xref: /netbsd-src/sys/netinet/tcp_input.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: tcp_input.c,v 1.408 2018/05/18 18:58:51 maxv Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74  * 2011 The NetBSD Foundation, Inc.
75  * All rights reserved.
76  *
77  * This code is derived from software contributed to The NetBSD Foundation
78  * by Coyote Point Systems, Inc.
79  * This code is derived from software contributed to The NetBSD Foundation
80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81  * Facility, NASA Ames Research Center.
82  * This code is derived from software contributed to The NetBSD Foundation
83  * by Charles M. Hannum.
84  * This code is derived from software contributed to The NetBSD Foundation
85  * by Rui Paulo.
86  *
87  * Redistribution and use in source and binary forms, with or without
88  * modification, are permitted provided that the following conditions
89  * are met:
90  * 1. Redistributions of source code must retain the above copyright
91  *    notice, this list of conditions and the following disclaimer.
92  * 2. Redistributions in binary form must reproduce the above copyright
93  *    notice, this list of conditions and the following disclaimer in the
94  *    documentation and/or other materials provided with the distribution.
95  *
96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106  * POSSIBILITY OF SUCH DAMAGE.
107  */
108 
109 /*
110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111  *	The Regents of the University of California.  All rights reserved.
112  *
113  * Redistribution and use in source and binary forms, with or without
114  * modification, are permitted provided that the following conditions
115  * are met:
116  * 1. Redistributions of source code must retain the above copyright
117  *    notice, this list of conditions and the following disclaimer.
118  * 2. Redistributions in binary form must reproduce the above copyright
119  *    notice, this list of conditions and the following disclaimer in the
120  *    documentation and/or other materials provided with the distribution.
121  * 3. Neither the name of the University nor the names of its contributors
122  *    may be used to endorse or promote products derived from this software
123  *    without specific prior written permission.
124  *
125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135  * SUCH DAMAGE.
136  *
137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
138  */
139 
140 /*
141  *	TODO list for SYN cache stuff:
142  *
143  *	Find room for a "state" field, which is needed to keep a
144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
145  *	that this is fairly important for very high-volume web and
146  *	mail servers, which use a large number of short-lived
147  *	connections.
148  */
149 
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.408 2018/05/18 18:58:51 maxv Exp $");
152 
153 #ifdef _KERNEL_OPT
154 #include "opt_inet.h"
155 #include "opt_ipsec.h"
156 #include "opt_inet_csum.h"
157 #include "opt_tcp_debug.h"
158 #endif
159 
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175 #include <sys/lwp.h> /* for lwp0 */
176 #include <sys/cprng.h>
177 
178 #include <net/if.h>
179 #include <net/if_types.h>
180 
181 #include <netinet/in.h>
182 #include <netinet/in_systm.h>
183 #include <netinet/ip.h>
184 #include <netinet/in_pcb.h>
185 #include <netinet/in_var.h>
186 #include <netinet/ip_var.h>
187 #include <netinet/in_offload.h>
188 
189 #ifdef INET6
190 #include <netinet/ip6.h>
191 #include <netinet6/ip6_var.h>
192 #include <netinet6/in6_pcb.h>
193 #include <netinet6/ip6_var.h>
194 #include <netinet6/in6_var.h>
195 #include <netinet/icmp6.h>
196 #include <netinet6/nd6.h>
197 #ifdef TCP_SIGNATURE
198 #include <netinet6/scope6_var.h>
199 #endif
200 #endif
201 
202 #ifndef INET6
203 #include <netinet/ip6.h>
204 #endif
205 
206 #include <netinet/tcp.h>
207 #include <netinet/tcp_fsm.h>
208 #include <netinet/tcp_seq.h>
209 #include <netinet/tcp_timer.h>
210 #include <netinet/tcp_var.h>
211 #include <netinet/tcp_private.h>
212 #include <netinet/tcp_congctl.h>
213 #include <netinet/tcp_debug.h>
214 
215 #ifdef INET6
216 #include "faith.h"
217 #if defined(NFAITH) && NFAITH > 0
218 #include <net/if_faith.h>
219 #endif
220 #endif
221 
222 #ifdef IPSEC
223 #include <netipsec/ipsec.h>
224 #include <netipsec/key.h>
225 #ifdef INET6
226 #include <netipsec/ipsec6.h>
227 #endif
228 #endif	/* IPSEC*/
229 
230 #include <netinet/tcp_vtw.h>
231 
232 int	tcprexmtthresh = 3;
233 int	tcp_log_refused;
234 
235 int	tcp_do_autorcvbuf = 1;
236 int	tcp_autorcvbuf_inc = 16 * 1024;
237 int	tcp_autorcvbuf_max = 256 * 1024;
238 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
239 
240 static int tcp_rst_ppslim_count = 0;
241 static struct timeval tcp_rst_ppslim_last;
242 static int tcp_ackdrop_ppslim_count = 0;
243 static struct timeval tcp_ackdrop_ppslim_last;
244 
245 static void syn_cache_timer(void *);
246 
247 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
248 
249 /* for modulo comparisons of timestamps */
250 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
251 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
252 
253 /*
254  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
255  */
256 #ifdef INET6
257 static inline void
258 nd6_hint(struct tcpcb *tp)
259 {
260 	struct rtentry *rt = NULL;
261 
262 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
263 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
264 		nd6_nud_hint(rt);
265 	rtcache_unref(rt, &tp->t_in6pcb->in6p_route);
266 }
267 #else
268 static inline void
269 nd6_hint(struct tcpcb *tp)
270 {
271 }
272 #endif
273 
274 /*
275  * Compute ACK transmission behavior.  Delay the ACK unless
276  * we have already delayed an ACK (must send an ACK every two segments).
277  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
278  * option is enabled.
279  */
280 static void
281 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
282 {
283 
284 	if (tp->t_flags & TF_DELACK ||
285 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
286 		tp->t_flags |= TF_ACKNOW;
287 	else
288 		TCP_SET_DELACK(tp);
289 }
290 
291 static void
292 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
293 {
294 
295 	/*
296 	 * If we had a pending ICMP message that refers to data that have
297 	 * just been acknowledged, disregard the recorded ICMP message.
298 	 */
299 	if ((tp->t_flags & TF_PMTUD_PEND) &&
300 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
301 		tp->t_flags &= ~TF_PMTUD_PEND;
302 
303 	/*
304 	 * Keep track of the largest chunk of data
305 	 * acknowledged since last PMTU update
306 	 */
307 	if (tp->t_pmtud_mss_acked < acked)
308 		tp->t_pmtud_mss_acked = acked;
309 }
310 
311 /*
312  * Convert TCP protocol fields to host order for easier processing.
313  */
314 static void
315 tcp_fields_to_host(struct tcphdr *th)
316 {
317 
318 	NTOHL(th->th_seq);
319 	NTOHL(th->th_ack);
320 	NTOHS(th->th_win);
321 	NTOHS(th->th_urp);
322 }
323 
324 /*
325  * ... and reverse the above.
326  */
327 static void
328 tcp_fields_to_net(struct tcphdr *th)
329 {
330 
331 	HTONL(th->th_seq);
332 	HTONL(th->th_ack);
333 	HTONS(th->th_win);
334 	HTONS(th->th_urp);
335 }
336 
337 static void
338 tcp_urp_drop(struct tcphdr *th, int todrop, int *tiflags)
339 {
340 	if (th->th_urp > todrop) {
341 		th->th_urp -= todrop;
342 	} else {
343 		*tiflags &= ~TH_URG;
344 		th->th_urp = 0;
345 	}
346 }
347 
348 #ifdef TCP_CSUM_COUNTERS
349 #include <sys/device.h>
350 
351 extern struct evcnt tcp_hwcsum_ok;
352 extern struct evcnt tcp_hwcsum_bad;
353 extern struct evcnt tcp_hwcsum_data;
354 extern struct evcnt tcp_swcsum;
355 #if defined(INET6)
356 extern struct evcnt tcp6_hwcsum_ok;
357 extern struct evcnt tcp6_hwcsum_bad;
358 extern struct evcnt tcp6_hwcsum_data;
359 extern struct evcnt tcp6_swcsum;
360 #endif /* defined(INET6) */
361 
362 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
363 
364 #else
365 
366 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
367 
368 #endif /* TCP_CSUM_COUNTERS */
369 
370 #ifdef TCP_REASS_COUNTERS
371 #include <sys/device.h>
372 
373 extern struct evcnt tcp_reass_;
374 extern struct evcnt tcp_reass_empty;
375 extern struct evcnt tcp_reass_iteration[8];
376 extern struct evcnt tcp_reass_prependfirst;
377 extern struct evcnt tcp_reass_prepend;
378 extern struct evcnt tcp_reass_insert;
379 extern struct evcnt tcp_reass_inserttail;
380 extern struct evcnt tcp_reass_append;
381 extern struct evcnt tcp_reass_appendtail;
382 extern struct evcnt tcp_reass_overlaptail;
383 extern struct evcnt tcp_reass_overlapfront;
384 extern struct evcnt tcp_reass_segdup;
385 extern struct evcnt tcp_reass_fragdup;
386 
387 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
388 
389 #else
390 
391 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
392 
393 #endif /* TCP_REASS_COUNTERS */
394 
395 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
396     int);
397 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
398     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
399 
400 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
401 #ifdef INET6
402 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
403 #endif
404 
405 #if defined(MBUFTRACE)
406 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
407 #endif /* defined(MBUFTRACE) */
408 
409 static struct pool tcpipqent_pool;
410 
411 void
412 tcpipqent_init(void)
413 {
414 
415 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
416 	    NULL, IPL_VM);
417 }
418 
419 struct ipqent *
420 tcpipqent_alloc(void)
421 {
422 	struct ipqent *ipqe;
423 	int s;
424 
425 	s = splvm();
426 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
427 	splx(s);
428 
429 	return ipqe;
430 }
431 
432 void
433 tcpipqent_free(struct ipqent *ipqe)
434 {
435 	int s;
436 
437 	s = splvm();
438 	pool_put(&tcpipqent_pool, ipqe);
439 	splx(s);
440 }
441 
442 /*
443  * Insert segment ti into reassembly queue of tcp with
444  * control block tp.  Return TH_FIN if reassembly now includes
445  * a segment with FIN.
446  */
447 static int
448 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int tlen)
449 {
450 	struct ipqent *p, *q, *nq, *tiqe = NULL;
451 	struct socket *so = NULL;
452 	int pkt_flags;
453 	tcp_seq pkt_seq;
454 	unsigned pkt_len;
455 	u_long rcvpartdupbyte = 0;
456 	u_long rcvoobyte;
457 #ifdef TCP_REASS_COUNTERS
458 	u_int count = 0;
459 #endif
460 	uint64_t *tcps;
461 
462 	if (tp->t_inpcb)
463 		so = tp->t_inpcb->inp_socket;
464 #ifdef INET6
465 	else if (tp->t_in6pcb)
466 		so = tp->t_in6pcb->in6p_socket;
467 #endif
468 
469 	TCP_REASS_LOCK_CHECK(tp);
470 
471 	/*
472 	 * Call with th==NULL after become established to
473 	 * force pre-ESTABLISHED data up to user socket.
474 	 */
475 	if (th == NULL)
476 		goto present;
477 
478 	m_claimm(m, &tcp_reass_mowner);
479 
480 	rcvoobyte = tlen;
481 	/*
482 	 * Copy these to local variables because the TCP header gets munged
483 	 * while we are collapsing mbufs.
484 	 */
485 	pkt_seq = th->th_seq;
486 	pkt_len = tlen;
487 	pkt_flags = th->th_flags;
488 
489 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
490 
491 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
492 		/*
493 		 * When we miss a packet, the vast majority of time we get
494 		 * packets that follow it in order.  So optimize for that.
495 		 */
496 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
497 			p->ipqe_len += pkt_len;
498 			p->ipqe_flags |= pkt_flags;
499 			m_cat(p->ipqe_m, m);
500 			m = NULL;
501 			tiqe = p;
502 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
503 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
504 			goto skip_replacement;
505 		}
506 		/*
507 		 * While we're here, if the pkt is completely beyond
508 		 * anything we have, just insert it at the tail.
509 		 */
510 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
511 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
512 			goto insert_it;
513 		}
514 	}
515 
516 	q = TAILQ_FIRST(&tp->segq);
517 
518 	if (q != NULL) {
519 		/*
520 		 * If this segment immediately precedes the first out-of-order
521 		 * block, simply slap the segment in front of it and (mostly)
522 		 * skip the complicated logic.
523 		 */
524 		if (pkt_seq + pkt_len == q->ipqe_seq) {
525 			q->ipqe_seq = pkt_seq;
526 			q->ipqe_len += pkt_len;
527 			q->ipqe_flags |= pkt_flags;
528 			m_cat(m, q->ipqe_m);
529 			q->ipqe_m = m;
530 			tiqe = q;
531 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
532 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
533 			goto skip_replacement;
534 		}
535 	} else {
536 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
537 	}
538 
539 	/*
540 	 * Find a segment which begins after this one does.
541 	 */
542 	for (p = NULL; q != NULL; q = nq) {
543 		nq = TAILQ_NEXT(q, ipqe_q);
544 #ifdef TCP_REASS_COUNTERS
545 		count++;
546 #endif
547 
548 		/*
549 		 * If the received segment is just right after this
550 		 * fragment, merge the two together and then check
551 		 * for further overlaps.
552 		 */
553 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
554 			pkt_len += q->ipqe_len;
555 			pkt_flags |= q->ipqe_flags;
556 			pkt_seq = q->ipqe_seq;
557 			m_cat(q->ipqe_m, m);
558 			m = q->ipqe_m;
559 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
560 			goto free_ipqe;
561 		}
562 
563 		/*
564 		 * If the received segment is completely past this
565 		 * fragment, we need to go to the next fragment.
566 		 */
567 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
568 			p = q;
569 			continue;
570 		}
571 
572 		/*
573 		 * If the fragment is past the received segment,
574 		 * it (or any following) can't be concatenated.
575 		 */
576 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
577 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
578 			break;
579 		}
580 
581 		/*
582 		 * We've received all the data in this segment before.
583 		 * Mark it as a duplicate and return.
584 		 */
585 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
586 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
587 			tcps = TCP_STAT_GETREF();
588 			tcps[TCP_STAT_RCVDUPPACK]++;
589 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
590 			TCP_STAT_PUTREF();
591 			tcp_new_dsack(tp, pkt_seq, pkt_len);
592 			m_freem(m);
593 			if (tiqe != NULL) {
594 				tcpipqent_free(tiqe);
595 			}
596 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
597 			goto out;
598 		}
599 
600 		/*
601 		 * Received segment completely overlaps this fragment
602 		 * so we drop the fragment (this keeps the temporal
603 		 * ordering of segments correct).
604 		 */
605 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
606 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
607 			rcvpartdupbyte += q->ipqe_len;
608 			m_freem(q->ipqe_m);
609 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
610 			goto free_ipqe;
611 		}
612 
613 		/*
614 		 * Received segment extends past the end of the fragment.
615 		 * Drop the overlapping bytes, merge the fragment and
616 		 * segment, and treat as a longer received packet.
617 		 */
618 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
619 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
620 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
621 			m_adj(m, overlap);
622 			rcvpartdupbyte += overlap;
623 			m_cat(q->ipqe_m, m);
624 			m = q->ipqe_m;
625 			pkt_seq = q->ipqe_seq;
626 			pkt_len += q->ipqe_len - overlap;
627 			rcvoobyte -= overlap;
628 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
629 			goto free_ipqe;
630 		}
631 
632 		/*
633 		 * Received segment extends past the front of the fragment.
634 		 * Drop the overlapping bytes on the received packet. The
635 		 * packet will then be concatenated with this fragment a
636 		 * bit later.
637 		 */
638 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
639 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
640 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
641 			m_adj(m, -overlap);
642 			pkt_len -= overlap;
643 			rcvpartdupbyte += overlap;
644 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
645 			rcvoobyte -= overlap;
646 		}
647 
648 		/*
649 		 * If the received segment immediately precedes this
650 		 * fragment then tack the fragment onto this segment
651 		 * and reinsert the data.
652 		 */
653 		if (q->ipqe_seq == pkt_seq + pkt_len) {
654 			pkt_len += q->ipqe_len;
655 			pkt_flags |= q->ipqe_flags;
656 			m_cat(m, q->ipqe_m);
657 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
658 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
659 			tp->t_segqlen--;
660 			KASSERT(tp->t_segqlen >= 0);
661 			KASSERT(tp->t_segqlen != 0 ||
662 			    (TAILQ_EMPTY(&tp->segq) &&
663 			    TAILQ_EMPTY(&tp->timeq)));
664 			if (tiqe == NULL) {
665 				tiqe = q;
666 			} else {
667 				tcpipqent_free(q);
668 			}
669 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
670 			break;
671 		}
672 
673 		/*
674 		 * If the fragment is before the segment, remember it.
675 		 * When this loop is terminated, p will contain the
676 		 * pointer to the fragment that is right before the
677 		 * received segment.
678 		 */
679 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
680 			p = q;
681 
682 		continue;
683 
684 		/*
685 		 * This is a common operation.  It also will allow
686 		 * to save doing a malloc/free in most instances.
687 		 */
688 	  free_ipqe:
689 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
690 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
691 		tp->t_segqlen--;
692 		KASSERT(tp->t_segqlen >= 0);
693 		KASSERT(tp->t_segqlen != 0 ||
694 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
695 		if (tiqe == NULL) {
696 			tiqe = q;
697 		} else {
698 			tcpipqent_free(q);
699 		}
700 	}
701 
702 #ifdef TCP_REASS_COUNTERS
703 	if (count > 7)
704 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
705 	else if (count > 0)
706 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
707 #endif
708 
709 insert_it:
710 	/*
711 	 * Allocate a new queue entry (block) since the received segment
712 	 * did not collapse onto any other out-of-order block. If it had
713 	 * collapsed, tiqe would not be NULL and we would be reusing it.
714 	 *
715 	 * If the allocation fails, drop the packet.
716 	 */
717 	if (tiqe == NULL) {
718 		tiqe = tcpipqent_alloc();
719 		if (tiqe == NULL) {
720 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
721 			m_freem(m);
722 			goto out;
723 		}
724 	}
725 
726 	/*
727 	 * Update the counters.
728 	 */
729 	tp->t_rcvoopack++;
730 	tcps = TCP_STAT_GETREF();
731 	tcps[TCP_STAT_RCVOOPACK]++;
732 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
733 	if (rcvpartdupbyte) {
734 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
735 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
736 	}
737 	TCP_STAT_PUTREF();
738 
739 	/*
740 	 * Insert the new fragment queue entry into both queues.
