of them, assume a packet
1799 				 * has been dropped and retransmit it.
1800 				 * Kludge snd_nxt & the congestion
1801 				 * window so we send only this one
1802 				 * packet.
1803 				 *
1804 				 * We know we're losing at the current
1805 				 * window size so do congestion avoidance
1806 				 * (set ssthresh to half the current window
1807 				 * and pull our congestion window back to
1808 				 * the new ssthresh).
1809 				 *
1810 				 * Dup acks mean that packets have left the
1811 				 * network (they're now cached at the receiver)
1812 				 * so bump cwnd by the amount in the receiver
1813 				 * to keep a constant cwnd packets in the
1814 				 * network.
1815 				 */
1816 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1817 				    th->th_ack != tp->snd_una)
1818 					tp->t_dupacks = 0;
1819 				else if (++tp->t_dupacks == tcprexmtthresh) {
1820 					tcp_seq onxt = tp->snd_nxt;
1821 					u_int win =
1822 					    min(tp->snd_wnd, tp->snd_cwnd) /
1823 					    2 /	tp->t_segsz;
1824 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
1825 					    tp->snd_recover)) {
1826 						/*
1827 						 * False fast retransmit after
1828 						 * timeout.  Do not cut window.
1829 						 */
1830 						tp->snd_cwnd += tp->t_segsz;
1831 						tp->t_dupacks = 0;
1832 						(void) tcp_output(tp);
1833 						goto drop;
1834 					}
1835 
1836 					if (win < 2)
1837 						win = 2;
1838 					tp->snd_ssthresh = win * tp->t_segsz;
1839 					tp->snd_recover = tp->snd_max;
1840 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1841 					tp->t_rtttime = 0;
1842 					tp->snd_nxt = th->th_ack;
1843 					tp->snd_cwnd = tp->t_segsz;
1844 					(void) tcp_output(tp);
1845 					tp->snd_cwnd = tp->snd_ssthresh +
1846 					       tp->t_segsz * tp->t_dupacks;
1847 					if (SEQ_GT(onxt, tp->snd_nxt))
1848 						tp->snd_nxt = onxt;
1849 					goto drop;
1850 				} else if (tp->t_dupacks > tcprexmtthresh) {
1851 					tp->snd_cwnd += tp->t_segsz;
1852 					(void) tcp_output(tp);
1853 					goto drop;
1854 				}
1855 			} else
1856 				tp->t_dupacks = 0;
1857 			break;
1858 		}
1859 		/*
1860 		 * If the congestion window was inflated to account
1861 		 * for the other side's cached packets, retract it.
1862 		 */
1863 		if (tcp_do_newreno == 0) {
1864 			if (tp->t_dupacks >= tcprexmtthresh &&
1865 			    tp->snd_cwnd > tp->snd_ssthresh)
1866 				tp->snd_cwnd = tp->snd_ssthresh;
1867 			tp->t_dupacks = 0;
1868 		} else if (tp->t_dupacks >= tcprexmtthresh &&
1869 			   tcp_newreno(tp, th) == 0) {
1870 			tp->snd_cwnd = tp->snd_ssthresh;
1871 			/*
1872 			 * Window inflation should have left us with approx.
1873 			 * snd_ssthresh outstanding data.  But in case we
1874 			 * would be inclined to send a burst, better to do
1875 			 * it via the slow start mechanism.
1876 			 */
1877 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1878 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1879 				    + tp->t_segsz;
1880 			tp->t_dupacks = 0;
1881 		}
1882 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1883 			tcpstat.tcps_rcvacktoomuch++;
1884 			goto dropafterack;
1885 		}
1886 		acked = th->th_ack - tp->snd_una;
1887 		tcpstat.tcps_rcvackpack++;
1888 		tcpstat.tcps_rcvackbyte += acked;
1889 
1890 		/*
1891 		 * If we have a timestamp reply, update smoothed
1892 		 * round trip time.  If no timestamp is present but
1893 		 * transmit timer is running and timed sequence
1894 		 * number was acked, update smoothed round trip time.
1895 		 * Since we now have an rtt measurement, cancel the
1896 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1897 		 * Recompute the initial retransmit timer.
1898 		 */
1899 		if (opti.ts_present && opti.ts_ecr)
1900 			tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1901 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1902 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1903 
1904 		/*
1905 		 * If all outstanding data is acked, stop retransmit
1906 		 * timer and remember to restart (more output or persist).
1907 		 * If there is more data to be acked, restart retransmit
1908 		 * timer, using current (possibly backed-off) value.
1909 		 */
1910 		if (th->th_ack == tp->snd_max) {
1911 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1912 			needoutput = 1;
1913 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1914 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1915 		/*
1916 		 * When new data is acked, open the congestion window.
1917 		 * If the window gives us less than ssthresh packets
1918 		 * in flight, open exponentially (segsz per packet).
1919 		 * Otherwise open linearly: segsz per window
1920 		 * (segsz^2 / cwnd per packet), plus a constant
1921 		 * fraction of a packet (segsz/8) to help larger windows
1922 		 * open quickly enough.
1923 		 */
1924 		{
1925 		u_int cw = tp->snd_cwnd;
1926 		u_int incr = tp->t_segsz;
1927 
1928 		if (cw > tp->snd_ssthresh)
1929 			incr = incr * incr / cw;
1930 		if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
1931 			tp->snd_cwnd = min(cw + incr,
1932 			    TCP_MAXWIN << tp->snd_scale);
1933 		}
1934 		ND6_HINT(tp);
1935 		if (acked > so->so_snd.sb_cc) {
1936 			tp->snd_wnd -= so->so_snd.sb_cc;
1937 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1938 			ourfinisacked = 1;
1939 		} else {
1940 			sbdrop(&so->so_snd, acked);
1941 			tp->snd_wnd -= acked;
1942 			ourfinisacked = 0;
1943 		}
1944 		sowwakeup(so);
1945 		/*
1946 		 * We want snd_recover to track snd_una to
1947 		 * avoid sequence wraparound problems for
1948 		 * very large transfers.
1949 		 */
1950 		tp->snd_una = tp->snd_recover = th->th_ack;
1951 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1952 			tp->snd_nxt = tp->snd_una;
1953 
1954 		switch (tp->t_state) {
1955 
1956 		/*
1957 		 * In FIN_WAIT_1 STATE in addition to the processing
1958 		 * for the ESTABLISHED state if our FIN is now acknowledged
1959 		 * then enter FIN_WAIT_2.
1960 		 */
1961 		case TCPS_FIN_WAIT_1:
1962 			if (ourfinisacked) {
1963 				/*
1964 				 * If we can't receive any more
1965 				 * data, then closing user can proceed.
1966 				 * Starting the timer is contrary to the
1967 				 * specification, but if we don't get a FIN
1968 				 * we'll hang forever.
1969 				 */
1970 				if (so->so_state & SS_CANTRCVMORE) {
1971 					soisdisconnected(so);
1972 					if (tcp_maxidle > 0)
1973 						TCP_TIMER_ARM(tp, TCPT_2MSL,
1974 						    tcp_maxidle);
1975 				}
1976 				tp->t_state = TCPS_FIN_WAIT_2;
1977 			}
1978 			break;
1979 
1980 	 	/*
1981 		 * In CLOSING STATE in addition to the processing for
1982 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1983 		 * then enter the TIME-WAIT state, otherwise ignore
1984 		 * the segment.
1985 		 */
1986 		case TCPS_CLOSING:
1987 			if (ourfinisacked) {
1988 				tp->t_state = TCPS_TIME_WAIT;
1989 				tcp_canceltimers(tp);
1990 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1991 				soisdisconnected(so);
1992 			}
1993 			break;
1994 
1995 		/*
1996 		 * In LAST_ACK, we may still be waiting for data to drain
1997 		 * and/or to be acked, as well as for the ack of our FIN.
1998 		 * If our FIN is now acknowledged, delete the TCB,
1999 		 * enter the closed state and return.
