1 /* $NetBSD: tcp_input.c,v 1.255 2006/11/16 01:33:45 christos Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995 34 * 35 * NRL grants permission for redistribution and use in source and binary 36 * forms, with or without modification, of the software and documentation 37 * created at NRL provided that the following conditions are met: 38 * 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. All advertising materials mentioning features or use of this software 45 * must display the following acknowledgements: 46 * This product includes software developed by the University of 47 * California, Berkeley and its contributors. 48 * This product includes software developed at the Information 49 * Technology Division, US Naval Research Laboratory. 50 * 4. Neither the name of the NRL nor the names of its contributors 51 * may be used to endorse or promote products derived from this software 52 * without specific prior written permission. 53 * 54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS 55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR 58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 65 * 66 * The views and conclusions contained in the software and documentation 67 * are those of the authors and should not be interpreted as representing 68 * official policies, either expressed or implied, of the US Naval 69 * Research Laboratory (NRL). 70 */ 71 72 /*- 73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc. 74 * All rights reserved. 75 * 76 * This code is derived from software contributed to The NetBSD Foundation 77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation 78 * Facility, NASA Ames Research Center. 79 * This code is derived from software contributed to The NetBSD Foundation 80 * by Charles M. Hannum. 81 * This code is derived from software contributed to The NetBSD Foundation 82 * by Rui Paulo. 83 * 84 * Redistribution and use in source and binary forms, with or without 85 * modification, are permitted provided that the following conditions 86 * are met: 87 * 1. Redistributions of source code must retain the above copyright 88 * notice, this list of conditions and the following disclaimer. 89 * 2. Redistributions in binary form must reproduce the above copyright 90 * notice, this list of conditions and the following disclaimer in the 91 * documentation and/or other materials provided with the distribution. 92 * 3. All advertising materials mentioning features or use of this software 93 * must display the following acknowledgement: 94 * This product includes software developed by the NetBSD 95 * Foundation, Inc. and its contributors. 96 * 4. Neither the name of The NetBSD Foundation nor the names of its 97 * contributors may be used to endorse or promote products derived 98 * from this software without specific prior written permission. 99 * 100 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 101 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 102 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 103 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 104 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 105 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 106 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 107 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 108 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 109 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 110 * POSSIBILITY OF SUCH DAMAGE. 111 */ 112 113 /* 114 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995 115 * The Regents of the University of California. All rights reserved. 116 * 117 * Redistribution and use in source and binary forms, with or without 118 * modification, are permitted provided that the following conditions 119 * are met: 120 * 1. Redistributions of source code must retain the above copyright 121 * notice, this list of conditions and the following disclaimer. 122 * 2. Redistributions in binary form must reproduce the above copyright 123 * notice, this list of conditions and the following disclaimer in the 124 * documentation and/or other materials provided with the distribution. 125 * 3. Neither the name of the University nor the names of its contributors 126 * may be used to endorse or promote products derived from this software 127 * without specific prior written permission. 128 * 129 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 130 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 131 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 132 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 133 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 134 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 135 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 136 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 137 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 138 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 139 * SUCH DAMAGE. 140 * 141 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95 142 */ 143 144 /* 145 * TODO list for SYN cache stuff: 146 * 147 * Find room for a "state" field, which is needed to keep a 148 * compressed state for TIME_WAIT TCBs. It's been noted already 149 * that this is fairly important for very high-volume web and 150 * mail servers, which use a large number of short-lived 151 * connections. 152 */ 153 154 #include <sys/cdefs.h> 155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.255 2006/11/16 01:33:45 christos Exp $"); 156 157 #include "opt_inet.h" 158 #include "opt_ipsec.h" 159 #include "opt_inet_csum.h" 160 #include "opt_tcp_debug.h" 161 162 #include <sys/param.h> 163 #include <sys/systm.h> 164 #include <sys/malloc.h> 165 #include <sys/mbuf.h> 166 #include <sys/protosw.h> 167 #include <sys/socket.h> 168 #include <sys/socketvar.h> 169 #include <sys/errno.h> 170 #include <sys/syslog.h> 171 #include <sys/pool.h> 172 #include <sys/domain.h> 173 #include <sys/kernel.h> 174 #ifdef TCP_SIGNATURE 175 #include <sys/md5.h> 176 #endif 177 178 #include <net/if.h> 179 #include <net/route.h> 180 #include <net/if_types.h> 181 182 #include <netinet/in.h> 183 #include <netinet/in_systm.h> 184 #include <netinet/ip.h> 185 #include <netinet/in_pcb.h> 186 #include <netinet/in_var.h> 187 #include <netinet/ip_var.h> 188 #include <netinet/in_offload.h> 189 190 #ifdef INET6 191 #ifndef INET 192 #include <netinet/in.h> 193 #endif 194 #include <netinet/ip6.h> 195 #include <netinet6/ip6_var.h> 196 #include <netinet6/in6_pcb.h> 197 #include <netinet6/ip6_var.h> 198 #include <netinet6/in6_var.h> 199 #include <netinet/icmp6.h> 200 #include <netinet6/nd6.h> 201 #ifdef TCP_SIGNATURE 202 #include <netinet6/scope6_var.h> 203 #endif 204 #endif 205 206 #ifndef INET6 207 /* always need ip6.h for IP6_EXTHDR_GET */ 208 #include <netinet/ip6.h> 209 #endif 210 211 #include <netinet/tcp.h> 212 #include <netinet/tcp_fsm.h> 213 #include <netinet/tcp_seq.h> 214 #include <netinet/tcp_timer.h> 215 #include <netinet/tcp_var.h> 216 #include <netinet/tcpip.h> 217 #include <netinet/tcp_congctl.h> 218 #include <netinet/tcp_debug.h> 219 220 #include <machine/stdarg.h> 221 222 #ifdef IPSEC 223 #include <netinet6/ipsec.h> 224 #include <netkey/key.h> 225 #endif /*IPSEC*/ 226 #ifdef INET6 227 #include "faith.h" 228 #if defined(NFAITH) && NFAITH > 0 229 #include <net/if_faith.h> 230 #endif 231 #endif /* IPSEC */ 232 233 #ifdef FAST_IPSEC 234 #include <netipsec/ipsec.h> 235 #include <netipsec/ipsec_var.h> /* XXX ipsecstat namespace */ 236 #include <netipsec/key.h> 237 #ifdef INET6 238 #include <netipsec/ipsec6.h> 239 #endif 240 #endif /* FAST_IPSEC*/ 241 242 int tcprexmtthresh = 3; 243 int tcp_log_refused; 244 245 static int tcp_rst_ppslim_count = 0; 246 static struct timeval tcp_rst_ppslim_last; 247 static int tcp_ackdrop_ppslim_count = 0; 248 static struct timeval tcp_ackdrop_ppslim_last; 249 250 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ) 251 252 /* for modulo comparisons of timestamps */ 253 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0) 254 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0) 255 256 /* 257 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. 258 */ 259 #ifdef INET6 260 #define ND6_HINT(tp) \ 261 do { \ 262 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \ 263 tp->t_in6pcb->in6p_route.ro_rt) { \ 264 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \ 265 } \ 266 } while (/*CONSTCOND*/ 0) 267 #else 268 #define ND6_HINT(tp) 269 #endif 270 271 /* 272 * Macro to compute ACK transmission behavior. Delay the ACK unless 273 * we have already delayed an ACK (must send an ACK every two segments). 274 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH 275 * option is enabled. 276 */ 277 #define TCP_SETUP_ACK(tp, th) \ 278 do { \ 279 if ((tp)->t_flags & TF_DELACK || \ 280 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \ 281 tp->t_flags |= TF_ACKNOW; \ 282 else \ 283 TCP_SET_DELACK(tp); \ 284 } while (/*CONSTCOND*/ 0) 285 286 #define ICMP_CHECK(tp, th, acked) \ 287 do { \ 288 /* \ 289 * If we had a pending ICMP message that \ 290 * refers to data that have just been \ 291 * acknowledged, disregard the recorded ICMP \ 292 * message. \ 293 */ \ 294 if (((tp)->t_flags & TF_PMTUD_PEND) && \ 295 SEQ_GT((th)->th_ack, (tp)->t_pmtud_th_seq)) \ 296 (tp)->t_flags &= ~TF_PMTUD_PEND; \ 297 \ 298 /* \ 299 * Keep track of the largest chunk of data \ 300 * acknowledged since last PMTU update \ 301 */ \ 302 if ((tp)->t_pmtud_mss_acked < (acked)) \ 303 (tp)->t_pmtud_mss_acked = (acked); \ 304 } while (/*CONSTCOND*/ 0) 305 306 /* 307 * Convert TCP protocol fields to host order for easier processing. 308 */ 309 #define TCP_FIELDS_TO_HOST(th) \ 310 do { \ 311 NTOHL((th)->th_seq); \ 312 NTOHL((th)->th_ack); \ 313 NTOHS((th)->th_win); \ 314 NTOHS((th)->th_urp); \ 315 } while (/*CONSTCOND*/ 0) 316 317 /* 318 * ... and reverse the above. 319 */ 320 #define TCP_FIELDS_TO_NET(th) \ 321 do { \ 322 HTONL((th)->th_seq); \ 323 HTONL((th)->th_ack); \ 324 HTONS((th)->th_win); \ 325 HTONS((th)->th_urp); \ 326 } while (/*CONSTCOND*/ 0) 327 328 #ifdef TCP_CSUM_COUNTERS 329 #include <sys/device.h> 330 331 #if defined(INET) 332 extern struct evcnt tcp_hwcsum_ok; 333 extern struct evcnt tcp_hwcsum_bad; 334 extern struct evcnt tcp_hwcsum_data; 335 extern struct evcnt tcp_swcsum; 336 #endif /* defined(INET) */ 337 #if defined(INET6) 338 extern struct evcnt tcp6_hwcsum_ok; 339 extern struct evcnt tcp6_hwcsum_bad; 340 extern struct evcnt tcp6_hwcsum_data; 341 extern struct evcnt tcp6_swcsum; 342 #endif /* defined(INET6) */ 343 344 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++ 345 346 #else 347 348 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */ 349 350 #endif /* TCP_CSUM_COUNTERS */ 351 352 #ifdef TCP_REASS_COUNTERS 353 #include <sys/device.h> 354 355 extern struct evcnt tcp_reass_; 356 extern struct evcnt tcp_reass_empty; 357 extern struct evcnt tcp_reass_iteration[8]; 358 extern struct evcnt tcp_reass_prependfirst; 359 extern struct evcnt tcp_reass_prepend; 360 extern struct evcnt tcp_reass_insert; 361 extern struct evcnt tcp_reass_inserttail; 362 extern struct evcnt tcp_reass_append; 363 extern struct evcnt tcp_reass_appendtail; 364 extern struct evcnt tcp_reass_overlaptail; 365 extern struct evcnt tcp_reass_overlapfront; 366 extern struct evcnt tcp_reass_segdup; 367 extern struct evcnt tcp_reass_fragdup; 368 369 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++ 370 371 #else 372 373 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */ 374 375 #endif /* TCP_REASS_COUNTERS */ 376 377 static int tcp_dooptions(struct tcpcb *, const u_char *, int, 378 const struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *); 379 380 #ifdef INET 381 static void tcp4_log_refused(const struct ip *, const struct tcphdr *); 382 #endif 383 #ifdef INET6 384 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *); 385 #endif 386 387 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next 388 389 static POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl", 390 NULL); 391 392 struct ipqent * 393 tcpipqent_alloc() 394 { 395 struct ipqent *ipqe; 396 int s; 397 398 s = splvm(); 399 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT); 400 splx(s); 401 402 return ipqe; 403 } 404 405 void 406 tcpipqent_free(struct ipqent *ipqe) 407 { 408 int s; 409 410 s = splvm(); 411 pool_put(&tcpipqent_pool, ipqe); 412 splx(s); 413 } 414 415 int 416 tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen) 417 { 418 struct ipqent *p, *q, *nq, *tiqe = NULL; 419 struct socket *so = NULL; 420 int pkt_flags; 421 tcp_seq pkt_seq; 422 unsigned pkt_len; 423 u_long rcvpartdupbyte = 0; 424 u_long rcvoobyte; 425 #ifdef TCP_REASS_COUNTERS 426 u_int count = 0; 427 #endif 428 429 if (tp->t_inpcb) 430 so = tp->t_inpcb->inp_socket; 431 #ifdef INET6 432 else if (tp->t_in6pcb) 433 so = tp->t_in6pcb->in6p_socket; 434 #endif 435 436 TCP_REASS_LOCK_CHECK(tp); 437 438 /* 439 * Call with th==0 after become established to 440 * force pre-ESTABLISHED data up to user socket. 441 */ 442 if (th == 0) 443 goto present; 444 445 rcvoobyte = *tlen; 446 /* 447 * Copy these to local variables because the tcpiphdr 448 * gets munged while we are collapsing mbufs. 449 */ 450 pkt_seq = th->th_seq; 451 pkt_len = *tlen; 452 pkt_flags = th->th_flags; 453 454 TCP_REASS_COUNTER_INCR(&tcp_reass_); 455 456 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) { 457 /* 458 * When we miss a packet, the vast majority of time we get 459 * packets that follow it in order. So optimize for that. 460 */ 461 if (pkt_seq == p->ipqe_seq + p->ipqe_len) { 462 p->ipqe_len += pkt_len; 463 p->ipqe_flags |= pkt_flags; 464 m_cat(p->ipre_mlast, m); 465 TRAVERSE(p->ipre_mlast); 466 m = NULL; 467 tiqe = p; 468 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq); 469 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail); 470 goto skip_replacement; 471 } 472 /* 473 * While we're here, if the pkt is completely beyond 474 * anything we have, just insert it at the tail. 475 */ 476 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) { 477 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail); 478 goto insert_it; 479 } 480 } 481 482 q = TAILQ_FIRST(&tp->segq); 483 484 if (q != NULL) { 485 /* 486 * If this segment immediately precedes the first out-of-order 487 * block, simply slap the segment in front of it and (mostly) 488 * skip the complicated logic. 489 */ 490 if (pkt_seq + pkt_len == q->ipqe_seq) { 491 q->ipqe_seq = pkt_seq; 492 q->ipqe_len += pkt_len; 493 q->ipqe_flags |= pkt_flags; 494 m_cat(m, q->ipqe_m); 495 q->ipqe_m = m; 496 q->ipre_mlast = m; /* last mbuf may have changed */ 497 TRAVERSE(q->ipre_mlast); 498 tiqe = q; 499 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq); 500 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst); 501 goto skip_replacement; 502 } 503 } else { 504 TCP_REASS_COUNTER_INCR(&tcp_reass_empty); 505 } 506 507 /* 508 * Find a segment which begins after this one does. 509 */ 510 for (p = NULL; q != NULL; q = nq) { 511 nq = TAILQ_NEXT(q, ipqe_q); 512 #ifdef TCP_REASS_COUNTERS 513 count++; 514 #endif 515 /* 516 * If the received segment is just right after this 517 * fragment, merge the two together and then check 518 * for further overlaps. 