xref: /netbsd-src/sys/netinet/tcp_input.c (revision a24efa7dea9f1f56c3bdb15a927d3516792ace1c)
1 /*	$NetBSD: tcp_input.c,v 1.345 2016/02/15 14:59:03 rtr Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74  * 2011 The NetBSD Foundation, Inc.
75  * All rights reserved.
76  *
77  * This code is derived from software contributed to The NetBSD Foundation
78  * by Coyote Point Systems, Inc.
79  * This code is derived from software contributed to The NetBSD Foundation
80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81  * Facility, NASA Ames Research Center.
82  * This code is derived from software contributed to The NetBSD Foundation
83  * by Charles M. Hannum.
84  * This code is derived from software contributed to The NetBSD Foundation
85  * by Rui Paulo.
86  *
87  * Redistribution and use in source and binary forms, with or without
88  * modification, are permitted provided that the following conditions
89  * are met:
90  * 1. Redistributions of source code must retain the above copyright
91  *    notice, this list of conditions and the following disclaimer.
92  * 2. Redistributions in binary form must reproduce the above copyright
93  *    notice, this list of conditions and the following disclaimer in the
94  *    documentation and/or other materials provided with the distribution.
95  *
96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106  * POSSIBILITY OF SUCH DAMAGE.
107  */
108 
109 /*
110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111  *	The Regents of the University of California.  All rights reserved.
112  *
113  * Redistribution and use in source and binary forms, with or without
114  * modification, are permitted provided that the following conditions
115  * are met:
116  * 1. Redistributions of source code must retain the above copyright
117  *    notice, this list of conditions and the following disclaimer.
118  * 2. Redistributions in binary form must reproduce the above copyright
119  *    notice, this list of conditions and the following disclaimer in the
120  *    documentation and/or other materials provided with the distribution.
121  * 3. Neither the name of the University nor the names of its contributors
122  *    may be used to endorse or promote products derived from this software
123  *    without specific prior written permission.
124  *
125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135  * SUCH DAMAGE.
136  *
137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
138  */
139 
140 /*
141  *	TODO list for SYN cache stuff:
142  *
143  *	Find room for a "state" field, which is needed to keep a
144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
145  *	that this is fairly important for very high-volume web and
146  *	mail servers, which use a large number of short-lived
147  *	connections.
148  */
149 
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.345 2016/02/15 14:59:03 rtr Exp $");
152 
153 #ifdef _KERNEL_OPT
154 #include "opt_inet.h"
155 #include "opt_ipsec.h"
156 #include "opt_inet_csum.h"
157 #include "opt_tcp_debug.h"
158 #endif
159 
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175 #include <sys/lwp.h> /* for lwp0 */
176 #include <sys/cprng.h>
177 
178 #include <net/if.h>
179 #include <net/if_types.h>
180 
181 #include <netinet/in.h>
182 #include <netinet/in_systm.h>
183 #include <netinet/ip.h>
184 #include <netinet/in_pcb.h>
185 #include <netinet/in_var.h>
186 #include <netinet/ip_var.h>
187 #include <netinet/in_offload.h>
188 
189 #ifdef INET6
190 #ifndef INET
191 #include <netinet/in.h>
192 #endif
193 #include <netinet/ip6.h>
194 #include <netinet6/ip6_var.h>
195 #include <netinet6/in6_pcb.h>
196 #include <netinet6/ip6_var.h>
197 #include <netinet6/in6_var.h>
198 #include <netinet/icmp6.h>
199 #include <netinet6/nd6.h>
200 #ifdef TCP_SIGNATURE
201 #include <netinet6/scope6_var.h>
202 #endif
203 #endif
204 
205 #ifndef INET6
206 /* always need ip6.h for IP6_EXTHDR_GET */
207 #include <netinet/ip6.h>
208 #endif
209 
210 #include <netinet/tcp.h>
211 #include <netinet/tcp_fsm.h>
212 #include <netinet/tcp_seq.h>
213 #include <netinet/tcp_timer.h>
214 #include <netinet/tcp_var.h>
215 #include <netinet/tcp_private.h>
216 #include <netinet/tcpip.h>
217 #include <netinet/tcp_congctl.h>
218 #include <netinet/tcp_debug.h>
219 
220 #ifdef INET6
221 #include "faith.h"
222 #if defined(NFAITH) && NFAITH > 0
223 #include <net/if_faith.h>
224 #endif
225 #endif	/* INET6 */
226 
227 #ifdef IPSEC
228 #include <netipsec/ipsec.h>
229 #include <netipsec/ipsec_var.h>
230 #include <netipsec/ipsec_private.h>
231 #include <netipsec/key.h>
232 #ifdef INET6
233 #include <netipsec/ipsec6.h>
234 #endif
235 #endif	/* IPSEC*/
236 
237 #include <netinet/tcp_vtw.h>
238 
239 int	tcprexmtthresh = 3;
240 int	tcp_log_refused;
241 
242 int	tcp_do_autorcvbuf = 1;
243 int	tcp_autorcvbuf_inc = 16 * 1024;
244 int	tcp_autorcvbuf_max = 256 * 1024;
245 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
246 
247 static int tcp_rst_ppslim_count = 0;
248 static struct timeval tcp_rst_ppslim_last;
249 static int tcp_ackdrop_ppslim_count = 0;
250 static struct timeval tcp_ackdrop_ppslim_last;
251 
252 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
253 
254 /* for modulo comparisons of timestamps */
255 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
256 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
257 
258 /*
259  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
260  */
261 #ifdef INET6
262 static inline void
263 nd6_hint(struct tcpcb *tp)
264 {
265 	struct rtentry *rt;
266 
267 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
268 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
269 		nd6_nud_hint(rt);
270 }
271 #else
272 static inline void
273 nd6_hint(struct tcpcb *tp)
274 {
275 }
276 #endif
277 
278 /*
279  * Compute ACK transmission behavior.  Delay the ACK unless
280  * we have already delayed an ACK (must send an ACK every two segments).
281  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
282  * option is enabled.
283  */
284 static void
285 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
286 {
287 
288 	if (tp->t_flags & TF_DELACK ||
289 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
290 		tp->t_flags |= TF_ACKNOW;
291 	else
292 		TCP_SET_DELACK(tp);
293 }
294 
295 static void
296 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
297 {
298 
299 	/*
300 	 * If we had a pending ICMP message that refers to data that have
301 	 * just been acknowledged, disregard the recorded ICMP message.
302 	 */
303 	if ((tp->t_flags & TF_PMTUD_PEND) &&
304 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
305 		tp->t_flags &= ~TF_PMTUD_PEND;
306 
307 	/*
308 	 * Keep track of the largest chunk of data
309 	 * acknowledged since last PMTU update
310 	 */
311 	if (tp->t_pmtud_mss_acked < acked)
312 		tp->t_pmtud_mss_acked = acked;
313 }
314 
315 /*
316  * Convert TCP protocol fields to host order for easier processing.
317  */
318 static void
319 tcp_fields_to_host(struct tcphdr *th)
320 {
321 
322 	NTOHL(th->th_seq);
323 	NTOHL(th->th_ack);
324 	NTOHS(th->th_win);
325 	NTOHS(th->th_urp);
326 }
327 
328 /*
329  * ... and reverse the above.
330  */
331 static void
332 tcp_fields_to_net(struct tcphdr *th)
333 {
334 
335 	HTONL(th->th_seq);
336 	HTONL(th->th_ack);
337 	HTONS(th->th_win);
338 	HTONS(th->th_urp);
339 }
340 
341 #ifdef TCP_CSUM_COUNTERS
342 #include <sys/device.h>
343 
344 #if defined(INET)
345 extern struct evcnt tcp_hwcsum_ok;
346 extern struct evcnt tcp_hwcsum_bad;
347 extern struct evcnt tcp_hwcsum_data;
348 extern struct evcnt tcp_swcsum;
349 #endif /* defined(INET) */
350 #if defined(INET6)
351 extern struct evcnt tcp6_hwcsum_ok;
352 extern struct evcnt tcp6_hwcsum_bad;
353 extern struct evcnt tcp6_hwcsum_data;
354 extern struct evcnt tcp6_swcsum;
355 #endif /* defined(INET6) */
356 
357 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
358 
359 #else
360 
361 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
362 
363 #endif /* TCP_CSUM_COUNTERS */
364 
365 #ifdef TCP_REASS_COUNTERS
366 #include <sys/device.h>
367 
368 extern struct evcnt tcp_reass_;
369 extern struct evcnt tcp_reass_empty;
370 extern struct evcnt tcp_reass_iteration[8];
371 extern struct evcnt tcp_reass_prependfirst;
372 extern struct evcnt tcp_reass_prepend;
373 extern struct evcnt tcp_reass_insert;
374 extern struct evcnt tcp_reass_inserttail;
375 extern struct evcnt tcp_reass_append;
376 extern struct evcnt tcp_reass_appendtail;
377 extern struct evcnt tcp_reass_overlaptail;
378 extern struct evcnt tcp_reass_overlapfront;
379 extern struct evcnt tcp_reass_segdup;
380 extern struct evcnt tcp_reass_fragdup;
381 
382 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
383 
384 #else
385 
386 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
387 
388 #endif /* TCP_REASS_COUNTERS */
389 
390 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
391     int *);
392 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
393     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
394 
395 #ifdef INET
396 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
397 #endif
398 #ifdef INET6
399 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
400 #endif
401 
402 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
403 
404 #if defined(MBUFTRACE)
405 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
406 #endif /* defined(MBUFTRACE) */
407 
408 static struct pool tcpipqent_pool;
409 
410 void
411 tcpipqent_init(void)
412 {
413 
414 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
415 	    NULL, IPL_VM);
416 }
417 
418 struct ipqent *
419 tcpipqent_alloc(void)
420 {
421 	struct ipqent *ipqe;
422 	int s;
423 
424 	s = splvm();
425 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
426 	splx(s);
427 
428 	return ipqe;
429 }
430 
431 void
432 tcpipqent_free(struct ipqent *ipqe)
433 {
434 	int s;
435 
436 	s = splvm();
437 	pool_put(&tcpipqent_pool, ipqe);
438 	splx(s);
439 }
440 
441 static int
442 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
443 {
444 	struct ipqent *p, *q, *nq, *tiqe = NULL;
445 	struct socket *so = NULL;
446 	int pkt_flags;
447 	tcp_seq pkt_seq;
448 	unsigned pkt_len;
449 	u_long rcvpartdupbyte = 0;
450 	u_long rcvoobyte;
451 #ifdef TCP_REASS_COUNTERS
452 	u_int count = 0;
453 #endif
454 	uint64_t *tcps;
455 
456 	if (tp->t_inpcb)
457 		so = tp->t_inpcb->inp_socket;
458 #ifdef INET6
459 	else if (tp->t_in6pcb)
460 		so = tp->t_in6pcb->in6p_socket;
461 #endif
462 
463 	TCP_REASS_LOCK_CHECK(tp);
464 
465 	/*
466 	 * Call with th==0 after become established to
467 	 * force pre-ESTABLISHED data up to user socket.
468 	 */
469 	if (th == 0)
470 		goto present;
471 
472 	m_claimm(m, &tcp_reass_mowner);
473 
474 	rcvoobyte = *tlen;
475 	/*
476 	 * Copy these to local variables because the tcpiphdr
477 	 * gets munged while we are collapsing mbufs.
478 	 */
479 	pkt_seq = th->th_seq;
480 	pkt_len = *tlen;
481 	pkt_flags = th->th_flags;
482 
483 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
484 
485 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
486 		/*
487 		 * When we miss a packet, the vast majority of time we get
488 		 * packets that follow it in order.  So optimize for that.
489 		 */
490 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
491 			p->ipqe_len += pkt_len;
492 			p->ipqe_flags |= pkt_flags;
493 			m_cat(p->ipre_mlast, m);
494 			TRAVERSE(p->ipre_mlast);
495 			m = NULL;
496 			tiqe = p;
497 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
498 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
499 			goto skip_replacement;
500 		}
501 		/*
502 		 * While we're here, if the pkt is completely beyond
503 		 * anything we have, just insert it at the tail.
504 		 */
505 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
506 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
507 			goto insert_it;
508 		}
509 	}
510 
511 	q = TAILQ_FIRST(&tp->segq);
512 
513 	if (q != NULL) {
514 		/*
515 		 * If this segment immediately precedes the first out-of-order
516 		 * block, simply slap the segment in front of it and (mostly)
517 		 * skip the complicated logic.
518 		 */
519 		if (pkt_seq + pkt_len == q->ipqe_seq) {
520 			q->ipqe_seq = pkt_seq;
521 			q->ipqe_len += pkt_len;
522 			q->ipqe_flags |= pkt_flags;
523 			m_cat(m, q->ipqe_m);
524 			q->ipqe_m = m;
525 			q->ipre_mlast = m; /* last mbuf may have changed */
526 			TRAVERSE(q->ipre_mlast);
527 			tiqe = q;
528 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
529 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
530 			goto skip_replacement;
531 		}
532 	} else {
533 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
534 	}
535 
536 	/*
537 	 * Find a segment which begins after this one does.
538 	 */
539 	for (p = NULL; q != NULL; q = nq) {
540 		nq = TAILQ_NEXT(q, ipqe_q);
541 #ifdef TCP_REASS_COUNTERS
542 		count++;
543 #endif
544 		/*
545 		 * If the received segment is just right after this
546 		 * fragment, merge the two together and then check
547 		 * for further overlaps.
548 		 */
549 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
550 #ifdef TCPREASS_DEBUG
551 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
552 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
553 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
554 #endif
555 			pkt_len += q->ipqe_len;
556 			pkt_flags |= q->ipqe_flags;
557 			pkt_seq = q->ipqe_seq;
558 			m_cat(q->ipre_mlast, m);
559 			TRAVERSE(q->ipre_mlast);
560 			m = q->ipqe_m;
561 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
562 			goto free_ipqe;
563 		}
564 		/*
565 		 * If the received segment is completely past this
566 		 * fragment, we need to go the next fragment.
567 		 */
568 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
569 			p = q;
570 			continue;
571 		}
572 		/*
573 		 * If the fragment is past the received segment,
574 		 * it (or any following) can't be concatenated.
575 		 */
576 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
577 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
578 			break;
579 		}
580 
581 		/*
582 		 * We've received all the data in this segment before.
583 		 * mark it as a duplicate and return.
584 		 */
585 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
586 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
587 			tcps = TCP_STAT_GETREF();
588 			tcps[TCP_STAT_RCVDUPPACK]++;
589 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
590 			TCP_STAT_PUTREF();
591 			tcp_new_dsack(tp, pkt_seq, pkt_len);
592 			m_freem(m);
593 			if (tiqe != NULL) {
594 				tcpipqent_free(tiqe);
595 			}
596 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
597 			goto out;
598 		}
599 		/*
600 		 * Received segment completely overlaps this fragment
601 		 * so we drop the fragment (this keeps the temporal
602 		 * ordering of segments correct).
603 		 */
604 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
605 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
606 			rcvpartdupbyte += q->ipqe_len;
607 			m_freem(q->ipqe_m);
608 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
609 			goto free_ipqe;
610 		}
611 		/*
612 		 * RX'ed segment extends past the end of the
613 		 * fragment.  Drop the overlapping bytes.  Then
614 		 * merge the fragment and segment then treat as
615 		 * a longer received packet.
616 		 */
617 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
618 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
619 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
620 #ifdef TCPREASS_DEBUG
621 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
622 			       tp, overlap,
623 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
624 #endif
625 			m_adj(m, overlap);
626 			rcvpartdupbyte += overlap;
627 			m_cat(q->ipre_mlast, m);
628 			TRAVERSE(q->ipre_mlast);
629 			m = q->ipqe_m;
630 			pkt_seq = q->ipqe_seq;
631 			pkt_len += q->ipqe_len - overlap;
632 			rcvoobyte -= overlap;
633 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
634 			goto free_ipqe;
635 		}
636 		/*
637 		 * RX'ed segment extends past the front of the
638 		 * fragment.  Drop the overlapping bytes on the
639 		 * received packet.  The packet will then be
640 		 * contatentated with this fragment a bit later.
641 		 */
642 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
643 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
644 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
645 #ifdef TCPREASS_DEBUG
646 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
647 			       tp, overlap,
648 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
649 #endif
650 			m_adj(m, -overlap);
651 			pkt_len -= overlap;
652 			rcvpartdupbyte += overlap;
653 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
654 			rcvoobyte -= overlap;
655 		}
656 		/*
657 		 * If the received segment immediates precedes this
658 		 * fragment then tack the fragment onto this segment
659 		 * and reinsert the data.
660 		 */
661 		if (q->ipqe_seq == pkt_seq + pkt_len) {
662 #ifdef TCPREASS_DEBUG
663 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
664 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
665 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
666 #endif
667 			pkt_len += q->ipqe_len;
668 			pkt_flags |= q->ipqe_flags;
669 			m_cat(m, q->ipqe_m);
670 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
671 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
672 			tp->t_segqlen--;
673 			KASSERT(tp->t_segqlen >= 0);
674 			KASSERT(tp->t_segqlen != 0 ||
675 			    (TAILQ_EMPTY(&tp->segq) &&
676 			    TAILQ_EMPTY(&tp->timeq)));
677 			if (tiqe == NULL) {
678 				tiqe = q;
679 			} else {
680 				tcpipqent_free(q);
681 			}
682 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
683 			break;
684 		}
685 		/*
686 		 * If the fragment is before the segment, remember it.
687 		 * When this loop is terminated, p will contain the
688 		 * pointer to fragment that is right before the received
689 		 * segment.
690 		 */
691 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
692 			p = q;
693 
694 		continue;
695 
696 		/*
697 		 * This is a common operation.  It also will allow
698 		 * to save doing a malloc/free in most instances.
699 		 */
700 	  free_ipqe:
701 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
702 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
703 		tp->t_segqlen--;
704 		KASSERT(tp->t_segqlen >= 0);
705 		KASSERT(tp->t_segqlen != 0 ||
706 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
707 		if (tiqe == NULL) {
708 			tiqe = q;
709 		} else {
710 			tcpipqent_free(q);
711 		}
712 	}
713 
714 #ifdef TCP_REASS_COUNTERS
715 	if (count > 7)
716 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
717 	else if (count > 0)
718 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
719 #endif
720 
721     insert_it:
722 
723 	/*
724 	 * Allocate a new queue entry since the received segment did not
725 	 * collapse onto any other out-of-order block; thus we are allocating
726 	 * a new block.  If it had collapsed, tiqe would not be NULL and
727 	 * we would be reusing it.
728 	 * XXX If we can't, just drop the packet.  XXX
729 	 */
730 	if (tiqe == NULL) {
731 		tiqe = tcpipqent_alloc();
732 		if (tiqe == NULL) {
733 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
734 			m_freem(m);
735 			goto out;
736 		}
737 	}
738 
739 	/*
740 	 * Update the counters.
741 	 */
742 	tp->t_rcvoopack++;
743 	tcps = TCP_STAT_GETREF();
744 	tcps[TCP_STAT_RCVOOPACK]++;
745 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
746 	if (rcvpartdupbyte) {
747 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
748 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
749 	}
750 	TCP_STAT_PUTREF();
751 
752 	/*
753 	 * Insert the new fragment queue entry into both queues.