2000 		 */
2001 		case TCPS_LAST_ACK:
2002 			if (ourfinisacked) {
2003 				tp = tcp_close(tp);
2004 				goto drop;
2005 			}
2006 			break;
2007 
2008 		/*
2009 		 * In TIME_WAIT state the only thing that should arrive
2010 		 * is a retransmission of the remote FIN.  Acknowledge
2011 		 * it and restart the finack timer.
2012 		 */
2013 		case TCPS_TIME_WAIT:
2014 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2015 			goto dropafterack;
2016 		}
2017 	}
2018 
2019 step6:
2020 	/*
2021 	 * Update window information.
2022 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2023 	 */
2024 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2025 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2026 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2027 		/* keep track of pure window updates */
2028 		if (tlen == 0 &&
2029 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2030 			tcpstat.tcps_rcvwinupd++;
2031 		tp->snd_wnd = tiwin;
2032 		tp->snd_wl1 = th->th_seq;
2033 		tp->snd_wl2 = th->th_ack;
2034 		if (tp->snd_wnd > tp->max_sndwnd)
2035 			tp->max_sndwnd = tp->snd_wnd;
2036 		needoutput = 1;
2037 	}
2038 
2039 	/*
2040 	 * Process segments with URG.
2041 	 */
2042 	if ((tiflags & TH_URG) && th->th_urp &&
2043 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2044 		/*
2045 		 * This is a kludge, but if we receive and accept
2046 		 * random urgent pointers, we'll crash in
2047 		 * soreceive.  It's hard to imagine someone
2048 		 * actually wanting to send this much urgent data.
2049 		 */
2050 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2051 			th->th_urp = 0;			/* XXX */
2052 			tiflags &= ~TH_URG;		/* XXX */
2053 			goto dodata;			/* XXX */
2054 		}
2055 		/*
2056 		 * If this segment advances the known urgent pointer,
2057 		 * then mark the data stream.  This should not happen
2058 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2059 		 * a FIN has been received from the remote side.
2060 		 * In these states we ignore the URG.
2061 		 *
2062 		 * According to RFC961 (Assigned Protocols),
2063 		 * the urgent pointer points to the last octet
2064 		 * of urgent data.  We continue, however,
2065 		 * to consider it to indicate the first octet
2066 		 * of data past the urgent section as the original
2067 		 * spec states (in one of two places).
2068 		 */
2069 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2070 			tp->rcv_up = th->th_seq + th->th_urp;
2071 			so->so_oobmark = so->so_rcv.sb_cc +
2072 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2073 			if (so->so_oobmark == 0)
2074 				so->so_state |= SS_RCVATMARK;
2075 			sohasoutofband(so);
2076 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2077 		}
2078 		/*
2079 		 * Remove out of band data so doesn't get presented to user.
2080 		 * This can happen independent of advancing the URG pointer,
2081 		 * but if two URG's are pending at once, some out-of-band
2082 		 * data may creep in... ick.
2083 		 */
2084 		if (th->th_urp <= (u_int16_t) tlen
2085 #ifdef SO_OOBINLINE
2086 		     && (so->so_options & SO_OOBINLINE) == 0
2087 #endif
2088 		     )
2089 			tcp_pulloutofband(so, th, m, hdroptlen);
2090 	} else
2091 		/*
2092 		 * If no out of band data is expected,
2093 		 * pull receive urgent pointer along
2094 		 * with the receive window.
2095 		 */
2096 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2097 			tp->rcv_up = tp->rcv_nxt;
2098 dodata:							/* XXX */
2099 
2100 	/*
2101 	 * Process the segment text, merging it into the TCP sequencing queue,
2102 	 * and arranging for acknowledgement of receipt if necessary.
2103 	 * This process logically involves adjusting tp->rcv_wnd as data
2104 	 * is presented to the user (this happens in tcp_usrreq.c,
2105 	 * case PRU_RCVD).  If a FIN has already been received on this
2106 	 * connection then we just ignore the text.
2107 	 */
2108 	if ((tlen || (tiflags & TH_FIN)) &&
2109 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2110 		/*
2111 		 * Insert segment ti into reassembly queue of tcp with
2112 		 * control block tp.  Return TH_FIN if reassembly now includes
2113 		 * a segment with FIN.  The macro form does the common case
2114 		 * inline (segment is the next to be received on an
2115 		 * established connection, and the queue is empty),
2116 		 * avoiding linkage into and removal from the queue and
2117 		 * repetition of various conversions.
2118 		 * Set DELACK for segments received in order, but ack
2119 		 * immediately when segments are out of order
2120 		 * (so fast retransmit can work).
2121 		 */
2122 		/* NOTE: this was TCP_REASS() macro, but used only once */
2123 		TCP_REASS_LOCK(tp);
2124 		if (th->th_seq == tp->rcv_nxt &&
2125 		    LIST_FIRST(&tp->segq) == NULL &&
2126 		    tp->t_state == TCPS_ESTABLISHED) {
2127 			TCP_SETUP_ACK(tp, th);
2128 			tp->rcv_nxt += tlen;
2129 			tiflags = th->th_flags & TH_FIN;
2130 			tcpstat.tcps_rcvpack++;
2131 			tcpstat.tcps_rcvbyte += tlen;
2132 			ND6_HINT(tp);
2133 			m_adj(m, hdroptlen);
2134 			sbappend(&(so)->so_rcv, m);
2135 			sorwakeup(so);
2136 		} else {
2137 			m_adj(m, hdroptlen);
2138 			tiflags = tcp_reass(tp, th, m, &tlen);
2139 			tp->t_flags |= TF_ACKNOW;
2140 		}
2141 		TCP_REASS_UNLOCK(tp);
2142 
2143 		/*
2144 		 * Note the amount of data that peer has sent into
2145 		 * our window, in order to estimate the sender's
2146 		 * buffer size.
2147 		 */
2148 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2149 	} else {
2150 		m_freem(m);
2151 		m = NULL;
2152 		tiflags &= ~TH_FIN;
2153 	}
2154 
2155 	/*
2156 	 * If FIN is received ACK the FIN and let the user know
2157 	 * that the connection is closing.  Ignore a FIN received before
2158 	 * the connection is fully established.
2159 	 */
2160 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2161 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2162 			socantrcvmore(so);
2163 			tp->t_flags |= TF_ACKNOW;
2164 			tp->rcv_nxt++;
2165 		}
2166 		switch (tp->t_state) {
2167 
2168 	 	/*
2169 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2170 		 */
2171 		case TCPS_ESTABLISHED:
2172 			tp->t_state = TCPS_CLOSE_WAIT;
2173 			break;
2174 
2175 	 	/*
2176 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2177 		 * enter the CLOSING state.
2178 		 */
2179 		case TCPS_FIN_WAIT_1:
2180 			tp->t_state = TCPS_CLOSING;
2181 			break;
2182 
2183 	 	/*
2184 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2185 		 * starting the time-wait timer, turning off the other
2186 		 * standard timers.
2187 		 */
2188 		case TCPS_FIN_WAIT_2:
2189 			tp->t_state = TCPS_TIME_WAIT;
2190 			tcp_canceltimers(tp);
2191 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2192 			soisdisconnected(so);
2193 			break;
2194 
2195 		/*
2196 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2197 		 */
2198 		case TCPS_TIME_WAIT:
2199 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2200 			break;
2201 		}
2202 	}
2203 #ifdef TCP_DEBUG
2204 	if (so->so_options & SO_DEBUG)
2205 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2206 #endif
2207 
2208 	/*
2209 	 * Return any desired output.
2210 	 */
2211 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2212 		(void) tcp_output(tp);
2213 	if (tcp_saveti)
2214 		m_freem(tcp_saveti);
2215 	return;
2216 
2217 badsyn:
2218 	/*
2219 	 * Received a bad SYN.  Increment counters and dropwithreset.
2220 	 */
2221 	tcpstat.tcps_badsyn++;
2222 	tp = NULL;
2223 	goto dropwithreset;
2224 
2225 dropafterack:
2226 	/*
2227 	 * Generate an ACK dropping incoming segment if it occupies
2228 	 * sequence space, where the ACK reflects our state.