741 	 */
742 	tiqe->ipqe_m = m;
743 	tiqe->ipqe_seq = pkt_seq;
744 	tiqe->ipqe_len = pkt_len;
745 	tiqe->ipqe_flags = pkt_flags;
746 	if (p == NULL) {
747 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
748 	} else {
749 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
750 	}
751 	tp->t_segqlen++;
752 
753 skip_replacement:
754 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
755 
756 present:
757 	/*
758 	 * Present data to user, advancing rcv_nxt through
759 	 * completed sequence space.
760 	 */
761 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
762 		goto out;
763 	q = TAILQ_FIRST(&tp->segq);
764 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
765 		goto out;
766 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
767 		goto out;
768 
769 	tp->rcv_nxt += q->ipqe_len;
770 	pkt_flags = q->ipqe_flags & TH_FIN;
771 	nd6_hint(tp);
772 
773 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
774 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
775 	tp->t_segqlen--;
776 	KASSERT(tp->t_segqlen >= 0);
777 	KASSERT(tp->t_segqlen != 0 ||
778 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
779 	if (so->so_state & SS_CANTRCVMORE)
780 		m_freem(q->ipqe_m);
781 	else
782 		sbappendstream(&so->so_rcv, q->ipqe_m);
783 	tcpipqent_free(q);
784 	TCP_REASS_UNLOCK(tp);
785 	sorwakeup(so);
786 	return pkt_flags;
787 
788 out:
789 	TCP_REASS_UNLOCK(tp);
790 	return 0;
791 }
792 
793 #ifdef INET6
794 int
795 tcp6_input(struct mbuf **mp, int *offp, int proto)
796 {
797 	struct mbuf *m = *mp;
798 
799 	/*
800 	 * draft-itojun-ipv6-tcp-to-anycast
801 	 * better place to put this in?
802 	 */
803 	if (m->m_flags & M_ANYCAST6) {
804 		struct ip6_hdr *ip6;
805 		if (m->m_len < sizeof(struct ip6_hdr)) {
806 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
807 				TCP_STATINC(TCP_STAT_RCVSHORT);
808 				return IPPROTO_DONE;
809 			}
810 		}
811 		ip6 = mtod(m, struct ip6_hdr *);
812 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
813 		    (char *)&ip6->ip6_dst - (char *)ip6);
814 		return IPPROTO_DONE;
815 	}
816 
817 	tcp_input(m, *offp, proto);
818 	return IPPROTO_DONE;
819 }
820 #endif
821 
822 static void
823 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
824 {
825 	char src[INET_ADDRSTRLEN];
826 	char dst[INET_ADDRSTRLEN];
827 
828 	if (ip) {
829 		in_print(src, sizeof(src), &ip->ip_src);
830 		in_print(dst, sizeof(dst), &ip->ip_dst);
831 	} else {
832 		strlcpy(src, "(unknown)", sizeof(src));
833 		strlcpy(dst, "(unknown)", sizeof(dst));
834 	}
835 	log(LOG_INFO,
836 	    "Connection attempt to TCP %s:%d from %s:%d\n",
837 	    dst, ntohs(th->th_dport),
838 	    src, ntohs(th->th_sport));
839 }
840 
841 #ifdef INET6
842 static void
843 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
844 {
845 	char src[INET6_ADDRSTRLEN];
846 	char dst[INET6_ADDRSTRLEN];
847 
848 	if (ip6) {
849 		in6_print(src, sizeof(src), &ip6->ip6_src);
850 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
851 	} else {
852 		strlcpy(src, "(unknown v6)", sizeof(src));
853 		strlcpy(dst, "(unknown v6)", sizeof(dst));
854 	}
855 	log(LOG_INFO,
856 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
857 	    dst, ntohs(th->th_dport),
858 	    src, ntohs(th->th_sport));
859 }
860 #endif
861 
862 /*
863  * Checksum extended TCP header and data.
864  */
865 int
866 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
867     int toff, int off, int tlen)
868 {
869 	struct ifnet *rcvif;
870 	int s;
871 
872 	/*
873 	 * XXX it's better to record and check if this mbuf is
874 	 * already checked.
875 	 */
876 
877 	rcvif = m_get_rcvif(m, &s);
878 	if (__predict_false(rcvif == NULL))
879 		goto badcsum; /* XXX */
880 
881 	switch (af) {
882 	case AF_INET:
883 		switch (m->m_pkthdr.csum_flags &
884 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
885 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
886 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
887 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
888 			goto badcsum;
889 
890 		case M_CSUM_TCPv4|M_CSUM_DATA: {
891 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
892 
893 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
894 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
895 				const struct ip *ip =
896 				    mtod(m, const struct ip *);
897 
898 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
899 				    ip->ip_dst.s_addr,
900 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
901 			}
902 			if ((hw_csum ^ 0xffff) != 0)
903 				goto badcsum;
904 			break;
905 		}
906 
907 		case M_CSUM_TCPv4:
908 			/* Checksum was okay. */
909 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
910 			break;
911 
912 		default:
913 			/*
914 			 * Must compute it ourselves.  Maybe skip checksum
915 			 * on loopback interfaces.
916 			 */
917 			if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
918 					   tcp_do_loopback_cksum)) {
919 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
920 				if (in4_cksum(m, IPPROTO_TCP, toff,
921 					      tlen + off) != 0)
922 					goto badcsum;
923 			}
924 			break;
925 		}
926 		break;
927 
928 #ifdef INET6
929 	case AF_INET6:
930 		switch (m->m_pkthdr.csum_flags &
931 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
932 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
933 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
934 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
935 			goto badcsum;
936 
937 #if 0 /* notyet */
938 		case M_CSUM_TCPv6|M_CSUM_DATA:
939 #endif
940 
941 		case M_CSUM_TCPv6:
942 			/* Checksum was okay. */
943 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
944 			break;
945 
946 		default:
947 			/*
948 			 * Must compute it ourselves.  Maybe skip checksum
949 			 * on loopback interfaces.
950 			 */
951 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
952 			    tcp_do_loopback_cksum)) {
953 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
954 				if (in6_cksum(m, IPPROTO_TCP, toff,
955 				    tlen + off) != 0)
956 					goto badcsum;
957 			}
958 		}
959 		break;
960 #endif /* INET6 */
961 	}
962 	m_put_rcvif(rcvif, &s);
963 
964 	return 0;
965 
966 badcsum:
967 	m_put_rcvif(rcvif, &s);
968 	TCP_STATINC(TCP_STAT_RCVBADSUM);
969 	return -1;
970 }
971 
972 /*
973  * When a packet arrives addressed to a vestigial tcpbp, we
974  * nevertheless have to respond to it per the spec.
975  *
976  * This code is duplicated from the one in tcp_input().
977  */
978 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
979     struct mbuf *m, int tlen)
980 {
981 	int tiflags;
982 	int todrop;
983 	uint32_t t_flags = 0;
984 	uint64_t *tcps;
985 
986 	tiflags = th->th_flags;
987 	todrop  = vp->rcv_nxt - th->th_seq;
988 
989 	if (todrop > 0) {
990 		if (tiflags & TH_SYN) {
991 			tiflags &= ~TH_SYN;
992 			th->th_seq++;
993 			tcp_urp_drop(th, 1, &tiflags);
994 			todrop--;
995 		}
996 		if (todrop > tlen ||
997 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
998 			/*
999 			 * Any valid FIN or RST must be to the left of the
1000 			 * window.  At this point the FIN or RST must be a
1001 			 * duplicate or out of sequence; drop it.
1002 			 */
1003 			if (tiflags & TH_RST)
1004 				goto drop;
1005 			tiflags &= ~(TH_FIN|TH_RST);
1006 
1007 			/*
1008 			 * Send an ACK to resynchronize and drop any data.
1009 			 * But keep on processing for RST or ACK.
1010 			 */
1011 			t_flags |= TF_ACKNOW;
1012 			todrop = tlen;
1013 			tcps = TCP_STAT_GETREF();
1014 			tcps[TCP_STAT_RCVDUPPACK] += 1;
1015 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1016 			TCP_STAT_PUTREF();
1017 		} else if ((tiflags & TH_RST) &&
1018 		    th->th_seq != vp->rcv_nxt) {
1019 			/*
1020 			 * Test for reset before adjusting the sequence
1021 			 * number for overlapping data.
1022 			 */
1023 			goto dropafterack_ratelim;
1024 		} else {
1025 			tcps = TCP_STAT_GETREF();
1026 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1027 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1028 			TCP_STAT_PUTREF();
1029 		}
1030 
1031 //		tcp_new_dsack(tp, th->th_seq, todrop);
1032 //		hdroptlen += todrop;	/*drop from head afterwards*/
1033 
1034 		th->th_seq += todrop;
1035 		tlen -= todrop;
1036 		tcp_urp_drop(th, todrop, &tiflags);
1037 	}
1038 
1039 	/*
1040 	 * If new data are received on a connection after the
1041 	 * user processes are gone, then RST the other end.
1042 	 */
1043 	if (tlen) {
1044 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1045 		goto dropwithreset;
1046 	}
1047 
1048 	/*
1049 	 * If segment ends after window, drop trailing data
1050 	 * (and PUSH and FIN); if nothing left, just ACK.
1051 	 */
1052 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt + vp->rcv_wnd);
1053 
1054 	if (todrop > 0) {
1055 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1056 		if (todrop >= tlen) {
1057 			/*
1058 			 * The segment actually starts after the window.
1059 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1060 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1061 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1062 			 */
1063 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1064 
1065 			/*
1066 			 * If a new connection request is received
1067 			 * while in TIME_WAIT, drop the old connection
1068 			 * and start over if the sequence numbers
1069 			 * are above the previous ones.
1070 			 */
1071 			if ((tiflags & TH_SYN) &&
1072 			    SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1073 				/*
1074 				 * We only support this in the !NOFDREF case, which
1075 				 * is to say: not here.
1076 				 */
1077 				goto dropwithreset;
1078 			}
1079 
1080 			/*
1081 			 * If window is closed can only take segments at
1082 			 * window edge, and have to drop data and PUSH from
1083 			 * incoming segments.  Continue processing, but
1084 			 * remember to ack.  Otherwise, drop segment
1085 			 * and (if not RST) ack.
1086 			 */
1087 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1088 				t_flags |= TF_ACKNOW;
1089 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
1090 			} else {
1091 				goto dropafterack;
1092 			}
1093 		} else {
1094 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1095 		}
1096 		m_adj(m, -todrop);
1097 		tlen -= todrop;
1098 		tiflags &= ~(TH_PUSH|TH_FIN);
1099 	}
1100 
1101 	if (tiflags & TH_RST) {
1102 		if (th->th_seq != vp->rcv_nxt)
1103 			goto dropafterack_ratelim;
1104 
1105 		vtw_del(vp->ctl, vp->vtw);
1106 		goto drop;
1107 	}
1108 
1109 	/*
1110 	 * If the ACK bit is off we drop the segment and return.
1111 	 */
1112 	if ((tiflags & TH_ACK) == 0) {
1113 		if (t_flags & TF_ACKNOW)
1114 			goto dropafterack;
1115 		goto drop;
1116 	}
1117 
1118 	/*
1119 	 * In TIME_WAIT state the only thing that should arrive
1120 	 * is a retransmission of the remote FIN.  Acknowledge
1121 	 * it and restart the finack timer.
1122 	 */
1123 	vtw_restart(vp);
1124 	goto dropafterack;
1125 
1126 dropafterack:
1127 	/*
1128 	 * Generate an ACK dropping incoming segment if it occupies
1129 	 * sequence space, where the ACK reflects our state.
1130 	 */
1131 	if (tiflags & TH_RST)
1132 		goto drop;
1133 	goto dropafterack2;
1134 
1135 dropafterack_ratelim:
1136 	/*
1137 	 * We may want to rate-limit ACKs against SYN/RST attack.
1138 	 */
1139 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1140 	    tcp_ackdrop_ppslim) == 0) {
1141 		/* XXX stat */
1142 		goto drop;
1143 	}
1144 	/* ...fall into dropafterack2... */
1145 
1146 dropafterack2:
1147 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack, TH_ACK);
1148 	return;
1149 
1150 dropwithreset:
1151 	/*
1152 	 * Generate a RST, dropping incoming segment.
1153 	 * Make ACK acceptable to originator of segment.
1154 	 */
1155 	if (tiflags & TH_RST)
1156 		goto drop;
1157 
1158 	if (tiflags & TH_ACK) {
1159 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1160 	} else {
1161 		if (tiflags & TH_SYN)
1162 			++tlen;
1163 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1164 		    TH_RST|TH_ACK);
1165 	}
1166 	return;
1167 drop:
1168 	m_freem(m);
1169 }
1170 
1171 /*
1172  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1173  */
1174 void
1175 tcp_input(struct mbuf *m, ...)
1176 {
1177 	struct tcphdr *th;
1178 	struct ip *ip;
1179 	struct inpcb *inp;
1180 #ifdef INET6
1181 	struct ip6_hdr *ip6;
1182 	struct in6pcb *in6p;
1183 #endif
1184 	u_int8_t *optp = NULL;
1185 	int optlen = 0;
1186 	int len, tlen, toff, hdroptlen = 0;
1187 	struct tcpcb *tp = NULL;
1188 	int tiflags;
1189 	struct socket *so = NULL;
1190 	int todrop, acked, ourfinisacked, needoutput = 0;
1191 	bool dupseg;
1192 #ifdef TCP_DEBUG
1193 	short ostate = 0;
1194 #endif
1195 	u_long tiwin;
1196 	struct tcp_opt_info opti;
1197 	int off, iphlen;
1198 	va_list ap;
1199 	int af;		/* af on the wire */
1200 	struct mbuf *tcp_saveti = NULL;
1201 	uint32_t ts_rtt;
1202 	uint8_t iptos;
1203 	uint64_t *tcps;
1204 	vestigial_inpcb_t vestige;
1205 
1206 	vestige.valid = 0;
1207 
1208 	MCLAIM(m, &tcp_rx_mowner);
1209 	va_start(ap, m);
1210 	toff = va_arg(ap, int);
1211 	(void)va_arg(ap, int);		/* ignore value, advance ap */
1212 	va_end(ap);
1213 
1214 	TCP_STATINC(TCP_STAT_RCVTOTAL);
1215 
1216 	memset(&opti, 0, sizeof(opti));
1217 	opti.ts_present = 0;
1218 	opti.maxseg = 0;
1219 
1220 	/*
1221 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1222 	 *
1223 	 * TCP is, by definition, unicast, so we reject all
1224 	 * multicast outright.
1225 	 *
1226 	 * Note, there are additional src/dst address checks in
1227 	 * the AF-specific code below.
1228 	 */
1229 	if (m->m_flags & (M_BCAST|M_MCAST)) {
1230 		/* XXX stat */
1231 		goto drop;
1232 	}
1233 #ifdef INET6
1234 	if (m->m_flags & M_ANYCAST6) {
1235 		/* XXX stat */
1236 		goto drop;
1237 	}
1238 #endif
1239 
1240 	M_REGION_GET(th, struct tcphdr *, m, toff, sizeof(struct tcphdr));
1241 	if (th == NULL) {
1242 		TCP_STATINC(TCP_STAT_RCVSHORT);
1243 		return;
1244 	}
1245 
1246 	/*
1247 	 * Get IP and TCP header.
1248 	 * Note: IP leaves IP header in first mbuf.
1249 	 */
1250 	ip = mtod(m, struct ip *);
1251 	switch (ip->ip_v) {
1252 	case 4:
1253 #ifdef INET6
1254 		ip6 = NULL;
1255 #endif
1256 		af = AF_INET;
1257 		iphlen = sizeof(struct ip);
1258 
1259 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1260 		    in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
1261 			goto drop;
1262 
1263 		/* We do the checksum after PCB lookup... */
1264 		len = ntohs(ip->ip_len);
1265 		tlen = len - toff;
1266 		iptos = ip->ip_tos;
1267 		break;
1268 #ifdef INET6
1269 	case 6:
1270 		ip = NULL;
1271 		iphlen = sizeof(struct ip6_hdr);
1272 		af = AF_INET6;
1273 		ip6 = mtod(m, struct ip6_hdr *);
1274 
1275 		/*
1276 		 * Be proactive about unspecified IPv6 address in source.
1277 		 * As we use all-zero to indicate unbounded/unconnected pcb,
1278 		 * unspecified IPv6 address can be used to confuse us.
1279 		 *
1280 		 * Note that packets with unspecified IPv6 destination is
1281 		 * already dropped in ip6_input.
1282 		 */
1283 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1284 			/* XXX stat */
1285 			goto drop;
1286 		}
1287 
1288 		/*
1289 		 * Make sure destination address is not multicast.
1290 		 * Source address checked in ip6_input().
1291 		 */
1292 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1293 			/* XXX stat */
1294 			goto drop;
1295 		}
1296 
1297 		/* We do the checksum after PCB lookup... */
1298 		len = m->m_pkthdr.len;
1299 		tlen = len - toff;
1300 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1301 		break;
1302 #endif
1303 	default:
1304 		m_freem(m);
1305 		return;
1306 	}
1307 
1308 	/*
1309 	 * Enforce alignment requirements that are violated in
1310 	 * some cases, see kern/50766 for details.
1311 	 */
1312 	if (TCP_HDR_ALIGNED_P(th) == 0) {
1313 		m = m_copyup(m, toff + sizeof(struct tcphdr), 0);
1314 		if (m == NULL) {
1315 			TCP_STATINC(TCP_STAT_RCVSHORT);
1316 			return;
1317 		}
1318 		ip = mtod(m, struct ip *);
1319 #ifdef INET6
1320 		ip6 = mtod(m, struct ip6_hdr *);
1321 #endif
1322 		th = (struct tcphdr *)(mtod(m, char *) + toff);
1323 	}
1324 	KASSERT(TCP_HDR_ALIGNED_P(th));
1325 
1326 	/*
1327 	 * Check that TCP offset makes sense, pull out TCP options and
1328 	 * adjust length.
1329 	 */
1330 	off = th->th_off << 2;
1331 	if (off < sizeof(struct tcphdr) || off > tlen) {
1332 		TCP_STATINC(TCP_STAT_RCVBADOFF);
1333 		goto drop;
1334 	}
1335 	tlen -= off;
1336 
1337 	if (off > sizeof(struct tcphdr)) {
1338 		M_REGION_GET(th, struct tcphdr *, m, toff, off);
1339 		if (th == NULL) {
1340 			TCP_STATINC(TCP_STAT_RCVSHORT);
1341 			return;
1342 		}
1343 		KASSERT(TCP_HDR_ALIGNED_P(th));
1344 		optlen = off - sizeof(struct tcphdr);
1345 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1346 
1347 		/*
1348 		 * Do quick retrieval of timestamp options.
1349 		 *
1350 		 * If timestamp is the only option and it's formatted as
1351 		 * recommended in RFC 1323 appendix A, we quickly get the
1352 		 * values now and don't bother calling tcp_dooptions(),
1353 		 * etc.