754 	 */
755 	tiqe->ipqe_m = m;
756 	tiqe->ipre_mlast = m;
757 	tiqe->ipqe_seq = pkt_seq;
758 	tiqe->ipqe_len = pkt_len;
759 	tiqe->ipqe_flags = pkt_flags;
760 	if (p == NULL) {
761 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
762 #ifdef TCPREASS_DEBUG
763 		if (tiqe->ipqe_seq != tp->rcv_nxt)
764 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
765 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
766 #endif
767 	} else {
768 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
769 #ifdef TCPREASS_DEBUG
770 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
771 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
772 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
773 #endif
774 	}
775 	tp->t_segqlen++;
776 
777 skip_replacement:
778 
779 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
780 
781 present:
782 	/*
783 	 * Present data to user, advancing rcv_nxt through
784 	 * completed sequence space.
785 	 */
786 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
787 		goto out;
788 	q = TAILQ_FIRST(&tp->segq);
789 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
790 		goto out;
791 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
792 		goto out;
793 
794 	tp->rcv_nxt += q->ipqe_len;
795 	pkt_flags = q->ipqe_flags & TH_FIN;
796 	nd6_hint(tp);
797 
798 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
799 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
800 	tp->t_segqlen--;
801 	KASSERT(tp->t_segqlen >= 0);
802 	KASSERT(tp->t_segqlen != 0 ||
803 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
804 	if (so->so_state & SS_CANTRCVMORE)
805 		m_freem(q->ipqe_m);
806 	else
807 		sbappendstream(&so->so_rcv, q->ipqe_m);
808 	tcpipqent_free(q);
809 	TCP_REASS_UNLOCK(tp);
810 	sorwakeup(so);
811 	return (pkt_flags);
812 out:
813 	TCP_REASS_UNLOCK(tp);
814 	return (0);
815 }
816 
817 #ifdef INET6
818 int
819 tcp6_input(struct mbuf **mp, int *offp, int proto)
820 {
821 	struct mbuf *m = *mp;
822 
823 	/*
824 	 * draft-itojun-ipv6-tcp-to-anycast
825 	 * better place to put this in?
826 	 */
827 	if (m->m_flags & M_ANYCAST6) {
828 		struct ip6_hdr *ip6;
829 		if (m->m_len < sizeof(struct ip6_hdr)) {
830 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
831 				TCP_STATINC(TCP_STAT_RCVSHORT);
832 				return IPPROTO_DONE;
833 			}
834 		}
835 		ip6 = mtod(m, struct ip6_hdr *);
836 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
837 		    (char *)&ip6->ip6_dst - (char *)ip6);
838 		return IPPROTO_DONE;
839 	}
840 
841 	tcp_input(m, *offp, proto);
842 	return IPPROTO_DONE;
843 }
844 #endif
845 
846 #ifdef INET
847 static void
848 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
849 {
850 	char src[INET_ADDRSTRLEN];
851 	char dst[INET_ADDRSTRLEN];
852 
853 	if (ip) {
854 		in_print(src, sizeof(src), &ip->ip_src);
855 		in_print(dst, sizeof(dst), &ip->ip_dst);
856 	}
857 	else {
858 		strlcpy(src, "(unknown)", sizeof(src));
859 		strlcpy(dst, "(unknown)", sizeof(dst));
860 	}
861 	log(LOG_INFO,
862 	    "Connection attempt to TCP %s:%d from %s:%d\n",
863 	    dst, ntohs(th->th_dport),
864 	    src, ntohs(th->th_sport));
865 }
866 #endif
867 
868 #ifdef INET6
869 static void
870 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
871 {
872 	char src[INET6_ADDRSTRLEN];
873 	char dst[INET6_ADDRSTRLEN];
874 
875 	if (ip6) {
876 		in6_print(src, sizeof(src), &ip6->ip6_src);
877 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
878 	}
879 	else {
880 		strlcpy(src, "(unknown v6)", sizeof(src));
881 		strlcpy(dst, "(unknown v6)", sizeof(dst));
882 	}
883 	log(LOG_INFO,
884 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
885 	    dst, ntohs(th->th_dport),
886 	    src, ntohs(th->th_sport));
887 }
888 #endif
889 
890 /*
891  * Checksum extended TCP header and data.
892  */
893 int
894 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
895     int toff, int off, int tlen)
896 {
897 
898 	/*
899 	 * XXX it's better to record and check if this mbuf is
900 	 * already checked.
901 	 */
902 
903 	switch (af) {
904 #ifdef INET
905 	case AF_INET:
906 		switch (m->m_pkthdr.csum_flags &
907 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
908 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
909 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
910 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
911 			goto badcsum;
912 
913 		case M_CSUM_TCPv4|M_CSUM_DATA: {
914 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
915 
916 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
917 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
918 				const struct ip *ip =
919 				    mtod(m, const struct ip *);
920 
921 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
922 				    ip->ip_dst.s_addr,
923 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
924 			}
925 			if ((hw_csum ^ 0xffff) != 0)
926 				goto badcsum;
927 			break;
928 		}
929 
930 		case M_CSUM_TCPv4:
931 			/* Checksum was okay. */
932 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
933 			break;
934 
935 		default:
936 			/*
937 			 * Must compute it ourselves.  Maybe skip checksum
938 			 * on loopback interfaces.
939 			 */
940 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
941 					     IFF_LOOPBACK) ||
942 					   tcp_do_loopback_cksum)) {
943 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
944 				if (in4_cksum(m, IPPROTO_TCP, toff,
945 					      tlen + off) != 0)
946 					goto badcsum;
947 			}
948 			break;
949 		}
950 		break;
951 #endif /* INET4 */
952 
953 #ifdef INET6
954 	case AF_INET6:
955 		switch (m->m_pkthdr.csum_flags &
956 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
957 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
958 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
959 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
960 			goto badcsum;
961 
962 #if 0 /* notyet */
963 		case M_CSUM_TCPv6|M_CSUM_DATA:
964 #endif
965 
966 		case M_CSUM_TCPv6:
967 			/* Checksum was okay. */
968 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
969 			break;
970 
971 		default:
972 			/*
973 			 * Must compute it ourselves.  Maybe skip checksum
974 			 * on loopback interfaces.
975 			 */
976 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
977 			    tcp_do_loopback_cksum)) {
978 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
979 				if (in6_cksum(m, IPPROTO_TCP, toff,
980 				    tlen + off) != 0)
981 					goto badcsum;
982 			}
983 		}
984 		break;
985 #endif /* INET6 */
986 	}
987 
988 	return 0;
989 
990 badcsum:
991 	TCP_STATINC(TCP_STAT_RCVBADSUM);
992 	return -1;
993 }
994 
995 /* When a packet arrives addressed to a vestigial tcpbp, we
996  * nevertheless have to respond to it per the spec.
997  */
998 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
999 			  struct mbuf *m, int tlen, int multicast)
1000 {
1001 	int		tiflags;
1002 	int		todrop;
1003 	uint32_t	t_flags = 0;
1004 	uint64_t	*tcps;
1005 
1006 	tiflags = th->th_flags;
1007 	todrop  = vp->rcv_nxt - th->th_seq;
1008 
1009 	if (todrop > 0) {
1010 		if (tiflags & TH_SYN) {
1011 			tiflags &= ~TH_SYN;
1012 			++th->th_seq;
1013 			if (th->th_urp > 1)
1014 				--th->th_urp;
1015 			else {
1016 				tiflags &= ~TH_URG;
1017 				th->th_urp = 0;
1018 			}
1019 			--todrop;
1020 		}
1021 		if (todrop > tlen ||
1022 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1023 			/*
1024 			 * Any valid FIN or RST must be to the left of the
1025 			 * window.  At this point the FIN or RST must be a
1026 			 * duplicate or out of sequence; drop it.
1027 			 */
1028 			if (tiflags & TH_RST)
1029 				goto drop;
1030 			tiflags &= ~(TH_FIN|TH_RST);
1031 			/*
1032 			 * Send an ACK to resynchronize and drop any data.
1033 			 * But keep on processing for RST or ACK.
1034 			 */
1035 			t_flags |= TF_ACKNOW;
1036 			todrop = tlen;
1037 			tcps = TCP_STAT_GETREF();
1038 			tcps[TCP_STAT_RCVDUPPACK] += 1;
1039 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1040 			TCP_STAT_PUTREF();
1041 		} else if ((tiflags & TH_RST)
1042 			   && th->th_seq != vp->rcv_nxt) {
1043 			/*
1044 			 * Test for reset before adjusting the sequence
1045 			 * number for overlapping data.
1046 			 */
1047 			goto dropafterack_ratelim;
1048 		} else {
1049 			tcps = TCP_STAT_GETREF();
1050 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1051 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1052 			TCP_STAT_PUTREF();
1053 		}
1054 
1055 //		tcp_new_dsack(tp, th->th_seq, todrop);
1056 //		hdroptlen += todrop;	/*drop from head afterwards*/
1057 
1058 		th->th_seq += todrop;
1059 		tlen -= todrop;
1060 
1061 		if (th->th_urp > todrop)
1062 			th->th_urp -= todrop;
1063 		else {
1064 			tiflags &= ~TH_URG;
1065 			th->th_urp = 0;
1066 		}
1067 	}
1068 
1069 	/*
1070 	 * If new data are received on a connection after the
1071 	 * user processes are gone, then RST the other end.
1072 	 */
1073 	if (tlen) {
1074 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1075 		goto dropwithreset;
1076 	}
1077 
1078 	/*
1079 	 * If segment ends after window, drop trailing data
1080 	 * (and PUSH and FIN); if nothing left, just ACK.
1081 	 */
1082 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
1083 
1084 	if (todrop > 0) {
1085 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1086 		if (todrop >= tlen) {
1087 			/*
1088 			 * The segment actually starts after the window.
1089 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1090 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1091 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1092 			 */
1093 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1094 			/*
1095 			 * If a new connection request is received
1096 			 * while in TIME_WAIT, drop the old connection
1097 			 * and start over if the sequence numbers
1098 			 * are above the previous ones.
1099 			 */
1100 			if ((tiflags & TH_SYN)
1101 			    && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1102 				/* We only support this in the !NOFDREF case, which
1103 				 * is to say: not here.
1104 				 */
1105 				goto dropwithreset;
1106 			}
1107 			/*
1108 			 * If window is closed can only take segments at
1109 			 * window edge, and have to drop data and PUSH from
1110 			 * incoming segments.  Continue processing, but
1111 			 * remember to ack.  Otherwise, drop segment
1112 			 * and (if not RST) ack.
1113 			 */
1114 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1115 				t_flags |= TF_ACKNOW;
1116 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
1117 			} else
1118 				goto dropafterack;
1119 		} else
1120 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1121 		m_adj(m, -todrop);
1122 		tlen -= todrop;
1123 		tiflags &= ~(TH_PUSH|TH_FIN);
1124 	}
1125 
1126 	if (tiflags & TH_RST) {
1127 		if (th->th_seq != vp->rcv_nxt)
1128 			goto dropafterack_ratelim;
1129 
1130 		vtw_del(vp->ctl, vp->vtw);
1131 		goto drop;
1132 	}
1133 
1134 	/*
1135 	 * If the ACK bit is off we drop the segment and return.
1136 	 */
1137 	if ((tiflags & TH_ACK) == 0) {
1138 		if (t_flags & TF_ACKNOW)
1139 			goto dropafterack;
1140 		else
1141 			goto drop;
1142 	}
1143 
1144 	/*
1145 	 * In TIME_WAIT state the only thing that should arrive
1146 	 * is a retransmission of the remote FIN.  Acknowledge
1147 	 * it and restart the finack timer.
1148 	 */
1149 	vtw_restart(vp);
1150 	goto dropafterack;
1151 
1152 dropafterack:
1153 	/*
1154 	 * Generate an ACK dropping incoming segment if it occupies
1155 	 * sequence space, where the ACK reflects our state.
1156 	 */
1157 	if (tiflags & TH_RST)
1158 		goto drop;
1159 	goto dropafterack2;
1160 
1161 dropafterack_ratelim:
1162 	/*
1163 	 * We may want to rate-limit ACKs against SYN/RST attack.
1164 	 */
1165 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1166 			 tcp_ackdrop_ppslim) == 0) {
1167 		/* XXX stat */
1168 		goto drop;
1169 	}
1170 	/* ...fall into dropafterack2... */
1171 
1172 dropafterack2:
1173 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
1174 			  TH_ACK);
1175 	return;
1176 
1177 dropwithreset:
1178 	/*
1179 	 * Generate a RST, dropping incoming segment.
1180 	 * Make ACK acceptable to originator of segment.
1181 	 */
1182 	if (tiflags & TH_RST)
1183 		goto drop;
1184 
1185 	if (tiflags & TH_ACK)
1186 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1187 	else {
1188 		if (tiflags & TH_SYN)
1189 			++tlen;
1190 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1191 				  TH_RST|TH_ACK);
1192 	}
1193 	return;
1194 drop:
1195 	m_freem(m);
1196 }
1197 
1198 /*
1199  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1200  */
1201 void
1202 tcp_input(struct mbuf *m, ...)
1203 {
1204 	struct tcphdr *th;
1205 	struct ip *ip;
1206 	struct inpcb *inp;
1207 #ifdef INET6
1208 	struct ip6_hdr *ip6;
1209 	struct in6pcb *in6p;
1210 #endif
1211 	u_int8_t *optp = NULL;
1212 	int optlen = 0;
1213 	int len, tlen, toff, hdroptlen = 0;
1214 	struct tcpcb *tp = 0;
1215 	int tiflags;
1216 	struct socket *so = NULL;
1217 	int todrop, acked, ourfinisacked, needoutput = 0;
1218 	bool dupseg;
1219 #ifdef TCP_DEBUG
1220 	short ostate = 0;
1221 #endif
1222 	u_long tiwin;
1223 	struct tcp_opt_info opti;
1224 	int off, iphlen;
1225 	va_list ap;
1226 	int af;		/* af on the wire */
1227 	struct mbuf *tcp_saveti = NULL;
1228 	uint32_t ts_rtt;
1229 	uint8_t iptos;
1230 	uint64_t *tcps;
1231 	vestigial_inpcb_t vestige;
1232 
1233 	vestige.valid = 0;
1234 
1235 	MCLAIM(m, &tcp_rx_mowner);
1236 	va_start(ap, m);
1237 	toff = va_arg(ap, int);
1238 	(void)va_arg(ap, int);		/* ignore value, advance ap */
1239 	va_end(ap);
1240 
1241 	TCP_STATINC(TCP_STAT_RCVTOTAL);
1242 
1243 	memset(&opti, 0, sizeof(opti));
1244 	opti.ts_present = 0;
1245 	opti.maxseg = 0;
1246 
1247 	/*
1248 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1249 	 *
1250 	 * TCP is, by definition, unicast, so we reject all
1251 	 * multicast outright.
1252 	 *
1253 	 * Note, there are additional src/dst address checks in
1254 	 * the AF-specific code below.
1255 	 */
1256 	if (m->m_flags & (M_BCAST|M_MCAST)) {
1257 		/* XXX stat */
1258 		goto drop;
1259 	}
1260 #ifdef INET6
1261 	if (m->m_flags & M_ANYCAST6) {
1262 		/* XXX stat */
1263 		goto drop;
1264 	}
1265 #endif
1266 
1267 	/*
1268 	 * Get IP and TCP header.
1269 	 * Note: IP leaves IP header in first mbuf.
1270 	 */
1271 	ip = mtod(m, struct ip *);
1272 	switch (ip->ip_v) {
1273 #ifdef INET
1274 	case 4:
1275 #ifdef INET6
1276 		ip6 = NULL;
1277 #endif
1278 		af = AF_INET;
1279 		iphlen = sizeof(struct ip);
1280 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1281 			sizeof(struct tcphdr));
1282 		if (th == NULL) {
1283 			TCP_STATINC(TCP_STAT_RCVSHORT);
1284 			return;
1285 		}
1286 		/* We do the checksum after PCB lookup... */
1287 		len = ntohs(ip->ip_len);
1288 		tlen = len - toff;
1289 		iptos = ip->ip_tos;
1290 		break;
1291 #endif
1292 #ifdef INET6
1293 	case 6:
1294 		ip = NULL;
1295 		iphlen = sizeof(struct ip6_hdr);
1296 		af = AF_INET6;
1297 		ip6 = mtod(m, struct ip6_hdr *);
1298 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1299 			sizeof(struct tcphdr));
1300 		if (th == NULL) {
1301 			TCP_STATINC(TCP_STAT_RCVSHORT);
1302 			return;
1303 		}
1304 
1305 		/* Be proactive about malicious use of IPv4 mapped address */
1306 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1307 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1308 			/* XXX stat */
1309 			goto drop;
1310 		}
1311 
1312 		/*
1313 		 * Be proactive about unspecified IPv6 address in source.
1314 		 * As we use all-zero to indicate unbounded/unconnected pcb,
1315 		 * unspecified IPv6 address can be used to confuse us.
1316 		 *
1317 		 * Note that packets with unspecified IPv6 destination is
1318 		 * already dropped in ip6_input.
1319 		 */
1320 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1321 			/* XXX stat */
1322 			goto drop;
1323 		}
1324 
1325 		/*
1326 		 * Make sure destination address is not multicast.
1327 		 * Source address checked in ip6_input().
1328 		 */
1329 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1330 			/* XXX stat */
1331 			goto drop;
1332 		}
1333 
1334 		/* We do the checksum after PCB lookup... */
1335 		len = m->m_pkthdr.len;
1336 		tlen = len - toff;
1337 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1338 		break;
1339 #endif
1340 	default:
1341 		m_freem(m);
1342 		return;
1343 	}
1344 
1345 	KASSERT(TCP_HDR_ALIGNED_P(th));
1346 
1347 	/*
1348 	 * Check that TCP offset makes sense,
1349 	 * pull out TCP options and adjust length.		XXX
1350 	 */
1351 	off = th->th_off << 2;
1352 	if (off < sizeof (struct tcphdr) || off > tlen) {
1353 		TCP_STATINC(TCP_STAT_RCVBADOFF);
1354 		goto drop;
1355 	}
1356 	tlen -= off;
1357 
1358 	/*
1359 	 * tcp_input() has been modified to use tlen to mean the TCP data
1360 	 * length throughout the function.  Other functions can use
1361 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1362 	 * rja
1363 	 */
1364 
1365 	if (off > sizeof (struct tcphdr)) {
1366 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1367 		if (th == NULL) {
1368 			TCP_STATINC(TCP_STAT_RCVSHORT);
1369 			return;
1370 		}
1371 		/*
1372 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
1373 		 * (as they're before toff) and we don't need to update those.
1374 		 */
1375 		KASSERT(TCP_HDR_ALIGNED_P(th));
1376 		optlen = off - sizeof (struct tcphdr);
1377 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1378 		/*
1379 		 * Do quick retrieval of timestamp options ("options
1380 		 * prediction?").  If timestamp is the only option and it's
1381 		 * formatted as recommended in RFC 1323 appendix A, we
1382 		 * quickly get the values now and not bother calling
1383 		 * tcp_dooptions(), etc.
1384 		 */
1385 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1386 		     (optlen > TCPOLEN_TSTAMP_APPA &&
1387 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1388 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1389 		     (th->th_flags & TH_SYN) == 0) {
1390 			opti.ts_present = 1;
1391 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1392 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1393 			optp = NULL;	/* we've parsed the options */
1394 		}
1395 	}
1396 	tiflags = th->th_flags;
1397 
1398 	/*
1399 	 * Checksum extended TCP header and data
1400 	 */
1401 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
1402 		goto badcsum;
1403 
1404 	/*
1405 	 * Locate pcb for segment.