2229 	 */
2230 	if (tiflags & TH_RST)
2231 		goto drop;
2232 	m_freem(m);
2233 	tp->t_flags |= TF_ACKNOW;
2234 	(void) tcp_output(tp);
2235 	if (tcp_saveti)
2236 		m_freem(tcp_saveti);
2237 	return;
2238 
2239 dropwithreset_ratelim:
2240 	/*
2241 	 * We may want to rate-limit RSTs in certain situations,
2242 	 * particularly if we are sending an RST in response to
2243 	 * an attempt to connect to or otherwise communicate with
2244 	 * a port for which we have no socket.
2245 	 */
2246 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2247 	    tcp_rst_ppslim) == 0) {
2248 		/* XXX stat */
2249 		goto drop;
2250 	}
2251 	/* ...fall into dropwithreset... */
2252 
2253 dropwithreset:
2254 	/*
2255 	 * Generate a RST, dropping incoming segment.
2256 	 * Make ACK acceptable to originator of segment.
2257 	 */
2258 	if (tiflags & TH_RST)
2259 		goto drop;
2260 
2261 	switch (af) {
2262 #ifdef INET6
2263 	case AF_INET6:
2264 		/* For following calls to tcp_respond */
2265 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2266 			goto drop;
2267 		break;
2268 #endif /* INET6 */
2269 	case AF_INET:
2270 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2271 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2272 			goto drop;
2273 	}
2274 
2275     {
2276 	/*
2277 	 * need to recover version # field, which was overwritten on
2278 	 * ip_cksum computation.
2279 	 */
2280 	struct ip *sip;
2281 	sip = mtod(m, struct ip *);
2282 	switch (af) {
2283 #ifdef INET
2284 	case AF_INET:
2285 		sip->ip_v = 4;
2286 		break;
2287 #endif
2288 #ifdef INET6
2289 	case AF_INET6:
2290 		sip->ip_v = 6;
2291 		break;
2292 #endif
2293 	}
2294     }
2295 	if (tiflags & TH_ACK)
2296 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2297 	else {
2298 		if (tiflags & TH_SYN)
2299 			tlen++;
2300 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2301 		    TH_RST|TH_ACK);
2302 	}
2303 	if (tcp_saveti)
2304 		m_freem(tcp_saveti);
2305 	return;
2306 
2307 badcsum:
2308 	tcpstat.tcps_rcvbadsum++;
2309 drop:
2310 	/*
2311 	 * Drop space held by incoming segment and return.
2312 	 */
2313 	if (tp) {
2314 		if (tp->t_inpcb)
2315 			so = tp->t_inpcb->inp_socket;
2316 #ifdef INET6
2317 		else if (tp->t_in6pcb)
2318 			so = tp->t_in6pcb->in6p_socket;
2319 #endif
2320 		else
2321 			so = NULL;
2322 #ifdef TCP_DEBUG
2323 		if (so && (so->so_options & SO_DEBUG) != 0)
2324 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2325 #endif
2326 	}
2327 	if (tcp_saveti)
2328 		m_freem(tcp_saveti);
2329 	m_freem(m);
2330 	return;
2331 }
2332 
2333 void
2334 tcp_dooptions(tp, cp, cnt, th, oi)
2335 	struct tcpcb *tp;
2336 	u_char *cp;
2337 	int cnt;
2338 	struct tcphdr *th;
2339 	struct tcp_opt_info *oi;
2340 {
2341 	u_int16_t mss;
2342 	int opt, optlen;
2343 
2344 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2345 		opt = cp[0];
2346 		if (opt == TCPOPT_EOL)
2347 			break;
2348 		if (opt == TCPOPT_NOP)
2349 			optlen = 1;
2350 		else {
2351 			if (cnt < 2)
2352 				break;
2353 			optlen = cp[1];
2354 			if (optlen < 2 || optlen > cnt)
2355 				break;
2356 		}
2357 		switch (opt) {
2358 
2359 		default:
2360 			continue;
2361 
2362 		case TCPOPT_MAXSEG:
2363 			if (optlen != TCPOLEN_MAXSEG)
2364 				continue;
2365 			if (!(th->th_flags & TH_SYN))
2366 				continue;
2367 			bcopy(cp + 2, &mss, sizeof(mss));
2368 			oi->maxseg = ntohs(mss);
2369 			break;
2370 
2371 		case TCPOPT_WINDOW:
2372 			if (optlen != TCPOLEN_WINDOW)
2373 				continue;
2374 			if (!(th->th_flags & TH_SYN))
2375 				continue;
2376 			tp->t_flags |= TF_RCVD_SCALE;
2377 			tp->requested_s_scale = cp[2];
2378 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2379 #if 0	/*XXX*/
2380 				char *p;
2381 
2382 				if (ip)
2383 					p = ntohl(ip->ip_src);
2384 #ifdef INET6
2385 				else if (ip6)
2386 					p = ip6_sprintf(&ip6->ip6_src);
2387 #endif
2388 				else
2389 					p = "(unknown)";
2390 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2391 				    "assuming %d\n",
2392 				    tp->requested_s_scale, p,
2393 				    TCP_MAX_WINSHIFT);
2394 #else
2395 				log(LOG_ERR, "TCP: invalid wscale %d, "
2396 				    "assuming %d\n",
2397 				    tp->requested_s_scale,
2398 				    TCP_MAX_WINSHIFT);
2399 #endif
2400 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
2401 			}
2402 			break;
2403 
2404 		case TCPOPT_TIMESTAMP:
2405 			if (optlen != TCPOLEN_TIMESTAMP)
2406 				continue;
2407 			oi->ts_present = 1;
2408 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2409 			NTOHL(oi->ts_val);
2410 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2411 			NTOHL(oi->ts_ecr);
2412 
2413 			/*
2414 			 * A timestamp received in a SYN makes
2415 			 * it ok to send timestamp requests and replies.
2416 			 */
2417 			if (th->th_flags & TH_SYN) {
2418 				tp->t_flags |= TF_RCVD_TSTMP;
2419 				tp->ts_recent = oi->ts_val;
2420 				tp->ts_recent_age = TCP_TIMESTAMP(tp);
2421 			}
2422 			break;
2423 		case TCPOPT_SACK_PERMITTED:
2424 			if (optlen != TCPOLEN_SACK_PERMITTED)
2425 				continue;
2426 			if (!(th->th_flags & TH_SYN))
2427 				continue;
2428 			tp->t_flags &= ~TF_CANT_TXSACK;
2429 			break;
2430 
2431 		case TCPOPT_SACK:
2432 			if (tp->t_flags & TF_IGNR_RXSACK)
2433 				continue;
2434 			if (optlen % 8 != 2 || optlen < 10)
2435 				continue;
2436 			cp += 2;
2437 			optlen -= 2;
2438 			for (; optlen > 0; cp -= 8, optlen -= 8) {
2439 				tcp_seq lwe, rwe;
2440 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2441 				NTOHL(lwe);
2442 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2443 				NTOHL(rwe);
2444 				/* tcp_mark_sacked(tp, lwe, rwe); */
2445 			}
2446 			break;
2447 		}
2448 	}
2449 }
2450 
2451 /*
2452  * Pull out of band byte out of a segment so
2453  * it doesn't appear in the user's data queue.
2454  * It is still reflected in the segment length for
2455  * sequencing purposes.
2456  */
2457 void
2458 tcp_pulloutofband(so, th, m, off)
2459 	struct socket *so;
2460 	struct tcphdr *th;
2461 	struct mbuf *m;
2462 	int off;
2463 {
2464 	int cnt = off + th->th_urp - 1;
2465 
2466 	while (cnt >= 0) {
2467 		if (m->m_len > cnt) {
2468 			char *cp = mtod(m, caddr_t) + cnt;
2469 			struct tcpcb *tp = sototcpcb(so);
2470 
2471 			tp->t_iobc = *cp;
2472 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2473 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2474 			m->m_len--;
2475 			return;
2476 		}
2477 		cnt -= m->m_len;
2478 		m = m->m_next;
2479 		if (m == 0)
2480 			break;
2481 	}
2482 	panic("tcp_pulloutofband");
2483 }
2484 
2485 /*
2486  * Collect new round-trip time estimate
2487  * and update averages and current timeout.