1354 		 */
1355 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1356 		     (optlen > TCPOLEN_TSTAMP_APPA &&
1357 		      optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1358 		    *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1359 		    (th->th_flags & TH_SYN) == 0) {
1360 			opti.ts_present = 1;
1361 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1362 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1363 			optp = NULL;	/* we've parsed the options */
1364 		}
1365 	}
1366 	tiflags = th->th_flags;
1367 
1368 	/*
1369 	 * Checksum extended TCP header and data
1370 	 */
1371 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
1372 		goto badcsum;
1373 
1374 	/*
1375 	 * Locate pcb for segment.
1376 	 */
1377 findpcb:
1378 	inp = NULL;
1379 #ifdef INET6
1380 	in6p = NULL;
1381 #endif
1382 	switch (af) {
1383 	case AF_INET:
1384 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1385 		    ip->ip_dst, th->th_dport, &vestige);
1386 		if (inp == NULL && !vestige.valid) {
1387 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1388 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst,
1389 			    th->th_dport);
1390 		}
1391 #ifdef INET6
1392 		if (inp == NULL && !vestige.valid) {
1393 			struct in6_addr s, d;
1394 
1395 			/* mapped addr case */
1396 			in6_in_2_v4mapin6(&ip->ip_src, &s);
1397 			in6_in_2_v4mapin6(&ip->ip_dst, &d);
1398 			in6p = in6_pcblookup_connect(&tcbtable, &s,
1399 			    th->th_sport, &d, th->th_dport, 0, &vestige);
1400 			if (in6p == 0 && !vestige.valid) {
1401 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
1402 				in6p = in6_pcblookup_bind(&tcbtable, &d,
1403 				    th->th_dport, 0);
1404 			}
1405 		}
1406 #endif
1407 #ifndef INET6
1408 		if (inp == NULL && !vestige.valid)
1409 #else
1410 		if (inp == NULL && in6p == NULL && !vestige.valid)
1411 #endif
1412 		{
1413 			TCP_STATINC(TCP_STAT_NOPORT);
1414 			if (tcp_log_refused &&
1415 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1416 				tcp4_log_refused(ip, th);
1417 			}
1418 			tcp_fields_to_host(th);
1419 			goto dropwithreset_ratelim;
1420 		}
1421 #if defined(IPSEC)
1422 		if (ipsec_used) {
1423 			if (inp && ipsec_in_reject(m, inp)) {
1424 				goto drop;
1425 			}
1426 #ifdef INET6
1427 			else if (in6p && ipsec_in_reject(m, in6p)) {
1428 				goto drop;
1429 			}
1430 #endif
1431 		}
1432 #endif /*IPSEC*/
1433 		break;
1434 #ifdef INET6
1435 	case AF_INET6:
1436 	    {
1437 		int faith;
1438 
1439 #if defined(NFAITH) && NFAITH > 0
1440 		faith = faithprefix(&ip6->ip6_dst);
1441 #else
1442 		faith = 0;
1443 #endif
1444 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1445 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1446 		if (!in6p && !vestige.valid) {
1447 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1448 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1449 			    th->th_dport, faith);
1450 		}
1451 		if (!in6p && !vestige.valid) {
1452 			TCP_STATINC(TCP_STAT_NOPORT);
1453 			if (tcp_log_refused &&
1454 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1455 				tcp6_log_refused(ip6, th);
1456 			}
1457 			tcp_fields_to_host(th);
1458 			goto dropwithreset_ratelim;
1459 		}
1460 #if defined(IPSEC)
1461 		if (ipsec_used && in6p && ipsec_in_reject(m, in6p)) {
1462 			goto drop;
1463 		}
1464 #endif
1465 		break;
1466 	    }
1467 #endif
1468 	}
1469 
1470 	tcp_fields_to_host(th);
1471 
1472 	/*
1473 	 * If the state is CLOSED (i.e., TCB does not exist) then
1474 	 * all data in the incoming segment is discarded.
1475 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1476 	 * but should either do a listen or a connect soon.
1477 	 */
1478 	tp = NULL;
1479 	so = NULL;
1480 	if (inp) {
1481 		/* Check the minimum TTL for socket. */
1482 		if (ip->ip_ttl < inp->inp_ip_minttl)
1483 			goto drop;
1484 
1485 		tp = intotcpcb(inp);
1486 		so = inp->inp_socket;
1487 	}
1488 #ifdef INET6
1489 	else if (in6p) {
1490 		tp = in6totcpcb(in6p);
1491 		so = in6p->in6p_socket;
1492 	}
1493 #endif
1494 	else if (vestige.valid) {
1495 		/* We do not support the resurrection of vtw tcpcps. */
1496 		tcp_vtw_input(th, &vestige, m, tlen);
1497 		m = NULL;
1498 		goto drop;
1499 	}
1500 
1501 	if (tp == NULL)
1502 		goto dropwithreset_ratelim;
1503 	if (tp->t_state == TCPS_CLOSED)
1504 		goto drop;
1505 
1506 	KASSERT(so->so_lock == softnet_lock);
1507 	KASSERT(solocked(so));
1508 
1509 	/* Unscale the window into a 32-bit value. */
1510 	if ((tiflags & TH_SYN) == 0)
1511 		tiwin = th->th_win << tp->snd_scale;
1512 	else
1513 		tiwin = th->th_win;
1514 
1515 #ifdef INET6
1516 	/* save packet options if user wanted */
1517 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1518 		if (in6p->in6p_options) {
1519 			m_freem(in6p->in6p_options);
1520 			in6p->in6p_options = NULL;
1521 		}
1522 		KASSERT(ip6 != NULL);
1523 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1524 	}
1525 #endif
1526 
1527 	if (so->so_options & SO_DEBUG) {
1528 #ifdef TCP_DEBUG
1529 		ostate = tp->t_state;
1530 #endif
1531 
1532 		tcp_saveti = NULL;
1533 		if (iphlen + sizeof(struct tcphdr) > MHLEN)
1534 			goto nosave;
1535 
1536 		if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1537 			tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1538 			if (tcp_saveti == NULL)
1539 				goto nosave;
1540 		} else {
1541 			MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1542 			if (tcp_saveti == NULL)
1543 				goto nosave;
1544 			MCLAIM(m, &tcp_mowner);
1545 			tcp_saveti->m_len = iphlen;
1546 			m_copydata(m, 0, iphlen,
1547 			    mtod(tcp_saveti, void *));
1548 		}
1549 
1550 		if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1551 			m_freem(tcp_saveti);
1552 			tcp_saveti = NULL;
1553 		} else {
1554 			tcp_saveti->m_len += sizeof(struct tcphdr);
1555 			memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1556 			    sizeof(struct tcphdr));
1557 		}
1558 nosave:;
1559 	}
1560 
1561 	if (so->so_options & SO_ACCEPTCONN) {
1562 		union syn_cache_sa src;
1563 		union syn_cache_sa dst;
1564 
1565 		KASSERT(tp->t_state == TCPS_LISTEN);
1566 
1567 		memset(&src, 0, sizeof(src));
1568 		memset(&dst, 0, sizeof(dst));
1569 		switch (af) {
1570 		case AF_INET:
1571 			src.sin.sin_len = sizeof(struct sockaddr_in);
1572 			src.sin.sin_family = AF_INET;
1573 			src.sin.sin_addr = ip->ip_src;
1574 			src.sin.sin_port = th->th_sport;
1575 
1576 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1577 			dst.sin.sin_family = AF_INET;
1578 			dst.sin.sin_addr = ip->ip_dst;
1579 			dst.sin.sin_port = th->th_dport;
1580 			break;
1581 #ifdef INET6
1582 		case AF_INET6:
1583 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1584 			src.sin6.sin6_family = AF_INET6;
1585 			src.sin6.sin6_addr = ip6->ip6_src;
1586 			src.sin6.sin6_port = th->th_sport;
1587 
1588 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1589 			dst.sin6.sin6_family = AF_INET6;
1590 			dst.sin6.sin6_addr = ip6->ip6_dst;
1591 			dst.sin6.sin6_port = th->th_dport;
1592 			break;
1593 #endif
1594 		}
1595 
1596 		if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1597 			if (tiflags & TH_RST) {
1598 				syn_cache_reset(&src.sa, &dst.sa, th);
1599 			} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1600 			    (TH_ACK|TH_SYN)) {
1601 				/*
1602 				 * Received a SYN,ACK. This should never
1603 				 * happen while we are in LISTEN. Send an RST.
1604 				 */
1605 				goto badsyn;
1606 			} else if (tiflags & TH_ACK) {
1607 				so = syn_cache_get(&src.sa, &dst.sa, th, so, m);
1608 				if (so == NULL) {
1609 					/*
1610 					 * We don't have a SYN for this ACK;
1611 					 * send an RST.
1612 					 */
1613 					goto badsyn;
1614 				} else if (so == (struct socket *)(-1)) {
1615 					/*
1616 					 * We were unable to create the
1617 					 * connection. If the 3-way handshake
1618 					 * was completed, and RST has been
1619 					 * sent to the peer. Since the mbuf
1620 					 * might be in use for the reply, do
1621 					 * not free it.
1622 					 */
1623 					m = NULL;
1624 				} else {
1625 					/*
1626 					 * We have created a full-blown
1627 					 * connection.
1628 					 */
1629 					tp = NULL;
1630 					inp = NULL;
1631 #ifdef INET6
1632 					in6p = NULL;
1633 #endif
1634 					switch (so->so_proto->pr_domain->dom_family) {
1635 					case AF_INET:
1636 						inp = sotoinpcb(so);
1637 						tp = intotcpcb(inp);
1638 						break;
1639 #ifdef INET6
1640 					case AF_INET6:
1641 						in6p = sotoin6pcb(so);
1642 						tp = in6totcpcb(in6p);
1643 						break;
1644 #endif
1645 					}
1646 					if (tp == NULL)
1647 						goto badsyn;	/*XXX*/
1648 					tiwin <<= tp->snd_scale;
1649 					goto after_listen;
1650 				}
1651 			} else {
1652 				/*
1653 				 * None of RST, SYN or ACK was set.
1654 				 * This is an invalid packet for a
1655 				 * TCB in LISTEN state.  Send a RST.
1656 				 */
1657 				goto badsyn;
1658 			}
1659 		} else {
1660 			/*
1661 			 * Received a SYN.
1662 			 */
1663 
1664 #ifdef INET6
1665 			/*
1666 			 * If deprecated address is forbidden, we do
1667 			 * not accept SYN to deprecated interface
1668 			 * address to prevent any new inbound
1669 			 * connection from getting established.
1670 			 * When we do not accept SYN, we send a TCP
1671 			 * RST, with deprecated source address (instead
1672 			 * of dropping it).  We compromise it as it is
1673 			 * much better for peer to send a RST, and
1674 			 * RST will be the final packet for the
1675 			 * exchange.
1676 			 *
1677 			 * If we do not forbid deprecated addresses, we
1678 			 * accept the SYN packet.  RFC2462 does not
1679 			 * suggest dropping SYN in this case.
1680 			 * If we decipher RFC2462 5.5.4, it says like
1681 			 * this:
1682 			 * 1. use of deprecated addr with existing
1683 			 *    communication is okay - "SHOULD continue
1684 			 *    to be used"
1685 			 * 2. use of it with new communication:
1686 			 *   (2a) "SHOULD NOT be used if alternate
1687 			 *        address with sufficient scope is
1688 			 *        available"
1689 			 *   (2b) nothing mentioned otherwise.
1690 			 * Here we fall into (2b) case as we have no
1691 			 * choice in our source address selection - we
1692 			 * must obey the peer.
1693 			 *
1694 			 * The wording in RFC2462 is confusing, and
1695 			 * there are multiple description text for
1696 			 * deprecated address handling - worse, they
1697 			 * are not exactly the same.  I believe 5.5.4
1698 			 * is the best one, so we follow 5.5.4.
1699 			 */
1700 			if (af == AF_INET6 && !ip6_use_deprecated) {
1701 				struct in6_ifaddr *ia6;
1702 				int s;
1703 				struct ifnet *rcvif = m_get_rcvif(m, &s);
1704 				if (rcvif == NULL)
1705 					goto dropwithreset; /* XXX */
1706 				if ((ia6 = in6ifa_ifpwithaddr(rcvif,
1707 				    &ip6->ip6_dst)) &&
1708 				    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1709 					tp = NULL;
1710 					m_put_rcvif(rcvif, &s);
1711 					goto dropwithreset;
1712 				}
1713 				m_put_rcvif(rcvif, &s);
1714 			}
1715 #endif
1716 
1717 			/*
1718 			 * LISTEN socket received a SYN from itself? This
1719 			 * can't possibly be valid; drop the packet.
1720 			 */
1721 			if (th->th_sport == th->th_dport) {
1722 				int eq = 0;
1723 
1724 				switch (af) {
1725 				case AF_INET:
1726 					eq = in_hosteq(ip->ip_src, ip->ip_dst);
1727 					break;
1728 #ifdef INET6
1729 				case AF_INET6:
1730 					eq = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
1731 					    &ip6->ip6_dst);
1732 					break;
1733 #endif
1734 				}
1735 				if (eq) {
1736 					TCP_STATINC(TCP_STAT_BADSYN);
1737 					goto drop;
1738 				}
1739 			}
1740 
1741 			/*
1742 			 * SYN looks ok; create compressed TCP
1743 			 * state for it.
1744 			 */
1745 			if (so->so_qlen <= so->so_qlimit &&
1746 			    syn_cache_add(&src.sa, &dst.sa, th, toff,
1747 			    so, m, optp, optlen, &opti))
1748 				m = NULL;
1749 		}
1750 
1751 		goto drop;
1752 	}
1753 
1754 after_listen:
1755 	/*
1756 	 * From here on, we're dealing with !LISTEN.
1757 	 */
1758 	KASSERT(tp->t_state != TCPS_LISTEN);
1759 
1760 	/*
1761 	 * Segment received on connection.
1762 	 * Reset idle time and keep-alive timer.
1763 	 */
1764 	tp->t_rcvtime = tcp_now;
1765 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1766 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1767 
1768 	/*
1769 	 * Process options.
1770 	 */
1771 #ifdef TCP_SIGNATURE
1772 	if (optp || (tp->t_flags & TF_SIGNATURE))
1773 #else
1774 	if (optp)
1775 #endif
1776 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1777 			goto drop;
1778 
1779 	if (TCP_SACK_ENABLED(tp)) {
1780 		tcp_del_sackholes(tp, th);
1781 	}
1782 
1783 	if (TCP_ECN_ALLOWED(tp)) {
1784 		if (tiflags & TH_CWR) {
1785 			tp->t_flags &= ~TF_ECN_SND_ECE;
1786 		}
1787 		switch (iptos & IPTOS_ECN_MASK) {
1788 		case IPTOS_ECN_CE:
1789 			tp->t_flags |= TF_ECN_SND_ECE;
1790 			TCP_STATINC(TCP_STAT_ECN_CE);
1791 			break;
1792 		case IPTOS_ECN_ECT0:
1793 			TCP_STATINC(TCP_STAT_ECN_ECT);
1794 			break;
1795 		case IPTOS_ECN_ECT1:
1796 			/* XXX: ignore for now -- rpaulo */
1797 			break;
1798 		}
1799 		/*
1800 		 * Congestion experienced.
1801 		 * Ignore if we are already trying to recover.
1802 		 */
1803 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1804 			tp->t_congctl->cong_exp(tp);
1805 	}
1806 
1807 	if (opti.ts_present && opti.ts_ecr) {
1808 		/*
1809 		 * Calculate the RTT from the returned time stamp and the
1810 		 * connection's time base.  If the time stamp is later than
1811 		 * the current time, or is extremely old, fall back to non-1323
1812 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
1813 		 * at the same time.
1814 		 *
1815 		 * Note that ts_rtt is in units of slow ticks (500
1816 		 * ms).  Since most earthbound RTTs are < 500 ms,
1817 		 * observed values will have large quantization noise.
1818 		 * Our smoothed RTT is then the fraction of observed
1819 		 * samples that are 1 tick instead of 0 (times 500
1820 		 * ms).
1821 		 *
1822 		 * ts_rtt is increased by 1 to denote a valid sample,
1823 		 * with 0 indicating an invalid measurement.  This
1824 		 * extra 1 must be removed when ts_rtt is used, or
1825 		 * else an an erroneous extra 500 ms will result.
1826 		 */
1827 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1828 		if (ts_rtt > TCP_PAWS_IDLE)
1829 			ts_rtt = 0;
1830 	} else {
1831 		ts_rtt = 0;
1832 	}
1833 
1834 	/*
1835 	 * Fast path: check for the two common cases of a uni-directional
1836 	 * data transfer. If:
1837 	 *    o We are in the ESTABLISHED state, and
1838 	 *    o The packet has no control flags, and
1839 	 *    o The packet is in-sequence, and
1840 	 *    o The window didn't change, and
1841 	 *    o We are not retransmitting
1842 	 * It's a candidate.
1843 	 *
1844 	 * If the length (tlen) is zero and the ack moved forward, we're
1845 	 * the sender side of the transfer. Just free the data acked and
1846 	 * wake any higher level process that was blocked waiting for
1847 	 * space.
1848 	 *
1849 	 * If the length is non-zero and the ack didn't move, we're the
1850 	 * receiver side. If we're getting packets in-order (the reassembly
1851 	 * queue is empty), add the data to the socket buffer and note
1852 	 * that we need a delayed ack.
1853 	 */
1854 	if (tp->t_state == TCPS_ESTABLISHED &&
1855 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1856 	        == TH_ACK &&
1857 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1858 	    th->th_seq == tp->rcv_nxt &&
1859 	    tiwin && tiwin == tp->snd_wnd &&
1860 	    tp->snd_nxt == tp->snd_max) {
1861 
1862 		/*
1863 		 * If last ACK falls within this segment's sequence numbers,
1864 		 * record the timestamp.
1865 		 * NOTE that the test is modified according to the latest
1866 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1867 		 *
1868 		 * note that we already know
1869 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1870 		 */
1871 		if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1872 			tp->ts_recent_age = tcp_now;
1873 			tp->ts_recent = opti.ts_val;
1874 		}
1875 
1876 		if (tlen == 0) {
1877 			/* Ack prediction. */
1878 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1879 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1880 			    tp->snd_cwnd >= tp->snd_wnd &&
1881 			    tp->t_partialacks < 0) {
1882 				/*
1883 				 * this is a pure ack for outstanding data.
