xref: /netbsd-src/sys/netinet/tcp_input.c (revision aa73cae19608873cc4d1f712c4a0f8f8435f1ffa)
1 /*	$NetBSD: tcp_input.c,v 1.221 2005/02/26 22:45:12 perry Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74  * All rights reserved.
75  *
76  * This code is derived from software contributed to The NetBSD Foundation
77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78  * Facility, NASA Ames Research Center.
79  *
80  * Redistribution and use in source and binary forms, with or without
81  * modification, are permitted provided that the following conditions
82  * are met:
83  * 1. Redistributions of source code must retain the above copyright
84  *    notice, this list of conditions and the following disclaimer.
85  * 2. Redistributions in binary form must reproduce the above copyright
86  *    notice, this list of conditions and the following disclaimer in the
87  *    documentation and/or other materials provided with the distribution.
88  * 3. All advertising materials mentioning features or use of this software
89  *    must display the following acknowledgement:
90  *	This product includes software developed by the NetBSD
91  *	Foundation, Inc. and its contributors.
92  * 4. Neither the name of The NetBSD Foundation nor the names of its
93  *    contributors may be used to endorse or promote products derived
94  *    from this software without specific prior written permission.
95  *
96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106  * POSSIBILITY OF SUCH DAMAGE.
107  */
108 
109 /*
110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111  *	The Regents of the University of California.  All rights reserved.
112  *
113  * Redistribution and use in source and binary forms, with or without
114  * modification, are permitted provided that the following conditions
115  * are met:
116  * 1. Redistributions of source code must retain the above copyright
117  *    notice, this list of conditions and the following disclaimer.
118  * 2. Redistributions in binary form must reproduce the above copyright
119  *    notice, this list of conditions and the following disclaimer in the
120  *    documentation and/or other materials provided with the distribution.
121  * 3. Neither the name of the University nor the names of its contributors
122  *    may be used to endorse or promote products derived from this software
123  *    without specific prior written permission.
124  *
125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135  * SUCH DAMAGE.
136  *
137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
138  */
139 
140 /*
141  *	TODO list for SYN cache stuff:
142  *
143  *	Find room for a "state" field, which is needed to keep a
144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
145  *	that this is fairly important for very high-volume web and
146  *	mail servers, which use a large number of short-lived
147  *	connections.
148  */
149 
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.221 2005/02/26 22:45:12 perry Exp $");
152 
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157 
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170 #ifdef TCP_SIGNATURE
171 #include <sys/md5.h>
172 #endif
173 
174 #include <net/if.h>
175 #include <net/route.h>
176 #include <net/if_types.h>
177 
178 #include <netinet/in.h>
179 #include <netinet/in_systm.h>
180 #include <netinet/ip.h>
181 #include <netinet/in_pcb.h>
182 #include <netinet/in_var.h>
183 #include <netinet/ip_var.h>
184 
185 #ifdef INET6
186 #ifndef INET
187 #include <netinet/in.h>
188 #endif
189 #include <netinet/ip6.h>
190 #include <netinet6/ip6_var.h>
191 #include <netinet6/in6_pcb.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_var.h>
194 #include <netinet/icmp6.h>
195 #include <netinet6/nd6.h>
196 #endif
197 
198 #ifndef INET6
199 /* always need ip6.h for IP6_EXTHDR_GET */
200 #include <netinet/ip6.h>
201 #endif
202 
203 #include <netinet/tcp.h>
204 #include <netinet/tcp_fsm.h>
205 #include <netinet/tcp_seq.h>
206 #include <netinet/tcp_timer.h>
207 #include <netinet/tcp_var.h>
208 #include <netinet/tcpip.h>
209 #include <netinet/tcp_debug.h>
210 
211 #include <machine/stdarg.h>
212 
213 #ifdef IPSEC
214 #include <netinet6/ipsec.h>
215 #include <netkey/key.h>
216 #endif /*IPSEC*/
217 #ifdef INET6
218 #include "faith.h"
219 #if defined(NFAITH) && NFAITH > 0
220 #include <net/if_faith.h>
221 #endif
222 #endif	/* IPSEC */
223 
224 #ifdef FAST_IPSEC
225 #include <netipsec/ipsec.h>
226 #include <netipsec/ipsec_var.h>			/* XXX ipsecstat namespace */
227 #include <netipsec/key.h>
228 #ifdef INET6
229 #include <netipsec/ipsec6.h>
230 #endif
231 #endif	/* FAST_IPSEC*/
232 
233 int	tcprexmtthresh = 3;
234 int	tcp_log_refused;
235 
236 static int tcp_rst_ppslim_count = 0;
237 static struct timeval tcp_rst_ppslim_last;
238 static int tcp_ackdrop_ppslim_count = 0;
239 static struct timeval tcp_ackdrop_ppslim_last;
240 
241 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
242 
243 /* for modulo comparisons of timestamps */
244 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
245 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
246 
247 /*
248  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
249  */
250 #ifdef INET6
251 #define ND6_HINT(tp) \
252 do { \
253 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
254 	    tp->t_in6pcb->in6p_route.ro_rt) { \
255 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
256 	} \
257 } while (/*CONSTCOND*/ 0)
258 #else
259 #define ND6_HINT(tp)
260 #endif
261 
262 /*
263  * Macro to compute ACK transmission behavior.  Delay the ACK unless
264  * we have already delayed an ACK (must send an ACK every two segments).
265  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
266  * option is enabled.
267  */
268 #define	TCP_SETUP_ACK(tp, th) \
269 do { \
270 	if ((tp)->t_flags & TF_DELACK || \
271 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
272 		tp->t_flags |= TF_ACKNOW; \
273 	else \
274 		TCP_SET_DELACK(tp); \
275 } while (/*CONSTCOND*/ 0)
276 
277 /*
278  * Convert TCP protocol fields to host order for easier processing.
279  */
280 #define	TCP_FIELDS_TO_HOST(th)						\
281 do {									\
282 	NTOHL((th)->th_seq);						\
283 	NTOHL((th)->th_ack);						\
284 	NTOHS((th)->th_win);						\
285 	NTOHS((th)->th_urp);						\
286 } while (/*CONSTCOND*/ 0)
287 
288 /*
289  * ... and reverse the above.
290  */
291 #define	TCP_FIELDS_TO_NET(th)						\
292 do {									\
293 	HTONL((th)->th_seq);						\
294 	HTONL((th)->th_ack);						\
295 	HTONS((th)->th_win);						\
296 	HTONS((th)->th_urp);						\
297 } while (/*CONSTCOND*/ 0)
298 
299 #ifdef TCP_CSUM_COUNTERS
300 #include <sys/device.h>
301 
302 extern struct evcnt tcp_hwcsum_ok;
303 extern struct evcnt tcp_hwcsum_bad;
304 extern struct evcnt tcp_hwcsum_data;
305 extern struct evcnt tcp_swcsum;
306 
307 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
308 
309 #else
310 
311 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
312 
313 #endif /* TCP_CSUM_COUNTERS */
314 
315 #ifdef TCP_REASS_COUNTERS
316 #include <sys/device.h>
317 
318 extern struct evcnt tcp_reass_;
319 extern struct evcnt tcp_reass_empty;
320 extern struct evcnt tcp_reass_iteration[8];
321 extern struct evcnt tcp_reass_prependfirst;
322 extern struct evcnt tcp_reass_prepend;
323 extern struct evcnt tcp_reass_insert;
324 extern struct evcnt tcp_reass_inserttail;
325 extern struct evcnt tcp_reass_append;
326 extern struct evcnt tcp_reass_appendtail;
327 extern struct evcnt tcp_reass_overlaptail;
328 extern struct evcnt tcp_reass_overlapfront;
329 extern struct evcnt tcp_reass_segdup;
330 extern struct evcnt tcp_reass_fragdup;
331 
332 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
333 
334 #else
335 
336 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
337 
338 #endif /* TCP_REASS_COUNTERS */
339 
340 #ifdef INET
341 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
342 #endif
343 #ifdef INET6
344 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
345 #endif
346 
347 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
348 
349 POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl", NULL);
350 
351 int
352 tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen)
353 {
354 	struct ipqent *p, *q, *nq, *tiqe = NULL;
355 	struct socket *so = NULL;
356 	int pkt_flags;
357 	tcp_seq pkt_seq;
358 	unsigned pkt_len;
359 	u_long rcvpartdupbyte = 0;
360 	u_long rcvoobyte;
361 #ifdef TCP_REASS_COUNTERS
362 	u_int count = 0;
363 #endif
364 
365 	if (tp->t_inpcb)
366 		so = tp->t_inpcb->inp_socket;
367 #ifdef INET6
368 	else if (tp->t_in6pcb)
369 		so = tp->t_in6pcb->in6p_socket;
370 #endif
371 
372 	TCP_REASS_LOCK_CHECK(tp);
373 
374 	/*
375 	 * Call with th==0 after become established to
376 	 * force pre-ESTABLISHED data up to user socket.
377 	 */
378 	if (th == 0)
379 		goto present;
380 
381 	rcvoobyte = *tlen;
382 	/*
383 	 * Copy these to local variables because the tcpiphdr
384 	 * gets munged while we are collapsing mbufs.
385 	 */
386 	pkt_seq = th->th_seq;
387 	pkt_len = *tlen;
388 	pkt_flags = th->th_flags;
389 
390 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
391 
392 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
393 		/*
394 		 * When we miss a packet, the vast majority of time we get
395 		 * packets that follow it in order.  So optimize for that.
396 		 */
397 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
398 			p->ipqe_len += pkt_len;
399 			p->ipqe_flags |= pkt_flags;
400 			m_cat(p->ipre_mlast, m);
401 			TRAVERSE(p->ipre_mlast);
402 			m = NULL;
403 			tiqe = p;
404 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
405 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
406 			goto skip_replacement;
407 		}
408 		/*
409 		 * While we're here, if the pkt is completely beyond
410 		 * anything we have, just insert it at the tail.
411 		 */
412 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
413 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
414 			goto insert_it;
415 		}
416 	}
417 
418 	q = TAILQ_FIRST(&tp->segq);
419 
420 	if (q != NULL) {
421 		/*
422 		 * If this segment immediately precedes the first out-of-order
423 		 * block, simply slap the segment in front of it and (mostly)
424 		 * skip the complicated logic.
425 		 */
426 		if (pkt_seq + pkt_len == q->ipqe_seq) {
427 			q->ipqe_seq = pkt_seq;
428 			q->ipqe_len += pkt_len;
429 			q->ipqe_flags |= pkt_flags;
430 			m_cat(m, q->ipqe_m);
431 			q->ipqe_m = m;
432 			q->ipre_mlast = m; /* last mbuf may have changed */
433 			TRAVERSE(q->ipre_mlast);
434 			tiqe = q;
435 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
436 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
437 			goto skip_replacement;
438 		}
439 	} else {
440 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
441 	}
442 
443 	/*
444 	 * Find a segment which begins after this one does.
445 	 */
446 	for (p = NULL; q != NULL; q = nq) {
447 		nq = TAILQ_NEXT(q, ipqe_q);
448 #ifdef TCP_REASS_COUNTERS
449 		count++;
450 #endif
451 		/*
452 		 * If the received segment is just right after this
453 		 * fragment, merge the two together and then check
454 		 * for further overlaps.
455 		 */
456 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
457 #ifdef TCPREASS_DEBUG
458 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
459 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
460 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
461 #endif
462 			pkt_len += q->ipqe_len;
463 			pkt_flags |= q->ipqe_flags;
464 			pkt_seq = q->ipqe_seq;
465 			m_cat(q->ipre_mlast, m);
466 			TRAVERSE(q->ipre_mlast);
467 			m = q->ipqe_m;
468 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
469 			goto free_ipqe;
470 		}
471 		/*
472 		 * If the received segment is completely past this
473 		 * fragment, we need to go the next fragment.
474 		 */
475 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
476 			p = q;
477 			continue;
478 		}
479 		/*
480 		 * If the fragment is past the received segment,
481 		 * it (or any following) can't be concatenated.
482 		 */
483 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
484 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
485 			break;
486 		}
487 
488 		/*
489 		 * We've received all the data in this segment before.
490 		 * mark it as a duplicate and return.
491 		 */
492 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
493 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
494 			tcpstat.tcps_rcvduppack++;
495 			tcpstat.tcps_rcvdupbyte += pkt_len;
496 			m_freem(m);
497 			if (tiqe != NULL)
498 				pool_put(&tcpipqent_pool, tiqe);
499 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
500 			return (0);
501 		}
502 		/*
503 		 * Received segment completely overlaps this fragment
504 		 * so we drop the fragment (this keeps the temporal
505 		 * ordering of segments correct).
506 		 */
507 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
508 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
509 			rcvpartdupbyte += q->ipqe_len;
510 			m_freem(q->ipqe_m);
511 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
512 			goto free_ipqe;
513 		}
514 		/*
515 		 * RX'ed segment extends past the end of the
516 		 * fragment.  Drop the overlapping bytes.  Then
517 		 * merge the fragment and segment then treat as
518 		 * a longer received packet.
519 		 */
520 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
521 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
522 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
523 #ifdef TCPREASS_DEBUG
524 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
525 			       tp, overlap,
526 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
527 #endif
528 			m_adj(m, overlap);
529 			rcvpartdupbyte += overlap;
530 			m_cat(q->ipre_mlast, m);
531 			TRAVERSE(q->ipre_mlast);
532 			m = q->ipqe_m;
533 			pkt_seq = q->ipqe_seq;
534 			pkt_len += q->ipqe_len - overlap;
535 			rcvoobyte -= overlap;
536 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
537 			goto free_ipqe;
538 		}
539 		/*
540 		 * RX'ed segment extends past the front of the
541 		 * fragment.  Drop the overlapping bytes on the
542 		 * received packet.  The packet will then be
543 		 * contatentated with this fragment a bit later.
544 		 */
545 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
546 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
547 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
548 #ifdef TCPREASS_DEBUG
549 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
550 			       tp, overlap,
551 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
552 #endif
553 			m_adj(m, -overlap);
554 			pkt_len -= overlap;
555 			rcvpartdupbyte += overlap;
556 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
557 			rcvoobyte -= overlap;
558 		}
559 		/*
560 		 * If the received segment immediates precedes this
561 		 * fragment then tack the fragment onto this segment
562 		 * and reinsert the data.
563 		 */
564 		if (q->ipqe_seq == pkt_seq + pkt_len) {
565 #ifdef TCPREASS_DEBUG
566 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
567 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
568 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
569 #endif
570 			pkt_len += q->ipqe_len;
571 			pkt_flags |= q->ipqe_flags;
572 			m_cat(m, q->ipqe_m);
573 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
574 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
575 			if (tiqe == NULL)
576 				tiqe = q;
577 			else
578 				pool_put(&tcpipqent_pool, q);
579 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
580 			break;
581 		}
582 		/*
583 		 * If the fragment is before the segment, remember it.
584 		 * When this loop is terminated, p will contain the
585 		 * pointer to fragment that is right before the received
586 		 * segment.
587 		 */
588 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
589 			p = q;
590 
591 		continue;
592 
593 		/*
594 		 * This is a common operation.  It also will allow
595 		 * to save doing a malloc/free in most instances.
596 		 */
597 	  free_ipqe:
598 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
599 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
600 		if (tiqe == NULL)
601 			tiqe = q;
602 		else
603 			pool_put(&tcpipqent_pool, q);
604 	}
605 
606 #ifdef TCP_REASS_COUNTERS
607 	if (count > 7)
608 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
609 	else if (count > 0)
610 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
611 #endif
612 
613     insert_it:
614 
615 	/*
616 	 * Allocate a new queue entry since the received segment did not
617 	 * collapse onto any other out-of-order block; thus we are allocating
618 	 * a new block.  If it had collapsed, tiqe would not be NULL and
619 	 * we would be reusing it.
620 	 * XXX If we can't, just drop the packet.  XXX
621 	 */
622 	if (tiqe == NULL) {
623 		tiqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
624 		if (tiqe == NULL) {
625 			tcpstat.tcps_rcvmemdrop++;
626 			m_freem(m);
627 			return (0);
628 		}
629 	}
630 
631 	/*
632 	 * Update the counters.
633 	 */
634 	tcpstat.tcps_rcvoopack++;
635 	tcpstat.tcps_rcvoobyte += rcvoobyte;
636 	if (rcvpartdupbyte) {
637 	    tcpstat.tcps_rcvpartduppack++;
638 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
639 	}
640 
641 	/*
642 	 * Insert the new fragment queue entry into both queues.
643 	 */
644 	tiqe->ipqe_m = m;
645 	tiqe->ipre_mlast = m;
646 	tiqe->ipqe_seq = pkt_seq;
647 	tiqe->ipqe_len = pkt_len;
648 	tiqe->ipqe_flags = pkt_flags;
649 	if (p == NULL) {
650 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
651 #ifdef TCPREASS_DEBUG
652 		if (tiqe->ipqe_seq != tp->rcv_nxt)
653 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
654 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
655 #endif
656 	} else {
657 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
658 #ifdef TCPREASS_DEBUG
659 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
660 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
661 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
662 #endif
663 	}
664 
665 skip_replacement:
666 
667 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
668 
669 present:
670 	/*
671 	 * Present data to user, advancing rcv_nxt through
672 	 * completed sequence space.