2488  */
2489 void
2490 tcp_xmit_timer(tp, rtt)
2491 	struct tcpcb *tp;
2492 	uint32_t rtt;
2493 {
2494 	int32_t delta;
2495 
2496 	tcpstat.tcps_rttupdated++;
2497 	if (tp->t_srtt != 0) {
2498 		/*
2499 		 * srtt is stored as fixed point with 3 bits after the
2500 		 * binary point (i.e., scaled by 8).  The following magic
2501 		 * is equivalent to the smoothing algorithm in rfc793 with
2502 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2503 		 * point).  Adjust rtt to origin 0.
2504 		 */
2505 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2506 		if ((tp->t_srtt += delta) <= 0)
2507 			tp->t_srtt = 1 << 2;
2508 		/*
2509 		 * We accumulate a smoothed rtt variance (actually, a
2510 		 * smoothed mean difference), then set the retransmit
2511 		 * timer to smoothed rtt + 4 times the smoothed variance.
2512 		 * rttvar is stored as fixed point with 2 bits after the
2513 		 * binary point (scaled by 4).  The following is
2514 		 * equivalent to rfc793 smoothing with an alpha of .75
2515 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2516 		 * rfc793's wired-in beta.
2517 		 */
2518 		if (delta < 0)
2519 			delta = -delta;
2520 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2521 		if ((tp->t_rttvar += delta) <= 0)
2522 			tp->t_rttvar = 1 << 2;
2523 	} else {
2524 		/*
2525 		 * No rtt measurement yet - use the unsmoothed rtt.
2526 		 * Set the variance to half the rtt (so our first
2527 		 * retransmit happens at 3*rtt).
2528 		 */
2529 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2530 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2531 	}
2532 	tp->t_rtttime = 0;
2533 	tp->t_rxtshift = 0;
2534 
2535 	/*
2536 	 * the retransmit should happen at rtt + 4 * rttvar.
2537 	 * Because of the way we do the smoothing, srtt and rttvar
2538 	 * will each average +1/2 tick of bias.  When we compute
2539 	 * the retransmit timer, we want 1/2 tick of rounding and
2540 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2541 	 * firing of the timer.  The bias will give us exactly the
2542 	 * 1.5 tick we need.  But, because the bias is
2543 	 * statistical, we have to test that we don't drop below
2544 	 * the minimum feasible timer (which is 2 ticks).
2545 	 */
2546 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2547 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2548 
2549 	/*
2550 	 * We received an ack for a packet that wasn't retransmitted;
2551 	 * it is probably safe to discard any error indications we've
2552 	 * received recently.  This isn't quite right, but close enough
2553 	 * for now (a route might have failed after we sent a segment,
2554 	 * and the return path might not be symmetrical).
2555 	 */
2556 	tp->t_softerror = 0;
2557 }
2558 
2559 /*
2560  * Checks for partial ack.  If partial ack arrives, force the retransmission
2561  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2562  * 1.  By setting snd_nxt to th_ack, this forces retransmission timer to
2563  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
2564  */
2565 int
2566 tcp_newreno(tp, th)
2567 	struct tcpcb *tp;
2568 	struct tcphdr *th;
2569 {
2570 	tcp_seq onxt = tp->snd_nxt;
2571 	u_long ocwnd = tp->snd_cwnd;
2572 
2573 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2574 		/*
2575 		 * snd_una has not yet been updated and the socket's send
2576 		 * buffer has not yet drained off the ACK'd data, so we
2577 		 * have to leave snd_una as it was to get the correct data
2578 		 * offset in tcp_output().
2579 		 */
2580 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
2581 	        tp->t_rtttime = 0;
2582 	        tp->snd_nxt = th->th_ack;
2583 		/*
2584 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
2585 		 * is not yet updated when we're called.
2586 		 */
2587 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2588 	        (void) tcp_output(tp);
2589 	        tp->snd_cwnd = ocwnd;
2590 	        if (SEQ_GT(onxt, tp->snd_nxt))
2591 	                tp->snd_nxt = onxt;
2592 	        /*
2593 	         * Partial window deflation.  Relies on fact that tp->snd_una
2594 	         * not updated yet.
2595 	         */
2596 	        tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2597 	        return 1;
2598 	}
2599 	return 0;
2600 }
2601 
2602 
2603 /*
2604  * TCP compressed state engine.  Currently used to hold compressed
2605  * state for SYN_RECEIVED.
2606  */
2607 
2608 u_long	syn_cache_count;
2609 u_int32_t syn_hash1, syn_hash2;
2610 
2611 #define SYN_HASH(sa, sp, dp) \
2612 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2613 				     ((u_int32_t)(sp)))^syn_hash2)))
2614 #ifndef INET6
2615 #define	SYN_HASHALL(hash, src, dst) \
2616 do {									\
2617 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
2618 		((struct sockaddr_in *)(src))->sin_port,		\
2619 		((struct sockaddr_in *)(dst))->sin_port);		\
2620 } while (0)
2621 #else
2622 #define SYN_HASH6(sa, sp, dp) \
2623 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2624 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2625 	 & 0x7fffffff)
2626 
2627 #define SYN_HASHALL(hash, src, dst) \
2628 do {									\
2629 	switch ((src)->sa_family) {					\
2630 	case AF_INET:							\
2631 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2632 			((struct sockaddr_in *)(src))->sin_port,	\
2633 			((struct sockaddr_in *)(dst))->sin_port);	\
2634 		break;							\
2635 	case AF_INET6:							\
2636 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2637 			((struct sockaddr_in6 *)(src))->sin6_port,	\
2638 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
2639 		break;							\
2640 	default:							\
2641 		hash = 0;						\
2642 	}								\
2643 } while (/*CONSTCOND*/0)
2644 #endif /* INET6 */
2645 
2646 #define	SYN_CACHE_RM(sc)						\
2647 do {									\
2648 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
2649 	    (sc), sc_bucketq);						\
2650 	(sc)->sc_tp = NULL;						\
2651 	LIST_REMOVE((sc), sc_tpq);					\
2652 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
2653 	callout_stop(&(sc)->sc_timer);					\
2654 	syn_cache_count--;						\
2655 } while (/*CONSTCOND*/0)
2656 
2657 #define	SYN_CACHE_PUT(sc)						\
2658 do {									\
2659 	if ((sc)->sc_ipopts)						\
2660 		(void) m_free((sc)->sc_ipopts);				\
2661 	if ((sc)->sc_route4.ro_rt != NULL)				\
2662 		RTFREE((sc)->sc_route4.ro_rt);				\
2663 	pool_put(&syn_cache_pool, (sc));				\
2664 } while (/*CONSTCOND*/0)
2665 
2666 struct pool syn_cache_pool;
2667 
2668 /*
2669  * We don't estimate RTT with SYNs, so each packet starts with the default
2670  * RTT and each timer step has a fixed timeout value.
2671  */
2672 #define	SYN_CACHE_TIMER_ARM(sc)						\
2673 do {									\
2674 	TCPT_RANGESET((sc)->sc_rxtcur,					\
2675 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
2676 	    TCPTV_REXMTMAX);						\
2677 	callout_reset(&(sc)->sc_timer,					\
2678 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
2679 } while (/*CONSTCOND*/0)
2680 
2681 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
2682 
2683 void
2684 syn_cache_init()
2685 {
2686 	int i;
2687 
2688 	/* Initialize the hash buckets. */
2689 	for (i = 0; i < tcp_syn_cache_size; i++)
2690 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2691 
2692 	/* Initialize the syn cache pool. */
2693 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2694 	    "synpl", NULL);
2695 }
2696 
2697 void
2698 syn_cache_insert(sc, tp)
2699 	struct syn_cache *sc;
2700 	struct tcpcb *tp;
2701 {
2702 	struct syn_cache_head *scp;
2703 	struct syn_cache *sc2;
2704 	int s;
2705 
2706 	/*
2707 	 * If there are no entries in the hash table, reinitialize
2708 	 * the hash secrets.