519 */ 520 if (q->ipqe_seq + q->ipqe_len == pkt_seq) { 521 #ifdef TCPREASS_DEBUG 522 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n", 523 tp, pkt_seq, pkt_seq + pkt_len, pkt_len, 524 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len); 525 #endif 526 pkt_len += q->ipqe_len; 527 pkt_flags |= q->ipqe_flags; 528 pkt_seq = q->ipqe_seq; 529 m_cat(q->ipre_mlast, m); 530 TRAVERSE(q->ipre_mlast); 531 m = q->ipqe_m; 532 TCP_REASS_COUNTER_INCR(&tcp_reass_append); 533 goto free_ipqe; 534 } 535 /* 536 * If the received segment is completely past this 537 * fragment, we need to go the next fragment. 538 */ 539 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) { 540 p = q; 541 continue; 542 } 543 /* 544 * If the fragment is past the received segment, 545 * it (or any following) can't be concatenated. 546 */ 547 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) { 548 TCP_REASS_COUNTER_INCR(&tcp_reass_insert); 549 break; 550 } 551 552 /* 553 * We've received all the data in this segment before. 554 * mark it as a duplicate and return. 555 */ 556 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) && 557 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) { 558 tcpstat.tcps_rcvduppack++; 559 tcpstat.tcps_rcvdupbyte += pkt_len; 560 tcp_new_dsack(tp, pkt_seq, pkt_len); 561 m_freem(m); 562 if (tiqe != NULL) { 563 tcpipqent_free(tiqe); 564 } 565 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup); 566 return (0); 567 } 568 /* 569 * Received segment completely overlaps this fragment 570 * so we drop the fragment (this keeps the temporal 571 * ordering of segments correct). 572 */ 573 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) && 574 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) { 575 rcvpartdupbyte += q->ipqe_len; 576 m_freem(q->ipqe_m); 577 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup); 578 goto free_ipqe; 579 } 580 /* 581 * RX'ed segment extends past the end of the 582 * fragment. Drop the overlapping bytes. Then 583 * merge the fragment and segment then treat as 584 * a longer received packet. 585 */ 586 if (SEQ_LT(q->ipqe_seq, pkt_seq) && 587 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) { 588 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq; 589 #ifdef TCPREASS_DEBUG 590 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n", 591 tp, overlap, 592 pkt_seq, pkt_seq + pkt_len, pkt_len); 593 #endif 594 m_adj(m, overlap); 595 rcvpartdupbyte += overlap; 596 m_cat(q->ipre_mlast, m); 597 TRAVERSE(q->ipre_mlast); 598 m = q->ipqe_m; 599 pkt_seq = q->ipqe_seq; 600 pkt_len += q->ipqe_len - overlap; 601 rcvoobyte -= overlap; 602 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail); 603 goto free_ipqe; 604 } 605 /* 606 * RX'ed segment extends past the front of the 607 * fragment. Drop the overlapping bytes on the 608 * received packet. The packet will then be 609 * contatentated with this fragment a bit later. 610 */ 611 if (SEQ_GT(q->ipqe_seq, pkt_seq) && 612 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) { 613 int overlap = pkt_seq + pkt_len - q->ipqe_seq; 614 #ifdef TCPREASS_DEBUG 615 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n", 616 tp, overlap, 617 pkt_seq, pkt_seq + pkt_len, pkt_len); 618 #endif 619 m_adj(m, -overlap); 620 pkt_len -= overlap; 621 rcvpartdupbyte += overlap; 622 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront); 623 rcvoobyte -= overlap; 624 } 625 /* 626 * If the received segment immediates precedes this 627 * fragment then tack the fragment onto this segment 628 * and reinsert the data. 629 */ 630 if (q->ipqe_seq == pkt_seq + pkt_len) { 631 #ifdef TCPREASS_DEBUG 632 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n", 633 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len, 634 pkt_seq, pkt_seq + pkt_len, pkt_len); 635 #endif 636 pkt_len += q->ipqe_len; 637 pkt_flags |= q->ipqe_flags; 638 m_cat(m, q->ipqe_m); 639 TAILQ_REMOVE(&tp->segq, q, ipqe_q); 640 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq); 641 tp->t_segqlen--; 642 KASSERT(tp->t_segqlen >= 0); 643 KASSERT(tp->t_segqlen != 0 || 644 (TAILQ_EMPTY(&tp->segq) && 645 TAILQ_EMPTY(&tp->timeq))); 646 if (tiqe == NULL) { 647 tiqe = q; 648 } else { 649 tcpipqent_free(q); 650 } 651 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend); 652 break; 653 } 654 /* 655 * If the fragment is before the segment, remember it. 656 * When this loop is terminated, p will contain the 657 * pointer to fragment that is right before the received 658 * segment. 659 */ 660 if (SEQ_LEQ(q->ipqe_seq, pkt_seq)) 661 p = q; 662 663 continue; 664 665 /* 666 * This is a common operation. It also will allow 667 * to save doing a malloc/free in most instances. 668 */ 669 free_ipqe: 670 TAILQ_REMOVE(&tp->segq, q, ipqe_q); 671 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq); 672 tp->t_segqlen--; 673 KASSERT(tp->t_segqlen >= 0); 674 KASSERT(tp->t_segqlen != 0 || 675 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq))); 676 if (tiqe == NULL) { 677 tiqe = q; 678 } else { 679 tcpipqent_free(q); 680 } 681 } 682 683 #ifdef TCP_REASS_COUNTERS 684 if (count > 7) 685 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]); 686 else if (count > 0) 687 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]); 688 #endif 689 690 insert_it: 691 692 /* 693 * Allocate a new queue entry since the received segment did not 694 * collapse onto any other out-of-order block; thus we are allocating 695 * a new block. If it had collapsed, tiqe would not be NULL and 696 * we would be reusing it. 697 * XXX If we can't, just drop the packet. XXX 698 */ 699 if (tiqe == NULL) { 700 tiqe = tcpipqent_alloc(); 701 if (tiqe == NULL) { 702 tcpstat.tcps_rcvmemdrop++; 703 m_freem(m); 704 return (0); 705 } 706 } 707 708 /* 709 * Update the counters. 710 */ 711 tcpstat.tcps_rcvoopack++; 712 tcpstat.tcps_rcvoobyte += rcvoobyte; 713 if (rcvpartdupbyte) { 714 tcpstat.tcps_rcvpartduppack++; 715 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte; 716 } 717 718 /* 719 * Insert the new fragment queue entry into both queues. 720 */ 721 tiqe->ipqe_m = m; 722 tiqe->ipre_mlast = m; 723 tiqe->ipqe_seq = pkt_seq; 724 tiqe->ipqe_len = pkt_len; 725 tiqe->ipqe_flags = pkt_flags; 726 if (p == NULL) { 727 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q); 728 #ifdef TCPREASS_DEBUG 729 if (tiqe->ipqe_seq != tp->rcv_nxt) 730 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n", 731 tp, pkt_seq, pkt_seq + pkt_len, pkt_len); 732 #endif 733 } else { 734 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q); 735 #ifdef TCPREASS_DEBUG 736 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n", 737 tp, pkt_seq, pkt_seq + pkt_len, pkt_len, 738 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len); 739 #endif 740 } 741 tp->t_segqlen++; 742 743 skip_replacement: 744 745 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq); 746 747 present: 748 /* 749 * Present data to user, advancing rcv_nxt through 750 * completed sequence space. 751 */ 752 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0) 753 return (0); 754 q = TAILQ_FIRST(&tp->segq); 755 if (q == NULL || q->ipqe_seq != tp->rcv_nxt) 756 return (0); 757 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len) 758 return (0); 759 760 tp->rcv_nxt += q->ipqe_len; 761 pkt_flags = q->ipqe_flags & TH_FIN; 762 ND6_HINT(tp); 763 764 TAILQ_REMOVE(&tp->segq, q, ipqe_q); 765 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq); 766 tp->t_segqlen--; 767 KASSERT(tp->t_segqlen >= 0); 768 KASSERT(tp->t_segqlen != 0 || 769 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq))); 770 if (so->so_state & SS_CANTRCVMORE) 771 m_freem(q->ipqe_m); 772 else 773 sbappendstream(&so->so_rcv, q->ipqe_m); 774 tcpipqent_free(q); 775 sorwakeup(so); 776 return (pkt_flags); 777 } 778 779 #ifdef INET6 780 int 781 tcp6_input(struct mbuf **mp, int *offp, int proto) 782 { 783 struct mbuf *m = *mp; 784 785 /* 786 * draft-itojun-ipv6-tcp-to-anycast 787 * better place to put this in? 788 */ 789 if (m->m_flags & M_ANYCAST6) { 790 struct ip6_hdr *ip6; 791 if (m->m_len < sizeof(struct ip6_hdr)) { 792 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) { 793 tcpstat.tcps_rcvshort++; 794 return IPPROTO_DONE; 795 } 796 } 797 ip6 = mtod(m, struct ip6_hdr *); 798 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR, 799 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6); 800 return IPPROTO_DONE; 801 } 802 803 tcp_input(m, *offp, proto); 804 return IPPROTO_DONE; 805 } 806 #endif 807 808 #ifdef INET 809 static void 810 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th) 811 { 812 char src[4*sizeof "123"]; 813 char dst[4*sizeof "123"]; 814 815 if (ip) { 816 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src)); 817 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst)); 818 } 819 else { 820 strlcpy(src, "(unknown)", sizeof(src)); 821 strlcpy(dst, "(unknown)", sizeof(dst)); 822 } 823 log(LOG_INFO, 824 "Connection attempt to TCP %s:%d from %s:%d\n", 825 dst, ntohs(th->th_dport), 826 src, ntohs(th->th_sport)); 827 } 828 #endif 829 830 #ifdef INET6 831 static void 832 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th) 833 { 834 char src[INET6_ADDRSTRLEN]; 835 char dst[INET6_ADDRSTRLEN]; 836 837 if (ip6) { 838 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src)); 839 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst)); 840 } 841 else { 842 strlcpy(src, "(unknown v6)", sizeof(src)); 843 strlcpy(dst, "(unknown v6)", sizeof(dst)); 844 } 845 log(LOG_INFO, 846 "Connection attempt to TCP [%s]:%d from [%s]:%d\n", 847 dst, ntohs(th->th_dport), 848 src, ntohs(th->th_sport)); 849 } 850 #endif 851 852 /* 853 * Checksum extended TCP header and data. 854 */ 855 int 856 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th, 857 int toff, int off, int tlen) 858 { 859 860 /* 861 * XXX it's better to record and check if this mbuf is 862 * already checked. 863 */ 864 865 switch (af) { 866 #ifdef INET 867 case AF_INET: 868 switch (m->m_pkthdr.csum_flags & 869 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) | 870 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) { 871 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD: 872 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad); 873 goto badcsum; 874 875 case M_CSUM_TCPv4|M_CSUM_DATA: { 876 u_int32_t hw_csum = m->m_pkthdr.csum_data; 877 878 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data); 879 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) { 880 const struct ip *ip = 881 mtod(m, const struct ip *); 882 883 hw_csum = in_cksum_phdr(ip->ip_src.s_addr, 884 ip->ip_dst.s_addr, 885 htons(hw_csum + tlen + off + IPPROTO_TCP)); 886 } 887 if ((hw_csum ^ 0xffff) != 0) 888 goto badcsum; 889 break; 890 } 891 892 case M_CSUM_TCPv4: 893 /* Checksum was okay. */ 894 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok); 895 break; 896 897 default: 898 /* 899 * Must compute it ourselves. Maybe skip checksum 900 * on loopback interfaces. 901 */ 902 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags & 903 IFF_LOOPBACK) || 904 tcp_do_loopback_cksum)) { 905 TCP_CSUM_COUNTER_INCR(&tcp_swcsum); 906 if (in4_cksum(m, IPPROTO_TCP, toff, 907 tlen + off) != 0) 908 goto badcsum; 909 } 910 break; 911 } 912 break; 913 #endif /* INET4 */ 914 915 #ifdef INET6 916 case AF_INET6: 917 switch (m->m_pkthdr.csum_flags & 918 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) | 919 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) { 920 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD: 921 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad); 922 goto badcsum; 923 924 #if 0 /* notyet */ 925 case M_CSUM_TCPv6|M_CSUM_DATA: 926 #endif 927 928 case M_CSUM_TCPv6: 929 /* Checksum was okay. */ 930 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok); 931 break; 932 933 default: 934 /* 935 * Must compute it ourselves. Maybe skip checksum 936 * on loopback interfaces. 937 */ 938 if (__predict_true((m->m_flags & M_LOOP) == 0 || 939 tcp_do_loopback_cksum)) { 940 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum); 941 if (in6_cksum(m, IPPROTO_TCP, toff, 942 tlen + off) != 0) 943 goto badcsum; 944 } 945 } 946 break; 947 #endif /* INET6 */ 948 } 949 950 return 0; 951 952 badcsum: 953 tcpstat.tcps_rcvbadsum++; 954 return -1; 955 } 956 957 /* 958 * TCP input routine, follows pages 65-76 of RFC 793 very closely. 959 */ 960 void 961 tcp_input(struct mbuf *m, ...) 962 { 963 struct tcphdr *th; 964 struct ip *ip; 965 struct inpcb *inp; 966 #ifdef INET6 967 struct ip6_hdr *ip6; 968 struct in6pcb *in6p; 969 #endif 970 u_int8_t *optp = NULL; 971 int optlen = 0; 972 int len, tlen, toff, hdroptlen = 0; 973 struct tcpcb *tp = 0; 974 int tiflags; 975 struct socket *so = NULL; 976 int todrop, dupseg, acked, ourfinisacked, needoutput = 0; 977 #ifdef TCP_DEBUG 978 short ostate = 0; 979 #endif 980 u_long tiwin; 981 struct tcp_opt_info opti; 982 int off, iphlen; 983 va_list ap; 984 int af; /* af on the wire */ 985 struct mbuf *tcp_saveti = NULL; 986 uint32_t ts_rtt; 987 uint8_t iptos; 988 989 MCLAIM(m, &tcp_rx_mowner); 990 va_start(ap, m); 991 toff = va_arg(ap, int); 992 (void)va_arg(ap, int); /* ignore value, advance ap */ 993 va_end(ap); 994 995 tcpstat.tcps_rcvtotal++; 996 997 bzero(&opti, sizeof(opti)); 998 opti.ts_present = 0; 999 opti.maxseg = 0; 1000 1001 /* 1002 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN. 1003 * 1004 * TCP is, by definition, unicast, so we reject all 1005 * multicast outright. 1006 * 1007 * Note, there are additional src/dst address checks in 1008 * the AF-specific code below. 1009 */ 1010 if (m->m_flags & (M_BCAST|M_MCAST)) { 1011 /* XXX stat */ 1012 goto drop; 1013 } 1014 #ifdef INET6 1015 if (m->m_flags & M_ANYCAST6) { 1016 /* XXX stat */ 1017 goto drop; 1018 } 1019 #endif 1020 1021 /* 1022 * Get IP and TCP header. 1023 * Note: IP leaves IP header in first mbuf. 1024 */ 1025 ip = mtod(m, struct ip *); 1026 #ifdef INET6 1027 ip6 = NULL; 1028 #endif 1029 switch (ip->ip_v) { 1030 #ifdef INET 1031 case 4: 1032 af = AF_INET; 1033 iphlen = sizeof(struct ip); 1034 ip = mtod(m, struct ip *); 1035 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, 1036 sizeof(struct tcphdr)); 1037 if (th == NULL) { 1038 tcpstat.tcps_rcvshort++; 1039 return; 1040 } 1041 /* We do the checksum after PCB lookup... */ 1042 len = ntohs(ip->ip_len); 1043 tlen = len - toff; 1044 iptos = ip->ip_tos; 1045 break; 1046 #endif 1047 #ifdef INET6 1048 case 6: 1049 ip = NULL; 1050 iphlen = sizeof(struct ip6_hdr); 1051 af = AF_INET6; 1052 ip6 = mtod(m, struct ip6_hdr *); 1053 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, 1054 sizeof(struct tcphdr)); 1055 if (th == NULL) { 1056 tcpstat.tcps_rcvshort++; 1057 return; 1058 } 1059 1060 /* Be proactive about malicious use of IPv4 mapped address */ 1061 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) || 1062 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) { 1063 /* XXX stat */ 1064 goto drop; 1065 } 1066 1067 /* 1068 * Be proactive about unspecified IPv6 address in source. 1069 * As we use all-zero to indicate unbounded/unconnected pcb, 1070 * unspecified IPv6 address can be used to confuse us. 1071 * 1072 * Note that packets with unspecified IPv6 destination is 1073 * already dropped in ip6_input. 1074 */ 1075 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) { 1076 /* XXX stat */ 1077 goto drop; 1078 } 1079 1080 /* 1081 * Make sure destination address is not multicast. 1082 * Source address checked in ip6_input(). 