673 	 */
674 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
675 		return (0);
676 	q = TAILQ_FIRST(&tp->segq);
677 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
678 		return (0);
679 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
680 		return (0);
681 
682 	tp->rcv_nxt += q->ipqe_len;
683 	pkt_flags = q->ipqe_flags & TH_FIN;
684 	ND6_HINT(tp);
685 
686 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
687 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
688 	if (so->so_state & SS_CANTRCVMORE)
689 		m_freem(q->ipqe_m);
690 	else
691 		sbappendstream(&so->so_rcv, q->ipqe_m);
692 	pool_put(&tcpipqent_pool, q);
693 	sorwakeup(so);
694 	return (pkt_flags);
695 }
696 
697 #ifdef INET6
698 int
699 tcp6_input(struct mbuf **mp, int *offp, int proto)
700 {
701 	struct mbuf *m = *mp;
702 
703 	/*
704 	 * draft-itojun-ipv6-tcp-to-anycast
705 	 * better place to put this in?
706 	 */
707 	if (m->m_flags & M_ANYCAST6) {
708 		struct ip6_hdr *ip6;
709 		if (m->m_len < sizeof(struct ip6_hdr)) {
710 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
711 				tcpstat.tcps_rcvshort++;
712 				return IPPROTO_DONE;
713 			}
714 		}
715 		ip6 = mtod(m, struct ip6_hdr *);
716 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
717 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
718 		return IPPROTO_DONE;
719 	}
720 
721 	tcp_input(m, *offp, proto);
722 	return IPPROTO_DONE;
723 }
724 #endif
725 
726 #ifdef INET
727 static void
728 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
729 {
730 	char src[4*sizeof "123"];
731 	char dst[4*sizeof "123"];
732 
733 	if (ip) {
734 		strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
735 		strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
736 	}
737 	else {
738 		strlcpy(src, "(unknown)", sizeof(src));
739 		strlcpy(dst, "(unknown)", sizeof(dst));
740 	}
741 	log(LOG_INFO,
742 	    "Connection attempt to TCP %s:%d from %s:%d\n",
743 	    dst, ntohs(th->th_dport),
744 	    src, ntohs(th->th_sport));
745 }
746 #endif
747 
748 #ifdef INET6
749 static void
750 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
751 {
752 	char src[INET6_ADDRSTRLEN];
753 	char dst[INET6_ADDRSTRLEN];
754 
755 	if (ip6) {
756 		strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
757 		strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
758 	}
759 	else {
760 		strlcpy(src, "(unknown v6)", sizeof(src));
761 		strlcpy(dst, "(unknown v6)", sizeof(dst));
762 	}
763 	log(LOG_INFO,
764 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
765 	    dst, ntohs(th->th_dport),
766 	    src, ntohs(th->th_sport));
767 }
768 #endif
769 
770 /*
771  * Checksum extended TCP header and data.
772  */
773 int
774 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th, int toff,
775     int off, int tlen)
776 {
777 
778 	/*
779 	 * XXX it's better to record and check if this mbuf is
780 	 * already checked.
781 	 */
782 
783 	switch (af) {
784 #ifdef INET
785 	case AF_INET:
786 		switch (m->m_pkthdr.csum_flags &
787 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
788 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
789 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
790 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
791 			goto badcsum;
792 
793 		case M_CSUM_TCPv4|M_CSUM_DATA: {
794 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
795 
796 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
797 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
798 				const struct ip *ip =
799 				    mtod(m, const struct ip *);
800 
801 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
802 				    ip->ip_dst.s_addr,
803 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
804 			}
805 			if ((hw_csum ^ 0xffff) != 0)
806 				goto badcsum;
807 			break;
808 		}
809 
810 		case M_CSUM_TCPv4:
811 			/* Checksum was okay. */
812 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
813 			break;
814 
815 		default:
816 			/*
817 			 * Must compute it ourselves.  Maybe skip checksum
818 			 * on loopback interfaces.
819 			 */
820 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
821 					     IFF_LOOPBACK) ||
822 					   tcp_do_loopback_cksum)) {
823 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
824 				if (in4_cksum(m, IPPROTO_TCP, toff,
825 					      tlen + off) != 0)
826 					goto badcsum;
827 			}
828 			break;
829 		}
830 		break;
831 #endif /* INET4 */
832 
833 #ifdef INET6
834 	case AF_INET6:
835 		if (__predict_true((m->m_flags & M_LOOP) == 0 ||
836 		    tcp_do_loopback_cksum)) {
837 			if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
838 				goto badcsum;
839 		}
840 		break;
841 #endif /* INET6 */
842 	}
843 
844 	return 0;
845 
846 badcsum:
847 	tcpstat.tcps_rcvbadsum++;
848 	return -1;
849 }
850 
851 /*
852  * TCP input routine, follows pages 65-76 of the
853  * protocol specification dated September, 1981 very closely.
854  */
855 void
856 tcp_input(struct mbuf *m, ...)
857 {
858 	struct tcphdr *th;
859 	struct ip *ip;
860 	struct inpcb *inp;
861 #ifdef INET6
862 	struct ip6_hdr *ip6;
863 	struct in6pcb *in6p;
864 #endif
865 	u_int8_t *optp = NULL;
866 	int optlen = 0;
867 	int len, tlen, toff, hdroptlen = 0;
868 	struct tcpcb *tp = 0;
869 	int tiflags;
870 	struct socket *so = NULL;
871 	int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
872 #ifdef TCP_DEBUG
873 	short ostate = 0;
874 #endif
875 	int iss = 0;
876 	u_long tiwin;
877 	struct tcp_opt_info opti;
878 	int off, iphlen;
879 	va_list ap;
880 	int af;		/* af on the wire */
881 	struct mbuf *tcp_saveti = NULL;
882 
883 	MCLAIM(m, &tcp_rx_mowner);
884 	va_start(ap, m);
885 	toff = va_arg(ap, int);
886 	(void)va_arg(ap, int);		/* ignore value, advance ap */
887 	va_end(ap);
888 
889 	tcpstat.tcps_rcvtotal++;
890 
891 	bzero(&opti, sizeof(opti));
892 	opti.ts_present = 0;
893 	opti.maxseg = 0;
894 
895 	/*
896 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
897 	 *
898 	 * TCP is, by definition, unicast, so we reject all
899 	 * multicast outright.
900 	 *
901 	 * Note, there are additional src/dst address checks in
902 	 * the AF-specific code below.
903 	 */
904 	if (m->m_flags & (M_BCAST|M_MCAST)) {
905 		/* XXX stat */
906 		goto drop;
907 	}
908 #ifdef INET6
909 	if (m->m_flags & M_ANYCAST6) {
910 		/* XXX stat */
911 		goto drop;
912 	}
913 #endif
914 
915 	/*
916 	 * Get IP and TCP header.
917 	 * Note: IP leaves IP header in first mbuf.
918 	 */
919 	ip = mtod(m, struct ip *);
920 #ifdef INET6
921 	ip6 = NULL;
922 #endif
923 	switch (ip->ip_v) {
924 #ifdef INET
925 	case 4:
926 		af = AF_INET;
927 		iphlen = sizeof(struct ip);
928 		ip = mtod(m, struct ip *);
929 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
930 			sizeof(struct tcphdr));
931 		if (th == NULL) {
932 			tcpstat.tcps_rcvshort++;
933 			return;
934 		}
935 		/* We do the checksum after PCB lookup... */
936 		len = ntohs(ip->ip_len);
937 		tlen = len - toff;
938 		break;
939 #endif
940 #ifdef INET6
941 	case 6:
942 		ip = NULL;
943 		iphlen = sizeof(struct ip6_hdr);
944 		af = AF_INET6;
945 		ip6 = mtod(m, struct ip6_hdr *);
946 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
947 			sizeof(struct tcphdr));
948 		if (th == NULL) {
949 			tcpstat.tcps_rcvshort++;
950 			return;
951 		}
952 
953 		/* Be proactive about malicious use of IPv4 mapped address */
954 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
955 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
956 			/* XXX stat */
957 			goto drop;
958 		}
959 
960 		/*
961 		 * Be proactive about unspecified IPv6 address in source.
962 		 * As we use all-zero to indicate unbounded/unconnected pcb,
963 		 * unspecified IPv6 address can be used to confuse us.
964 		 *
965 		 * Note that packets with unspecified IPv6 destination is
966 		 * already dropped in ip6_input.
967 		 */
968 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
969 			/* XXX stat */
970 			goto drop;
971 		}
972 
973 		/*
974 		 * Make sure destination address is not multicast.
975 		 * Source address checked in ip6_input().
976 		 */
977 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
978 			/* XXX stat */
979 			goto drop;
980 		}
981 
982 		/* We do the checksum after PCB lookup... */
983 		len = m->m_pkthdr.len;
984 		tlen = len - toff;
985 		break;
986 #endif
987 	default:
988 		m_freem(m);
989 		return;
990 	}
991 
992 	KASSERT(TCP_HDR_ALIGNED_P(th));
993 
994 	/*
995 	 * Check that TCP offset makes sense,
996 	 * pull out TCP options and adjust length.		XXX
997 	 */
998 	off = th->th_off << 2;
999 	if (off < sizeof (struct tcphdr) || off > tlen) {
1000 		tcpstat.tcps_rcvbadoff++;
1001 		goto drop;
1002 	}
1003 	tlen -= off;
1004 
1005 	/*
1006 	 * tcp_input() has been modified to use tlen to mean the TCP data
1007 	 * length throughout the function.  Other functions can use
1008 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1009 	 * rja
1010 	 */
1011 
1012 	if (off > sizeof (struct tcphdr)) {
1013 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1014 		if (th == NULL) {
1015 			tcpstat.tcps_rcvshort++;
1016 			return;
1017 		}
1018 		/*
1019 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
1020 		 * (as they're before toff) and we don't need to update those.
1021 		 */
1022 		KASSERT(TCP_HDR_ALIGNED_P(th));
1023 		optlen = off - sizeof (struct tcphdr);
1024 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1025 		/*
1026 		 * Do quick retrieval of timestamp options ("options
1027 		 * prediction?").  If timestamp is the only option and it's
1028 		 * formatted as recommended in RFC 1323 appendix A, we
1029 		 * quickly get the values now and not bother calling
1030 		 * tcp_dooptions(), etc.
1031 		 */
1032 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1033 		     (optlen > TCPOLEN_TSTAMP_APPA &&
1034 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1035 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1036 		     (th->th_flags & TH_SYN) == 0) {
1037 			opti.ts_present = 1;
1038 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1039 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1040 			optp = NULL;	/* we've parsed the options */
1041 		}
1042 	}
1043 	tiflags = th->th_flags;
1044 
1045 	/*
1046 	 * Locate pcb for segment.
1047 	 */
1048 findpcb:
1049 	inp = NULL;
1050 #ifdef INET6
1051 	in6p = NULL;
1052 #endif
1053 	switch (af) {
1054 #ifdef INET
1055 	case AF_INET:
1056 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1057 		    ip->ip_dst, th->th_dport);
1058 		if (inp == 0) {
1059 			++tcpstat.tcps_pcbhashmiss;
1060 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1061 		}
1062 #ifdef INET6
1063 		if (inp == 0) {
1064 			struct in6_addr s, d;
1065 
1066 			/* mapped addr case */
1067 			bzero(&s, sizeof(s));
1068 			s.s6_addr16[5] = htons(0xffff);
1069 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1070 			bzero(&d, sizeof(d));
1071 			d.s6_addr16[5] = htons(0xffff);
1072 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1073 			in6p = in6_pcblookup_connect(&tcbtable, &s,
1074 			    th->th_sport, &d, th->th_dport, 0);
1075 			if (in6p == 0) {
1076 				++tcpstat.tcps_pcbhashmiss;
1077 				in6p = in6_pcblookup_bind(&tcbtable, &d,
1078 				    th->th_dport, 0);
1079 			}
1080 		}
1081 #endif
1082 #ifndef INET6
1083 		if (inp == 0)
1084 #else
1085 		if (inp == 0 && in6p == 0)
1086 #endif
1087 		{
1088 			++tcpstat.tcps_noport;
1089 			if (tcp_log_refused &&
1090 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1091 				tcp4_log_refused(ip, th);
1092 			}
1093 			TCP_FIELDS_TO_HOST(th);
1094 			goto dropwithreset_ratelim;
1095 		}
1096 #if defined(IPSEC) || defined(FAST_IPSEC)
1097 		if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1098 		    ipsec4_in_reject(m, inp)) {
1099 			ipsecstat.in_polvio++;
1100 			goto drop;
1101 		}
1102 #ifdef INET6
1103 		else if (in6p &&
1104 		    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1105 		    ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1106 			ipsecstat.in_polvio++;
1107 			goto drop;
1108 		}
1109 #endif
1110 #endif /*IPSEC*/
1111 		break;
1112 #endif /*INET*/
1113 #ifdef INET6
1114 	case AF_INET6:
1115 	    {
1116 		int faith;
1117 
1118 #if defined(NFAITH) && NFAITH > 0
1119 		faith = faithprefix(&ip6->ip6_dst);
1120 #else
1121 		faith = 0;
1122 #endif
1123 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1124 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1125 		if (in6p == NULL) {
1126 			++tcpstat.tcps_pcbhashmiss;
1127 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1128 				th->th_dport, faith);
1129 		}
1130 		if (in6p == NULL) {
1131 			++tcpstat.tcps_noport;
1132 			if (tcp_log_refused &&
1133 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1134 				tcp6_log_refused(ip6, th);
1135 			}
1136 			TCP_FIELDS_TO_HOST(th);
1137 			goto dropwithreset_ratelim;
1138 		}
1139 #if defined(IPSEC) || defined(FAST_IPSEC)
1140 		if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1141 		    ipsec6_in_reject(m, in6p)) {
1142 			ipsec6stat.in_polvio++;
1143 			goto drop;
1144 		}
1145 #endif /*IPSEC*/
1146 		break;
1147 	    }
1148 #endif
1149 	}
1150 
1151 	/*
1152 	 * If the state is CLOSED (i.e., TCB does not exist) then
1153 	 * all data in the incoming segment is discarded.
1154 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1155 	 * but should either do a listen or a connect soon.
1156 	 */
1157 	tp = NULL;
1158 	so = NULL;
1159 	if (inp) {
1160 		tp = intotcpcb(inp);
1161 		so = inp->inp_socket;
1162 	}
1163 #ifdef INET6
1164 	else if (in6p) {
1165 		tp = in6totcpcb(in6p);
1166 		so = in6p->in6p_socket;
1167 	}
1168 #endif
1169 	if (tp == 0) {
1170 		TCP_FIELDS_TO_HOST(th);
1171 		goto dropwithreset_ratelim;
1172 	}
1173 	if (tp->t_state == TCPS_CLOSED)
1174 		goto drop;
1175 
1176 	/*
1177 	 * Checksum extended TCP header and data.
1178 	 */
1179 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
1180 		goto badcsum;
1181 
1182 	TCP_FIELDS_TO_HOST(th);
1183 
1184 	/* Unscale the window into a 32-bit value. */
1185 	if ((tiflags & TH_SYN) == 0)
1186 		tiwin = th->th_win << tp->snd_scale;
1187 	else
1188 		tiwin = th->th_win;
1189 
1190 #ifdef INET6
1191 	/* save packet options if user wanted */
1192 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1193 		if (in6p->in6p_options) {
1194 			m_freem(in6p->in6p_options);
1195 			in6p->in6p_options = 0;
1196 		}
1197 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1198 	}
1199 #endif
1200 
1201 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1202 		union syn_cache_sa src;
1203 		union syn_cache_sa dst;
1204 
1205 		bzero(&src, sizeof(src));
1206 		bzero(&dst, sizeof(dst));
1207 		switch (af) {
1208 #ifdef INET
1209 		case AF_INET:
1210 			src.sin.sin_len = sizeof(struct sockaddr_in);
1211 			src.sin.sin_family = AF_INET;
1212 			src.sin.sin_addr = ip->ip_src;
1213 			src.sin.sin_port = th->th_sport;
1214 
1215 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1216 			dst.sin.sin_family = AF_INET;
1217 			dst.sin.sin_addr = ip->ip_dst;
1218 			dst.sin.sin_port = th->th_dport;
1219 			break;
1220 #endif
1221 #ifdef INET6
1222 		case AF_INET6:
1223 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1224 			src.sin6.sin6_family = AF_INET6;
1225 			src.sin6.sin6_addr = ip6->ip6_src;
1226 			src.sin6.sin6_port = th->th_sport;
1227 
1228 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1229 			dst.sin6.sin6_family = AF_INET6;
1230 			dst.sin6.sin6_addr = ip6->ip6_dst;
1231 			dst.sin6.sin6_port = th->th_dport;
1232 			break;
1233 #endif /* INET6 */
1234 		default:
1235 			goto badsyn;	/*sanity*/
1236 		}
1237 
1238 		if (so->so_options & SO_DEBUG) {
1239 #ifdef TCP_DEBUG
1240 			ostate = tp->t_state;
1241 #endif
1242 
1243 			tcp_saveti = NULL;
1244 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1245 				goto nosave;
1246 
1247 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1248 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1249 				if (!tcp_saveti)
1250 					goto nosave;
1251 			} else {
1252 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1253 				if (!tcp_saveti)
1254 					goto nosave;
1255 				MCLAIM(m, &tcp_mowner);
1256 				tcp_saveti->m_len = iphlen;
1257 				m_copydata(m, 0, iphlen,
1258 				    mtod(tcp_saveti, caddr_t));
1259 			}
1260 
1261 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1262 				m_freem(tcp_saveti);
1263 				tcp_saveti = NULL;
1264 			} else {
1265 				tcp_saveti->m_len += sizeof(struct tcphdr);
1266 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1267 				    sizeof(struct tcphdr));
1268 			}
1269 	nosave:;
1270 		}
1271 		if (so->so_options & SO_ACCEPTCONN) {
1272 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1273 				if (tiflags & TH_RST) {
1274 					syn_cache_reset(&src.sa, &dst.sa, th);
1275 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1276 				    (TH_ACK|TH_SYN)) {
1277 					/*
1278 					 * Received a SYN,ACK.  This should
1279 					 * never happen while we are in
1280 					 * LISTEN.  Send an RST.