1884 				 */
1885 				if (ts_rtt)
1886 					tcp_xmit_timer(tp, ts_rtt - 1);
1887 				else if (tp->t_rtttime &&
1888 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1889 					tcp_xmit_timer(tp,
1890 					  tcp_now - tp->t_rtttime);
1891 				acked = th->th_ack - tp->snd_una;
1892 				tcps = TCP_STAT_GETREF();
1893 				tcps[TCP_STAT_PREDACK]++;
1894 				tcps[TCP_STAT_RCVACKPACK]++;
1895 				tcps[TCP_STAT_RCVACKBYTE] += acked;
1896 				TCP_STAT_PUTREF();
1897 				nd6_hint(tp);
1898 
1899 				if (acked > (tp->t_lastoff - tp->t_inoff))
1900 					tp->t_lastm = NULL;
1901 				sbdrop(&so->so_snd, acked);
1902 				tp->t_lastoff -= acked;
1903 
1904 				icmp_check(tp, th, acked);
1905 
1906 				tp->snd_una = th->th_ack;
1907 				tp->snd_fack = tp->snd_una;
1908 				if (SEQ_LT(tp->snd_high, tp->snd_una))
1909 					tp->snd_high = tp->snd_una;
1910 				m_freem(m);
1911 
1912 				/*
1913 				 * If all outstanding data are acked, stop
1914 				 * retransmit timer, otherwise restart timer
1915 				 * using current (possibly backed-off) value.
1916 				 * If process is waiting for space,
1917 				 * wakeup/selnotify/signal.  If data
1918 				 * are ready to send, let tcp_output
1919 				 * decide between more output or persist.
1920 				 */
1921 				if (tp->snd_una == tp->snd_max)
1922 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1923 				else if (TCP_TIMER_ISARMED(tp,
1924 				    TCPT_PERSIST) == 0)
1925 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1926 					    tp->t_rxtcur);
1927 
1928 				sowwakeup(so);
1929 				if (so->so_snd.sb_cc) {
1930 					KERNEL_LOCK(1, NULL);
1931 					(void)tcp_output(tp);
1932 					KERNEL_UNLOCK_ONE(NULL);
1933 				}
1934 				if (tcp_saveti)
1935 					m_freem(tcp_saveti);
1936 				return;
1937 			}
1938 		} else if (th->th_ack == tp->snd_una &&
1939 		    TAILQ_FIRST(&tp->segq) == NULL &&
1940 		    tlen <= sbspace(&so->so_rcv)) {
1941 			int newsize = 0;
1942 
1943 			/*
1944 			 * this is a pure, in-sequence data packet
1945 			 * with nothing on the reassembly queue and
1946 			 * we have enough buffer space to take it.
1947 			 */
1948 			tp->rcv_nxt += tlen;
1949 			tcps = TCP_STAT_GETREF();
1950 			tcps[TCP_STAT_PREDDAT]++;
1951 			tcps[TCP_STAT_RCVPACK]++;
1952 			tcps[TCP_STAT_RCVBYTE] += tlen;
1953 			TCP_STAT_PUTREF();
1954 			nd6_hint(tp);
1955 
1956 		/*
1957 		 * Automatic sizing enables the performance of large buffers
1958 		 * and most of the efficiency of small ones by only allocating
1959 		 * space when it is needed.
1960 		 *
1961 		 * On the receive side the socket buffer memory is only rarely
1962 		 * used to any significant extent.  This allows us to be much
1963 		 * more aggressive in scaling the receive socket buffer.  For
1964 		 * the case that the buffer space is actually used to a large
1965 		 * extent and we run out of kernel memory we can simply drop
1966 		 * the new segments; TCP on the sender will just retransmit it
1967 		 * later.  Setting the buffer size too big may only consume too
1968 		 * much kernel memory if the application doesn't read() from
1969 		 * the socket or packet loss or reordering makes use of the
1970 		 * reassembly queue.
1971 		 *
1972 		 * The criteria to step up the receive buffer one notch are:
1973 		 *  1. the number of bytes received during the time it takes
1974 		 *     one timestamp to be reflected back to us (the RTT);
1975 		 *  2. received bytes per RTT is within seven eighth of the
1976 		 *     current socket buffer size;
1977 		 *  3. receive buffer size has not hit maximal automatic size;
1978 		 *
1979 		 * This algorithm does one step per RTT at most and only if
1980 		 * we receive a bulk stream w/o packet losses or reorderings.
1981 		 * Shrinking the buffer during idle times is not necessary as
1982 		 * it doesn't consume any memory when idle.
1983 		 *
1984 		 * TODO: Only step up if the application is actually serving
1985 		 * the buffer to better manage the socket buffer resources.
1986 		 */
1987 			if (tcp_do_autorcvbuf &&
1988 			    opti.ts_ecr &&
1989 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1990 				if (opti.ts_ecr > tp->rfbuf_ts &&
1991 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1992 					if (tp->rfbuf_cnt >
1993 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1994 					    so->so_rcv.sb_hiwat <
1995 					    tcp_autorcvbuf_max) {
1996 						newsize =
1997 						    min(so->so_rcv.sb_hiwat +
1998 						    tcp_autorcvbuf_inc,
1999 						    tcp_autorcvbuf_max);
2000 					}
2001 					/* Start over with next RTT. */
2002 					tp->rfbuf_ts = 0;
2003 					tp->rfbuf_cnt = 0;
2004 				} else
2005 					tp->rfbuf_cnt += tlen;	/* add up */
2006 			}
2007 
2008 			/*
2009 			 * Drop TCP, IP headers and TCP options then add data
2010 			 * to socket buffer.
2011 			 */
2012 			if (so->so_state & SS_CANTRCVMORE) {
2013 				m_freem(m);
2014 			} else {
2015 				/*
2016 				 * Set new socket buffer size.
2017 				 * Give up when limit is reached.
2018 				 */
2019 				if (newsize)
2020 					if (!sbreserve(&so->so_rcv,
2021 					    newsize, so))
2022 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2023 				m_adj(m, toff + off);
2024 				sbappendstream(&so->so_rcv, m);
2025 			}
2026 			sorwakeup(so);
2027 			tcp_setup_ack(tp, th);
2028 			if (tp->t_flags & TF_ACKNOW) {
2029 				KERNEL_LOCK(1, NULL);
2030 				(void)tcp_output(tp);
2031 				KERNEL_UNLOCK_ONE(NULL);
2032 			}
2033 			if (tcp_saveti)
2034 				m_freem(tcp_saveti);
2035 			return;
2036 		}
2037 	}
2038 
2039 	/*
2040 	 * Compute mbuf offset to TCP data segment.
2041 	 */
2042 	hdroptlen = toff + off;
2043 
2044 	/*
2045 	 * Calculate amount of space in receive window. Receive window is
2046 	 * amount of space in rcv queue, but not less than advertised
2047 	 * window.
2048 	 */
2049 	{
2050 		int win;
2051 		win = sbspace(&so->so_rcv);
2052 		if (win < 0)
2053 			win = 0;
2054 		tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2055 	}
2056 
2057 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
2058 	tp->rfbuf_ts = 0;
2059 	tp->rfbuf_cnt = 0;
2060 
2061 	switch (tp->t_state) {
2062 	/*
2063 	 * If the state is SYN_SENT:
2064 	 *	if seg contains an ACK, but not for our SYN, drop the input.
2065 	 *	if seg contains a RST, then drop the connection.
2066 	 *	if seg does not contain SYN, then drop it.
2067 	 * Otherwise this is an acceptable SYN segment
2068 	 *	initialize tp->rcv_nxt and tp->irs
2069 	 *	if seg contains ack then advance tp->snd_una
2070 	 *	if seg contains a ECE and ECN support is enabled, the stream
2071 	 *	    is ECN capable.
2072 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2073 	 *	arrange for segment to be acked (eventually)
2074 	 *	continue processing rest of data/controls, beginning with URG
2075 	 */
2076 	case TCPS_SYN_SENT:
2077 		if ((tiflags & TH_ACK) &&
2078 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2079 		     SEQ_GT(th->th_ack, tp->snd_max)))
2080 			goto dropwithreset;
2081 		if (tiflags & TH_RST) {
2082 			if (tiflags & TH_ACK)
2083 				tp = tcp_drop(tp, ECONNREFUSED);
2084 			goto drop;
2085 		}
2086 		if ((tiflags & TH_SYN) == 0)
2087 			goto drop;
2088 		if (tiflags & TH_ACK) {
2089 			tp->snd_una = th->th_ack;
2090 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2091 				tp->snd_nxt = tp->snd_una;
2092 			if (SEQ_LT(tp->snd_high, tp->snd_una))
2093 				tp->snd_high = tp->snd_una;
2094 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2095 
2096 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
2097 				tp->t_flags |= TF_ECN_PERMIT;
2098 				TCP_STATINC(TCP_STAT_ECN_SHS);
2099 			}
2100 		}
2101 		tp->irs = th->th_seq;
2102 		tcp_rcvseqinit(tp);
2103 		tp->t_flags |= TF_ACKNOW;
2104 		tcp_mss_from_peer(tp, opti.maxseg);
2105 
2106 		/*
2107 		 * Initialize the initial congestion window.  If we
2108 		 * had to retransmit the SYN, we must initialize cwnd
2109 		 * to 1 segment (i.e. the Loss Window).
2110 		 */
2111 		if (tp->t_flags & TF_SYN_REXMT)
2112 			tp->snd_cwnd = tp->t_peermss;
2113 		else {
2114 			int ss = tcp_init_win;
2115 			if (inp != NULL && in_localaddr(inp->inp_faddr))
2116 				ss = tcp_init_win_local;
2117 #ifdef INET6
2118 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2119 				ss = tcp_init_win_local;
2120 #endif
2121 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2122 		}
2123 
2124 		tcp_rmx_rtt(tp);
2125 		if (tiflags & TH_ACK) {
2126 			TCP_STATINC(TCP_STAT_CONNECTS);
2127 			/*
2128 			 * move tcp_established before soisconnected
2129 			 * because upcall handler can drive tcp_output
2130 			 * functionality.
2131 			 * XXX we might call soisconnected at the end of
2132 			 * all processing
2133 			 */
2134 			tcp_established(tp);
2135 			soisconnected(so);
2136 			/* Do window scaling on this connection? */
2137 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2138 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2139 				tp->snd_scale = tp->requested_s_scale;
2140 				tp->rcv_scale = tp->request_r_scale;
2141 			}
2142 			TCP_REASS_LOCK(tp);
2143 			(void)tcp_reass(tp, NULL, NULL, tlen);
2144 			/*
2145 			 * if we didn't have to retransmit the SYN,
2146 			 * use its rtt as our initial srtt & rtt var.
2147 			 */
2148 			if (tp->t_rtttime)
2149 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2150 		} else {
2151 			tp->t_state = TCPS_SYN_RECEIVED;
2152 		}
2153 
2154 		/*
2155 		 * Advance th->th_seq to correspond to first data byte.
2156 		 * If data, trim to stay within window,
2157 		 * dropping FIN if necessary.
2158 		 */
2159 		th->th_seq++;
2160 		if (tlen > tp->rcv_wnd) {
2161 			todrop = tlen - tp->rcv_wnd;
2162 			m_adj(m, -todrop);
2163 			tlen = tp->rcv_wnd;
2164 			tiflags &= ~TH_FIN;
2165 			tcps = TCP_STAT_GETREF();
2166 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2167 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2168 			TCP_STAT_PUTREF();
2169 		}
2170 		tp->snd_wl1 = th->th_seq - 1;
2171 		tp->rcv_up = th->th_seq;
2172 		goto step6;
2173 
2174 	/*
2175 	 * If the state is SYN_RECEIVED:
2176 	 *	If seg contains an ACK, but not for our SYN, drop the input
2177 	 *	and generate an RST.  See page 36, rfc793
2178 	 */
2179 	case TCPS_SYN_RECEIVED:
2180 		if ((tiflags & TH_ACK) &&
2181 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2182 		     SEQ_GT(th->th_ack, tp->snd_max)))
2183 			goto dropwithreset;
2184 		break;
2185 	}
2186 
2187 	/*
2188 	 * From here on, we're dealing with !LISTEN and !SYN_SENT.
2189 	 */
2190 	KASSERT(tp->t_state != TCPS_LISTEN &&
2191 	    tp->t_state != TCPS_SYN_SENT);
2192 
2193 	/*
2194 	 * RFC1323 PAWS: if we have a timestamp reply on this segment and
2195 	 * it's less than ts_recent, drop it.
2196 	 */
2197 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2198 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2199 		/* Check to see if ts_recent is over 24 days old.  */
2200 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2201 			/*
2202 			 * Invalidate ts_recent.  If this segment updates
2203 			 * ts_recent, the age will be reset later and ts_recent
2204 			 * will get a valid value.  If it does not, setting
2205 			 * ts_recent to zero will at least satisfy the
2206 			 * requirement that zero be placed in the timestamp
2207 			 * echo reply when ts_recent isn't valid.  The
2208 			 * age isn't reset until we get a valid ts_recent
2209 			 * because we don't want out-of-order segments to be
2210 			 * dropped when ts_recent is old.
2211 			 */
2212 			tp->ts_recent = 0;
2213 		} else {
2214 			tcps = TCP_STAT_GETREF();
2215 			tcps[TCP_STAT_RCVDUPPACK]++;
2216 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2217 			tcps[TCP_STAT_PAWSDROP]++;
2218 			TCP_STAT_PUTREF();
2219 			tcp_new_dsack(tp, th->th_seq, tlen);
2220 			goto dropafterack;
2221 		}
2222 	}
2223 
2224 	/*
2225 	 * Check that at least some bytes of the segment are within the
2226 	 * receive window. If segment begins before rcv_nxt, drop leading
2227 	 * data (and SYN); if nothing left, just ack.
2228 	 */
2229 	todrop = tp->rcv_nxt - th->th_seq;
2230 	dupseg = false;
2231 	if (todrop > 0) {
2232 		if (tiflags & TH_SYN) {
2233 			tiflags &= ~TH_SYN;
2234 			th->th_seq++;
2235 			tcp_urp_drop(th, 1, &tiflags);
2236 			todrop--;
2237 		}
2238 		if (todrop > tlen ||
2239 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2240 			/*
2241 			 * Any valid FIN or RST must be to the left of the
2242 			 * window.  At this point the FIN or RST must be a
2243 			 * duplicate or out of sequence; drop it.
2244 			 */
2245 			if (tiflags & TH_RST)
2246 				goto drop;
2247 			tiflags &= ~(TH_FIN|TH_RST);
2248 
2249 			/*
2250 			 * Send an ACK to resynchronize and drop any data.
2251 			 * But keep on processing for RST or ACK.
2252 			 */
2253 			tp->t_flags |= TF_ACKNOW;
2254 			todrop = tlen;
2255 			dupseg = true;
2256 			tcps = TCP_STAT_GETREF();
2257 			tcps[TCP_STAT_RCVDUPPACK]++;
2258 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2259 			TCP_STAT_PUTREF();
2260 		} else if ((tiflags & TH_RST) && th->th_seq != tp->rcv_nxt) {
2261 			/*
2262 			 * Test for reset before adjusting the sequence
2263 			 * number for overlapping data.
2264 			 */
2265 			goto dropafterack_ratelim;
2266 		} else {
2267 			tcps = TCP_STAT_GETREF();
2268 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
2269 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2270 			TCP_STAT_PUTREF();
2271 		}
2272 		tcp_new_dsack(tp, th->th_seq, todrop);
2273 		hdroptlen += todrop;	/* drop from head afterwards (m_adj) */
2274 		th->th_seq += todrop;
2275 		tlen -= todrop;
2276 		tcp_urp_drop(th, todrop, &tiflags);
2277 	}
2278 
2279 	/*
2280 	 * If new data is received on a connection after the user processes
2281 	 * are gone, then RST the other end.
2282 	 */
2283 	if ((so->so_state & SS_NOFDREF) &&
2284 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2285 		tp = tcp_close(tp);
2286 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2287 		goto dropwithreset;
2288 	}
2289 
2290 	/*
2291 	 * If the segment ends after the window, drop trailing data (and
2292 	 * PUSH and FIN); if nothing left, just ACK.
2293 	 */
2294 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2295 	if (todrop > 0) {
2296 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2297 		if (todrop >= tlen) {
2298 			/*
2299 			 * The segment actually starts after the window.
2300 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2301 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2302 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2303 			 */
2304 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2305 
2306 			/*
2307 			 * If a new connection request is received while in
2308 			 * TIME_WAIT, drop the old connection and start over
2309 			 * if the sequence numbers are above the previous
2310 			 * ones.
2311 			 *
2312 			 * NOTE: We need to put the header fields back into
2313 			 * network order.
2314 			 */
2315 			if ((tiflags & TH_SYN) &&
2316 			    tp->t_state == TCPS_TIME_WAIT &&
2317 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2318 				tp = tcp_close(tp);
2319 				tcp_fields_to_net(th);
2320 				m_freem(tcp_saveti);
2321 				tcp_saveti = NULL;
2322 				goto findpcb;
2323 			}
2324 
2325 			/*
2326 			 * If window is closed can only take segments at
2327 			 * window edge, and have to drop data and PUSH from
2328 			 * incoming segments.  Continue processing, but
2329 			 * remember to ack.  Otherwise, drop segment
2330 			 * and (if not RST) ack.
2331 			 */
2332 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2333 				KASSERT(todrop == tlen);
2334 				tp->t_flags |= TF_ACKNOW;
2335 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
2336 			} else {
2337 				goto dropafterack;
2338 			}
2339 		} else {
2340 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2341 		}
2342 		m_adj(m, -todrop);
2343 		tlen -= todrop;
2344 		tiflags &= ~(TH_PUSH|TH_FIN);
2345 	}
2346 
2347 	/*
2348 	 * If last ACK falls within this segment's sequence numbers,
2349 	 *  record the timestamp.
2350 	 * NOTE:
2351 	 * 1) That the test incorporates suggestions from the latest
2352 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2353 	 * 2) That updating only on newer timestamps interferes with
2354 	 *    our earlier PAWS tests, so this check should be solely
2355 	 *    predicated on the sequence space of this segment.
2356 	 * 3) That we modify the segment boundary check to be
2357 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2358 	 *    instead of RFC1323's
2359 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2360 	 *    This modified check allows us to overcome RFC1323's
2361 	 *    limitations as described in Stevens TCP/IP Illustrated
2362 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2363 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2364 	 */
2365 	if (opti.ts_present &&
2366 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2367 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2368 	         ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2369 		tp->ts_recent_age = tcp_now;
2370 		tp->ts_recent = opti.ts_val;
2371 	}
2372 
2373 	/*
2374 	 * If the RST bit is set examine the state:
2375 	 *    RECEIVED state:
2376 	 *        If passive open, return to LISTEN state.
2377 	 *        If active open, inform user that connection was refused.
2378 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT states:
2379 	 *        Inform user that connection was reset, and close tcb.
2380 	 *    CLOSING, LAST_ACK, TIME_WAIT states:
2381 	 *        Close the tcb.