2709 	 */
2710 	if (syn_cache_count == 0) {
2711 		struct timeval tv;
2712 		microtime(&tv);
2713 		syn_hash1 = random() ^ (u_long)&sc;
2714 		syn_hash2 = random() ^ tv.tv_usec;
2715 	}
2716 
2717 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2718 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2719 	scp = &tcp_syn_cache[sc->sc_bucketidx];
2720 
2721 	/*
2722 	 * Make sure that we don't overflow the per-bucket
2723 	 * limit or the total cache size limit.
2724 	 */
2725 	s = splsoftnet();
2726 	if (scp->sch_length >= tcp_syn_bucket_limit) {
2727 		tcpstat.tcps_sc_bucketoverflow++;
2728 		/*
2729 		 * The bucket is full.  Toss the oldest element in the
2730 		 * bucket.  This will be the first entry in the bucket.
2731 		 */
2732 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
2733 #ifdef DIAGNOSTIC
2734 		/*
2735 		 * This should never happen; we should always find an
2736 		 * entry in our bucket.
2737 		 */
2738 		if (sc2 == NULL)
2739 			panic("syn_cache_insert: bucketoverflow: impossible");
2740 #endif
2741 		SYN_CACHE_RM(sc2);
2742 		SYN_CACHE_PUT(sc2);
2743 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
2744 		struct syn_cache_head *scp2, *sce;
2745 
2746 		tcpstat.tcps_sc_overflowed++;
2747 		/*
2748 		 * The cache is full.  Toss the oldest entry in the
2749 		 * first non-empty bucket we can find.
2750 		 *
2751 		 * XXX We would really like to toss the oldest
2752 		 * entry in the cache, but we hope that this
2753 		 * condition doesn't happen very often.
2754 		 */
2755 		scp2 = scp;
2756 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2757 			sce = &tcp_syn_cache[tcp_syn_cache_size];
2758 			for (++scp2; scp2 != scp; scp2++) {
2759 				if (scp2 >= sce)
2760 					scp2 = &tcp_syn_cache[0];
2761 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
2762 					break;
2763 			}
2764 #ifdef DIAGNOSTIC
2765 			/*
2766 			 * This should never happen; we should always find a
2767 			 * non-empty bucket.
2768 			 */
2769 			if (scp2 == scp)
2770 				panic("syn_cache_insert: cacheoverflow: "
2771 				    "impossible");
2772 #endif
2773 		}
2774 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2775 		SYN_CACHE_RM(sc2);
2776 		SYN_CACHE_PUT(sc2);
2777 	}
2778 
2779 	/*
2780 	 * Initialize the entry's timer.
2781 	 */
2782 	sc->sc_rxttot = 0;
2783 	sc->sc_rxtshift = 0;
2784 	SYN_CACHE_TIMER_ARM(sc);
2785 
2786 	/* Link it from tcpcb entry */
2787 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2788 
2789 	/* Put it into the bucket. */
2790 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
2791 	scp->sch_length++;
2792 	syn_cache_count++;
2793 
2794 	tcpstat.tcps_sc_added++;
2795 	splx(s);
2796 }
2797 
2798 /*
2799  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2800  * If we have retransmitted an entry the maximum number of times, expire
2801  * that entry.
2802  */
2803 void
2804 syn_cache_timer(void *arg)
2805 {
2806 	struct syn_cache *sc = arg;
2807 	int s;
2808 
2809 	s = splsoftnet();
2810 
2811 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
2812 		/* Drop it -- too many retransmissions. */
2813 		goto dropit;
2814 	}
2815 
2816 	/*
2817 	 * Compute the total amount of time this entry has
2818 	 * been on a queue.  If this entry has been on longer
2819 	 * than the keep alive timer would allow, expire it.
2820 	 */
2821 	sc->sc_rxttot += sc->sc_rxtcur;
2822 	if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
2823 		goto dropit;
2824 
2825 	tcpstat.tcps_sc_retransmitted++;
2826 	(void) syn_cache_respond(sc, NULL);
2827 
2828 	/* Advance the timer back-off. */
2829 	sc->sc_rxtshift++;
2830 	SYN_CACHE_TIMER_ARM(sc);
2831 
2832 	splx(s);
2833 	return;
2834 
2835  dropit:
2836 	tcpstat.tcps_sc_timed_out++;
2837 	SYN_CACHE_RM(sc);
2838 	SYN_CACHE_PUT(sc);
2839 	splx(s);
2840 }
2841 
2842 /*
2843  * Remove syn cache created by the specified tcb entry,
2844  * because this does not make sense to keep them
2845  * (if there's no tcb entry, syn cache entry will never be used)
2846  */
2847 void
2848 syn_cache_cleanup(tp)
2849 	struct tcpcb *tp;
2850 {
2851 	struct syn_cache *sc, *nsc;
2852 	int s;
2853 
2854 	s = splsoftnet();
2855 
2856 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2857 		nsc = LIST_NEXT(sc, sc_tpq);
2858 
2859 #ifdef DIAGNOSTIC
2860 		if (sc->sc_tp != tp)
2861 			panic("invalid sc_tp in syn_cache_cleanup");
2862 #endif
2863 		SYN_CACHE_RM(sc);
2864 		SYN_CACHE_PUT(sc);
2865 	}
2866 	/* just for safety */
2867 	LIST_INIT(&tp->t_sc);
2868 
2869 	splx(s);
2870 }
2871 
2872 /*
2873  * Find an entry in the syn cache.
2874  */
2875 struct syn_cache *
2876 syn_cache_lookup(src, dst, headp)
2877 	struct sockaddr *src;
2878 	struct sockaddr *dst;
2879 	struct syn_cache_head **headp;
2880 {
2881 	struct syn_cache *sc;
2882 	struct syn_cache_head *scp;
2883 	u_int32_t hash;
2884 	int s;
2885 
2886 	SYN_HASHALL(hash, src, dst);
2887 
2888 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2889 	*headp = scp;
2890 	s = splsoftnet();
2891 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
2892 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
2893 		if (sc->sc_hash != hash)
2894 			continue;
2895 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2896 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2897 			splx(s);
2898 			return (sc);
2899 		}
2900 	}
2901 	splx(s);
2902 	return (NULL);
2903 }
2904 
2905 /*
2906  * This function gets called when we receive an ACK for a
2907  * socket in the LISTEN state.  We look up the connection
2908  * in the syn cache, and if its there, we pull it out of
2909  * the cache and turn it into a full-blown connection in
2910  * the SYN-RECEIVED state.
2911  *
2912  * The return values may not be immediately obvious, and their effects
2913  * can be subtle, so here they are:
2914  *
2915  *	NULL	SYN was not found in cache; caller should drop the
2916  *		packet and send an RST.
2917  *
2918  *	-1	We were unable to create the new connection, and are
2919  *		aborting it.  An ACK,RST is being sent to the peer
2920  *		(unless we got screwey sequence numbners; see below),
2921  *		because the 3-way handshake has been completed.  Caller
2922  *		should not free the mbuf, since we may be using it.  If
2923  *		we are not, we will free it.
2924  *
2925  *	Otherwise, the return value is a pointer to the new socket
2926  *	associated with the connection.
2927  */
2928 struct socket *
2929 syn_cache_get(src, dst, th, hlen, tlen, so, m)
2930 	struct sockaddr *src;
2931 	struct sockaddr *dst;
2932 	struct tcphdr *th;
2933 	unsigned int hlen, tlen;
2934 	struct socket *so;
2935 	struct mbuf *m;
2936 {
2937 	struct syn_cache *sc;
2938 	struct syn_cache_head *scp;
2939 	struct inpcb *inp = NULL;
2940 #ifdef INET6
2941 	struct in6pcb *in6p = NULL;
2942 #endif
2943 	struct tcpcb *tp = 0;
2944 	struct mbuf *am;
2945 	int s;
2946 	struct socket *oso;
2947 
2948 	s = splsoftnet();
2949 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
2950 		splx(s);
2951 		return (NULL);
2952 	}
2953 
2954 	/*
2955 	 * Verify the sequence and ack numbers.  Try getting the correct
2956 	 * response again.
