xref: /netbsd-src/sys/netinet/tcp_input.c (revision 9fbd88883c38d0c0fbfcbe66d76fe6b0fab3f9de)
1 /*	$NetBSD: tcp_input.c,v 1.134 2002/01/24 02:12:29 itojun Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74  * All rights reserved.
75  *
76  * This code is derived from software contributed to The NetBSD Foundation
77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78  * Facility, NASA Ames Research Center.
79  *
80  * Redistribution and use in source and binary forms, with or without
81  * modification, are permitted provided that the following conditions
82  * are met:
83  * 1. Redistributions of source code must retain the above copyright
84  *    notice, this list of conditions and the following disclaimer.
85  * 2. Redistributions in binary form must reproduce the above copyright
86  *    notice, this list of conditions and the following disclaimer in the
87  *    documentation and/or other materials provided with the distribution.
88  * 3. All advertising materials mentioning features or use of this software
89  *    must display the following acknowledgement:
90  *	This product includes software developed by the NetBSD
91  *	Foundation, Inc. and its contributors.
92  * 4. Neither the name of The NetBSD Foundation nor the names of its
93  *    contributors may be used to endorse or promote products derived
94  *    from this software without specific prior written permission.
95  *
96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106  * POSSIBILITY OF SUCH DAMAGE.
107  */
108 
109 /*
110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111  *	The Regents of the University of California.  All rights reserved.
112  *
113  * Redistribution and use in source and binary forms, with or without
114  * modification, are permitted provided that the following conditions
115  * are met:
116  * 1. Redistributions of source code must retain the above copyright
117  *    notice, this list of conditions and the following disclaimer.
118  * 2. Redistributions in binary form must reproduce the above copyright
119  *    notice, this list of conditions and the following disclaimer in the
120  *    documentation and/or other materials provided with the distribution.
121  * 3. All advertising materials mentioning features or use of this software
122  *    must display the following acknowledgement:
123  *	This product includes software developed by the University of
124  *	California, Berkeley and its contributors.
125  * 4. Neither the name of the University nor the names of its contributors
126  *    may be used to endorse or promote products derived from this software
127  *    without specific prior written permission.
128  *
129  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
130  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
131  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
132  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
133  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
134  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
135  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
136  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
137  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
138  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
139  * SUCH DAMAGE.
140  *
141  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
142  */
143 
144 /*
145  *	TODO list for SYN cache stuff:
146  *
147  *	Find room for a "state" field, which is needed to keep a
148  *	compressed state for TIME_WAIT TCBs.  It's been noted already
149  *	that this is fairly important for very high-volume web and
150  *	mail servers, which use a large number of short-lived
151  *	connections.
152  */
153 
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.134 2002/01/24 02:12:29 itojun Exp $");
156 
157 #include "opt_inet.h"
158 #include "opt_ipsec.h"
159 #include "opt_inet_csum.h"
160 #include "opt_tcp_debug.h"
161 
162 #include <sys/param.h>
163 #include <sys/systm.h>
164 #include <sys/malloc.h>
165 #include <sys/mbuf.h>
166 #include <sys/protosw.h>
167 #include <sys/socket.h>
168 #include <sys/socketvar.h>
169 #include <sys/errno.h>
170 #include <sys/syslog.h>
171 #include <sys/pool.h>
172 #include <sys/domain.h>
173 #include <sys/kernel.h>
174 
175 #include <net/if.h>
176 #include <net/route.h>
177 #include <net/if_types.h>
178 
179 #include <netinet/in.h>
180 #include <netinet/in_systm.h>
181 #include <netinet/ip.h>
182 #include <netinet/in_pcb.h>
183 #include <netinet/ip_var.h>
184 
185 #ifdef INET6
186 #ifndef INET
187 #include <netinet/in.h>
188 #endif
189 #include <netinet/ip6.h>
190 #include <netinet6/ip6_var.h>
191 #include <netinet6/in6_pcb.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_var.h>
194 #include <netinet/icmp6.h>
195 #include <netinet6/nd6.h>
196 #endif
197 
198 #ifdef PULLDOWN_TEST
199 #ifndef INET6
200 /* always need ip6.h for IP6_EXTHDR_GET */
201 #include <netinet/ip6.h>
202 #endif
203 #endif
204 
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcpip.h>
211 #include <netinet/tcp_debug.h>
212 
213 #include <machine/stdarg.h>
214 
215 #ifdef IPSEC
216 #include <netinet6/ipsec.h>
217 #include <netkey/key.h>
218 #endif /*IPSEC*/
219 #ifdef INET6
220 #include "faith.h"
221 #if defined(NFAITH) && NFAITH > 0
222 #include <net/if_faith.h>
223 #endif
224 #endif
225 
226 int	tcprexmtthresh = 3;
227 int	tcp_log_refused;
228 
229 static int tcp_rst_ppslim_count = 0;
230 static struct timeval tcp_rst_ppslim_last;
231 
232 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
233 
234 /* for modulo comparisons of timestamps */
235 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
236 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
237 
238 /*
239  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
240  */
241 #ifdef INET6
242 #define ND6_HINT(tp) \
243 do { \
244 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
245 	 && tp->t_in6pcb->in6p_route.ro_rt) { \
246 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
247 	} \
248 } while (0)
249 #else
250 #define ND6_HINT(tp)
251 #endif
252 
253 /*
254  * Macro to compute ACK transmission behavior.  Delay the ACK unless
255  * we have already delayed an ACK (must send an ACK every two segments).
256  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
257  * option is enabled.
258  */
259 #define	TCP_SETUP_ACK(tp, th) \
260 do { \
261 	if ((tp)->t_flags & TF_DELACK || \
262 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
263 		tp->t_flags |= TF_ACKNOW; \
264 	else \
265 		TCP_SET_DELACK(tp); \
266 } while (0)
267 
268 /*
269  * Convert TCP protocol fields to host order for easier processing.
270  */
271 #define	TCP_FIELDS_TO_HOST(th)						\
272 do {									\
273 	NTOHL((th)->th_seq);						\
274 	NTOHL((th)->th_ack);						\
275 	NTOHS((th)->th_win);						\
276 	NTOHS((th)->th_urp);						\
277 } while (0)
278 
279 #ifdef TCP_CSUM_COUNTERS
280 #include <sys/device.h>
281 
282 extern struct evcnt tcp_hwcsum_ok;
283 extern struct evcnt tcp_hwcsum_bad;
284 extern struct evcnt tcp_hwcsum_data;
285 extern struct evcnt tcp_swcsum;
286 
287 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
288 
289 #else
290 
291 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
292 
293 #endif /* TCP_CSUM_COUNTERS */
294 
295 int
296 tcp_reass(tp, th, m, tlen)
297 	struct tcpcb *tp;
298 	struct tcphdr *th;
299 	struct mbuf *m;
300 	int *tlen;
301 {
302 	struct ipqent *p, *q, *nq, *tiqe = NULL;
303 	struct socket *so = NULL;
304 	int pkt_flags;
305 	tcp_seq pkt_seq;
306 	unsigned pkt_len;
307 	u_long rcvpartdupbyte = 0;
308 	u_long rcvoobyte;
309 
310 	if (tp->t_inpcb)
311 		so = tp->t_inpcb->inp_socket;
312 #ifdef INET6
313 	else if (tp->t_in6pcb)
314 		so = tp->t_in6pcb->in6p_socket;
315 #endif
316 
317 	TCP_REASS_LOCK_CHECK(tp);
318 
319 	/*
320 	 * Call with th==0 after become established to
321 	 * force pre-ESTABLISHED data up to user socket.
322 	 */
323 	if (th == 0)
324 		goto present;
325 
326 	rcvoobyte = *tlen;
327 	/*
328 	 * Copy these to local variables because the tcpiphdr
329 	 * gets munged while we are collapsing mbufs.
330 	 */
331 	pkt_seq = th->th_seq;
332 	pkt_len = *tlen;
333 	pkt_flags = th->th_flags;
334 	/*
335 	 * Find a segment which begins after this one does.
336 	 */
337 	for (p = NULL, q = LIST_FIRST(&tp->segq); q != NULL; q = nq) {
338 		nq = LIST_NEXT(q, ipqe_q);
339 		/*
340 		 * If the received segment is just right after this
341 		 * fragment, merge the two together and then check
342 		 * for further overlaps.
343 		 */
344 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
345 #ifdef TCPREASS_DEBUG
346 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
347 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
348 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
349 #endif
350 			pkt_len += q->ipqe_len;
351 			pkt_flags |= q->ipqe_flags;
352 			pkt_seq = q->ipqe_seq;
353 			m_cat(q->ipqe_m, m);
354 			m = q->ipqe_m;
355 			goto free_ipqe;
356 		}
357 		/*
358 		 * If the received segment is completely past this
359 		 * fragment, we need to go the next fragment.
360 		 */
361 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
362 			p = q;
363 			continue;
364 		}
365 		/*
366 		 * If the fragment is past the received segment,
367 		 * it (or any following) can't be concatenated.
368 		 */
369 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
370 			break;
371 		/*
372 		 * We've received all the data in this segment before.
373 		 * mark it as a duplicate and return.
374 		 */
375 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
376 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
377 			tcpstat.tcps_rcvduppack++;
378 			tcpstat.tcps_rcvdupbyte += pkt_len;
379 			m_freem(m);
380 			if (tiqe != NULL)
381 				pool_put(&ipqent_pool, tiqe);
382 			return (0);
383 		}
384 		/*
385 		 * Received segment completely overlaps this fragment
386 		 * so we drop the fragment (this keeps the temporal
387 		 * ordering of segments correct).
388 		 */
389 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
390 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
391 			rcvpartdupbyte += q->ipqe_len;
392 			m_freem(q->ipqe_m);
393 			goto free_ipqe;
394 		}
395 		/*
396 		 * RX'ed segment extends past the end of the
397 		 * fragment.  Drop the overlapping bytes.  Then
398 		 * merge the fragment and segment then treat as
399 		 * a longer received packet.
400 		 */
401 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
402 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
403 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
404 #ifdef TCPREASS_DEBUG
405 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
406 			       tp, overlap,
407 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
408 #endif
409 			m_adj(m, overlap);
410 			rcvpartdupbyte += overlap;
411 			m_cat(q->ipqe_m, m);
412 			m = q->ipqe_m;
413 			pkt_seq = q->ipqe_seq;
414 			pkt_len += q->ipqe_len - overlap;
415 			rcvoobyte -= overlap;
416 			goto free_ipqe;
417 		}
418 		/*
419 		 * RX'ed segment extends past the front of the
420 		 * fragment.  Drop the overlapping bytes on the
421 		 * received packet.  The packet will then be
422 		 * contatentated with this fragment a bit later.