1083 */ 1084 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 1085 /* XXX stat */ 1086 goto drop; 1087 } 1088 1089 /* We do the checksum after PCB lookup... */ 1090 len = m->m_pkthdr.len; 1091 tlen = len - toff; 1092 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff; 1093 break; 1094 #endif 1095 default: 1096 m_freem(m); 1097 return; 1098 } 1099 1100 KASSERT(TCP_HDR_ALIGNED_P(th)); 1101 1102 /* 1103 * Check that TCP offset makes sense, 1104 * pull out TCP options and adjust length. XXX 1105 */ 1106 off = th->th_off << 2; 1107 if (off < sizeof (struct tcphdr) || off > tlen) { 1108 tcpstat.tcps_rcvbadoff++; 1109 goto drop; 1110 } 1111 tlen -= off; 1112 1113 /* 1114 * tcp_input() has been modified to use tlen to mean the TCP data 1115 * length throughout the function. Other functions can use 1116 * m->m_pkthdr.len as the basis for calculating the TCP data length. 1117 * rja 1118 */ 1119 1120 if (off > sizeof (struct tcphdr)) { 1121 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off); 1122 if (th == NULL) { 1123 tcpstat.tcps_rcvshort++; 1124 return; 1125 } 1126 /* 1127 * NOTE: ip/ip6 will not be affected by m_pulldown() 1128 * (as they're before toff) and we don't need to update those. 1129 */ 1130 KASSERT(TCP_HDR_ALIGNED_P(th)); 1131 optlen = off - sizeof (struct tcphdr); 1132 optp = ((u_int8_t *)th) + sizeof(struct tcphdr); 1133 /* 1134 * Do quick retrieval of timestamp options ("options 1135 * prediction?"). If timestamp is the only option and it's 1136 * formatted as recommended in RFC 1323 appendix A, we 1137 * quickly get the values now and not bother calling 1138 * tcp_dooptions(), etc. 1139 */ 1140 if ((optlen == TCPOLEN_TSTAMP_APPA || 1141 (optlen > TCPOLEN_TSTAMP_APPA && 1142 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) && 1143 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) && 1144 (th->th_flags & TH_SYN) == 0) { 1145 opti.ts_present = 1; 1146 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4)); 1147 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8)); 1148 optp = NULL; /* we've parsed the options */ 1149 } 1150 } 1151 tiflags = th->th_flags; 1152 1153 /* 1154 * Locate pcb for segment. 1155 */ 1156 findpcb: 1157 inp = NULL; 1158 #ifdef INET6 1159 in6p = NULL; 1160 #endif 1161 switch (af) { 1162 #ifdef INET 1163 case AF_INET: 1164 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport, 1165 ip->ip_dst, th->th_dport); 1166 if (inp == 0) { 1167 ++tcpstat.tcps_pcbhashmiss; 1168 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport); 1169 } 1170 #ifdef INET6 1171 if (inp == 0) { 1172 struct in6_addr s, d; 1173 1174 /* mapped addr case */ 1175 bzero(&s, sizeof(s)); 1176 s.s6_addr16[5] = htons(0xffff); 1177 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src)); 1178 bzero(&d, sizeof(d)); 1179 d.s6_addr16[5] = htons(0xffff); 1180 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst)); 1181 in6p = in6_pcblookup_connect(&tcbtable, &s, 1182 th->th_sport, &d, th->th_dport, 0); 1183 if (in6p == 0) { 1184 ++tcpstat.tcps_pcbhashmiss; 1185 in6p = in6_pcblookup_bind(&tcbtable, &d, 1186 th->th_dport, 0); 1187 } 1188 } 1189 #endif 1190 #ifndef INET6 1191 if (inp == 0) 1192 #else 1193 if (inp == 0 && in6p == 0) 1194 #endif 1195 { 1196 ++tcpstat.tcps_noport; 1197 if (tcp_log_refused && 1198 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) { 1199 tcp4_log_refused(ip, th); 1200 } 1201 TCP_FIELDS_TO_HOST(th); 1202 goto dropwithreset_ratelim; 1203 } 1204 #if defined(IPSEC) || defined(FAST_IPSEC) 1205 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 && 1206 ipsec4_in_reject(m, inp)) { 1207 ipsecstat.in_polvio++; 1208 goto drop; 1209 } 1210 #ifdef INET6 1211 else if (in6p && 1212 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 && 1213 ipsec4_in_reject_so(m, in6p->in6p_socket)) { 1214 ipsecstat.in_polvio++; 1215 goto drop; 1216 } 1217 #endif 1218 #endif /*IPSEC*/ 1219 break; 1220 #endif /*INET*/ 1221 #ifdef INET6 1222 case AF_INET6: 1223 { 1224 int faith; 1225 1226 #if defined(NFAITH) && NFAITH > 0 1227 faith = faithprefix(&ip6->ip6_dst); 1228 #else 1229 faith = 0; 1230 #endif 1231 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src, 1232 th->th_sport, &ip6->ip6_dst, th->th_dport, faith); 1233 if (in6p == NULL) { 1234 ++tcpstat.tcps_pcbhashmiss; 1235 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst, 1236 th->th_dport, faith); 1237 } 1238 if (in6p == NULL) { 1239 ++tcpstat.tcps_noport; 1240 if (tcp_log_refused && 1241 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) { 1242 tcp6_log_refused(ip6, th); 1243 } 1244 TCP_FIELDS_TO_HOST(th); 1245 goto dropwithreset_ratelim; 1246 } 1247 #if defined(IPSEC) || defined(FAST_IPSEC) 1248 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 && 1249 ipsec6_in_reject(m, in6p)) { 1250 ipsec6stat.in_polvio++; 1251 goto drop; 1252 } 1253 #endif /*IPSEC*/ 1254 break; 1255 } 1256 #endif 1257 } 1258 1259 /* 1260 * If the state is CLOSED (i.e., TCB does not exist) then 1261 * all data in the incoming segment is discarded. 1262 * If the TCB exists but is in CLOSED state, it is embryonic, 1263 * but should either do a listen or a connect soon. 1264 */ 1265 tp = NULL; 1266 so = NULL; 1267 if (inp) { 1268 tp = intotcpcb(inp); 1269 so = inp->inp_socket; 1270 } 1271 #ifdef INET6 1272 else if (in6p) { 1273 tp = in6totcpcb(in6p); 1274 so = in6p->in6p_socket; 1275 } 1276 #endif 1277 if (tp == 0) { 1278 TCP_FIELDS_TO_HOST(th); 1279 goto dropwithreset_ratelim; 1280 } 1281 if (tp->t_state == TCPS_CLOSED) 1282 goto drop; 1283 1284 /* 1285 * Checksum extended TCP header and data. 1286 */ 1287 if (tcp_input_checksum(af, m, th, toff, off, tlen)) 1288 goto badcsum; 1289 1290 TCP_FIELDS_TO_HOST(th); 1291 1292 /* Unscale the window into a 32-bit value. */ 1293 if ((tiflags & TH_SYN) == 0) 1294 tiwin = th->th_win << tp->snd_scale; 1295 else 1296 tiwin = th->th_win; 1297 1298 #ifdef INET6 1299 /* save packet options if user wanted */ 1300 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) { 1301 if (in6p->in6p_options) { 1302 m_freem(in6p->in6p_options); 1303 in6p->in6p_options = 0; 1304 } 1305 KASSERT(ip6 != NULL); 1306 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m); 1307 } 1308 #endif 1309 1310 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) { 1311 union syn_cache_sa src; 1312 union syn_cache_sa dst; 1313 1314 bzero(&src, sizeof(src)); 1315 bzero(&dst, sizeof(dst)); 1316 switch (af) { 1317 #ifdef INET 1318 case AF_INET: 1319 src.sin.sin_len = sizeof(struct sockaddr_in); 1320 src.sin.sin_family = AF_INET; 1321 src.sin.sin_addr = ip->ip_src; 1322 src.sin.sin_port = th->th_sport; 1323 1324 dst.sin.sin_len = sizeof(struct sockaddr_in); 1325 dst.sin.sin_family = AF_INET; 1326 dst.sin.sin_addr = ip->ip_dst; 1327 dst.sin.sin_port = th->th_dport; 1328 break; 1329 #endif 1330 #ifdef INET6 1331 case AF_INET6: 1332 src.sin6.sin6_len = sizeof(struct sockaddr_in6); 1333 src.sin6.sin6_family = AF_INET6; 1334 src.sin6.sin6_addr = ip6->ip6_src; 1335 src.sin6.sin6_port = th->th_sport; 1336 1337 dst.sin6.sin6_len = sizeof(struct sockaddr_in6); 1338 dst.sin6.sin6_family = AF_INET6; 1339 dst.sin6.sin6_addr = ip6->ip6_dst; 1340 dst.sin6.sin6_port = th->th_dport; 1341 break; 1342 #endif /* INET6 */ 1343 default: 1344 goto badsyn; /*sanity*/ 1345 } 1346 1347 if (so->so_options & SO_DEBUG) { 1348 #ifdef TCP_DEBUG 1349 ostate = tp->t_state; 1350 #endif 1351 1352 tcp_saveti = NULL; 1353 if (iphlen + sizeof(struct tcphdr) > MHLEN) 1354 goto nosave; 1355 1356 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) { 1357 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT); 1358 if (!tcp_saveti) 1359 goto nosave; 1360 } else { 1361 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER); 1362 if (!tcp_saveti) 1363 goto nosave; 1364 MCLAIM(m, &tcp_mowner); 1365 tcp_saveti->m_len = iphlen; 1366 m_copydata(m, 0, iphlen, 1367 mtod(tcp_saveti, caddr_t)); 1368 } 1369 1370 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) { 1371 m_freem(tcp_saveti); 1372 tcp_saveti = NULL; 1373 } else { 1374 tcp_saveti->m_len += sizeof(struct tcphdr); 1375 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen, 1376 sizeof(struct tcphdr)); 1377 } 1378 nosave:; 1379 } 1380 if (so->so_options & SO_ACCEPTCONN) { 1381 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) { 1382 if (tiflags & TH_RST) { 1383 syn_cache_reset(&src.sa, &dst.sa, th); 1384 } else if ((tiflags & (TH_ACK|TH_SYN)) == 1385 (TH_ACK|TH_SYN)) { 1386 /* 1387 * Received a SYN,ACK. This should 1388 * never happen while we are in 1389 * LISTEN. Send an RST. 1390 */ 1391 goto badsyn; 1392 } else if (tiflags & TH_ACK) { 1393 so = syn_cache_get(&src.sa, &dst.sa, 1394 th, toff, tlen, so, m); 1395 if (so == NULL) { 1396 /* 1397 * We don't have a SYN for 1398 * this ACK; send an RST. 1399 */ 1400 goto badsyn; 1401 } else if (so == 1402 (struct socket *)(-1)) { 1403 /* 1404 * We were unable to create 1405 * the connection. If the 1406 * 3-way handshake was 1407 * completed, and RST has 1408 * been sent to the peer. 1409 * Since the mbuf might be 1410 * in use for the reply, 1411 * do not free it. 1412 */ 1413 m = NULL; 1414 } else { 1415 /* 1416 * We have created a 1417 * full-blown connection. 1418 */ 1419 tp = NULL; 1420 inp = NULL; 1421 #ifdef INET6 1422 in6p = NULL; 1423 #endif 1424 switch (so->so_proto->pr_domain->dom_family) { 1425 #ifdef INET 1426 case AF_INET: 1427 inp = sotoinpcb(so); 1428 tp = intotcpcb(inp); 1429 break; 1430 #endif 1431 #ifdef INET6 1432 case AF_INET6: 1433 in6p = sotoin6pcb(so); 1434 tp = in6totcpcb(in6p); 1435 break; 1436 #endif 1437 } 1438 if (tp == NULL) 1439 goto badsyn; /*XXX*/ 1440 tiwin <<= tp->snd_scale; 1441 goto after_listen; 1442 } 1443 } else { 1444 /* 1445 * None of RST, SYN or ACK was set. 1446 * This is an invalid packet for a 1447 * TCB in LISTEN state. Send a RST. 1448 */ 1449 goto badsyn; 1450 } 1451 } else { 1452 /* 1453 * Received a SYN. 1454 * 1455 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN 1456 */ 1457 if (m->m_flags & (M_BCAST|M_MCAST)) 1458 goto drop; 1459 1460 switch (af) { 1461 #ifdef INET6 1462 case AF_INET6: 1463 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 1464 goto drop; 1465 break; 1466 #endif /* INET6 */ 1467 case AF_INET: 1468 if (IN_MULTICAST(ip->ip_dst.s_addr) || 1469 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) 1470 goto drop; 1471 break; 1472 } 1473 1474 #ifdef INET6 1475 /* 1476 * If deprecated address is forbidden, we do 1477 * not accept SYN to deprecated interface 1478 * address to prevent any new inbound 1479 * connection from getting established. 1480 * When we do not accept SYN, we send a TCP 1481 * RST, with deprecated source address (instead 1482 * of dropping it). We compromise it as it is 1483 * much better for peer to send a RST, and 1484 * RST will be the final packet for the 1485 * exchange. 1486 * 1487 * If we do not forbid deprecated addresses, we 1488 * accept the SYN packet. RFC2462 does not 1489 * suggest dropping SYN in this case. 1490 * If we decipher RFC2462 5.5.4, it says like 1491 * this: 1492 * 1. use of deprecated addr with existing 1493 * communication is okay - "SHOULD continue 1494 * to be used" 1495 * 2. use of it with new communication: 1496 * (2a) "SHOULD NOT be used if alternate 1497 * address with sufficient scope is 1498 * available" 1499 * (2b) nothing mentioned otherwise. 1500 * Here we fall into (2b) case as we have no 1501 * choice in our source address selection - we 1502 * must obey the peer. 1503 * 1504 * The wording in RFC2462 is confusing, and 1505 * there are multiple description text for 1506 * deprecated address handling - worse, they 1507 * are not exactly the same. I believe 5.5.4 1508 * is the best one, so we follow 5.5.4. 1509 */ 1510 if (af == AF_INET6 && !ip6_use_deprecated) { 1511 struct in6_ifaddr *ia6; 1512 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif, 1513 &ip6->ip6_dst)) && 1514 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) { 1515 tp = NULL; 1516 goto dropwithreset; 1517 } 1518 } 1519 #endif 1520 1521 #ifdef IPSEC 1522 switch (af) { 1523 #ifdef INET 1524 case AF_INET: 1525 if (ipsec4_in_reject_so(m, so)) { 1526 ipsecstat.in_polvio++; 1527 tp = NULL; 1528 goto dropwithreset; 1529 } 1530 break; 1531 #endif 1532 #ifdef INET6 1533 case AF_INET6: 1534 if (ipsec6_in_reject_so(m, so)) { 1535 ipsec6stat.in_polvio++; 1536 tp = NULL; 1537 goto dropwithreset; 1538 } 1539 break; 1540 #endif 1541 } 1542 #endif 1543 1544 /* 1545 * LISTEN socket received a SYN 1546 * from itself? This can't possibly 1547 * be valid; drop the packet. 1548 */ 1549 if (th->th_sport == th->th_dport) { 1550 int i; 1551 1552 switch (af) { 1553 #ifdef INET 1554 case AF_INET: 1555 i = in_hosteq(ip->ip_src, ip->ip_dst); 1556 break; 1557 #endif 1558 #ifdef INET6 1559 case AF_INET6: 1560 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst); 1561 break; 1562 #endif 1563 default: 1564 i = 1; 1565 } 1566 if (i) { 1567 tcpstat.tcps_badsyn++; 1568 goto drop; 1569 } 1570 } 1571 1572 /* 1573 * SYN looks ok; create compressed TCP 1574 * state for it. 1575 */ 1576 if (so->so_qlen <= so->so_qlimit && 1577 syn_cache_add(&src.sa, &dst.sa, th, tlen, 1578 so, m, optp, optlen, &opti)) 1579 m = NULL; 1580 } 1581 goto drop; 1582 } 1583 } 1584 1585 after_listen: 1586 #ifdef DIAGNOSTIC 1587 /* 1588 * Should not happen now that all embryonic connections 1589 * are handled with compressed state. 1590 */ 1591 if (tp->t_state == TCPS_LISTEN) 1592 panic("tcp_input: TCPS_LISTEN"); 1593 #endif 1594 1595 /* 1596 * Segment received on connection. 1597 * Reset idle time and keep-alive timer. 1598 */ 1599 tp->t_rcvtime = tcp_now; 1600 if (TCPS_HAVEESTABLISHED(tp->t_state)) 1601 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle); 1602 1603 /* 1604 * Process options. 1605 */ 1606 #ifdef TCP_SIGNATURE 1607 if (optp || (tp->t_flags & TF_SIGNATURE)) 1608 #else 1609 if (optp) 1610 #endif 1611 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0) 1612 goto drop; 1613 1614 if (TCP_SACK_ENABLED(tp)) { 1615 tcp_del_sackholes(tp, th); 1616 } 1617 1618 if (TCP_ECN_ALLOWED(tp)) { 1619 switch (iptos & IPTOS_ECN_MASK) { 1620 case IPTOS_ECN_CE: 1621 tp->t_flags |= TF_ECN_SND_ECE; 1622 tcpstat.tcps_ecn_ce++; 1623 break; 1624 case IPTOS_ECN_ECT0: 1625 tcpstat.tcps_ecn_ect++; 1626 break; 1627 case IPTOS_ECN_ECT1: 1628 /* XXX: ignore for now -- rpaulo */ 1629 break; 1630 } 1631 1632 if (tiflags & TH_CWR) 1633 tp->t_flags &= ~TF_ECN_SND_ECE; 1634 1635 /* 1636 * Congestion experienced. 1637 * Ignore if we are already trying to recover. 1638 */ 1639 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover)) 1640 tp->t_congctl->cong_exp(tp); 1641 } 1642 1643 if (opti.ts_present && opti.ts_ecr) { 1644 /* 1645 * Calculate the RTT from the returned time stamp and the 1646 * connection's time base. If the time stamp is later than 1647 * the current time, or is extremely old, fall back to non-1323 1648 * RTT calculation. Since ts_ecr is unsigned, we can test both 1649 * at the same time. 1650 */ 1651 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1; 1652 if (ts_rtt > TCP_PAWS_IDLE) 1653 ts_rtt = 0; 1654 } else { 1655 ts_rtt = 0; 1656 } 1657 1658 /* 1659 * Header prediction: check for the two common cases 1660 * of a uni-directional data xfer. If the packet has 1661 * no control flags, is in-sequence, the window didn't 1662 * change and we're not retransmitting, it's a 1663 * candidate. If the length is zero and the ack moved 1664 * forward, we're the sender side of the xfer. Just 1665 * free the data acked & wake any higher level process 1666 * that was blocked waiting for space. If the length 1667 * is non-zero and the ack didn't move, we're the 1668 * receiver side. If we're getting packets in-order 1669 * (the reassembly queue is empty), add the data to 1670 * the socket buffer and note that we need a delayed ack. 1671 */ 1672 if (tp->t_state == TCPS_ESTABLISHED && 1673 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK)) 1674 == TH_ACK && 1675 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) && 1676 th->th_seq == tp->rcv_nxt && 1677 tiwin && tiwin == tp->snd_wnd && 1678 tp->snd_nxt == tp->snd_max) { 1679 1680 /* 1681 * If last ACK falls within this segment's sequence numbers, 1682 * record the timestamp. 