2382 	 */
2383 	if (tiflags & TH_RST) {
2384 		if (th->th_seq != tp->rcv_nxt)
2385 			goto dropafterack_ratelim;
2386 
2387 		switch (tp->t_state) {
2388 		case TCPS_SYN_RECEIVED:
2389 			so->so_error = ECONNREFUSED;
2390 			goto close;
2391 
2392 		case TCPS_ESTABLISHED:
2393 		case TCPS_FIN_WAIT_1:
2394 		case TCPS_FIN_WAIT_2:
2395 		case TCPS_CLOSE_WAIT:
2396 			so->so_error = ECONNRESET;
2397 		close:
2398 			tp->t_state = TCPS_CLOSED;
2399 			TCP_STATINC(TCP_STAT_DROPS);
2400 			tp = tcp_close(tp);
2401 			goto drop;
2402 
2403 		case TCPS_CLOSING:
2404 		case TCPS_LAST_ACK:
2405 		case TCPS_TIME_WAIT:
2406 			tp = tcp_close(tp);
2407 			goto drop;
2408 		}
2409 	}
2410 
2411 	/*
2412 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2413 	 * we must be in a synchronized state.  RFC791 states (under RST
2414 	 * generation) that any unacceptable segment (an out-of-order SYN
2415 	 * qualifies) received in a synchronized state must elicit only an
2416 	 * empty acknowledgment segment ... and the connection remains in
2417 	 * the same state.
2418 	 */
2419 	if (tiflags & TH_SYN) {
2420 		if (tp->rcv_nxt == th->th_seq) {
2421 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2422 			    TH_ACK);
2423 			if (tcp_saveti)
2424 				m_freem(tcp_saveti);
2425 			return;
2426 		}
2427 
2428 		goto dropafterack_ratelim;
2429 	}
2430 
2431 	/*
2432 	 * If the ACK bit is off we drop the segment and return.
2433 	 */
2434 	if ((tiflags & TH_ACK) == 0) {
2435 		if (tp->t_flags & TF_ACKNOW)
2436 			goto dropafterack;
2437 		goto drop;
2438 	}
2439 
2440 	/*
2441 	 * From here on, we're doing ACK processing.
2442 	 */
2443 
2444 	switch (tp->t_state) {
2445 	/*
2446 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2447 	 * ESTABLISHED state and continue processing, otherwise
2448 	 * send an RST.
2449 	 */
2450 	case TCPS_SYN_RECEIVED:
2451 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
2452 		    SEQ_GT(th->th_ack, tp->snd_max))
2453 			goto dropwithreset;
2454 		TCP_STATINC(TCP_STAT_CONNECTS);
2455 		soisconnected(so);
2456 		tcp_established(tp);
2457 		/* Do window scaling? */
2458 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2459 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2460 			tp->snd_scale = tp->requested_s_scale;
2461 			tp->rcv_scale = tp->request_r_scale;
2462 		}
2463 		TCP_REASS_LOCK(tp);
2464 		(void)tcp_reass(tp, NULL, NULL, tlen);
2465 		tp->snd_wl1 = th->th_seq - 1;
2466 		/* FALLTHROUGH */
2467 
2468 	/*
2469 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2470 	 * ACKs.  If the ack is in the range
2471 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2472 	 * then advance tp->snd_una to th->th_ack and drop
2473 	 * data from the retransmission queue.  If this ACK reflects
2474 	 * more up to date window information we update our window information.
2475 	 */
2476 	case TCPS_ESTABLISHED:
2477 	case TCPS_FIN_WAIT_1:
2478 	case TCPS_FIN_WAIT_2:
2479 	case TCPS_CLOSE_WAIT:
2480 	case TCPS_CLOSING:
2481 	case TCPS_LAST_ACK:
2482 	case TCPS_TIME_WAIT:
2483 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2484 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2485 				TCP_STATINC(TCP_STAT_RCVDUPACK);
2486 				/*
2487 				 * If we have outstanding data (other than
2488 				 * a window probe), this is a completely
2489 				 * duplicate ack (ie, window info didn't
2490 				 * change), the ack is the biggest we've
2491 				 * seen and we've seen exactly our rexmt
2492 				 * threshhold of them, assume a packet
2493 				 * has been dropped and retransmit it.
2494 				 * Kludge snd_nxt & the congestion
2495 				 * window so we send only this one
2496 				 * packet.
2497 				 */
2498 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2499 				    th->th_ack != tp->snd_una)
2500 					tp->t_dupacks = 0;
2501 				else if (tp->t_partialacks < 0 &&
2502 				    (++tp->t_dupacks == tcprexmtthresh ||
2503 				     TCP_FACK_FASTRECOV(tp))) {
2504 					/*
2505 					 * Do the fast retransmit, and adjust
2506 					 * congestion control paramenters.
2507 					 */
2508 					if (tp->t_congctl->fast_retransmit(tp, th)) {
2509 						/* False fast retransmit */
2510 						break;
2511 					}
2512 					goto drop;
2513 				} else if (tp->t_dupacks > tcprexmtthresh) {
2514 					tp->snd_cwnd += tp->t_segsz;
2515 					KERNEL_LOCK(1, NULL);
2516 					(void)tcp_output(tp);
2517 					KERNEL_UNLOCK_ONE(NULL);
2518 					goto drop;
2519 				}
2520 			} else {
2521 				/*
2522 				 * If the ack appears to be very old, only
2523 				 * allow data that is in-sequence.  This
2524 				 * makes it somewhat more difficult to insert
2525 				 * forged data by guessing sequence numbers.
2526 				 * Sent an ack to try to update the send
2527 				 * sequence number on the other side.
2528 				 */
2529 				if (tlen && th->th_seq != tp->rcv_nxt &&
2530 				    SEQ_LT(th->th_ack,
2531 				    tp->snd_una - tp->max_sndwnd))
2532 					goto dropafterack;
2533 			}
2534 			break;
2535 		}
2536 		/*
2537 		 * If the congestion window was inflated to account
2538 		 * for the other side's cached packets, retract it.
2539 		 */
2540 		tp->t_congctl->fast_retransmit_newack(tp, th);
2541 
2542 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2543 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2544 			goto dropafterack;
2545 		}
2546 		acked = th->th_ack - tp->snd_una;
2547 		tcps = TCP_STAT_GETREF();
2548 		tcps[TCP_STAT_RCVACKPACK]++;
2549 		tcps[TCP_STAT_RCVACKBYTE] += acked;
2550 		TCP_STAT_PUTREF();
2551 
2552 		/*
2553 		 * If we have a timestamp reply, update smoothed
2554 		 * round trip time.  If no timestamp is present but
2555 		 * transmit timer is running and timed sequence
2556 		 * number was acked, update smoothed round trip time.
2557 		 * Since we now have an rtt measurement, cancel the
2558 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2559 		 * Recompute the initial retransmit timer.
2560 		 */
2561 		if (ts_rtt)
2562 			tcp_xmit_timer(tp, ts_rtt - 1);
2563 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2564 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2565 
2566 		/*
2567 		 * If all outstanding data is acked, stop retransmit
2568 		 * timer and remember to restart (more output or persist).
2569 		 * If there is more data to be acked, restart retransmit
2570 		 * timer, using current (possibly backed-off) value.
2571 		 */
2572 		if (th->th_ack == tp->snd_max) {
2573 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2574 			needoutput = 1;
2575 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2576 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2577 
2578 		/*
2579 		 * New data has been acked, adjust the congestion window.
2580 		 */
2581 		tp->t_congctl->newack(tp, th);
2582 
2583 		nd6_hint(tp);
2584 		if (acked > so->so_snd.sb_cc) {
2585 			tp->snd_wnd -= so->so_snd.sb_cc;
2586 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2587 			ourfinisacked = 1;
2588 		} else {
2589 			if (acked > (tp->t_lastoff - tp->t_inoff))
2590 				tp->t_lastm = NULL;
2591 			sbdrop(&so->so_snd, acked);
2592 			tp->t_lastoff -= acked;
2593 			if (tp->snd_wnd > acked)
2594 				tp->snd_wnd -= acked;
2595 			else
2596 				tp->snd_wnd = 0;
2597 			ourfinisacked = 0;
2598 		}
2599 		sowwakeup(so);
2600 
2601 		icmp_check(tp, th, acked);
2602 
2603 		tp->snd_una = th->th_ack;
2604 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
2605 			tp->snd_fack = tp->snd_una;
2606 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2607 			tp->snd_nxt = tp->snd_una;
2608 		if (SEQ_LT(tp->snd_high, tp->snd_una))
2609 			tp->snd_high = tp->snd_una;
2610 
2611 		switch (tp->t_state) {
2612 
2613 		/*
2614 		 * In FIN_WAIT_1 STATE in addition to the processing
2615 		 * for the ESTABLISHED state if our FIN is now acknowledged
2616 		 * then enter FIN_WAIT_2.
2617 		 */
2618 		case TCPS_FIN_WAIT_1:
2619 			if (ourfinisacked) {
2620 				/*
2621 				 * If we can't receive any more
2622 				 * data, then closing user can proceed.
2623 				 * Starting the timer is contrary to the
2624 				 * specification, but if we don't get a FIN
2625 				 * we'll hang forever.
2626 				 */
2627 				if (so->so_state & SS_CANTRCVMORE) {
2628 					soisdisconnected(so);
2629 					if (tp->t_maxidle > 0)
2630 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2631 						    tp->t_maxidle);
2632 				}
2633 				tp->t_state = TCPS_FIN_WAIT_2;
2634 			}
2635 			break;
2636 
2637 	 	/*
2638 		 * In CLOSING STATE in addition to the processing for
2639 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2640 		 * then enter the TIME-WAIT state, otherwise ignore
2641 		 * the segment.
2642 		 */
2643 		case TCPS_CLOSING:
2644 			if (ourfinisacked) {
2645 				tp->t_state = TCPS_TIME_WAIT;
2646 				tcp_canceltimers(tp);
2647 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2648 				soisdisconnected(so);
2649 			}
2650 			break;
2651 
2652 		/*
2653 		 * In LAST_ACK, we may still be waiting for data to drain
2654 		 * and/or to be acked, as well as for the ack of our FIN.
2655 		 * If our FIN is now acknowledged, delete the TCB,
2656 		 * enter the closed state and return.
2657 		 */
2658 		case TCPS_LAST_ACK:
2659 			if (ourfinisacked) {
2660 				tp = tcp_close(tp);
2661 				goto drop;
2662 			}
2663 			break;
2664 
2665 		/*
2666 		 * In TIME_WAIT state the only thing that should arrive
2667 		 * is a retransmission of the remote FIN.  Acknowledge
2668 		 * it and restart the finack timer.
2669 		 */
2670 		case TCPS_TIME_WAIT:
2671 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2672 			goto dropafterack;
2673 		}
2674 	}
2675 
2676 step6:
2677 	/*
2678 	 * Update window information.
2679 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2680 	 */
2681 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2682 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2683 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2684 		/* keep track of pure window updates */
2685 		if (tlen == 0 &&
2686 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2687 			TCP_STATINC(TCP_STAT_RCVWINUPD);
2688 		tp->snd_wnd = tiwin;
2689 		tp->snd_wl1 = th->th_seq;
2690 		tp->snd_wl2 = th->th_ack;
2691 		if (tp->snd_wnd > tp->max_sndwnd)
2692 			tp->max_sndwnd = tp->snd_wnd;
2693 		needoutput = 1;
2694 	}
2695 
2696 	/*
2697 	 * Process segments with URG.
2698 	 */
2699 	if ((tiflags & TH_URG) && th->th_urp &&
2700 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2701 		/*
2702 		 * This is a kludge, but if we receive and accept
2703 		 * random urgent pointers, we'll crash in
2704 		 * soreceive.  It's hard to imagine someone
2705 		 * actually wanting to send this much urgent data.
2706 		 */
2707 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2708 			th->th_urp = 0;			/* XXX */
2709 			tiflags &= ~TH_URG;		/* XXX */
2710 			goto dodata;			/* XXX */
2711 		}
2712 
2713 		/*
2714 		 * If this segment advances the known urgent pointer,
2715 		 * then mark the data stream.  This should not happen
2716 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2717 		 * a FIN has been received from the remote side.
2718 		 * In these states we ignore the URG.
2719 		 *
2720 		 * According to RFC961 (Assigned Protocols),
2721 		 * the urgent pointer points to the last octet
2722 		 * of urgent data.  We continue, however,
2723 		 * to consider it to indicate the first octet
2724 		 * of data past the urgent section as the original
2725 		 * spec states (in one of two places).
2726 		 */
2727 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2728 			tp->rcv_up = th->th_seq + th->th_urp;
2729 			so->so_oobmark = so->so_rcv.sb_cc +
2730 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2731 			if (so->so_oobmark == 0)
2732 				so->so_state |= SS_RCVATMARK;
2733 			sohasoutofband(so);
2734 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2735 		}
2736 
2737 		/*
2738 		 * Remove out of band data so doesn't get presented to user.
2739 		 * This can happen independent of advancing the URG pointer,
2740 		 * but if two URG's are pending at once, some out-of-band
2741 		 * data may creep in... ick.
2742 		 */
2743 		if (th->th_urp <= (u_int16_t)tlen &&
2744 		    (so->so_options & SO_OOBINLINE) == 0)
2745 			tcp_pulloutofband(so, th, m, hdroptlen);
2746 	} else {
2747 		/*
2748 		 * If no out of band data is expected,
2749 		 * pull receive urgent pointer along
2750 		 * with the receive window.
2751 		 */
2752 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2753 			tp->rcv_up = tp->rcv_nxt;
2754 	}
2755 dodata:
2756 
2757 	/*
2758 	 * Process the segment text, merging it into the TCP sequencing queue,
2759 	 * and arranging for acknowledgement of receipt if necessary.
2760 	 * This process logically involves adjusting tp->rcv_wnd as data
2761 	 * is presented to the user (this happens in tcp_usrreq.c,
2762 	 * tcp_rcvd()).  If a FIN has already been received on this
2763 	 * connection then we just ignore the text.
2764 	 */
2765 	if ((tlen || (tiflags & TH_FIN)) &&
2766 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2767 		/*
2768 		 * Handle the common case:
2769 		 *  o Segment is the next to be received, and
2770 		 *  o The queue is empty, and
2771 		 *  o The connection is established
2772 		 * In this case, we avoid calling tcp_reass.
2773 		 *
2774 		 * tcp_setup_ack: set DELACK for segments received in order,
2775 		 * but ack immediately when segments are out of order (so that
2776 		 * fast retransmit can work).
2777 		 */
2778 		TCP_REASS_LOCK(tp);
2779 		if (th->th_seq == tp->rcv_nxt &&
2780 		    TAILQ_FIRST(&tp->segq) == NULL &&
2781 		    tp->t_state == TCPS_ESTABLISHED) {
2782 			tcp_setup_ack(tp, th);
2783 			tp->rcv_nxt += tlen;
2784 			tiflags = th->th_flags & TH_FIN;
2785 			tcps = TCP_STAT_GETREF();
2786 			tcps[TCP_STAT_RCVPACK]++;
2787 			tcps[TCP_STAT_RCVBYTE] += tlen;
2788 			TCP_STAT_PUTREF();
2789 			nd6_hint(tp);
2790 			if (so->so_state & SS_CANTRCVMORE) {
2791 				m_freem(m);
2792 			} else {
2793 				m_adj(m, hdroptlen);
2794 				sbappendstream(&(so)->so_rcv, m);
2795 			}
2796 			TCP_REASS_UNLOCK(tp);
2797 			sorwakeup(so);
2798 		} else {
2799 			m_adj(m, hdroptlen);
2800 			tiflags = tcp_reass(tp, th, m, tlen);
2801 			tp->t_flags |= TF_ACKNOW;
2802 		}
2803 
2804 		/*
2805 		 * Note the amount of data that peer has sent into
2806 		 * our window, in order to estimate the sender's
2807 		 * buffer size.
2808 		 */
2809 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2810 	} else {
2811 		m_freem(m);
2812 		m = NULL;
2813 		tiflags &= ~TH_FIN;
2814 	}
2815 
2816 	/*
2817 	 * If FIN is received ACK the FIN and let the user know
2818 	 * that the connection is closing.  Ignore a FIN received before
2819 	 * the connection is fully established.
2820 	 */
2821 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2822 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2823 			socantrcvmore(so);
2824 			tp->t_flags |= TF_ACKNOW;
2825 			tp->rcv_nxt++;
2826 		}
2827 		switch (tp->t_state) {
2828 
2829 	 	/*
2830 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2831 		 */
2832 		case TCPS_ESTABLISHED:
2833 			tp->t_state = TCPS_CLOSE_WAIT;
2834 			break;
2835 
2836 	 	/*
2837 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2838 		 * enter the CLOSING state.
2839 		 */
2840 		case TCPS_FIN_WAIT_1:
2841 			tp->t_state = TCPS_CLOSING;
2842 			break;
2843 
2844 	 	/*
2845 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2846 		 * starting the time-wait timer, turning off the other
2847 		 * standard timers.
2848 		 */
2849 		case TCPS_FIN_WAIT_2:
2850 			tp->t_state = TCPS_TIME_WAIT;
2851 			tcp_canceltimers(tp);
2852 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2853 			soisdisconnected(so);
2854 			break;
2855 
2856 		/*
2857 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2858 		 */
2859 		case TCPS_TIME_WAIT:
2860 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2861 			break;
2862 		}
2863 	}
2864 #ifdef TCP_DEBUG
2865 	if (so->so_options & SO_DEBUG)
2866 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2867 #endif
2868 
2869 	/*
2870 	 * Return any desired output.
2871 	 */
2872 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2873 		KERNEL_LOCK(1, NULL);
2874 		(void)tcp_output(tp);
2875 		KERNEL_UNLOCK_ONE(NULL);
2876 	}
2877 	if (tcp_saveti)
2878 		m_freem(tcp_saveti);
2879 
2880 	if (tp->t_state == TCPS_TIME_WAIT
2881 	    && (so->so_state & SS_NOFDREF)
2882 	    && (tp->t_inpcb || af != AF_INET)
2883 	    && (tp->t_in6pcb || af != AF_INET6)
2884 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
2885 	    && TAILQ_EMPTY(&tp->segq)
2886 	    && vtw_add(af, tp)) {
2887 		;
2888 	}
2889 	return;
2890 
2891 badsyn:
2892 	/*
2893 	 * Received a bad SYN.  Increment counters and dropwithreset.
2894 	 */
2895 	TCP_STATINC(TCP_STAT_BADSYN);
2896 	tp = NULL;
2897 	goto dropwithreset;
2898 
2899 dropafterack:
2900 	/*
2901 	 * Generate an ACK dropping incoming segment if it occupies
2902 	 * sequence space, where the ACK reflects our state.
2903 	 */
2904 	if (tiflags & TH_RST)
2905 		goto drop;
2906 	goto dropafterack2;
2907 
2908 dropafterack_ratelim:
2909 	/*
2910 	 * We may want to rate-limit ACKs against SYN/RST attack.