1406 	 */
1407 findpcb:
1408 	inp = NULL;
1409 #ifdef INET6
1410 	in6p = NULL;
1411 #endif
1412 	switch (af) {
1413 #ifdef INET
1414 	case AF_INET:
1415 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1416 					   ip->ip_dst, th->th_dport,
1417 					   &vestige);
1418 		if (inp == 0 && !vestige.valid) {
1419 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1420 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1421 		}
1422 #ifdef INET6
1423 		if (inp == 0 && !vestige.valid) {
1424 			struct in6_addr s, d;
1425 
1426 			/* mapped addr case */
1427 			in6_in_2_v4mapin6(&ip->ip_src, &s);
1428 			in6_in_2_v4mapin6(&ip->ip_dst, &d);
1429 			in6p = in6_pcblookup_connect(&tcbtable, &s,
1430 						     th->th_sport, &d, th->th_dport,
1431 						     0, &vestige);
1432 			if (in6p == 0 && !vestige.valid) {
1433 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
1434 				in6p = in6_pcblookup_bind(&tcbtable, &d,
1435 				    th->th_dport, 0);
1436 			}
1437 		}
1438 #endif
1439 #ifndef INET6
1440 		if (inp == 0 && !vestige.valid)
1441 #else
1442 		if (inp == 0 && in6p == 0 && !vestige.valid)
1443 #endif
1444 		{
1445 			TCP_STATINC(TCP_STAT_NOPORT);
1446 			if (tcp_log_refused &&
1447 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1448 				tcp4_log_refused(ip, th);
1449 			}
1450 			tcp_fields_to_host(th);
1451 			goto dropwithreset_ratelim;
1452 		}
1453 #if defined(IPSEC)
1454 		if (ipsec_used) {
1455 			if (inp &&
1456 			    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0
1457 			    && ipsec4_in_reject(m, inp)) {
1458 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1459 				goto drop;
1460 			}
1461 #ifdef INET6
1462 			else if (in6p &&
1463 			    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1464 			    && ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1465 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1466 				goto drop;
1467 			}
1468 #endif
1469 		}
1470 #endif /*IPSEC*/
1471 		break;
1472 #endif /*INET*/
1473 #ifdef INET6
1474 	case AF_INET6:
1475 	    {
1476 		int faith;
1477 
1478 #if defined(NFAITH) && NFAITH > 0
1479 		faith = faithprefix(&ip6->ip6_dst);
1480 #else
1481 		faith = 0;
1482 #endif
1483 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1484 					     th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1485 		if (!in6p && !vestige.valid) {
1486 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1487 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1488 				th->th_dport, faith);
1489 		}
1490 		if (!in6p && !vestige.valid) {
1491 			TCP_STATINC(TCP_STAT_NOPORT);
1492 			if (tcp_log_refused &&
1493 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1494 				tcp6_log_refused(ip6, th);
1495 			}
1496 			tcp_fields_to_host(th);
1497 			goto dropwithreset_ratelim;
1498 		}
1499 #if defined(IPSEC)
1500 		if (ipsec_used && in6p
1501 		    && (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1502 		    && ipsec6_in_reject(m, in6p)) {
1503 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1504 			goto drop;
1505 		}
1506 #endif /*IPSEC*/
1507 		break;
1508 	    }
1509 #endif
1510 	}
1511 
1512 	/*
1513 	 * If the state is CLOSED (i.e., TCB does not exist) then
1514 	 * all data in the incoming segment is discarded.
1515 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1516 	 * but should either do a listen or a connect soon.
1517 	 */
1518 	tp = NULL;
1519 	so = NULL;
1520 	if (inp) {
1521 		/* Check the minimum TTL for socket. */
1522 		if (ip->ip_ttl < inp->inp_ip_minttl)
1523 			goto drop;
1524 
1525 		tp = intotcpcb(inp);
1526 		so = inp->inp_socket;
1527 	}
1528 #ifdef INET6
1529 	else if (in6p) {
1530 		tp = in6totcpcb(in6p);
1531 		so = in6p->in6p_socket;
1532 	}
1533 #endif
1534 	else if (vestige.valid) {
1535 		int mc = 0;
1536 
1537 		/* We do not support the resurrection of vtw tcpcps.
1538 		 */
1539 		if (tcp_input_checksum(af, m, th, toff, off, tlen))
1540 			goto badcsum;
1541 
1542 		switch (af) {
1543 #ifdef INET6
1544 		case AF_INET6:
1545 			mc = IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst);
1546 			break;
1547 #endif
1548 
1549 		case AF_INET:
1550 			mc = (IN_MULTICAST(ip->ip_dst.s_addr)
1551 			      || in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif));
1552 			break;
1553 		}
1554 
1555 		tcp_fields_to_host(th);
1556 		tcp_vtw_input(th, &vestige, m, tlen, mc);
1557 		m = 0;
1558 		goto drop;
1559 	}
1560 
1561 	if (tp == 0) {
1562 		tcp_fields_to_host(th);
1563 		goto dropwithreset_ratelim;
1564 	}
1565 	if (tp->t_state == TCPS_CLOSED)
1566 		goto drop;
1567 
1568 	KASSERT(so->so_lock == softnet_lock);
1569 	KASSERT(solocked(so));
1570 
1571 	tcp_fields_to_host(th);
1572 
1573 	/* Unscale the window into a 32-bit value. */
1574 	if ((tiflags & TH_SYN) == 0)
1575 		tiwin = th->th_win << tp->snd_scale;
1576 	else
1577 		tiwin = th->th_win;
1578 
1579 #ifdef INET6
1580 	/* save packet options if user wanted */
1581 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1582 		if (in6p->in6p_options) {
1583 			m_freem(in6p->in6p_options);
1584 			in6p->in6p_options = 0;
1585 		}
1586 		KASSERT(ip6 != NULL);
1587 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1588 	}
1589 #endif
1590 
1591 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1592 		union syn_cache_sa src;
1593 		union syn_cache_sa dst;
1594 
1595 		memset(&src, 0, sizeof(src));
1596 		memset(&dst, 0, sizeof(dst));
1597 		switch (af) {
1598 #ifdef INET
1599 		case AF_INET:
1600 			src.sin.sin_len = sizeof(struct sockaddr_in);
1601 			src.sin.sin_family = AF_INET;
1602 			src.sin.sin_addr = ip->ip_src;
1603 			src.sin.sin_port = th->th_sport;
1604 
1605 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1606 			dst.sin.sin_family = AF_INET;
1607 			dst.sin.sin_addr = ip->ip_dst;
1608 			dst.sin.sin_port = th->th_dport;
1609 			break;
1610 #endif
1611 #ifdef INET6
1612 		case AF_INET6:
1613 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1614 			src.sin6.sin6_family = AF_INET6;
1615 			src.sin6.sin6_addr = ip6->ip6_src;
1616 			src.sin6.sin6_port = th->th_sport;
1617 
1618 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1619 			dst.sin6.sin6_family = AF_INET6;
1620 			dst.sin6.sin6_addr = ip6->ip6_dst;
1621 			dst.sin6.sin6_port = th->th_dport;
1622 			break;
1623 #endif /* INET6 */
1624 		default:
1625 			goto badsyn;	/*sanity*/
1626 		}
1627 
1628 		if (so->so_options & SO_DEBUG) {
1629 #ifdef TCP_DEBUG
1630 			ostate = tp->t_state;
1631 #endif
1632 
1633 			tcp_saveti = NULL;
1634 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1635 				goto nosave;
1636 
1637 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1638 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1639 				if (!tcp_saveti)
1640 					goto nosave;
1641 			} else {
1642 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1643 				if (!tcp_saveti)
1644 					goto nosave;
1645 				MCLAIM(m, &tcp_mowner);
1646 				tcp_saveti->m_len = iphlen;
1647 				m_copydata(m, 0, iphlen,
1648 				    mtod(tcp_saveti, void *));
1649 			}
1650 
1651 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1652 				m_freem(tcp_saveti);
1653 				tcp_saveti = NULL;
1654 			} else {
1655 				tcp_saveti->m_len += sizeof(struct tcphdr);
1656 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1657 				    sizeof(struct tcphdr));
1658 			}
1659 	nosave:;
1660 		}
1661 		if (so->so_options & SO_ACCEPTCONN) {
1662 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1663 				if (tiflags & TH_RST) {
1664 					syn_cache_reset(&src.sa, &dst.sa, th);
1665 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1666 				    (TH_ACK|TH_SYN)) {
1667 					/*
1668 					 * Received a SYN,ACK.  This should
1669 					 * never happen while we are in
1670 					 * LISTEN.  Send an RST.
1671 					 */
1672 					goto badsyn;
1673 				} else if (tiflags & TH_ACK) {
1674 					so = syn_cache_get(&src.sa, &dst.sa,
1675 						th, toff, tlen, so, m);
1676 					if (so == NULL) {
1677 						/*
1678 						 * We don't have a SYN for
1679 						 * this ACK; send an RST.
1680 						 */
1681 						goto badsyn;
1682 					} else if (so ==
1683 					    (struct socket *)(-1)) {
1684 						/*
1685 						 * We were unable to create
1686 						 * the connection.  If the
1687 						 * 3-way handshake was
1688 						 * completed, and RST has
1689 						 * been sent to the peer.
1690 						 * Since the mbuf might be
1691 						 * in use for the reply,
1692 						 * do not free it.
1693 						 */
1694 						m = NULL;
1695 					} else {
1696 						/*
1697 						 * We have created a
1698 						 * full-blown connection.
1699 						 */
1700 						tp = NULL;
1701 						inp = NULL;
1702 #ifdef INET6
1703 						in6p = NULL;
1704 #endif
1705 						switch (so->so_proto->pr_domain->dom_family) {
1706 #ifdef INET
1707 						case AF_INET:
1708 							inp = sotoinpcb(so);
1709 							tp = intotcpcb(inp);
1710 							break;
1711 #endif
1712 #ifdef INET6
1713 						case AF_INET6:
1714 							in6p = sotoin6pcb(so);
1715 							tp = in6totcpcb(in6p);
1716 							break;
1717 #endif
1718 						}
1719 						if (tp == NULL)
1720 							goto badsyn;	/*XXX*/
1721 						tiwin <<= tp->snd_scale;
1722 						goto after_listen;
1723 					}
1724 				} else {
1725 					/*
1726 					 * None of RST, SYN or ACK was set.
1727 					 * This is an invalid packet for a
1728 					 * TCB in LISTEN state.  Send a RST.
1729 					 */
1730 					goto badsyn;
1731 				}
1732 			} else {
1733 				/*
1734 				 * Received a SYN.
1735 				 *
1736 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1737 				 */
1738 				if (m->m_flags & (M_BCAST|M_MCAST))
1739 					goto drop;
1740 
1741 				switch (af) {
1742 #ifdef INET6
1743 				case AF_INET6:
1744 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1745 						goto drop;
1746 					break;
1747 #endif /* INET6 */
1748 				case AF_INET:
1749 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1750 					    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1751 						goto drop;
1752 				break;
1753 				}
1754 
1755 #ifdef INET6
1756 				/*
1757 				 * If deprecated address is forbidden, we do
1758 				 * not accept SYN to deprecated interface
1759 				 * address to prevent any new inbound
1760 				 * connection from getting established.
1761 				 * When we do not accept SYN, we send a TCP
1762 				 * RST, with deprecated source address (instead
1763 				 * of dropping it).  We compromise it as it is
1764 				 * much better for peer to send a RST, and
1765 				 * RST will be the final packet for the
1766 				 * exchange.
1767 				 *
1768 				 * If we do not forbid deprecated addresses, we
1769 				 * accept the SYN packet.  RFC2462 does not
1770 				 * suggest dropping SYN in this case.
1771 				 * If we decipher RFC2462 5.5.4, it says like
1772 				 * this:
1773 				 * 1. use of deprecated addr with existing
1774 				 *    communication is okay - "SHOULD continue
1775 				 *    to be used"
1776 				 * 2. use of it with new communication:
1777 				 *   (2a) "SHOULD NOT be used if alternate
1778 				 *        address with sufficient scope is
1779 				 *        available"
1780 				 *   (2b) nothing mentioned otherwise.
1781 				 * Here we fall into (2b) case as we have no
1782 				 * choice in our source address selection - we
1783 				 * must obey the peer.
1784 				 *
1785 				 * The wording in RFC2462 is confusing, and
1786 				 * there are multiple description text for
1787 				 * deprecated address handling - worse, they
1788 				 * are not exactly the same.  I believe 5.5.4
1789 				 * is the best one, so we follow 5.5.4.
1790 				 */
1791 				if (af == AF_INET6 && !ip6_use_deprecated) {
1792 					struct in6_ifaddr *ia6;
1793 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1794 					    &ip6->ip6_dst)) &&
1795 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1796 						tp = NULL;
1797 						goto dropwithreset;
1798 					}
1799 				}
1800 #endif
1801 
1802 #if defined(IPSEC)
1803 				if (ipsec_used) {
1804 					switch (af) {
1805 #ifdef INET
1806 					case AF_INET:
1807 						if (!ipsec4_in_reject_so(m, so))
1808 							break;
1809 						IPSEC_STATINC(
1810 						    IPSEC_STAT_IN_POLVIO);
1811 						tp = NULL;
1812 						goto dropwithreset;
1813 #endif
1814 #ifdef INET6
1815 					case AF_INET6:
1816 						if (!ipsec6_in_reject_so(m, so))
1817 							break;
1818 						IPSEC6_STATINC(
1819 						    IPSEC_STAT_IN_POLVIO);
1820 						tp = NULL;
1821 						goto dropwithreset;
1822 #endif /*INET6*/
1823 					}
1824 				}
1825 #endif /*IPSEC*/
1826 
1827 				/*
1828 				 * LISTEN socket received a SYN
1829 				 * from itself?  This can't possibly
1830 				 * be valid; drop the packet.
1831 				 */
1832 				if (th->th_sport == th->th_dport) {
1833 					int i;
1834 
1835 					switch (af) {
1836 #ifdef INET
1837 					case AF_INET:
1838 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1839 						break;
1840 #endif
1841 #ifdef INET6
1842 					case AF_INET6:
1843 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1844 						break;
1845 #endif
1846 					default:
1847 						i = 1;
1848 					}
1849 					if (i) {
1850 						TCP_STATINC(TCP_STAT_BADSYN);
1851 						goto drop;
1852 					}
1853 				}
1854 
1855 				/*
1856 				 * SYN looks ok; create compressed TCP
1857 				 * state for it.
1858 				 */
1859 				if (so->so_qlen <= so->so_qlimit &&
1860 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1861 						so, m, optp, optlen, &opti))
1862 					m = NULL;
1863 			}
1864 			goto drop;
1865 		}
1866 	}
1867 
1868 after_listen:
1869 #ifdef DIAGNOSTIC
1870 	/*
1871 	 * Should not happen now that all embryonic connections
1872 	 * are handled with compressed state.
1873 	 */
1874 	if (tp->t_state == TCPS_LISTEN)
1875 		panic("tcp_input: TCPS_LISTEN");
1876 #endif
1877 
1878 	/*
1879 	 * Segment received on connection.
1880 	 * Reset idle time and keep-alive timer.
1881 	 */
1882 	tp->t_rcvtime = tcp_now;
1883 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1884 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1885 
1886 	/*
1887 	 * Process options.
1888 	 */
1889 #ifdef TCP_SIGNATURE
1890 	if (optp || (tp->t_flags & TF_SIGNATURE))
1891 #else
1892 	if (optp)
1893 #endif
1894 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1895 			goto drop;
1896 
1897 	if (TCP_SACK_ENABLED(tp)) {
1898 		tcp_del_sackholes(tp, th);
1899 	}
1900 
1901 	if (TCP_ECN_ALLOWED(tp)) {
1902 		if (tiflags & TH_CWR) {
1903 			tp->t_flags &= ~TF_ECN_SND_ECE;
1904 		}
1905 		switch (iptos & IPTOS_ECN_MASK) {
1906 		case IPTOS_ECN_CE:
1907 			tp->t_flags |= TF_ECN_SND_ECE;
1908 			TCP_STATINC(TCP_STAT_ECN_CE);
1909 			break;
1910 		case IPTOS_ECN_ECT0:
1911 			TCP_STATINC(TCP_STAT_ECN_ECT);
1912 			break;
1913 		case IPTOS_ECN_ECT1:
1914 			/* XXX: ignore for now -- rpaulo */
1915 			break;
1916 		}
1917 		/*
1918 		 * Congestion experienced.
1919 		 * Ignore if we are already trying to recover.
1920 		 */
1921 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1922 			tp->t_congctl->cong_exp(tp);
1923 	}
1924 
1925 	if (opti.ts_present && opti.ts_ecr) {
1926 		/*
1927 		 * Calculate the RTT from the returned time stamp and the
1928 		 * connection's time base.  If the time stamp is later than
1929 		 * the current time, or is extremely old, fall back to non-1323
1930 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
1931 		 * at the same time.
1932 		 *
1933 		 * Note that ts_rtt is in units of slow ticks (500
1934 		 * ms).  Since most earthbound RTTs are < 500 ms,
1935 		 * observed values will have large quantization noise.
1936 		 * Our smoothed RTT is then the fraction of observed
1937 		 * samples that are 1 tick instead of 0 (times 500
1938 		 * ms).
1939 		 *
1940 		 * ts_rtt is increased by 1 to denote a valid sample,
1941 		 * with 0 indicating an invalid measurement.  This
1942 		 * extra 1 must be removed when ts_rtt is used, or
1943 		 * else an an erroneous extra 500 ms will result.
1944 		 */
1945 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1946 		if (ts_rtt > TCP_PAWS_IDLE)
1947 			ts_rtt = 0;
1948 	} else {
1949 		ts_rtt = 0;
1950 	}
1951 
1952 	/*
1953 	 * Header prediction: check for the two common cases
1954 	 * of a uni-directional data xfer.  If the packet has
1955 	 * no control flags, is in-sequence, the window didn't
1956 	 * change and we're not retransmitting, it's a
1957 	 * candidate.  If the length is zero and the ack moved
1958 	 * forward, we're the sender side of the xfer.  Just
1959 	 * free the data acked & wake any higher level process
1960 	 * that was blocked waiting for space.  If the length
1961 	 * is non-zero and the ack didn't move, we're the
1962 	 * receiver side.  If we're getting packets in-order
1963 	 * (the reassembly queue is empty), add the data to
1964 	 * the socket buffer and note that we need a delayed ack.
1965 	 */
1966 	if (tp->t_state == TCPS_ESTABLISHED &&
1967 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1968 	        == TH_ACK &&
1969 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1970 	    th->th_seq == tp->rcv_nxt &&
1971 	    tiwin && tiwin == tp->snd_wnd &&
1972 	    tp->snd_nxt == tp->snd_max) {
1973 
1974 		/*
1975 		 * If last ACK falls within this segment's sequence numbers,
1976 		 * record the timestamp.