1683 * NOTE: 1684 * 1) That the test incorporates suggestions from the latest 1685 * proposal of the tcplw@cray.com list (Braden 1993/04/26). 1686 * 2) That updating only on newer timestamps interferes with 1687 * our earlier PAWS tests, so this check should be solely 1688 * predicated on the sequence space of this segment. 1689 * 3) That we modify the segment boundary check to be 1690 * Last.ACK.Sent <= SEG.SEQ + SEG.Len 1691 * instead of RFC1323's 1692 * Last.ACK.Sent < SEG.SEQ + SEG.Len, 1693 * This modified check allows us to overcome RFC1323's 1694 * limitations as described in Stevens TCP/IP Illustrated 1695 * Vol. 2 p.869. In such cases, we can still calculate the 1696 * RTT correctly when RCV.NXT == Last.ACK.Sent. 1697 */ 1698 if (opti.ts_present && 1699 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 1700 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + 1701 ((tiflags & (TH_SYN|TH_FIN)) != 0))) { 1702 tp->ts_recent_age = tcp_now; 1703 tp->ts_recent = opti.ts_val; 1704 } 1705 1706 if (tlen == 0) { 1707 /* Ack prediction. */ 1708 if (SEQ_GT(th->th_ack, tp->snd_una) && 1709 SEQ_LEQ(th->th_ack, tp->snd_max) && 1710 tp->snd_cwnd >= tp->snd_wnd && 1711 tp->t_partialacks < 0) { 1712 /* 1713 * this is a pure ack for outstanding data. 1714 */ 1715 ++tcpstat.tcps_predack; 1716 if (ts_rtt) 1717 tcp_xmit_timer(tp, ts_rtt); 1718 else if (tp->t_rtttime && 1719 SEQ_GT(th->th_ack, tp->t_rtseq)) 1720 tcp_xmit_timer(tp, 1721 tcp_now - tp->t_rtttime); 1722 acked = th->th_ack - tp->snd_una; 1723 tcpstat.tcps_rcvackpack++; 1724 tcpstat.tcps_rcvackbyte += acked; 1725 ND6_HINT(tp); 1726 1727 if (acked > (tp->t_lastoff - tp->t_inoff)) 1728 tp->t_lastm = NULL; 1729 sbdrop(&so->so_snd, acked); 1730 tp->t_lastoff -= acked; 1731 1732 ICMP_CHECK(tp, th, acked); 1733 1734 tp->snd_una = th->th_ack; 1735 tp->snd_fack = tp->snd_una; 1736 if (SEQ_LT(tp->snd_high, tp->snd_una)) 1737 tp->snd_high = tp->snd_una; 1738 m_freem(m); 1739 1740 /* 1741 * If all outstanding data are acked, stop 1742 * retransmit timer, otherwise restart timer 1743 * using current (possibly backed-off) value. 1744 * If process is waiting for space, 1745 * wakeup/selwakeup/signal. If data 1746 * are ready to send, let tcp_output 1747 * decide between more output or persist. 1748 */ 1749 if (tp->snd_una == tp->snd_max) 1750 TCP_TIMER_DISARM(tp, TCPT_REXMT); 1751 else if (TCP_TIMER_ISARMED(tp, 1752 TCPT_PERSIST) == 0) 1753 TCP_TIMER_ARM(tp, TCPT_REXMT, 1754 tp->t_rxtcur); 1755 1756 sowwakeup(so); 1757 if (so->so_snd.sb_cc) 1758 (void) tcp_output(tp); 1759 if (tcp_saveti) 1760 m_freem(tcp_saveti); 1761 return; 1762 } 1763 } else if (th->th_ack == tp->snd_una && 1764 TAILQ_FIRST(&tp->segq) == NULL && 1765 tlen <= sbspace(&so->so_rcv)) { 1766 /* 1767 * this is a pure, in-sequence data packet 1768 * with nothing on the reassembly queue and 1769 * we have enough buffer space to take it. 1770 */ 1771 ++tcpstat.tcps_preddat; 1772 tp->rcv_nxt += tlen; 1773 tcpstat.tcps_rcvpack++; 1774 tcpstat.tcps_rcvbyte += tlen; 1775 ND6_HINT(tp); 1776 /* 1777 * Drop TCP, IP headers and TCP options then add data 1778 * to socket buffer. 1779 */ 1780 if (so->so_state & SS_CANTRCVMORE) 1781 m_freem(m); 1782 else { 1783 m_adj(m, toff + off); 1784 sbappendstream(&so->so_rcv, m); 1785 } 1786 sorwakeup(so); 1787 TCP_SETUP_ACK(tp, th); 1788 if (tp->t_flags & TF_ACKNOW) 1789 (void) tcp_output(tp); 1790 if (tcp_saveti) 1791 m_freem(tcp_saveti); 1792 return; 1793 } 1794 } 1795 1796 /* 1797 * Compute mbuf offset to TCP data segment. 1798 */ 1799 hdroptlen = toff + off; 1800 1801 /* 1802 * Calculate amount of space in receive window, 1803 * and then do TCP input processing. 1804 * Receive window is amount of space in rcv queue, 1805 * but not less than advertised window. 1806 */ 1807 { int win; 1808 1809 win = sbspace(&so->so_rcv); 1810 if (win < 0) 1811 win = 0; 1812 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt)); 1813 } 1814 1815 switch (tp->t_state) { 1816 /* 1817 * If the state is SYN_SENT: 1818 * if seg contains an ACK, but not for our SYN, drop the input. 1819 * if seg contains a RST, then drop the connection. 1820 * if seg does not contain SYN, then drop it. 1821 * Otherwise this is an acceptable SYN segment 1822 * initialize tp->rcv_nxt and tp->irs 1823 * if seg contains ack then advance tp->snd_una 1824 * if seg contains a ECE and ECN support is enabled, the stream 1825 * is ECN capable. 1826 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state 1827 * arrange for segment to be acked (eventually) 1828 * continue processing rest of data/controls, beginning with URG 1829 */ 1830 case TCPS_SYN_SENT: 1831 if ((tiflags & TH_ACK) && 1832 (SEQ_LEQ(th->th_ack, tp->iss) || 1833 SEQ_GT(th->th_ack, tp->snd_max))) 1834 goto dropwithreset; 1835 if (tiflags & TH_RST) { 1836 if (tiflags & TH_ACK) 1837 tp = tcp_drop(tp, ECONNREFUSED); 1838 goto drop; 1839 } 1840 if ((tiflags & TH_SYN) == 0) 1841 goto drop; 1842 if (tiflags & TH_ACK) { 1843 tp->snd_una = th->th_ack; 1844 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) 1845 tp->snd_nxt = tp->snd_una; 1846 if (SEQ_LT(tp->snd_high, tp->snd_una)) 1847 tp->snd_high = tp->snd_una; 1848 TCP_TIMER_DISARM(tp, TCPT_REXMT); 1849 1850 if ((tiflags & TH_ECE) && tcp_do_ecn) { 1851 tp->t_flags |= TF_ECN_PERMIT; 1852 tcpstat.tcps_ecn_shs++; 1853 } 1854 1855 } 1856 tp->irs = th->th_seq; 1857 tcp_rcvseqinit(tp); 1858 tp->t_flags |= TF_ACKNOW; 1859 tcp_mss_from_peer(tp, opti.maxseg); 1860 1861 /* 1862 * Initialize the initial congestion window. If we 1863 * had to retransmit the SYN, we must initialize cwnd 1864 * to 1 segment (i.e. the Loss Window). 1865 */ 1866 if (tp->t_flags & TF_SYN_REXMT) 1867 tp->snd_cwnd = tp->t_peermss; 1868 else { 1869 int ss = tcp_init_win; 1870 #ifdef INET 1871 if (inp != NULL && in_localaddr(inp->inp_faddr)) 1872 ss = tcp_init_win_local; 1873 #endif 1874 #ifdef INET6 1875 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr)) 1876 ss = tcp_init_win_local; 1877 #endif 1878 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss); 1879 } 1880 1881 tcp_rmx_rtt(tp); 1882 if (tiflags & TH_ACK) { 1883 tcpstat.tcps_connects++; 1884 soisconnected(so); 1885 tcp_established(tp); 1886 /* Do window scaling on this connection? */ 1887 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 1888 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 1889 tp->snd_scale = tp->requested_s_scale; 1890 tp->rcv_scale = tp->request_r_scale; 1891 } 1892 TCP_REASS_LOCK(tp); 1893 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen); 1894 TCP_REASS_UNLOCK(tp); 1895 /* 1896 * if we didn't have to retransmit the SYN, 1897 * use its rtt as our initial srtt & rtt var. 1898 */ 1899 if (tp->t_rtttime) 1900 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime); 1901 } else 1902 tp->t_state = TCPS_SYN_RECEIVED; 1903 1904 /* 1905 * Advance th->th_seq to correspond to first data byte. 1906 * If data, trim to stay within window, 1907 * dropping FIN if necessary. 1908 */ 1909 th->th_seq++; 1910 if (tlen > tp->rcv_wnd) { 1911 todrop = tlen - tp->rcv_wnd; 1912 m_adj(m, -todrop); 1913 tlen = tp->rcv_wnd; 1914 tiflags &= ~TH_FIN; 1915 tcpstat.tcps_rcvpackafterwin++; 1916 tcpstat.tcps_rcvbyteafterwin += todrop; 1917 } 1918 tp->snd_wl1 = th->th_seq - 1; 1919 tp->rcv_up = th->th_seq; 1920 goto step6; 1921 1922 /* 1923 * If the state is SYN_RECEIVED: 1924 * If seg contains an ACK, but not for our SYN, drop the input 1925 * and generate an RST. See page 36, rfc793 1926 */ 1927 case TCPS_SYN_RECEIVED: 1928 if ((tiflags & TH_ACK) && 1929 (SEQ_LEQ(th->th_ack, tp->iss) || 1930 SEQ_GT(th->th_ack, tp->snd_max))) 1931 goto dropwithreset; 1932 break; 1933 } 1934 1935 /* 1936 * States other than LISTEN or SYN_SENT. 1937 * First check timestamp, if present. 1938 * Then check that at least some bytes of segment are within 1939 * receive window. If segment begins before rcv_nxt, 1940 * drop leading data (and SYN); if nothing left, just ack. 1941 * 1942 * RFC 1323 PAWS: If we have a timestamp reply on this segment 1943 * and it's less than ts_recent, drop it. 1944 */ 1945 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent && 1946 TSTMP_LT(opti.ts_val, tp->ts_recent)) { 1947 1948 /* Check to see if ts_recent is over 24 days old. */ 1949 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) { 1950 /* 1951 * Invalidate ts_recent. If this segment updates 1952 * ts_recent, the age will be reset later and ts_recent 1953 * will get a valid value. If it does not, setting 1954 * ts_recent to zero will at least satisfy the 1955 * requirement that zero be placed in the timestamp 1956 * echo reply when ts_recent isn't valid. The 1957 * age isn't reset until we get a valid ts_recent 1958 * because we don't want out-of-order segments to be 1959 * dropped when ts_recent is old. 1960 */ 1961 tp->ts_recent = 0; 1962 } else { 1963 tcpstat.tcps_rcvduppack++; 1964 tcpstat.tcps_rcvdupbyte += tlen; 1965 tcpstat.tcps_pawsdrop++; 1966 tcp_new_dsack(tp, th->th_seq, tlen); 1967 goto dropafterack; 1968 } 1969 } 1970 1971 todrop = tp->rcv_nxt - th->th_seq; 1972 dupseg = FALSE; 1973 if (todrop > 0) { 1974 if (tiflags & TH_SYN) { 1975 tiflags &= ~TH_SYN; 1976 th->th_seq++; 1977 if (th->th_urp > 1) 1978 th->th_urp--; 1979 else { 1980 tiflags &= ~TH_URG; 1981 th->th_urp = 0; 1982 } 1983 todrop--; 1984 } 1985 if (todrop > tlen || 1986 (todrop == tlen && (tiflags & TH_FIN) == 0)) { 1987 /* 1988 * Any valid FIN or RST must be to the left of the 1989 * window. At this point the FIN or RST must be a 1990 * duplicate or out of sequence; drop it. 1991 */ 1992 if (tiflags & TH_RST) 1993 goto drop; 1994 tiflags &= ~(TH_FIN|TH_RST); 1995 /* 1996 * Send an ACK to resynchronize and drop any data. 1997 * But keep on processing for RST or ACK. 1998 */ 1999 tp->t_flags |= TF_ACKNOW; 2000 todrop = tlen; 2001 dupseg = TRUE; 2002 tcpstat.tcps_rcvdupbyte += todrop; 2003 tcpstat.tcps_rcvduppack++; 2004 } else if ((tiflags & TH_RST) && 2005 th->th_seq != tp->last_ack_sent) { 2006 /* 2007 * Test for reset before adjusting the sequence 2008 * number for overlapping data. 2009 */ 2010 goto dropafterack_ratelim; 2011 } else { 2012 tcpstat.tcps_rcvpartduppack++; 2013 tcpstat.tcps_rcvpartdupbyte += todrop; 2014 } 2015 tcp_new_dsack(tp, th->th_seq, todrop); 2016 hdroptlen += todrop; /*drop from head afterwards*/ 2017 th->th_seq += todrop; 2018 tlen -= todrop; 2019 if (th->th_urp > todrop) 2020 th->th_urp -= todrop; 2021 else { 2022 tiflags &= ~TH_URG; 2023 th->th_urp = 0; 2024 } 2025 } 2026 2027 /* 2028 * If new data are received on a connection after the 2029 * user processes are gone, then RST the other end. 2030 */ 2031 if ((so->so_state & SS_NOFDREF) && 2032 tp->t_state > TCPS_CLOSE_WAIT && tlen) { 2033 tp = tcp_close(tp); 2034 tcpstat.tcps_rcvafterclose++; 2035 goto dropwithreset; 2036 } 2037 2038 /* 2039 * If segment ends after window, drop trailing data 2040 * (and PUSH and FIN); if nothing left, just ACK. 2041 */ 2042 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd); 2043 if (todrop > 0) { 2044 tcpstat.tcps_rcvpackafterwin++; 2045 if (todrop >= tlen) { 2046 /* 2047 * The segment actually starts after the window. 2048 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen 2049 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0 2050 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd 2051 */ 2052 tcpstat.tcps_rcvbyteafterwin += tlen; 2053 /* 2054 * If a new connection request is received 2055 * while in TIME_WAIT, drop the old connection 2056 * and start over if the sequence numbers 2057 * are above the previous ones. 2058 * 2059 * NOTE: We will checksum the packet again, and 2060 * so we need to put the header fields back into 2061 * network order! 2062 * XXX This kind of sucks, but we don't expect 2063 * XXX this to happen very often, so maybe it 2064 * XXX doesn't matter so much. 2065 */ 2066 if (tiflags & TH_SYN && 2067 tp->t_state == TCPS_TIME_WAIT && 2068 SEQ_GT(th->th_seq, tp->rcv_nxt)) { 2069 tp = tcp_close(tp); 2070 TCP_FIELDS_TO_NET(th); 2071 goto findpcb; 2072 } 2073 /* 2074 * If window is closed can only take segments at 2075 * window edge, and have to drop data and PUSH from 2076 * incoming segments. Continue processing, but 2077 * remember to ack. Otherwise, drop segment 2078 * and (if not RST) ack. 2079 */ 2080 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) { 2081 tp->t_flags |= TF_ACKNOW; 2082 tcpstat.tcps_rcvwinprobe++; 2083 } else 2084 goto dropafterack; 2085 } else 2086 tcpstat.tcps_rcvbyteafterwin += todrop; 2087 m_adj(m, -todrop); 2088 tlen -= todrop; 2089 tiflags &= ~(TH_PUSH|TH_FIN); 2090 } 2091 2092 /* 2093 * If last ACK falls within this segment's sequence numbers, 2094 * and the timestamp is newer, record it. 2095 */ 2096 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) && 2097 SEQ_LEQ(th->th_seq, tp->last_ack_sent) && 2098 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen + 2099 ((tiflags & (TH_SYN|TH_FIN)) != 0))) { 2100 tp->ts_recent_age = tcp_now; 2101 tp->ts_recent = opti.ts_val; 2102 } 2103 2104 /* 2105 * If the RST bit is set examine the state: 2106 * SYN_RECEIVED STATE: 2107 * If passive open, return to LISTEN state. 2108 * If active open, inform user that connection was refused. 2109 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES: 2110 * Inform user that connection was reset, and close tcb. 2111 * CLOSING, LAST_ACK, TIME_WAIT STATES 2112 * Close the tcb. 2113 */ 2114 if (tiflags & TH_RST) { 2115 if (th->th_seq != tp->last_ack_sent) 2116 goto dropafterack_ratelim; 2117 2118 switch (tp->t_state) { 2119 case TCPS_SYN_RECEIVED: 2120 so->so_error = ECONNREFUSED; 2121 goto close; 2122 2123 case TCPS_ESTABLISHED: 2124 case TCPS_FIN_WAIT_1: 2125 case TCPS_FIN_WAIT_2: 2126 case TCPS_CLOSE_WAIT: 2127 so->so_error = ECONNRESET; 2128 close: 2129 tp->t_state = TCPS_CLOSED; 2130 tcpstat.tcps_drops++; 2131 tp = tcp_close(tp); 2132 goto drop; 2133 2134 case TCPS_CLOSING: 2135 case TCPS_LAST_ACK: 2136 case TCPS_TIME_WAIT: 2137 tp = tcp_close(tp); 2138 goto drop; 2139 } 2140 } 2141 2142 /* 2143 * Since we've covered the SYN-SENT and SYN-RECEIVED states above 2144 * we must be in a synchronized state. RFC791 states (under RST 2145 * generation) that any unacceptable segment (an out-of-order SYN 2146 * qualifies) received in a synchronized state must elicit only an 2147 * empty acknowledgment segment ... and the connection remains in 2148 * the same state. 2149 */ 2150 if (tiflags & TH_SYN) { 2151 if (tp->rcv_nxt == th->th_seq) { 2152 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1, 2153 TH_ACK); 2154 if (tcp_saveti) 2155 m_freem(tcp_saveti); 2156 return; 2157 } 2158 2159 goto dropafterack_ratelim; 2160 } 2161 2162 /* 2163 * If the ACK bit is off we drop the segment and return. 