423 		 */
424 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
425 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
426 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
427 #ifdef TCPREASS_DEBUG
428 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
429 			       tp, overlap,
430 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
431 #endif
432 			m_adj(m, -overlap);
433 			pkt_len -= overlap;
434 			rcvpartdupbyte += overlap;
435 			rcvoobyte -= overlap;
436 		}
437 		/*
438 		 * If the received segment immediates precedes this
439 		 * fragment then tack the fragment onto this segment
440 		 * and reinsert the data.
441 		 */
442 		if (q->ipqe_seq == pkt_seq + pkt_len) {
443 #ifdef TCPREASS_DEBUG
444 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
445 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
446 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
447 #endif
448 			pkt_len += q->ipqe_len;
449 			pkt_flags |= q->ipqe_flags;
450 			m_cat(m, q->ipqe_m);
451 			LIST_REMOVE(q, ipqe_q);
452 			LIST_REMOVE(q, ipqe_timeq);
453 			if (tiqe == NULL) {
454 			    tiqe = q;
455 			} else {
456 			    pool_put(&ipqent_pool, q);
457 			}
458 			break;
459 		}
460 		/*
461 		 * If the fragment is before the segment, remember it.
462 		 * When this loop is terminated, p will contain the
463 		 * pointer to fragment that is right before the received
464 		 * segment.
465 		 */
466 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
467 			p = q;
468 
469 		continue;
470 
471 		/*
472 		 * This is a common operation.  It also will allow
473 		 * to save doing a malloc/free in most instances.
474 		 */
475 	  free_ipqe:
476 		LIST_REMOVE(q, ipqe_q);
477 		LIST_REMOVE(q, ipqe_timeq);
478 		if (tiqe == NULL) {
479 		    tiqe = q;
480 		} else {
481 		    pool_put(&ipqent_pool, q);
482 		}
483 	}
484 
485 	/*
486 	 * Allocate a new queue entry since the received segment did not
487 	 * collapse onto any other out-of-order block; thus we are allocating
488 	 * a new block.  If it had collapsed, tiqe would not be NULL and
489 	 * we would be reusing it.
490 	 * XXX If we can't, just drop the packet.  XXX
491 	 */
492 	if (tiqe == NULL) {
493 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
494 		if (tiqe == NULL) {
495 			tcpstat.tcps_rcvmemdrop++;
496 			m_freem(m);
497 			return (0);
498 		}
499 	}
500 
501 	/*
502 	 * Update the counters.
503 	 */
504 	tcpstat.tcps_rcvoopack++;
505 	tcpstat.tcps_rcvoobyte += rcvoobyte;
506 	if (rcvpartdupbyte) {
507 	    tcpstat.tcps_rcvpartduppack++;
508 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
509 	}
510 
511 	/*
512 	 * Insert the new fragment queue entry into both queues.
513 	 */
514 	tiqe->ipqe_m = m;
515 	tiqe->ipqe_seq = pkt_seq;
516 	tiqe->ipqe_len = pkt_len;
517 	tiqe->ipqe_flags = pkt_flags;
518 	if (p == NULL) {
519 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
520 #ifdef TCPREASS_DEBUG
521 		if (tiqe->ipqe_seq != tp->rcv_nxt)
522 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
523 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
524 #endif
525 	} else {
526 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
527 #ifdef TCPREASS_DEBUG
528 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
529 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
530 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
531 #endif
532 	}
533 
534 	LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
535 
536 present:
537 	/*
538 	 * Present data to user, advancing rcv_nxt through
539 	 * completed sequence space.
540 	 */
541 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
542 		return (0);
543 	q = LIST_FIRST(&tp->segq);
544 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
545 		return (0);
546 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
547 		return (0);
548 
549 	tp->rcv_nxt += q->ipqe_len;
550 	pkt_flags = q->ipqe_flags & TH_FIN;
551 	ND6_HINT(tp);
552 
553 	LIST_REMOVE(q, ipqe_q);
554 	LIST_REMOVE(q, ipqe_timeq);
555 	if (so->so_state & SS_CANTRCVMORE)
556 		m_freem(q->ipqe_m);
557 	else
558 		sbappend(&so->so_rcv, q->ipqe_m);
559 	pool_put(&ipqent_pool, q);
560 	sorwakeup(so);
561 	return (pkt_flags);
562 }
563 
564 #ifdef INET6
565 int
566 tcp6_input(mp, offp, proto)
567 	struct mbuf **mp;
568 	int *offp, proto;
569 {
570 	struct mbuf *m = *mp;
571 
572 	/*
573 	 * draft-itojun-ipv6-tcp-to-anycast
574 	 * better place to put this in?
575 	 */
576 	if (m->m_flags & M_ANYCAST6) {
577 		struct ip6_hdr *ip6;
578 		if (m->m_len < sizeof(struct ip6_hdr)) {
579 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
580 				tcpstat.tcps_rcvshort++;
581 				return IPPROTO_DONE;
582 			}
583 		}
584 		ip6 = mtod(m, struct ip6_hdr *);
585 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
586 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
587 		return IPPROTO_DONE;
588 	}
589 
590 	tcp_input(m, *offp, proto);
591 	return IPPROTO_DONE;
592 }
593 #endif
594 
595 /*
596  * TCP input routine, follows pages 65-76 of the
597  * protocol specification dated September, 1981 very closely.
598  */
599 void
600 #if __STDC__
601 tcp_input(struct mbuf *m, ...)
602 #else
603 tcp_input(m, va_alist)
604 	struct mbuf *m;
605 #endif
606 {
607 	int proto;
608 	struct tcphdr *th;
609 	struct ip *ip;
610 	struct inpcb *inp;
611 #ifdef INET6
612 	struct ip6_hdr *ip6;
613 	struct in6pcb *in6p;
614 #endif
615 	caddr_t optp = NULL;
616 	int optlen = 0;
617 	int len, tlen, toff, hdroptlen = 0;
618 	struct tcpcb *tp = 0;
619 	int tiflags;
620 	struct socket *so = NULL;
621 	int todrop, acked, ourfinisacked, needoutput = 0;
622 	short ostate = 0;
623 	int iss = 0;
624 	u_long tiwin;
625 	struct tcp_opt_info opti;
626 	int off, iphlen;
627 	va_list ap;
628 	int af;		/* af on the wire */
629 	struct mbuf *tcp_saveti = NULL;
630 
631 	va_start(ap, m);
632 	toff = va_arg(ap, int);
633 	proto = va_arg(ap, int);
634 	va_end(ap);
635 
636 	tcpstat.tcps_rcvtotal++;
637 
638 	bzero(&opti, sizeof(opti));
639 	opti.ts_present = 0;
640 	opti.maxseg = 0;
641 
642 	/*
643 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
644 	 *
645 	 * TCP is, by definition, unicast, so we reject all
646 	 * multicast outright.
647 	 *
648 	 * Note, there are additional src/dst address checks in
649 	 * the AF-specific code below.
650 	 */
651 	if (m->m_flags & (M_BCAST|M_MCAST)) {
652 		/* XXX stat */
653 		goto drop;
654 	}
655 #ifdef INET6
656 	if (m->m_flags & M_ANYCAST6) {
657 		/* XXX stat */
658 		goto drop;
659 	}
660 #endif
661 
662 	/*
663 	 * Get IP and TCP header together in first mbuf.
664 	 * Note: IP leaves IP header in first mbuf.
665 	 */
666 	ip = mtod(m, struct ip *);
667 #ifdef INET6
668 	ip6 = NULL;
669 #endif
670 	switch (ip->ip_v) {
671 #ifdef INET
672 	case 4:
673 		af = AF_INET;
674 		iphlen = sizeof(struct ip);
675 #ifndef PULLDOWN_TEST
676 		/* would like to get rid of this... */
677 		if (toff > sizeof (struct ip)) {
678 			ip_stripoptions(m, (struct mbuf *)0);
679 			toff = sizeof(struct ip);
680 		}
681 		if (m->m_len < toff + sizeof (struct tcphdr)) {
682 			if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
683 				tcpstat.tcps_rcvshort++;
684 				return;
685 			}
686 		}
687 		ip = mtod(m, struct ip *);
688 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
689 #else
690 		ip = mtod(m, struct ip *);
691 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
692 			sizeof(struct tcphdr));
693 		if (th == NULL) {
694 			tcpstat.tcps_rcvshort++;
695 			return;
696 		}
697 #endif
698 
699 		/*
700 		 * Make sure destination address is not multicast.
701 		 * Source address checked in ip_input().
702 		 */
703 		if (IN_MULTICAST(ip->ip_dst.s_addr)) {
704 			/* XXX stat */
705 			goto drop;
706 		}
707 
708 		/* We do the checksum after PCB lookup... */
709 		len = ip->ip_len;
710 		tlen = len - toff;
711 		break;
712 #endif
713 #ifdef INET6
714 	case 6:
715 		ip = NULL;
716 		iphlen = sizeof(struct ip6_hdr);
717 		af = AF_INET6;
718 #ifndef PULLDOWN_TEST
719 		if (m->m_len < toff + sizeof(struct tcphdr)) {
720 			m = m_pullup(m, toff + sizeof(struct tcphdr));	/*XXX*/
721 			if (m == NULL) {
722 				tcpstat.tcps_rcvshort++;
723 				return;
724 			}
725 		}
726 		ip6 = mtod(m, struct ip6_hdr *);
727 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
728 #else
729 		ip6 = mtod(m, struct ip6_hdr *);
730 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
731 			sizeof(struct tcphdr));
732 		if (th == NULL) {
733 			tcpstat.tcps_rcvshort++;
734 			return;
735 		}
736 #endif
737 
738 		/* Be proactive about malicious use of IPv4 mapped address */
739 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
740 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
741 			/* XXX stat */
742 			goto drop;
743 		}
744 
745 		/*
746 		 * Be proactive about unspecified IPv6 address in source.
747 		 * As we use all-zero to indicate unbounded/unconnected pcb,
748 		 * unspecified IPv6 address can be used to confuse us.
749 		 *
750 		 * Note that packets with unspecified IPv6 destination is
751 		 * already dropped in ip6_input.
752 		 */
753 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
754 			/* XXX stat */
755 			goto drop;
756 		}
757 
758 		/*
759 		 * Make sure destination address is not multicast.
760 		 * Source address checked in ip6_input().