1977 		 * NOTE that the test is modified according to the latest
1978 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1979 		 *
1980 		 * note that we already know
1981 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1982 		 */
1983 		if (opti.ts_present &&
1984 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1985 			tp->ts_recent_age = tcp_now;
1986 			tp->ts_recent = opti.ts_val;
1987 		}
1988 
1989 		if (tlen == 0) {
1990 			/* Ack prediction. */
1991 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1992 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1993 			    tp->snd_cwnd >= tp->snd_wnd &&
1994 			    tp->t_partialacks < 0) {
1995 				/*
1996 				 * this is a pure ack for outstanding data.
1997 				 */
1998 				if (ts_rtt)
1999 					tcp_xmit_timer(tp, ts_rtt - 1);
2000 				else if (tp->t_rtttime &&
2001 				    SEQ_GT(th->th_ack, tp->t_rtseq))
2002 					tcp_xmit_timer(tp,
2003 					  tcp_now - tp->t_rtttime);
2004 				acked = th->th_ack - tp->snd_una;
2005 				tcps = TCP_STAT_GETREF();
2006 				tcps[TCP_STAT_PREDACK]++;
2007 				tcps[TCP_STAT_RCVACKPACK]++;
2008 				tcps[TCP_STAT_RCVACKBYTE] += acked;
2009 				TCP_STAT_PUTREF();
2010 				nd6_hint(tp);
2011 
2012 				if (acked > (tp->t_lastoff - tp->t_inoff))
2013 					tp->t_lastm = NULL;
2014 				sbdrop(&so->so_snd, acked);
2015 				tp->t_lastoff -= acked;
2016 
2017 				icmp_check(tp, th, acked);
2018 
2019 				tp->snd_una = th->th_ack;
2020 				tp->snd_fack = tp->snd_una;
2021 				if (SEQ_LT(tp->snd_high, tp->snd_una))
2022 					tp->snd_high = tp->snd_una;
2023 				m_freem(m);
2024 
2025 				/*
2026 				 * If all outstanding data are acked, stop
2027 				 * retransmit timer, otherwise restart timer
2028 				 * using current (possibly backed-off) value.
2029 				 * If process is waiting for space,
2030 				 * wakeup/selnotify/signal.  If data
2031 				 * are ready to send, let tcp_output
2032 				 * decide between more output or persist.
2033 				 */
2034 				if (tp->snd_una == tp->snd_max)
2035 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
2036 				else if (TCP_TIMER_ISARMED(tp,
2037 				    TCPT_PERSIST) == 0)
2038 					TCP_TIMER_ARM(tp, TCPT_REXMT,
2039 					    tp->t_rxtcur);
2040 
2041 				sowwakeup(so);
2042 				if (so->so_snd.sb_cc) {
2043 					KERNEL_LOCK(1, NULL);
2044 					(void) tcp_output(tp);
2045 					KERNEL_UNLOCK_ONE(NULL);
2046 				}
2047 				if (tcp_saveti)
2048 					m_freem(tcp_saveti);
2049 				return;
2050 			}
2051 		} else if (th->th_ack == tp->snd_una &&
2052 		    TAILQ_FIRST(&tp->segq) == NULL &&
2053 		    tlen <= sbspace(&so->so_rcv)) {
2054 			int newsize = 0;	/* automatic sockbuf scaling */
2055 
2056 			/*
2057 			 * this is a pure, in-sequence data packet
2058 			 * with nothing on the reassembly queue and
2059 			 * we have enough buffer space to take it.
2060 			 */
2061 			tp->rcv_nxt += tlen;
2062 			tcps = TCP_STAT_GETREF();
2063 			tcps[TCP_STAT_PREDDAT]++;
2064 			tcps[TCP_STAT_RCVPACK]++;
2065 			tcps[TCP_STAT_RCVBYTE] += tlen;
2066 			TCP_STAT_PUTREF();
2067 			nd6_hint(tp);
2068 
2069 		/*
2070 		 * Automatic sizing enables the performance of large buffers
2071 		 * and most of the efficiency of small ones by only allocating
2072 		 * space when it is needed.
2073 		 *
2074 		 * On the receive side the socket buffer memory is only rarely
2075 		 * used to any significant extent.  This allows us to be much
2076 		 * more aggressive in scaling the receive socket buffer.  For
2077 		 * the case that the buffer space is actually used to a large
2078 		 * extent and we run out of kernel memory we can simply drop
2079 		 * the new segments; TCP on the sender will just retransmit it
2080 		 * later.  Setting the buffer size too big may only consume too
2081 		 * much kernel memory if the application doesn't read() from
2082 		 * the socket or packet loss or reordering makes use of the
2083 		 * reassembly queue.
2084 		 *
2085 		 * The criteria to step up the receive buffer one notch are:
2086 		 *  1. the number of bytes received during the time it takes
2087 		 *     one timestamp to be reflected back to us (the RTT);
2088 		 *  2. received bytes per RTT is within seven eighth of the
2089 		 *     current socket buffer size;
2090 		 *  3. receive buffer size has not hit maximal automatic size;
2091 		 *
2092 		 * This algorithm does one step per RTT at most and only if
2093 		 * we receive a bulk stream w/o packet losses or reorderings.
2094 		 * Shrinking the buffer during idle times is not necessary as
2095 		 * it doesn't consume any memory when idle.
2096 		 *
2097 		 * TODO: Only step up if the application is actually serving
2098 		 * the buffer to better manage the socket buffer resources.
2099 		 */
2100 			if (tcp_do_autorcvbuf &&
2101 			    opti.ts_ecr &&
2102 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
2103 				if (opti.ts_ecr > tp->rfbuf_ts &&
2104 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
2105 					if (tp->rfbuf_cnt >
2106 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
2107 					    so->so_rcv.sb_hiwat <
2108 					    tcp_autorcvbuf_max) {
2109 						newsize =
2110 						    min(so->so_rcv.sb_hiwat +
2111 						    tcp_autorcvbuf_inc,
2112 						    tcp_autorcvbuf_max);
2113 					}
2114 					/* Start over with next RTT. */
2115 					tp->rfbuf_ts = 0;
2116 					tp->rfbuf_cnt = 0;
2117 				} else
2118 					tp->rfbuf_cnt += tlen;	/* add up */
2119 			}
2120 
2121 			/*
2122 			 * Drop TCP, IP headers and TCP options then add data
2123 			 * to socket buffer.
2124 			 */
2125 			if (so->so_state & SS_CANTRCVMORE)
2126 				m_freem(m);
2127 			else {
2128 				/*
2129 				 * Set new socket buffer size.
2130 				 * Give up when limit is reached.
2131 				 */
2132 				if (newsize)
2133 					if (!sbreserve(&so->so_rcv,
2134 					    newsize, so))
2135 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2136 				m_adj(m, toff + off);
2137 				sbappendstream(&so->so_rcv, m);
2138 			}
2139 			sorwakeup(so);
2140 			tcp_setup_ack(tp, th);
2141 			if (tp->t_flags & TF_ACKNOW) {
2142 				KERNEL_LOCK(1, NULL);
2143 				(void) tcp_output(tp);
2144 				KERNEL_UNLOCK_ONE(NULL);
2145 			}
2146 			if (tcp_saveti)
2147 				m_freem(tcp_saveti);
2148 			return;
2149 		}
2150 	}
2151 
2152 	/*
2153 	 * Compute mbuf offset to TCP data segment.
2154 	 */
2155 	hdroptlen = toff + off;
2156 
2157 	/*
2158 	 * Calculate amount of space in receive window,
2159 	 * and then do TCP input processing.
2160 	 * Receive window is amount of space in rcv queue,
2161 	 * but not less than advertised window.
2162 	 */
2163 	{ int win;
2164 
2165 	win = sbspace(&so->so_rcv);
2166 	if (win < 0)
2167 		win = 0;
2168 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2169 	}
2170 
2171 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
2172 	tp->rfbuf_ts = 0;
2173 	tp->rfbuf_cnt = 0;
2174 
2175 	switch (tp->t_state) {
2176 	/*
2177 	 * If the state is SYN_SENT:
2178 	 *	if seg contains an ACK, but not for our SYN, drop the input.
2179 	 *	if seg contains a RST, then drop the connection.
2180 	 *	if seg does not contain SYN, then drop it.
2181 	 * Otherwise this is an acceptable SYN segment
2182 	 *	initialize tp->rcv_nxt and tp->irs
2183 	 *	if seg contains ack then advance tp->snd_una
2184 	 *	if seg contains a ECE and ECN support is enabled, the stream
2185 	 *	    is ECN capable.
2186 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2187 	 *	arrange for segment to be acked (eventually)
2188 	 *	continue processing rest of data/controls, beginning with URG
2189 	 */
2190 	case TCPS_SYN_SENT:
2191 		if ((tiflags & TH_ACK) &&
2192 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2193 		     SEQ_GT(th->th_ack, tp->snd_max)))
2194 			goto dropwithreset;
2195 		if (tiflags & TH_RST) {
2196 			if (tiflags & TH_ACK)
2197 				tp = tcp_drop(tp, ECONNREFUSED);
2198 			goto drop;
2199 		}
2200 		if ((tiflags & TH_SYN) == 0)
2201 			goto drop;
2202 		if (tiflags & TH_ACK) {
2203 			tp->snd_una = th->th_ack;
2204 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2205 				tp->snd_nxt = tp->snd_una;
2206 			if (SEQ_LT(tp->snd_high, tp->snd_una))
2207 				tp->snd_high = tp->snd_una;
2208 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2209 
2210 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
2211 				tp->t_flags |= TF_ECN_PERMIT;
2212 				TCP_STATINC(TCP_STAT_ECN_SHS);
2213 			}
2214 
2215 		}
2216 		tp->irs = th->th_seq;
2217 		tcp_rcvseqinit(tp);
2218 		tp->t_flags |= TF_ACKNOW;
2219 		tcp_mss_from_peer(tp, opti.maxseg);
2220 
2221 		/*
2222 		 * Initialize the initial congestion window.  If we
2223 		 * had to retransmit the SYN, we must initialize cwnd
2224 		 * to 1 segment (i.e. the Loss Window).
2225 		 */
2226 		if (tp->t_flags & TF_SYN_REXMT)
2227 			tp->snd_cwnd = tp->t_peermss;
2228 		else {
2229 			int ss = tcp_init_win;
2230 #ifdef INET
2231 			if (inp != NULL && in_localaddr(inp->inp_faddr))
2232 				ss = tcp_init_win_local;
2233 #endif
2234 #ifdef INET6
2235 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2236 				ss = tcp_init_win_local;
2237 #endif
2238 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2239 		}
2240 
2241 		tcp_rmx_rtt(tp);
2242 		if (tiflags & TH_ACK) {
2243 			TCP_STATINC(TCP_STAT_CONNECTS);
2244 			/*
2245 			 * move tcp_established before soisconnected
2246 			 * because upcall handler can drive tcp_output
2247 			 * functionality.
2248 			 * XXX we might call soisconnected at the end of
2249 			 * all processing
2250 			 */
2251 			tcp_established(tp);
2252 			soisconnected(so);
2253 			/* Do window scaling on this connection? */
2254 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2255 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2256 				tp->snd_scale = tp->requested_s_scale;
2257 				tp->rcv_scale = tp->request_r_scale;
2258 			}
2259 			TCP_REASS_LOCK(tp);
2260 			(void) tcp_reass(tp, NULL, NULL, &tlen);
2261 			/*
2262 			 * if we didn't have to retransmit the SYN,
2263 			 * use its rtt as our initial srtt & rtt var.
2264 			 */
2265 			if (tp->t_rtttime)
2266 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2267 		} else
2268 			tp->t_state = TCPS_SYN_RECEIVED;
2269 
2270 		/*
2271 		 * Advance th->th_seq to correspond to first data byte.
2272 		 * If data, trim to stay within window,
2273 		 * dropping FIN if necessary.
2274 		 */
2275 		th->th_seq++;
2276 		if (tlen > tp->rcv_wnd) {
2277 			todrop = tlen - tp->rcv_wnd;
2278 			m_adj(m, -todrop);
2279 			tlen = tp->rcv_wnd;
2280 			tiflags &= ~TH_FIN;
2281 			tcps = TCP_STAT_GETREF();
2282 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2283 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2284 			TCP_STAT_PUTREF();
2285 		}
2286 		tp->snd_wl1 = th->th_seq - 1;
2287 		tp->rcv_up = th->th_seq;
2288 		goto step6;
2289 
2290 	/*
2291 	 * If the state is SYN_RECEIVED:
2292 	 *	If seg contains an ACK, but not for our SYN, drop the input
2293 	 *	and generate an RST.  See page 36, rfc793
2294 	 */
2295 	case TCPS_SYN_RECEIVED:
2296 		if ((tiflags & TH_ACK) &&
2297 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2298 		     SEQ_GT(th->th_ack, tp->snd_max)))
2299 			goto dropwithreset;
2300 		break;
2301 	}
2302 
2303 	/*
2304 	 * States other than LISTEN or SYN_SENT.
2305 	 * First check timestamp, if present.
2306 	 * Then check that at least some bytes of segment are within
2307 	 * receive window.  If segment begins before rcv_nxt,
2308 	 * drop leading data (and SYN); if nothing left, just ack.
2309 	 *
2310 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2311 	 * and it's less than ts_recent, drop it.
2312 	 */
2313 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2314 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2315 
2316 		/* Check to see if ts_recent is over 24 days old.  */
2317 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2318 			/*
2319 			 * Invalidate ts_recent.  If this segment updates
2320 			 * ts_recent, the age will be reset later and ts_recent
2321 			 * will get a valid value.  If it does not, setting
2322 			 * ts_recent to zero will at least satisfy the
2323 			 * requirement that zero be placed in the timestamp
2324 			 * echo reply when ts_recent isn't valid.  The
2325 			 * age isn't reset until we get a valid ts_recent
2326 			 * because we don't want out-of-order segments to be
2327 			 * dropped when ts_recent is old.
2328 			 */
2329 			tp->ts_recent = 0;
2330 		} else {
2331 			tcps = TCP_STAT_GETREF();
2332 			tcps[TCP_STAT_RCVDUPPACK]++;
2333 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2334 			tcps[TCP_STAT_PAWSDROP]++;
2335 			TCP_STAT_PUTREF();
2336 			tcp_new_dsack(tp, th->th_seq, tlen);
2337 			goto dropafterack;
2338 		}
2339 	}
2340 
2341 	todrop = tp->rcv_nxt - th->th_seq;
2342 	dupseg = false;
2343 	if (todrop > 0) {
2344 		if (tiflags & TH_SYN) {
2345 			tiflags &= ~TH_SYN;
2346 			th->th_seq++;
2347 			if (th->th_urp > 1)
2348 				th->th_urp--;
2349 			else {
2350 				tiflags &= ~TH_URG;
2351 				th->th_urp = 0;
2352 			}
2353 			todrop--;
2354 		}
2355 		if (todrop > tlen ||
2356 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2357 			/*
2358 			 * Any valid FIN or RST must be to the left of the
2359 			 * window.  At this point the FIN or RST must be a
2360 			 * duplicate or out of sequence; drop it.
2361 			 */
2362 			if (tiflags & TH_RST)
2363 				goto drop;
2364 			tiflags &= ~(TH_FIN|TH_RST);
2365 			/*
2366 			 * Send an ACK to resynchronize and drop any data.
2367 			 * But keep on processing for RST or ACK.
2368 			 */
2369 			tp->t_flags |= TF_ACKNOW;
2370 			todrop = tlen;
2371 			dupseg = true;
2372 			tcps = TCP_STAT_GETREF();
2373 			tcps[TCP_STAT_RCVDUPPACK]++;
2374 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2375 			TCP_STAT_PUTREF();
2376 		} else if ((tiflags & TH_RST) &&
2377 			   th->th_seq != tp->rcv_nxt) {
2378 			/*
2379 			 * Test for reset before adjusting the sequence
2380 			 * number for overlapping data.
2381 			 */
2382 			goto dropafterack_ratelim;
2383 		} else {
2384 			tcps = TCP_STAT_GETREF();
2385 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
2386 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2387 			TCP_STAT_PUTREF();
2388 		}
2389 		tcp_new_dsack(tp, th->th_seq, todrop);
2390 		hdroptlen += todrop;	/*drop from head afterwards*/
2391 		th->th_seq += todrop;
2392 		tlen -= todrop;
2393 		if (th->th_urp > todrop)
2394 			th->th_urp -= todrop;
2395 		else {
2396 			tiflags &= ~TH_URG;
2397 			th->th_urp = 0;
2398 		}
2399 	}
2400 
2401 	/*
2402 	 * If new data are received on a connection after the
2403 	 * user processes are gone, then RST the other end.
2404 	 */
2405 	if ((so->so_state & SS_NOFDREF) &&
2406 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2407 		tp = tcp_close(tp);
2408 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2409 		goto dropwithreset;
2410 	}
2411 
2412 	/*
2413 	 * If segment ends after window, drop trailing data
2414 	 * (and PUSH and FIN); if nothing left, just ACK.
2415 	 */
2416 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2417 	if (todrop > 0) {
2418 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2419 		if (todrop >= tlen) {
2420 			/*
2421 			 * The segment actually starts after the window.
2422 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2423 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2424 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2425 			 */
2426 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2427 			/*
2428 			 * If a new connection request is received
2429 			 * while in TIME_WAIT, drop the old connection
2430 			 * and start over if the sequence numbers
2431 			 * are above the previous ones.
2432 			 *
2433 			 * NOTE: We will checksum the packet again, and
2434 			 * so we need to put the header fields back into
2435 			 * network order!
2436 			 * XXX This kind of sucks, but we don't expect
2437 			 * XXX this to happen very often, so maybe it
2438 			 * XXX doesn't matter so much.
2439 			 */
2440 			if (tiflags & TH_SYN &&
2441 			    tp->t_state == TCPS_TIME_WAIT &&
2442 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2443 				tp = tcp_close(tp);
2444 				tcp_fields_to_net(th);
2445 				goto findpcb;
2446 			}
2447 			/*
2448 			 * If window is closed can only take segments at
2449 			 * window edge, and have to drop data and PUSH from
2450 			 * incoming segments.  Continue processing, but
2451 			 * remember to ack.  Otherwise, drop segment
2452 			 * and (if not RST) ack.
2453 			 */
2454 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2455 				tp->t_flags |= TF_ACKNOW;
2456 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
2457 			} else
2458 				goto dropafterack;
2459 		} else
2460 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2461 		m_adj(m, -todrop);
2462 		tlen -= todrop;
2463 		tiflags &= ~(TH_PUSH|TH_FIN);
2464 	}
2465 
2466 	/*
2467 	 * If last ACK falls within this segment's sequence numbers,
2468 	 *  record the timestamp.
2469 	 * NOTE:
2470 	 * 1) That the test incorporates suggestions from the latest
2471 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2472 	 * 2) That updating only on newer timestamps interferes with
2473 	 *    our earlier PAWS tests, so this check should be solely
2474 	 *    predicated on the sequence space of this segment.
2475 	 * 3) That we modify the segment boundary check to be
2476 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2477 	 *    instead of RFC1323's
2478 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2479 	 *    This modified check allows us to overcome RFC1323's
2480 	 *    limitations as described in Stevens TCP/IP Illustrated
2481 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2482 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2483 	 */
2484 	if (opti.ts_present &&
2485 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2486 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2487 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2488 		tp->ts_recent_age = tcp_now;
2489 		tp->ts_recent = opti.ts_val;
2490 	}
2491 
2492 	/*
2493 	 * If the RST bit is set examine the state:
2494 	 *    SYN_RECEIVED STATE:
2495 	 *	If passive open, return to LISTEN state.