2911 	 */
2912 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2913 	    tcp_ackdrop_ppslim) == 0) {
2914 		/* XXX stat */
2915 		goto drop;
2916 	}
2917 
2918 dropafterack2:
2919 	m_freem(m);
2920 	tp->t_flags |= TF_ACKNOW;
2921 	KERNEL_LOCK(1, NULL);
2922 	(void)tcp_output(tp);
2923 	KERNEL_UNLOCK_ONE(NULL);
2924 	if (tcp_saveti)
2925 		m_freem(tcp_saveti);
2926 	return;
2927 
2928 dropwithreset_ratelim:
2929 	/*
2930 	 * We may want to rate-limit RSTs in certain situations,
2931 	 * particularly if we are sending an RST in response to
2932 	 * an attempt to connect to or otherwise communicate with
2933 	 * a port for which we have no socket.
2934 	 */
2935 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2936 	    tcp_rst_ppslim) == 0) {
2937 		/* XXX stat */
2938 		goto drop;
2939 	}
2940 
2941 dropwithreset:
2942 	/*
2943 	 * Generate a RST, dropping incoming segment.
2944 	 * Make ACK acceptable to originator of segment.
2945 	 */
2946 	if (tiflags & TH_RST)
2947 		goto drop;
2948 	if (tiflags & TH_ACK) {
2949 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2950 	} else {
2951 		if (tiflags & TH_SYN)
2952 			tlen++;
2953 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2954 		    TH_RST|TH_ACK);
2955 	}
2956 	if (tcp_saveti)
2957 		m_freem(tcp_saveti);
2958 	return;
2959 
2960 badcsum:
2961 drop:
2962 	/*
2963 	 * Drop space held by incoming segment and return.
2964 	 */
2965 	if (tp) {
2966 		if (tp->t_inpcb)
2967 			so = tp->t_inpcb->inp_socket;
2968 #ifdef INET6
2969 		else if (tp->t_in6pcb)
2970 			so = tp->t_in6pcb->in6p_socket;
2971 #endif
2972 		else
2973 			so = NULL;
2974 #ifdef TCP_DEBUG
2975 		if (so && (so->so_options & SO_DEBUG) != 0)
2976 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2977 #endif
2978 	}
2979 	if (tcp_saveti)
2980 		m_freem(tcp_saveti);
2981 	m_freem(m);
2982 	return;
2983 }
2984 
2985 #ifdef TCP_SIGNATURE
2986 int
2987 tcp_signature_apply(void *fstate, void *data, u_int len)
2988 {
2989 
2990 	MD5Update(fstate, (u_char *)data, len);
2991 	return (0);
2992 }
2993 
2994 struct secasvar *
2995 tcp_signature_getsav(struct mbuf *m)
2996 {
2997 	struct ip *ip;
2998 	struct ip6_hdr *ip6;
2999 
3000 	ip = mtod(m, struct ip *);
3001 	switch (ip->ip_v) {
3002 	case 4:
3003 		ip = mtod(m, struct ip *);
3004 		ip6 = NULL;
3005 		break;
3006 	case 6:
3007 		ip = NULL;
3008 		ip6 = mtod(m, struct ip6_hdr *);
3009 		break;
3010 	default:
3011 		return (NULL);
3012 	}
3013 
3014 #ifdef IPSEC
3015 	union sockaddr_union dst;
3016 
3017 	/* Extract the destination from the IP header in the mbuf. */
3018 	memset(&dst, 0, sizeof(union sockaddr_union));
3019 	if (ip != NULL) {
3020 		dst.sa.sa_len = sizeof(struct sockaddr_in);
3021 		dst.sa.sa_family = AF_INET;
3022 		dst.sin.sin_addr = ip->ip_dst;
3023 	} else {
3024 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
3025 		dst.sa.sa_family = AF_INET6;
3026 		dst.sin6.sin6_addr = ip6->ip6_dst;
3027 	}
3028 
3029 	/*
3030 	 * Look up an SADB entry which matches the address of the peer.
3031 	 */
3032 	return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3033 #else
3034 	return NULL;
3035 #endif
3036 }
3037 
3038 int
3039 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3040     struct secasvar *sav, char *sig)
3041 {
3042 	MD5_CTX ctx;
3043 	struct ip *ip;
3044 	struct ipovly *ipovly;
3045 #ifdef INET6
3046 	struct ip6_hdr *ip6;
3047 	struct ip6_hdr_pseudo ip6pseudo;
3048 #endif
3049 	struct ippseudo ippseudo;
3050 	struct tcphdr th0;
3051 	int l, tcphdrlen;
3052 
3053 	if (sav == NULL)
3054 		return (-1);
3055 
3056 	tcphdrlen = th->th_off * 4;
3057 
3058 	switch (mtod(m, struct ip *)->ip_v) {
3059 	case 4:
3060 		MD5Init(&ctx);
3061 		ip = mtod(m, struct ip *);
3062 		memset(&ippseudo, 0, sizeof(ippseudo));
3063 		ipovly = (struct ipovly *)ip;
3064 		ippseudo.ippseudo_src = ipovly->ih_src;
3065 		ippseudo.ippseudo_dst = ipovly->ih_dst;
3066 		ippseudo.ippseudo_pad = 0;
3067 		ippseudo.ippseudo_p = IPPROTO_TCP;
3068 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3069 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3070 		break;
3071 #if INET6
3072 	case 6:
3073 		MD5Init(&ctx);
3074 		ip6 = mtod(m, struct ip6_hdr *);
3075 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3076 		ip6pseudo.ip6ph_src = ip6->ip6_src;
3077 		in6_clearscope(&ip6pseudo.ip6ph_src);
3078 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3079 		in6_clearscope(&ip6pseudo.ip6ph_dst);
3080 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3081 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3082 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3083 		break;
3084 #endif
3085 	default:
3086 		return (-1);
3087 	}
3088 
3089 	th0 = *th;
3090 	th0.th_sum = 0;
3091 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
3092 
3093 	l = m->m_pkthdr.len - thoff - tcphdrlen;
3094 	if (l > 0)
3095 		m_apply(m, thoff + tcphdrlen,
3096 		    m->m_pkthdr.len - thoff - tcphdrlen,
3097 		    tcp_signature_apply, &ctx);
3098 
3099 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3100 	MD5Final(sig, &ctx);
3101 
3102 	return (0);
3103 }
3104 #endif
3105 
3106 /*
3107  * Parse and process tcp options.
3108  *
3109  * Returns -1 if this segment should be dropped.  (eg. wrong signature)
3110  * Otherwise returns 0.
3111  */
3112 static int
3113 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt, struct tcphdr *th,
3114     struct mbuf *m, int toff, struct tcp_opt_info *oi)
3115 {
3116 	u_int16_t mss;
3117 	int opt, optlen = 0;
3118 #ifdef TCP_SIGNATURE
3119 	void *sigp = NULL;
3120 	char sigbuf[TCP_SIGLEN];
3121 	struct secasvar *sav = NULL;
3122 #endif
3123 
3124 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3125 		opt = cp[0];
3126 		if (opt == TCPOPT_EOL)
3127 			break;
3128 		if (opt == TCPOPT_NOP)
3129 			optlen = 1;
3130 		else {
3131 			if (cnt < 2)
3132 				break;
3133 			optlen = cp[1];
3134 			if (optlen < 2 || optlen > cnt)
3135 				break;
3136 		}
3137 		switch (opt) {
3138 
3139 		default:
3140 			continue;
3141 
3142 		case TCPOPT_MAXSEG:
3143 			if (optlen != TCPOLEN_MAXSEG)
3144 				continue;
3145 			if (!(th->th_flags & TH_SYN))
3146 				continue;
3147 			if (TCPS_HAVERCVDSYN(tp->t_state))
3148 				continue;
3149 			memcpy(&mss, cp + 2, sizeof(mss));
3150 			oi->maxseg = ntohs(mss);
3151 			break;
3152 
3153 		case TCPOPT_WINDOW:
3154 			if (optlen != TCPOLEN_WINDOW)
3155 				continue;
3156 			if (!(th->th_flags & TH_SYN))
3157 				continue;
3158 			if (TCPS_HAVERCVDSYN(tp->t_state))
3159 				continue;
3160 			tp->t_flags |= TF_RCVD_SCALE;
3161 			tp->requested_s_scale = cp[2];
3162 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3163 				char buf[INET6_ADDRSTRLEN];
3164 				struct ip *ip = mtod(m, struct ip *);
3165 #ifdef INET6
3166 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3167 #endif
3168 
3169 				switch (ip->ip_v) {
3170 				case 4:
3171 					in_print(buf, sizeof(buf),
3172 					    &ip->ip_src);
3173 					break;
3174 #ifdef INET6
3175 				case 6:
3176 					in6_print(buf, sizeof(buf),
3177 					    &ip6->ip6_src);
3178 					break;
3179 #endif
3180 				default:
3181 					strlcpy(buf, "(unknown)", sizeof(buf));
3182 					break;
3183 				}
3184 
3185 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3186 				    "assuming %d\n",
3187 				    tp->requested_s_scale, buf,
3188 				    TCP_MAX_WINSHIFT);
3189 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
3190 			}
3191 			break;
3192 
3193 		case TCPOPT_TIMESTAMP:
3194 			if (optlen != TCPOLEN_TIMESTAMP)
3195 				continue;
3196 			oi->ts_present = 1;
3197 			memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val));
3198 			NTOHL(oi->ts_val);
3199 			memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr));
3200 			NTOHL(oi->ts_ecr);
3201 
3202 			if (!(th->th_flags & TH_SYN))
3203 				continue;
3204 			if (TCPS_HAVERCVDSYN(tp->t_state))
3205 				continue;
3206 			/*
3207 			 * A timestamp received in a SYN makes
3208 			 * it ok to send timestamp requests and replies.
3209 			 */
3210 			tp->t_flags |= TF_RCVD_TSTMP;
3211 			tp->ts_recent = oi->ts_val;
3212 			tp->ts_recent_age = tcp_now;
3213                         break;
3214 
3215 		case TCPOPT_SACK_PERMITTED:
3216 			if (optlen != TCPOLEN_SACK_PERMITTED)
3217 				continue;
3218 			if (!(th->th_flags & TH_SYN))
3219 				continue;
3220 			if (TCPS_HAVERCVDSYN(tp->t_state))
3221 				continue;
3222 			if (tcp_do_sack) {
3223 				tp->t_flags |= TF_SACK_PERMIT;
3224 				tp->t_flags |= TF_WILL_SACK;
3225 			}
3226 			break;
3227 
3228 		case TCPOPT_SACK:
3229 			tcp_sack_option(tp, th, cp, optlen);
3230 			break;
3231 #ifdef TCP_SIGNATURE
3232 		case TCPOPT_SIGNATURE:
3233 			if (optlen != TCPOLEN_SIGNATURE)
3234 				continue;
3235 			if (sigp &&
3236 			    !consttime_memequal(sigp, cp + 2, TCP_SIGLEN))
3237 				return (-1);
3238 
3239 			sigp = sigbuf;
3240 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3241 			tp->t_flags |= TF_SIGNATURE;
3242 			break;
3243 #endif
3244 		}
3245 	}
3246 
3247 #ifndef TCP_SIGNATURE
3248 	return 0;
3249 #else
3250 	if (tp->t_flags & TF_SIGNATURE) {
3251 		sav = tcp_signature_getsav(m);
3252 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
3253 			return (-1);
3254 	}
3255 
3256 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3257 		goto out;
3258 
3259 	if (sigp) {
3260 		char sig[TCP_SIGLEN];
3261 
3262 		tcp_fields_to_net(th);
3263 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
3264 			tcp_fields_to_host(th);
3265 			goto out;
3266 		}
3267 		tcp_fields_to_host(th);
3268 
3269 		if (!consttime_memequal(sig, sigp, TCP_SIGLEN)) {
3270 			TCP_STATINC(TCP_STAT_BADSIG);
3271 			goto out;
3272 		} else
3273 			TCP_STATINC(TCP_STAT_GOODSIG);
3274 
3275 		key_sa_recordxfer(sav, m);
3276 		KEY_SA_UNREF(&sav);
3277 	}
3278 	return 0;
3279 out:
3280 	if (sav != NULL)
3281 		KEY_SA_UNREF(&sav);
3282 	return -1;
3283 #endif
3284 }
3285 
3286 /*
3287  * Pull out of band byte out of a segment so
3288  * it doesn't appear in the user's data queue.
3289  * It is still reflected in the segment length for
3290  * sequencing purposes.
3291  */
3292 void
3293 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3294     struct mbuf *m, int off)
3295 {
3296 	int cnt = off + th->th_urp - 1;
3297 
3298 	while (cnt >= 0) {
3299 		if (m->m_len > cnt) {
3300 			char *cp = mtod(m, char *) + cnt;
3301 			struct tcpcb *tp = sototcpcb(so);
3302 
3303 			tp->t_iobc = *cp;
3304 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3305 			memmove(cp, cp + 1, (unsigned)(m->m_len - cnt - 1));
3306 			m->m_len--;
3307 			return;
3308 		}
3309 		cnt -= m->m_len;
3310 		m = m->m_next;
3311 		if (m == NULL)
3312 			break;
3313 	}
3314 	panic("tcp_pulloutofband");
3315 }
3316 
3317 /*
3318  * Collect new round-trip time estimate
3319  * and update averages and current timeout.
3320  *
3321  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3322  * difference of two timestamps.
3323  */
3324 void
3325 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3326 {
3327 	int32_t delta;
3328 
3329 	TCP_STATINC(TCP_STAT_RTTUPDATED);
3330 	if (tp->t_srtt != 0) {
3331 		/*
3332 		 * Compute the amount to add to srtt for smoothing,
3333 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
3334 		 * srtt is stored in 1/32 slow ticks, we conceptually
3335 		 * shift left 5 bits, subtract srtt to get the
3336 		 * diference, and then shift right by TCP_RTT_SHIFT
3337 		 * (3) to obtain 1/8 of the difference.
3338 		 */
3339 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3340 		/*
3341 		 * This can never happen, because delta's lowest
3342 		 * possible value is 1/8 of t_srtt.  But if it does,
3343 		 * set srtt to some reasonable value, here chosen
3344 		 * as 1/8 tick.
3345 		 */
3346 		if ((tp->t_srtt += delta) <= 0)
3347 			tp->t_srtt = 1 << 2;
3348 		/*
3349 		 * RFC2988 requires that rttvar be updated first.
3350 		 * This code is compliant because "delta" is the old
3351 		 * srtt minus the new observation (scaled).
3352 		 *
3353 		 * RFC2988 says:
3354 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3355 		 *
3356 		 * delta is in units of 1/32 ticks, and has then been
3357 		 * divided by 8.  This is equivalent to being in 1/16s
3358 		 * units and divided by 4.  Subtract from it 1/4 of
3359 		 * the existing rttvar to form the (signed) amount to
3360 		 * adjust.
3361 		 */
3362 		if (delta < 0)
3363 			delta = -delta;
3364 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3365 		/*
3366 		 * As with srtt, this should never happen.  There is
3367 		 * no support in RFC2988 for this operation.  But 1/4s
3368 		 * as rttvar when faced with something arguably wrong
3369 		 * is ok.
3370 		 */
3371 		if ((tp->t_rttvar += delta) <= 0)
3372 			tp->t_rttvar = 1 << 2;
3373 
3374 		/*
3375 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3376 		 * Problem is: it doesn't work.  Disabled by defaulting
3377 		 * tcp_rttlocal to 0; see corresponding code in
3378 		 * tcp_subr that selects local vs remote in a different way.
3379 		 *
3380 		 * The static branch prediction hint here should be removed
3381 		 * when the rtt estimator is fixed and the rtt_enable code
3382 		 * is turned back on.
3383 		 */
3384 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3385 		    && tp->t_srtt > tcp_msl_remote_threshold
3386 		    && tp->t_msl  < tcp_msl_remote) {
3387 			tp->t_msl = tcp_msl_remote;
3388 		}
3389 	} else {
3390 		/*
3391 		 * This is the first measurement.  Per RFC2988, 2.2,
3392 		 * set rtt=R and srtt=R/2.
3393 		 * For srtt, storage representation is 1/32 ticks,
3394 		 * so shift left by 5.
3395 		 * For rttvar, storage representation is 1/16 ticks,
3396 		 * So shift left by 4, but then right by 1 to halve.
3397 		 */
3398 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3399 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3400 	}
3401 	tp->t_rtttime = 0;
3402 	tp->t_rxtshift = 0;
3403 
3404 	/*
3405 	 * the retransmit should happen at rtt + 4 * rttvar.
3406 	 * Because of the way we do the smoothing, srtt and rttvar
3407 	 * will each average +1/2 tick of bias.  When we compute
3408 	 * the retransmit timer, we want 1/2 tick of rounding and
3409 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3410 	 * firing of the timer.  The bias will give us exactly the
3411 	 * 1.5 tick we need.  But, because the bias is
3412 	 * statistical, we have to test that we don't drop below
3413 	 * the minimum feasible timer (which is 2 ticks).
3414 	 */
3415 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3416 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3417 
3418 	/*
3419 	 * We received an ack for a packet that wasn't retransmitted;
3420 	 * it is probably safe to discard any error indications we've
3421 	 * received recently.  This isn't quite right, but close enough
3422 	 * for now (a route might have failed after we sent a segment,
3423 	 * and the return path might not be symmetrical).
3424 	 */
3425 	tp->t_softerror = 0;
3426 }
3427 
3428 
3429 /*
3430  * TCP compressed state engine.  Currently used to hold compressed
3431  * state for SYN_RECEIVED.
3432  */
3433 
3434 u_long	syn_cache_count;
3435 u_int32_t syn_hash1, syn_hash2;
3436 
3437 #define SYN_HASH(sa, sp, dp) \
3438 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3439 				     ((u_int32_t)(sp)))^syn_hash2)))
3440 #ifndef INET6
3441 #define	SYN_HASHALL(hash, src, dst) \
3442 do {									\
3443 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
3444 		((const struct sockaddr_in *)(src))->sin_port,		\
3445 		((const struct sockaddr_in *)(dst))->sin_port);		\
3446 } while (/*CONSTCOND*/ 0)
3447 #else
3448 #define SYN_HASH6(sa, sp, dp) \
3449 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3450 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3451 	 & 0x7fffffff)
3452 
3453 #define SYN_HASHALL(hash, src, dst) \
3454 do {									\
3455 	switch ((src)->sa_family) {					\
3456 	case AF_INET:							\
3457 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3458 			((const struct sockaddr_in *)(src))->sin_port,	\
3459 			((const struct sockaddr_in *)(dst))->sin_port);	\
3460 		break;							\
3461 	case AF_INET6:							\
3462 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3463 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
3464 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
3465 		break;							\
3466 	default:							\
3467 		hash = 0;						\
3468 	}								\
3469 } while (/*CONSTCOND*/0)
3470 #endif /* INET6 */
3471 
3472 static struct pool syn_cache_pool;
3473 
3474 /*
3475  * We don't estimate RTT with SYNs, so each packet starts with the default
3476  * RTT and each timer step has a fixed timeout value.