1281 					 */
1282 					goto badsyn;
1283 				} else if (tiflags & TH_ACK) {
1284 					so = syn_cache_get(&src.sa, &dst.sa,
1285 						th, toff, tlen, so, m);
1286 					if (so == NULL) {
1287 						/*
1288 						 * We don't have a SYN for
1289 						 * this ACK; send an RST.
1290 						 */
1291 						goto badsyn;
1292 					} else if (so ==
1293 					    (struct socket *)(-1)) {
1294 						/*
1295 						 * We were unable to create
1296 						 * the connection.  If the
1297 						 * 3-way handshake was
1298 						 * completed, and RST has
1299 						 * been sent to the peer.
1300 						 * Since the mbuf might be
1301 						 * in use for the reply,
1302 						 * do not free it.
1303 						 */
1304 						m = NULL;
1305 					} else {
1306 						/*
1307 						 * We have created a
1308 						 * full-blown connection.
1309 						 */
1310 						tp = NULL;
1311 						inp = NULL;
1312 #ifdef INET6
1313 						in6p = NULL;
1314 #endif
1315 						switch (so->so_proto->pr_domain->dom_family) {
1316 #ifdef INET
1317 						case AF_INET:
1318 							inp = sotoinpcb(so);
1319 							tp = intotcpcb(inp);
1320 							break;
1321 #endif
1322 #ifdef INET6
1323 						case AF_INET6:
1324 							in6p = sotoin6pcb(so);
1325 							tp = in6totcpcb(in6p);
1326 							break;
1327 #endif
1328 						}
1329 						if (tp == NULL)
1330 							goto badsyn;	/*XXX*/
1331 						tiwin <<= tp->snd_scale;
1332 						goto after_listen;
1333 					}
1334 				} else {
1335 					/*
1336 					 * None of RST, SYN or ACK was set.
1337 					 * This is an invalid packet for a
1338 					 * TCB in LISTEN state.  Send a RST.
1339 					 */
1340 					goto badsyn;
1341 				}
1342 			} else {
1343 				/*
1344 				 * Received a SYN.
1345 				 */
1346 
1347 #ifdef INET6
1348 				/*
1349 				 * If deprecated address is forbidden, we do
1350 				 * not accept SYN to deprecated interface
1351 				 * address to prevent any new inbound
1352 				 * connection from getting established.
1353 				 * When we do not accept SYN, we send a TCP
1354 				 * RST, with deprecated source address (instead
1355 				 * of dropping it).  We compromise it as it is
1356 				 * much better for peer to send a RST, and
1357 				 * RST will be the final packet for the
1358 				 * exchange.
1359 				 *
1360 				 * If we do not forbid deprecated addresses, we
1361 				 * accept the SYN packet.  RFC2462 does not
1362 				 * suggest dropping SYN in this case.
1363 				 * If we decipher RFC2462 5.5.4, it says like
1364 				 * this:
1365 				 * 1. use of deprecated addr with existing
1366 				 *    communication is okay - "SHOULD continue
1367 				 *    to be used"
1368 				 * 2. use of it with new communication:
1369 				 *   (2a) "SHOULD NOT be used if alternate
1370 				 *        address with sufficient scope is
1371 				 *        available"
1372 				 *   (2b) nothing mentioned otherwise.
1373 				 * Here we fall into (2b) case as we have no
1374 				 * choice in our source address selection - we
1375 				 * must obey the peer.
1376 				 *
1377 				 * The wording in RFC2462 is confusing, and
1378 				 * there are multiple description text for
1379 				 * deprecated address handling - worse, they
1380 				 * are not exactly the same.  I believe 5.5.4
1381 				 * is the best one, so we follow 5.5.4.
1382 				 */
1383 				if (af == AF_INET6 && !ip6_use_deprecated) {
1384 					struct in6_ifaddr *ia6;
1385 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1386 					    &ip6->ip6_dst)) &&
1387 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1388 						tp = NULL;
1389 						goto dropwithreset;
1390 					}
1391 				}
1392 #endif
1393 
1394 #ifdef IPSEC
1395 				switch (af) {
1396 #ifdef INET
1397 				case AF_INET:
1398 					if (ipsec4_in_reject_so(m, so)) {
1399 						ipsecstat.in_polvio++;
1400 						tp = NULL;
1401 						goto dropwithreset;
1402 					}
1403 					break;
1404 #endif
1405 #ifdef INET6
1406 				case AF_INET6:
1407 					if (ipsec6_in_reject_so(m, so)) {
1408 						ipsec6stat.in_polvio++;
1409 						tp = NULL;
1410 						goto dropwithreset;
1411 					}
1412 					break;
1413 #endif
1414 				}
1415 #endif
1416 
1417 				/*
1418 				 * LISTEN socket received a SYN
1419 				 * from itself?  This can't possibly
1420 				 * be valid; drop the packet.
1421 				 */
1422 				if (th->th_sport == th->th_dport) {
1423 					int i;
1424 
1425 					switch (af) {
1426 #ifdef INET
1427 					case AF_INET:
1428 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1429 						break;
1430 #endif
1431 #ifdef INET6
1432 					case AF_INET6:
1433 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1434 						break;
1435 #endif
1436 					default:
1437 						i = 1;
1438 					}
1439 					if (i) {
1440 						tcpstat.tcps_badsyn++;
1441 						goto drop;
1442 					}
1443 				}
1444 
1445 				/*
1446 				 * SYN looks ok; create compressed TCP
1447 				 * state for it.
1448 				 */
1449 				if (so->so_qlen <= so->so_qlimit &&
1450 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1451 						so, m, optp, optlen, &opti))
1452 					m = NULL;
1453 			}
1454 			goto drop;
1455 		}
1456 	}
1457 
1458 after_listen:
1459 #ifdef DIAGNOSTIC
1460 	/*
1461 	 * Should not happen now that all embryonic connections
1462 	 * are handled with compressed state.
1463 	 */
1464 	if (tp->t_state == TCPS_LISTEN)
1465 		panic("tcp_input: TCPS_LISTEN");
1466 #endif
1467 
1468 	/*
1469 	 * Segment received on connection.
1470 	 * Reset idle time and keep-alive timer.
1471 	 */
1472 	tp->t_rcvtime = tcp_now;
1473 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1474 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1475 
1476 	/*
1477 	 * Process options.
1478 	 */
1479 #ifdef TCP_SIGNATURE
1480 	if (optp || (tp->t_flags & TF_SIGNATURE))
1481 #else
1482 	if (optp)
1483 #endif
1484 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1485 			goto drop;
1486 
1487 	if (opti.ts_present && opti.ts_ecr) {
1488 		/*
1489 		 * Calculate the RTT from the returned time stamp and the
1490 		 * connection's time base.  If the time stamp is later than
1491 		 * the current time, or is extremely old, fall back to non-1323
1492 		 * RTT calculation.  Since ts_ecr is unsigned, we can test both
1493 		 * at the same time.
1494 		 */
1495 		opti.ts_ecr = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1496 		if (opti.ts_ecr > TCP_PAWS_IDLE)
1497 			opti.ts_ecr = 0;
1498 	}
1499 
1500 	/*
1501 	 * Header prediction: check for the two common cases
1502 	 * of a uni-directional data xfer.  If the packet has
1503 	 * no control flags, is in-sequence, the window didn't
1504 	 * change and we're not retransmitting, it's a
1505 	 * candidate.  If the length is zero and the ack moved
1506 	 * forward, we're the sender side of the xfer.  Just
1507 	 * free the data acked & wake any higher level process
1508 	 * that was blocked waiting for space.  If the length
1509 	 * is non-zero and the ack didn't move, we're the
1510 	 * receiver side.  If we're getting packets in-order
1511 	 * (the reassembly queue is empty), add the data to
1512 	 * the socket buffer and note that we need a delayed ack.
1513 	 */
1514 	if (tp->t_state == TCPS_ESTABLISHED &&
1515 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1516 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1517 	    th->th_seq == tp->rcv_nxt &&
1518 	    tiwin && tiwin == tp->snd_wnd &&
1519 	    tp->snd_nxt == tp->snd_max) {
1520 
1521 		/*
1522 		 * If last ACK falls within this segment's sequence numbers,
1523 		 *  record the timestamp.
1524 		 */
1525 		if (opti.ts_present &&
1526 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1527 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1528 			tp->ts_recent_age = tcp_now;
1529 			tp->ts_recent = opti.ts_val;
1530 		}
1531 
1532 		if (tlen == 0) {
1533 			/* Ack prediction. */
1534 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1535 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1536 			    tp->snd_cwnd >= tp->snd_wnd &&
1537 			    tp->t_partialacks < 0) {
1538 				/*
1539 				 * this is a pure ack for outstanding data.
1540 				 */
1541 				++tcpstat.tcps_predack;
1542 				if (opti.ts_present && opti.ts_ecr)
1543 					tcp_xmit_timer(tp, opti.ts_ecr);
1544 				else if (tp->t_rtttime &&
1545 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1546 					tcp_xmit_timer(tp,
1547 					  tcp_now - tp->t_rtttime);
1548 				acked = th->th_ack - tp->snd_una;
1549 				tcpstat.tcps_rcvackpack++;
1550 				tcpstat.tcps_rcvackbyte += acked;
1551 				ND6_HINT(tp);
1552 
1553 				if (acked > (tp->t_lastoff - tp->t_inoff))
1554 					tp->t_lastm = NULL;
1555 				sbdrop(&so->so_snd, acked);
1556 				tp->t_lastoff -= acked;
1557 
1558 				tp->snd_una = th->th_ack;
1559 				if (SEQ_LT(tp->snd_high, tp->snd_una))
1560 					tp->snd_high = tp->snd_una;
1561 				m_freem(m);
1562 
1563 				/*
1564 				 * If all outstanding data are acked, stop
1565 				 * retransmit timer, otherwise restart timer
1566 				 * using current (possibly backed-off) value.
1567 				 * If process is waiting for space,
1568 				 * wakeup/selwakeup/signal.  If data
1569 				 * are ready to send, let tcp_output
1570 				 * decide between more output or persist.
1571 				 */
1572 				if (tp->snd_una == tp->snd_max)
1573 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1574 				else if (TCP_TIMER_ISARMED(tp,
1575 				    TCPT_PERSIST) == 0)
1576 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1577 					    tp->t_rxtcur);
1578 
1579 				sowwakeup(so);
1580 				if (so->so_snd.sb_cc)
1581 					(void) tcp_output(tp);
1582 				if (tcp_saveti)
1583 					m_freem(tcp_saveti);
1584 				return;
1585 			}
1586 		} else if (th->th_ack == tp->snd_una &&
1587 		    TAILQ_FIRST(&tp->segq) == NULL &&
1588 		    tlen <= sbspace(&so->so_rcv)) {
1589 			/*
1590 			 * this is a pure, in-sequence data packet
1591 			 * with nothing on the reassembly queue and
1592 			 * we have enough buffer space to take it.
1593 			 */
1594 			++tcpstat.tcps_preddat;
1595 			tp->rcv_nxt += tlen;
1596 			tcpstat.tcps_rcvpack++;
1597 			tcpstat.tcps_rcvbyte += tlen;
1598 			ND6_HINT(tp);
1599 			/*
1600 			 * Drop TCP, IP headers and TCP options then add data
1601 			 * to socket buffer.
1602 			 */
1603 			if (so->so_state & SS_CANTRCVMORE)
1604 				m_freem(m);
1605 			else {
1606 				m_adj(m, toff + off);
1607 				sbappendstream(&so->so_rcv, m);
1608 			}
1609 			sorwakeup(so);
1610 			TCP_SETUP_ACK(tp, th);
1611 			if (tp->t_flags & TF_ACKNOW)
1612 				(void) tcp_output(tp);
1613 			if (tcp_saveti)
1614 				m_freem(tcp_saveti);
1615 			return;
1616 		}
1617 	}
1618 
1619 	/*
1620 	 * Compute mbuf offset to TCP data segment.
1621 	 */
1622 	hdroptlen = toff + off;
1623 
1624 	/*
1625 	 * Calculate amount of space in receive window,
1626 	 * and then do TCP input processing.
1627 	 * Receive window is amount of space in rcv queue,
1628 	 * but not less than advertised window.
1629 	 */
1630 	{ int win;
1631 
1632 	win = sbspace(&so->so_rcv);
1633 	if (win < 0)
1634 		win = 0;
1635 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1636 	}
1637 
1638 	switch (tp->t_state) {
1639 	case TCPS_LISTEN:
1640 		/*
1641 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1642 		 */
1643 		if (m->m_flags & (M_BCAST|M_MCAST))
1644 			goto drop;
1645 		switch (af) {
1646 #ifdef INET6
1647 		case AF_INET6:
1648 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1649 				goto drop;
1650 			break;
1651 #endif /* INET6 */
1652 		case AF_INET:
1653 			if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1654 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1655 				goto drop;
1656 			break;
1657 		}
1658 		break;
1659 
1660 	/*
1661 	 * If the state is SYN_SENT:
1662 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1663 	 *	if seg contains a RST, then drop the connection.
1664 	 *	if seg does not contain SYN, then drop it.
1665 	 * Otherwise this is an acceptable SYN segment
1666 	 *	initialize tp->rcv_nxt and tp->irs
1667 	 *	if seg contains ack then advance tp->snd_una
1668 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1669 	 *	arrange for segment to be acked (eventually)
1670 	 *	continue processing rest of data/controls, beginning with URG
1671 	 */
1672 	case TCPS_SYN_SENT:
1673 		if ((tiflags & TH_ACK) &&
1674 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1675 		     SEQ_GT(th->th_ack, tp->snd_max)))
1676 			goto dropwithreset;
1677 		if (tiflags & TH_RST) {
1678 			if (tiflags & TH_ACK)
1679 				tp = tcp_drop(tp, ECONNREFUSED);
1680 			goto drop;
1681 		}
1682 		if ((tiflags & TH_SYN) == 0)
1683 			goto drop;
1684 		if (tiflags & TH_ACK) {
1685 			tp->snd_una = th->th_ack;
1686 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1687 				tp->snd_nxt = tp->snd_una;
1688 			if (SEQ_LT(tp->snd_high, tp->snd_una))
1689 				tp->snd_high = tp->snd_una;
1690 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1691 		}
1692 		tp->irs = th->th_seq;
1693 		tcp_rcvseqinit(tp);
1694 		tp->t_flags |= TF_ACKNOW;
1695 		tcp_mss_from_peer(tp, opti.maxseg);
1696 
1697 		/*
1698 		 * Initialize the initial congestion window.  If we
1699 		 * had to retransmit the SYN, we must initialize cwnd
1700 		 * to 1 segment (i.e. the Loss Window).
1701 		 */
1702 		if (tp->t_flags & TF_SYN_REXMT)
1703 			tp->snd_cwnd = tp->t_peermss;
1704 		else {
1705 			int ss = tcp_init_win;
1706 #ifdef INET
1707 			if (inp != NULL && in_localaddr(inp->inp_faddr))
1708 				ss = tcp_init_win_local;
1709 #endif
1710 #ifdef INET6
1711 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1712 				ss = tcp_init_win_local;
1713 #endif
1714 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1715 		}
1716 
1717 		tcp_rmx_rtt(tp);
1718 		if (tiflags & TH_ACK) {
1719 			tcpstat.tcps_connects++;
1720 			soisconnected(so);
1721 			tcp_established(tp);
1722 			/* Do window scaling on this connection? */
1723 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1724 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1725 				tp->snd_scale = tp->requested_s_scale;
1726 				tp->rcv_scale = tp->request_r_scale;
1727 			}
1728 			TCP_REASS_LOCK(tp);
1729 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1730 			TCP_REASS_UNLOCK(tp);
1731 			/*
1732 			 * if we didn't have to retransmit the SYN,
1733 			 * use its rtt as our initial srtt & rtt var.