2496 	 *	If active open, inform user that connection was refused.
2497 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2498 	 *	Inform user that connection was reset, and close tcb.
2499 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
2500 	 *	Close the tcb.
2501 	 */
2502 	if (tiflags & TH_RST) {
2503 		if (th->th_seq != tp->rcv_nxt)
2504 			goto dropafterack_ratelim;
2505 
2506 		switch (tp->t_state) {
2507 		case TCPS_SYN_RECEIVED:
2508 			so->so_error = ECONNREFUSED;
2509 			goto close;
2510 
2511 		case TCPS_ESTABLISHED:
2512 		case TCPS_FIN_WAIT_1:
2513 		case TCPS_FIN_WAIT_2:
2514 		case TCPS_CLOSE_WAIT:
2515 			so->so_error = ECONNRESET;
2516 		close:
2517 			tp->t_state = TCPS_CLOSED;
2518 			TCP_STATINC(TCP_STAT_DROPS);
2519 			tp = tcp_close(tp);
2520 			goto drop;
2521 
2522 		case TCPS_CLOSING:
2523 		case TCPS_LAST_ACK:
2524 		case TCPS_TIME_WAIT:
2525 			tp = tcp_close(tp);
2526 			goto drop;
2527 		}
2528 	}
2529 
2530 	/*
2531 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2532 	 * we must be in a synchronized state.  RFC791 states (under RST
2533 	 * generation) that any unacceptable segment (an out-of-order SYN
2534 	 * qualifies) received in a synchronized state must elicit only an
2535 	 * empty acknowledgment segment ... and the connection remains in
2536 	 * the same state.
2537 	 */
2538 	if (tiflags & TH_SYN) {
2539 		if (tp->rcv_nxt == th->th_seq) {
2540 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2541 			    TH_ACK);
2542 			if (tcp_saveti)
2543 				m_freem(tcp_saveti);
2544 			return;
2545 		}
2546 
2547 		goto dropafterack_ratelim;
2548 	}
2549 
2550 	/*
2551 	 * If the ACK bit is off we drop the segment and return.
2552 	 */
2553 	if ((tiflags & TH_ACK) == 0) {
2554 		if (tp->t_flags & TF_ACKNOW)
2555 			goto dropafterack;
2556 		else
2557 			goto drop;
2558 	}
2559 
2560 	/*
2561 	 * Ack processing.
2562 	 */
2563 	switch (tp->t_state) {
2564 
2565 	/*
2566 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2567 	 * ESTABLISHED state and continue processing, otherwise
2568 	 * send an RST.
2569 	 */
2570 	case TCPS_SYN_RECEIVED:
2571 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
2572 		    SEQ_GT(th->th_ack, tp->snd_max))
2573 			goto dropwithreset;
2574 		TCP_STATINC(TCP_STAT_CONNECTS);
2575 		soisconnected(so);
2576 		tcp_established(tp);
2577 		/* Do window scaling? */
2578 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2579 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2580 			tp->snd_scale = tp->requested_s_scale;
2581 			tp->rcv_scale = tp->request_r_scale;
2582 		}
2583 		TCP_REASS_LOCK(tp);
2584 		(void) tcp_reass(tp, NULL, NULL, &tlen);
2585 		tp->snd_wl1 = th->th_seq - 1;
2586 		/* fall into ... */
2587 
2588 	/*
2589 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2590 	 * ACKs.  If the ack is in the range
2591 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2592 	 * then advance tp->snd_una to th->th_ack and drop
2593 	 * data from the retransmission queue.  If this ACK reflects
2594 	 * more up to date window information we update our window information.
2595 	 */
2596 	case TCPS_ESTABLISHED:
2597 	case TCPS_FIN_WAIT_1:
2598 	case TCPS_FIN_WAIT_2:
2599 	case TCPS_CLOSE_WAIT:
2600 	case TCPS_CLOSING:
2601 	case TCPS_LAST_ACK:
2602 	case TCPS_TIME_WAIT:
2603 
2604 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2605 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2606 				TCP_STATINC(TCP_STAT_RCVDUPACK);
2607 				/*
2608 				 * If we have outstanding data (other than
2609 				 * a window probe), this is a completely
2610 				 * duplicate ack (ie, window info didn't
2611 				 * change), the ack is the biggest we've
2612 				 * seen and we've seen exactly our rexmt
2613 				 * threshhold of them, assume a packet
2614 				 * has been dropped and retransmit it.
2615 				 * Kludge snd_nxt & the congestion
2616 				 * window so we send only this one
2617 				 * packet.
2618 				 */
2619 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2620 				    th->th_ack != tp->snd_una)
2621 					tp->t_dupacks = 0;
2622 				else if (tp->t_partialacks < 0 &&
2623 					 (++tp->t_dupacks == tcprexmtthresh ||
2624 					 TCP_FACK_FASTRECOV(tp))) {
2625 					/*
2626 					 * Do the fast retransmit, and adjust
2627 					 * congestion control paramenters.
2628 					 */
2629 					if (tp->t_congctl->fast_retransmit(tp, th)) {
2630 						/* False fast retransmit */
2631 						break;
2632 					} else
2633 						goto drop;
2634 				} else if (tp->t_dupacks > tcprexmtthresh) {
2635 					tp->snd_cwnd += tp->t_segsz;
2636 					KERNEL_LOCK(1, NULL);
2637 					(void) tcp_output(tp);
2638 					KERNEL_UNLOCK_ONE(NULL);
2639 					goto drop;
2640 				}
2641 			} else {
2642 				/*
2643 				 * If the ack appears to be very old, only
2644 				 * allow data that is in-sequence.  This
2645 				 * makes it somewhat more difficult to insert
2646 				 * forged data by guessing sequence numbers.
2647 				 * Sent an ack to try to update the send
2648 				 * sequence number on the other side.
2649 				 */
2650 				if (tlen && th->th_seq != tp->rcv_nxt &&
2651 				    SEQ_LT(th->th_ack,
2652 				    tp->snd_una - tp->max_sndwnd))
2653 					goto dropafterack;
2654 			}
2655 			break;
2656 		}
2657 		/*
2658 		 * If the congestion window was inflated to account
2659 		 * for the other side's cached packets, retract it.
2660 		 */
2661 		tp->t_congctl->fast_retransmit_newack(tp, th);
2662 
2663 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2664 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2665 			goto dropafterack;
2666 		}
2667 		acked = th->th_ack - tp->snd_una;
2668 		tcps = TCP_STAT_GETREF();
2669 		tcps[TCP_STAT_RCVACKPACK]++;
2670 		tcps[TCP_STAT_RCVACKBYTE] += acked;
2671 		TCP_STAT_PUTREF();
2672 
2673 		/*
2674 		 * If we have a timestamp reply, update smoothed
2675 		 * round trip time.  If no timestamp is present but
2676 		 * transmit timer is running and timed sequence
2677 		 * number was acked, update smoothed round trip time.
2678 		 * Since we now have an rtt measurement, cancel the
2679 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2680 		 * Recompute the initial retransmit timer.
2681 		 */
2682 		if (ts_rtt)
2683 			tcp_xmit_timer(tp, ts_rtt - 1);
2684 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2685 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2686 
2687 		/*
2688 		 * If all outstanding data is acked, stop retransmit
2689 		 * timer and remember to restart (more output or persist).
2690 		 * If there is more data to be acked, restart retransmit
2691 		 * timer, using current (possibly backed-off) value.
2692 		 */
2693 		if (th->th_ack == tp->snd_max) {
2694 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2695 			needoutput = 1;
2696 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2697 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2698 
2699 		/*
2700 		 * New data has been acked, adjust the congestion window.
2701 		 */
2702 		tp->t_congctl->newack(tp, th);
2703 
2704 		nd6_hint(tp);
2705 		if (acked > so->so_snd.sb_cc) {
2706 			tp->snd_wnd -= so->so_snd.sb_cc;
2707 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2708 			ourfinisacked = 1;
2709 		} else {
2710 			if (acked > (tp->t_lastoff - tp->t_inoff))
2711 				tp->t_lastm = NULL;
2712 			sbdrop(&so->so_snd, acked);
2713 			tp->t_lastoff -= acked;
2714 			if (tp->snd_wnd > acked)
2715 				tp->snd_wnd -= acked;
2716 			else
2717 				tp->snd_wnd = 0;
2718 			ourfinisacked = 0;
2719 		}
2720 		sowwakeup(so);
2721 
2722 		icmp_check(tp, th, acked);
2723 
2724 		tp->snd_una = th->th_ack;
2725 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
2726 			tp->snd_fack = tp->snd_una;
2727 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2728 			tp->snd_nxt = tp->snd_una;
2729 		if (SEQ_LT(tp->snd_high, tp->snd_una))
2730 			tp->snd_high = tp->snd_una;
2731 
2732 		switch (tp->t_state) {
2733 
2734 		/*
2735 		 * In FIN_WAIT_1 STATE in addition to the processing
2736 		 * for the ESTABLISHED state if our FIN is now acknowledged
2737 		 * then enter FIN_WAIT_2.
2738 		 */
2739 		case TCPS_FIN_WAIT_1:
2740 			if (ourfinisacked) {
2741 				/*
2742 				 * If we can't receive any more
2743 				 * data, then closing user can proceed.
2744 				 * Starting the timer is contrary to the
2745 				 * specification, but if we don't get a FIN
2746 				 * we'll hang forever.
2747 				 */
2748 				if (so->so_state & SS_CANTRCVMORE) {
2749 					soisdisconnected(so);
2750 					if (tp->t_maxidle > 0)
2751 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2752 						    tp->t_maxidle);
2753 				}
2754 				tp->t_state = TCPS_FIN_WAIT_2;
2755 			}
2756 			break;
2757 
2758 	 	/*
2759 		 * In CLOSING STATE in addition to the processing for
2760 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2761 		 * then enter the TIME-WAIT state, otherwise ignore
2762 		 * the segment.
2763 		 */
2764 		case TCPS_CLOSING:
2765 			if (ourfinisacked) {
2766 				tp->t_state = TCPS_TIME_WAIT;
2767 				tcp_canceltimers(tp);
2768 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2769 				soisdisconnected(so);
2770 			}
2771 			break;
2772 
2773 		/*
2774 		 * In LAST_ACK, we may still be waiting for data to drain
2775 		 * and/or to be acked, as well as for the ack of our FIN.
2776 		 * If our FIN is now acknowledged, delete the TCB,
2777 		 * enter the closed state and return.
2778 		 */
2779 		case TCPS_LAST_ACK:
2780 			if (ourfinisacked) {
2781 				tp = tcp_close(tp);
2782 				goto drop;
2783 			}
2784 			break;
2785 
2786 		/*
2787 		 * In TIME_WAIT state the only thing that should arrive
2788 		 * is a retransmission of the remote FIN.  Acknowledge
2789 		 * it and restart the finack timer.
2790 		 */
2791 		case TCPS_TIME_WAIT:
2792 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2793 			goto dropafterack;
2794 		}
2795 	}
2796 
2797 step6:
2798 	/*
2799 	 * Update window information.
2800 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2801 	 */
2802 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2803 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2804 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2805 		/* keep track of pure window updates */
2806 		if (tlen == 0 &&
2807 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2808 			TCP_STATINC(TCP_STAT_RCVWINUPD);
2809 		tp->snd_wnd = tiwin;
2810 		tp->snd_wl1 = th->th_seq;
2811 		tp->snd_wl2 = th->th_ack;
2812 		if (tp->snd_wnd > tp->max_sndwnd)
2813 			tp->max_sndwnd = tp->snd_wnd;
2814 		needoutput = 1;
2815 	}
2816 
2817 	/*
2818 	 * Process segments with URG.
2819 	 */
2820 	if ((tiflags & TH_URG) && th->th_urp &&
2821 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2822 		/*
2823 		 * This is a kludge, but if we receive and accept
2824 		 * random urgent pointers, we'll crash in
2825 		 * soreceive.  It's hard to imagine someone
2826 		 * actually wanting to send this much urgent data.
2827 		 */
2828 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2829 			th->th_urp = 0;			/* XXX */
2830 			tiflags &= ~TH_URG;		/* XXX */
2831 			goto dodata;			/* XXX */
2832 		}
2833 		/*
2834 		 * If this segment advances the known urgent pointer,
2835 		 * then mark the data stream.  This should not happen
2836 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2837 		 * a FIN has been received from the remote side.
2838 		 * In these states we ignore the URG.
2839 		 *
2840 		 * According to RFC961 (Assigned Protocols),
2841 		 * the urgent pointer points to the last octet
2842 		 * of urgent data.  We continue, however,
2843 		 * to consider it to indicate the first octet
2844 		 * of data past the urgent section as the original
2845 		 * spec states (in one of two places).
2846 		 */
2847 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2848 			tp->rcv_up = th->th_seq + th->th_urp;
2849 			so->so_oobmark = so->so_rcv.sb_cc +
2850 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2851 			if (so->so_oobmark == 0)
2852 				so->so_state |= SS_RCVATMARK;
2853 			sohasoutofband(so);
2854 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2855 		}
2856 		/*
2857 		 * Remove out of band data so doesn't get presented to user.
2858 		 * This can happen independent of advancing the URG pointer,
2859 		 * but if two URG's are pending at once, some out-of-band
2860 		 * data may creep in... ick.
2861 		 */
2862 		if (th->th_urp <= (u_int16_t) tlen
2863 #ifdef SO_OOBINLINE
2864 		     && (so->so_options & SO_OOBINLINE) == 0
2865 #endif
2866 		     )
2867 			tcp_pulloutofband(so, th, m, hdroptlen);
2868 	} else
2869 		/*
2870 		 * If no out of band data is expected,
2871 		 * pull receive urgent pointer along
2872 		 * with the receive window.
2873 		 */
2874 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2875 			tp->rcv_up = tp->rcv_nxt;
2876 dodata:							/* XXX */
2877 
2878 	/*
2879 	 * Process the segment text, merging it into the TCP sequencing queue,
2880 	 * and arranging for acknowledgement of receipt if necessary.
2881 	 * This process logically involves adjusting tp->rcv_wnd as data
2882 	 * is presented to the user (this happens in tcp_usrreq.c,
2883 	 * tcp_rcvd()).  If a FIN has already been received on this
2884 	 * connection then we just ignore the text.
2885 	 */
2886 	if ((tlen || (tiflags & TH_FIN)) &&
2887 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2888 		/*
2889 		 * Insert segment ti into reassembly queue of tcp with
2890 		 * control block tp.  Return TH_FIN if reassembly now includes
2891 		 * a segment with FIN.  The macro form does the common case
2892 		 * inline (segment is the next to be received on an
2893 		 * established connection, and the queue is empty),
2894 		 * avoiding linkage into and removal from the queue and
2895 		 * repetition of various conversions.
2896 		 * Set DELACK for segments received in order, but ack
2897 		 * immediately when segments are out of order
2898 		 * (so fast retransmit can work).
2899 		 */
2900 		/* NOTE: this was TCP_REASS() macro, but used only once */
2901 		TCP_REASS_LOCK(tp);
2902 		if (th->th_seq == tp->rcv_nxt &&
2903 		    TAILQ_FIRST(&tp->segq) == NULL &&
2904 		    tp->t_state == TCPS_ESTABLISHED) {
2905 			tcp_setup_ack(tp, th);
2906 			tp->rcv_nxt += tlen;
2907 			tiflags = th->th_flags & TH_FIN;
2908 			tcps = TCP_STAT_GETREF();
2909 			tcps[TCP_STAT_RCVPACK]++;
2910 			tcps[TCP_STAT_RCVBYTE] += tlen;
2911 			TCP_STAT_PUTREF();
2912 			nd6_hint(tp);
2913 			if (so->so_state & SS_CANTRCVMORE)
2914 				m_freem(m);
2915 			else {
2916 				m_adj(m, hdroptlen);
2917 				sbappendstream(&(so)->so_rcv, m);
2918 			}
2919 			TCP_REASS_UNLOCK(tp);
2920 			sorwakeup(so);
2921 		} else {
2922 			m_adj(m, hdroptlen);
2923 			tiflags = tcp_reass(tp, th, m, &tlen);
2924 			tp->t_flags |= TF_ACKNOW;
2925 		}
2926 
2927 		/*
2928 		 * Note the amount of data that peer has sent into
2929 		 * our window, in order to estimate the sender's
2930 		 * buffer size.
2931 		 */
2932 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2933 	} else {
2934 		m_freem(m);
2935 		m = NULL;
2936 		tiflags &= ~TH_FIN;
2937 	}
2938 
2939 	/*
2940 	 * If FIN is received ACK the FIN and let the user know
2941 	 * that the connection is closing.  Ignore a FIN received before
2942 	 * the connection is fully established.
2943 	 */
2944 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2945 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2946 			socantrcvmore(so);
2947 			tp->t_flags |= TF_ACKNOW;
2948 			tp->rcv_nxt++;
2949 		}
2950 		switch (tp->t_state) {
2951 
2952 	 	/*
2953 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2954 		 */
2955 		case TCPS_ESTABLISHED:
2956 			tp->t_state = TCPS_CLOSE_WAIT;
2957 			break;
2958 
2959 	 	/*
2960 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2961 		 * enter the CLOSING state.
2962 		 */
2963 		case TCPS_FIN_WAIT_1:
2964 			tp->t_state = TCPS_CLOSING;
2965 			break;
2966 
2967 	 	/*
2968 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2969 		 * starting the time-wait timer, turning off the other
2970 		 * standard timers.
2971 		 */
2972 		case TCPS_FIN_WAIT_2:
2973 			tp->t_state = TCPS_TIME_WAIT;
2974 			tcp_canceltimers(tp);
2975 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2976 			soisdisconnected(so);
2977 			break;
2978 
2979 		/*
2980 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2981 		 */
2982 		case TCPS_TIME_WAIT:
2983 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2984 			break;
2985 		}
2986 	}
2987 #ifdef TCP_DEBUG
2988 	if (so->so_options & SO_DEBUG)
2989 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2990 #endif
2991 
2992 	/*
2993 	 * Return any desired output.
2994 	 */
2995 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2996 		KERNEL_LOCK(1, NULL);
2997 		(void) tcp_output(tp);
2998 		KERNEL_UNLOCK_ONE(NULL);
2999 	}
3000 	if (tcp_saveti)
3001 		m_freem(tcp_saveti);
3002 
3003 	if (tp->t_state == TCPS_TIME_WAIT
3004 	    && (so->so_state & SS_NOFDREF)
3005 	    && (tp->t_inpcb || af != AF_INET)
3006 	    && (tp->t_in6pcb || af != AF_INET6)
3007 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
3008 	    && TAILQ_EMPTY(&tp->segq)
3009 	    && vtw_add(af, tp)) {
3010 		;
3011 	}
3012 	return;
3013 
3014 badsyn:
3015 	/*
3016 	 * Received a bad SYN.  Increment counters and dropwithreset.
3017 	 */
3018 	TCP_STATINC(TCP_STAT_BADSYN);
3019 	tp = NULL;
3020 	goto dropwithreset;
3021 
3022 dropafterack:
3023 	/*
3024 	 * Generate an ACK dropping incoming segment if it occupies
3025 	 * sequence space, where the ACK reflects our state.