3477  */
3478 static inline void
3479 syn_cache_timer_arm(struct syn_cache *sc)
3480 {
3481 
3482 	TCPT_RANGESET(sc->sc_rxtcur,
3483 	    TCPTV_SRTTDFLT * tcp_backoff[sc->sc_rxtshift], TCPTV_MIN,
3484 	    TCPTV_REXMTMAX);
3485 	callout_reset(&sc->sc_timer,
3486 	    sc->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, sc);
3487 }
3488 
3489 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
3490 
3491 static inline void
3492 syn_cache_rm(struct syn_cache *sc)
3493 {
3494 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3495 	    sc, sc_bucketq);
3496 	sc->sc_tp = NULL;
3497 	LIST_REMOVE(sc, sc_tpq);
3498 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3499 	callout_stop(&sc->sc_timer);
3500 	syn_cache_count--;
3501 }
3502 
3503 static inline void
3504 syn_cache_put(struct syn_cache *sc)
3505 {
3506 	if (sc->sc_ipopts)
3507 		(void) m_free(sc->sc_ipopts);
3508 	rtcache_free(&sc->sc_route);
3509 	sc->sc_flags |= SCF_DEAD;
3510 	if (!callout_invoking(&sc->sc_timer))
3511 		callout_schedule(&(sc)->sc_timer, 1);
3512 }
3513 
3514 void
3515 syn_cache_init(void)
3516 {
3517 	int i;
3518 
3519 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3520 	    "synpl", NULL, IPL_SOFTNET);
3521 
3522 	/* Initialize the hash buckets. */
3523 	for (i = 0; i < tcp_syn_cache_size; i++)
3524 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3525 }
3526 
3527 void
3528 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3529 {
3530 	struct syn_cache_head *scp;
3531 	struct syn_cache *sc2;
3532 	int s;
3533 
3534 	/*
3535 	 * If there are no entries in the hash table, reinitialize
3536 	 * the hash secrets.
3537 	 */
3538 	if (syn_cache_count == 0) {
3539 		syn_hash1 = cprng_fast32();
3540 		syn_hash2 = cprng_fast32();
3541 	}
3542 
3543 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3544 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3545 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3546 
3547 	/*
3548 	 * Make sure that we don't overflow the per-bucket
3549 	 * limit or the total cache size limit.
3550 	 */
3551 	s = splsoftnet();
3552 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3553 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3554 		/*
3555 		 * The bucket is full.  Toss the oldest element in the
3556 		 * bucket.  This will be the first entry in the bucket.
3557 		 */
3558 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3559 #ifdef DIAGNOSTIC
3560 		/*
3561 		 * This should never happen; we should always find an
3562 		 * entry in our bucket.
3563 		 */
3564 		if (sc2 == NULL)
3565 			panic("syn_cache_insert: bucketoverflow: impossible");
3566 #endif
3567 		syn_cache_rm(sc2);
3568 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3569 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3570 		struct syn_cache_head *scp2, *sce;
3571 
3572 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3573 		/*
3574 		 * The cache is full.  Toss the oldest entry in the
3575 		 * first non-empty bucket we can find.
3576 		 *
3577 		 * XXX We would really like to toss the oldest
3578 		 * entry in the cache, but we hope that this
3579 		 * condition doesn't happen very often.
3580 		 */
3581 		scp2 = scp;
3582 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3583 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3584 			for (++scp2; scp2 != scp; scp2++) {
3585 				if (scp2 >= sce)
3586 					scp2 = &tcp_syn_cache[0];
3587 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3588 					break;
3589 			}
3590 #ifdef DIAGNOSTIC
3591 			/*
3592 			 * This should never happen; we should always find a
3593 			 * non-empty bucket.
3594 			 */
3595 			if (scp2 == scp)
3596 				panic("syn_cache_insert: cacheoverflow: "
3597 				    "impossible");
3598 #endif
3599 		}
3600 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3601 		syn_cache_rm(sc2);
3602 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3603 	}
3604 
3605 	/*
3606 	 * Initialize the entry's timer.
3607 	 */
3608 	sc->sc_rxttot = 0;
3609 	sc->sc_rxtshift = 0;
3610 	syn_cache_timer_arm(sc);
3611 
3612 	/* Link it from tcpcb entry */
3613 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3614 
3615 	/* Put it into the bucket. */
3616 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3617 	scp->sch_length++;
3618 	syn_cache_count++;
3619 
3620 	TCP_STATINC(TCP_STAT_SC_ADDED);
3621 	splx(s);
3622 }
3623 
3624 /*
3625  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3626  * If we have retransmitted an entry the maximum number of times, expire
3627  * that entry.
3628  */
3629 static void
3630 syn_cache_timer(void *arg)
3631 {
3632 	struct syn_cache *sc = arg;
3633 
3634 	mutex_enter(softnet_lock);
3635 	KERNEL_LOCK(1, NULL);
3636 
3637 	callout_ack(&sc->sc_timer);
3638 
3639 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3640 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3641 		goto free;
3642 	}
3643 
3644 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3645 		/* Drop it -- too many retransmissions. */
3646 		goto dropit;
3647 	}
3648 
3649 	/*
3650 	 * Compute the total amount of time this entry has
3651 	 * been on a queue.  If this entry has been on longer
3652 	 * than the keep alive timer would allow, expire it.
3653 	 */
3654 	sc->sc_rxttot += sc->sc_rxtcur;
3655 	if (sc->sc_rxttot >= tcp_keepinit)
3656 		goto dropit;
3657 
3658 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3659 	(void)syn_cache_respond(sc);
3660 
3661 	/* Advance the timer back-off. */
3662 	sc->sc_rxtshift++;
3663 	syn_cache_timer_arm(sc);
3664 
3665 	goto out;
3666 
3667  dropit:
3668 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3669 	syn_cache_rm(sc);
3670 	if (sc->sc_ipopts)
3671 		(void) m_free(sc->sc_ipopts);
3672 	rtcache_free(&sc->sc_route);
3673 
3674  free:
3675 	callout_destroy(&sc->sc_timer);
3676 	pool_put(&syn_cache_pool, sc);
3677 
3678  out:
3679 	KERNEL_UNLOCK_ONE(NULL);
3680 	mutex_exit(softnet_lock);
3681 }
3682 
3683 /*
3684  * Remove syn cache created by the specified tcb entry,
3685  * because this does not make sense to keep them
3686  * (if there's no tcb entry, syn cache entry will never be used)
3687  */
3688 void
3689 syn_cache_cleanup(struct tcpcb *tp)
3690 {
3691 	struct syn_cache *sc, *nsc;
3692 	int s;
3693 
3694 	s = splsoftnet();
3695 
3696 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3697 		nsc = LIST_NEXT(sc, sc_tpq);
3698 
3699 #ifdef DIAGNOSTIC
3700 		if (sc->sc_tp != tp)
3701 			panic("invalid sc_tp in syn_cache_cleanup");
3702 #endif
3703 		syn_cache_rm(sc);
3704 		syn_cache_put(sc);	/* calls pool_put but see spl above */
3705 	}
3706 	/* just for safety */
3707 	LIST_INIT(&tp->t_sc);
3708 
3709 	splx(s);
3710 }
3711 
3712 /*
3713  * Find an entry in the syn cache.
3714  */
3715 struct syn_cache *
3716 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3717     struct syn_cache_head **headp)
3718 {
3719 	struct syn_cache *sc;
3720 	struct syn_cache_head *scp;
3721 	u_int32_t hash;
3722 	int s;
3723 
3724 	SYN_HASHALL(hash, src, dst);
3725 
3726 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3727 	*headp = scp;
3728 	s = splsoftnet();
3729 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3730 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3731 		if (sc->sc_hash != hash)
3732 			continue;
3733 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3734 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3735 			splx(s);
3736 			return (sc);
3737 		}
3738 	}
3739 	splx(s);
3740 	return (NULL);
3741 }
3742 
3743 /*
3744  * This function gets called when we receive an ACK for a socket in the
3745  * LISTEN state. We look up the connection in the syn cache, and if it's
3746  * there, we pull it out of the cache and turn it into a full-blown
3747  * connection in the SYN-RECEIVED state.
3748  *
3749  * The return values may not be immediately obvious, and their effects
3750  * can be subtle, so here they are:
3751  *
3752  *	NULL	SYN was not found in cache; caller should drop the
3753  *		packet and send an RST.
3754  *
3755  *	-1	We were unable to create the new connection, and are
3756  *		aborting it.  An ACK,RST is being sent to the peer
3757  *		(unless we got screwey sequence numbers; see below),
3758  *		because the 3-way handshake has been completed.  Caller
3759  *		should not free the mbuf, since we may be using it.  If
3760  *		we are not, we will free it.
3761  *
3762  *	Otherwise, the return value is a pointer to the new socket
3763  *	associated with the connection.
3764  */
3765 struct socket *
3766 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3767     struct tcphdr *th, struct socket *so, struct mbuf *m)
3768 {
3769 	struct syn_cache *sc;
3770 	struct syn_cache_head *scp;
3771 	struct inpcb *inp = NULL;
3772 #ifdef INET6
3773 	struct in6pcb *in6p = NULL;
3774 #endif
3775 	struct tcpcb *tp;
3776 	int s;
3777 	struct socket *oso;
3778 
3779 	s = splsoftnet();
3780 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3781 		splx(s);
3782 		return NULL;
3783 	}
3784 
3785 	/*
3786 	 * Verify the sequence and ack numbers.  Try getting the correct
3787 	 * response again.
3788 	 */
3789 	if ((th->th_ack != sc->sc_iss + 1) ||
3790 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3791 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3792 		m_freem(m);
3793 		(void)syn_cache_respond(sc);
3794 		splx(s);
3795 		return ((struct socket *)(-1));
3796 	}
3797 
3798 	/* Remove this cache entry */
3799 	syn_cache_rm(sc);
3800 	splx(s);
3801 
3802 	/*
3803 	 * Ok, create the full blown connection, and set things up
3804 	 * as they would have been set up if we had created the
3805 	 * connection when the SYN arrived.  If we can't create
3806 	 * the connection, abort it.
3807 	 */
3808 	/*
3809 	 * inp still has the OLD in_pcb stuff, set the
3810 	 * v6-related flags on the new guy, too.   This is
3811 	 * done particularly for the case where an AF_INET6
3812 	 * socket is bound only to a port, and a v4 connection
3813 	 * comes in on that port.
3814 	 * we also copy the flowinfo from the original pcb
3815 	 * to the new one.
3816 	 */
3817 	oso = so;
3818 	so = sonewconn(so, true);
3819 	if (so == NULL)
3820 		goto resetandabort;
3821 
3822 	switch (so->so_proto->pr_domain->dom_family) {
3823 	case AF_INET:
3824 		inp = sotoinpcb(so);
3825 		break;
3826 #ifdef INET6
3827 	case AF_INET6:
3828 		in6p = sotoin6pcb(so);
3829 		break;
3830 #endif
3831 	}
3832 
3833 	switch (src->sa_family) {
3834 	case AF_INET:
3835 		if (inp) {
3836 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3837 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3838 			inp->inp_options = ip_srcroute(m);
3839 			in_pcbstate(inp, INP_BOUND);
3840 			if (inp->inp_options == NULL) {
3841 				inp->inp_options = sc->sc_ipopts;
3842 				sc->sc_ipopts = NULL;
3843 			}
3844 		}
3845 #ifdef INET6
3846 		else if (in6p) {
3847 			/* IPv4 packet to AF_INET6 socket */
3848 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
3849 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3850 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3851 				&in6p->in6p_laddr.s6_addr32[3],
3852 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
3853 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3854 			in6totcpcb(in6p)->t_family = AF_INET;
3855 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3856 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3857 			else
3858 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3859 			in6_pcbstate(in6p, IN6P_BOUND);
3860 		}
3861 #endif
3862 		break;
3863 #ifdef INET6
3864 	case AF_INET6:
3865 		if (in6p) {
3866 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3867 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3868 			in6_pcbstate(in6p, IN6P_BOUND);
3869 		}
3870 		break;
3871 #endif
3872 	}
3873 
3874 #ifdef INET6
3875 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3876 		struct in6pcb *oin6p = sotoin6pcb(oso);
3877 		/* inherit socket options from the listening socket */
3878 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3879 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3880 			m_freem(in6p->in6p_options);
3881 			in6p->in6p_options = NULL;
3882 		}
3883 		ip6_savecontrol(in6p, &in6p->in6p_options,
3884 		    mtod(m, struct ip6_hdr *), m);
3885 	}
3886 #endif
3887 
3888 	/*
3889 	 * Give the new socket our cached route reference.
3890 	 */
3891 	if (inp) {
3892 		rtcache_copy(&inp->inp_route, &sc->sc_route);
3893 		rtcache_free(&sc->sc_route);
3894 	}
3895 #ifdef INET6
3896 	else {
3897 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3898 		rtcache_free(&sc->sc_route);
3899 	}
3900 #endif
3901 
3902 	if (inp) {
3903 		struct sockaddr_in sin;
3904 		memcpy(&sin, src, src->sa_len);
3905 		if (in_pcbconnect(inp, &sin, &lwp0)) {
3906 			goto resetandabort;
3907 		}
3908 	}
3909 #ifdef INET6
3910 	else if (in6p) {
3911 		struct sockaddr_in6 sin6;
3912 		memcpy(&sin6, src, src->sa_len);
3913 		if (src->sa_family == AF_INET) {
3914 			/* IPv4 packet to AF_INET6 socket */
3915 			in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
3916 		}
3917 		if (in6_pcbconnect(in6p, &sin6, NULL)) {
3918 			goto resetandabort;
3919 		}
3920 	}
3921 #endif
3922 	else {
3923 		goto resetandabort;
3924 	}
3925 
3926 	if (inp)
3927 		tp = intotcpcb(inp);
3928 #ifdef INET6
3929 	else if (in6p)
3930 		tp = in6totcpcb(in6p);
3931 #endif
3932 	else
3933 		tp = NULL;
3934 
3935 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3936 	if (sc->sc_request_r_scale != 15) {
3937 		tp->requested_s_scale = sc->sc_requested_s_scale;
3938 		tp->request_r_scale = sc->sc_request_r_scale;
3939 		tp->snd_scale = sc->sc_requested_s_scale;
3940 		tp->rcv_scale = sc->sc_request_r_scale;
3941 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3942 	}
3943 	if (sc->sc_flags & SCF_TIMESTAMP)
3944 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3945 	tp->ts_timebase = sc->sc_timebase;
3946 
3947 	tp->t_template = tcp_template(tp);
3948 	if (tp->t_template == 0) {
3949 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3950 		so = NULL;
3951 		m_freem(m);
3952 		goto abort;
3953 	}
3954 
3955 	tp->iss = sc->sc_iss;
3956 	tp->irs = sc->sc_irs;
3957 	tcp_sendseqinit(tp);
3958 	tcp_rcvseqinit(tp);
3959 	tp->t_state = TCPS_SYN_RECEIVED;
3960 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3961 	TCP_STATINC(TCP_STAT_ACCEPTS);
3962 
3963 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3964 		tp->t_flags |= TF_WILL_SACK;
3965 
3966 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
3967 		tp->t_flags |= TF_ECN_PERMIT;
3968 
3969 #ifdef TCP_SIGNATURE
3970 	if (sc->sc_flags & SCF_SIGNATURE)
3971 		tp->t_flags |= TF_SIGNATURE;
3972 #endif
3973 
3974 	/* Initialize tp->t_ourmss before we deal with the peer's! */
3975 	tp->t_ourmss = sc->sc_ourmaxseg;
3976 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3977 
3978 	/*
3979 	 * Initialize the initial congestion window.  If we
3980 	 * had to retransmit the SYN,ACK, we must initialize cwnd
3981 	 * to 1 segment (i.e. the Loss Window).
3982 	 */
3983 	if (sc->sc_rxtshift)
3984 		tp->snd_cwnd = tp->t_peermss;
3985 	else {
3986 		int ss = tcp_init_win;
3987 		if (inp != NULL && in_localaddr(inp->inp_faddr))
3988 			ss = tcp_init_win_local;
3989 #ifdef INET6
3990 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3991 			ss = tcp_init_win_local;
3992 #endif
3993 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3994 	}
3995 
3996 	tcp_rmx_rtt(tp);
3997 	tp->snd_wl1 = sc->sc_irs;
3998 	tp->rcv_up = sc->sc_irs + 1;
3999 
4000 	/*
4001 	 * This is what whould have happened in tcp_output() when
4002 	 * the SYN,ACK was sent.
4003 	 */
4004 	tp->snd_up = tp->snd_una;
4005 	tp->snd_max = tp->snd_nxt = tp->iss+1;
4006 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4007 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4008 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4009 	tp->last_ack_sent = tp->rcv_nxt;
4010 	tp->t_partialacks = -1;
4011 	tp->t_dupacks = 0;
4012 
4013 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
4014 	s = splsoftnet();
4015 	syn_cache_put(sc);
4016 	splx(s);
4017 	return so;
4018 
4019 resetandabort:
4020 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4021 abort:
4022 	if (so != NULL) {
4023 		(void) soqremque(so, 1);
4024 		(void) soabort(so);
4025 		mutex_enter(softnet_lock);
4026 	}
4027 	s = splsoftnet();
4028 	syn_cache_put(sc);
4029 	splx(s);
4030 	TCP_STATINC(TCP_STAT_SC_ABORTED);
4031 	return ((struct socket *)(-1));
4032 }
4033 
4034 /*
4035  * This function is called when we get a RST for a
4036  * non-existent connection, so that we can see if the
4037  * connection is in the syn cache.  If it is, zap it.
4038  */
4039 
4040 void
4041 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4042 {
4043 	struct syn_cache *sc;
4044 	struct syn_cache_head *scp;
4045 	int s = splsoftnet();
4046 
4047 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4048 		splx(s);
4049 		return;
4050 	}
4051 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4052 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4053 		splx(s);
4054 		return;
4055 	}
4056 	syn_cache_rm(sc);
4057 	TCP_STATINC(TCP_STAT_SC_RESET);
4058 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4059 	splx(s);
4060 }
4061 
4062 void
4063 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4064     struct tcphdr *th)
4065 {
4066 	struct syn_cache *sc;
4067 	struct syn_cache_head *scp;
4068 	int s;
4069 
4070 	s = splsoftnet();
4071 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4072 		splx(s);
4073 		return;
4074 	}
4075 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4076 	if (ntohl(th->th_seq) != sc->sc_iss) {
4077 		splx(s);
4078 		return;
4079 	}
4080 
4081 	/*
4082 	 * If we've retransmitted 3 times and this is our second error,
4083 	 * we remove the entry.  Otherwise, we allow it to continue on.