2164 */ 2165 if ((tiflags & TH_ACK) == 0) { 2166 if (tp->t_flags & TF_ACKNOW) 2167 goto dropafterack; 2168 else 2169 goto drop; 2170 } 2171 2172 /* 2173 * Ack processing. 2174 */ 2175 switch (tp->t_state) { 2176 2177 /* 2178 * In SYN_RECEIVED state if the ack ACKs our SYN then enter 2179 * ESTABLISHED state and continue processing, otherwise 2180 * send an RST. 2181 */ 2182 case TCPS_SYN_RECEIVED: 2183 if (SEQ_GT(tp->snd_una, th->th_ack) || 2184 SEQ_GT(th->th_ack, tp->snd_max)) 2185 goto dropwithreset; 2186 tcpstat.tcps_connects++; 2187 soisconnected(so); 2188 tcp_established(tp); 2189 /* Do window scaling? */ 2190 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 2191 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 2192 tp->snd_scale = tp->requested_s_scale; 2193 tp->rcv_scale = tp->request_r_scale; 2194 } 2195 TCP_REASS_LOCK(tp); 2196 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen); 2197 TCP_REASS_UNLOCK(tp); 2198 tp->snd_wl1 = th->th_seq - 1; 2199 /* fall into ... */ 2200 2201 /* 2202 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range 2203 * ACKs. If the ack is in the range 2204 * tp->snd_una < th->th_ack <= tp->snd_max 2205 * then advance tp->snd_una to th->th_ack and drop 2206 * data from the retransmission queue. If this ACK reflects 2207 * more up to date window information we update our window information. 2208 */ 2209 case TCPS_ESTABLISHED: 2210 case TCPS_FIN_WAIT_1: 2211 case TCPS_FIN_WAIT_2: 2212 case TCPS_CLOSE_WAIT: 2213 case TCPS_CLOSING: 2214 case TCPS_LAST_ACK: 2215 case TCPS_TIME_WAIT: 2216 2217 if (SEQ_LEQ(th->th_ack, tp->snd_una)) { 2218 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) { 2219 tcpstat.tcps_rcvdupack++; 2220 /* 2221 * If we have outstanding data (other than 2222 * a window probe), this is a completely 2223 * duplicate ack (ie, window info didn't 2224 * change), the ack is the biggest we've 2225 * seen and we've seen exactly our rexmt 2226 * threshhold of them, assume a packet 2227 * has been dropped and retransmit it. 2228 * Kludge snd_nxt & the congestion 2229 * window so we send only this one 2230 * packet. 2231 */ 2232 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 || 2233 th->th_ack != tp->snd_una) 2234 tp->t_dupacks = 0; 2235 else if (tp->t_partialacks < 0 && 2236 ((!TCP_SACK_ENABLED(tp) && 2237 ++tp->t_dupacks == tcprexmtthresh) || 2238 TCP_FACK_FASTRECOV(tp))) { 2239 /* 2240 * Do the fast retransmit, and adjust 2241 * congestion control paramenters. 2242 */ 2243 if (tp->t_congctl->fast_retransmit(tp, th)) { 2244 /* False fast retransmit */ 2245 break; 2246 } else 2247 goto drop; 2248 } else if (tp->t_dupacks > tcprexmtthresh) { 2249 tp->snd_cwnd += tp->t_segsz; 2250 (void) tcp_output(tp); 2251 goto drop; 2252 } 2253 } else { 2254 /* 2255 * If the ack appears to be very old, only 2256 * allow data that is in-sequence. This 2257 * makes it somewhat more difficult to insert 2258 * forged data by guessing sequence numbers. 2259 * Sent an ack to try to update the send 2260 * sequence number on the other side. 2261 */ 2262 if (tlen && th->th_seq != tp->rcv_nxt && 2263 SEQ_LT(th->th_ack, 2264 tp->snd_una - tp->max_sndwnd)) 2265 goto dropafterack; 2266 } 2267 break; 2268 } 2269 /* 2270 * If the congestion window was inflated to account 2271 * for the other side's cached packets, retract it. 2272 */ 2273 /* XXX: make SACK have his own congestion control 2274 * struct -- rpaulo */ 2275 if (TCP_SACK_ENABLED(tp)) 2276 tcp_sack_newack(tp, th); 2277 else 2278 tp->t_congctl->fast_retransmit_newack(tp, th); 2279 if (SEQ_GT(th->th_ack, tp->snd_max)) { 2280 tcpstat.tcps_rcvacktoomuch++; 2281 goto dropafterack; 2282 } 2283 acked = th->th_ack - tp->snd_una; 2284 tcpstat.tcps_rcvackpack++; 2285 tcpstat.tcps_rcvackbyte += acked; 2286 2287 /* 2288 * If we have a timestamp reply, update smoothed 2289 * round trip time. If no timestamp is present but 2290 * transmit timer is running and timed sequence 2291 * number was acked, update smoothed round trip time. 2292 * Since we now have an rtt measurement, cancel the 2293 * timer backoff (cf., Phil Karn's retransmit alg.). 2294 * Recompute the initial retransmit timer. 2295 */ 2296 if (ts_rtt) 2297 tcp_xmit_timer(tp, ts_rtt); 2298 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) 2299 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime); 2300 2301 /* 2302 * If all outstanding data is acked, stop retransmit 2303 * timer and remember to restart (more output or persist). 2304 * If there is more data to be acked, restart retransmit 2305 * timer, using current (possibly backed-off) value. 2306 */ 2307 if (th->th_ack == tp->snd_max) { 2308 TCP_TIMER_DISARM(tp, TCPT_REXMT); 2309 needoutput = 1; 2310 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0) 2311 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur); 2312 2313 /* 2314 * New data has been acked, adjust the congestion window. 2315 */ 2316 tp->t_congctl->newack(tp, th); 2317 2318 ND6_HINT(tp); 2319 if (acked > so->so_snd.sb_cc) { 2320 tp->snd_wnd -= so->so_snd.sb_cc; 2321 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc); 2322 ourfinisacked = 1; 2323 } else { 2324 if (acked > (tp->t_lastoff - tp->t_inoff)) 2325 tp->t_lastm = NULL; 2326 sbdrop(&so->so_snd, acked); 2327 tp->t_lastoff -= acked; 2328 tp->snd_wnd -= acked; 2329 ourfinisacked = 0; 2330 } 2331 sowwakeup(so); 2332 2333 ICMP_CHECK(tp, th, acked); 2334 2335 tp->snd_una = th->th_ack; 2336 if (SEQ_GT(tp->snd_una, tp->snd_fack)) 2337 tp->snd_fack = tp->snd_una; 2338 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) 2339 tp->snd_nxt = tp->snd_una; 2340 if (SEQ_LT(tp->snd_high, tp->snd_una)) 2341 tp->snd_high = tp->snd_una; 2342 2343 switch (tp->t_state) { 2344 2345 /* 2346 * In FIN_WAIT_1 STATE in addition to the processing 2347 * for the ESTABLISHED state if our FIN is now acknowledged 2348 * then enter FIN_WAIT_2. 2349 */ 2350 case TCPS_FIN_WAIT_1: 2351 if (ourfinisacked) { 2352 /* 2353 * If we can't receive any more 2354 * data, then closing user can proceed. 2355 * Starting the timer is contrary to the 2356 * specification, but if we don't get a FIN 2357 * we'll hang forever. 2358 */ 2359 if (so->so_state & SS_CANTRCVMORE) { 2360 soisdisconnected(so); 2361 if (tcp_maxidle > 0) 2362 TCP_TIMER_ARM(tp, TCPT_2MSL, 2363 tcp_maxidle); 2364 } 2365 tp->t_state = TCPS_FIN_WAIT_2; 2366 } 2367 break; 2368 2369 /* 2370 * In CLOSING STATE in addition to the processing for 2371 * the ESTABLISHED state if the ACK acknowledges our FIN 2372 * then enter the TIME-WAIT state, otherwise ignore 2373 * the segment. 2374 */ 2375 case TCPS_CLOSING: 2376 if (ourfinisacked) { 2377 tp->t_state = TCPS_TIME_WAIT; 2378 tcp_canceltimers(tp); 2379 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL); 2380 soisdisconnected(so); 2381 } 2382 break; 2383 2384 /* 2385 * In LAST_ACK, we may still be waiting for data to drain 2386 * and/or to be acked, as well as for the ack of our FIN. 2387 * If our FIN is now acknowledged, delete the TCB, 2388 * enter the closed state and return. 2389 */ 2390 case TCPS_LAST_ACK: 2391 if (ourfinisacked) { 2392 tp = tcp_close(tp); 2393 goto drop; 2394 } 2395 break; 2396 2397 /* 2398 * In TIME_WAIT state the only thing that should arrive 2399 * is a retransmission of the remote FIN. Acknowledge 2400 * it and restart the finack timer. 2401 */ 2402 case TCPS_TIME_WAIT: 2403 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL); 2404 goto dropafterack; 2405 } 2406 } 2407 2408 step6: 2409 /* 2410 * Update window information. 2411 * Don't look at window if no ACK: TAC's send garbage on first SYN. 2412 */ 2413 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) || 2414 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) || 2415 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) { 2416 /* keep track of pure window updates */ 2417 if (tlen == 0 && 2418 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) 2419 tcpstat.tcps_rcvwinupd++; 2420 tp->snd_wnd = tiwin; 2421 tp->snd_wl1 = th->th_seq; 2422 tp->snd_wl2 = th->th_ack; 2423 if (tp->snd_wnd > tp->max_sndwnd) 2424 tp->max_sndwnd = tp->snd_wnd; 2425 needoutput = 1; 2426 } 2427 2428 /* 2429 * Process segments with URG. 2430 */ 2431 if ((tiflags & TH_URG) && th->th_urp && 2432 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 2433 /* 2434 * This is a kludge, but if we receive and accept 2435 * random urgent pointers, we'll crash in 2436 * soreceive. It's hard to imagine someone 2437 * actually wanting to send this much urgent data. 2438 */ 2439 if (th->th_urp + so->so_rcv.sb_cc > sb_max) { 2440 th->th_urp = 0; /* XXX */ 2441 tiflags &= ~TH_URG; /* XXX */ 2442 goto dodata; /* XXX */ 2443 } 2444 /* 2445 * If this segment advances the known urgent pointer, 2446 * then mark the data stream. This should not happen 2447 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since 2448 * a FIN has been received from the remote side. 2449 * In these states we ignore the URG. 2450 * 2451 * According to RFC961 (Assigned Protocols), 2452 * the urgent pointer points to the last octet 2453 * of urgent data. We continue, however, 2454 * to consider it to indicate the first octet 2455 * of data past the urgent section as the original 2456 * spec states (in one of two places). 2457 */ 2458 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) { 2459 tp->rcv_up = th->th_seq + th->th_urp; 2460 so->so_oobmark = so->so_rcv.sb_cc + 2461 (tp->rcv_up - tp->rcv_nxt) - 1; 2462 if (so->so_oobmark == 0) 2463 so->so_state |= SS_RCVATMARK; 2464 sohasoutofband(so); 2465 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA); 2466 } 2467 /* 2468 * Remove out of band data so doesn't get presented to user. 2469 * This can happen independent of advancing the URG pointer, 2470 * but if two URG's are pending at once, some out-of-band 2471 * data may creep in... ick. 2472 */ 2473 if (th->th_urp <= (u_int16_t) tlen 2474 #ifdef SO_OOBINLINE 2475 && (so->so_options & SO_OOBINLINE) == 0 2476 #endif 2477 ) 2478 tcp_pulloutofband(so, th, m, hdroptlen); 2479 } else 2480 /* 2481 * If no out of band data is expected, 2482 * pull receive urgent pointer along 2483 * with the receive window. 2484 */ 2485 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) 2486 tp->rcv_up = tp->rcv_nxt; 2487 dodata: /* XXX */ 2488 2489 /* 2490 * Process the segment text, merging it into the TCP sequencing queue, 2491 * and arranging for acknowledgement of receipt if necessary. 2492 * This process logically involves adjusting tp->rcv_wnd as data 2493 * is presented to the user (this happens in tcp_usrreq.c, 2494 * case PRU_RCVD). If a FIN has already been received on this 2495 * connection then we just ignore the text. 2496 */ 2497 if ((tlen || (tiflags & TH_FIN)) && 2498 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 2499 /* 2500 * Insert segment ti into reassembly queue of tcp with 2501 * control block tp. Return TH_FIN if reassembly now includes 2502 * a segment with FIN. The macro form does the common case 2503 * inline (segment is the next to be received on an 2504 * established connection, and the queue is empty), 2505 * avoiding linkage into and removal from the queue and 2506 * repetition of various conversions. 2507 * Set DELACK for segments received in order, but ack 2508 * immediately when segments are out of order 2509 * (so fast retransmit can work). 2510 */ 2511 /* NOTE: this was TCP_REASS() macro, but used only once */ 2512 TCP_REASS_LOCK(tp); 2513 if (th->th_seq == tp->rcv_nxt && 2514 TAILQ_FIRST(&tp->segq) == NULL && 2515 tp->t_state == TCPS_ESTABLISHED) { 2516 TCP_SETUP_ACK(tp, th); 2517 tp->rcv_nxt += tlen; 2518 tiflags = th->th_flags & TH_FIN; 2519 tcpstat.tcps_rcvpack++; 2520 tcpstat.tcps_rcvbyte += tlen; 2521 ND6_HINT(tp); 2522 if (so->so_state & SS_CANTRCVMORE) 2523 m_freem(m); 2524 else { 2525 m_adj(m, hdroptlen); 2526 sbappendstream(&(so)->so_rcv, m); 2527 } 2528 sorwakeup(so); 2529 } else { 2530 m_adj(m, hdroptlen); 2531 tiflags = tcp_reass(tp, th, m, &tlen); 2532 tp->t_flags |= TF_ACKNOW; 2533 } 2534 TCP_REASS_UNLOCK(tp); 2535 2536 /* 2537 * Note the amount of data that peer has sent into 2538 * our window, in order to estimate the sender's 2539 * buffer size. 2540 */ 2541 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt); 2542 } else { 2543 m_freem(m); 2544 m = NULL; 2545 tiflags &= ~TH_FIN; 2546 } 2547 2548 /* 2549 * If FIN is received ACK the FIN and let the user know 2550 * that the connection is closing. Ignore a FIN received before 2551 * the connection is fully established. 2552 */ 2553 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) { 2554 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { 2555 socantrcvmore(so); 2556 tp->t_flags |= TF_ACKNOW; 2557 tp->rcv_nxt++; 2558 } 2559 switch (tp->t_state) { 2560 2561 /* 2562 * In ESTABLISHED STATE enter the CLOSE_WAIT state. 2563 */ 2564 case TCPS_ESTABLISHED: 2565 tp->t_state = TCPS_CLOSE_WAIT; 2566 break; 2567 2568 /* 2569 * If still in FIN_WAIT_1 STATE FIN has not been acked so 2570 * enter the CLOSING state. 2571 */ 2572 case TCPS_FIN_WAIT_1: 2573 tp->t_state = TCPS_CLOSING; 2574 break; 2575 2576 /* 2577 * In FIN_WAIT_2 state enter the TIME_WAIT state, 2578 * starting the time-wait timer, turning off the other 2579 * standard timers. 2580 */ 2581 case TCPS_FIN_WAIT_2: 2582 tp->t_state = TCPS_TIME_WAIT; 2583 tcp_canceltimers(tp); 2584 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL); 2585 soisdisconnected(so); 2586 break; 2587 2588 /* 2589 * In TIME_WAIT state restart the 2 MSL time_wait timer. 2590 */ 2591 case TCPS_TIME_WAIT: 2592 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL); 2593 break; 2594 } 2595 } 2596 #ifdef TCP_DEBUG 2597 if (so->so_options & SO_DEBUG) 2598 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0); 2599 #endif 2600 2601 /* 2602 * Return any desired output. 2603 */ 2604 if (needoutput || (tp->t_flags & TF_ACKNOW)) { 2605 (void) tcp_output(tp); 2606 } 2607 if (tcp_saveti) 2608 m_freem(tcp_saveti); 2609 return; 2610 2611 badsyn: 2612 /* 2613 * Received a bad SYN. Increment counters and dropwithreset. 2614 */ 2615 tcpstat.tcps_badsyn++; 2616 tp = NULL; 2617 goto dropwithreset; 2618 2619 dropafterack: 2620 /* 2621 * Generate an ACK dropping incoming segment if it occupies 2622 * sequence space, where the ACK reflects our state. 2623 */ 2624 if (tiflags & TH_RST) 2625 goto drop; 2626 goto dropafterack2; 2627 2628 dropafterack_ratelim: 2629 /* 2630 * We may want to rate-limit ACKs against SYN/RST attack. 2631 */ 2632 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count, 2633 tcp_ackdrop_ppslim) == 0) { 2634 /* XXX stat */ 2635 goto drop; 2636 } 2637 /* ...fall into dropafterack2... */ 2638 2639 dropafterack2: 2640 m_freem(m); 2641 tp->t_flags |= TF_ACKNOW; 2642 (void) tcp_output(tp); 2643 if (tcp_saveti) 2644 m_freem(tcp_saveti); 2645 return; 2646 2647 dropwithreset_ratelim: 2648 /* 2649 * We may want to rate-limit RSTs in certain situations, 2650 * particularly if we are sending an RST in response to 2651 * an attempt to connect to or otherwise communicate with 2652 * a port for which we have no socket. 2653 */ 2654 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count, 2655 tcp_rst_ppslim) == 0) { 2656 /* XXX stat */ 2657 goto drop; 2658 } 2659 /* ...fall into dropwithreset... */ 2660 2661 dropwithreset: 2662 /* 2663 * Generate a RST, dropping incoming segment. 