1734 			 */
1735 			if (tp->t_rtttime)
1736 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1737 		} else
1738 			tp->t_state = TCPS_SYN_RECEIVED;
1739 
1740 		/*
1741 		 * Advance th->th_seq to correspond to first data byte.
1742 		 * If data, trim to stay within window,
1743 		 * dropping FIN if necessary.
1744 		 */
1745 		th->th_seq++;
1746 		if (tlen > tp->rcv_wnd) {
1747 			todrop = tlen - tp->rcv_wnd;
1748 			m_adj(m, -todrop);
1749 			tlen = tp->rcv_wnd;
1750 			tiflags &= ~TH_FIN;
1751 			tcpstat.tcps_rcvpackafterwin++;
1752 			tcpstat.tcps_rcvbyteafterwin += todrop;
1753 		}
1754 		tp->snd_wl1 = th->th_seq - 1;
1755 		tp->rcv_up = th->th_seq;
1756 		goto step6;
1757 
1758 	/*
1759 	 * If the state is SYN_RECEIVED:
1760 	 *	If seg contains an ACK, but not for our SYN, drop the input
1761 	 *	and generate an RST.  See page 36, rfc793
1762 	 */
1763 	case TCPS_SYN_RECEIVED:
1764 		if ((tiflags & TH_ACK) &&
1765 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1766 		     SEQ_GT(th->th_ack, tp->snd_max)))
1767 			goto dropwithreset;
1768 		break;
1769 	}
1770 
1771 	/*
1772 	 * States other than LISTEN or SYN_SENT.
1773 	 * First check timestamp, if present.
1774 	 * Then check that at least some bytes of segment are within
1775 	 * receive window.  If segment begins before rcv_nxt,
1776 	 * drop leading data (and SYN); if nothing left, just ack.
1777 	 *
1778 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1779 	 * and it's less than ts_recent, drop it.
1780 	 */
1781 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1782 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1783 
1784 		/* Check to see if ts_recent is over 24 days old.  */
1785 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
1786 			/*
1787 			 * Invalidate ts_recent.  If this segment updates
1788 			 * ts_recent, the age will be reset later and ts_recent
1789 			 * will get a valid value.  If it does not, setting
1790 			 * ts_recent to zero will at least satisfy the
1791 			 * requirement that zero be placed in the timestamp
1792 			 * echo reply when ts_recent isn't valid.  The
1793 			 * age isn't reset until we get a valid ts_recent
1794 			 * because we don't want out-of-order segments to be
1795 			 * dropped when ts_recent is old.
1796 			 */
1797 			tp->ts_recent = 0;
1798 		} else {
1799 			tcpstat.tcps_rcvduppack++;
1800 			tcpstat.tcps_rcvdupbyte += tlen;
1801 			tcpstat.tcps_pawsdrop++;
1802 			goto dropafterack;
1803 		}
1804 	}
1805 
1806 	todrop = tp->rcv_nxt - th->th_seq;
1807 	dupseg = FALSE;
1808 	if (todrop > 0) {
1809 		if (tiflags & TH_SYN) {
1810 			tiflags &= ~TH_SYN;
1811 			th->th_seq++;
1812 			if (th->th_urp > 1)
1813 				th->th_urp--;
1814 			else {
1815 				tiflags &= ~TH_URG;
1816 				th->th_urp = 0;
1817 			}
1818 			todrop--;
1819 		}
1820 		if (todrop > tlen ||
1821 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1822 			/*
1823 			 * Any valid FIN or RST must be to the left of the
1824 			 * window.  At this point the FIN or RST must be a
1825 			 * duplicate or out of sequence; drop it.
1826 			 */
1827 			if (tiflags & TH_RST)
1828 				goto drop;
1829 			tiflags &= ~(TH_FIN|TH_RST);
1830 			/*
1831 			 * Send an ACK to resynchronize and drop any data.
1832 			 * But keep on processing for RST or ACK.
1833 			 */
1834 			tp->t_flags |= TF_ACKNOW;
1835 			todrop = tlen;
1836 			dupseg = TRUE;
1837 			tcpstat.tcps_rcvdupbyte += todrop;
1838 			tcpstat.tcps_rcvduppack++;
1839 		} else if ((tiflags & TH_RST) &&
1840 			   th->th_seq != tp->last_ack_sent) {
1841 			/*
1842 			 * Test for reset before adjusting the sequence
1843 			 * number for overlapping data.
1844 			 */
1845 			goto dropafterack_ratelim;
1846 		} else {
1847 			tcpstat.tcps_rcvpartduppack++;
1848 			tcpstat.tcps_rcvpartdupbyte += todrop;
1849 		}
1850 		hdroptlen += todrop;	/*drop from head afterwards*/
1851 		th->th_seq += todrop;
1852 		tlen -= todrop;
1853 		if (th->th_urp > todrop)
1854 			th->th_urp -= todrop;
1855 		else {
1856 			tiflags &= ~TH_URG;
1857 			th->th_urp = 0;
1858 		}
1859 	}
1860 
1861 	/*
1862 	 * If new data are received on a connection after the
1863 	 * user processes are gone, then RST the other end.
1864 	 */
1865 	if ((so->so_state & SS_NOFDREF) &&
1866 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1867 		tp = tcp_close(tp);
1868 		tcpstat.tcps_rcvafterclose++;
1869 		goto dropwithreset;
1870 	}
1871 
1872 	/*
1873 	 * If segment ends after window, drop trailing data
1874 	 * (and PUSH and FIN); if nothing left, just ACK.
1875 	 */
1876 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1877 	if (todrop > 0) {
1878 		tcpstat.tcps_rcvpackafterwin++;
1879 		if (todrop >= tlen) {
1880 			/*
1881 			 * The segment actually starts after the window.
1882 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
1883 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
1884 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
1885 			 */
1886 			tcpstat.tcps_rcvbyteafterwin += tlen;
1887 			/*
1888 			 * If a new connection request is received
1889 			 * while in TIME_WAIT, drop the old connection
1890 			 * and start over if the sequence numbers
1891 			 * are above the previous ones.
1892 			 *
1893 			 * NOTE: We will checksum the packet again, and
1894 			 * so we need to put the header fields back into
1895 			 * network order!
1896 			 * XXX This kind of sucks, but we don't expect
1897 			 * XXX this to happen very often, so maybe it
1898 			 * XXX doesn't matter so much.
1899 			 */
1900 			if (tiflags & TH_SYN &&
1901 			    tp->t_state == TCPS_TIME_WAIT &&
1902 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1903 				iss = tcp_new_iss(tp, tp->snd_nxt);
1904 				tp = tcp_close(tp);
1905 				TCP_FIELDS_TO_NET(th);
1906 				goto findpcb;
1907 			}
1908 			/*
1909 			 * If window is closed can only take segments at
1910 			 * window edge, and have to drop data and PUSH from
1911 			 * incoming segments.  Continue processing, but
1912 			 * remember to ack.  Otherwise, drop segment
1913 			 * and (if not RST) ack.
1914 			 */
1915 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1916 				tp->t_flags |= TF_ACKNOW;
1917 				tcpstat.tcps_rcvwinprobe++;
1918 			} else
1919 				goto dropafterack;
1920 		} else
1921 			tcpstat.tcps_rcvbyteafterwin += todrop;
1922 		m_adj(m, -todrop);
1923 		tlen -= todrop;
1924 		tiflags &= ~(TH_PUSH|TH_FIN);
1925 	}
1926 
1927 	/*
1928 	 * If last ACK falls within this segment's sequence numbers,
1929 	 * and the timestamp is newer, record it.
1930 	 */
1931 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1932 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1933 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1934 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1935 		tp->ts_recent_age = tcp_now;
1936 		tp->ts_recent = opti.ts_val;
1937 	}
1938 
1939 	/*
1940 	 * If the RST bit is set examine the state:
1941 	 *    SYN_RECEIVED STATE:
1942 	 *	If passive open, return to LISTEN state.
1943 	 *	If active open, inform user that connection was refused.
1944 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1945 	 *	Inform user that connection was reset, and close tcb.
1946 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1947 	 *	Close the tcb.
1948 	 */
1949 	if (tiflags & TH_RST) {
1950 		if (th->th_seq != tp->last_ack_sent)
1951 			goto dropafterack_ratelim;
1952 
1953 		switch (tp->t_state) {
1954 		case TCPS_SYN_RECEIVED:
1955 			so->so_error = ECONNREFUSED;
1956 			goto close;
1957 
1958 		case TCPS_ESTABLISHED:
1959 		case TCPS_FIN_WAIT_1:
1960 		case TCPS_FIN_WAIT_2:
1961 		case TCPS_CLOSE_WAIT:
1962 			so->so_error = ECONNRESET;
1963 		close:
1964 			tp->t_state = TCPS_CLOSED;
1965 			tcpstat.tcps_drops++;
1966 			tp = tcp_close(tp);
1967 			goto drop;
1968 
1969 		case TCPS_CLOSING:
1970 		case TCPS_LAST_ACK:
1971 		case TCPS_TIME_WAIT:
1972 			tp = tcp_close(tp);
1973 			goto drop;
1974 		}
1975 	}
1976 
1977 	/*
1978 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
1979 	 * we must be in a synchronized state.  RFC791 states (under RST
1980 	 * generation) that any unacceptable segment (an out-of-order SYN
1981 	 * qualifies) received in a synchronized state must elicit only an
1982 	 * empty acknowledgment segment ... and the connection remains in
1983 	 * the same state.
1984 	 */
1985 	if (tiflags & TH_SYN) {
1986 		if (tp->rcv_nxt == th->th_seq) {
1987 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
1988 			    TH_ACK);
1989 			if (tcp_saveti)
1990 				m_freem(tcp_saveti);
1991 			return;
1992 		}
1993 
1994 		goto dropafterack_ratelim;
1995 	}
1996 
1997 	/*
1998 	 * If the ACK bit is off we drop the segment and return.
1999 	 */
2000 	if ((tiflags & TH_ACK) == 0) {
2001 		if (tp->t_flags & TF_ACKNOW)
2002 			goto dropafterack;
2003 		else
2004 			goto drop;
2005 	}
2006 
2007 	/*
2008 	 * Ack processing.
2009 	 */
2010 	switch (tp->t_state) {
2011 
2012 	/*
2013 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2014 	 * ESTABLISHED state and continue processing, otherwise
2015 	 * send an RST.
2016 	 */
2017 	case TCPS_SYN_RECEIVED:
2018 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
2019 		    SEQ_GT(th->th_ack, tp->snd_max))
2020 			goto dropwithreset;
2021 		tcpstat.tcps_connects++;
2022 		soisconnected(so);
2023 		tcp_established(tp);
2024 		/* Do window scaling? */
2025 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2026 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2027 			tp->snd_scale = tp->requested_s_scale;
2028 			tp->rcv_scale = tp->request_r_scale;
2029 		}
2030 		TCP_REASS_LOCK(tp);
2031 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2032 		TCP_REASS_UNLOCK(tp);
2033 		tp->snd_wl1 = th->th_seq - 1;
2034 		/* fall into ... */
2035 
2036 	/*
2037 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2038 	 * ACKs.  If the ack is in the range
2039 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2040 	 * then advance tp->snd_una to th->th_ack and drop
2041 	 * data from the retransmission queue.  If this ACK reflects
2042 	 * more up to date window information we update our window information.
2043 	 */
2044 	case TCPS_ESTABLISHED:
2045 	case TCPS_FIN_WAIT_1:
2046 	case TCPS_FIN_WAIT_2:
2047 	case TCPS_CLOSE_WAIT:
2048 	case TCPS_CLOSING:
2049 	case TCPS_LAST_ACK:
2050 	case TCPS_TIME_WAIT:
2051 
2052 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2053 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2054 				tcpstat.tcps_rcvdupack++;
2055 				/*
2056 				 * If we have outstanding data (other than
2057 				 * a window probe), this is a completely
2058 				 * duplicate ack (ie, window info didn't
2059 				 * change), the ack is the biggest we've
2060 				 * seen and we've seen exactly our rexmt
2061 				 * threshhold of them, assume a packet
2062 				 * has been dropped and retransmit it.
2063 				 * Kludge snd_nxt & the congestion
2064 				 * window so we send only this one
2065 				 * packet.
2066 				 *
2067 				 * We know we're losing at the current
2068 				 * window size so do congestion avoidance
2069 				 * (set ssthresh to half the current window
2070 				 * and pull our congestion window back to
2071 				 * the new ssthresh).
2072 				 *
2073 				 * Dup acks mean that packets have left the
2074 				 * network (they're now cached at the receiver)
2075 				 * so bump cwnd by the amount in the receiver
2076 				 * to keep a constant cwnd packets in the
2077 				 * network.
2078 				 */
2079 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2080 				    th->th_ack != tp->snd_una)
2081 					tp->t_dupacks = 0;
2082 				else if (++tp->t_dupacks == tcprexmtthresh &&
2083 					 tp->t_partialacks < 0) {
2084 					tcp_seq onxt;
2085 					u_int win;
2086 
2087 					if (tcp_do_newreno &&
2088 					    SEQ_LT(th->th_ack, tp->snd_high)) {
2089 						/*
2090 						 * False fast retransmit after
2091 						 * timeout.  Do not enter fast
2092 						 * recovery.
2093 						 */
2094 						tp->t_dupacks = 0;
2095 						break;
2096 					}
2097 
2098 					onxt = tp->snd_nxt;
2099 					win = min(tp->snd_wnd, tp->snd_cwnd) /
2100 					    2 /	tp->t_segsz;
2101 					if (win < 2)
2102 						win = 2;
2103 					tp->snd_ssthresh = win * tp->t_segsz;
2104 					tp->snd_recover = tp->snd_max;
2105 					tp->t_partialacks = 0;
2106 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
2107 					tp->t_rtttime = 0;
2108 					tp->snd_nxt = th->th_ack;
2109 					tp->snd_cwnd = tp->t_segsz;
2110 					(void) tcp_output(tp);
2111 					tp->snd_cwnd = tp->snd_ssthresh +
2112 					       tp->t_segsz * tp->t_dupacks;
2113 					if (SEQ_GT(onxt, tp->snd_nxt))
2114 						tp->snd_nxt = onxt;
2115 					goto drop;
2116 				} else if (tp->t_dupacks > tcprexmtthresh) {
2117 					tp->snd_cwnd += tp->t_segsz;
2118 					(void) tcp_output(tp);
2119 					goto drop;
2120 				}
2121 			} else {
2122 				/*
2123 				 * If the ack appears to be very old, only
2124 				 * allow data that is in-sequence.  This
2125 				 * makes it somewhat more difficult to insert
2126 				 * forged data by guessing sequence numbers.
2127 				 * Sent an ack to try to update the send
2128 				 * sequence number on the other side.
2129 				 */
2130 				if (tlen && th->th_seq != tp->rcv_nxt &&
2131 				    SEQ_LT(th->th_ack,
2132 				    tp->snd_una - tp->max_sndwnd))
2133 					goto dropafterack;
2134 			}
2135 			break;
2136 		}
2137 		/*
2138 		 * If the congestion window was inflated to account
2139 		 * for the other side's cached packets, retract it.
2140 		 */
2141 		if (!tcp_do_newreno)
2142 			tcp_reno_newack(tp, th);
2143 		else
2144 			tcp_newreno_newack(tp, th);
2145 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2146 			tcpstat.tcps_rcvacktoomuch++;
2147 			goto dropafterack;
2148 		}
2149 		acked = th->th_ack - tp->snd_una;
2150 		tcpstat.tcps_rcvackpack++;
2151 		tcpstat.tcps_rcvackbyte += acked;
2152 
2153 		/*
2154 		 * If we have a timestamp reply, update smoothed
2155 		 * round trip time.  If no timestamp is present but
2156 		 * transmit timer is running and timed sequence
2157 		 * number was acked, update smoothed round trip time.
2158 		 * Since we now have an rtt measurement, cancel the
2159 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2160 		 * Recompute the initial retransmit timer.
2161 		 */
2162 		if (opti.ts_present && opti.ts_ecr)
2163 			tcp_xmit_timer(tp, opti.ts_ecr);
2164 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2165 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2166 
2167 		/*
2168 		 * If all outstanding data is acked, stop retransmit
2169 		 * timer and remember to restart (more output or persist).
2170 		 * If there is more data to be acked, restart retransmit
2171 		 * timer, using current (possibly backed-off) value.