3026 	 */
3027 	if (tiflags & TH_RST)
3028 		goto drop;
3029 	goto dropafterack2;
3030 
3031 dropafterack_ratelim:
3032 	/*
3033 	 * We may want to rate-limit ACKs against SYN/RST attack.
3034 	 */
3035 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
3036 	    tcp_ackdrop_ppslim) == 0) {
3037 		/* XXX stat */
3038 		goto drop;
3039 	}
3040 	/* ...fall into dropafterack2... */
3041 
3042 dropafterack2:
3043 	m_freem(m);
3044 	tp->t_flags |= TF_ACKNOW;
3045 	KERNEL_LOCK(1, NULL);
3046 	(void) tcp_output(tp);
3047 	KERNEL_UNLOCK_ONE(NULL);
3048 	if (tcp_saveti)
3049 		m_freem(tcp_saveti);
3050 	return;
3051 
3052 dropwithreset_ratelim:
3053 	/*
3054 	 * We may want to rate-limit RSTs in certain situations,
3055 	 * particularly if we are sending an RST in response to
3056 	 * an attempt to connect to or otherwise communicate with
3057 	 * a port for which we have no socket.
3058 	 */
3059 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
3060 	    tcp_rst_ppslim) == 0) {
3061 		/* XXX stat */
3062 		goto drop;
3063 	}
3064 	/* ...fall into dropwithreset... */
3065 
3066 dropwithreset:
3067 	/*
3068 	 * Generate a RST, dropping incoming segment.
3069 	 * Make ACK acceptable to originator of segment.
3070 	 */
3071 	if (tiflags & TH_RST)
3072 		goto drop;
3073 
3074 	switch (af) {
3075 #ifdef INET6
3076 	case AF_INET6:
3077 		/* For following calls to tcp_respond */
3078 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
3079 			goto drop;
3080 		break;
3081 #endif /* INET6 */
3082 	case AF_INET:
3083 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
3084 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3085 			goto drop;
3086 	}
3087 
3088 	if (tiflags & TH_ACK)
3089 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3090 	else {
3091 		if (tiflags & TH_SYN)
3092 			tlen++;
3093 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
3094 		    TH_RST|TH_ACK);
3095 	}
3096 	if (tcp_saveti)
3097 		m_freem(tcp_saveti);
3098 	return;
3099 
3100 badcsum:
3101 drop:
3102 	/*
3103 	 * Drop space held by incoming segment and return.
3104 	 */
3105 	if (tp) {
3106 		if (tp->t_inpcb)
3107 			so = tp->t_inpcb->inp_socket;
3108 #ifdef INET6
3109 		else if (tp->t_in6pcb)
3110 			so = tp->t_in6pcb->in6p_socket;
3111 #endif
3112 		else
3113 			so = NULL;
3114 #ifdef TCP_DEBUG
3115 		if (so && (so->so_options & SO_DEBUG) != 0)
3116 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
3117 #endif
3118 	}
3119 	if (tcp_saveti)
3120 		m_freem(tcp_saveti);
3121 	m_freem(m);
3122 	return;
3123 }
3124 
3125 #ifdef TCP_SIGNATURE
3126 int
3127 tcp_signature_apply(void *fstate, void *data, u_int len)
3128 {
3129 
3130 	MD5Update(fstate, (u_char *)data, len);
3131 	return (0);
3132 }
3133 
3134 struct secasvar *
3135 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
3136 {
3137 	struct ip *ip;
3138 	struct ip6_hdr *ip6;
3139 
3140 	ip = mtod(m, struct ip *);
3141 	switch (ip->ip_v) {
3142 	case 4:
3143 		ip = mtod(m, struct ip *);
3144 		ip6 = NULL;
3145 		break;
3146 	case 6:
3147 		ip = NULL;
3148 		ip6 = mtod(m, struct ip6_hdr *);
3149 		break;
3150 	default:
3151 		return (NULL);
3152 	}
3153 
3154 #ifdef IPSEC
3155 	if (ipsec_used) {
3156 		union sockaddr_union dst;
3157 		/* Extract the destination from the IP header in the mbuf. */
3158 		memset(&dst, 0, sizeof(union sockaddr_union));
3159 		if (ip != NULL) {
3160 			dst.sa.sa_len = sizeof(struct sockaddr_in);
3161 			dst.sa.sa_family = AF_INET;
3162 			dst.sin.sin_addr = ip->ip_dst;
3163 		} else {
3164 			dst.sa.sa_len = sizeof(struct sockaddr_in6);
3165 			dst.sa.sa_family = AF_INET6;
3166 			dst.sin6.sin6_addr = ip6->ip6_dst;
3167 		}
3168 
3169 		/*
3170 		 * Look up an SADB entry which matches the address of the peer.
3171 		 */
3172 		return KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3173 	}
3174 	return NULL;
3175 #else
3176 	if (ip)
3177 		return key_allocsa(AF_INET, (void *)&ip->ip_src,
3178 		    (void *)&ip->ip_dst, IPPROTO_TCP,
3179 		    htonl(TCP_SIG_SPI), 0, 0);
3180 	else
3181 		return key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
3182 		    (void *)&ip6->ip6_dst, IPPROTO_TCP,
3183 		    htonl(TCP_SIG_SPI), 0, 0);
3184 #endif
3185 }
3186 
3187 int
3188 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3189     struct secasvar *sav, char *sig)
3190 {
3191 	MD5_CTX ctx;
3192 	struct ip *ip;
3193 	struct ipovly *ipovly;
3194 #ifdef INET6
3195 	struct ip6_hdr *ip6;
3196 	struct ip6_hdr_pseudo ip6pseudo;
3197 #endif /* INET6 */
3198 	struct ippseudo ippseudo;
3199 	struct tcphdr th0;
3200 	int l, tcphdrlen;
3201 
3202 	if (sav == NULL)
3203 		return (-1);
3204 
3205 	tcphdrlen = th->th_off * 4;
3206 
3207 	switch (mtod(m, struct ip *)->ip_v) {
3208 	case 4:
3209 		MD5Init(&ctx);
3210 		ip = mtod(m, struct ip *);
3211 		memset(&ippseudo, 0, sizeof(ippseudo));
3212 		ipovly = (struct ipovly *)ip;
3213 		ippseudo.ippseudo_src = ipovly->ih_src;
3214 		ippseudo.ippseudo_dst = ipovly->ih_dst;
3215 		ippseudo.ippseudo_pad = 0;
3216 		ippseudo.ippseudo_p = IPPROTO_TCP;
3217 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3218 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3219 		break;
3220 #if INET6
3221 	case 6:
3222 		MD5Init(&ctx);
3223 		ip6 = mtod(m, struct ip6_hdr *);
3224 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3225 		ip6pseudo.ip6ph_src = ip6->ip6_src;
3226 		in6_clearscope(&ip6pseudo.ip6ph_src);
3227 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3228 		in6_clearscope(&ip6pseudo.ip6ph_dst);
3229 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3230 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3231 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3232 		break;
3233 #endif /* INET6 */
3234 	default:
3235 		return (-1);
3236 	}
3237 
3238 	th0 = *th;
3239 	th0.th_sum = 0;
3240 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
3241 
3242 	l = m->m_pkthdr.len - thoff - tcphdrlen;
3243 	if (l > 0)
3244 		m_apply(m, thoff + tcphdrlen,
3245 		    m->m_pkthdr.len - thoff - tcphdrlen,
3246 		    tcp_signature_apply, &ctx);
3247 
3248 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3249 	MD5Final(sig, &ctx);
3250 
3251 	return (0);
3252 }
3253 #endif
3254 
3255 /*
3256  * tcp_dooptions: parse and process tcp options.
3257  *
3258  * returns -1 if this segment should be dropped.  (eg. wrong signature)
3259  * otherwise returns 0.
3260  */
3261 
3262 static int
3263 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
3264     struct tcphdr *th,
3265     struct mbuf *m, int toff, struct tcp_opt_info *oi)
3266 {
3267 	u_int16_t mss;
3268 	int opt, optlen = 0;
3269 #ifdef TCP_SIGNATURE
3270 	void *sigp = NULL;
3271 	char sigbuf[TCP_SIGLEN];
3272 	struct secasvar *sav = NULL;
3273 #endif
3274 
3275 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3276 		opt = cp[0];
3277 		if (opt == TCPOPT_EOL)
3278 			break;
3279 		if (opt == TCPOPT_NOP)
3280 			optlen = 1;
3281 		else {
3282 			if (cnt < 2)
3283 				break;
3284 			optlen = cp[1];
3285 			if (optlen < 2 || optlen > cnt)
3286 				break;
3287 		}
3288 		switch (opt) {
3289 
3290 		default:
3291 			continue;
3292 
3293 		case TCPOPT_MAXSEG:
3294 			if (optlen != TCPOLEN_MAXSEG)
3295 				continue;
3296 			if (!(th->th_flags & TH_SYN))
3297 				continue;
3298 			if (TCPS_HAVERCVDSYN(tp->t_state))
3299 				continue;
3300 			bcopy(cp + 2, &mss, sizeof(mss));
3301 			oi->maxseg = ntohs(mss);
3302 			break;
3303 
3304 		case TCPOPT_WINDOW:
3305 			if (optlen != TCPOLEN_WINDOW)
3306 				continue;
3307 			if (!(th->th_flags & TH_SYN))
3308 				continue;
3309 			if (TCPS_HAVERCVDSYN(tp->t_state))
3310 				continue;
3311 			tp->t_flags |= TF_RCVD_SCALE;
3312 			tp->requested_s_scale = cp[2];
3313 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3314 				char buf[INET6_ADDRSTRLEN];
3315 				struct ip *ip = mtod(m, struct ip *);
3316 #ifdef INET6
3317 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3318 #endif
3319 				if (ip)
3320 					in_print(buf, sizeof(buf),
3321 					    &ip->ip_src);
3322 #ifdef INET6
3323 				else if (ip6)
3324 					in6_print(buf, sizeof(buf),
3325 					    &ip6->ip6_src);
3326 #endif
3327 				else
3328 					strlcpy(buf, "(unknown)", sizeof(buf));
3329 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3330 				    "assuming %d\n",
3331 				    tp->requested_s_scale, buf,
3332 				    TCP_MAX_WINSHIFT);
3333 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
3334 			}
3335 			break;
3336 
3337 		case TCPOPT_TIMESTAMP:
3338 			if (optlen != TCPOLEN_TIMESTAMP)
3339 				continue;
3340 			oi->ts_present = 1;
3341 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3342 			NTOHL(oi->ts_val);
3343 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3344 			NTOHL(oi->ts_ecr);
3345 
3346 			if (!(th->th_flags & TH_SYN))
3347 				continue;
3348 			if (TCPS_HAVERCVDSYN(tp->t_state))
3349 				continue;
3350 			/*
3351 			 * A timestamp received in a SYN makes
3352 			 * it ok to send timestamp requests and replies.
3353 			 */
3354 			tp->t_flags |= TF_RCVD_TSTMP;
3355 			tp->ts_recent = oi->ts_val;
3356 			tp->ts_recent_age = tcp_now;
3357                         break;
3358 
3359 		case TCPOPT_SACK_PERMITTED:
3360 			if (optlen != TCPOLEN_SACK_PERMITTED)
3361 				continue;
3362 			if (!(th->th_flags & TH_SYN))
3363 				continue;
3364 			if (TCPS_HAVERCVDSYN(tp->t_state))
3365 				continue;
3366 			if (tcp_do_sack) {
3367 				tp->t_flags |= TF_SACK_PERMIT;
3368 				tp->t_flags |= TF_WILL_SACK;
3369 			}
3370 			break;
3371 
3372 		case TCPOPT_SACK:
3373 			tcp_sack_option(tp, th, cp, optlen);
3374 			break;
3375 #ifdef TCP_SIGNATURE
3376 		case TCPOPT_SIGNATURE:
3377 			if (optlen != TCPOLEN_SIGNATURE)
3378 				continue;
3379 			if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
3380 				return (-1);
3381 
3382 			sigp = sigbuf;
3383 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3384 			tp->t_flags |= TF_SIGNATURE;
3385 			break;
3386 #endif
3387 		}
3388 	}
3389 
3390 #ifndef TCP_SIGNATURE
3391 	return 0;
3392 #else
3393 	if (tp->t_flags & TF_SIGNATURE) {
3394 
3395 		sav = tcp_signature_getsav(m, th);
3396 
3397 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
3398 			return (-1);
3399 	}
3400 
3401 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3402 		goto out;
3403 
3404 	if (sigp) {
3405 		char sig[TCP_SIGLEN];
3406 
3407 		tcp_fields_to_net(th);
3408 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
3409 			tcp_fields_to_host(th);
3410 			goto out;
3411 		}
3412 		tcp_fields_to_host(th);
3413 
3414 		if (memcmp(sig, sigp, TCP_SIGLEN)) {
3415 			TCP_STATINC(TCP_STAT_BADSIG);
3416 			goto out;
3417 		} else
3418 			TCP_STATINC(TCP_STAT_GOODSIG);
3419 
3420 		key_sa_recordxfer(sav, m);
3421 		KEY_FREESAV(&sav);
3422 	}
3423 	return 0;
3424 out:
3425 	if (sav != NULL)
3426 		KEY_FREESAV(&sav);
3427 	return -1;
3428 #endif
3429 }
3430 
3431 /*
3432  * Pull out of band byte out of a segment so
3433  * it doesn't appear in the user's data queue.
3434  * It is still reflected in the segment length for
3435  * sequencing purposes.
3436  */
3437 void
3438 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3439     struct mbuf *m, int off)
3440 {
3441 	int cnt = off + th->th_urp - 1;
3442 
3443 	while (cnt >= 0) {
3444 		if (m->m_len > cnt) {
3445 			char *cp = mtod(m, char *) + cnt;
3446 			struct tcpcb *tp = sototcpcb(so);
3447 
3448 			tp->t_iobc = *cp;
3449 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3450 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3451 			m->m_len--;
3452 			return;
3453 		}
3454 		cnt -= m->m_len;
3455 		m = m->m_next;
3456 		if (m == 0)
3457 			break;
3458 	}
3459 	panic("tcp_pulloutofband");
3460 }
3461 
3462 /*
3463  * Collect new round-trip time estimate
3464  * and update averages and current timeout.
3465  *
3466  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3467  * difference of two timestamps.
3468  */
3469 void
3470 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3471 {
3472 	int32_t delta;
3473 
3474 	TCP_STATINC(TCP_STAT_RTTUPDATED);
3475 	if (tp->t_srtt != 0) {
3476 		/*
3477 		 * Compute the amount to add to srtt for smoothing,
3478 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
3479 		 * srtt is stored in 1/32 slow ticks, we conceptually
3480 		 * shift left 5 bits, subtract srtt to get the
3481 		 * diference, and then shift right by TCP_RTT_SHIFT
3482 		 * (3) to obtain 1/8 of the difference.
3483 		 */
3484 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3485 		/*
3486 		 * This can never happen, because delta's lowest
3487 		 * possible value is 1/8 of t_srtt.  But if it does,
3488 		 * set srtt to some reasonable value, here chosen
3489 		 * as 1/8 tick.
3490 		 */
3491 		if ((tp->t_srtt += delta) <= 0)
3492 			tp->t_srtt = 1 << 2;
3493 		/*
3494 		 * RFC2988 requires that rttvar be updated first.
3495 		 * This code is compliant because "delta" is the old
3496 		 * srtt minus the new observation (scaled).
3497 		 *
3498 		 * RFC2988 says:
3499 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3500 		 *
3501 		 * delta is in units of 1/32 ticks, and has then been
3502 		 * divided by 8.  This is equivalent to being in 1/16s
3503 		 * units and divided by 4.  Subtract from it 1/4 of
3504 		 * the existing rttvar to form the (signed) amount to
3505 		 * adjust.
3506 		 */
3507 		if (delta < 0)
3508 			delta = -delta;
3509 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3510 		/*
3511 		 * As with srtt, this should never happen.  There is
3512 		 * no support in RFC2988 for this operation.  But 1/4s
3513 		 * as rttvar when faced with something arguably wrong
3514 		 * is ok.
3515 		 */
3516 		if ((tp->t_rttvar += delta) <= 0)
3517 			tp->t_rttvar = 1 << 2;
3518 
3519 		/*
3520 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3521 		 * Problem is: it doesn't work.  Disabled by defaulting
3522 		 * tcp_rttlocal to 0; see corresponding code in
3523 		 * tcp_subr that selects local vs remote in a different way.
3524 		 *
3525 		 * The static branch prediction hint here should be removed
3526 		 * when the rtt estimator is fixed and the rtt_enable code
3527 		 * is turned back on.
3528 		 */
3529 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3530 		    && tp->t_srtt > tcp_msl_remote_threshold
3531 		    && tp->t_msl  < tcp_msl_remote) {
3532 			tp->t_msl = tcp_msl_remote;
3533 		}
3534 	} else {
3535 		/*
3536 		 * This is the first measurement.  Per RFC2988, 2.2,
3537 		 * set rtt=R and srtt=R/2.
3538 		 * For srtt, storage representation is 1/32 ticks,
3539 		 * so shift left by 5.
3540 		 * For rttvar, storage representation is 1/16 ticks,
3541 		 * So shift left by 4, but then right by 1 to halve.
3542 		 */
3543 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3544 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3545 	}
3546 	tp->t_rtttime = 0;
3547 	tp->t_rxtshift = 0;
3548 
3549 	/*
3550 	 * the retransmit should happen at rtt + 4 * rttvar.
3551 	 * Because of the way we do the smoothing, srtt and rttvar
3552 	 * will each average +1/2 tick of bias.  When we compute
3553 	 * the retransmit timer, we want 1/2 tick of rounding and
3554 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3555 	 * firing of the timer.  The bias will give us exactly the
3556 	 * 1.5 tick we need.  But, because the bias is
3557 	 * statistical, we have to test that we don't drop below
3558 	 * the minimum feasible timer (which is 2 ticks).
3559 	 */
3560 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3561 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3562 
3563 	/*
3564 	 * We received an ack for a packet that wasn't retransmitted;
3565 	 * it is probably safe to discard any error indications we've
3566 	 * received recently.  This isn't quite right, but close enough
3567 	 * for now (a route might have failed after we sent a segment,
3568 	 * and the return path might not be symmetrical).
3569 	 */
3570 	tp->t_softerror = 0;
3571 }
3572 
3573 
3574 /*
3575  * TCP compressed state engine.  Currently used to hold compressed
3576  * state for SYN_RECEIVED.
3577  */
3578 
3579 u_long	syn_cache_count;
3580 u_int32_t syn_hash1, syn_hash2;
3581 
3582 #define SYN_HASH(sa, sp, dp) \
3583 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3584 				     ((u_int32_t)(sp)))^syn_hash2)))
3585 #ifndef INET6
3586 #define	SYN_HASHALL(hash, src, dst) \
3587 do {									\
3588 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
3589 		((const struct sockaddr_in *)(src))->sin_port,		\
3590 		((const struct sockaddr_in *)(dst))->sin_port);		\
3591 } while (/*CONSTCOND*/ 0)
3592 #else
3593 #define SYN_HASH6(sa, sp, dp) \
3594 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3595 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3596 	 & 0x7fffffff)
3597 
3598 #define SYN_HASHALL(hash, src, dst) \
3599 do {									\
3600 	switch ((src)->sa_family) {					\
3601 	case AF_INET:							\
3602 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3603 			((const struct sockaddr_in *)(src))->sin_port,	\
3604 			((const struct sockaddr_in *)(dst))->sin_port);	\
3605 		break;							\
3606 	case AF_INET6:							\
3607 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3608 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
3609 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
3610 		break;							\
3611 	default:							\
3612 		hash = 0;						\
3613 	}								\
3614 } while (/*CONSTCOND*/0)
3615 #endif /* INET6 */
3616 
3617 static struct pool syn_cache_pool;
3618 
3619 /*
3620  * We don't estimate RTT with SYNs, so each packet starts with the default
3621  * RTT and each timer step has a fixed timeout value.