2664 * Make ACK acceptable to originator of segment. 2665 */ 2666 if (tiflags & TH_RST) 2667 goto drop; 2668 2669 switch (af) { 2670 #ifdef INET6 2671 case AF_INET6: 2672 /* For following calls to tcp_respond */ 2673 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 2674 goto drop; 2675 break; 2676 #endif /* INET6 */ 2677 case AF_INET: 2678 if (IN_MULTICAST(ip->ip_dst.s_addr) || 2679 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) 2680 goto drop; 2681 } 2682 2683 if (tiflags & TH_ACK) 2684 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST); 2685 else { 2686 if (tiflags & TH_SYN) 2687 tlen++; 2688 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0, 2689 TH_RST|TH_ACK); 2690 } 2691 if (tcp_saveti) 2692 m_freem(tcp_saveti); 2693 return; 2694 2695 badcsum: 2696 drop: 2697 /* 2698 * Drop space held by incoming segment and return. 2699 */ 2700 if (tp) { 2701 if (tp->t_inpcb) 2702 so = tp->t_inpcb->inp_socket; 2703 #ifdef INET6 2704 else if (tp->t_in6pcb) 2705 so = tp->t_in6pcb->in6p_socket; 2706 #endif 2707 else 2708 so = NULL; 2709 #ifdef TCP_DEBUG 2710 if (so && (so->so_options & SO_DEBUG) != 0) 2711 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0); 2712 #endif 2713 } 2714 if (tcp_saveti) 2715 m_freem(tcp_saveti); 2716 m_freem(m); 2717 return; 2718 } 2719 2720 #ifdef TCP_SIGNATURE 2721 int 2722 tcp_signature_apply(void *fstate, caddr_t data, u_int len) 2723 { 2724 2725 MD5Update(fstate, (u_char *)data, len); 2726 return (0); 2727 } 2728 2729 struct secasvar * 2730 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th) 2731 { 2732 struct secasvar *sav; 2733 #ifdef FAST_IPSEC 2734 union sockaddr_union dst; 2735 #endif 2736 struct ip *ip; 2737 struct ip6_hdr *ip6; 2738 2739 ip = mtod(m, struct ip *); 2740 switch (ip->ip_v) { 2741 case 4: 2742 ip = mtod(m, struct ip *); 2743 ip6 = NULL; 2744 break; 2745 case 6: 2746 ip = NULL; 2747 ip6 = mtod(m, struct ip6_hdr *); 2748 break; 2749 default: 2750 return (NULL); 2751 } 2752 2753 #ifdef FAST_IPSEC 2754 /* Extract the destination from the IP header in the mbuf. */ 2755 bzero(&dst, sizeof(union sockaddr_union)); 2756 dst.sa.sa_len = sizeof(struct sockaddr_in); 2757 dst.sa.sa_family = AF_INET; 2758 dst.sin.sin_addr = ip->ip_dst; 2759 2760 /* 2761 * Look up an SADB entry which matches the address of the peer. 2762 */ 2763 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI)); 2764 #else 2765 if (ip) 2766 sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src, 2767 (caddr_t)&ip->ip_dst, IPPROTO_TCP, 2768 htonl(TCP_SIG_SPI), 0, 0); 2769 else 2770 sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src, 2771 (caddr_t)&ip6->ip6_dst, IPPROTO_TCP, 2772 htonl(TCP_SIG_SPI), 0, 0); 2773 #endif 2774 2775 return (sav); /* freesav must be performed by caller */ 2776 } 2777 2778 int 2779 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff, 2780 struct secasvar *sav, char *sig) 2781 { 2782 MD5_CTX ctx; 2783 struct ip *ip; 2784 struct ipovly *ipovly; 2785 struct ip6_hdr *ip6; 2786 struct ippseudo ippseudo; 2787 struct ip6_hdr_pseudo ip6pseudo; 2788 struct tcphdr th0; 2789 int l, tcphdrlen; 2790 2791 if (sav == NULL) 2792 return (-1); 2793 2794 tcphdrlen = th->th_off * 4; 2795 2796 switch (mtod(m, struct ip *)->ip_v) { 2797 case 4: 2798 ip = mtod(m, struct ip *); 2799 ip6 = NULL; 2800 break; 2801 case 6: 2802 ip = NULL; 2803 ip6 = mtod(m, struct ip6_hdr *); 2804 break; 2805 default: 2806 return (-1); 2807 } 2808 2809 MD5Init(&ctx); 2810 2811 if (ip) { 2812 memset(&ippseudo, 0, sizeof(ippseudo)); 2813 ipovly = (struct ipovly *)ip; 2814 ippseudo.ippseudo_src = ipovly->ih_src; 2815 ippseudo.ippseudo_dst = ipovly->ih_dst; 2816 ippseudo.ippseudo_pad = 0; 2817 ippseudo.ippseudo_p = IPPROTO_TCP; 2818 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff); 2819 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo)); 2820 } else { 2821 memset(&ip6pseudo, 0, sizeof(ip6pseudo)); 2822 ip6pseudo.ip6ph_src = ip6->ip6_src; 2823 in6_clearscope(&ip6pseudo.ip6ph_src); 2824 ip6pseudo.ip6ph_dst = ip6->ip6_dst; 2825 in6_clearscope(&ip6pseudo.ip6ph_dst); 2826 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff); 2827 ip6pseudo.ip6ph_nxt = IPPROTO_TCP; 2828 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo)); 2829 } 2830 2831 th0 = *th; 2832 th0.th_sum = 0; 2833 MD5Update(&ctx, (char *)&th0, sizeof(th0)); 2834 2835 l = m->m_pkthdr.len - thoff - tcphdrlen; 2836 if (l > 0) 2837 m_apply(m, thoff + tcphdrlen, 2838 m->m_pkthdr.len - thoff - tcphdrlen, 2839 tcp_signature_apply, &ctx); 2840 2841 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth)); 2842 MD5Final(sig, &ctx); 2843 2844 return (0); 2845 } 2846 #endif 2847 2848 static int 2849 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt, 2850 const struct tcphdr *th, 2851 struct mbuf *m, int toff, struct tcp_opt_info *oi) 2852 { 2853 u_int16_t mss; 2854 int opt, optlen = 0; 2855 #ifdef TCP_SIGNATURE 2856 caddr_t sigp = NULL; 2857 char sigbuf[TCP_SIGLEN]; 2858 struct secasvar *sav = NULL; 2859 #endif 2860 2861 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) { 2862 opt = cp[0]; 2863 if (opt == TCPOPT_EOL) 2864 break; 2865 if (opt == TCPOPT_NOP) 2866 optlen = 1; 2867 else { 2868 if (cnt < 2) 2869 break; 2870 optlen = cp[1]; 2871 if (optlen < 2 || optlen > cnt) 2872 break; 2873 } 2874 switch (opt) { 2875 2876 default: 2877 continue; 2878 2879 case TCPOPT_MAXSEG: 2880 if (optlen != TCPOLEN_MAXSEG) 2881 continue; 2882 if (!(th->th_flags & TH_SYN)) 2883 continue; 2884 if (TCPS_HAVERCVDSYN(tp->t_state)) 2885 continue; 2886 bcopy(cp + 2, &mss, sizeof(mss)); 2887 oi->maxseg = ntohs(mss); 2888 break; 2889 2890 case TCPOPT_WINDOW: 2891 if (optlen != TCPOLEN_WINDOW) 2892 continue; 2893 if (!(th->th_flags & TH_SYN)) 2894 continue; 2895 if (TCPS_HAVERCVDSYN(tp->t_state)) 2896 continue; 2897 tp->t_flags |= TF_RCVD_SCALE; 2898 tp->requested_s_scale = cp[2]; 2899 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) { 2900 #if 0 /*XXX*/ 2901 char *p; 2902 2903 if (ip) 2904 p = ntohl(ip->ip_src); 2905 #ifdef INET6 2906 else if (ip6) 2907 p = ip6_sprintf(&ip6->ip6_src); 2908 #endif 2909 else 2910 p = "(unknown)"; 2911 log(LOG_ERR, "TCP: invalid wscale %d from %s, " 2912 "assuming %d\n", 2913 tp->requested_s_scale, p, 2914 TCP_MAX_WINSHIFT); 2915 #else 2916 log(LOG_ERR, "TCP: invalid wscale %d, " 2917 "assuming %d\n", 2918 tp->requested_s_scale, 2919 TCP_MAX_WINSHIFT); 2920 #endif 2921 tp->requested_s_scale = TCP_MAX_WINSHIFT; 2922 } 2923 break; 2924 2925 case TCPOPT_TIMESTAMP: 2926 if (optlen != TCPOLEN_TIMESTAMP) 2927 continue; 2928 oi->ts_present = 1; 2929 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val)); 2930 NTOHL(oi->ts_val); 2931 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr)); 2932 NTOHL(oi->ts_ecr); 2933 2934 if (!(th->th_flags & TH_SYN)) 2935 continue; 2936 if (TCPS_HAVERCVDSYN(tp->t_state)) 2937 continue; 2938 /* 2939 * A timestamp received in a SYN makes 2940 * it ok to send timestamp requests and replies. 2941 */ 2942 tp->t_flags |= TF_RCVD_TSTMP; 2943 tp->ts_recent = oi->ts_val; 2944 tp->ts_recent_age = tcp_now; 2945 break; 2946 2947 case TCPOPT_SACK_PERMITTED: 2948 if (optlen != TCPOLEN_SACK_PERMITTED) 2949 continue; 2950 if (!(th->th_flags & TH_SYN)) 2951 continue; 2952 if (TCPS_HAVERCVDSYN(tp->t_state)) 2953 continue; 2954 if (tcp_do_sack) { 2955 tp->t_flags |= TF_SACK_PERMIT; 2956 tp->t_flags |= TF_WILL_SACK; 2957 } 2958 break; 2959 2960 case TCPOPT_SACK: 2961 tcp_sack_option(tp, th, cp, optlen); 2962 break; 2963 #ifdef TCP_SIGNATURE 2964 case TCPOPT_SIGNATURE: 2965 if (optlen != TCPOLEN_SIGNATURE) 2966 continue; 2967 if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN)) 2968 return (-1); 2969 2970 sigp = sigbuf; 2971 memcpy(sigbuf, cp + 2, TCP_SIGLEN); 2972 memset(cp + 2, 0, TCP_SIGLEN); 2973 tp->t_flags |= TF_SIGNATURE; 2974 break; 2975 #endif 2976 } 2977 } 2978 2979 #ifdef TCP_SIGNATURE 2980 if (tp->t_flags & TF_SIGNATURE) { 2981 2982 sav = tcp_signature_getsav(m, th); 2983 2984 if (sav == NULL && tp->t_state == TCPS_LISTEN) 2985 return (-1); 2986 } 2987 2988 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) { 2989 if (sav == NULL) 2990 return (-1); 2991 #ifdef FAST_IPSEC 2992 KEY_FREESAV(&sav); 2993 #else 2994 key_freesav(sav); 2995 #endif 2996 return (-1); 2997 } 2998 2999 if (sigp) { 3000 char sig[TCP_SIGLEN]; 3001 3002 TCP_FIELDS_TO_NET(th); 3003 if (tcp_signature(m, th, toff, sav, sig) < 0) { 3004 TCP_FIELDS_TO_HOST(th); 3005 if (sav == NULL) 3006 return (-1); 3007 #ifdef FAST_IPSEC 3008 KEY_FREESAV(&sav); 3009 #else 3010 key_freesav(sav); 3011 #endif 3012 return (-1); 3013 } 3014 TCP_FIELDS_TO_HOST(th); 3015 3016 if (bcmp(sig, sigp, TCP_SIGLEN)) { 3017 tcpstat.tcps_badsig++; 3018 if (sav == NULL) 3019 return (-1); 3020 #ifdef FAST_IPSEC 3021 KEY_FREESAV(&sav); 3022 #else 3023 key_freesav(sav); 3024 #endif 3025 return (-1); 3026 } else 3027 tcpstat.tcps_goodsig++; 3028 3029 key_sa_recordxfer(sav, m); 3030 #ifdef FAST_IPSEC 3031 KEY_FREESAV(&sav); 3032 #else 3033 key_freesav(sav); 3034 #endif 3035 } 3036 #endif 3037 3038 return (0); 3039 } 3040 3041 /* 3042 * Pull out of band byte out of a segment so 3043 * it doesn't appear in the user's data queue. 3044 * It is still reflected in the segment length for 3045 * sequencing purposes. 3046 */ 3047 void 3048 tcp_pulloutofband(struct socket *so, struct tcphdr *th, 3049 struct mbuf *m, int off) 3050 { 3051 int cnt = off + th->th_urp - 1; 3052 3053 while (cnt >= 0) { 3054 if (m->m_len > cnt) { 3055 char *cp = mtod(m, caddr_t) + cnt; 3056 struct tcpcb *tp = sototcpcb(so); 3057 3058 tp->t_iobc = *cp; 3059 tp->t_oobflags |= TCPOOB_HAVEDATA; 3060 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1)); 3061 m->m_len--; 3062 return; 3063 } 3064 cnt -= m->m_len; 3065 m = m->m_next; 3066 if (m == 0) 3067 break; 3068 } 3069 panic("tcp_pulloutofband"); 3070 } 3071 3072 /* 3073 * Collect new round-trip time estimate 3074 * and update averages and current timeout. 3075 */ 3076 void 3077 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt) 3078 { 3079 int32_t delta; 3080 3081 tcpstat.tcps_rttupdated++; 3082 if (tp->t_srtt != 0) { 3083 /* 3084 * srtt is stored as fixed point with 3 bits after the 3085 * binary point (i.e., scaled by 8). The following magic 3086 * is equivalent to the smoothing algorithm in rfc793 with 3087 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed 3088 * point). Adjust rtt to origin 0. 3089 */ 3090 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT); 3091 if ((tp->t_srtt += delta) <= 0) 3092 tp->t_srtt = 1 << 2; 3093 /* 3094 * We accumulate a smoothed rtt variance (actually, a 3095 * smoothed mean difference), then set the retransmit 3096 * timer to smoothed rtt + 4 times the smoothed variance. 3097 * rttvar is stored as fixed point with 2 bits after the 3098 * binary point (scaled by 4). The following is 3099 * equivalent to rfc793 smoothing with an alpha of .75 3100 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces 3101 * rfc793's wired-in beta. 3102 */ 3103 if (delta < 0) 3104 delta = -delta; 3105 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT); 3106 if ((tp->t_rttvar += delta) <= 0) 3107 tp->t_rttvar = 1 << 2; 3108 } else { 3109 /* 3110 * No rtt measurement yet - use the unsmoothed rtt. 3111 * Set the variance to half the rtt (so our first 3112 * retransmit happens at 3*rtt). 3113 */ 3114 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2); 3115 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1); 3116 } 3117 tp->t_rtttime = 0; 3118 tp->t_rxtshift = 0; 3119 3120 /* 3121 * the retransmit should happen at rtt + 4 * rttvar. 3122 * Because of the way we do the smoothing, srtt and rttvar 3123 * will each average +1/2 tick of bias. When we compute 3124 * the retransmit timer, we want 1/2 tick of rounding and 3125 * 1 extra tick because of +-1/2 tick uncertainty in the 3126 * firing of the timer. The bias will give us exactly the 3127 * 1.5 tick we need. But, because the bias is 3128 * statistical, we have to test that we don't drop below 3129 * the minimum feasible timer (which is 2 ticks). 3130 */ 3131 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), 3132 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX); 3133 3134 /* 3135 * We received an ack for a packet that wasn't retransmitted; 3136 * it is probably safe to discard any error indications we've 3137 * received recently. This isn't quite right, but close enough 3138 * for now (a route might have failed after we sent a segment, 3139 * and the return path might not be symmetrical). 3140 */ 3141 tp->t_softerror = 0; 3142 } 3143 3144 3145 /* 3146 * TCP compressed state engine. Currently used to hold compressed 3147 * state for SYN_RECEIVED. 3148 */ 3149 3150 u_long syn_cache_count; 3151 u_int32_t syn_hash1, syn_hash2; 3152 3153 #define SYN_HASH(sa, sp, dp) \ 3154 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \ 3155 ((u_int32_t)(sp)))^syn_hash2))) 3156 #ifndef INET6 3157 #define SYN_HASHALL(hash, src, dst) \ 3158 do { \ 3159 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \ 3160 ((const struct sockaddr_in *)(src))->sin_port, \ 3161 ((const struct sockaddr_in *)(dst))->sin_port); \ 3162 } while (/*CONSTCOND*/ 0) 3163 #else 3164 #define SYN_HASH6(sa, sp, dp) \ 3165 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \ 3166 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \ 3167 & 0x7fffffff) 3168 3169 #define SYN_HASHALL(hash, src, dst) \ 3170 do { \ 3171 switch ((src)->sa_family) { \ 3172 case AF_INET: \ 3173 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \ 3174 ((const struct sockaddr_in *)(src))->sin_port, \ 3175 ((const struct sockaddr_in *)(dst))->sin_port); \ 3176 break; \ 3177 case AF_INET6: \ 3178 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \ 3179 ((const struct sockaddr_in6 *)(src))->sin6_port, \ 3180 ((const struct sockaddr_in6 *)(dst))->sin6_port); \ 3181 break; \ 3182 default: \ 3183 hash = 0; \ 3184 } \ 3185 } while (/*CONSTCOND*/0) 3186 #endif /* INET6 */ 3187 3188 #define SYN_CACHE_RM(sc) \ 3189 do { \ 3190 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \ 3191 (sc), sc_bucketq); \ 3192 (sc)->sc_tp = NULL; \ 3193 LIST_REMOVE((sc), sc_tpq); \ 3194 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \ 3195 callout_stop(&(sc)->sc_timer); \ 3196 syn_cache_count--; \ 3197 } while (/*CONSTCOND*/0) 3198 3199 #define SYN_CACHE_PUT(sc) \ 3200 do { \ 3201 if ((sc)->sc_ipopts) \ 3202 (void) m_free((sc)->sc_ipopts); \ 3203 if ((sc)->sc_route4.ro_rt != NULL) \ 3204 RTFREE((sc)->sc_route4.ro_rt); \ 3205 if (callout_invoking(&(sc)->sc_timer)) \ 3206 (sc)->sc_flags |= SCF_DEAD; \ 3207 else \ 3208 pool_put(&syn_cache_pool, (sc)); \ 3209 } while (/*CONSTCOND*/0) 3210 3211 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL); 3212 3213 /* 3214 * We don't estimate RTT with SYNs, so each packet starts with the default 3215 * RTT and each timer step has a fixed timeout value. 3216 */ 3217 #define SYN_CACHE_TIMER_ARM(sc) \ 3218 do { \ 3219 TCPT_RANGESET((sc)->sc_rxtcur, \ 3220 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \ 3221 TCPTV_REXMTMAX); \ 3222 callout_reset(&(sc)->sc_timer, \ 3223 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \ 3224 } while (/*CONSTCOND*/0) 3225 3226 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase) 3227 3228 void 3229 syn_cache_init(void) 3230 { 3231 int i; 3232 3233 /* Initialize the hash buckets. */ 3234 for (i = 0; i < tcp_syn_cache_size; i++) 3235 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket); 3236 } 3237 3238 void 3239 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp) 3240 { 3241 struct syn_cache_head *scp; 3242 struct syn_cache *sc2; 3243 int s; 3244 3245 /* 3246 * If there are no entries in the hash table, reinitialize 3247 * the hash secrets. 