761 		 */
762 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
763 			/* XXX stat */
764 			goto drop;
765 		}
766 
767 		/* We do the checksum after PCB lookup... */
768 		len = m->m_pkthdr.len;
769 		tlen = len - toff;
770 		break;
771 #endif
772 	default:
773 		m_freem(m);
774 		return;
775 	}
776 
777 	/*
778 	 * Check that TCP offset makes sense,
779 	 * pull out TCP options and adjust length.		XXX
780 	 */
781 	off = th->th_off << 2;
782 	if (off < sizeof (struct tcphdr) || off > tlen) {
783 		tcpstat.tcps_rcvbadoff++;
784 		goto drop;
785 	}
786 	tlen -= off;
787 
788 	/*
789 	 * tcp_input() has been modified to use tlen to mean the TCP data
790 	 * length throughout the function.  Other functions can use
791 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
792 	 * rja
793 	 */
794 
795 	if (off > sizeof (struct tcphdr)) {
796 #ifndef PULLDOWN_TEST
797 		if (m->m_len < toff + off) {
798 			if ((m = m_pullup(m, toff + off)) == 0) {
799 				tcpstat.tcps_rcvshort++;
800 				return;
801 			}
802 			switch (af) {
803 #ifdef INET
804 			case AF_INET:
805 				ip = mtod(m, struct ip *);
806 				break;
807 #endif
808 #ifdef INET6
809 			case AF_INET6:
810 				ip6 = mtod(m, struct ip6_hdr *);
811 				break;
812 #endif
813 			}
814 			th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
815 		}
816 #else
817 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
818 		if (th == NULL) {
819 			tcpstat.tcps_rcvshort++;
820 			return;
821 		}
822 		/*
823 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
824 		 * (as they're before toff) and we don't need to update those.
825 		 */
826 #endif
827 		optlen = off - sizeof (struct tcphdr);
828 		optp = ((caddr_t)th) + sizeof(struct tcphdr);
829 		/*
830 		 * Do quick retrieval of timestamp options ("options
831 		 * prediction?").  If timestamp is the only option and it's
832 		 * formatted as recommended in RFC 1323 appendix A, we
833 		 * quickly get the values now and not bother calling
834 		 * tcp_dooptions(), etc.
835 		 */
836 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
837 		     (optlen > TCPOLEN_TSTAMP_APPA &&
838 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
839 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
840 		     (th->th_flags & TH_SYN) == 0) {
841 			opti.ts_present = 1;
842 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
843 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
844 			optp = NULL;	/* we've parsed the options */
845 		}
846 	}
847 	tiflags = th->th_flags;
848 
849 	/*
850 	 * Locate pcb for segment.
851 	 */
852 findpcb:
853 	inp = NULL;
854 #ifdef INET6
855 	in6p = NULL;
856 #endif
857 	switch (af) {
858 #ifdef INET
859 	case AF_INET:
860 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
861 		    ip->ip_dst, th->th_dport);
862 		if (inp == 0) {
863 			++tcpstat.tcps_pcbhashmiss;
864 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
865 		}
866 #ifdef INET6
867 		if (inp == 0) {
868 			struct in6_addr s, d;
869 
870 			/* mapped addr case */
871 			bzero(&s, sizeof(s));
872 			s.s6_addr16[5] = htons(0xffff);
873 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
874 			bzero(&d, sizeof(d));
875 			d.s6_addr16[5] = htons(0xffff);
876 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
877 			in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
878 				&d, th->th_dport, 0);
879 			if (in6p == 0) {
880 				++tcpstat.tcps_pcbhashmiss;
881 				in6p = in6_pcblookup_bind(&tcb6, &d,
882 					th->th_dport, 0);
883 			}
884 		}
885 #endif
886 #ifndef INET6
887 		if (inp == 0)
888 #else
889 		if (inp == 0 && in6p == 0)
890 #endif
891 		{
892 			++tcpstat.tcps_noport;
893 			if (tcp_log_refused && (tiflags & TH_SYN)) {
894 #ifndef INET6
895 				char src[4*sizeof "123"];
896 				char dst[4*sizeof "123"];
897 #else
898 				char src[INET6_ADDRSTRLEN];
899 				char dst[INET6_ADDRSTRLEN];
900 #endif
901 				if (ip) {
902 					strcpy(src, inet_ntoa(ip->ip_src));
903 					strcpy(dst, inet_ntoa(ip->ip_dst));
904 				}
905 #ifdef INET6
906 				else if (ip6) {
907 					strcpy(src, ip6_sprintf(&ip6->ip6_src));
908 					strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
909 				}
910 #endif
911 				else {
912 					strcpy(src, "(unknown)");
913 					strcpy(dst, "(unknown)");
914 				}
915 				log(LOG_INFO,
916 				    "Connection attempt to TCP %s:%d from %s:%d\n",
917 				    dst, ntohs(th->th_dport),
918 				    src, ntohs(th->th_sport));
919 			}
920 			TCP_FIELDS_TO_HOST(th);
921 			goto dropwithreset_ratelim;
922 		}
923 #ifdef IPSEC
924 		if (inp && ipsec4_in_reject(m, inp)) {
925 			ipsecstat.in_polvio++;
926 			goto drop;
927 		}
928 #ifdef INET6
929 		else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
930 			ipsecstat.in_polvio++;
931 			goto drop;
932 		}
933 #endif
934 #endif /*IPSEC*/
935 		break;
936 #endif /*INET*/
937 #ifdef INET6
938 	case AF_INET6:
939 	    {
940 		int faith;
941 
942 #if defined(NFAITH) && NFAITH > 0
943 		faith = faithprefix(&ip6->ip6_dst);
944 #else
945 		faith = 0;
946 #endif
947 		in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
948 			&ip6->ip6_dst, th->th_dport, faith);
949 		if (in6p == NULL) {
950 			++tcpstat.tcps_pcbhashmiss;
951 			in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
952 				th->th_dport, faith);
953 		}
954 		if (in6p == NULL) {
955 			++tcpstat.tcps_noport;
956 			TCP_FIELDS_TO_HOST(th);
957 			goto dropwithreset_ratelim;
958 		}
959 #ifdef IPSEC
960 		if (ipsec6_in_reject(m, in6p)) {
961 			ipsec6stat.in_polvio++;
962 			goto drop;
963 		}
964 #endif /*IPSEC*/
965 		break;
966 	    }
967 #endif
968 	}
969 
970 	/*
971 	 * If the state is CLOSED (i.e., TCB does not exist) then
972 	 * all data in the incoming segment is discarded.
973 	 * If the TCB exists but is in CLOSED state, it is embryonic,
974 	 * but should either do a listen or a connect soon.
975 	 */
976 	tp = NULL;
977 	so = NULL;
978 	if (inp) {
979 		tp = intotcpcb(inp);
980 		so = inp->inp_socket;
981 	}
982 #ifdef INET6
983 	else if (in6p) {
984 		tp = in6totcpcb(in6p);
985 		so = in6p->in6p_socket;
986 	}
987 #endif
988 	if (tp == 0) {
989 		TCP_FIELDS_TO_HOST(th);
990 		goto dropwithreset_ratelim;
991 	}
992 	if (tp->t_state == TCPS_CLOSED)
993 		goto drop;
994 
995 	/*
996 	 * Checksum extended TCP header and data.
997 	 */
998 	switch (af) {
999 #ifdef INET
1000 	case AF_INET:
1001 		switch (m->m_pkthdr.csum_flags &
1002 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1003 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1004 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1005 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1006 			goto badcsum;
1007 
1008 		case M_CSUM_TCPv4|M_CSUM_DATA:
1009 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1010 			if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
1011 				goto badcsum;
1012 			break;
1013 
1014 		case M_CSUM_TCPv4:
1015 			/* Checksum was okay. */
1016 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1017 			break;
1018 
1019 		default:
1020 			/* Must compute it ourselves. */
1021 			TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1022 #ifndef PULLDOWN_TEST
1023 		    {
1024 			struct ipovly *ipov;
1025 			ipov = (struct ipovly *)ip;
1026 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
1027 			ipov->ih_len = htons(tlen + off);
1028 
1029 			if (in_cksum(m, len) != 0)
1030 				goto badcsum;
1031 		    }
1032 #else
1033 			if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1034 				goto badcsum;
1035 #endif /* ! PULLDOWN_TEST */
1036 			break;
1037 		}
1038 		break;
1039 #endif /* INET4 */
1040 
1041 #ifdef INET6
1042 	case AF_INET6:
1043 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1044 			goto badcsum;
1045 		break;
1046 #endif /* INET6 */
1047 	}
1048 
1049 	TCP_FIELDS_TO_HOST(th);
1050 
1051 	/* Unscale the window into a 32-bit value. */
1052 	if ((tiflags & TH_SYN) == 0)
1053 		tiwin = th->th_win << tp->snd_scale;
1054 	else
1055 		tiwin = th->th_win;
1056 
1057 #ifdef INET6
1058 	/* save packet options if user wanted */
1059 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1060 		if (in6p->in6p_options) {
1061 			m_freem(in6p->in6p_options);
1062 			in6p->in6p_options = 0;
1063 		}
1064 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1065 	}
1066 #endif
1067 
1068 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1069 		union syn_cache_sa src;
1070 		union syn_cache_sa dst;
1071 
1072 		bzero(&src, sizeof(src));
1073 		bzero(&dst, sizeof(dst));
1074 		switch (af) {
1075 #ifdef INET
1076 		case AF_INET:
1077 			src.sin.sin_len = sizeof(struct sockaddr_in);
1078 			src.sin.sin_family = AF_INET;
1079 			src.sin.sin_addr = ip->ip_src;
1080 			src.sin.sin_port = th->th_sport;
1081 
1082 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1083 			dst.sin.sin_family = AF_INET;
1084 			dst.sin.sin_addr = ip->ip_dst;
1085 			dst.sin.sin_port = th->th_dport;
1086 			break;
1087 #endif
1088 #ifdef INET6
1089 		case AF_INET6:
1090 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1091 			src.sin6.sin6_family = AF_INET6;
1092 			src.sin6.sin6_addr = ip6->ip6_src;
1093 			src.sin6.sin6_port = th->th_sport;
1094 
1095 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1096 			dst.sin6.sin6_family = AF_INET6;
1097 			dst.sin6.sin6_addr = ip6->ip6_dst;
1098 			dst.sin6.sin6_port = th->th_dport;
1099 			break;
1100 #endif /* INET6 */
1101 		default:
1102 			goto badsyn;	/*sanity*/
1103 		}
1104 
1105 		if (so->so_options & SO_DEBUG) {
1106 			ostate = tp->t_state;
1107 
1108 			tcp_saveti = NULL;
1109 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1110 				goto nosave;
1111 
1112 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1113 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1114 				if (!tcp_saveti)
1115 					goto nosave;
1116 			} else {
1117 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1118 				if (!tcp_saveti)
1119 					goto nosave;
1120 				tcp_saveti->m_len = iphlen;
1121 				m_copydata(m, 0, iphlen,
1122 				    mtod(tcp_saveti, caddr_t));
1123 			}
1124 
1125 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1126 				m_freem(tcp_saveti);
1127 				tcp_saveti = NULL;
1128 			} else {
1129 				tcp_saveti->m_len += sizeof(struct tcphdr);
1130 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1131 				    sizeof(struct tcphdr));
1132 			}
1133 			if (tcp_saveti) {
1134 				/*
1135 				 * need to recover version # field, which was
1136 				 * overwritten on ip_cksum computation.