2172 		 */
2173 		if (th->th_ack == tp->snd_max) {
2174 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2175 			needoutput = 1;
2176 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2177 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2178 		/*
2179 		 * When new data is acked, open the congestion window.
2180 		 * If the window gives us less than ssthresh packets
2181 		 * in flight, open exponentially (segsz per packet).
2182 		 * Otherwise open linearly: segsz per window
2183 		 * (segsz^2 / cwnd per packet), plus a constant
2184 		 * fraction of a packet (segsz/8) to help larger windows
2185 		 * open quickly enough.
2186 		 *
2187 		 * If we are still in fast recovery (meaning we are using
2188 		 * NewReno and we have only received partial acks), do not
2189 		 * inflate the window yet.
2190 		 */
2191 		if (tp->t_partialacks < 0) {
2192 			u_int cw = tp->snd_cwnd;
2193 			u_int incr = tp->t_segsz;
2194 
2195 			if (cw >= tp->snd_ssthresh)
2196 				incr = incr * incr / cw;
2197 			tp->snd_cwnd = min(cw + incr,
2198 			    TCP_MAXWIN << tp->snd_scale);
2199 		}
2200 		ND6_HINT(tp);
2201 		if (acked > so->so_snd.sb_cc) {
2202 			tp->snd_wnd -= so->so_snd.sb_cc;
2203 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2204 			ourfinisacked = 1;
2205 		} else {
2206 			if (acked > (tp->t_lastoff - tp->t_inoff))
2207 				tp->t_lastm = NULL;
2208 			sbdrop(&so->so_snd, acked);
2209 			tp->t_lastoff -= acked;
2210 			tp->snd_wnd -= acked;
2211 			ourfinisacked = 0;
2212 		}
2213 		sowwakeup(so);
2214 		tp->snd_una = th->th_ack;
2215 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2216 			tp->snd_nxt = tp->snd_una;
2217 		if (SEQ_LT(tp->snd_high, tp->snd_una))
2218 			tp->snd_high = tp->snd_una;
2219 
2220 		switch (tp->t_state) {
2221 
2222 		/*
2223 		 * In FIN_WAIT_1 STATE in addition to the processing
2224 		 * for the ESTABLISHED state if our FIN is now acknowledged
2225 		 * then enter FIN_WAIT_2.
2226 		 */
2227 		case TCPS_FIN_WAIT_1:
2228 			if (ourfinisacked) {
2229 				/*
2230 				 * If we can't receive any more
2231 				 * data, then closing user can proceed.
2232 				 * Starting the timer is contrary to the
2233 				 * specification, but if we don't get a FIN
2234 				 * we'll hang forever.
2235 				 */
2236 				if (so->so_state & SS_CANTRCVMORE) {
2237 					soisdisconnected(so);
2238 					if (tcp_maxidle > 0)
2239 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2240 						    tcp_maxidle);
2241 				}
2242 				tp->t_state = TCPS_FIN_WAIT_2;
2243 			}
2244 			break;
2245 
2246 	 	/*
2247 		 * In CLOSING STATE in addition to the processing for
2248 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2249 		 * then enter the TIME-WAIT state, otherwise ignore
2250 		 * the segment.
2251 		 */
2252 		case TCPS_CLOSING:
2253 			if (ourfinisacked) {
2254 				tp->t_state = TCPS_TIME_WAIT;
2255 				tcp_canceltimers(tp);
2256 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2257 				soisdisconnected(so);
2258 			}
2259 			break;
2260 
2261 		/*
2262 		 * In LAST_ACK, we may still be waiting for data to drain
2263 		 * and/or to be acked, as well as for the ack of our FIN.
2264 		 * If our FIN is now acknowledged, delete the TCB,
2265 		 * enter the closed state and return.
2266 		 */
2267 		case TCPS_LAST_ACK:
2268 			if (ourfinisacked) {
2269 				tp = tcp_close(tp);
2270 				goto drop;
2271 			}
2272 			break;
2273 
2274 		/*
2275 		 * In TIME_WAIT state the only thing that should arrive
2276 		 * is a retransmission of the remote FIN.  Acknowledge
2277 		 * it and restart the finack timer.
2278 		 */
2279 		case TCPS_TIME_WAIT:
2280 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2281 			goto dropafterack;
2282 		}
2283 	}
2284 
2285 step6:
2286 	/*
2287 	 * Update window information.
2288 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2289 	 */
2290 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2291 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2292 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2293 		/* keep track of pure window updates */
2294 		if (tlen == 0 &&
2295 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2296 			tcpstat.tcps_rcvwinupd++;
2297 		tp->snd_wnd = tiwin;
2298 		tp->snd_wl1 = th->th_seq;
2299 		tp->snd_wl2 = th->th_ack;
2300 		if (tp->snd_wnd > tp->max_sndwnd)
2301 			tp->max_sndwnd = tp->snd_wnd;
2302 		needoutput = 1;
2303 	}
2304 
2305 	/*
2306 	 * Process segments with URG.
2307 	 */
2308 	if ((tiflags & TH_URG) && th->th_urp &&
2309 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2310 		/*
2311 		 * This is a kludge, but if we receive and accept
2312 		 * random urgent pointers, we'll crash in
2313 		 * soreceive.  It's hard to imagine someone
2314 		 * actually wanting to send this much urgent data.
2315 		 */
2316 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2317 			th->th_urp = 0;			/* XXX */
2318 			tiflags &= ~TH_URG;		/* XXX */
2319 			goto dodata;			/* XXX */
2320 		}
2321 		/*
2322 		 * If this segment advances the known urgent pointer,
2323 		 * then mark the data stream.  This should not happen
2324 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2325 		 * a FIN has been received from the remote side.
2326 		 * In these states we ignore the URG.
2327 		 *
2328 		 * According to RFC961 (Assigned Protocols),
2329 		 * the urgent pointer points to the last octet
2330 		 * of urgent data.  We continue, however,
2331 		 * to consider it to indicate the first octet
2332 		 * of data past the urgent section as the original
2333 		 * spec states (in one of two places).
2334 		 */
2335 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2336 			tp->rcv_up = th->th_seq + th->th_urp;
2337 			so->so_oobmark = so->so_rcv.sb_cc +
2338 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2339 			if (so->so_oobmark == 0)
2340 				so->so_state |= SS_RCVATMARK;
2341 			sohasoutofband(so);
2342 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2343 		}
2344 		/*
2345 		 * Remove out of band data so doesn't get presented to user.
2346 		 * This can happen independent of advancing the URG pointer,
2347 		 * but if two URG's are pending at once, some out-of-band
2348 		 * data may creep in... ick.
2349 		 */
2350 		if (th->th_urp <= (u_int16_t) tlen
2351 #ifdef SO_OOBINLINE
2352 		     && (so->so_options & SO_OOBINLINE) == 0
2353 #endif
2354 		     )
2355 			tcp_pulloutofband(so, th, m, hdroptlen);
2356 	} else
2357 		/*
2358 		 * If no out of band data is expected,
2359 		 * pull receive urgent pointer along
2360 		 * with the receive window.
2361 		 */
2362 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2363 			tp->rcv_up = tp->rcv_nxt;
2364 dodata:							/* XXX */
2365 
2366 	/*
2367 	 * Process the segment text, merging it into the TCP sequencing queue,
2368 	 * and arranging for acknowledgement of receipt if necessary.
2369 	 * This process logically involves adjusting tp->rcv_wnd as data
2370 	 * is presented to the user (this happens in tcp_usrreq.c,
2371 	 * case PRU_RCVD).  If a FIN has already been received on this
2372 	 * connection then we just ignore the text.
2373 	 */
2374 	if ((tlen || (tiflags & TH_FIN)) &&
2375 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2376 		/*
2377 		 * Insert segment ti into reassembly queue of tcp with
2378 		 * control block tp.  Return TH_FIN if reassembly now includes
2379 		 * a segment with FIN.  The macro form does the common case
2380 		 * inline (segment is the next to be received on an
2381 		 * established connection, and the queue is empty),
2382 		 * avoiding linkage into and removal from the queue and
2383 		 * repetition of various conversions.
2384 		 * Set DELACK for segments received in order, but ack
2385 		 * immediately when segments are out of order
2386 		 * (so fast retransmit can work).
2387 		 */
2388 		/* NOTE: this was TCP_REASS() macro, but used only once */
2389 		TCP_REASS_LOCK(tp);
2390 		if (th->th_seq == tp->rcv_nxt &&
2391 		    TAILQ_FIRST(&tp->segq) == NULL &&
2392 		    tp->t_state == TCPS_ESTABLISHED) {
2393 			TCP_SETUP_ACK(tp, th);
2394 			tp->rcv_nxt += tlen;
2395 			tiflags = th->th_flags & TH_FIN;
2396 			tcpstat.tcps_rcvpack++;
2397 			tcpstat.tcps_rcvbyte += tlen;
2398 			ND6_HINT(tp);
2399 			if (so->so_state & SS_CANTRCVMORE)
2400 				m_freem(m);
2401 			else {
2402 				m_adj(m, hdroptlen);
2403 				sbappendstream(&(so)->so_rcv, m);
2404 			}
2405 			sorwakeup(so);
2406 		} else {
2407 			m_adj(m, hdroptlen);
2408 			tiflags = tcp_reass(tp, th, m, &tlen);
2409 			tp->t_flags |= TF_ACKNOW;
2410 		}
2411 		TCP_REASS_UNLOCK(tp);
2412 
2413 		/*
2414 		 * Note the amount of data that peer has sent into
2415 		 * our window, in order to estimate the sender's
2416 		 * buffer size.
2417 		 */
2418 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2419 	} else {
2420 		m_freem(m);
2421 		m = NULL;
2422 		tiflags &= ~TH_FIN;
2423 	}
2424 
2425 	/*
2426 	 * If FIN is received ACK the FIN and let the user know
2427 	 * that the connection is closing.  Ignore a FIN received before
2428 	 * the connection is fully established.
2429 	 */
2430 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2431 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2432 			socantrcvmore(so);
2433 			tp->t_flags |= TF_ACKNOW;
2434 			tp->rcv_nxt++;
2435 		}
2436 		switch (tp->t_state) {
2437 
2438 	 	/*
2439 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2440 		 */
2441 		case TCPS_ESTABLISHED:
2442 			tp->t_state = TCPS_CLOSE_WAIT;
2443 			break;
2444 
2445 	 	/*
2446 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2447 		 * enter the CLOSING state.
2448 		 */
2449 		case TCPS_FIN_WAIT_1:
2450 			tp->t_state = TCPS_CLOSING;
2451 			break;
2452 
2453 	 	/*
2454 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2455 		 * starting the time-wait timer, turning off the other
2456 		 * standard timers.
2457 		 */
2458 		case TCPS_FIN_WAIT_2:
2459 			tp->t_state = TCPS_TIME_WAIT;
2460 			tcp_canceltimers(tp);
2461 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2462 			soisdisconnected(so);
2463 			break;
2464 
2465 		/*
2466 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2467 		 */
2468 		case TCPS_TIME_WAIT:
2469 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2470 			break;
2471 		}
2472 	}
2473 #ifdef TCP_DEBUG
2474 	if (so->so_options & SO_DEBUG)
2475 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2476 #endif
2477 
2478 	/*
2479 	 * Return any desired output.
2480 	 */
2481 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2482 		(void) tcp_output(tp);
2483 	if (tcp_saveti)
2484 		m_freem(tcp_saveti);
2485 	return;
2486 
2487 badsyn:
2488 	/*
2489 	 * Received a bad SYN.  Increment counters and dropwithreset.
2490 	 */
2491 	tcpstat.tcps_badsyn++;
2492 	tp = NULL;
2493 	goto dropwithreset;
2494 
2495 dropafterack:
2496 	/*
2497 	 * Generate an ACK dropping incoming segment if it occupies
2498 	 * sequence space, where the ACK reflects our state.
2499 	 */
2500 	if (tiflags & TH_RST)
2501 		goto drop;
2502 	goto dropafterack2;
2503 
2504 dropafterack_ratelim:
2505 	/*
2506 	 * We may want to rate-limit ACKs against SYN/RST attack.
2507 	 */
2508 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2509 	    tcp_ackdrop_ppslim) == 0) {
2510 		/* XXX stat */
2511 		goto drop;
2512 	}
2513 	/* ...fall into dropafterack2... */
2514 
2515 dropafterack2:
2516 	m_freem(m);
2517 	tp->t_flags |= TF_ACKNOW;
2518 	(void) tcp_output(tp);
2519 	if (tcp_saveti)
2520 		m_freem(tcp_saveti);
2521 	return;
2522 
2523 dropwithreset_ratelim:
2524 	/*
2525 	 * We may want to rate-limit RSTs in certain situations,
2526 	 * particularly if we are sending an RST in response to
2527 	 * an attempt to connect to or otherwise communicate with
2528 	 * a port for which we have no socket.
2529 	 */
2530 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2531 	    tcp_rst_ppslim) == 0) {
2532 		/* XXX stat */
2533 		goto drop;
2534 	}
2535 	/* ...fall into dropwithreset... */
2536 
2537 dropwithreset:
2538 	/*
2539 	 * Generate a RST, dropping incoming segment.
2540 	 * Make ACK acceptable to originator of segment.
2541 	 */
2542 	if (tiflags & TH_RST)
2543 		goto drop;
2544 
2545 	switch (af) {
2546 #ifdef INET6
2547 	case AF_INET6:
2548 		/* For following calls to tcp_respond */
2549 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2550 			goto drop;
2551 		break;
2552 #endif /* INET6 */
2553 	case AF_INET:
2554 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2555 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2556 			goto drop;
2557 	}
2558 
2559 	if (tiflags & TH_ACK)
2560 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2561 	else {
2562 		if (tiflags & TH_SYN)
2563 			tlen++;
2564 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2565 		    TH_RST|TH_ACK);
2566 	}
2567 	if (tcp_saveti)
2568 		m_freem(tcp_saveti);
2569 	return;
2570 
2571 badcsum:
2572 drop:
2573 	/*
2574 	 * Drop space held by incoming segment and return.
2575 	 */
2576 	if (tp) {
2577 		if (tp->t_inpcb)
2578 			so = tp->t_inpcb->inp_socket;
2579 #ifdef INET6
2580 		else if (tp->t_in6pcb)
2581 			so = tp->t_in6pcb->in6p_socket;
2582 #endif
2583 		else
2584 			so = NULL;
2585 #ifdef TCP_DEBUG
2586 		if (so && (so->so_options & SO_DEBUG) != 0)
2587 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2588 #endif
2589 	}
2590 	if (tcp_saveti)
2591 		m_freem(tcp_saveti);
2592 	m_freem(m);
2593 	return;
2594 }
2595 
2596 #ifdef TCP_SIGNATURE
2597 int
2598 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
2599 {
2600 
2601 	MD5Update(fstate, (u_char *)data, len);
2602 	return (0);
2603 }
2604 
2605 struct secasvar *
2606 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2607 {
2608 	struct secasvar *sav;
2609 #ifdef FAST_IPSEC
2610 	union sockaddr_union dst;
2611 #endif
2612 	struct ip *ip;
2613 	struct ip6_hdr *ip6;
2614 
2615 	ip = mtod(m, struct ip *);
2616 	switch (ip->ip_v) {
2617 	case 4:
2618 		ip = mtod(m, struct ip *);
2619 		ip6 = NULL;
2620 		break;
2621 	case 6:
2622 		ip = NULL;
2623 		ip6 = mtod(m, struct ip6_hdr *);
2624 		break;
2625 	default:
2626 		return (NULL);
2627 	}
2628 
2629 #ifdef FAST_IPSEC
2630 	/* Extract the destination from the IP header in the mbuf. */
2631 	bzero(&dst, sizeof(union sockaddr_union));
2632 	dst.sa.sa_len = sizeof(struct sockaddr_in);
2633 	dst.sa.sa_family = AF_INET;
2634 	dst.sin.sin_addr = ip->ip_dst;
2635 
2636 	/*
2637 	 * Look up an SADB entry which matches the address of the peer.