3622  */
3623 #define	SYN_CACHE_TIMER_ARM(sc)						\
3624 do {									\
3625 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3626 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3627 	    TCPTV_REXMTMAX);						\
3628 	callout_reset(&(sc)->sc_timer,					\
3629 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
3630 } while (/*CONSTCOND*/0)
3631 
3632 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
3633 
3634 static inline void
3635 syn_cache_rm(struct syn_cache *sc)
3636 {
3637 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3638 	    sc, sc_bucketq);
3639 	sc->sc_tp = NULL;
3640 	LIST_REMOVE(sc, sc_tpq);
3641 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3642 	callout_stop(&sc->sc_timer);
3643 	syn_cache_count--;
3644 }
3645 
3646 static inline void
3647 syn_cache_put(struct syn_cache *sc)
3648 {
3649 	if (sc->sc_ipopts)
3650 		(void) m_free(sc->sc_ipopts);
3651 	rtcache_free(&sc->sc_route);
3652 	sc->sc_flags |= SCF_DEAD;
3653 	if (!callout_invoking(&sc->sc_timer))
3654 		callout_schedule(&(sc)->sc_timer, 1);
3655 }
3656 
3657 void
3658 syn_cache_init(void)
3659 {
3660 	int i;
3661 
3662 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3663 	    "synpl", NULL, IPL_SOFTNET);
3664 
3665 	/* Initialize the hash buckets. */
3666 	for (i = 0; i < tcp_syn_cache_size; i++)
3667 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3668 }
3669 
3670 void
3671 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3672 {
3673 	struct syn_cache_head *scp;
3674 	struct syn_cache *sc2;
3675 	int s;
3676 
3677 	/*
3678 	 * If there are no entries in the hash table, reinitialize
3679 	 * the hash secrets.
3680 	 */
3681 	if (syn_cache_count == 0) {
3682 		syn_hash1 = cprng_fast32();
3683 		syn_hash2 = cprng_fast32();
3684 	}
3685 
3686 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3687 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3688 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3689 
3690 	/*
3691 	 * Make sure that we don't overflow the per-bucket
3692 	 * limit or the total cache size limit.
3693 	 */
3694 	s = splsoftnet();
3695 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3696 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3697 		/*
3698 		 * The bucket is full.  Toss the oldest element in the
3699 		 * bucket.  This will be the first entry in the bucket.
3700 		 */
3701 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3702 #ifdef DIAGNOSTIC
3703 		/*
3704 		 * This should never happen; we should always find an
3705 		 * entry in our bucket.
3706 		 */
3707 		if (sc2 == NULL)
3708 			panic("syn_cache_insert: bucketoverflow: impossible");
3709 #endif
3710 		syn_cache_rm(sc2);
3711 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3712 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3713 		struct syn_cache_head *scp2, *sce;
3714 
3715 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3716 		/*
3717 		 * The cache is full.  Toss the oldest entry in the
3718 		 * first non-empty bucket we can find.
3719 		 *
3720 		 * XXX We would really like to toss the oldest
3721 		 * entry in the cache, but we hope that this
3722 		 * condition doesn't happen very often.
3723 		 */
3724 		scp2 = scp;
3725 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3726 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3727 			for (++scp2; scp2 != scp; scp2++) {
3728 				if (scp2 >= sce)
3729 					scp2 = &tcp_syn_cache[0];
3730 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3731 					break;
3732 			}
3733 #ifdef DIAGNOSTIC
3734 			/*
3735 			 * This should never happen; we should always find a
3736 			 * non-empty bucket.
3737 			 */
3738 			if (scp2 == scp)
3739 				panic("syn_cache_insert: cacheoverflow: "
3740 				    "impossible");
3741 #endif
3742 		}
3743 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3744 		syn_cache_rm(sc2);
3745 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3746 	}
3747 
3748 	/*
3749 	 * Initialize the entry's timer.
3750 	 */
3751 	sc->sc_rxttot = 0;
3752 	sc->sc_rxtshift = 0;
3753 	SYN_CACHE_TIMER_ARM(sc);
3754 
3755 	/* Link it from tcpcb entry */
3756 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3757 
3758 	/* Put it into the bucket. */
3759 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3760 	scp->sch_length++;
3761 	syn_cache_count++;
3762 
3763 	TCP_STATINC(TCP_STAT_SC_ADDED);
3764 	splx(s);
3765 }
3766 
3767 /*
3768  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3769  * If we have retransmitted an entry the maximum number of times, expire
3770  * that entry.
3771  */
3772 void
3773 syn_cache_timer(void *arg)
3774 {
3775 	struct syn_cache *sc = arg;
3776 
3777 	mutex_enter(softnet_lock);
3778 	KERNEL_LOCK(1, NULL);
3779 	callout_ack(&sc->sc_timer);
3780 
3781 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3782 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3783 		callout_destroy(&sc->sc_timer);
3784 		pool_put(&syn_cache_pool, sc);
3785 		KERNEL_UNLOCK_ONE(NULL);
3786 		mutex_exit(softnet_lock);
3787 		return;
3788 	}
3789 
3790 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3791 		/* Drop it -- too many retransmissions. */
3792 		goto dropit;
3793 	}
3794 
3795 	/*
3796 	 * Compute the total amount of time this entry has
3797 	 * been on a queue.  If this entry has been on longer
3798 	 * than the keep alive timer would allow, expire it.
3799 	 */
3800 	sc->sc_rxttot += sc->sc_rxtcur;
3801 	if (sc->sc_rxttot >= tcp_keepinit)
3802 		goto dropit;
3803 
3804 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3805 	(void) syn_cache_respond(sc, NULL);
3806 
3807 	/* Advance the timer back-off. */
3808 	sc->sc_rxtshift++;
3809 	SYN_CACHE_TIMER_ARM(sc);
3810 
3811 	KERNEL_UNLOCK_ONE(NULL);
3812 	mutex_exit(softnet_lock);
3813 	return;
3814 
3815  dropit:
3816 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3817 	syn_cache_rm(sc);
3818 	if (sc->sc_ipopts)
3819 		(void) m_free(sc->sc_ipopts);
3820 	rtcache_free(&sc->sc_route);
3821 	callout_destroy(&sc->sc_timer);
3822 	pool_put(&syn_cache_pool, sc);
3823 	KERNEL_UNLOCK_ONE(NULL);
3824 	mutex_exit(softnet_lock);
3825 }
3826 
3827 /*
3828  * Remove syn cache created by the specified tcb entry,
3829  * because this does not make sense to keep them
3830  * (if there's no tcb entry, syn cache entry will never be used)
3831  */
3832 void
3833 syn_cache_cleanup(struct tcpcb *tp)
3834 {
3835 	struct syn_cache *sc, *nsc;
3836 	int s;
3837 
3838 	s = splsoftnet();
3839 
3840 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3841 		nsc = LIST_NEXT(sc, sc_tpq);
3842 
3843 #ifdef DIAGNOSTIC
3844 		if (sc->sc_tp != tp)
3845 			panic("invalid sc_tp in syn_cache_cleanup");
3846 #endif
3847 		syn_cache_rm(sc);
3848 		syn_cache_put(sc);	/* calls pool_put but see spl above */
3849 	}
3850 	/* just for safety */
3851 	LIST_INIT(&tp->t_sc);
3852 
3853 	splx(s);
3854 }
3855 
3856 /*
3857  * Find an entry in the syn cache.
3858  */
3859 struct syn_cache *
3860 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3861     struct syn_cache_head **headp)
3862 {
3863 	struct syn_cache *sc;
3864 	struct syn_cache_head *scp;
3865 	u_int32_t hash;
3866 	int s;
3867 
3868 	SYN_HASHALL(hash, src, dst);
3869 
3870 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3871 	*headp = scp;
3872 	s = splsoftnet();
3873 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3874 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3875 		if (sc->sc_hash != hash)
3876 			continue;
3877 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3878 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3879 			splx(s);
3880 			return (sc);
3881 		}
3882 	}
3883 	splx(s);
3884 	return (NULL);
3885 }
3886 
3887 /*
3888  * This function gets called when we receive an ACK for a
3889  * socket in the LISTEN state.  We look up the connection
3890  * in the syn cache, and if its there, we pull it out of
3891  * the cache and turn it into a full-blown connection in
3892  * the SYN-RECEIVED state.
3893  *
3894  * The return values may not be immediately obvious, and their effects
3895  * can be subtle, so here they are:
3896  *
3897  *	NULL	SYN was not found in cache; caller should drop the
3898  *		packet and send an RST.
3899  *
3900  *	-1	We were unable to create the new connection, and are
3901  *		aborting it.  An ACK,RST is being sent to the peer
3902  *		(unless we got screwey sequence numbners; see below),
3903  *		because the 3-way handshake has been completed.  Caller
3904  *		should not free the mbuf, since we may be using it.  If
3905  *		we are not, we will free it.
3906  *
3907  *	Otherwise, the return value is a pointer to the new socket
3908  *	associated with the connection.
3909  */
3910 struct socket *
3911 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3912     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3913     struct socket *so, struct mbuf *m)
3914 {
3915 	struct syn_cache *sc;
3916 	struct syn_cache_head *scp;
3917 	struct inpcb *inp = NULL;
3918 #ifdef INET6
3919 	struct in6pcb *in6p = NULL;
3920 #endif
3921 	struct tcpcb *tp = 0;
3922 	int s;
3923 	struct socket *oso;
3924 
3925 	s = splsoftnet();
3926 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3927 		splx(s);
3928 		return (NULL);
3929 	}
3930 
3931 	/*
3932 	 * Verify the sequence and ack numbers.  Try getting the correct
3933 	 * response again.
3934 	 */
3935 	if ((th->th_ack != sc->sc_iss + 1) ||
3936 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3937 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3938 		(void) syn_cache_respond(sc, m);
3939 		splx(s);
3940 		return ((struct socket *)(-1));
3941 	}
3942 
3943 	/* Remove this cache entry */
3944 	syn_cache_rm(sc);
3945 	splx(s);
3946 
3947 	/*
3948 	 * Ok, create the full blown connection, and set things up
3949 	 * as they would have been set up if we had created the
3950 	 * connection when the SYN arrived.  If we can't create
3951 	 * the connection, abort it.
3952 	 */
3953 	/*
3954 	 * inp still has the OLD in_pcb stuff, set the
3955 	 * v6-related flags on the new guy, too.   This is
3956 	 * done particularly for the case where an AF_INET6
3957 	 * socket is bound only to a port, and a v4 connection
3958 	 * comes in on that port.
3959 	 * we also copy the flowinfo from the original pcb
3960 	 * to the new one.
3961 	 */
3962 	oso = so;
3963 	so = sonewconn(so, true);
3964 	if (so == NULL)
3965 		goto resetandabort;
3966 
3967 	switch (so->so_proto->pr_domain->dom_family) {
3968 #ifdef INET
3969 	case AF_INET:
3970 		inp = sotoinpcb(so);
3971 		break;
3972 #endif
3973 #ifdef INET6
3974 	case AF_INET6:
3975 		in6p = sotoin6pcb(so);
3976 		break;
3977 #endif
3978 	}
3979 	switch (src->sa_family) {
3980 #ifdef INET
3981 	case AF_INET:
3982 		if (inp) {
3983 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3984 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3985 			inp->inp_options = ip_srcroute();
3986 			in_pcbstate(inp, INP_BOUND);
3987 			if (inp->inp_options == NULL) {
3988 				inp->inp_options = sc->sc_ipopts;
3989 				sc->sc_ipopts = NULL;
3990 			}
3991 		}
3992 #ifdef INET6
3993 		else if (in6p) {
3994 			/* IPv4 packet to AF_INET6 socket */
3995 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
3996 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3997 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3998 				&in6p->in6p_laddr.s6_addr32[3],
3999 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
4000 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
4001 			in6totcpcb(in6p)->t_family = AF_INET;
4002 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
4003 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
4004 			else
4005 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
4006 			in6_pcbstate(in6p, IN6P_BOUND);
4007 		}
4008 #endif
4009 		break;
4010 #endif
4011 #ifdef INET6
4012 	case AF_INET6:
4013 		if (in6p) {
4014 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
4015 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
4016 			in6_pcbstate(in6p, IN6P_BOUND);
4017 		}
4018 		break;
4019 #endif
4020 	}
4021 #ifdef INET6
4022 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
4023 		struct in6pcb *oin6p = sotoin6pcb(oso);
4024 		/* inherit socket options from the listening socket */
4025 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
4026 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
4027 			m_freem(in6p->in6p_options);
4028 			in6p->in6p_options = 0;
4029 		}
4030 		ip6_savecontrol(in6p, &in6p->in6p_options,
4031 			mtod(m, struct ip6_hdr *), m);
4032 	}
4033 #endif
4034 
4035 #if defined(IPSEC)
4036 	if (ipsec_used) {
4037 		/*
4038 		 * we make a copy of policy, instead of sharing the policy, for
4039 		 * better behavior in terms of SA lookup and dead SA removal.
4040 		 */
4041 		if (inp) {
4042 			/* copy old policy into new socket's */
4043 			if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp,
4044 			    inp->inp_sp))
4045 				printf("tcp_input: could not copy policy\n");
4046 		}
4047 #ifdef INET6
4048 		else if (in6p) {
4049 			/* copy old policy into new socket's */
4050 			if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
4051 			    in6p->in6p_sp))
4052 				printf("tcp_input: could not copy policy\n");
4053 		}
4054 #endif
4055 	}
4056 #endif
4057 
4058 	/*
4059 	 * Give the new socket our cached route reference.
4060 	 */
4061 	if (inp) {
4062 		rtcache_copy(&inp->inp_route, &sc->sc_route);
4063 		rtcache_free(&sc->sc_route);
4064 	}
4065 #ifdef INET6
4066 	else {
4067 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
4068 		rtcache_free(&sc->sc_route);
4069 	}
4070 #endif
4071 
4072 	if (inp) {
4073 		struct sockaddr_in sin;
4074 		memcpy(&sin, src, src->sa_len);
4075 		if (in_pcbconnect(inp, &sin, &lwp0)) {
4076 			goto resetandabort;
4077 		}
4078 	}
4079 #ifdef INET6
4080 	else if (in6p) {
4081 		struct sockaddr_in6 sin6;
4082 		memcpy(&sin6, src, src->sa_len);
4083 		if (src->sa_family == AF_INET) {
4084 			/* IPv4 packet to AF_INET6 socket */
4085 			in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
4086 		}
4087 		if (in6_pcbconnect(in6p, &sin6, NULL)) {
4088 			goto resetandabort;
4089 		}
4090 	}
4091 #endif
4092 	else {
4093 		goto resetandabort;
4094 	}
4095 
4096 	if (inp)
4097 		tp = intotcpcb(inp);
4098 #ifdef INET6
4099 	else if (in6p)
4100 		tp = in6totcpcb(in6p);
4101 #endif
4102 	else
4103 		tp = NULL;
4104 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
4105 	if (sc->sc_request_r_scale != 15) {
4106 		tp->requested_s_scale = sc->sc_requested_s_scale;
4107 		tp->request_r_scale = sc->sc_request_r_scale;
4108 		tp->snd_scale = sc->sc_requested_s_scale;
4109 		tp->rcv_scale = sc->sc_request_r_scale;
4110 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
4111 	}
4112 	if (sc->sc_flags & SCF_TIMESTAMP)
4113 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
4114 	tp->ts_timebase = sc->sc_timebase;
4115 
4116 	tp->t_template = tcp_template(tp);
4117 	if (tp->t_template == 0) {
4118 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
4119 		so = NULL;
4120 		m_freem(m);
4121 		goto abort;
4122 	}
4123 
4124 	tp->iss = sc->sc_iss;
4125 	tp->irs = sc->sc_irs;
4126 	tcp_sendseqinit(tp);
4127 	tcp_rcvseqinit(tp);
4128 	tp->t_state = TCPS_SYN_RECEIVED;
4129 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
4130 	TCP_STATINC(TCP_STAT_ACCEPTS);
4131 
4132 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
4133 		tp->t_flags |= TF_WILL_SACK;
4134 
4135 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
4136 		tp->t_flags |= TF_ECN_PERMIT;
4137 
4138 #ifdef TCP_SIGNATURE
4139 	if (sc->sc_flags & SCF_SIGNATURE)
4140 		tp->t_flags |= TF_SIGNATURE;
4141 #endif
4142 
4143 	/* Initialize tp->t_ourmss before we deal with the peer's! */
4144 	tp->t_ourmss = sc->sc_ourmaxseg;
4145 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
4146 
4147 	/*
4148 	 * Initialize the initial congestion window.  If we
4149 	 * had to retransmit the SYN,ACK, we must initialize cwnd
4150 	 * to 1 segment (i.e. the Loss Window).
4151 	 */
4152 	if (sc->sc_rxtshift)
4153 		tp->snd_cwnd = tp->t_peermss;
4154 	else {
4155 		int ss = tcp_init_win;
4156 #ifdef INET
4157 		if (inp != NULL && in_localaddr(inp->inp_faddr))
4158 			ss = tcp_init_win_local;
4159 #endif
4160 #ifdef INET6
4161 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
4162 			ss = tcp_init_win_local;
4163 #endif
4164 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
4165 	}
4166 
4167 	tcp_rmx_rtt(tp);
4168 	tp->snd_wl1 = sc->sc_irs;
4169 	tp->rcv_up = sc->sc_irs + 1;
4170 
4171 	/*
4172 	 * This is what whould have happened in tcp_output() when
4173 	 * the SYN,ACK was sent.
4174 	 */
4175 	tp->snd_up = tp->snd_una;
4176 	tp->snd_max = tp->snd_nxt = tp->iss+1;
4177 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4178 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4179 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4180 	tp->last_ack_sent = tp->rcv_nxt;
4181 	tp->t_partialacks = -1;
4182 	tp->t_dupacks = 0;
4183 
4184 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
4185 	s = splsoftnet();
4186 	syn_cache_put(sc);
4187 	splx(s);
4188 	return (so);
4189 
4190 resetandabort:
4191 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4192 abort:
4193 	if (so != NULL) {
4194 		(void) soqremque(so, 1);
4195 		(void) soabort(so);
4196 		mutex_enter(softnet_lock);
4197 	}
4198 	s = splsoftnet();
4199 	syn_cache_put(sc);
4200 	splx(s);
4201 	TCP_STATINC(TCP_STAT_SC_ABORTED);
4202 	return ((struct socket *)(-1));
4203 }
4204 
4205 /*
4206  * This function is called when we get a RST for a
4207  * non-existent connection, so that we can see if the
4208  * connection is in the syn cache.  If it is, zap it.