1137 				 */
1138 				struct ip *sip;
1139 				sip = mtod(tcp_saveti, struct ip *);
1140 				switch (af) {
1141 #ifdef INET
1142 				case AF_INET:
1143 					sip->ip_v = 4;
1144 					break;
1145 #endif
1146 #ifdef INET6
1147 				case AF_INET6:
1148 					sip->ip_v = 6;
1149 					break;
1150 #endif
1151 				}
1152 			}
1153 	nosave:;
1154 		}
1155 		if (so->so_options & SO_ACCEPTCONN) {
1156   			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1157 				if (tiflags & TH_RST) {
1158 					syn_cache_reset(&src.sa, &dst.sa, th);
1159 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1160 				    (TH_ACK|TH_SYN)) {
1161 					/*
1162 					 * Received a SYN,ACK.  This should
1163 					 * never happen while we are in
1164 					 * LISTEN.  Send an RST.
1165 					 */
1166 					goto badsyn;
1167 				} else if (tiflags & TH_ACK) {
1168 					so = syn_cache_get(&src.sa, &dst.sa,
1169 						th, toff, tlen, so, m);
1170 					if (so == NULL) {
1171 						/*
1172 						 * We don't have a SYN for
1173 						 * this ACK; send an RST.
1174 						 */
1175 						goto badsyn;
1176 					} else if (so ==
1177 					    (struct socket *)(-1)) {
1178 						/*
1179 						 * We were unable to create
1180 						 * the connection.  If the
1181 						 * 3-way handshake was
1182 						 * completed, and RST has
1183 						 * been sent to the peer.
1184 						 * Since the mbuf might be
1185 						 * in use for the reply,
1186 						 * do not free it.
1187 						 */
1188 						m = NULL;
1189 					} else {
1190 						/*
1191 						 * We have created a
1192 						 * full-blown connection.
1193 						 */
1194 						tp = NULL;
1195 						inp = NULL;
1196 #ifdef INET6
1197 						in6p = NULL;
1198 #endif
1199 						switch (so->so_proto->pr_domain->dom_family) {
1200 #ifdef INET
1201 						case AF_INET:
1202 							inp = sotoinpcb(so);
1203 							tp = intotcpcb(inp);
1204 							break;
1205 #endif
1206 #ifdef INET6
1207 						case AF_INET6:
1208 							in6p = sotoin6pcb(so);
1209 							tp = in6totcpcb(in6p);
1210 							break;
1211 #endif
1212 						}
1213 						if (tp == NULL)
1214 							goto badsyn;	/*XXX*/
1215 						tiwin <<= tp->snd_scale;
1216 						goto after_listen;
1217 					}
1218   				} else {
1219 					/*
1220 					 * None of RST, SYN or ACK was set.
1221 					 * This is an invalid packet for a
1222 					 * TCB in LISTEN state.  Send a RST.
1223 					 */
1224 					goto badsyn;
1225 				}
1226   			} else {
1227 				/*
1228 				 * Received a SYN.
1229 				 */
1230 
1231 				/*
1232 				 * LISTEN socket received a SYN
1233 				 * from itself?  This can't possibly
1234 				 * be valid; drop the packet.
1235 				 */
1236 				if (th->th_sport == th->th_dport) {
1237 					int i;
1238 
1239 					switch (af) {
1240 #ifdef INET
1241 					case AF_INET:
1242 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1243 						break;
1244 #endif
1245 #ifdef INET6
1246 					case AF_INET6:
1247 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1248 						break;
1249 #endif
1250 					default:
1251 						i = 1;
1252 					}
1253 					if (i) {
1254 						tcpstat.tcps_badsyn++;
1255 						goto drop;
1256 					}
1257 				}
1258 
1259 				/*
1260 				 * SYN looks ok; create compressed TCP
1261 				 * state for it.
1262 				 */
1263 				if (so->so_qlen <= so->so_qlimit &&
1264 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1265 						so, m, optp, optlen, &opti))
1266 					m = NULL;
1267 			}
1268 			goto drop;
1269 		}
1270 	}
1271 
1272 after_listen:
1273 #ifdef DIAGNOSTIC
1274 	/*
1275 	 * Should not happen now that all embryonic connections
1276 	 * are handled with compressed state.
1277 	 */
1278 	if (tp->t_state == TCPS_LISTEN)
1279 		panic("tcp_input: TCPS_LISTEN");
1280 #endif
1281 
1282 	/*
1283 	 * Segment received on connection.
1284 	 * Reset idle time and keep-alive timer.
1285 	 */
1286 	tp->t_rcvtime = tcp_now;
1287 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1288 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1289 
1290 	/*
1291 	 * Process options.
1292 	 */
1293 	if (optp)
1294 		tcp_dooptions(tp, optp, optlen, th, &opti);
1295 
1296 	/*
1297 	 * Header prediction: check for the two common cases
1298 	 * of a uni-directional data xfer.  If the packet has
1299 	 * no control flags, is in-sequence, the window didn't
1300 	 * change and we're not retransmitting, it's a
1301 	 * candidate.  If the length is zero and the ack moved
1302 	 * forward, we're the sender side of the xfer.  Just
1303 	 * free the data acked & wake any higher level process
1304 	 * that was blocked waiting for space.  If the length
1305 	 * is non-zero and the ack didn't move, we're the
1306 	 * receiver side.  If we're getting packets in-order
1307 	 * (the reassembly queue is empty), add the data to
1308 	 * the socket buffer and note that we need a delayed ack.
1309 	 */
1310 	if (tp->t_state == TCPS_ESTABLISHED &&
1311 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1312 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1313 	    th->th_seq == tp->rcv_nxt &&
1314 	    tiwin && tiwin == tp->snd_wnd &&
1315 	    tp->snd_nxt == tp->snd_max) {
1316 
1317 		/*
1318 		 * If last ACK falls within this segment's sequence numbers,
1319 		 *  record the timestamp.
1320 		 */
1321 		if (opti.ts_present &&
1322 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1323 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1324 			tp->ts_recent_age = TCP_TIMESTAMP(tp);
1325 			tp->ts_recent = opti.ts_val;
1326 		}
1327 
1328 		if (tlen == 0) {
1329 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1330 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1331 			    tp->snd_cwnd >= tp->snd_wnd &&
1332 			    tp->t_dupacks < tcprexmtthresh) {
1333 				/*
1334 				 * this is a pure ack for outstanding data.
1335 				 */
1336 				++tcpstat.tcps_predack;
1337 				if (opti.ts_present && opti.ts_ecr)
1338 					tcp_xmit_timer(tp,
1339 					  TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1340 				else if (tp->t_rtttime &&
1341 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1342 					tcp_xmit_timer(tp,
1343 					tcp_now - tp->t_rtttime);
1344 				acked = th->th_ack - tp->snd_una;
1345 				tcpstat.tcps_rcvackpack++;
1346 				tcpstat.tcps_rcvackbyte += acked;
1347 				ND6_HINT(tp);
1348 				sbdrop(&so->so_snd, acked);
1349 				/*
1350 				 * We want snd_recover to track snd_una to
1351 				 * avoid sequence wraparound problems for
1352 				 * very large transfers.
1353 				 */
1354 				tp->snd_una = tp->snd_recover = th->th_ack;
1355 				m_freem(m);
1356 
1357 				/*
1358 				 * If all outstanding data are acked, stop
1359 				 * retransmit timer, otherwise restart timer
1360 				 * using current (possibly backed-off) value.
1361 				 * If process is waiting for space,
1362 				 * wakeup/selwakeup/signal.  If data
1363 				 * are ready to send, let tcp_output
1364 				 * decide between more output or persist.
1365 				 */
1366 				if (tp->snd_una == tp->snd_max)
1367 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1368 				else if (TCP_TIMER_ISARMED(tp,
1369 				    TCPT_PERSIST) == 0)
1370 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1371 					    tp->t_rxtcur);
1372 
1373 				sowwakeup(so);
1374 				if (so->so_snd.sb_cc)
1375 					(void) tcp_output(tp);
1376 				if (tcp_saveti)
1377 					m_freem(tcp_saveti);
1378 				return;
1379 			}
1380 		} else if (th->th_ack == tp->snd_una &&
1381 		    LIST_FIRST(&tp->segq) == NULL &&
1382 		    tlen <= sbspace(&so->so_rcv)) {
1383 			/*
1384 			 * this is a pure, in-sequence data packet
1385 			 * with nothing on the reassembly queue and
1386 			 * we have enough buffer space to take it.
1387 			 */
1388 			++tcpstat.tcps_preddat;
1389 			tp->rcv_nxt += tlen;
1390 			tcpstat.tcps_rcvpack++;
1391 			tcpstat.tcps_rcvbyte += tlen;
1392 			ND6_HINT(tp);
1393 			/*
1394 			 * Drop TCP, IP headers and TCP options then add data
1395 			 * to socket buffer.
1396 			 */
1397 			m_adj(m, toff + off);
1398 			sbappend(&so->so_rcv, m);
1399 			sorwakeup(so);
1400 			TCP_SETUP_ACK(tp, th);
1401 			if (tp->t_flags & TF_ACKNOW)
1402 				(void) tcp_output(tp);
1403 			if (tcp_saveti)
1404 				m_freem(tcp_saveti);
1405 			return;
1406 		}
1407 	}
1408 
1409 	/*
1410 	 * Compute mbuf offset to TCP data segment.
1411 	 */
1412 	hdroptlen = toff + off;
1413 
1414 	/*
1415 	 * Calculate amount of space in receive window,
1416 	 * and then do TCP input processing.
1417 	 * Receive window is amount of space in rcv queue,
1418 	 * but not less than advertised window.
1419 	 */
1420 	{ int win;
1421 
1422 	win = sbspace(&so->so_rcv);
1423 	if (win < 0)
1424 		win = 0;
1425 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1426 	}
1427 
1428 	switch (tp->t_state) {
1429 
1430 	/*
1431 	 * If the state is SYN_SENT:
1432 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1433 	 *	if seg contains a RST, then drop the connection.
1434 	 *	if seg does not contain SYN, then drop it.