3248 */ 3249 if (syn_cache_count == 0) { 3250 syn_hash1 = arc4random(); 3251 syn_hash2 = arc4random(); 3252 } 3253 3254 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa); 3255 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size; 3256 scp = &tcp_syn_cache[sc->sc_bucketidx]; 3257 3258 /* 3259 * Make sure that we don't overflow the per-bucket 3260 * limit or the total cache size limit. 3261 */ 3262 s = splsoftnet(); 3263 if (scp->sch_length >= tcp_syn_bucket_limit) { 3264 tcpstat.tcps_sc_bucketoverflow++; 3265 /* 3266 * The bucket is full. Toss the oldest element in the 3267 * bucket. This will be the first entry in the bucket. 3268 */ 3269 sc2 = TAILQ_FIRST(&scp->sch_bucket); 3270 #ifdef DIAGNOSTIC 3271 /* 3272 * This should never happen; we should always find an 3273 * entry in our bucket. 3274 */ 3275 if (sc2 == NULL) 3276 panic("syn_cache_insert: bucketoverflow: impossible"); 3277 #endif 3278 SYN_CACHE_RM(sc2); 3279 SYN_CACHE_PUT(sc2); /* calls pool_put but see spl above */ 3280 } else if (syn_cache_count >= tcp_syn_cache_limit) { 3281 struct syn_cache_head *scp2, *sce; 3282 3283 tcpstat.tcps_sc_overflowed++; 3284 /* 3285 * The cache is full. Toss the oldest entry in the 3286 * first non-empty bucket we can find. 3287 * 3288 * XXX We would really like to toss the oldest 3289 * entry in the cache, but we hope that this 3290 * condition doesn't happen very often. 3291 */ 3292 scp2 = scp; 3293 if (TAILQ_EMPTY(&scp2->sch_bucket)) { 3294 sce = &tcp_syn_cache[tcp_syn_cache_size]; 3295 for (++scp2; scp2 != scp; scp2++) { 3296 if (scp2 >= sce) 3297 scp2 = &tcp_syn_cache[0]; 3298 if (! TAILQ_EMPTY(&scp2->sch_bucket)) 3299 break; 3300 } 3301 #ifdef DIAGNOSTIC 3302 /* 3303 * This should never happen; we should always find a 3304 * non-empty bucket. 3305 */ 3306 if (scp2 == scp) 3307 panic("syn_cache_insert: cacheoverflow: " 3308 "impossible"); 3309 #endif 3310 } 3311 sc2 = TAILQ_FIRST(&scp2->sch_bucket); 3312 SYN_CACHE_RM(sc2); 3313 SYN_CACHE_PUT(sc2); /* calls pool_put but see spl above */ 3314 } 3315 3316 /* 3317 * Initialize the entry's timer. 3318 */ 3319 sc->sc_rxttot = 0; 3320 sc->sc_rxtshift = 0; 3321 SYN_CACHE_TIMER_ARM(sc); 3322 3323 /* Link it from tcpcb entry */ 3324 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq); 3325 3326 /* Put it into the bucket. */ 3327 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq); 3328 scp->sch_length++; 3329 syn_cache_count++; 3330 3331 tcpstat.tcps_sc_added++; 3332 splx(s); 3333 } 3334 3335 /* 3336 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted. 3337 * If we have retransmitted an entry the maximum number of times, expire 3338 * that entry. 3339 */ 3340 void 3341 syn_cache_timer(void *arg) 3342 { 3343 struct syn_cache *sc = arg; 3344 int s; 3345 3346 s = splsoftnet(); 3347 callout_ack(&sc->sc_timer); 3348 3349 if (__predict_false(sc->sc_flags & SCF_DEAD)) { 3350 tcpstat.tcps_sc_delayed_free++; 3351 pool_put(&syn_cache_pool, sc); 3352 splx(s); 3353 return; 3354 } 3355 3356 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) { 3357 /* Drop it -- too many retransmissions. */ 3358 goto dropit; 3359 } 3360 3361 /* 3362 * Compute the total amount of time this entry has 3363 * been on a queue. If this entry has been on longer 3364 * than the keep alive timer would allow, expire it. 3365 */ 3366 sc->sc_rxttot += sc->sc_rxtcur; 3367 if (sc->sc_rxttot >= TCPTV_KEEP_INIT) 3368 goto dropit; 3369 3370 tcpstat.tcps_sc_retransmitted++; 3371 (void) syn_cache_respond(sc, NULL); 3372 3373 /* Advance the timer back-off. */ 3374 sc->sc_rxtshift++; 3375 SYN_CACHE_TIMER_ARM(sc); 3376 3377 splx(s); 3378 return; 3379 3380 dropit: 3381 tcpstat.tcps_sc_timed_out++; 3382 SYN_CACHE_RM(sc); 3383 SYN_CACHE_PUT(sc); /* calls pool_put but see spl above */ 3384 splx(s); 3385 } 3386 3387 /* 3388 * Remove syn cache created by the specified tcb entry, 3389 * because this does not make sense to keep them 3390 * (if there's no tcb entry, syn cache entry will never be used) 3391 */ 3392 void 3393 syn_cache_cleanup(struct tcpcb *tp) 3394 { 3395 struct syn_cache *sc, *nsc; 3396 int s; 3397 3398 s = splsoftnet(); 3399 3400 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) { 3401 nsc = LIST_NEXT(sc, sc_tpq); 3402 3403 #ifdef DIAGNOSTIC 3404 if (sc->sc_tp != tp) 3405 panic("invalid sc_tp in syn_cache_cleanup"); 3406 #endif 3407 SYN_CACHE_RM(sc); 3408 SYN_CACHE_PUT(sc); /* calls pool_put but see spl above */ 3409 } 3410 /* just for safety */ 3411 LIST_INIT(&tp->t_sc); 3412 3413 splx(s); 3414 } 3415 3416 /* 3417 * Find an entry in the syn cache. 3418 */ 3419 struct syn_cache * 3420 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst, 3421 struct syn_cache_head **headp) 3422 { 3423 struct syn_cache *sc; 3424 struct syn_cache_head *scp; 3425 u_int32_t hash; 3426 int s; 3427 3428 SYN_HASHALL(hash, src, dst); 3429 3430 scp = &tcp_syn_cache[hash % tcp_syn_cache_size]; 3431 *headp = scp; 3432 s = splsoftnet(); 3433 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL; 3434 sc = TAILQ_NEXT(sc, sc_bucketq)) { 3435 if (sc->sc_hash != hash) 3436 continue; 3437 if (!bcmp(&sc->sc_src, src, src->sa_len) && 3438 !bcmp(&sc->sc_dst, dst, dst->sa_len)) { 3439 splx(s); 3440 return (sc); 3441 } 3442 } 3443 splx(s); 3444 return (NULL); 3445 } 3446 3447 /* 3448 * This function gets called when we receive an ACK for a 3449 * socket in the LISTEN state. We look up the connection 3450 * in the syn cache, and if its there, we pull it out of 3451 * the cache and turn it into a full-blown connection in 3452 * the SYN-RECEIVED state. 3453 * 3454 * The return values may not be immediately obvious, and their effects 3455 * can be subtle, so here they are: 3456 * 3457 * NULL SYN was not found in cache; caller should drop the 3458 * packet and send an RST. 3459 * 3460 * -1 We were unable to create the new connection, and are 3461 * aborting it. An ACK,RST is being sent to the peer 3462 * (unless we got screwey sequence numbners; see below), 3463 * because the 3-way handshake has been completed. Caller 3464 * should not free the mbuf, since we may be using it. If 3465 * we are not, we will free it. 3466 * 3467 * Otherwise, the return value is a pointer to the new socket 3468 * associated with the connection. 3469 */ 3470 struct socket * 3471 syn_cache_get(struct sockaddr *src, struct sockaddr *dst, 3472 struct tcphdr *th, unsigned int hlen, unsigned int tlen, 3473 struct socket *so, struct mbuf *m) 3474 { 3475 struct syn_cache *sc; 3476 struct syn_cache_head *scp; 3477 struct inpcb *inp = NULL; 3478 #ifdef INET6 3479 struct in6pcb *in6p = NULL; 3480 #endif 3481 struct tcpcb *tp = 0; 3482 struct mbuf *am; 3483 int s; 3484 struct socket *oso; 3485 3486 s = splsoftnet(); 3487 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) { 3488 splx(s); 3489 return (NULL); 3490 } 3491 3492 /* 3493 * Verify the sequence and ack numbers. Try getting the correct 3494 * response again. 3495 */ 3496 if ((th->th_ack != sc->sc_iss + 1) || 3497 SEQ_LEQ(th->th_seq, sc->sc_irs) || 3498 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) { 3499 (void) syn_cache_respond(sc, m); 3500 splx(s); 3501 return ((struct socket *)(-1)); 3502 } 3503 3504 /* Remove this cache entry */ 3505 SYN_CACHE_RM(sc); 3506 splx(s); 3507 3508 /* 3509 * Ok, create the full blown connection, and set things up 3510 * as they would have been set up if we had created the 3511 * connection when the SYN arrived. If we can't create 3512 * the connection, abort it. 3513 */ 3514 /* 3515 * inp still has the OLD in_pcb stuff, set the 3516 * v6-related flags on the new guy, too. This is 3517 * done particularly for the case where an AF_INET6 3518 * socket is bound only to a port, and a v4 connection 3519 * comes in on that port. 3520 * we also copy the flowinfo from the original pcb 3521 * to the new one. 3522 */ 3523 oso = so; 3524 so = sonewconn(so, SS_ISCONNECTED); 3525 if (so == NULL) 3526 goto resetandabort; 3527 3528 switch (so->so_proto->pr_domain->dom_family) { 3529 #ifdef INET 3530 case AF_INET: 3531 inp = sotoinpcb(so); 3532 break; 3533 #endif 3534 #ifdef INET6 3535 case AF_INET6: 3536 in6p = sotoin6pcb(so); 3537 break; 3538 #endif 3539 } 3540 switch (src->sa_family) { 3541 #ifdef INET 3542 case AF_INET: 3543 if (inp) { 3544 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr; 3545 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port; 3546 inp->inp_options = ip_srcroute(); 3547 in_pcbstate(inp, INP_BOUND); 3548 if (inp->inp_options == NULL) { 3549 inp->inp_options = sc->sc_ipopts; 3550 sc->sc_ipopts = NULL; 3551 } 3552 } 3553 #ifdef INET6 3554 else if (in6p) { 3555 /* IPv4 packet to AF_INET6 socket */ 3556 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr)); 3557 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff); 3558 bcopy(&((struct sockaddr_in *)dst)->sin_addr, 3559 &in6p->in6p_laddr.s6_addr32[3], 3560 sizeof(((struct sockaddr_in *)dst)->sin_addr)); 3561 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port; 3562 in6totcpcb(in6p)->t_family = AF_INET; 3563 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY) 3564 in6p->in6p_flags |= IN6P_IPV6_V6ONLY; 3565 else 3566 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY; 3567 in6_pcbstate(in6p, IN6P_BOUND); 3568 } 3569 #endif 3570 break; 3571 #endif 3572 #ifdef INET6 3573 case AF_INET6: 3574 if (in6p) { 3575 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr; 3576 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port; 3577 in6_pcbstate(in6p, IN6P_BOUND); 3578 } 3579 break; 3580 #endif 3581 } 3582 #ifdef INET6 3583 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) { 3584 struct in6pcb *oin6p = sotoin6pcb(oso); 3585 /* inherit socket options from the listening socket */ 3586 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS); 3587 if (in6p->in6p_flags & IN6P_CONTROLOPTS) { 3588 m_freem(in6p->in6p_options); 3589 in6p->in6p_options = 0; 3590 } 3591 ip6_savecontrol(in6p, &in6p->in6p_options, 3592 mtod(m, struct ip6_hdr *), m); 3593 } 3594 #endif 3595 3596 #if defined(IPSEC) || defined(FAST_IPSEC) 3597 /* 3598 * we make a copy of policy, instead of sharing the policy, 3599 * for better behavior in terms of SA lookup and dead SA removal. 3600 */ 3601 if (inp) { 3602 /* copy old policy into new socket's */ 3603 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp)) 3604 printf("tcp_input: could not copy policy\n"); 3605 } 3606 #ifdef INET6 3607 else if (in6p) { 3608 /* copy old policy into new socket's */ 3609 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp, 3610 in6p->in6p_sp)) 3611 printf("tcp_input: could not copy policy\n"); 3612 } 3613 #endif 3614 #endif 3615 3616 /* 3617 * Give the new socket our cached route reference. 3618 */ 3619 if (inp) 3620 inp->inp_route = sc->sc_route4; /* struct assignment */ 3621 #ifdef INET6 3622 else 3623 in6p->in6p_route = sc->sc_route6; 3624 #endif 3625 sc->sc_route4.ro_rt = NULL; 3626 3627 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */ 3628 if (am == NULL) 3629 goto resetandabort; 3630 MCLAIM(am, &tcp_mowner); 3631 am->m_len = src->sa_len; 3632 bcopy(src, mtod(am, caddr_t), src->sa_len); 3633 if (inp) { 3634 if (in_pcbconnect(inp, am, NULL)) { 3635 (void) m_free(am); 3636 goto resetandabort; 3637 } 3638 } 3639 #ifdef INET6 3640 else if (in6p) { 3641 if (src->sa_family == AF_INET) { 3642 /* IPv4 packet to AF_INET6 socket */ 3643 struct sockaddr_in6 *sin6; 3644 sin6 = mtod(am, struct sockaddr_in6 *); 3645 am->m_len = sizeof(*sin6); 3646 bzero(sin6, sizeof(*sin6)); 3647 sin6->sin6_family = AF_INET6; 3648 sin6->sin6_len = sizeof(*sin6); 3649 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port; 3650 sin6->sin6_addr.s6_addr16[5] = htons(0xffff); 3651 bcopy(&((struct sockaddr_in *)src)->sin_addr, 3652 &sin6->sin6_addr.s6_addr32[3], 3653 sizeof(sin6->sin6_addr.s6_addr32[3])); 3654 } 3655 if (in6_pcbconnect(in6p, am, NULL)) { 3656 (void) m_free(am); 3657 goto resetandabort; 3658 } 3659 } 3660 #endif 3661 else { 3662 (void) m_free(am); 3663 goto resetandabort; 3664 } 3665 (void) m_free(am); 3666 3667 if (inp) 3668 tp = intotcpcb(inp); 3669 #ifdef INET6 3670 else if (in6p) 3671 tp = in6totcpcb(in6p); 3672 #endif 3673 else 3674 tp = NULL; 3675 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY; 3676 if (sc->sc_request_r_scale != 15) { 3677 tp->requested_s_scale = sc->sc_requested_s_scale; 3678 tp->request_r_scale = sc->sc_request_r_scale; 3679 tp->snd_scale = sc->sc_requested_s_scale; 3680 tp->rcv_scale = sc->sc_request_r_scale; 3681 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE; 3682 } 3683 if (sc->sc_flags & SCF_TIMESTAMP) 3684 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP; 3685 tp->ts_timebase = sc->sc_timebase; 3686 3687 tp->t_template = tcp_template(tp); 3688 if (tp->t_template == 0) { 3689 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */ 3690 so = NULL; 3691 m_freem(m); 3692 goto abort; 3693 } 3694 3695 tp->iss = sc->sc_iss; 3696 tp->irs = sc->sc_irs; 3697 tcp_sendseqinit(tp); 3698 tcp_rcvseqinit(tp); 3699 tp->t_state = TCPS_SYN_RECEIVED; 3700 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT); 3701 tcpstat.tcps_accepts++; 3702 3703 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack) 3704 tp->t_flags |= TF_WILL_SACK; 3705 3706 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn) 3707 tp->t_flags |= TF_ECN_PERMIT; 3708 3709 #ifdef TCP_SIGNATURE 3710 if (sc->sc_flags & SCF_SIGNATURE) 3711 tp->t_flags |= TF_SIGNATURE; 3712 #endif 3713 3714 /* Initialize tp->t_ourmss before we deal with the peer's! */ 3715 tp->t_ourmss = sc->sc_ourmaxseg; 3716 tcp_mss_from_peer(tp, sc->sc_peermaxseg); 3717 3718 /* 3719 * Initialize the initial congestion window. If we 3720 * had to retransmit the SYN,ACK, we must initialize cwnd 3721 * to 1 segment (i.e. the Loss Window). 