2957 	 */
2958 	if ((th->th_ack != sc->sc_iss + 1) ||
2959 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
2960 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
2961 		(void) syn_cache_respond(sc, m);
2962 		splx(s);
2963 		return ((struct socket *)(-1));
2964 	}
2965 
2966 	/* Remove this cache entry */
2967 	SYN_CACHE_RM(sc);
2968 	splx(s);
2969 
2970 	/*
2971 	 * Ok, create the full blown connection, and set things up
2972 	 * as they would have been set up if we had created the
2973 	 * connection when the SYN arrived.  If we can't create
2974 	 * the connection, abort it.
2975 	 */
2976 	/*
2977 	 * inp still has the OLD in_pcb stuff, set the
2978 	 * v6-related flags on the new guy, too.   This is
2979 	 * done particularly for the case where an AF_INET6
2980 	 * socket is bound only to a port, and a v4 connection
2981 	 * comes in on that port.
2982 	 * we also copy the flowinfo from the original pcb
2983 	 * to the new one.
2984 	 */
2985     {
2986 	struct inpcb *parentinpcb;
2987 
2988 	parentinpcb = (struct inpcb *)so->so_pcb;
2989 
2990 	oso = so;
2991 	so = sonewconn(so, SS_ISCONNECTED);
2992 	if (so == NULL)
2993 		goto resetandabort;
2994 
2995 	switch (so->so_proto->pr_domain->dom_family) {
2996 #ifdef INET
2997 	case AF_INET:
2998 		inp = sotoinpcb(so);
2999 		break;
3000 #endif
3001 #ifdef INET6
3002 	case AF_INET6:
3003 		in6p = sotoin6pcb(so);
3004 		break;
3005 #endif
3006 	}
3007     }
3008 	switch (src->sa_family) {
3009 #ifdef INET
3010 	case AF_INET:
3011 		if (inp) {
3012 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3013 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3014 			inp->inp_options = ip_srcroute();
3015 			in_pcbstate(inp, INP_BOUND);
3016 			if (inp->inp_options == NULL) {
3017 				inp->inp_options = sc->sc_ipopts;
3018 				sc->sc_ipopts = NULL;
3019 			}
3020 		}
3021 #ifdef INET6
3022 		else if (in6p) {
3023 			/* IPv4 packet to AF_INET6 socket */
3024 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3025 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3026 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3027 				&in6p->in6p_laddr.s6_addr32[3],
3028 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
3029 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3030 			in6totcpcb(in6p)->t_family = AF_INET;
3031 		}
3032 #endif
3033 		break;
3034 #endif
3035 #ifdef INET6
3036 	case AF_INET6:
3037 		if (in6p) {
3038 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3039 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3040 #if 0
3041 			in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
3042 			/*inp->inp_options = ip6_srcroute();*/ /* soon. */
3043 #endif
3044 		}
3045 		break;
3046 #endif
3047 	}
3048 #ifdef INET6
3049 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3050 		struct in6pcb *oin6p = sotoin6pcb(oso);
3051 		/* inherit socket options from the listening socket */
3052 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3053 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3054 			m_freem(in6p->in6p_options);
3055 			in6p->in6p_options = 0;
3056 		}
3057 		ip6_savecontrol(in6p, &in6p->in6p_options,
3058 			mtod(m, struct ip6_hdr *), m);
3059 	}
3060 #endif
3061 
3062 #ifdef IPSEC
3063 	/*
3064 	 * we make a copy of policy, instead of sharing the policy,
3065 	 * for better behavior in terms of SA lookup and dead SA removal.
3066 	 */
3067 	if (inp) {
3068 		/* copy old policy into new socket's */
3069 		if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3070 			printf("tcp_input: could not copy policy\n");
3071 	}
3072 #ifdef INET6
3073 	else if (in6p) {
3074 		/* copy old policy into new socket's */
3075 		if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
3076 			printf("tcp_input: could not copy policy\n");
3077 	}
3078 #endif
3079 #endif
3080 
3081 	/*
3082 	 * Give the new socket our cached route reference.
3083 	 */
3084 	if (inp)
3085 		inp->inp_route = sc->sc_route4;		/* struct assignment */
3086 #ifdef INET6
3087 	else
3088 		in6p->in6p_route = sc->sc_route6;
3089 #endif
3090 	sc->sc_route4.ro_rt = NULL;
3091 
3092 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3093 	if (am == NULL)
3094 		goto resetandabort;
3095 	am->m_len = src->sa_len;
3096 	bcopy(src, mtod(am, caddr_t), src->sa_len);
3097 	if (inp) {
3098 		if (in_pcbconnect(inp, am)) {
3099 			(void) m_free(am);
3100 			goto resetandabort;
3101 		}
3102 	}
3103 #ifdef INET6
3104 	else if (in6p) {
3105 		if (src->sa_family == AF_INET) {
3106 			/* IPv4 packet to AF_INET6 socket */
3107 			struct sockaddr_in6 *sin6;
3108 			sin6 = mtod(am, struct sockaddr_in6 *);
3109 			am->m_len = sizeof(*sin6);
3110 			bzero(sin6, sizeof(*sin6));
3111 			sin6->sin6_family = AF_INET6;
3112 			sin6->sin6_len = sizeof(*sin6);
3113 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3114 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3115 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
3116 				&sin6->sin6_addr.s6_addr32[3],
3117 				sizeof(sin6->sin6_addr.s6_addr32[3]));
3118 		}
3119 		if (in6_pcbconnect(in6p, am)) {
3120 			(void) m_free(am);
3121 			goto resetandabort;
3122 		}
3123 	}
3124 #endif
3125 	else {
3126 		(void) m_free(am);
3127 		goto resetandabort;
3128 	}
3129 	(void) m_free(am);
3130 
3131 	if (inp)
3132 		tp = intotcpcb(inp);
3133 #ifdef INET6
3134 	else if (in6p)
3135 		tp = in6totcpcb(in6p);
3136 #endif
3137 	else
3138 		tp = NULL;
3139 	if (sc->sc_request_r_scale != 15) {
3140 		tp->requested_s_scale = sc->sc_requested_s_scale;
3141 		tp->request_r_scale = sc->sc_request_r_scale;
3142 		tp->snd_scale = sc->sc_requested_s_scale;
3143 		tp->rcv_scale = sc->sc_request_r_scale;
3144 		tp->t_flags |= TF_RCVD_SCALE;
3145 	}
3146 	if (sc->sc_flags & SCF_TIMESTAMP)
3147 		tp->t_flags |= TF_RCVD_TSTMP;
3148 	tp->ts_timebase = sc->sc_timebase;
3149 
3150 	tp->t_template = tcp_template(tp);
3151 	if (tp->t_template == 0) {
3152 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3153 		so = NULL;
3154 		m_freem(m);
3155 		goto abort;
3156 	}
3157 
3158 	tp->iss = sc->sc_iss;
3159 	tp->irs = sc->sc_irs;
3160 	tcp_sendseqinit(tp);
3161 	tcp_rcvseqinit(tp);
3162 	tp->t_state = TCPS_SYN_RECEIVED;
3163 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3164 	tcpstat.tcps_accepts++;
3165 
3166 	/* Initialize tp->t_ourmss before we deal with the peer's! */
3167 	tp->t_ourmss = sc->sc_ourmaxseg;
3168 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3169 
3170 	/*
3171 	 * Initialize the initial congestion window.  If we
3172 	 * had to retransmit the SYN,ACK, we must initialize cwnd
3173 	 * to 1 segment (i.e. the Loss Window).
3174 	 */
3175 	if (sc->sc_rxtshift)
3176 		tp->snd_cwnd = tp->t_peermss;
3177 	else
3178 		tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3179 
3180 	tcp_rmx_rtt(tp);
3181 	tp->snd_wl1 = sc->sc_irs;
3182 	tp->rcv_up = sc->sc_irs + 1;
3183 
3184 	/*
3185 	 * This is what whould have happened in tcp_ouput() when
3186 	 * the SYN,ACK was sent.