1435 	 * Otherwise this is an acceptable SYN segment
1436 	 *	initialize tp->rcv_nxt and tp->irs
1437 	 *	if seg contains ack then advance tp->snd_una
1438 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1439 	 *	arrange for segment to be acked (eventually)
1440 	 *	continue processing rest of data/controls, beginning with URG
1441 	 */
1442 	case TCPS_SYN_SENT:
1443 		if ((tiflags & TH_ACK) &&
1444 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1445 		     SEQ_GT(th->th_ack, tp->snd_max)))
1446 			goto dropwithreset;
1447 		if (tiflags & TH_RST) {
1448 			if (tiflags & TH_ACK)
1449 				tp = tcp_drop(tp, ECONNREFUSED);
1450 			goto drop;
1451 		}
1452 		if ((tiflags & TH_SYN) == 0)
1453 			goto drop;
1454 		if (tiflags & TH_ACK) {
1455 			tp->snd_una = tp->snd_recover = th->th_ack;
1456 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1457 				tp->snd_nxt = tp->snd_una;
1458 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1459 		}
1460 		tp->irs = th->th_seq;
1461 		tcp_rcvseqinit(tp);
1462 		tp->t_flags |= TF_ACKNOW;
1463 		tcp_mss_from_peer(tp, opti.maxseg);
1464 
1465 		/*
1466 		 * Initialize the initial congestion window.  If we
1467 		 * had to retransmit the SYN, we must initialize cwnd
1468 		 * to 1 segment (i.e. the Loss Window).
1469 		 */
1470 		if (tp->t_flags & TF_SYN_REXMT)
1471 			tp->snd_cwnd = tp->t_peermss;
1472 		else
1473 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1474 			    tp->t_peermss);
1475 
1476 		tcp_rmx_rtt(tp);
1477 		if (tiflags & TH_ACK) {
1478 			tcpstat.tcps_connects++;
1479 			soisconnected(so);
1480 			tcp_established(tp);
1481 			/* Do window scaling on this connection? */
1482 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1483 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1484 				tp->snd_scale = tp->requested_s_scale;
1485 				tp->rcv_scale = tp->request_r_scale;
1486 			}
1487 			TCP_REASS_LOCK(tp);
1488 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1489 			TCP_REASS_UNLOCK(tp);
1490 			/*
1491 			 * if we didn't have to retransmit the SYN,
1492 			 * use its rtt as our initial srtt & rtt var.
1493 			 */
1494 			if (tp->t_rtttime)
1495 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1496 		} else
1497 			tp->t_state = TCPS_SYN_RECEIVED;
1498 
1499 		/*
1500 		 * Advance th->th_seq to correspond to first data byte.
1501 		 * If data, trim to stay within window,
1502 		 * dropping FIN if necessary.
1503 		 */
1504 		th->th_seq++;
1505 		if (tlen > tp->rcv_wnd) {
1506 			todrop = tlen - tp->rcv_wnd;
1507 			m_adj(m, -todrop);
1508 			tlen = tp->rcv_wnd;
1509 			tiflags &= ~TH_FIN;
1510 			tcpstat.tcps_rcvpackafterwin++;
1511 			tcpstat.tcps_rcvbyteafterwin += todrop;
1512 		}
1513 		tp->snd_wl1 = th->th_seq - 1;
1514 		tp->rcv_up = th->th_seq;
1515 		goto step6;
1516 
1517 	/*
1518 	 * If the state is SYN_RECEIVED:
1519 	 *	If seg contains an ACK, but not for our SYN, drop the input
1520 	 *	and generate an RST.  See page 36, rfc793
1521 	 */
1522 	case TCPS_SYN_RECEIVED:
1523 		if ((tiflags & TH_ACK) &&
1524 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1525 		     SEQ_GT(th->th_ack, tp->snd_max)))
1526 			goto dropwithreset;
1527 		break;
1528 	}
1529 
1530 	/*
1531 	 * States other than LISTEN or SYN_SENT.
1532 	 * First check timestamp, if present.
1533 	 * Then check that at least some bytes of segment are within
1534 	 * receive window.  If segment begins before rcv_nxt,
1535 	 * drop leading data (and SYN); if nothing left, just ack.
1536 	 *
1537 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1538 	 * and it's less than ts_recent, drop it.
1539 	 */
1540 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1541 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1542 
1543 		/* Check to see if ts_recent is over 24 days old.  */
1544 		if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1545 		    TCP_PAWS_IDLE) {
1546 			/*
1547 			 * Invalidate ts_recent.  If this segment updates
1548 			 * ts_recent, the age will be reset later and ts_recent
1549 			 * will get a valid value.  If it does not, setting
1550 			 * ts_recent to zero will at least satisfy the
1551 			 * requirement that zero be placed in the timestamp
1552 			 * echo reply when ts_recent isn't valid.  The
1553 			 * age isn't reset until we get a valid ts_recent
1554 			 * because we don't want out-of-order segments to be
1555 			 * dropped when ts_recent is old.
1556 			 */
1557 			tp->ts_recent = 0;
1558 		} else {
1559 			tcpstat.tcps_rcvduppack++;
1560 			tcpstat.tcps_rcvdupbyte += tlen;
1561 			tcpstat.tcps_pawsdrop++;
1562 			goto dropafterack;
1563 		}
1564 	}
1565 
1566 	todrop = tp->rcv_nxt - th->th_seq;
1567 	if (todrop > 0) {
1568 		if (tiflags & TH_SYN) {
1569 			tiflags &= ~TH_SYN;
1570 			th->th_seq++;
1571 			if (th->th_urp > 1)
1572 				th->th_urp--;
1573 			else {
1574 				tiflags &= ~TH_URG;
1575 				th->th_urp = 0;
1576 			}
1577 			todrop--;
1578 		}
1579 		if (todrop > tlen ||
1580 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1581 			/*
1582 			 * Any valid FIN must be to the left of the window.
1583 			 * At this point the FIN must be a duplicate or
1584 			 * out of sequence; drop it.
1585 			 */
1586 			tiflags &= ~TH_FIN;
1587 			/*
1588 			 * Send an ACK to resynchronize and drop any data.
1589 			 * But keep on processing for RST or ACK.
1590 			 */
1591 			tp->t_flags |= TF_ACKNOW;
1592 			todrop = tlen;
1593 			tcpstat.tcps_rcvdupbyte += todrop;
1594 			tcpstat.tcps_rcvduppack++;
1595 		} else {
1596 			tcpstat.tcps_rcvpartduppack++;
1597 			tcpstat.tcps_rcvpartdupbyte += todrop;
1598 		}
1599 		hdroptlen += todrop;	/*drop from head afterwards*/
1600 		th->th_seq += todrop;
1601 		tlen -= todrop;
1602 		if (th->th_urp > todrop)
1603 			th->th_urp -= todrop;
1604 		else {
1605 			tiflags &= ~TH_URG;
1606 			th->th_urp = 0;
1607 		}
1608 	}
1609 
1610 	/*
1611 	 * If new data are received on a connection after the
1612 	 * user processes are gone, then RST the other end.
1613 	 */
1614 	if ((so->so_state & SS_NOFDREF) &&
1615 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1616 		tp = tcp_close(tp);
1617 		tcpstat.tcps_rcvafterclose++;
1618 		goto dropwithreset;
1619 	}
1620 
1621 	/*
1622 	 * If segment ends after window, drop trailing data
1623 	 * (and PUSH and FIN); if nothing left, just ACK.
1624 	 */
1625 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1626 	if (todrop > 0) {
1627 		tcpstat.tcps_rcvpackafterwin++;
1628 		if (todrop >= tlen) {
1629 			tcpstat.tcps_rcvbyteafterwin += tlen;
1630 			/*
1631 			 * If a new connection request is received
1632 			 * while in TIME_WAIT, drop the old connection
1633 			 * and start over if the sequence numbers
1634 			 * are above the previous ones.
1635 			 */
1636 			if (tiflags & TH_SYN &&
1637 			    tp->t_state == TCPS_TIME_WAIT &&
1638 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1639 				iss = tcp_new_iss(tp, tp->snd_nxt);
1640 				tp = tcp_close(tp);
1641 				goto findpcb;
1642 			}
1643 			/*
1644 			 * If window is closed can only take segments at
1645 			 * window edge, and have to drop data and PUSH from
1646 			 * incoming segments.  Continue processing, but
1647 			 * remember to ack.  Otherwise, drop segment
1648 			 * and ack.
1649 			 */
1650 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1651 				tp->t_flags |= TF_ACKNOW;
1652 				tcpstat.tcps_rcvwinprobe++;
1653 			} else
1654 				goto dropafterack;
1655 		} else
1656 			tcpstat.tcps_rcvbyteafterwin += todrop;
1657 		m_adj(m, -todrop);
1658 		tlen -= todrop;
1659 		tiflags &= ~(TH_PUSH|TH_FIN);
1660 	}
1661 
1662 	/*
1663 	 * If last ACK falls within this segment's sequence numbers,
1664 	 * and the timestamp is newer, record it.
1665 	 */
1666 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1667 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1668 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1669 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1670 		tp->ts_recent_age = TCP_TIMESTAMP(tp);
1671 		tp->ts_recent = opti.ts_val;
1672 	}
1673 
1674 	/*
1675 	 * If the RST bit is set examine the state:
1676 	 *    SYN_RECEIVED STATE:
1677 	 *	If passive open, return to LISTEN state.
1678 	 *	If active open, inform user that connection was refused.
1679 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1680 	 *	Inform user that connection was reset, and close tcb.
1681 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1682 	 *	Close the tcb.
1683 	 */
1684 	if (tiflags&TH_RST) switch (tp->t_state) {
1685 
1686 	case TCPS_SYN_RECEIVED:
1687 		so->so_error = ECONNREFUSED;
1688 		goto close;
1689 
1690 	case TCPS_ESTABLISHED:
1691 	case TCPS_FIN_WAIT_1:
1692 	case TCPS_FIN_WAIT_2:
1693 	case TCPS_CLOSE_WAIT:
1694 		so->so_error = ECONNRESET;
1695 	close:
1696 		tp->t_state = TCPS_CLOSED;
1697 		tcpstat.tcps_drops++;
1698 		tp = tcp_close(tp);
1699 		goto drop;
1700 
1701 	case TCPS_CLOSING:
1702 	case TCPS_LAST_ACK:
1703 	case TCPS_TIME_WAIT:
1704 		tp = tcp_close(tp);
1705 		goto drop;
1706 	}
1707 
1708 	/*
1709 	 * If a SYN is in the window, then this is an
1710 	 * error and we send an RST and drop the connection.