2638 	 */
2639 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2640 #else
2641 	if (ip)
2642 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
2643 		    (caddr_t)&ip->ip_dst, IPPROTO_TCP,
2644 		    htonl(TCP_SIG_SPI));
2645 	else
2646 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
2647 		    (caddr_t)&ip6->ip6_dst, IPPROTO_TCP,
2648 		    htonl(TCP_SIG_SPI));
2649 #endif
2650 
2651 	return (sav);	/* freesav must be performed by caller */
2652 }
2653 
2654 int
2655 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2656     struct secasvar *sav, char *sig)
2657 {
2658 	MD5_CTX ctx;
2659 	struct ip *ip;
2660 	struct ipovly *ipovly;
2661 	struct ip6_hdr *ip6;
2662 	struct ippseudo ippseudo;
2663 	struct ip6_hdr_pseudo ip6pseudo;
2664 	struct tcphdr th0;
2665 	int l, tcphdrlen;
2666 
2667 	if (sav == NULL)
2668 		return (-1);
2669 
2670 	tcphdrlen = th->th_off * 4;
2671 
2672 	switch (mtod(m, struct ip *)->ip_v) {
2673 	case 4:
2674 		ip = mtod(m, struct ip *);
2675 		ip6 = NULL;
2676 		break;
2677 	case 6:
2678 		ip = NULL;
2679 		ip6 = mtod(m, struct ip6_hdr *);
2680 		break;
2681 	default:
2682 		return (-1);
2683 	}
2684 
2685 	MD5Init(&ctx);
2686 
2687 	if (ip) {
2688 		memset(&ippseudo, 0, sizeof(ippseudo));
2689 		ipovly = (struct ipovly *)ip;
2690 		ippseudo.ippseudo_src = ipovly->ih_src;
2691 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2692 		ippseudo.ippseudo_pad = 0;
2693 		ippseudo.ippseudo_p = IPPROTO_TCP;
2694 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2695 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2696 	} else {
2697 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2698 		ip6pseudo.ip6ph_src = ip6->ip6_src;
2699 		in6_clearscope(&ip6pseudo.ip6ph_src);
2700 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2701 		in6_clearscope(&ip6pseudo.ip6ph_dst);
2702 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2703 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2704 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2705 	}
2706 
2707 	th0 = *th;
2708 	th0.th_sum = 0;
2709 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
2710 
2711 	l = m->m_pkthdr.len - thoff - tcphdrlen;
2712 	if (l > 0)
2713 		m_apply(m, thoff + tcphdrlen,
2714 		    m->m_pkthdr.len - thoff - tcphdrlen,
2715 		    tcp_signature_apply, &ctx);
2716 
2717 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2718 	MD5Final(sig, &ctx);
2719 
2720 	return (0);
2721 }
2722 #endif
2723 
2724 int
2725 tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
2726     struct mbuf *m, int toff, struct tcp_opt_info *oi)
2727 {
2728 	u_int16_t mss;
2729 	int opt, optlen = 0;
2730 #ifdef TCP_SIGNATURE
2731 	caddr_t sigp = NULL;
2732 	char sigbuf[TCP_SIGLEN];
2733 	struct secasvar *sav = NULL;
2734 #endif
2735 
2736 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2737 		opt = cp[0];
2738 		if (opt == TCPOPT_EOL)
2739 			break;
2740 		if (opt == TCPOPT_NOP)
2741 			optlen = 1;
2742 		else {
2743 			if (cnt < 2)
2744 				break;
2745 			optlen = cp[1];
2746 			if (optlen < 2 || optlen > cnt)
2747 				break;
2748 		}
2749 		switch (opt) {
2750 
2751 		default:
2752 			continue;
2753 
2754 		case TCPOPT_MAXSEG:
2755 			if (optlen != TCPOLEN_MAXSEG)
2756 				continue;
2757 			if (!(th->th_flags & TH_SYN))
2758 				continue;
2759 			bcopy(cp + 2, &mss, sizeof(mss));
2760 			oi->maxseg = ntohs(mss);
2761 			break;
2762 
2763 		case TCPOPT_WINDOW:
2764 			if (optlen != TCPOLEN_WINDOW)
2765 				continue;
2766 			if (!(th->th_flags & TH_SYN))
2767 				continue;
2768 			tp->t_flags |= TF_RCVD_SCALE;
2769 			tp->requested_s_scale = cp[2];
2770 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2771 #if 0	/*XXX*/
2772 				char *p;
2773 
2774 				if (ip)
2775 					p = ntohl(ip->ip_src);
2776 #ifdef INET6
2777 				else if (ip6)
2778 					p = ip6_sprintf(&ip6->ip6_src);
2779 #endif
2780 				else
2781 					p = "(unknown)";
2782 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2783 				    "assuming %d\n",
2784 				    tp->requested_s_scale, p,
2785 				    TCP_MAX_WINSHIFT);
2786 #else
2787 				log(LOG_ERR, "TCP: invalid wscale %d, "
2788 				    "assuming %d\n",
2789 				    tp->requested_s_scale,
2790 				    TCP_MAX_WINSHIFT);
2791 #endif
2792 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
2793 			}
2794 			break;
2795 
2796 		case TCPOPT_TIMESTAMP:
2797 			if (optlen != TCPOLEN_TIMESTAMP)
2798 				continue;
2799 			oi->ts_present = 1;
2800 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2801 			NTOHL(oi->ts_val);
2802 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2803 			NTOHL(oi->ts_ecr);
2804 
2805 			/*
2806 			 * A timestamp received in a SYN makes
2807 			 * it ok to send timestamp requests and replies.
2808 			 */
2809 			if (th->th_flags & TH_SYN) {
2810 				tp->t_flags |= TF_RCVD_TSTMP;
2811 				tp->ts_recent = oi->ts_val;
2812 				tp->ts_recent_age = tcp_now;
2813 			}
2814 			break;
2815 		case TCPOPT_SACK_PERMITTED:
2816 			if (optlen != TCPOLEN_SACK_PERMITTED)
2817 				continue;
2818 			if (!(th->th_flags & TH_SYN))
2819 				continue;
2820 			tp->t_flags &= ~TF_CANT_TXSACK;
2821 			break;
2822 
2823 		case TCPOPT_SACK:
2824 			if (tp->t_flags & TF_IGNR_RXSACK)
2825 				continue;
2826 			if (optlen % 8 != 2 || optlen < 10)
2827 				continue;
2828 			cp += 2;
2829 			optlen -= 2;
2830 			for (; optlen > 0; cp -= 8, optlen -= 8) {
2831 				tcp_seq lwe, rwe;
2832 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2833 				NTOHL(lwe);
2834 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2835 				NTOHL(rwe);
2836 				/* tcp_mark_sacked(tp, lwe, rwe); */
2837 			}
2838 			break;
2839 #ifdef TCP_SIGNATURE
2840 		case TCPOPT_SIGNATURE:
2841 			if (optlen != TCPOLEN_SIGNATURE)
2842 				continue;
2843 			if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
2844 				return (-1);
2845 
2846 			sigp = sigbuf;
2847 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
2848 			memset(cp + 2, 0, TCP_SIGLEN);
2849 			tp->t_flags |= TF_SIGNATURE;
2850 			break;
2851 #endif
2852 		}
2853 	}
2854 
2855 #ifdef TCP_SIGNATURE
2856 	if (tp->t_flags & TF_SIGNATURE) {
2857 
2858 		sav = tcp_signature_getsav(m, th);
2859 
2860 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
2861 			return (-1);
2862 	}
2863 
2864 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2865 		if (sav == NULL)
2866 			return (-1);
2867 #ifdef FAST_IPSEC
2868 		KEY_FREESAV(&sav);
2869 #else
2870 		key_freesav(sav);
2871 #endif
2872 		return (-1);
2873 	}
2874 
2875 	if (sigp) {
2876 		char sig[TCP_SIGLEN];
2877 
2878 		TCP_FIELDS_TO_NET(th);
2879 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
2880 			TCP_FIELDS_TO_HOST(th);
2881 			if (sav == NULL)
2882 				return (-1);
2883 #ifdef FAST_IPSEC
2884 			KEY_FREESAV(&sav);
2885 #else
2886 			key_freesav(sav);
2887 #endif
2888 			return (-1);
2889 		}
2890 		TCP_FIELDS_TO_HOST(th);
2891 
2892 		if (bcmp(sig, sigp, TCP_SIGLEN)) {
2893 			tcpstat.tcps_badsig++;
2894 			if (sav == NULL)
2895 				return (-1);
2896 #ifdef FAST_IPSEC
2897 			KEY_FREESAV(&sav);
2898 #else
2899 			key_freesav(sav);
2900 #endif
2901 			return (-1);
2902 		} else
2903 			tcpstat.tcps_goodsig++;
2904 
2905 		key_sa_recordxfer(sav, m);
2906 #ifdef FAST_IPSEC
2907 		KEY_FREESAV(&sav);
2908 #else
2909 		key_freesav(sav);
2910 #endif
2911 	}
2912 #endif
2913 
2914 	return (0);
2915 }
2916 
2917 /*
2918  * Pull out of band byte out of a segment so
2919  * it doesn't appear in the user's data queue.
2920  * It is still reflected in the segment length for
2921  * sequencing purposes.
2922  */
2923 void
2924 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
2925     struct mbuf *m, int off)
2926 {
2927 	int cnt = off + th->th_urp - 1;
2928 
2929 	while (cnt >= 0) {
2930 		if (m->m_len > cnt) {
2931 			char *cp = mtod(m, caddr_t) + cnt;
2932 			struct tcpcb *tp = sototcpcb(so);
2933 
2934 			tp->t_iobc = *cp;
2935 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2936 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2937 			m->m_len--;
2938 			return;
2939 		}
2940 		cnt -= m->m_len;
2941 		m = m->m_next;
2942 		if (m == 0)
2943 			break;
2944 	}
2945 	panic("tcp_pulloutofband");
2946 }
2947 
2948 /*
2949  * Collect new round-trip time estimate
2950  * and update averages and current timeout.
2951  */
2952 void
2953 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
2954 {
2955 	int32_t delta;
2956 
2957 	tcpstat.tcps_rttupdated++;
2958 	if (tp->t_srtt != 0) {
2959 		/*
2960 		 * srtt is stored as fixed point with 3 bits after the
2961 		 * binary point (i.e., scaled by 8).  The following magic
2962 		 * is equivalent to the smoothing algorithm in rfc793 with
2963 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2964 		 * point).  Adjust rtt to origin 0.
2965 		 */
2966 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2967 		if ((tp->t_srtt += delta) <= 0)
2968 			tp->t_srtt = 1 << 2;
2969 		/*
2970 		 * We accumulate a smoothed rtt variance (actually, a
2971 		 * smoothed mean difference), then set the retransmit
2972 		 * timer to smoothed rtt + 4 times the smoothed variance.
2973 		 * rttvar is stored as fixed point with 2 bits after the
2974 		 * binary point (scaled by 4).  The following is
2975 		 * equivalent to rfc793 smoothing with an alpha of .75
2976 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2977 		 * rfc793's wired-in beta.
2978 		 */
2979 		if (delta < 0)
2980 			delta = -delta;
2981 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2982 		if ((tp->t_rttvar += delta) <= 0)
2983 			tp->t_rttvar = 1 << 2;
2984 	} else {
2985 		/*
2986 		 * No rtt measurement yet - use the unsmoothed rtt.
2987 		 * Set the variance to half the rtt (so our first
2988 		 * retransmit happens at 3*rtt).
2989 		 */
2990 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2991 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2992 	}
2993 	tp->t_rtttime = 0;
2994 	tp->t_rxtshift = 0;
2995 
2996 	/*
2997 	 * the retransmit should happen at rtt + 4 * rttvar.
2998 	 * Because of the way we do the smoothing, srtt and rttvar
2999 	 * will each average +1/2 tick of bias.  When we compute
3000 	 * the retransmit timer, we want 1/2 tick of rounding and
3001 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3002 	 * firing of the timer.  The bias will give us exactly the
3003 	 * 1.5 tick we need.  But, because the bias is
3004 	 * statistical, we have to test that we don't drop below
3005 	 * the minimum feasible timer (which is 2 ticks).
3006 	 */
3007 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3008 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3009 
3010 	/*
3011 	 * We received an ack for a packet that wasn't retransmitted;
3012 	 * it is probably safe to discard any error indications we've
3013 	 * received recently.  This isn't quite right, but close enough
3014 	 * for now (a route might have failed after we sent a segment,
3015 	 * and the return path might not be symmetrical).
3016 	 */
3017 	tp->t_softerror = 0;
3018 }
3019 
3020 void
3021 tcp_reno_newack(struct tcpcb *tp, struct tcphdr *th)
3022 {
3023 	if (tp->t_partialacks < 0) {
3024 		/*
3025 		 * We were not in fast recovery.  Reset the duplicate ack
3026 		 * counter.
3027 		 */
3028 		tp->t_dupacks = 0;
3029 	} else {
3030 		/*
3031 		 * Clamp the congestion window to the crossover point and
3032 		 * exit fast recovery.
3033 		 */
3034 		if (tp->snd_cwnd > tp->snd_ssthresh)
3035 			tp->snd_cwnd = tp->snd_ssthresh;
3036 		tp->t_partialacks = -1;
3037 		tp->t_dupacks = 0;
3038 	}
3039 }
3040 
3041 /*
3042  * Implement the NewReno response to a new ack, checking for partial acks in
3043  * fast recovery.
3044  */
3045 void
3046 tcp_newreno_newack(struct tcpcb *tp, struct tcphdr *th)
3047 {
3048 	if (tp->t_partialacks < 0) {
3049 		/*
3050 		 * We were not in fast recovery.  Reset the duplicate ack
3051 		 * counter.
3052 		 */
3053 		tp->t_dupacks = 0;
3054 	} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
3055 		/*
3056 		 * This is a partial ack.  Retransmit the first unacknowledged
3057 		 * segment and deflate the congestion window by the amount of
3058 		 * acknowledged data.  Do not exit fast recovery.
3059 		 */
3060 		tcp_seq onxt = tp->snd_nxt;
3061 		u_long ocwnd = tp->snd_cwnd;
3062 
3063 		/*
3064 		 * snd_una has not yet been updated and the socket's send
3065 		 * buffer has not yet drained off the ACK'd data, so we
3066 		 * have to leave snd_una as it was to get the correct data
3067 		 * offset in tcp_output().
3068 		 */
3069 		if (++tp->t_partialacks == 1)
3070 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
3071 		tp->t_rtttime = 0;
3072 		tp->snd_nxt = th->th_ack;
3073 		/*
3074 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
3075 		 * is not yet updated when we're called.
3076 		 */
3077 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
3078 		(void) tcp_output(tp);
3079 		tp->snd_cwnd = ocwnd;
3080 		if (SEQ_GT(onxt, tp->snd_nxt))
3081 			tp->snd_nxt = onxt;
3082 		/*
3083 		 * Partial window deflation.  Relies on fact that tp->snd_una
3084 		 * not updated yet.
3085 		 */
3086 		tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
3087 	} else {
3088 		/*
3089 		 * Complete ack.  Inflate the congestion window to ssthresh
3090 		 * and exit fast recovery.
3091 		 *
3092 		 * Window inflation should have left us with approx.
3093 		 * snd_ssthresh outstanding data.  But in case we
3094 		 * would be inclined to send a burst, better to do
3095 		 * it via the slow start mechanism.
3096 		 */
3097 		if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
3098 			tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
3099 			    + tp->t_segsz;
3100 		else
3101 			tp->snd_cwnd = tp->snd_ssthresh;
3102 		tp->t_partialacks = -1;
3103 		tp->t_dupacks = 0;
3104 	}
3105 }
3106 
3107 
3108 /*
3109  * TCP compressed state engine.  Currently used to hold compressed
3110  * state for SYN_RECEIVED.
3111  */
3112 
3113 u_long	syn_cache_count;
3114 u_int32_t syn_hash1, syn_hash2;
3115 
3116 #define SYN_HASH(sa, sp, dp) \
3117 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3118 				     ((u_int32_t)(sp)))^syn_hash2)))
3119 #ifndef INET6
3120 #define	SYN_HASHALL(hash, src, dst) \
3121 do {									\
3122 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
3123 		((struct sockaddr_in *)(src))->sin_port,		\
3124 		((struct sockaddr_in *)(dst))->sin_port);		\
3125 } while (/*CONSTCOND*/ 0)
3126 #else
3127 #define SYN_HASH6(sa, sp, dp) \
3128 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3129 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3130 	 & 0x7fffffff)
3131 
3132 #define SYN_HASHALL(hash, src, dst) \
3133 do {									\
3134 	switch ((src)->sa_family) {					\
3135 	case AF_INET:							\
3136 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3137 			((struct sockaddr_in *)(src))->sin_port,	\
3138 			((struct sockaddr_in *)(dst))->sin_port);	\
3139 		break;							\
3140 	case AF_INET6:							\
3141 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
3142 			((struct sockaddr_in6 *)(src))->sin6_port,	\
3143 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
3144 		break;							\
3145 	default:							\
3146 		hash = 0;						\
3147 	}								\
3148 } while (/*CONSTCOND*/0)
3149 #endif /* INET6 */
3150 
3151 #define	SYN_CACHE_RM(sc)						\
3152 do {									\
3153 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
3154 	    (sc), sc_bucketq);						\
3155 	(sc)->sc_tp = NULL;						\
3156 	LIST_REMOVE((sc), sc_tpq);					\
3157 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
3158 	callout_stop(&(sc)->sc_timer);					\
3159 	syn_cache_count--;						\
3160 } while (/*CONSTCOND*/0)
3161 
3162 #define	SYN_CACHE_PUT(sc)						\
3163 do {									\
3164 	if ((sc)->sc_ipopts)						\
3165 		(void) m_free((sc)->sc_ipopts);				\
3166 	if ((sc)->sc_route4.ro_rt != NULL)				\
3167 		RTFREE((sc)->sc_route4.ro_rt);				\
3168 	if (callout_invoking(&(sc)->sc_timer))				\
3169 		(sc)->sc_flags |= SCF_DEAD;				\
3170 	else								\
3171 		pool_put(&syn_cache_pool, (sc));			\
3172 } while (/*CONSTCOND*/0)
3173 
3174 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL);
3175 
3176 /*
3177  * We don't estimate RTT with SYNs, so each packet starts with the default
3178  * RTT and each timer step has a fixed timeout value.