3187 	 */
3188 	tp->snd_up = tp->snd_una;
3189 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3190 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3191 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3192 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3193 	tp->last_ack_sent = tp->rcv_nxt;
3194 
3195 	tcpstat.tcps_sc_completed++;
3196 	SYN_CACHE_PUT(sc);
3197 	return (so);
3198 
3199 resetandabort:
3200 	(void) tcp_respond(NULL, m, m, th,
3201 			   th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3202 abort:
3203 	if (so != NULL)
3204 		(void) soabort(so);
3205 	SYN_CACHE_PUT(sc);
3206 	tcpstat.tcps_sc_aborted++;
3207 	return ((struct socket *)(-1));
3208 }
3209 
3210 /*
3211  * This function is called when we get a RST for a
3212  * non-existent connection, so that we can see if the
3213  * connection is in the syn cache.  If it is, zap it.
3214  */
3215 
3216 void
3217 syn_cache_reset(src, dst, th)
3218 	struct sockaddr *src;
3219 	struct sockaddr *dst;
3220 	struct tcphdr *th;
3221 {
3222 	struct syn_cache *sc;
3223 	struct syn_cache_head *scp;
3224 	int s = splsoftnet();
3225 
3226 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3227 		splx(s);
3228 		return;
3229 	}
3230 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3231 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3232 		splx(s);
3233 		return;
3234 	}
3235 	SYN_CACHE_RM(sc);
3236 	splx(s);
3237 	tcpstat.tcps_sc_reset++;
3238 	SYN_CACHE_PUT(sc);
3239 }
3240 
3241 void
3242 syn_cache_unreach(src, dst, th)
3243 	struct sockaddr *src;
3244 	struct sockaddr *dst;
3245 	struct tcphdr *th;
3246 {
3247 	struct syn_cache *sc;
3248 	struct syn_cache_head *scp;
3249 	int s;
3250 
3251 	s = splsoftnet();
3252 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3253 		splx(s);
3254 		return;
3255 	}
3256 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3257 	if (ntohl (th->th_seq) != sc->sc_iss) {
3258 		splx(s);
3259 		return;
3260 	}
3261 
3262 	/*
3263 	 * If we've rertransmitted 3 times and this is our second error,
3264 	 * we remove the entry.  Otherwise, we allow it to continue on.
3265 	 * This prevents us from incorrectly nuking an entry during a
3266 	 * spurious network outage.
3267 	 *
3268 	 * See tcp_notify().
3269 	 */
3270 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3271 		sc->sc_flags |= SCF_UNREACH;
3272 		splx(s);
3273 		return;
3274 	}
3275 
3276 	SYN_CACHE_RM(sc);
3277 	splx(s);
3278 	tcpstat.tcps_sc_unreach++;
3279 	SYN_CACHE_PUT(sc);
3280 }
3281 
3282 /*
3283  * Given a LISTEN socket and an inbound SYN request, add
3284  * this to the syn cache, and send back a segment:
3285  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3286  * to the source.
3287  *
3288  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3289  * Doing so would require that we hold onto the data and deliver it
3290  * to the application.  However, if we are the target of a SYN-flood
3291  * DoS attack, an attacker could send data which would eventually
3292  * consume all available buffer space if it were ACKed.  By not ACKing
3293  * the data, we avoid this DoS scenario.
3294  */
3295 
3296 int
3297 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3298 	struct sockaddr *src;
3299 	struct sockaddr *dst;
3300 	struct tcphdr *th;
3301 	unsigned int hlen;
3302 	struct socket *so;
3303 	struct mbuf *m;
3304 	u_char *optp;
3305 	int optlen;
3306 	struct tcp_opt_info *oi;
3307 {
3308 	struct tcpcb tb, *tp;
3309 	long win;
3310 	struct syn_cache *sc;
3311 	struct syn_cache_head *scp;
3312 	struct mbuf *ipopts;
3313 
3314 	tp = sototcpcb(so);
3315 
3316 	/*
3317 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3318 	 *
3319 	 * Note this check is performed in tcp_input() very early on.
3320 	 */
3321 
3322 	/*
3323 	 * Initialize some local state.
3324 	 */
3325 	win = sbspace(&so->so_rcv);
3326 	if (win > TCP_MAXWIN)
3327 		win = TCP_MAXWIN;
3328 
3329 	switch (src->sa_family) {
3330 #ifdef INET
3331 	case AF_INET:
3332 		/*
3333 		 * Remember the IP options, if any.
3334 		 */
3335 		ipopts = ip_srcroute();
3336 		break;
3337 #endif
3338 	default:
3339 		ipopts = NULL;
3340 	}
3341 
3342 	if (optp) {
3343 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3344 		tcp_dooptions(&tb, optp, optlen, th, oi);
3345 	} else
3346 		tb.t_flags = 0;
3347 
3348 	/*
3349 	 * See if we already have an entry for this connection.
3350 	 * If we do, resend the SYN,ACK.  We do not count this
3351 	 * as a retransmission (XXX though maybe we should).
3352 	 */
3353 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3354 		tcpstat.tcps_sc_dupesyn++;
3355 		if (ipopts) {
3356 			/*
3357 			 * If we were remembering a previous source route,
3358 			 * forget it and use the new one we've been given.
3359 			 */
3360 			if (sc->sc_ipopts)
3361 				(void) m_free(sc->sc_ipopts);
3362 			sc->sc_ipopts = ipopts;
3363 		}
3364 		sc->sc_timestamp = tb.ts_recent;
3365 		if (syn_cache_respond(sc, m) == 0) {
3366 			tcpstat.tcps_sndacks++;
3367 			tcpstat.tcps_sndtotal++;
3368 		}
3369 		return (1);
3370 	}
3371 
3372 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3373 	if (sc == NULL) {
3374 		if (ipopts)
3375 			(void) m_free(ipopts);
3376 		return (0);
3377 	}
3378 
3379 	/*
3380 	 * Fill in the cache, and put the necessary IP and TCP
3381 	 * options into the reply.