1711 	 */
1712 	if (tiflags & TH_SYN) {
1713 		tp = tcp_drop(tp, ECONNRESET);
1714 		goto dropwithreset;
1715 	}
1716 
1717 	/*
1718 	 * If the ACK bit is off we drop the segment and return.
1719 	 */
1720 	if ((tiflags & TH_ACK) == 0) {
1721 		if (tp->t_flags & TF_ACKNOW)
1722 			goto dropafterack;
1723 		else
1724 			goto drop;
1725 	}
1726 
1727 	/*
1728 	 * Ack processing.
1729 	 */
1730 	switch (tp->t_state) {
1731 
1732 	/*
1733 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1734 	 * ESTABLISHED state and continue processing, otherwise
1735 	 * send an RST.
1736 	 */
1737 	case TCPS_SYN_RECEIVED:
1738 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
1739 		    SEQ_GT(th->th_ack, tp->snd_max))
1740 			goto dropwithreset;
1741 		tcpstat.tcps_connects++;
1742 		soisconnected(so);
1743 		tcp_established(tp);
1744 		/* Do window scaling? */
1745 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1746 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1747 			tp->snd_scale = tp->requested_s_scale;
1748 			tp->rcv_scale = tp->request_r_scale;
1749 		}
1750 		TCP_REASS_LOCK(tp);
1751 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1752 		TCP_REASS_UNLOCK(tp);
1753 		tp->snd_wl1 = th->th_seq - 1;
1754 		/* fall into ... */
1755 
1756 	/*
1757 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1758 	 * ACKs.  If the ack is in the range
1759 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1760 	 * then advance tp->snd_una to th->th_ack and drop
1761 	 * data from the retransmission queue.  If this ACK reflects
1762 	 * more up to date window information we update our window information.
1763 	 */
1764 	case TCPS_ESTABLISHED:
1765 	case TCPS_FIN_WAIT_1:
1766 	case TCPS_FIN_WAIT_2:
1767 	case TCPS_CLOSE_WAIT:
1768 	case TCPS_CLOSING:
1769 	case TCPS_LAST_ACK:
1770 	case TCPS_TIME_WAIT:
1771 
1772 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1773 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1774 				tcpstat.tcps_rcvdupack++;
1775 				/*
1776 				 * If we have outstanding data (other than
1777 				 * a window probe), this is a completely
1778 				 * duplicate ack (ie, window info didn't
1779 				 * change), the ack is the biggest we've
1780 				 * seen and we've seen exactly our rexmt
1781 				 * threshhold of them, assume a packet
1782 				 * has been dropped and retransmit it.
1783 				 * Kludge snd_nxt & the congestion
1784 				 * window so we send only this one
1785 				 * packet.
1786 				 *
1787 				 * We know we're losing at the current
1788 				 * window size so do congestion avoidance
1789 				 * (set ssthresh to half the current window
1790 				 * and pull our congestion window back to
1791 				 * the new ssthresh).
1792 				 *
1793 				 * Dup acks mean that packets have left the
1794 				 * network (they're now cached at the receiver)
1795 				 * so bump cwnd by the amount in the receiver
1796 				 * to keep a constant cwnd packets in the
1797 				 * network.
1798 				 */
1799 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1800 				    th->th_ack != tp->snd_una)
1801 					tp->t_dupacks = 0;
1802 				else if (++tp->t_dupacks == tcprexmtthresh) {
1803 					tcp_seq onxt = tp->snd_nxt;
1804 					u_int win =
1805 					    min(tp->snd_wnd, tp->snd_cwnd) /
1806 					    2 /	tp->t_segsz;
1807 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
1808 					    tp->snd_recover)) {
1809 						/*
1810 						 * False fast retransmit after
1811 						 * timeout.  Do not cut window.
1812 						 */
1813 						tp->snd_cwnd += tp->t_segsz;
1814 						tp->t_dupacks = 0;
1815 						(void) tcp_output(tp);
1816 						goto drop;
1817 					}
1818 
1819 					if (win < 2)
1820 						win = 2;
1821 					tp->snd_ssthresh = win * tp->t_segsz;
1822 					tp->snd_recover = tp->snd_max;
1823 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1824 					tp->t_rtttime = 0;
1825 					tp->snd_nxt = th->th_ack;
1826 					tp->snd_cwnd = tp->t_segsz;
1827 					(void) tcp_output(tp);
1828 					tp->snd_cwnd = tp->snd_ssthresh +
1829 					       tp->t_segsz * tp->t_dupacks;
1830 					if (SEQ_GT(onxt, tp->snd_nxt))
1831 						tp->snd_nxt = onxt;
1832 					goto drop;
1833 				} else if (tp->t_dupacks > tcprexmtthresh) {
1834 					tp->snd_cwnd += tp->t_segsz;
1835 					(void) tcp_output(tp);
1836 					goto drop;
1837 				}
1838 			} else
1839 				tp->t_dupacks = 0;
1840 			break;
1841 		}
1842 		/*
1843 		 * If the congestion window was inflated to account
1844 		 * for the other side's cached packets, retract it.
1845 		 */
1846 		if (tcp_do_newreno == 0) {
1847 			if (tp->t_dupacks >= tcprexmtthresh &&
1848 			    tp->snd_cwnd > tp->snd_ssthresh)
1849 				tp->snd_cwnd = tp->snd_ssthresh;
1850 			tp->t_dupacks = 0;
1851 		} else if (tp->t_dupacks >= tcprexmtthresh &&
1852 			   tcp_newreno(tp, th) == 0) {
1853 			tp->snd_cwnd = tp->snd_ssthresh;
1854 			/*
1855 			 * Window inflation should have left us with approx.
1856 			 * snd_ssthresh outstanding data.  But in case we
1857 			 * would be inclined to send a burst, better to do
1858 			 * it via the slow start mechanism.
1859 			 */
1860 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1861 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1862 				    + tp->t_segsz;
1863 			tp->t_dupacks = 0;
1864 		}
1865 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1866 			tcpstat.tcps_rcvacktoomuch++;
1867 			goto dropafterack;
1868 		}
1869 		acked = th->th_ack - tp->snd_una;
1870 		tcpstat.tcps_rcvackpack++;
1871 		tcpstat.tcps_rcvackbyte += acked;
1872 
1873 		/*
1874 		 * If we have a timestamp reply, update smoothed
1875 		 * round trip time.  If no timestamp is present but
1876 		 * transmit timer is running and timed sequence
1877 		 * number was acked, update smoothed round trip time.
1878 		 * Since we now have an rtt measurement, cancel the
1879 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1880 		 * Recompute the initial retransmit timer.
1881 		 */
1882 		if (opti.ts_present && opti.ts_ecr)
1883 			tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1884 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1885 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1886 
1887 		/*
1888 		 * If all outstanding data is acked, stop retransmit
1889 		 * timer and remember to restart (more output or persist).
1890 		 * If there is more data to be acked, restart retransmit
1891 		 * timer, using current (possibly backed-off) value.
1892 		 */
1893 		if (th->th_ack == tp->snd_max) {
1894 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1895 			needoutput = 1;
1896 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1897 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1898 		/*
1899 		 * When new data is acked, open the congestion window.
1900 		 * If the window gives us less than ssthresh packets
1901 		 * in flight, open exponentially (segsz per packet).
1902 		 * Otherwise open linearly: segsz per window
1903 		 * (segsz^2 / cwnd per packet), plus a constant
1904 		 * fraction of a packet (segsz/8) to help larger windows
1905 		 * open quickly enough.
1906 		 */
1907 		{
1908 		u_int cw = tp->snd_cwnd;
1909 		u_int incr = tp->t_segsz;
1910 
1911 		if (cw > tp->snd_ssthresh)
1912 			incr = incr * incr / cw;
1913 		if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
1914 			tp->snd_cwnd = min(cw + incr,
1915 			    TCP_MAXWIN << tp->snd_scale);
1916 		}
1917 		ND6_HINT(tp);
1918 		if (acked > so->so_snd.sb_cc) {
1919 			tp->snd_wnd -= so->so_snd.sb_cc;
1920 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1921 			ourfinisacked = 1;
1922 		} else {
1923 			sbdrop(&so->so_snd, acked);
1924 			tp->snd_wnd -= acked;
1925 			ourfinisacked = 0;
1926 		}
1927 		sowwakeup(so);
1928 		/*
1929 		 * We want snd_recover to track snd_una to
1930 		 * avoid sequence wraparound problems for
1931 		 * very large transfers.
1932 		 */
1933 		tp->snd_una = tp->snd_recover = th->th_ack;
1934 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1935 			tp->snd_nxt = tp->snd_una;
1936 
1937 		switch (tp->t_state) {
1938 
1939 		/*
1940 		 * In FIN_WAIT_1 STATE in addition to the processing
1941 		 * for the ESTABLISHED state if our FIN is now acknowledged
1942 		 * then enter FIN_WAIT_2.
1943 		 */
1944 		case TCPS_FIN_WAIT_1:
1945 			if (ourfinisacked) {
1946 				/*
1947 				 * If we can't receive any more
1948 				 * data, then closing user can proceed.
1949 				 * Starting the timer is contrary to the
1950 				 * specification, but if we don't get a FIN
1951 				 * we'll hang forever.
1952 				 */
1953 				if (so->so_state & SS_CANTRCVMORE) {
1954 					soisdisconnected(so);
1955 					if (tcp_maxidle > 0)
1956 						TCP_TIMER_ARM(tp, TCPT_2MSL,
1957 						    tcp_maxidle);
1958 				}
1959 				tp->t_state = TCPS_FIN_WAIT_2;
1960 			}
1961 			break;
1962 
1963 	 	/*
1964 		 * In CLOSING STATE in addition to the processing for
1965 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1966 		 * then enter the TIME-WAIT state, otherwise ignore
1967 		 * the segment.
1968 		 */
1969 		case TCPS_CLOSING:
1970 			if (ourfinisacked) {
1971 				tp->t_state = TCPS_TIME_WAIT;
1972 				tcp_canceltimers(tp);
1973 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1974 				soisdisconnected(so);
1975 			}
1976 			break;
1977 
1978 		/*
1979 		 * In LAST_ACK, we may still be waiting for data to drain
1980 		 * and/or to be acked, as well as for the ack of our FIN.
1981 		 * If our FIN is now acknowledged, delete the TCB,
1982 		 * enter the closed state and return.
1983 		 */
1984 		case TCPS_LAST_ACK:
1985 			if (ourfinisacked) {
1986 				tp = tcp_close(tp);
1987 				goto drop;
1988 			}
1989 			break;
1990 
1991 		/*
1992 		 * In TIME_WAIT state the only thing that should arrive
1993 		 * is a retransmission of the remote FIN.  Acknowledge
1994 		 * it and restart the finack timer.