4084 	 * This prevents us from incorrectly nuking an entry during a
4085 	 * spurious network outage.
4086 	 *
4087 	 * See tcp_notify().
4088 	 */
4089 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4090 		sc->sc_flags |= SCF_UNREACH;
4091 		splx(s);
4092 		return;
4093 	}
4094 
4095 	syn_cache_rm(sc);
4096 	TCP_STATINC(TCP_STAT_SC_UNREACH);
4097 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4098 	splx(s);
4099 }
4100 
4101 /*
4102  * Given a LISTEN socket and an inbound SYN request, add this to the syn
4103  * cache, and send back a segment:
4104  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4105  * to the source.
4106  *
4107  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4108  * Doing so would require that we hold onto the data and deliver it
4109  * to the application.  However, if we are the target of a SYN-flood
4110  * DoS attack, an attacker could send data which would eventually
4111  * consume all available buffer space if it were ACKed.  By not ACKing
4112  * the data, we avoid this DoS scenario.
4113  */
4114 int
4115 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4116     unsigned int toff, struct socket *so, struct mbuf *m, u_char *optp,
4117     int optlen, struct tcp_opt_info *oi)
4118 {
4119 	struct tcpcb tb, *tp;
4120 	long win;
4121 	struct syn_cache *sc;
4122 	struct syn_cache_head *scp;
4123 	struct mbuf *ipopts;
4124 	int s;
4125 
4126 	tp = sototcpcb(so);
4127 
4128 	/*
4129 	 * Initialize some local state.
4130 	 */
4131 	win = sbspace(&so->so_rcv);
4132 	if (win > TCP_MAXWIN)
4133 		win = TCP_MAXWIN;
4134 
4135 #ifdef TCP_SIGNATURE
4136 	if (optp || (tp->t_flags & TF_SIGNATURE))
4137 #else
4138 	if (optp)
4139 #endif
4140 	{
4141 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4142 #ifdef TCP_SIGNATURE
4143 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4144 #endif
4145 		tb.t_state = TCPS_LISTEN;
4146 		if (tcp_dooptions(&tb, optp, optlen, th, m, toff, oi) < 0)
4147 			return 0;
4148 	} else
4149 		tb.t_flags = 0;
4150 
4151 	switch (src->sa_family) {
4152 	case AF_INET:
4153 		/* Remember the IP options, if any. */
4154 		ipopts = ip_srcroute(m);
4155 		break;
4156 	default:
4157 		ipopts = NULL;
4158 	}
4159 
4160 	/*
4161 	 * See if we already have an entry for this connection.
4162 	 * If we do, resend the SYN,ACK.  We do not count this
4163 	 * as a retransmission (XXX though maybe we should).
4164 	 */
4165 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4166 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
4167 		if (ipopts) {
4168 			/*
4169 			 * If we were remembering a previous source route,
4170 			 * forget it and use the new one we've been given.
4171 			 */
4172 			if (sc->sc_ipopts)
4173 				(void)m_free(sc->sc_ipopts);
4174 			sc->sc_ipopts = ipopts;
4175 		}
4176 		sc->sc_timestamp = tb.ts_recent;
4177 		m_freem(m);
4178 		if (syn_cache_respond(sc) == 0) {
4179 			uint64_t *tcps = TCP_STAT_GETREF();
4180 			tcps[TCP_STAT_SNDACKS]++;
4181 			tcps[TCP_STAT_SNDTOTAL]++;
4182 			TCP_STAT_PUTREF();
4183 		}
4184 		return 1;
4185 	}
4186 
4187 	s = splsoftnet();
4188 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4189 	splx(s);
4190 	if (sc == NULL) {
4191 		if (ipopts)
4192 			(void)m_free(ipopts);
4193 		return 0;
4194 	}
4195 
4196 	/*
4197 	 * Fill in the cache, and put the necessary IP and TCP
4198 	 * options into the reply.
4199 	 */
4200 	memset(sc, 0, sizeof(struct syn_cache));
4201 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4202 	memcpy(&sc->sc_src, src, src->sa_len);
4203 	memcpy(&sc->sc_dst, dst, dst->sa_len);
4204 	sc->sc_flags = 0;
4205 	sc->sc_ipopts = ipopts;
4206 	sc->sc_irs = th->th_seq;
4207 	switch (src->sa_family) {
4208 	case AF_INET:
4209 	    {
4210 		struct sockaddr_in *srcin = (void *)src;
4211 		struct sockaddr_in *dstin = (void *)dst;
4212 
4213 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4214 		    &srcin->sin_addr, dstin->sin_port,
4215 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
4216 		break;
4217 	    }
4218 #ifdef INET6
4219 	case AF_INET6:
4220 	    {
4221 		struct sockaddr_in6 *srcin6 = (void *)src;
4222 		struct sockaddr_in6 *dstin6 = (void *)dst;
4223 
4224 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4225 		    &srcin6->sin6_addr, dstin6->sin6_port,
4226 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4227 		break;
4228 	    }
4229 #endif
4230 	}
4231 	sc->sc_peermaxseg = oi->maxseg;
4232 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4233 	    m_get_rcvif_NOMPSAFE(m) : NULL, sc->sc_src.sa.sa_family);
4234 	sc->sc_win = win;
4235 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
4236 	sc->sc_timestamp = tb.ts_recent;
4237 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4238 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4239 		sc->sc_flags |= SCF_TIMESTAMP;
4240 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4241 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4242 		sc->sc_requested_s_scale = tb.requested_s_scale;
4243 		sc->sc_request_r_scale = 0;
4244 		/*
4245 		 * Pick the smallest possible scaling factor that
4246 		 * will still allow us to scale up to sb_max.
4247 		 *
4248 		 * We do this because there are broken firewalls that
4249 		 * will corrupt the window scale option, leading to
4250 		 * the other endpoint believing that our advertised
4251 		 * window is unscaled.  At scale factors larger than
4252 		 * 5 the unscaled window will drop below 1500 bytes,
4253 		 * leading to serious problems when traversing these
4254 		 * broken firewalls.
4255 		 *
4256 		 * With the default sbmax of 256K, a scale factor
4257 		 * of 3 will be chosen by this algorithm.  Those who
4258 		 * choose a larger sbmax should watch out
4259 		 * for the compatiblity problems mentioned above.
4260 		 *
4261 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4262 		 * or <SYN,ACK>) segment itself is never scaled.
4263 		 */
4264 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4265 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4266 			sc->sc_request_r_scale++;
4267 	} else {
4268 		sc->sc_requested_s_scale = 15;
4269 		sc->sc_request_r_scale = 15;
4270 	}
4271 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4272 		sc->sc_flags |= SCF_SACK_PERMIT;
4273 
4274 	/*
4275 	 * ECN setup packet received.
4276 	 */
4277 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4278 		sc->sc_flags |= SCF_ECN_PERMIT;
4279 
4280 #ifdef TCP_SIGNATURE
4281 	if (tb.t_flags & TF_SIGNATURE)
4282 		sc->sc_flags |= SCF_SIGNATURE;
4283 #endif
4284 	sc->sc_tp = tp;
4285 	m_freem(m);
4286 	if (syn_cache_respond(sc) == 0) {
4287 		uint64_t *tcps = TCP_STAT_GETREF();
4288 		tcps[TCP_STAT_SNDACKS]++;
4289 		tcps[TCP_STAT_SNDTOTAL]++;
4290 		TCP_STAT_PUTREF();
4291 		syn_cache_insert(sc, tp);
4292 	} else {
4293 		s = splsoftnet();
4294 		/*
4295 		 * syn_cache_put() will try to schedule the timer, so
4296 		 * we need to initialize it
4297 		 */
4298 		syn_cache_timer_arm(sc);
4299 		syn_cache_put(sc);
4300 		splx(s);
4301 		TCP_STATINC(TCP_STAT_SC_DROPPED);
4302 	}
4303 	return 1;
4304 }
4305 
4306 /*
4307  * syn_cache_respond: (re)send SYN+ACK.
4308  *
4309  * Returns 0 on success.
4310  */
4311 
4312 int
4313 syn_cache_respond(struct syn_cache *sc)
4314 {
4315 #ifdef INET6
4316 	struct rtentry *rt = NULL;
4317 #endif
4318 	struct route *ro;
4319 	u_int8_t *optp;
4320 	int optlen, error;
4321 	u_int16_t tlen;
4322 	struct ip *ip = NULL;
4323 #ifdef INET6
4324 	struct ip6_hdr *ip6 = NULL;
4325 #endif
4326 	struct tcpcb *tp;
4327 	struct tcphdr *th;
4328 	struct mbuf *m;
4329 	u_int hlen;
4330 #ifdef TCP_SIGNATURE
4331 	struct secasvar *sav = NULL;
4332 	u_int8_t *sigp = NULL;
4333 #endif
4334 
4335 	ro = &sc->sc_route;
4336 	switch (sc->sc_src.sa.sa_family) {
4337 	case AF_INET:
4338 		hlen = sizeof(struct ip);
4339 		break;
4340 #ifdef INET6
4341 	case AF_INET6:
4342 		hlen = sizeof(struct ip6_hdr);
4343 		break;
4344 #endif
4345 	default:
4346 		return EAFNOSUPPORT;
4347 	}
4348 
4349 	/* Worst case scanario, since we don't know the option size yet. */
4350 	tlen = hlen + sizeof(struct tcphdr) + MAX_TCPOPTLEN;
4351 	KASSERT(max_linkhdr + tlen <= MCLBYTES);
4352 
4353 	/*
4354 	 * Create the IP+TCP header from scratch.
4355 	 */
4356 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4357 	if (m && (max_linkhdr + tlen) > MHLEN) {
4358 		MCLGET(m, M_DONTWAIT);
4359 		if ((m->m_flags & M_EXT) == 0) {
4360 			m_freem(m);
4361 			m = NULL;
4362 		}
4363 	}
4364 	if (m == NULL)
4365 		return ENOBUFS;
4366 	MCLAIM(m, &tcp_tx_mowner);
4367 
4368 	tp = sc->sc_tp;
4369 
4370 	/* Fixup the mbuf. */
4371 	m->m_data += max_linkhdr;
4372 	m_reset_rcvif(m);
4373 	memset(mtod(m, void *), 0, tlen);
4374 
4375 	switch (sc->sc_src.sa.sa_family) {
4376 	case AF_INET:
4377 		ip = mtod(m, struct ip *);
4378 		ip->ip_v = 4;
4379 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4380 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4381 		ip->ip_p = IPPROTO_TCP;
4382 		th = (struct tcphdr *)(ip + 1);
4383 		th->th_dport = sc->sc_src.sin.sin_port;
4384 		th->th_sport = sc->sc_dst.sin.sin_port;
4385 		break;
4386 #ifdef INET6
4387 	case AF_INET6:
4388 		ip6 = mtod(m, struct ip6_hdr *);
4389 		ip6->ip6_vfc = IPV6_VERSION;
4390 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4391 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4392 		ip6->ip6_nxt = IPPROTO_TCP;
4393 		/* ip6_plen will be updated in ip6_output() */
4394 		th = (struct tcphdr *)(ip6 + 1);
4395 		th->th_dport = sc->sc_src.sin6.sin6_port;
4396 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4397 		break;
4398 #endif
4399 	default:
4400 		panic("%s: impossible (1)", __func__);
4401 	}
4402 
4403 	th->th_seq = htonl(sc->sc_iss);
4404 	th->th_ack = htonl(sc->sc_irs + 1);
4405 	th->th_flags = TH_SYN|TH_ACK;
4406 	th->th_win = htons(sc->sc_win);
4407 	/* th_x2, th_sum, th_urp already 0 from memset */
4408 
4409 	/* Tack on the TCP options. */
4410 	optp = (u_int8_t *)(th + 1);
4411 	optlen = 0;
4412 	*optp++ = TCPOPT_MAXSEG;
4413 	*optp++ = TCPOLEN_MAXSEG;
4414 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4415 	*optp++ = sc->sc_ourmaxseg & 0xff;
4416 	optlen += TCPOLEN_MAXSEG;
4417 
4418 	if (sc->sc_request_r_scale != 15) {
4419 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4420 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4421 		    sc->sc_request_r_scale);
4422 		optp += TCPOLEN_WINDOW + TCPOLEN_NOP;
4423 		optlen += TCPOLEN_WINDOW + TCPOLEN_NOP;
4424 	}
4425 
4426 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4427 		/* Let the peer know that we will SACK. */
4428 		*optp++ = TCPOPT_SACK_PERMITTED;
4429 		*optp++ = TCPOLEN_SACK_PERMITTED;
4430 		optlen += TCPOLEN_SACK_PERMITTED;
4431 	}
4432 
4433 	if (sc->sc_flags & SCF_TIMESTAMP) {
4434 		while (optlen % 4 != 2) {
4435 			optlen += TCPOLEN_NOP;
4436 			*optp++ = TCPOPT_NOP;
4437 		}
4438 		*optp++ = TCPOPT_TIMESTAMP;
4439 		*optp++ = TCPOLEN_TIMESTAMP;
4440 		u_int32_t *lp = (u_int32_t *)(optp);
4441 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4442 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4443 		*lp   = htonl(sc->sc_timestamp);
4444 		optp += TCPOLEN_TIMESTAMP - 2;
4445 		optlen += TCPOLEN_TIMESTAMP;
4446 	}
4447 
4448 #ifdef TCP_SIGNATURE
4449 	if (sc->sc_flags & SCF_SIGNATURE) {
4450 		sav = tcp_signature_getsav(m);
4451 		if (sav == NULL) {
4452 			m_freem(m);
4453 			return EPERM;
4454 		}
4455 
4456 		*optp++ = TCPOPT_SIGNATURE;
4457 		*optp++ = TCPOLEN_SIGNATURE;
4458 		sigp = optp;
4459 		memset(optp, 0, TCP_SIGLEN);
4460 		optp += TCP_SIGLEN;
4461 		optlen += TCPOLEN_SIGNATURE;
4462 	}
4463 #endif
4464 
4465 	/*
4466 	 * Terminate and pad TCP options to a 4 byte boundary.
4467 	 *
4468 	 * According to RFC793: "The content of the header beyond the
4469 	 * End-of-Option option must be header padding (i.e., zero)."
4470 	 * And later: "The padding is composed of zeros."
4471 	 */
4472 	if (optlen % 4) {
4473 		optlen += TCPOLEN_EOL;
4474 		*optp++ = TCPOPT_EOL;
4475 	}
4476 	while (optlen % 4) {
4477 		optlen += TCPOLEN_PAD;
4478 		*optp++ = TCPOPT_PAD;
4479 	}
4480 
4481 	/* Compute the actual values now that we've added the options. */
4482 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4483 	m->m_len = m->m_pkthdr.len = tlen;
4484 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4485 
4486 #ifdef TCP_SIGNATURE
4487 	if (sav) {
4488 		(void)tcp_signature(m, th, hlen, sav, sigp);
4489 		key_sa_recordxfer(sav, m);
4490 		KEY_SA_UNREF(&sav);
4491 	}
4492 #endif
4493 
4494 	/*
4495 	 * Send ECN SYN-ACK setup packet.
4496 	 * Routes can be asymetric, so, even if we receive a packet
4497 	 * with ECE and CWR set, we must not assume no one will block
4498 	 * the ECE packet we are about to send.
4499 	 */
4500 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4501 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4502 		th->th_flags |= TH_ECE;
4503 		TCP_STATINC(TCP_STAT_ECN_SHS);
4504 
4505 		/*
4506 		 * draft-ietf-tcpm-ecnsyn-00.txt
4507 		 *
4508 		 * "[...] a TCP node MAY respond to an ECN-setup
4509 		 * SYN packet by setting ECT in the responding
4510 		 * ECN-setup SYN/ACK packet, indicating to routers
4511 		 * that the SYN/ACK packet is ECN-Capable.
4512 		 * This allows a congested router along the path
4513 		 * to mark the packet instead of dropping the
4514 		 * packet as an indication of congestion."
4515 		 *
4516 		 * "[...] There can be a great benefit in setting
4517 		 * an ECN-capable codepoint in SYN/ACK packets [...]
4518 		 * Congestion is  most likely to occur in
4519 		 * the server-to-client direction.  As a result,
4520 		 * setting an ECN-capable codepoint in SYN/ACK
4521 		 * packets can reduce the occurence of three-second
4522 		 * retransmit timeouts resulting from the drop
4523 		 * of SYN/ACK packets."
4524 		 *
4525 		 * Page 4 and 6, January 2006.
4526 		 */
4527 
4528 		switch (sc->sc_src.sa.sa_family) {
4529 		case AF_INET:
4530 			ip->ip_tos |= IPTOS_ECN_ECT0;
4531 			break;
4532 #ifdef INET6
4533 		case AF_INET6:
4534 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4535 			break;
4536 #endif
4537 		}
4538 		TCP_STATINC(TCP_STAT_ECN_ECT);
4539 	}
4540 
4541 
4542 	/*
4543 	 * Compute the packet's checksum.
4544 	 *
4545 	 * Fill in some straggling IP bits.  Note the stack expects
4546 	 * ip_len to be in host order, for convenience.
4547 	 */
4548 	switch (sc->sc_src.sa.sa_family) {
4549 	case AF_INET:
4550 		ip->ip_len = htons(tlen - hlen);
4551 		th->th_sum = 0;
4552 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4553 		ip->ip_len = htons(tlen);
4554 		ip->ip_ttl = ip_defttl;
4555 		/* XXX tos? */
4556 		break;
4557 #ifdef INET6
4558 	case AF_INET6:
4559 		ip6->ip6_plen = htons(tlen - hlen);
4560 		th->th_sum = 0;
4561 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4562 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4563 		ip6->ip6_vfc |= IPV6_VERSION;
4564 		ip6->ip6_plen = htons(tlen - hlen);
4565 		/* ip6_hlim will be initialized afterwards */
4566 		/* XXX flowlabel? */
4567 		break;
4568 #endif
4569 	}
4570 
4571 	/* XXX use IPsec policy on listening socket, on SYN ACK */
4572 	tp = sc->sc_tp;
4573 
4574 	switch (sc->sc_src.sa.sa_family) {
4575 	case AF_INET:
4576 		error = ip_output(m, sc->sc_ipopts, ro,
4577 		    (ip_mtudisc ? IP_MTUDISC : 0),
4578 		    NULL, tp ? tp->t_inpcb : NULL);
4579 		break;
4580 #ifdef INET6
4581 	case AF_INET6:
4582 		ip6->ip6_hlim = in6_selecthlim(NULL,
4583 		    (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
4584 		rtcache_unref(rt, ro);
4585 
4586 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL,
4587 		    tp ? tp->t_in6pcb : NULL, NULL);
4588 		break;
4589 #endif
4590 	default:
4591 		panic("%s: impossible (2)", __func__);
4592 	}
4593 
4594 	return error;
4595 }
4596