3722 */ 3723 if (sc->sc_rxtshift) 3724 tp->snd_cwnd = tp->t_peermss; 3725 else { 3726 int ss = tcp_init_win; 3727 #ifdef INET 3728 if (inp != NULL && in_localaddr(inp->inp_faddr)) 3729 ss = tcp_init_win_local; 3730 #endif 3731 #ifdef INET6 3732 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr)) 3733 ss = tcp_init_win_local; 3734 #endif 3735 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss); 3736 } 3737 3738 tcp_rmx_rtt(tp); 3739 tp->snd_wl1 = sc->sc_irs; 3740 tp->rcv_up = sc->sc_irs + 1; 3741 3742 /* 3743 * This is what whould have happened in tcp_output() when 3744 * the SYN,ACK was sent. 3745 */ 3746 tp->snd_up = tp->snd_una; 3747 tp->snd_max = tp->snd_nxt = tp->iss+1; 3748 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur); 3749 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv)) 3750 tp->rcv_adv = tp->rcv_nxt + sc->sc_win; 3751 tp->last_ack_sent = tp->rcv_nxt; 3752 tp->t_partialacks = -1; 3753 tp->t_dupacks = 0; 3754 3755 tcpstat.tcps_sc_completed++; 3756 s = splsoftnet(); 3757 SYN_CACHE_PUT(sc); 3758 splx(s); 3759 return (so); 3760 3761 resetandabort: 3762 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST); 3763 abort: 3764 if (so != NULL) 3765 (void) soabort(so); 3766 s = splsoftnet(); 3767 SYN_CACHE_PUT(sc); 3768 splx(s); 3769 tcpstat.tcps_sc_aborted++; 3770 return ((struct socket *)(-1)); 3771 } 3772 3773 /* 3774 * This function is called when we get a RST for a 3775 * non-existent connection, so that we can see if the 3776 * connection is in the syn cache. If it is, zap it. 3777 */ 3778 3779 void 3780 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th) 3781 { 3782 struct syn_cache *sc; 3783 struct syn_cache_head *scp; 3784 int s = splsoftnet(); 3785 3786 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) { 3787 splx(s); 3788 return; 3789 } 3790 if (SEQ_LT(th->th_seq, sc->sc_irs) || 3791 SEQ_GT(th->th_seq, sc->sc_irs+1)) { 3792 splx(s); 3793 return; 3794 } 3795 SYN_CACHE_RM(sc); 3796 tcpstat.tcps_sc_reset++; 3797 SYN_CACHE_PUT(sc); /* calls pool_put but see spl above */ 3798 splx(s); 3799 } 3800 3801 void 3802 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst, 3803 struct tcphdr *th) 3804 { 3805 struct syn_cache *sc; 3806 struct syn_cache_head *scp; 3807 int s; 3808 3809 s = splsoftnet(); 3810 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) { 3811 splx(s); 3812 return; 3813 } 3814 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */ 3815 if (ntohl (th->th_seq) != sc->sc_iss) { 3816 splx(s); 3817 return; 3818 } 3819 3820 /* 3821 * If we've retransmitted 3 times and this is our second error, 3822 * we remove the entry. Otherwise, we allow it to continue on. 3823 * This prevents us from incorrectly nuking an entry during a 3824 * spurious network outage. 3825 * 3826 * See tcp_notify(). 3827 */ 3828 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) { 3829 sc->sc_flags |= SCF_UNREACH; 3830 splx(s); 3831 return; 3832 } 3833 3834 SYN_CACHE_RM(sc); 3835 tcpstat.tcps_sc_unreach++; 3836 SYN_CACHE_PUT(sc); /* calls pool_put but see spl above */ 3837 splx(s); 3838 } 3839 3840 /* 3841 * Given a LISTEN socket and an inbound SYN request, add 3842 * this to the syn cache, and send back a segment: 3843 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK> 3844 * to the source. 3845 * 3846 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN. 3847 * Doing so would require that we hold onto the data and deliver it 3848 * to the application. However, if we are the target of a SYN-flood 3849 * DoS attack, an attacker could send data which would eventually 3850 * consume all available buffer space if it were ACKed. By not ACKing 3851 * the data, we avoid this DoS scenario. 3852 */ 3853 3854 int 3855 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th, 3856 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp, 3857 int optlen, struct tcp_opt_info *oi) 3858 { 3859 struct tcpcb tb, *tp; 3860 long win; 3861 struct syn_cache *sc; 3862 struct syn_cache_head *scp; 3863 struct mbuf *ipopts; 3864 struct tcp_opt_info opti; 3865 int s; 3866 3867 tp = sototcpcb(so); 3868 3869 bzero(&opti, sizeof(opti)); 3870 3871 /* 3872 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN 3873 * 3874 * Note this check is performed in tcp_input() very early on. 3875 */ 3876 3877 /* 3878 * Initialize some local state. 3879 */ 3880 win = sbspace(&so->so_rcv); 3881 if (win > TCP_MAXWIN) 3882 win = TCP_MAXWIN; 3883 3884 switch (src->sa_family) { 3885 #ifdef INET 3886 case AF_INET: 3887 /* 3888 * Remember the IP options, if any. 3889 */ 3890 ipopts = ip_srcroute(); 3891 break; 3892 #endif 3893 default: 3894 ipopts = NULL; 3895 } 3896 3897 #ifdef TCP_SIGNATURE 3898 if (optp || (tp->t_flags & TF_SIGNATURE)) 3899 #else 3900 if (optp) 3901 #endif 3902 { 3903 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0; 3904 #ifdef TCP_SIGNATURE 3905 tb.t_flags |= (tp->t_flags & TF_SIGNATURE); 3906 #endif 3907 tb.t_state = TCPS_LISTEN; 3908 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len - 3909 sizeof(struct tcphdr) - optlen - hlen, oi) < 0) 3910 return (0); 3911 } else 3912 tb.t_flags = 0; 3913 3914 /* 3915 * See if we already have an entry for this connection. 3916 * If we do, resend the SYN,ACK. We do not count this 3917 * as a retransmission (XXX though maybe we should). 3918 */ 3919 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) { 3920 tcpstat.tcps_sc_dupesyn++; 3921 if (ipopts) { 3922 /* 3923 * If we were remembering a previous source route, 3924 * forget it and use the new one we've been given. 3925 */ 3926 if (sc->sc_ipopts) 3927 (void) m_free(sc->sc_ipopts); 3928 sc->sc_ipopts = ipopts; 3929 } 3930 sc->sc_timestamp = tb.ts_recent; 3931 if (syn_cache_respond(sc, m) == 0) { 3932 tcpstat.tcps_sndacks++; 3933 tcpstat.tcps_sndtotal++; 3934 } 3935 return (1); 3936 } 3937 3938 s = splsoftnet(); 3939 sc = pool_get(&syn_cache_pool, PR_NOWAIT); 3940 splx(s); 3941 if (sc == NULL) { 3942 if (ipopts) 3943 (void) m_free(ipopts); 3944 return (0); 3945 } 3946 3947 /* 3948 * Fill in the cache, and put the necessary IP and TCP 3949 * options into the reply. 3950 */ 3951 bzero(sc, sizeof(struct syn_cache)); 3952 callout_init(&sc->sc_timer); 3953 bcopy(src, &sc->sc_src, src->sa_len); 3954 bcopy(dst, &sc->sc_dst, dst->sa_len); 3955 sc->sc_flags = 0; 3956 sc->sc_ipopts = ipopts; 3957 sc->sc_irs = th->th_seq; 3958 switch (src->sa_family) { 3959 #ifdef INET 3960 case AF_INET: 3961 { 3962 struct sockaddr_in *srcin = (void *) src; 3963 struct sockaddr_in *dstin = (void *) dst; 3964 3965 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr, 3966 &srcin->sin_addr, dstin->sin_port, 3967 srcin->sin_port, sizeof(dstin->sin_addr), 0); 3968 break; 3969 } 3970 #endif /* INET */ 3971 #ifdef INET6 3972 case AF_INET6: 3973 { 3974 struct sockaddr_in6 *srcin6 = (void *) src; 3975 struct sockaddr_in6 *dstin6 = (void *) dst; 3976 3977 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr, 3978 &srcin6->sin6_addr, dstin6->sin6_port, 3979 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0); 3980 break; 3981 } 3982 #endif /* INET6 */ 3983 } 3984 sc->sc_peermaxseg = oi->maxseg; 3985 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ? 3986 m->m_pkthdr.rcvif : NULL, 3987 sc->sc_src.sa.sa_family); 3988 sc->sc_win = win; 3989 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */ 3990 sc->sc_timestamp = tb.ts_recent; 3991 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) == 3992 (TF_REQ_TSTMP|TF_RCVD_TSTMP)) 3993 sc->sc_flags |= SCF_TIMESTAMP; 3994 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == 3995 (TF_RCVD_SCALE|TF_REQ_SCALE)) { 3996 sc->sc_requested_s_scale = tb.requested_s_scale; 3997 sc->sc_request_r_scale = 0; 3998 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT && 3999 TCP_MAXWIN << sc->sc_request_r_scale < 4000 so->so_rcv.sb_hiwat) 4001 sc->sc_request_r_scale++; 4002 } else { 4003 sc->sc_requested_s_scale = 15; 4004 sc->sc_request_r_scale = 15; 4005 } 4006 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack) 4007 sc->sc_flags |= SCF_SACK_PERMIT; 4008 4009 /* 4010 * ECN setup packet recieved. 4011 */ 4012 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn) 4013 sc->sc_flags |= SCF_ECN_PERMIT; 4014 4015 #ifdef TCP_SIGNATURE 4016 if (tb.t_flags & TF_SIGNATURE) 4017 sc->sc_flags |= SCF_SIGNATURE; 4018 #endif 4019 sc->sc_tp = tp; 4020 if (syn_cache_respond(sc, m) == 0) { 4021 syn_cache_insert(sc, tp); 4022 tcpstat.tcps_sndacks++; 4023 tcpstat.tcps_sndtotal++; 4024 } else { 4025 s = splsoftnet(); 4026 SYN_CACHE_PUT(sc); 4027 splx(s); 4028 tcpstat.tcps_sc_dropped++; 4029 } 4030 return (1); 4031 } 4032 4033 int 4034 syn_cache_respond(struct syn_cache *sc, struct mbuf *m) 4035 { 4036 struct route *ro; 4037 u_int8_t *optp; 4038 int optlen, error; 4039 u_int16_t tlen; 4040 struct ip *ip = NULL; 4041 #ifdef INET6 4042 struct ip6_hdr *ip6 = NULL; 4043 #endif 4044 struct tcpcb *tp = NULL; 4045 struct tcphdr *th; 4046 u_int hlen; 4047 struct socket *so; 4048 4049 switch (sc->sc_src.sa.sa_family) { 4050 case AF_INET: 4051 hlen = sizeof(struct ip); 4052 ro = &sc->sc_route4; 4053 break; 4054 #ifdef INET6 4055 case AF_INET6: 4056 hlen = sizeof(struct ip6_hdr); 4057 ro = (struct route *)&sc->sc_route6; 4058 break; 4059 #endif 4060 default: 4061 if (m) 4062 m_freem(m); 4063 return (EAFNOSUPPORT); 4064 } 4065 4066 /* Compute the size of the TCP options. */ 4067 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) + 4068 ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) + 4069 #ifdef TCP_SIGNATURE 4070 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) + 4071 #endif 4072 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0); 4073 4074 tlen = hlen + sizeof(struct tcphdr) + optlen; 4075 4076 /* 4077 * Create the IP+TCP header from scratch. 4078 */ 4079 if (m) 4080 m_freem(m); 4081 #ifdef DIAGNOSTIC 4082 if (max_linkhdr + tlen > MCLBYTES) 4083 return (ENOBUFS); 4084 #endif 4085 MGETHDR(m, M_DONTWAIT, MT_DATA); 4086 if (m && tlen > MHLEN) { 4087 MCLGET(m, M_DONTWAIT); 4088 if ((m->m_flags & M_EXT) == 0) { 4089 m_freem(m); 4090 m = NULL; 4091 } 4092 } 4093 if (m == NULL) 4094 return (ENOBUFS); 4095 MCLAIM(m, &tcp_tx_mowner); 4096 4097 /* Fixup the mbuf. */ 4098 m->m_data += max_linkhdr; 4099 m->m_len = m->m_pkthdr.len = tlen; 4100 if (sc->sc_tp) { 4101 tp = sc->sc_tp; 4102 if (tp->t_inpcb) 4103 so = tp->t_inpcb->inp_socket; 4104 #ifdef INET6 4105 else if (tp->t_in6pcb) 4106 so = tp->t_in6pcb->in6p_socket; 4107 #endif 4108 else 4109 so = NULL; 4110 } else 4111 so = NULL; 4112 m->m_pkthdr.rcvif = NULL; 4113 memset(mtod(m, u_char *), 0, tlen); 4114 4115 switch (sc->sc_src.sa.sa_family) { 4116 case AF_INET: 4117 ip = mtod(m, struct ip *); 4118 ip->ip_v = 4; 4119 ip->ip_dst = sc->sc_src.sin.sin_addr; 4120 ip->ip_src = sc->sc_dst.sin.sin_addr; 4121 ip->ip_p = IPPROTO_TCP; 4122 th = (struct tcphdr *)(ip + 1); 4123 th->th_dport = sc->sc_src.sin.sin_port; 4124 th->th_sport = sc->sc_dst.sin.sin_port; 4125 break; 4126 #ifdef INET6 4127 case AF_INET6: 4128 ip6 = mtod(m, struct ip6_hdr *); 4129 ip6->ip6_vfc = IPV6_VERSION; 4130 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr; 4131 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr; 4132 ip6->ip6_nxt = IPPROTO_TCP; 4133 /* ip6_plen will be updated in ip6_output() */ 4134 th = (struct tcphdr *)(ip6 + 1); 4135 th->th_dport = sc->sc_src.sin6.sin6_port; 4136 th->th_sport = sc->sc_dst.sin6.sin6_port; 4137 break; 4138 #endif 4139 default: 4140 th = NULL; 4141 } 4142 4143 th->th_seq = htonl(sc->sc_iss); 4144 th->th_ack = htonl(sc->sc_irs + 1); 4145 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; 4146 th->th_flags = TH_SYN|TH_ACK; 4147 th->th_win = htons(sc->sc_win); 4148 /* th_sum already 0 */ 4149 /* th_urp already 0 */ 4150 4151 /* Tack on the TCP options. */ 4152 optp = (u_int8_t *)(th + 1); 4153 *optp++ = TCPOPT_MAXSEG; 4154 *optp++ = 4; 4155 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff; 4156 *optp++ = sc->sc_ourmaxseg & 0xff; 4157 4158 if (sc->sc_request_r_scale != 15) { 4159 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 | 4160 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 | 4161 sc->sc_request_r_scale); 4162 optp += 4; 4163 } 4164 4165 if (sc->sc_flags & SCF_TIMESTAMP) { 4166 u_int32_t *lp = (u_int32_t *)(optp); 4167 /* Form timestamp option as shown in appendix A of RFC 1323. */ 4168 *lp++ = htonl(TCPOPT_TSTAMP_HDR); 4169 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc)); 4170 *lp = htonl(sc->sc_timestamp); 4171 optp += TCPOLEN_TSTAMP_APPA; 4172 } 4173 4174 if (sc->sc_flags & SCF_SACK_PERMIT) { 4175 u_int8_t *p = optp; 4176 4177 /* Let the peer know that we will SACK. */ 4178 p[0] = TCPOPT_SACK_PERMITTED; 4179 p[1] = 2; 4180 p[2] = TCPOPT_NOP; 4181 p[3] = TCPOPT_NOP; 4182 optp += 4; 4183 } 4184 4185 /* 4186 * Send ECN SYN-ACK setup packet. 4187 * Routes can be asymetric, so, even if we receive a packet 4188 * with ECE and CWR set, we must not assume no one will block 4189 * the ECE packet we are about to send. 4190 */ 4191 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp && 4192 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) { 4193 th->th_flags |= TH_ECE; 4194 tcpstat.tcps_ecn_shs++; 4195 4196 /* 4197 * draft-ietf-tcpm-ecnsyn-00.txt 4198 * 4199 * "[...] a TCP node MAY respond to an ECN-setup 4200 * SYN packet by setting ECT in the responding 4201 * ECN-setup SYN/ACK packet, indicating to routers 4202 * that the SYN/ACK packet is ECN-Capable. 4203 * This allows a congested router along the path 4204 * to mark the packet instead of dropping the 4205 * packet as an indication of congestion." 4206 * 4207 * "[...] There can be a great benefit in setting 4208 * an ECN-capable codepoint in SYN/ACK packets [...] 4209 * Congestion is most likely to occur in 4210 * the server-to-client direction. As a result, 4211 * setting an ECN-capable codepoint in SYN/ACK 4212 * packets can reduce the occurence of three-second 4213 * retransmit timeouts resulting from the drop 4214 * of SYN/ACK packets." 4215 * 4216 * Page 4 and 6, January 2006. 4217 */ 4218 4219 switch (sc->sc_src.sa.sa_family) { 4220 #ifdef INET 4221 case AF_INET: 4222 ip->ip_tos |= IPTOS_ECN_ECT0; 4223 break; 4224 #endif 4225 #ifdef INET6 4226 case AF_INET6: 4227 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20); 4228 break; 4229 #endif 4230 } 4231 tcpstat.tcps_ecn_ect++; 4232 } 4233 4234 #ifdef TCP_SIGNATURE 4235 if (sc->sc_flags & SCF_SIGNATURE) { 4236 struct secasvar *sav; 4237 u_int8_t *sigp; 4238 4239 sav = tcp_signature_getsav(m, th); 4240 4241 if (sav == NULL) { 4242 if (m) 4243 m_freem(m); 4244 return (EPERM); 4245 } 4246 4247 *optp++ = TCPOPT_SIGNATURE; 4248 *optp++ = TCPOLEN_SIGNATURE; 4249 sigp = optp; 4250 bzero(optp, TCP_SIGLEN); 4251 optp += TCP_SIGLEN; 4252 *optp++ = TCPOPT_NOP; 4253 *optp++ = TCPOPT_EOL; 4254 4255 (void)tcp_signature(m, th, hlen, sav, sigp); 4256 4257 key_sa_recordxfer(sav, m); 4258 #ifdef FAST_IPSEC 4259 KEY_FREESAV(&sav); 4260 #else 4261 key_freesav(sav); 4262 #endif 4263 } 4264 #endif 4265 4266 /* Compute the packet's checksum. */ 4267 switch (sc->sc_src.sa.sa_family) { 4268 case AF_INET: 4269 ip->ip_len = htons(tlen - hlen); 4270 th->th_sum = 0; 4271 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen); 4272 break; 4273 #ifdef INET6 4274 case AF_INET6: 4275 ip6->ip6_plen = htons(tlen - hlen); 4276 th->th_sum = 0; 4277 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen); 4278 break; 4279 #endif 4280 } 4281 4282 /* 4283 * Fill in some straggling IP bits. Note the stack expects 4284 * ip_len to be in host order, for convenience. 4285 */ 4286 switch (sc->sc_src.sa.sa_family) { 4287 #ifdef INET 4288 case AF_INET: 4289 ip->ip_len = htons(tlen); 4290 ip->ip_ttl = ip_defttl; 4291 /* XXX tos? */ 4292 break; 4293 #endif 4294 #ifdef INET6 4295 case AF_INET6: 4296 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 4297 ip6->ip6_vfc |= IPV6_VERSION; 4298 ip6->ip6_plen = htons(tlen - hlen); 4299 /* ip6_hlim will be initialized afterwards */ 4300 /* XXX flowlabel? */ 4301 break; 4302 #endif 4303 } 4304 4305 /* XXX use IPsec policy on listening socket, on SYN ACK */ 4306 tp = sc->sc_tp; 4307 4308 switch (sc->sc_src.sa.sa_family) { 4309 #ifdef INET 4310 case AF_INET: 4311 error = ip_output(m, sc->sc_ipopts, ro, 4312 (ip_mtudisc ? IP_MTUDISC : 0), 4313 (struct ip_moptions *)NULL, so); 4314 break; 4315 #endif 4316 #ifdef INET6 4317 case AF_INET6: 4318 ip6->ip6_hlim = in6_selecthlim(NULL, 4319 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL); 4320 4321 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0, 4322 (struct ip6_moptions *)0, so, NULL); 4323 break; 4324 #endif 4325 default: 4326 error = EAFNOSUPPORT; 4327 break; 4328 } 4329 return (error); 4330 } 4331