1995 		 */
1996 		case TCPS_TIME_WAIT:
1997 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1998 			goto dropafterack;
1999 		}
2000 	}
2001 
2002 step6:
2003 	/*
2004 	 * Update window information.
2005 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2006 	 */
2007 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2008 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2009 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2010 		/* keep track of pure window updates */
2011 		if (tlen == 0 &&
2012 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2013 			tcpstat.tcps_rcvwinupd++;
2014 		tp->snd_wnd = tiwin;
2015 		tp->snd_wl1 = th->th_seq;
2016 		tp->snd_wl2 = th->th_ack;
2017 		if (tp->snd_wnd > tp->max_sndwnd)
2018 			tp->max_sndwnd = tp->snd_wnd;
2019 		needoutput = 1;
2020 	}
2021 
2022 	/*
2023 	 * Process segments with URG.
2024 	 */
2025 	if ((tiflags & TH_URG) && th->th_urp &&
2026 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2027 		/*
2028 		 * This is a kludge, but if we receive and accept
2029 		 * random urgent pointers, we'll crash in
2030 		 * soreceive.  It's hard to imagine someone
2031 		 * actually wanting to send this much urgent data.
2032 		 */
2033 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2034 			th->th_urp = 0;			/* XXX */
2035 			tiflags &= ~TH_URG;		/* XXX */
2036 			goto dodata;			/* XXX */
2037 		}
2038 		/*
2039 		 * If this segment advances the known urgent pointer,
2040 		 * then mark the data stream.  This should not happen
2041 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2042 		 * a FIN has been received from the remote side.
2043 		 * In these states we ignore the URG.
2044 		 *
2045 		 * According to RFC961 (Assigned Protocols),
2046 		 * the urgent pointer points to the last octet
2047 		 * of urgent data.  We continue, however,
2048 		 * to consider it to indicate the first octet
2049 		 * of data past the urgent section as the original
2050 		 * spec states (in one of two places).
2051 		 */
2052 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2053 			tp->rcv_up = th->th_seq + th->th_urp;
2054 			so->so_oobmark = so->so_rcv.sb_cc +
2055 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2056 			if (so->so_oobmark == 0)
2057 				so->so_state |= SS_RCVATMARK;
2058 			sohasoutofband(so);
2059 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2060 		}
2061 		/*
2062 		 * Remove out of band data so doesn't get presented to user.
2063 		 * This can happen independent of advancing the URG pointer,
2064 		 * but if two URG's are pending at once, some out-of-band
2065 		 * data may creep in... ick.
2066 		 */
2067 		if (th->th_urp <= (u_int16_t) tlen
2068 #ifdef SO_OOBINLINE
2069 		     && (so->so_options & SO_OOBINLINE) == 0
2070 #endif
2071 		     )
2072 			tcp_pulloutofband(so, th, m, hdroptlen);
2073 	} else
2074 		/*
2075 		 * If no out of band data is expected,
2076 		 * pull receive urgent pointer along
2077 		 * with the receive window.
2078 		 */
2079 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2080 			tp->rcv_up = tp->rcv_nxt;
2081 dodata:							/* XXX */
2082 
2083 	/*
2084 	 * Process the segment text, merging it into the TCP sequencing queue,
2085 	 * and arranging for acknowledgement of receipt if necessary.
2086 	 * This process logically involves adjusting tp->rcv_wnd as data
2087 	 * is presented to the user (this happens in tcp_usrreq.c,
2088 	 * case PRU_RCVD).  If a FIN has already been received on this
2089 	 * connection then we just ignore the text.
2090 	 */
2091 	if ((tlen || (tiflags & TH_FIN)) &&
2092 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2093 		/*
2094 		 * Insert segment ti into reassembly queue of tcp with
2095 		 * control block tp.  Return TH_FIN if reassembly now includes
2096 		 * a segment with FIN.  The macro form does the common case
2097 		 * inline (segment is the next to be received on an
2098 		 * established connection, and the queue is empty),
2099 		 * avoiding linkage into and removal from the queue and
2100 		 * repetition of various conversions.
2101 		 * Set DELACK for segments received in order, but ack
2102 		 * immediately when segments are out of order
2103 		 * (so fast retransmit can work).
2104 		 */
2105 		/* NOTE: this was TCP_REASS() macro, but used only once */
2106 		TCP_REASS_LOCK(tp);
2107 		if (th->th_seq == tp->rcv_nxt &&
2108 		    LIST_FIRST(&tp->segq) == NULL &&
2109 		    tp->t_state == TCPS_ESTABLISHED) {
2110 			TCP_SETUP_ACK(tp, th);
2111 			tp->rcv_nxt += tlen;
2112 			tiflags = th->th_flags & TH_FIN;
2113 			tcpstat.tcps_rcvpack++;
2114 			tcpstat.tcps_rcvbyte += tlen;
2115 			ND6_HINT(tp);
2116 			m_adj(m, hdroptlen);
2117 			sbappend(&(so)->so_rcv, m);
2118 			sorwakeup(so);
2119 		} else {
2120 			m_adj(m, hdroptlen);
2121 			tiflags = tcp_reass(tp, th, m, &tlen);
2122 			tp->t_flags |= TF_ACKNOW;
2123 		}
2124 		TCP_REASS_UNLOCK(tp);
2125 
2126 		/*
2127 		 * Note the amount of data that peer has sent into
2128 		 * our window, in order to estimate the sender's
2129 		 * buffer size.
2130 		 */
2131 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2132 	} else {
2133 		m_freem(m);
2134 		m = NULL;
2135 		tiflags &= ~TH_FIN;
2136 	}
2137 
2138 	/*
2139 	 * If FIN is received ACK the FIN and let the user know
2140 	 * that the connection is closing.  Ignore a FIN received before
2141 	 * the connection is fully established.
2142 	 */
2143 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2144 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2145 			socantrcvmore(so);
2146 			tp->t_flags |= TF_ACKNOW;
2147 			tp->rcv_nxt++;
2148 		}
2149 		switch (tp->t_state) {
2150 
2151 	 	/*
2152 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2153 		 */
2154 		case TCPS_ESTABLISHED:
2155 			tp->t_state = TCPS_CLOSE_WAIT;
2156 			break;
2157 
2158 	 	/*
2159 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2160 		 * enter the CLOSING state.
2161 		 */
2162 		case TCPS_FIN_WAIT_1:
2163 			tp->t_state = TCPS_CLOSING;
2164 			break;
2165 
2166 	 	/*
2167 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2168 		 * starting the time-wait timer, turning off the other
2169 		 * standard timers.
2170 		 */
2171 		case TCPS_FIN_WAIT_2:
2172 			tp->t_state = TCPS_TIME_WAIT;
2173 			tcp_canceltimers(tp);
2174 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2175 			soisdisconnected(so);
2176 			break;
2177 
2178 		/*
2179 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2180 		 */
2181 		case TCPS_TIME_WAIT:
2182 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2183 			break;
2184 		}
2185 	}
2186 #ifdef TCP_DEBUG
2187 	if (so->so_options & SO_DEBUG)
2188 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2189 #endif
2190 
2191 	/*
2192 	 * Return any desired output.
2193 	 */
2194 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2195 		(void) tcp_output(tp);
2196 	if (tcp_saveti)
2197 		m_freem(tcp_saveti);
2198 	return;
2199 
2200 badsyn:
2201 	/*
2202 	 * Received a bad SYN.  Increment counters and dropwithreset.
2203 	 */
2204 	tcpstat.tcps_badsyn++;
2205 	tp = NULL;
2206 	goto dropwithreset;
2207 
2208 dropafterack:
2209 	/*
2210 	 * Generate an ACK dropping incoming segment if it occupies
2211 	 * sequence space, where the ACK reflects our state.
2212 	 */
2213 	if (tiflags & TH_RST)
2214 		goto drop;
2215 	m_freem(m);
2216 	tp->t_flags |= TF_ACKNOW;
2217 	(void) tcp_output(tp);
2218 	if (tcp_saveti)
2219 		m_freem(tcp_saveti);
2220 	return;
2221 
2222 dropwithreset_ratelim:
2223 	/*
2224 	 * We may want to rate-limit RSTs in certain situations,
2225 	 * particularly if we are sending an RST in response to
2226 	 * an attempt to connect to or otherwise communicate with
2227 	 * a port for which we have no socket.
2228 	 */
2229 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2230 	    tcp_rst_ppslim) == 0) {
2231 		/* XXX stat */
2232 		goto drop;
2233 	}
2234 	/* ...fall into dropwithreset... */
2235 
2236 dropwithreset:
2237 	/*
2238 	 * Generate a RST, dropping incoming segment.
2239 	 * Make ACK acceptable to originator of segment.
2240 	 */
2241 	if (tiflags & TH_RST)
2242 		goto drop;
2243     {
2244 	/*
2245 	 * need to recover version # field, which was overwritten on
2246 	 * ip_cksum computation.
2247 	 */
2248 	struct ip *sip;
2249 	sip = mtod(m, struct ip *);
2250 	switch (af) {
2251 #ifdef INET
2252 	case AF_INET:
2253 		sip->ip_v = 4;
2254 		break;
2255 #endif
2256 #ifdef INET6
2257 	case AF_INET6:
2258 		sip->ip_v = 6;
2259 		break;
2260 #endif
2261 	}
2262     }
2263 	if (tiflags & TH_ACK)
2264 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2265 	else {
2266 		if (tiflags & TH_SYN)
2267 			tlen++;
2268 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2269 		    TH_RST|TH_ACK);
2270 	}
2271 	if (tcp_saveti)
2272 		m_freem(tcp_saveti);
2273 	return;
2274 
2275 badcsum:
2276 	tcpstat.tcps_rcvbadsum++;
2277 drop:
2278 	/*
2279 	 * Drop space held by incoming segment and return.