3179  */
3180 #define	SYN_CACHE_TIMER_ARM(sc)						\
3181 do {									\
3182 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3183 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3184 	    TCPTV_REXMTMAX);						\
3185 	callout_reset(&(sc)->sc_timer,					\
3186 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
3187 } while (/*CONSTCOND*/0)
3188 
3189 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
3190 
3191 void
3192 syn_cache_init(void)
3193 {
3194 	int i;
3195 
3196 	/* Initialize the hash buckets. */
3197 	for (i = 0; i < tcp_syn_cache_size; i++)
3198 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3199 }
3200 
3201 void
3202 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3203 {
3204 	struct syn_cache_head *scp;
3205 	struct syn_cache *sc2;
3206 	int s;
3207 
3208 	/*
3209 	 * If there are no entries in the hash table, reinitialize
3210 	 * the hash secrets.
3211 	 */
3212 	if (syn_cache_count == 0) {
3213 		syn_hash1 = arc4random();
3214 		syn_hash2 = arc4random();
3215 	}
3216 
3217 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3218 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3219 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3220 
3221 	/*
3222 	 * Make sure that we don't overflow the per-bucket
3223 	 * limit or the total cache size limit.
3224 	 */
3225 	s = splsoftnet();
3226 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3227 		tcpstat.tcps_sc_bucketoverflow++;
3228 		/*
3229 		 * The bucket is full.  Toss the oldest element in the
3230 		 * bucket.  This will be the first entry in the bucket.
3231 		 */
3232 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3233 #ifdef DIAGNOSTIC
3234 		/*
3235 		 * This should never happen; we should always find an
3236 		 * entry in our bucket.
3237 		 */
3238 		if (sc2 == NULL)
3239 			panic("syn_cache_insert: bucketoverflow: impossible");
3240 #endif
3241 		SYN_CACHE_RM(sc2);
3242 		SYN_CACHE_PUT(sc2);
3243 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3244 		struct syn_cache_head *scp2, *sce;
3245 
3246 		tcpstat.tcps_sc_overflowed++;
3247 		/*
3248 		 * The cache is full.  Toss the oldest entry in the
3249 		 * first non-empty bucket we can find.
3250 		 *
3251 		 * XXX We would really like to toss the oldest
3252 		 * entry in the cache, but we hope that this
3253 		 * condition doesn't happen very often.
3254 		 */
3255 		scp2 = scp;
3256 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3257 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3258 			for (++scp2; scp2 != scp; scp2++) {
3259 				if (scp2 >= sce)
3260 					scp2 = &tcp_syn_cache[0];
3261 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3262 					break;
3263 			}
3264 #ifdef DIAGNOSTIC
3265 			/*
3266 			 * This should never happen; we should always find a
3267 			 * non-empty bucket.
3268 			 */
3269 			if (scp2 == scp)
3270 				panic("syn_cache_insert: cacheoverflow: "
3271 				    "impossible");
3272 #endif
3273 		}
3274 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3275 		SYN_CACHE_RM(sc2);
3276 		SYN_CACHE_PUT(sc2);
3277 	}
3278 
3279 	/*
3280 	 * Initialize the entry's timer.
3281 	 */
3282 	sc->sc_rxttot = 0;
3283 	sc->sc_rxtshift = 0;
3284 	SYN_CACHE_TIMER_ARM(sc);
3285 
3286 	/* Link it from tcpcb entry */
3287 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3288 
3289 	/* Put it into the bucket. */
3290 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3291 	scp->sch_length++;
3292 	syn_cache_count++;
3293 
3294 	tcpstat.tcps_sc_added++;
3295 	splx(s);
3296 }
3297 
3298 /*
3299  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3300  * If we have retransmitted an entry the maximum number of times, expire
3301  * that entry.
3302  */
3303 void
3304 syn_cache_timer(void *arg)
3305 {
3306 	struct syn_cache *sc = arg;
3307 	int s;
3308 
3309 	s = splsoftnet();
3310 	callout_ack(&sc->sc_timer);
3311 
3312 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3313 		tcpstat.tcps_sc_delayed_free++;
3314 		pool_put(&syn_cache_pool, sc);
3315 		splx(s);
3316 		return;
3317 	}
3318 
3319 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3320 		/* Drop it -- too many retransmissions. */
3321 		goto dropit;
3322 	}
3323 
3324 	/*
3325 	 * Compute the total amount of time this entry has
3326 	 * been on a queue.  If this entry has been on longer
3327 	 * than the keep alive timer would allow, expire it.
3328 	 */
3329 	sc->sc_rxttot += sc->sc_rxtcur;
3330 	if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3331 		goto dropit;
3332 
3333 	tcpstat.tcps_sc_retransmitted++;
3334 	(void) syn_cache_respond(sc, NULL);
3335 
3336 	/* Advance the timer back-off. */
3337 	sc->sc_rxtshift++;
3338 	SYN_CACHE_TIMER_ARM(sc);
3339 
3340 	splx(s);
3341 	return;
3342 
3343  dropit:
3344 	tcpstat.tcps_sc_timed_out++;
3345 	SYN_CACHE_RM(sc);
3346 	SYN_CACHE_PUT(sc);
3347 	splx(s);
3348 }
3349 
3350 /*
3351  * Remove syn cache created by the specified tcb entry,
3352  * because this does not make sense to keep them
3353  * (if there's no tcb entry, syn cache entry will never be used)
3354  */
3355 void
3356 syn_cache_cleanup(struct tcpcb *tp)
3357 {
3358 	struct syn_cache *sc, *nsc;
3359 	int s;
3360 
3361 	s = splsoftnet();
3362 
3363 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3364 		nsc = LIST_NEXT(sc, sc_tpq);
3365 
3366 #ifdef DIAGNOSTIC
3367 		if (sc->sc_tp != tp)
3368 			panic("invalid sc_tp in syn_cache_cleanup");
3369 #endif
3370 		SYN_CACHE_RM(sc);
3371 		SYN_CACHE_PUT(sc);
3372 	}
3373 	/* just for safety */
3374 	LIST_INIT(&tp->t_sc);
3375 
3376 	splx(s);
3377 }
3378 
3379 /*
3380  * Find an entry in the syn cache.
3381  */
3382 struct syn_cache *
3383 syn_cache_lookup(struct sockaddr *src, struct sockaddr *dst,
3384     struct syn_cache_head **headp)
3385 {
3386 	struct syn_cache *sc;
3387 	struct syn_cache_head *scp;
3388 	u_int32_t hash;
3389 	int s;
3390 
3391 	SYN_HASHALL(hash, src, dst);
3392 
3393 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3394 	*headp = scp;
3395 	s = splsoftnet();
3396 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3397 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3398 		if (sc->sc_hash != hash)
3399 			continue;
3400 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3401 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3402 			splx(s);
3403 			return (sc);
3404 		}
3405 	}
3406 	splx(s);
3407 	return (NULL);
3408 }
3409 
3410 /*
3411  * This function gets called when we receive an ACK for a
3412  * socket in the LISTEN state.  We look up the connection
3413  * in the syn cache, and if its there, we pull it out of
3414  * the cache and turn it into a full-blown connection in
3415  * the SYN-RECEIVED state.
3416  *
3417  * The return values may not be immediately obvious, and their effects
3418  * can be subtle, so here they are:
3419  *
3420  *	NULL	SYN was not found in cache; caller should drop the
3421  *		packet and send an RST.
3422  *
3423  *	-1	We were unable to create the new connection, and are
3424  *		aborting it.  An ACK,RST is being sent to the peer
3425  *		(unless we got screwey sequence numbners; see below),
3426  *		because the 3-way handshake has been completed.  Caller
3427  *		should not free the mbuf, since we may be using it.  If
3428  *		we are not, we will free it.
3429  *
3430  *	Otherwise, the return value is a pointer to the new socket
3431  *	associated with the connection.
3432  */
3433 struct socket *
3434 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3435     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3436     struct socket *so, struct mbuf *m)
3437 {
3438 	struct syn_cache *sc;
3439 	struct syn_cache_head *scp;
3440 	struct inpcb *inp = NULL;
3441 #ifdef INET6
3442 	struct in6pcb *in6p = NULL;
3443 #endif
3444 	struct tcpcb *tp = 0;
3445 	struct mbuf *am;
3446 	int s;
3447 	struct socket *oso;
3448 
3449 	s = splsoftnet();
3450 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3451 		splx(s);
3452 		return (NULL);
3453 	}
3454 
3455 	/*
3456 	 * Verify the sequence and ack numbers.  Try getting the correct
3457 	 * response again.
3458 	 */
3459 	if ((th->th_ack != sc->sc_iss + 1) ||
3460 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3461 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3462 		(void) syn_cache_respond(sc, m);
3463 		splx(s);
3464 		return ((struct socket *)(-1));
3465 	}
3466 
3467 	/* Remove this cache entry */
3468 	SYN_CACHE_RM(sc);
3469 	splx(s);
3470 
3471 	/*
3472 	 * Ok, create the full blown connection, and set things up
3473 	 * as they would have been set up if we had created the
3474 	 * connection when the SYN arrived.  If we can't create
3475 	 * the connection, abort it.
3476 	 */
3477 	/*
3478 	 * inp still has the OLD in_pcb stuff, set the
3479 	 * v6-related flags on the new guy, too.   This is
3480 	 * done particularly for the case where an AF_INET6
3481 	 * socket is bound only to a port, and a v4 connection
3482 	 * comes in on that port.
3483 	 * we also copy the flowinfo from the original pcb
3484 	 * to the new one.
3485 	 */
3486 	oso = so;
3487 	so = sonewconn(so, SS_ISCONNECTED);
3488 	if (so == NULL)
3489 		goto resetandabort;
3490 
3491 	switch (so->so_proto->pr_domain->dom_family) {
3492 #ifdef INET
3493 	case AF_INET:
3494 		inp = sotoinpcb(so);
3495 		break;
3496 #endif
3497 #ifdef INET6
3498 	case AF_INET6:
3499 		in6p = sotoin6pcb(so);
3500 		break;
3501 #endif
3502 	}
3503 	switch (src->sa_family) {
3504 #ifdef INET
3505 	case AF_INET:
3506 		if (inp) {
3507 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3508 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3509 			inp->inp_options = ip_srcroute();
3510 			in_pcbstate(inp, INP_BOUND);
3511 			if (inp->inp_options == NULL) {
3512 				inp->inp_options = sc->sc_ipopts;
3513 				sc->sc_ipopts = NULL;
3514 			}
3515 		}
3516 #ifdef INET6
3517 		else if (in6p) {
3518 			/* IPv4 packet to AF_INET6 socket */
3519 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3520 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3521 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3522 				&in6p->in6p_laddr.s6_addr32[3],
3523 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
3524 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3525 			in6totcpcb(in6p)->t_family = AF_INET;
3526 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3527 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3528 			else
3529 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3530 			in6_pcbstate(in6p, IN6P_BOUND);
3531 		}
3532 #endif
3533 		break;
3534 #endif
3535 #ifdef INET6
3536 	case AF_INET6:
3537 		if (in6p) {
3538 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3539 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3540 			in6_pcbstate(in6p, IN6P_BOUND);
3541 		}
3542 		break;
3543 #endif
3544 	}
3545 #ifdef INET6
3546 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3547 		struct in6pcb *oin6p = sotoin6pcb(oso);
3548 		/* inherit socket options from the listening socket */
3549 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3550 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3551 			m_freem(in6p->in6p_options);
3552 			in6p->in6p_options = 0;
3553 		}
3554 		ip6_savecontrol(in6p, &in6p->in6p_options,
3555 			mtod(m, struct ip6_hdr *), m);
3556 	}
3557 #endif
3558 
3559 #if defined(IPSEC) || defined(FAST_IPSEC)
3560 	/*
3561 	 * we make a copy of policy, instead of sharing the policy,
3562 	 * for better behavior in terms of SA lookup and dead SA removal.
3563 	 */
3564 	if (inp) {
3565 		/* copy old policy into new socket's */
3566 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3567 			printf("tcp_input: could not copy policy\n");
3568 	}
3569 #ifdef INET6
3570 	else if (in6p) {
3571 		/* copy old policy into new socket's */
3572 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3573 		    in6p->in6p_sp))
3574 			printf("tcp_input: could not copy policy\n");
3575 	}
3576 #endif
3577 #endif
3578 
3579 	/*
3580 	 * Give the new socket our cached route reference.
3581 	 */
3582 	if (inp)
3583 		inp->inp_route = sc->sc_route4;		/* struct assignment */
3584 #ifdef INET6
3585 	else
3586 		in6p->in6p_route = sc->sc_route6;
3587 #endif
3588 	sc->sc_route4.ro_rt = NULL;
3589 
3590 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3591 	if (am == NULL)
3592 		goto resetandabort;
3593 	MCLAIM(am, &tcp_mowner);
3594 	am->m_len = src->sa_len;
3595 	bcopy(src, mtod(am, caddr_t), src->sa_len);
3596 	if (inp) {
3597 		if (in_pcbconnect(inp, am)) {
3598 			(void) m_free(am);
3599 			goto resetandabort;
3600 		}
3601 	}
3602 #ifdef INET6
3603 	else if (in6p) {
3604 		if (src->sa_family == AF_INET) {
3605 			/* IPv4 packet to AF_INET6 socket */
3606 			struct sockaddr_in6 *sin6;
3607 			sin6 = mtod(am, struct sockaddr_in6 *);
3608 			am->m_len = sizeof(*sin6);
3609 			bzero(sin6, sizeof(*sin6));
3610 			sin6->sin6_family = AF_INET6;
3611 			sin6->sin6_len = sizeof(*sin6);
3612 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3613 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3614 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
3615 				&sin6->sin6_addr.s6_addr32[3],
3616 				sizeof(sin6->sin6_addr.s6_addr32[3]));
3617 		}
3618 		if (in6_pcbconnect(in6p, am)) {
3619 			(void) m_free(am);
3620 			goto resetandabort;
3621 		}
3622 	}
3623 #endif
3624 	else {
3625 		(void) m_free(am);
3626 		goto resetandabort;
3627 	}
3628 	(void) m_free(am);
3629 
3630 	if (inp)
3631 		tp = intotcpcb(inp);
3632 #ifdef INET6
3633 	else if (in6p)
3634 		tp = in6totcpcb(in6p);
3635 #endif
3636 	else
3637 		tp = NULL;
3638 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3639 	if (sc->sc_request_r_scale != 15) {
3640 		tp->requested_s_scale = sc->sc_requested_s_scale;
3641 		tp->request_r_scale = sc->sc_request_r_scale;
3642 		tp->snd_scale = sc->sc_requested_s_scale;
3643 		tp->rcv_scale = sc->sc_request_r_scale;
3644 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3645 	}
3646 	if (sc->sc_flags & SCF_TIMESTAMP)
3647 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3648 	tp->ts_timebase = sc->sc_timebase;
3649 
3650 	tp->t_template = tcp_template(tp);
3651 	if (tp->t_template == 0) {
3652 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3653 		so = NULL;
3654 		m_freem(m);
3655 		goto abort;
3656 	}
3657 
3658 	tp->iss = sc->sc_iss;
3659 	tp->irs = sc->sc_irs;
3660 	tcp_sendseqinit(tp);
3661 	tcp_rcvseqinit(tp);
3662 	tp->t_state = TCPS_SYN_RECEIVED;
3663 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3664 	tcpstat.tcps_accepts++;
3665 
3666 #ifdef TCP_SIGNATURE
3667 	if (sc->sc_flags & SCF_SIGNATURE)
3668 		tp->t_flags |= TF_SIGNATURE;
3669 #endif
3670 
3671 	/* Initialize tp->t_ourmss before we deal with the peer's! */
3672 	tp->t_ourmss = sc->sc_ourmaxseg;
3673 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3674 
3675 	/*
3676 	 * Initialize the initial congestion window.  If we
3677 	 * had to retransmit the SYN,ACK, we must initialize cwnd
3678 	 * to 1 segment (i.e. the Loss Window).
3679 	 */
3680 	if (sc->sc_rxtshift)
3681 		tp->snd_cwnd = tp->t_peermss;
3682 	else {
3683 		int ss = tcp_init_win;
3684 #ifdef INET
3685 		if (inp != NULL && in_localaddr(inp->inp_faddr))
3686 			ss = tcp_init_win_local;
3687 #endif
3688 #ifdef INET6
3689 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3690 			ss = tcp_init_win_local;
3691 #endif
3692 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3693 	}
3694 
3695 	tcp_rmx_rtt(tp);
3696 	tp->snd_wl1 = sc->sc_irs;
3697 	tp->rcv_up = sc->sc_irs + 1;
3698 
3699 	/*
3700 	 * This is what whould have happened in tcp_output() when
3701 	 * the SYN,ACK was sent.