4209  */
4210 
4211 void
4212 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4213 {
4214 	struct syn_cache *sc;
4215 	struct syn_cache_head *scp;
4216 	int s = splsoftnet();
4217 
4218 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4219 		splx(s);
4220 		return;
4221 	}
4222 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4223 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4224 		splx(s);
4225 		return;
4226 	}
4227 	syn_cache_rm(sc);
4228 	TCP_STATINC(TCP_STAT_SC_RESET);
4229 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4230 	splx(s);
4231 }
4232 
4233 void
4234 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4235     struct tcphdr *th)
4236 {
4237 	struct syn_cache *sc;
4238 	struct syn_cache_head *scp;
4239 	int s;
4240 
4241 	s = splsoftnet();
4242 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4243 		splx(s);
4244 		return;
4245 	}
4246 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4247 	if (ntohl (th->th_seq) != sc->sc_iss) {
4248 		splx(s);
4249 		return;
4250 	}
4251 
4252 	/*
4253 	 * If we've retransmitted 3 times and this is our second error,
4254 	 * we remove the entry.  Otherwise, we allow it to continue on.
4255 	 * This prevents us from incorrectly nuking an entry during a
4256 	 * spurious network outage.
4257 	 *
4258 	 * See tcp_notify().
4259 	 */
4260 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4261 		sc->sc_flags |= SCF_UNREACH;
4262 		splx(s);
4263 		return;
4264 	}
4265 
4266 	syn_cache_rm(sc);
4267 	TCP_STATINC(TCP_STAT_SC_UNREACH);
4268 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4269 	splx(s);
4270 }
4271 
4272 /*
4273  * Given a LISTEN socket and an inbound SYN request, add
4274  * this to the syn cache, and send back a segment:
4275  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4276  * to the source.
4277  *
4278  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4279  * Doing so would require that we hold onto the data and deliver it
4280  * to the application.  However, if we are the target of a SYN-flood
4281  * DoS attack, an attacker could send data which would eventually
4282  * consume all available buffer space if it were ACKed.  By not ACKing
4283  * the data, we avoid this DoS scenario.
4284  */
4285 
4286 int
4287 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4288     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
4289     int optlen, struct tcp_opt_info *oi)
4290 {
4291 	struct tcpcb tb, *tp;
4292 	long win;
4293 	struct syn_cache *sc;
4294 	struct syn_cache_head *scp;
4295 	struct mbuf *ipopts;
4296 	struct tcp_opt_info opti;
4297 	int s;
4298 
4299 	tp = sototcpcb(so);
4300 
4301 	memset(&opti, 0, sizeof(opti));
4302 
4303 	/*
4304 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4305 	 *
4306 	 * Note this check is performed in tcp_input() very early on.
4307 	 */
4308 
4309 	/*
4310 	 * Initialize some local state.
4311 	 */
4312 	win = sbspace(&so->so_rcv);
4313 	if (win > TCP_MAXWIN)
4314 		win = TCP_MAXWIN;
4315 
4316 	switch (src->sa_family) {
4317 #ifdef INET
4318 	case AF_INET:
4319 		/*
4320 		 * Remember the IP options, if any.
4321 		 */
4322 		ipopts = ip_srcroute();
4323 		break;
4324 #endif
4325 	default:
4326 		ipopts = NULL;
4327 	}
4328 
4329 #ifdef TCP_SIGNATURE
4330 	if (optp || (tp->t_flags & TF_SIGNATURE))
4331 #else
4332 	if (optp)
4333 #endif
4334 	{
4335 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4336 #ifdef TCP_SIGNATURE
4337 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4338 #endif
4339 		tb.t_state = TCPS_LISTEN;
4340 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4341 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4342 			return (0);
4343 	} else
4344 		tb.t_flags = 0;
4345 
4346 	/*
4347 	 * See if we already have an entry for this connection.
4348 	 * If we do, resend the SYN,ACK.  We do not count this
4349 	 * as a retransmission (XXX though maybe we should).
4350 	 */
4351 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4352 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
4353 		if (ipopts) {
4354 			/*
4355 			 * If we were remembering a previous source route,
4356 			 * forget it and use the new one we've been given.
4357 			 */
4358 			if (sc->sc_ipopts)
4359 				(void) m_free(sc->sc_ipopts);
4360 			sc->sc_ipopts = ipopts;
4361 		}
4362 		sc->sc_timestamp = tb.ts_recent;
4363 		if (syn_cache_respond(sc, m) == 0) {
4364 			uint64_t *tcps = TCP_STAT_GETREF();
4365 			tcps[TCP_STAT_SNDACKS]++;
4366 			tcps[TCP_STAT_SNDTOTAL]++;
4367 			TCP_STAT_PUTREF();
4368 		}
4369 		return (1);
4370 	}
4371 
4372 	s = splsoftnet();
4373 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4374 	splx(s);
4375 	if (sc == NULL) {
4376 		if (ipopts)
4377 			(void) m_free(ipopts);
4378 		return (0);
4379 	}
4380 
4381 	/*
4382 	 * Fill in the cache, and put the necessary IP and TCP
4383 	 * options into the reply.
4384 	 */
4385 	memset(sc, 0, sizeof(struct syn_cache));
4386 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4387 	bcopy(src, &sc->sc_src, src->sa_len);
4388 	bcopy(dst, &sc->sc_dst, dst->sa_len);
4389 	sc->sc_flags = 0;
4390 	sc->sc_ipopts = ipopts;
4391 	sc->sc_irs = th->th_seq;
4392 	switch (src->sa_family) {
4393 #ifdef INET
4394 	case AF_INET:
4395 	    {
4396 		struct sockaddr_in *srcin = (void *) src;
4397 		struct sockaddr_in *dstin = (void *) dst;
4398 
4399 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4400 		    &srcin->sin_addr, dstin->sin_port,
4401 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
4402 		break;
4403 	    }
4404 #endif /* INET */
4405 #ifdef INET6
4406 	case AF_INET6:
4407 	    {
4408 		struct sockaddr_in6 *srcin6 = (void *) src;
4409 		struct sockaddr_in6 *dstin6 = (void *) dst;
4410 
4411 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4412 		    &srcin6->sin6_addr, dstin6->sin6_port,
4413 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4414 		break;
4415 	    }
4416 #endif /* INET6 */
4417 	}
4418 	sc->sc_peermaxseg = oi->maxseg;
4419 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4420 						m->m_pkthdr.rcvif : NULL,
4421 						sc->sc_src.sa.sa_family);
4422 	sc->sc_win = win;
4423 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
4424 	sc->sc_timestamp = tb.ts_recent;
4425 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4426 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4427 		sc->sc_flags |= SCF_TIMESTAMP;
4428 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4429 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4430 		sc->sc_requested_s_scale = tb.requested_s_scale;
4431 		sc->sc_request_r_scale = 0;
4432 		/*
4433 		 * Pick the smallest possible scaling factor that
4434 		 * will still allow us to scale up to sb_max.
4435 		 *
4436 		 * We do this because there are broken firewalls that
4437 		 * will corrupt the window scale option, leading to
4438 		 * the other endpoint believing that our advertised
4439 		 * window is unscaled.  At scale factors larger than
4440 		 * 5 the unscaled window will drop below 1500 bytes,
4441 		 * leading to serious problems when traversing these
4442 		 * broken firewalls.
4443 		 *
4444 		 * With the default sbmax of 256K, a scale factor
4445 		 * of 3 will be chosen by this algorithm.  Those who
4446 		 * choose a larger sbmax should watch out
4447 		 * for the compatiblity problems mentioned above.
4448 		 *
4449 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4450 		 * or <SYN,ACK>) segment itself is never scaled.
4451 		 */
4452 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4453 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4454 			sc->sc_request_r_scale++;
4455 	} else {
4456 		sc->sc_requested_s_scale = 15;
4457 		sc->sc_request_r_scale = 15;
4458 	}
4459 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4460 		sc->sc_flags |= SCF_SACK_PERMIT;
4461 
4462 	/*
4463 	 * ECN setup packet recieved.
4464 	 */
4465 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4466 		sc->sc_flags |= SCF_ECN_PERMIT;
4467 
4468 #ifdef TCP_SIGNATURE
4469 	if (tb.t_flags & TF_SIGNATURE)
4470 		sc->sc_flags |= SCF_SIGNATURE;
4471 #endif
4472 	sc->sc_tp = tp;
4473 	if (syn_cache_respond(sc, m) == 0) {
4474 		uint64_t *tcps = TCP_STAT_GETREF();
4475 		tcps[TCP_STAT_SNDACKS]++;
4476 		tcps[TCP_STAT_SNDTOTAL]++;
4477 		TCP_STAT_PUTREF();
4478 		syn_cache_insert(sc, tp);
4479 	} else {
4480 		s = splsoftnet();
4481 		/*
4482 		 * syn_cache_put() will try to schedule the timer, so
4483 		 * we need to initialize it
4484 		 */
4485 		SYN_CACHE_TIMER_ARM(sc);
4486 		syn_cache_put(sc);
4487 		splx(s);
4488 		TCP_STATINC(TCP_STAT_SC_DROPPED);
4489 	}
4490 	return (1);
4491 }
4492 
4493 /*
4494  * syn_cache_respond: (re)send SYN+ACK.
4495  *
4496  * returns 0 on success.  otherwise returns an errno, typically ENOBUFS.
4497  */
4498 
4499 int
4500 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4501 {
4502 #ifdef INET6
4503 	struct rtentry *rt;
4504 #endif
4505 	struct route *ro;
4506 	u_int8_t *optp;
4507 	int optlen, error;
4508 	u_int16_t tlen;
4509 	struct ip *ip = NULL;
4510 #ifdef INET6
4511 	struct ip6_hdr *ip6 = NULL;
4512 #endif
4513 	struct tcpcb *tp = NULL;
4514 	struct tcphdr *th;
4515 	u_int hlen;
4516 	struct socket *so;
4517 
4518 	ro = &sc->sc_route;
4519 	switch (sc->sc_src.sa.sa_family) {
4520 	case AF_INET:
4521 		hlen = sizeof(struct ip);
4522 		break;
4523 #ifdef INET6
4524 	case AF_INET6:
4525 		hlen = sizeof(struct ip6_hdr);
4526 		break;
4527 #endif
4528 	default:
4529 		if (m)
4530 			m_freem(m);
4531 		return (EAFNOSUPPORT);
4532 	}
4533 
4534 	/* Compute the size of the TCP options. */
4535 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4536 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4537 #ifdef TCP_SIGNATURE
4538 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4539 #endif
4540 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4541 
4542 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4543 
4544 	/*
4545 	 * Create the IP+TCP header from scratch.
4546 	 */
4547 	if (m)
4548 		m_freem(m);
4549 #ifdef DIAGNOSTIC
4550 	if (max_linkhdr + tlen > MCLBYTES)
4551 		return (ENOBUFS);
4552 #endif
4553 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4554 	if (m && (max_linkhdr + tlen) > MHLEN) {
4555 		MCLGET(m, M_DONTWAIT);
4556 		if ((m->m_flags & M_EXT) == 0) {
4557 			m_freem(m);
4558 			m = NULL;
4559 		}
4560 	}
4561 	if (m == NULL)
4562 		return (ENOBUFS);
4563 	MCLAIM(m, &tcp_tx_mowner);
4564 
4565 	/* Fixup the mbuf. */
4566 	m->m_data += max_linkhdr;
4567 	m->m_len = m->m_pkthdr.len = tlen;
4568 	if (sc->sc_tp) {
4569 		tp = sc->sc_tp;
4570 		if (tp->t_inpcb)
4571 			so = tp->t_inpcb->inp_socket;
4572 #ifdef INET6
4573 		else if (tp->t_in6pcb)
4574 			so = tp->t_in6pcb->in6p_socket;
4575 #endif
4576 		else
4577 			so = NULL;
4578 	} else
4579 		so = NULL;
4580 	m->m_pkthdr.rcvif = NULL;
4581 	memset(mtod(m, u_char *), 0, tlen);
4582 
4583 	switch (sc->sc_src.sa.sa_family) {
4584 	case AF_INET:
4585 		ip = mtod(m, struct ip *);
4586 		ip->ip_v = 4;
4587 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4588 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4589 		ip->ip_p = IPPROTO_TCP;
4590 		th = (struct tcphdr *)(ip + 1);
4591 		th->th_dport = sc->sc_src.sin.sin_port;
4592 		th->th_sport = sc->sc_dst.sin.sin_port;
4593 		break;
4594 #ifdef INET6
4595 	case AF_INET6:
4596 		ip6 = mtod(m, struct ip6_hdr *);
4597 		ip6->ip6_vfc = IPV6_VERSION;
4598 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4599 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4600 		ip6->ip6_nxt = IPPROTO_TCP;
4601 		/* ip6_plen will be updated in ip6_output() */
4602 		th = (struct tcphdr *)(ip6 + 1);
4603 		th->th_dport = sc->sc_src.sin6.sin6_port;
4604 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4605 		break;
4606 #endif
4607 	default:
4608 		th = NULL;
4609 	}
4610 
4611 	th->th_seq = htonl(sc->sc_iss);
4612 	th->th_ack = htonl(sc->sc_irs + 1);
4613 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4614 	th->th_flags = TH_SYN|TH_ACK;
4615 	th->th_win = htons(sc->sc_win);
4616 	/* th_sum already 0 */
4617 	/* th_urp already 0 */
4618 
4619 	/* Tack on the TCP options. */
4620 	optp = (u_int8_t *)(th + 1);
4621 	*optp++ = TCPOPT_MAXSEG;
4622 	*optp++ = 4;
4623 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4624 	*optp++ = sc->sc_ourmaxseg & 0xff;
4625 
4626 	if (sc->sc_request_r_scale != 15) {
4627 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4628 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4629 		    sc->sc_request_r_scale);
4630 		optp += 4;
4631 	}
4632 
4633 	if (sc->sc_flags & SCF_TIMESTAMP) {
4634 		u_int32_t *lp = (u_int32_t *)(optp);
4635 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4636 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
4637 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4638 		*lp   = htonl(sc->sc_timestamp);
4639 		optp += TCPOLEN_TSTAMP_APPA;
4640 	}
4641 
4642 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4643 		u_int8_t *p = optp;
4644 
4645 		/* Let the peer know that we will SACK. */
4646 		p[0] = TCPOPT_SACK_PERMITTED;
4647 		p[1] = 2;
4648 		p[2] = TCPOPT_NOP;
4649 		p[3] = TCPOPT_NOP;
4650 		optp += 4;
4651 	}
4652 
4653 	/*
4654 	 * Send ECN SYN-ACK setup packet.
4655 	 * Routes can be asymetric, so, even if we receive a packet
4656 	 * with ECE and CWR set, we must not assume no one will block
4657 	 * the ECE packet we are about to send.
4658 	 */
4659 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4660 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4661 		th->th_flags |= TH_ECE;
4662 		TCP_STATINC(TCP_STAT_ECN_SHS);
4663 
4664 		/*
4665 		 * draft-ietf-tcpm-ecnsyn-00.txt
4666 		 *
4667 		 * "[...] a TCP node MAY respond to an ECN-setup
4668 		 * SYN packet by setting ECT in the responding
4669 		 * ECN-setup SYN/ACK packet, indicating to routers
4670 		 * that the SYN/ACK packet is ECN-Capable.
4671 		 * This allows a congested router along the path
4672 		 * to mark the packet instead of dropping the
4673 		 * packet as an indication of congestion."
4674 		 *
4675 		 * "[...] There can be a great benefit in setting
4676 		 * an ECN-capable codepoint in SYN/ACK packets [...]
4677 		 * Congestion is  most likely to occur in
4678 		 * the server-to-client direction.  As a result,
4679 		 * setting an ECN-capable codepoint in SYN/ACK
4680 		 * packets can reduce the occurence of three-second
4681 		 * retransmit timeouts resulting from the drop
4682 		 * of SYN/ACK packets."
4683 		 *
4684 		 * Page 4 and 6, January 2006.
4685 		 */
4686 
4687 		switch (sc->sc_src.sa.sa_family) {
4688 #ifdef INET
4689 		case AF_INET:
4690 			ip->ip_tos |= IPTOS_ECN_ECT0;
4691 			break;
4692 #endif
4693 #ifdef INET6
4694 		case AF_INET6:
4695 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4696 			break;
4697 #endif
4698 		}
4699 		TCP_STATINC(TCP_STAT_ECN_ECT);
4700 	}
4701 
4702 #ifdef TCP_SIGNATURE
4703 	if (sc->sc_flags & SCF_SIGNATURE) {
4704 		struct secasvar *sav;
4705 		u_int8_t *sigp;
4706 
4707 		sav = tcp_signature_getsav(m, th);
4708 
4709 		if (sav == NULL) {
4710 			if (m)
4711 				m_freem(m);
4712 			return (EPERM);
4713 		}
4714 
4715 		*optp++ = TCPOPT_SIGNATURE;
4716 		*optp++ = TCPOLEN_SIGNATURE;
4717 		sigp = optp;
4718 		memset(optp, 0, TCP_SIGLEN);
4719 		optp += TCP_SIGLEN;
4720 		*optp++ = TCPOPT_NOP;
4721 		*optp++ = TCPOPT_EOL;
4722 
4723 		(void)tcp_signature(m, th, hlen, sav, sigp);
4724 
4725 		key_sa_recordxfer(sav, m);
4726 		KEY_FREESAV(&sav);
4727 	}
4728 #endif
4729 
4730 	/* Compute the packet's checksum. */
4731 	switch (sc->sc_src.sa.sa_family) {
4732 	case AF_INET:
4733 		ip->ip_len = htons(tlen - hlen);
4734 		th->th_sum = 0;
4735 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4736 		break;
4737 #ifdef INET6
4738 	case AF_INET6:
4739 		ip6->ip6_plen = htons(tlen - hlen);
4740 		th->th_sum = 0;
4741 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4742 		break;
4743 #endif
4744 	}
4745 
4746 	/*
4747 	 * Fill in some straggling IP bits.  Note the stack expects
4748 	 * ip_len to be in host order, for convenience.
4749 	 */
4750 	switch (sc->sc_src.sa.sa_family) {
4751 #ifdef INET
4752 	case AF_INET:
4753 		ip->ip_len = htons(tlen);
4754 		ip->ip_ttl = ip_defttl;
4755 		/* XXX tos? */
4756 		break;
4757 #endif
4758 #ifdef INET6
4759 	case AF_INET6:
4760 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4761 		ip6->ip6_vfc |= IPV6_VERSION;
4762 		ip6->ip6_plen = htons(tlen - hlen);
4763 		/* ip6_hlim will be initialized afterwards */
4764 		/* XXX flowlabel? */
4765 		break;
4766 #endif
4767 	}
4768 
4769 	/* XXX use IPsec policy on listening socket, on SYN ACK */
4770 	tp = sc->sc_tp;
4771 
4772 	switch (sc->sc_src.sa.sa_family) {
4773 #ifdef INET
4774 	case AF_INET:
4775 		error = ip_output(m, sc->sc_ipopts, ro,
4776 		    (ip_mtudisc ? IP_MTUDISC : 0),
4777 		    NULL, so);
4778 		break;
4779 #endif
4780 #ifdef INET6
4781 	case AF_INET6:
4782 		ip6->ip6_hlim = in6_selecthlim(NULL,
4783 		    (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
4784 
4785 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4786 		break;
4787 #endif
4788 	default:
4789 		error = EAFNOSUPPORT;
4790 		break;
4791 	}
4792 	return (error);
4793 }
4794