3382 	 */
3383 	callout_init(&sc->sc_timer);
3384 	bzero(sc, sizeof(struct syn_cache));
3385 	bcopy(src, &sc->sc_src, src->sa_len);
3386 	bcopy(dst, &sc->sc_dst, dst->sa_len);
3387 	sc->sc_flags = 0;
3388 	sc->sc_ipopts = ipopts;
3389 	sc->sc_irs = th->th_seq;
3390 	switch (src->sa_family) {
3391 #ifdef INET
3392 	case AF_INET:
3393 	    {
3394 		struct sockaddr_in *srcin = (void *) src;
3395 		struct sockaddr_in *dstin = (void *) dst;
3396 
3397 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3398 		    &srcin->sin_addr, dstin->sin_port,
3399 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
3400 		break;
3401 	    }
3402 #endif /* INET */
3403 #ifdef INET6
3404 	case AF_INET6:
3405 	    {
3406 		struct sockaddr_in6 *srcin6 = (void *) src;
3407 		struct sockaddr_in6 *dstin6 = (void *) dst;
3408 
3409 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3410 		    &srcin6->sin6_addr, dstin6->sin6_port,
3411 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3412 		break;
3413 	    }
3414 #endif /* INET6 */
3415 	}
3416 	sc->sc_peermaxseg = oi->maxseg;
3417 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3418 						m->m_pkthdr.rcvif : NULL,
3419 						sc->sc_src.sa.sa_family);
3420 	sc->sc_win = win;
3421 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
3422 	sc->sc_timestamp = tb.ts_recent;
3423 	if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3424 		sc->sc_flags |= SCF_TIMESTAMP;
3425 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3426 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3427 		sc->sc_requested_s_scale = tb.requested_s_scale;
3428 		sc->sc_request_r_scale = 0;
3429 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3430 		    TCP_MAXWIN << sc->sc_request_r_scale <
3431 		    so->so_rcv.sb_hiwat)
3432 			sc->sc_request_r_scale++;
3433 	} else {
3434 		sc->sc_requested_s_scale = 15;
3435 		sc->sc_request_r_scale = 15;
3436 	}
3437 	sc->sc_tp = tp;
3438 	if (syn_cache_respond(sc, m) == 0) {
3439 		syn_cache_insert(sc, tp);
3440 		tcpstat.tcps_sndacks++;
3441 		tcpstat.tcps_sndtotal++;
3442 	} else {
3443 		SYN_CACHE_PUT(sc);
3444 		tcpstat.tcps_sc_dropped++;
3445 	}
3446 	return (1);
3447 }
3448 
3449 int
3450 syn_cache_respond(sc, m)
3451 	struct syn_cache *sc;
3452 	struct mbuf *m;
3453 {
3454 	struct route *ro;
3455 	u_int8_t *optp;
3456 	int optlen, error;
3457 	u_int16_t tlen;
3458 	struct ip *ip = NULL;
3459 #ifdef INET6
3460 	struct ip6_hdr *ip6 = NULL;
3461 #endif
3462 	struct tcphdr *th;
3463 	u_int hlen;
3464 
3465 	switch (sc->sc_src.sa.sa_family) {
3466 	case AF_INET:
3467 		hlen = sizeof(struct ip);
3468 		ro = &sc->sc_route4;
3469 		break;
3470 #ifdef INET6
3471 	case AF_INET6:
3472 		hlen = sizeof(struct ip6_hdr);
3473 		ro = (struct route *)&sc->sc_route6;
3474 		break;
3475 #endif
3476 	default:
3477 		if (m)
3478 			m_freem(m);
3479 		return EAFNOSUPPORT;
3480 	}
3481 
3482 	/* Compute the size of the TCP options. */
3483 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3484 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3485 
3486 	tlen = hlen + sizeof(struct tcphdr) + optlen;
3487 
3488 	/*
3489 	 * Create the IP+TCP header from scratch.
3490 	 */
3491 	if (m)
3492 		m_freem(m);
3493 #ifdef DIAGNOSTIC
3494 	if (max_linkhdr + tlen > MCLBYTES)
3495 		return (ENOBUFS);
3496 #endif
3497 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3498 	if (m && tlen > MHLEN) {
3499 		MCLGET(m, M_DONTWAIT);
3500 		if ((m->m_flags & M_EXT) == 0) {
3501 			m_freem(m);
3502 			m = NULL;
3503 		}
3504 	}
3505 	if (m == NULL)
3506 		return (ENOBUFS);
3507 
3508 	/* Fixup the mbuf. */
3509 	m->m_data += max_linkhdr;
3510 	m->m_len = m->m_pkthdr.len = tlen;
3511 #ifdef IPSEC
3512 	if (sc->sc_tp) {
3513 		struct tcpcb *tp;
3514 		struct socket *so;
3515 
3516 		tp = sc->sc_tp;
3517 		if (tp->t_inpcb)
3518 			so = tp->t_inpcb->inp_socket;
3519 #ifdef INET6
3520 		else if (tp->t_in6pcb)
3521 			so = tp->t_in6pcb->in6p_socket;
3522 #endif
3523 		else
3524 			so = NULL;
3525 		/* use IPsec policy on listening socket, on SYN ACK */
3526 		if (ipsec_setsocket(m, so) != 0) {
3527 			m_freem(m);
3528 			return ENOBUFS;
3529 		}
3530 	}
3531 #endif
3532 	m->m_pkthdr.rcvif = NULL;
3533 	memset(mtod(m, u_char *), 0, tlen);
3534 
3535 	switch (sc->sc_src.sa.sa_family) {
3536 	case AF_INET:
3537 		ip = mtod(m, struct ip *);
3538 		ip->ip_dst = sc->sc_src.sin.sin_addr;
3539 		ip->ip_src = sc->sc_dst.sin.sin_addr;
3540 		ip->ip_p = IPPROTO_TCP;
3541 		th = (struct tcphdr *)(ip + 1);
3542 		th->th_dport = sc->sc_src.sin.sin_port;
3543 		th->th_sport = sc->sc_dst.sin.sin_port;
3544 		break;
3545 #ifdef INET6
3546 	case AF_INET6:
3547 		ip6 = mtod(m, struct ip6_hdr *);
3548 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3549 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3550 		ip6->ip6_nxt = IPPROTO_TCP;
3551 		/* ip6_plen will be updated in ip6_output() */
3552 		th = (struct tcphdr *)(ip6 + 1);
3553 		th->th_dport = sc->sc_src.sin6.sin6_port;
3554 		th->th_sport = sc->sc_dst.sin6.sin6_port;
3555 		break;
3556 #endif
3557 	default:
3558 		th = NULL;
3559 	}
3560 
3561 	th->th_seq = htonl(sc->sc_iss);
3562 	th->th_ack = htonl(sc->sc_irs + 1);
3563 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3564 	th->th_flags = TH_SYN|TH_ACK;
3565 	th->th_win = htons(sc->sc_win);
3566 	/* th_sum already 0 */
3567 	/* th_urp already 0 */
3568 
3569 	/* Tack on the TCP options. */
3570 	optp = (u_int8_t *)(th + 1);
3571 	*optp++ = TCPOPT_MAXSEG;
3572 	*optp++ = 4;
3573 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3574 	*optp++ = sc->sc_ourmaxseg & 0xff;
3575 
3576 	if (sc->sc_request_r_scale != 15) {
3577 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3578 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3579 		    sc->sc_request_r_scale);
3580 		optp += 4;
3581 	}
3582 
3583 	if (sc->sc_flags & SCF_TIMESTAMP) {
3584 		u_int32_t *lp = (u_int32_t *)(optp);
3585 		/* Form timestamp option as shown in appendix A of RFC 1323. */
3586 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
3587 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3588 		*lp   = htonl(sc->sc_timestamp);
3589 		optp += TCPOLEN_TSTAMP_APPA;
3590 	}
3591 
3592 	/* Compute the packet's checksum. */
3593 	switch (sc->sc_src.sa.sa_family) {
3594 	case AF_INET:
3595 		ip->ip_len = htons(tlen - hlen);
3596 		th->th_sum = 0;
3597 		th->th_sum = in_cksum(m, tlen);
3598 		break;
3599 #ifdef INET6
3600 	case AF_INET6:
3601 		ip6->ip6_plen = htons(tlen - hlen);
3602 		th->th_sum = 0;
3603 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3604 		break;
3605 #endif
3606 	}
3607 
3608 	/*
3609 	 * Fill in some straggling IP bits.  Note the stack expects
3610 	 * ip_len to be in host order, for convenience.
3611 	 */
3612 	switch (sc->sc_src.sa.sa_family) {
3613 #ifdef INET
3614 	case AF_INET:
3615 		ip->ip_len = tlen;
3616 		ip->ip_ttl = ip_defttl;
3617 		/* XXX tos? */
3618 		break;
3619 #endif
3620 #ifdef INET6
3621 	case AF_INET6:
3622 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3623 		ip6->ip6_vfc |= IPV6_VERSION;
3624 		ip6->ip6_plen = htons(tlen - hlen);
3625 		/* ip6_hlim will be initialized afterwards */
3626 		/* XXX flowlabel? */
3627 		break;
3628 #endif
3629 	}
3630 
3631 	switch (sc->sc_src.sa.sa_family) {
3632 #ifdef INET
3633 	case AF_INET:
3634 		error = ip_output(m, sc->sc_ipopts, ro,
3635 		    (ip_mtudisc ? IP_MTUDISC : 0),
3636 		    NULL);
3637 		break;
3638 #endif
3639 #ifdef INET6
3640 	case AF_INET6:
3641 		ip6->ip6_hlim = in6_selecthlim(NULL,
3642 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3643 
3644 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3645 			0, NULL, NULL);
3646 		break;
3647 #endif
3648 	default:
3649 		error = EAFNOSUPPORT;
3650 		break;
3651 	}
3652 	return (error);
3653 }
3654