3702 	 */
3703 	tp->snd_up = tp->snd_una;
3704 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3705 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3706 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3707 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3708 	tp->last_ack_sent = tp->rcv_nxt;
3709 	tp->t_partialacks = -1;
3710 	tp->t_dupacks = 0;
3711 
3712 	tcpstat.tcps_sc_completed++;
3713 	SYN_CACHE_PUT(sc);
3714 	return (so);
3715 
3716 resetandabort:
3717 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3718 abort:
3719 	if (so != NULL)
3720 		(void) soabort(so);
3721 	SYN_CACHE_PUT(sc);
3722 	tcpstat.tcps_sc_aborted++;
3723 	return ((struct socket *)(-1));
3724 }
3725 
3726 /*
3727  * This function is called when we get a RST for a
3728  * non-existent connection, so that we can see if the
3729  * connection is in the syn cache.  If it is, zap it.
3730  */
3731 
3732 void
3733 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3734 {
3735 	struct syn_cache *sc;
3736 	struct syn_cache_head *scp;
3737 	int s = splsoftnet();
3738 
3739 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3740 		splx(s);
3741 		return;
3742 	}
3743 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3744 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3745 		splx(s);
3746 		return;
3747 	}
3748 	SYN_CACHE_RM(sc);
3749 	splx(s);
3750 	tcpstat.tcps_sc_reset++;
3751 	SYN_CACHE_PUT(sc);
3752 }
3753 
3754 void
3755 syn_cache_unreach(struct sockaddr *src, struct sockaddr *dst,
3756     struct tcphdr *th)
3757 {
3758 	struct syn_cache *sc;
3759 	struct syn_cache_head *scp;
3760 	int s;
3761 
3762 	s = splsoftnet();
3763 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3764 		splx(s);
3765 		return;
3766 	}
3767 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3768 	if (ntohl (th->th_seq) != sc->sc_iss) {
3769 		splx(s);
3770 		return;
3771 	}
3772 
3773 	/*
3774 	 * If we've retransmitted 3 times and this is our second error,
3775 	 * we remove the entry.  Otherwise, we allow it to continue on.
3776 	 * This prevents us from incorrectly nuking an entry during a
3777 	 * spurious network outage.
3778 	 *
3779 	 * See tcp_notify().
3780 	 */
3781 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3782 		sc->sc_flags |= SCF_UNREACH;
3783 		splx(s);
3784 		return;
3785 	}
3786 
3787 	SYN_CACHE_RM(sc);
3788 	splx(s);
3789 	tcpstat.tcps_sc_unreach++;
3790 	SYN_CACHE_PUT(sc);
3791 }
3792 
3793 /*
3794  * Given a LISTEN socket and an inbound SYN request, add
3795  * this to the syn cache, and send back a segment:
3796  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3797  * to the source.
3798  *
3799  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3800  * Doing so would require that we hold onto the data and deliver it
3801  * to the application.  However, if we are the target of a SYN-flood
3802  * DoS attack, an attacker could send data which would eventually
3803  * consume all available buffer space if it were ACKed.  By not ACKing
3804  * the data, we avoid this DoS scenario.
3805  */
3806 
3807 int
3808 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3809     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
3810     int optlen, struct tcp_opt_info *oi)
3811 {
3812 	struct tcpcb tb, *tp;
3813 	long win;
3814 	struct syn_cache *sc;
3815 	struct syn_cache_head *scp;
3816 	struct mbuf *ipopts;
3817 	struct tcp_opt_info opti;
3818 
3819 	tp = sototcpcb(so);
3820 
3821 	bzero(&opti, sizeof(opti));
3822 
3823 	/*
3824 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3825 	 *
3826 	 * Note this check is performed in tcp_input() very early on.
3827 	 */
3828 
3829 	/*
3830 	 * Initialize some local state.
3831 	 */
3832 	win = sbspace(&so->so_rcv);
3833 	if (win > TCP_MAXWIN)
3834 		win = TCP_MAXWIN;
3835 
3836 	switch (src->sa_family) {
3837 #ifdef INET
3838 	case AF_INET:
3839 		/*
3840 		 * Remember the IP options, if any.
3841 		 */
3842 		ipopts = ip_srcroute();
3843 		break;
3844 #endif
3845 	default:
3846 		ipopts = NULL;
3847 	}
3848 
3849 #ifdef TCP_SIGNATURE
3850 	if (optp || (tp->t_flags & TF_SIGNATURE))
3851 #else
3852 	if (optp)
3853 #endif
3854 	{
3855 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3856 #ifdef TCP_SIGNATURE
3857 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
3858 #endif
3859 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
3860 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
3861 			return (0);
3862 	} else
3863 		tb.t_flags = 0;
3864 
3865 	/*
3866 	 * See if we already have an entry for this connection.
3867 	 * If we do, resend the SYN,ACK.  We do not count this
3868 	 * as a retransmission (XXX though maybe we should).
3869 	 */
3870 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3871 		tcpstat.tcps_sc_dupesyn++;
3872 		if (ipopts) {
3873 			/*
3874 			 * If we were remembering a previous source route,
3875 			 * forget it and use the new one we've been given.
3876 			 */
3877 			if (sc->sc_ipopts)
3878 				(void) m_free(sc->sc_ipopts);
3879 			sc->sc_ipopts = ipopts;
3880 		}
3881 		sc->sc_timestamp = tb.ts_recent;
3882 		if (syn_cache_respond(sc, m) == 0) {
3883 			tcpstat.tcps_sndacks++;
3884 			tcpstat.tcps_sndtotal++;
3885 		}
3886 		return (1);
3887 	}
3888 
3889 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3890 	if (sc == NULL) {
3891 		if (ipopts)
3892 			(void) m_free(ipopts);
3893 		return (0);
3894 	}
3895 
3896 	/*
3897 	 * Fill in the cache, and put the necessary IP and TCP
3898 	 * options into the reply.
3899 	 */
3900 	bzero(sc, sizeof(struct syn_cache));
3901 	callout_init(&sc->sc_timer);
3902 	bcopy(src, &sc->sc_src, src->sa_len);
3903 	bcopy(dst, &sc->sc_dst, dst->sa_len);
3904 	sc->sc_flags = 0;
3905 	sc->sc_ipopts = ipopts;
3906 	sc->sc_irs = th->th_seq;
3907 	switch (src->sa_family) {
3908 #ifdef INET
3909 	case AF_INET:
3910 	    {
3911 		struct sockaddr_in *srcin = (void *) src;
3912 		struct sockaddr_in *dstin = (void *) dst;
3913 
3914 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3915 		    &srcin->sin_addr, dstin->sin_port,
3916 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
3917 		break;
3918 	    }
3919 #endif /* INET */
3920 #ifdef INET6
3921 	case AF_INET6:
3922 	    {
3923 		struct sockaddr_in6 *srcin6 = (void *) src;
3924 		struct sockaddr_in6 *dstin6 = (void *) dst;
3925 
3926 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3927 		    &srcin6->sin6_addr, dstin6->sin6_port,
3928 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3929 		break;
3930 	    }
3931 #endif /* INET6 */
3932 	}
3933 	sc->sc_peermaxseg = oi->maxseg;
3934 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3935 						m->m_pkthdr.rcvif : NULL,
3936 						sc->sc_src.sa.sa_family);
3937 	sc->sc_win = win;
3938 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
3939 	sc->sc_timestamp = tb.ts_recent;
3940 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3941 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3942 		sc->sc_flags |= SCF_TIMESTAMP;
3943 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3944 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3945 		sc->sc_requested_s_scale = tb.requested_s_scale;
3946 		sc->sc_request_r_scale = 0;
3947 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3948 		    TCP_MAXWIN << sc->sc_request_r_scale <
3949 		    so->so_rcv.sb_hiwat)
3950 			sc->sc_request_r_scale++;
3951 	} else {
3952 		sc->sc_requested_s_scale = 15;
3953 		sc->sc_request_r_scale = 15;
3954 	}
3955 #ifdef TCP_SIGNATURE
3956 	if (tb.t_flags & TF_SIGNATURE)
3957 		sc->sc_flags |= SCF_SIGNATURE;
3958 #endif
3959 	sc->sc_tp = tp;
3960 	if (syn_cache_respond(sc, m) == 0) {
3961 		syn_cache_insert(sc, tp);
3962 		tcpstat.tcps_sndacks++;
3963 		tcpstat.tcps_sndtotal++;
3964 	} else {
3965 		SYN_CACHE_PUT(sc);
3966 		tcpstat.tcps_sc_dropped++;
3967 	}
3968 	return (1);
3969 }
3970 
3971 int
3972 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
3973 {
3974 	struct route *ro;
3975 	u_int8_t *optp;
3976 	int optlen, error;
3977 	u_int16_t tlen;
3978 	struct ip *ip = NULL;
3979 #ifdef INET6
3980 	struct ip6_hdr *ip6 = NULL;
3981 #endif
3982 	struct tcpcb *tp;
3983 	struct tcphdr *th;
3984 	u_int hlen;
3985 	struct socket *so;
3986 
3987 	switch (sc->sc_src.sa.sa_family) {
3988 	case AF_INET:
3989 		hlen = sizeof(struct ip);
3990 		ro = &sc->sc_route4;
3991 		break;
3992 #ifdef INET6
3993 	case AF_INET6:
3994 		hlen = sizeof(struct ip6_hdr);
3995 		ro = (struct route *)&sc->sc_route6;
3996 		break;
3997 #endif
3998 	default:
3999 		if (m)
4000 			m_freem(m);
4001 		return (EAFNOSUPPORT);
4002 	}
4003 
4004 	/* Compute the size of the TCP options. */
4005 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4006 #ifdef TCP_SIGNATURE
4007 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4008 #endif
4009 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4010 
4011 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4012 
4013 	/*
4014 	 * Create the IP+TCP header from scratch.
4015 	 */
4016 	if (m)
4017 		m_freem(m);
4018 #ifdef DIAGNOSTIC
4019 	if (max_linkhdr + tlen > MCLBYTES)
4020 		return (ENOBUFS);
4021 #endif
4022 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4023 	if (m && tlen > MHLEN) {
4024 		MCLGET(m, M_DONTWAIT);
4025 		if ((m->m_flags & M_EXT) == 0) {
4026 			m_freem(m);
4027 			m = NULL;
4028 		}
4029 	}
4030 	if (m == NULL)
4031 		return (ENOBUFS);
4032 	MCLAIM(m, &tcp_tx_mowner);
4033 
4034 	/* Fixup the mbuf. */
4035 	m->m_data += max_linkhdr;
4036 	m->m_len = m->m_pkthdr.len = tlen;
4037 	if (sc->sc_tp) {
4038 		tp = sc->sc_tp;
4039 		if (tp->t_inpcb)
4040 			so = tp->t_inpcb->inp_socket;
4041 #ifdef INET6
4042 		else if (tp->t_in6pcb)
4043 			so = tp->t_in6pcb->in6p_socket;
4044 #endif
4045 		else
4046 			so = NULL;
4047 	} else
4048 		so = NULL;
4049 	m->m_pkthdr.rcvif = NULL;
4050 	memset(mtod(m, u_char *), 0, tlen);
4051 
4052 	switch (sc->sc_src.sa.sa_family) {
4053 	case AF_INET:
4054 		ip = mtod(m, struct ip *);
4055 		ip->ip_v = 4;
4056 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4057 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4058 		ip->ip_p = IPPROTO_TCP;
4059 		th = (struct tcphdr *)(ip + 1);
4060 		th->th_dport = sc->sc_src.sin.sin_port;
4061 		th->th_sport = sc->sc_dst.sin.sin_port;
4062 		break;
4063 #ifdef INET6
4064 	case AF_INET6:
4065 		ip6 = mtod(m, struct ip6_hdr *);
4066 		ip6->ip6_vfc = IPV6_VERSION;
4067 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4068 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4069 		ip6->ip6_nxt = IPPROTO_TCP;
4070 		/* ip6_plen will be updated in ip6_output() */
4071 		th = (struct tcphdr *)(ip6 + 1);
4072 		th->th_dport = sc->sc_src.sin6.sin6_port;
4073 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4074 		break;
4075 #endif
4076 	default:
4077 		th = NULL;
4078 	}
4079 
4080 	th->th_seq = htonl(sc->sc_iss);
4081 	th->th_ack = htonl(sc->sc_irs + 1);
4082 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4083 	th->th_flags = TH_SYN|TH_ACK;
4084 	th->th_win = htons(sc->sc_win);
4085 	/* th_sum already 0 */
4086 	/* th_urp already 0 */
4087 
4088 	/* Tack on the TCP options. */
4089 	optp = (u_int8_t *)(th + 1);
4090 	*optp++ = TCPOPT_MAXSEG;
4091 	*optp++ = 4;
4092 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4093 	*optp++ = sc->sc_ourmaxseg & 0xff;
4094 
4095 	if (sc->sc_request_r_scale != 15) {
4096 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4097 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4098 		    sc->sc_request_r_scale);
4099 		optp += 4;
4100 	}
4101 
4102 	if (sc->sc_flags & SCF_TIMESTAMP) {
4103 		u_int32_t *lp = (u_int32_t *)(optp);
4104 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4105 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
4106 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4107 		*lp   = htonl(sc->sc_timestamp);
4108 		optp += TCPOLEN_TSTAMP_APPA;
4109 	}
4110 
4111 #ifdef TCP_SIGNATURE
4112 	if (sc->sc_flags & SCF_SIGNATURE) {
4113 		struct secasvar *sav;
4114 		u_int8_t *sigp;
4115 
4116 		sav = tcp_signature_getsav(m, th);
4117 
4118 		if (sav == NULL) {
4119 			if (m)
4120 				m_freem(m);
4121 			return (EPERM);
4122 		}
4123 
4124 		*optp++ = TCPOPT_SIGNATURE;
4125 		*optp++ = TCPOLEN_SIGNATURE;
4126 		sigp = optp;
4127 		bzero(optp, TCP_SIGLEN);
4128 		optp += TCP_SIGLEN;
4129 		*optp++ = TCPOPT_NOP;
4130 		*optp++ = TCPOPT_EOL;
4131 
4132 		(void)tcp_signature(m, th, hlen, sav, sigp);
4133 
4134 		key_sa_recordxfer(sav, m);
4135 #ifdef FAST_IPSEC
4136 		KEY_FREESAV(&sav);
4137 #else
4138 		key_freesav(sav);
4139 #endif
4140 	}
4141 #endif
4142 
4143 	/* Compute the packet's checksum. */
4144 	switch (sc->sc_src.sa.sa_family) {
4145 	case AF_INET:
4146 		ip->ip_len = htons(tlen - hlen);
4147 		th->th_sum = 0;
4148 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4149 		break;
4150 #ifdef INET6
4151 	case AF_INET6:
4152 		ip6->ip6_plen = htons(tlen - hlen);
4153 		th->th_sum = 0;
4154 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4155 		break;
4156 #endif
4157 	}
4158 
4159 	/*
4160 	 * Fill in some straggling IP bits.  Note the stack expects
4161 	 * ip_len to be in host order, for convenience.
4162 	 */
4163 	switch (sc->sc_src.sa.sa_family) {
4164 #ifdef INET
4165 	case AF_INET:
4166 		ip->ip_len = htons(tlen);
4167 		ip->ip_ttl = ip_defttl;
4168 		/* XXX tos? */
4169 		break;
4170 #endif
4171 #ifdef INET6
4172 	case AF_INET6:
4173 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4174 		ip6->ip6_vfc |= IPV6_VERSION;
4175 		ip6->ip6_plen = htons(tlen - hlen);
4176 		/* ip6_hlim will be initialized afterwards */
4177 		/* XXX flowlabel? */
4178 		break;
4179 #endif
4180 	}
4181 
4182 	/* XXX use IPsec policy on listening socket, on SYN ACK */
4183 	tp = sc->sc_tp;
4184 
4185 	switch (sc->sc_src.sa.sa_family) {
4186 #ifdef INET
4187 	case AF_INET:
4188 		error = ip_output(m, sc->sc_ipopts, ro,
4189 		    (ip_mtudisc ? IP_MTUDISC : 0),
4190 		    (struct ip_moptions *)NULL, so);
4191 		break;
4192 #endif
4193 #ifdef INET6
4194 	case AF_INET6:
4195 		ip6->ip6_hlim = in6_selecthlim(NULL,
4196 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4197 
4198 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4199 			(struct ip6_moptions *)0, so, NULL);
4200 		break;
4201 #endif
4202 	default:
4203 		error = EAFNOSUPPORT;
4204 		break;
4205 	}
4206 	return (error);
4207 }
4208