2280 	 */
2281 	if (tp) {
2282 		if (tp->t_inpcb)
2283 			so = tp->t_inpcb->inp_socket;
2284 #ifdef INET6
2285 		else if (tp->t_in6pcb)
2286 			so = tp->t_in6pcb->in6p_socket;
2287 #endif
2288 		else
2289 			so = NULL;
2290 #ifdef TCP_DEBUG
2291 		if (so && (so->so_options & SO_DEBUG) != 0)
2292 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2293 #endif
2294 	}
2295 	if (tcp_saveti)
2296 		m_freem(tcp_saveti);
2297 	m_freem(m);
2298 	return;
2299 }
2300 
2301 void
2302 tcp_dooptions(tp, cp, cnt, th, oi)
2303 	struct tcpcb *tp;
2304 	u_char *cp;
2305 	int cnt;
2306 	struct tcphdr *th;
2307 	struct tcp_opt_info *oi;
2308 {
2309 	u_int16_t mss;
2310 	int opt, optlen;
2311 
2312 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2313 		opt = cp[0];
2314 		if (opt == TCPOPT_EOL)
2315 			break;
2316 		if (opt == TCPOPT_NOP)
2317 			optlen = 1;
2318 		else {
2319 			if (cnt < 2)
2320 				break;
2321 			optlen = cp[1];
2322 			if (optlen < 2 || optlen > cnt)
2323 				break;
2324 		}
2325 		switch (opt) {
2326 
2327 		default:
2328 			continue;
2329 
2330 		case TCPOPT_MAXSEG:
2331 			if (optlen != TCPOLEN_MAXSEG)
2332 				continue;
2333 			if (!(th->th_flags & TH_SYN))
2334 				continue;
2335 			bcopy(cp + 2, &mss, sizeof(mss));
2336 			oi->maxseg = ntohs(mss);
2337 			break;
2338 
2339 		case TCPOPT_WINDOW:
2340 			if (optlen != TCPOLEN_WINDOW)
2341 				continue;
2342 			if (!(th->th_flags & TH_SYN))
2343 				continue;
2344 			tp->t_flags |= TF_RCVD_SCALE;
2345 			tp->requested_s_scale = cp[2];
2346 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2347 #if 0	/*XXX*/
2348 				char *p;
2349 
2350 				if (ip)
2351 					p = ntohl(ip->ip_src);
2352 #ifdef INET6
2353 				else if (ip6)
2354 					p = ip6_sprintf(&ip6->ip6_src);
2355 #endif
2356 				else
2357 					p = "(unknown)";
2358 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2359 				    "assuming %d\n",
2360 				    tp->requested_s_scale, p,
2361 				    TCP_MAX_WINSHIFT);
2362 #else
2363 				log(LOG_ERR, "TCP: invalid wscale %d, "
2364 				    "assuming %d\n",
2365 				    tp->requested_s_scale,
2366 				    TCP_MAX_WINSHIFT);
2367 #endif
2368 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
2369 			}
2370 			break;
2371 
2372 		case TCPOPT_TIMESTAMP:
2373 			if (optlen != TCPOLEN_TIMESTAMP)
2374 				continue;
2375 			oi->ts_present = 1;
2376 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2377 			NTOHL(oi->ts_val);
2378 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2379 			NTOHL(oi->ts_ecr);
2380 
2381 			/*
2382 			 * A timestamp received in a SYN makes
2383 			 * it ok to send timestamp requests and replies.
2384 			 */
2385 			if (th->th_flags & TH_SYN) {
2386 				tp->t_flags |= TF_RCVD_TSTMP;
2387 				tp->ts_recent = oi->ts_val;
2388 				tp->ts_recent_age = TCP_TIMESTAMP(tp);
2389 			}
2390 			break;
2391 		case TCPOPT_SACK_PERMITTED:
2392 			if (optlen != TCPOLEN_SACK_PERMITTED)
2393 				continue;
2394 			if (!(th->th_flags & TH_SYN))
2395 				continue;
2396 			tp->t_flags &= ~TF_CANT_TXSACK;
2397 			break;
2398 
2399 		case TCPOPT_SACK:
2400 			if (tp->t_flags & TF_IGNR_RXSACK)
2401 				continue;
2402 			if (optlen % 8 != 2 || optlen < 10)
2403 				continue;
2404 			cp += 2;
2405 			optlen -= 2;
2406 			for (; optlen > 0; cp -= 8, optlen -= 8) {
2407 				tcp_seq lwe, rwe;
2408 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2409 				NTOHL(lwe);
2410 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2411 				NTOHL(rwe);
2412 				/* tcp_mark_sacked(tp, lwe, rwe); */
2413 			}
2414 			break;
2415 		}
2416 	}
2417 }
2418 
2419 /*
2420  * Pull out of band byte out of a segment so
2421  * it doesn't appear in the user's data queue.
2422  * It is still reflected in the segment length for
2423  * sequencing purposes.
2424  */
2425 void
2426 tcp_pulloutofband(so, th, m, off)
2427 	struct socket *so;
2428 	struct tcphdr *th;
2429 	struct mbuf *m;
2430 	int off;
2431 {
2432 	int cnt = off + th->th_urp - 1;
2433 
2434 	while (cnt >= 0) {
2435 		if (m->m_len > cnt) {
2436 			char *cp = mtod(m, caddr_t) + cnt;
2437 			struct tcpcb *tp = sototcpcb(so);
2438 
2439 			tp->t_iobc = *cp;
2440 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2441 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2442 			m->m_len--;
2443 			return;
2444 		}
2445 		cnt -= m->m_len;
2446 		m = m->m_next;
2447 		if (m == 0)
2448 			break;
2449 	}
2450 	panic("tcp_pulloutofband");
2451 }
2452 
2453 /*
2454  * Collect new round-trip time estimate
2455  * and update averages and current timeout.
2456  */
2457 void
2458 tcp_xmit_timer(tp, rtt)
2459 	struct tcpcb *tp;
2460 	uint32_t rtt;
2461 {
2462 	int32_t delta;
2463 
2464 	tcpstat.tcps_rttupdated++;
2465 	if (tp->t_srtt != 0) {
2466 		/*
2467 		 * srtt is stored as fixed point with 3 bits after the
2468 		 * binary point (i.e., scaled by 8).  The following magic
2469 		 * is equivalent to the smoothing algorithm in rfc793 with
2470 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2471 		 * point).  Adjust rtt to origin 0.
2472 		 */
2473 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2474 		if ((tp->t_srtt += delta) <= 0)
2475 			tp->t_srtt = 1 << 2;
2476 		/*
2477 		 * We accumulate a smoothed rtt variance (actually, a
2478 		 * smoothed mean difference), then set the retransmit
2479 		 * timer to smoothed rtt + 4 times the smoothed variance.
2480 		 * rttvar is stored as fixed point with 2 bits after the
2481 		 * binary point (scaled by 4).  The following is
2482 		 * equivalent to rfc793 smoothing with an alpha of .75
2483 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2484 		 * rfc793's wired-in beta.
2485 		 */
2486 		if (delta < 0)
2487 			delta = -delta;
2488 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2489 		if ((tp->t_rttvar += delta) <= 0)
2490 			tp->t_rttvar = 1 << 2;
2491 	} else {
2492 		/*
2493 		 * No rtt measurement yet - use the unsmoothed rtt.
2494 		 * Set the variance to half the rtt (so our first
2495 		 * retransmit happens at 3*rtt).
2496 		 */
2497 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2498 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2499 	}
2500 	tp->t_rtttime = 0;
2501 	tp->t_rxtshift = 0;
2502 
2503 	/*
2504 	 * the retransmit should happen at rtt + 4 * rttvar.
2505 	 * Because of the way we do the smoothing, srtt and rttvar
2506 	 * will each average +1/2 tick of bias.  When we compute
2507 	 * the retransmit timer, we want 1/2 tick of rounding and
2508 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2509 	 * firing of the timer.  The bias will give us exactly the
2510 	 * 1.5 tick we need.  But, because the bias is
2511 	 * statistical, we have to test that we don't drop below
2512 	 * the minimum feasible timer (which is 2 ticks).
2513 	 */
2514 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2515 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2516 
2517 	/*
2518 	 * We received an ack for a packet that wasn't retransmitted;
2519 	 * it is probably safe to discard any error indications we've
2520 	 * received recently.  This isn't quite right, but close enough
2521 	 * for now (a route might have failed after we sent a segment,
2522 	 * and the return path might not be symmetrical).
2523 	 */
2524 	tp->t_softerror = 0;
2525 }
2526 
2527 /*
2528  * Checks for partial ack.  If partial ack arrives, force the retransmission
2529  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2530  * 1.  By setting snd_nxt to th_ack, this forces retransmission timer to
2531  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
2532  */
2533 int
2534 tcp_newreno(tp, th)
2535 	struct tcpcb *tp;
2536 	struct tcphdr *th;
2537 {
2538 	tcp_seq onxt = tp->snd_nxt;
2539 	u_long ocwnd = tp->snd_cwnd;
2540 
2541 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2542 		/*
2543 		 * snd_una has not yet been updated and the socket's send
2544 		 * buffer has not yet drained off the ACK'd data, so we
2545 		 * have to leave snd_una as it was to get the correct data
2546 		 * offset in tcp_output().
2547 		 */
2548 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
2549 	        tp->t_rtttime = 0;
2550 	        tp->snd_nxt = th->th_ack;
2551 		/*
2552 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
2553 		 * is not yet updated when we're called.
2554 		 */
2555 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2556 	        (void) tcp_output(tp);
2557 	        tp->snd_cwnd = ocwnd;
2558 	        if (SEQ_GT(onxt, tp->snd_nxt))
2559 	                tp->snd_nxt = onxt;
2560 	        /*
2561 	         * Partial window deflation.  Relies on fact that tp->snd_una
2562 	         * not updated yet.
2563 	         */
2564 	        tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2565 	        return 1;
2566 	}
2567 	return 0;
2568 }
2569 
2570 
2571 /*
2572  * TCP compressed state engine.  Currently used to hold compressed
2573  * state for SYN_RECEIVED.
2574  */
2575 
2576 u_long	syn_cache_count;
2577 u_int32_t syn_hash1, syn_hash2;
2578 
2579 #define SYN_HASH(sa, sp, dp) \
2580 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2581 				     ((u_int32_t)(sp)))^syn_hash2)))
2582 #ifndef INET6
2583 #define	SYN_HASHALL(hash, src, dst) \
2584 do {									\
2585 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
2586 		((struct sockaddr_in *)(src))->sin_port,		\
2587 		((struct sockaddr_in *)(dst))->sin_port);		\
2588 } while (0)
2589 #else
2590 #define SYN_HASH6(sa, sp, dp) \
2591 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2592 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2593 	 & 0x7fffffff)
2594 
2595 #define SYN_HASHALL(hash, src, dst) \
2596 do {									\
2597 	switch ((src)->sa_family) {					\
2598 	case AF_INET:							\
2599 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2600 			((struct sockaddr_in *)(src))->sin_port,	\
2601 			((struct sockaddr_in *)(dst))->sin_port);	\
2602 		break;							\
2603 	case AF_INET6:							\
2604 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2605 			((struct sockaddr_in6 *)(src))->sin6_port,	\
2606 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
2607 		break;							\
2608 	default:							\
2609 		hash = 0;						\
2610 	}								\
2611 } while (/*CONSTCOND*/0)
2612 #endif /* INET6 */
2613 
2614 #define	SYN_CACHE_RM(sc)						\
2615 do {									\
2616 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
2617 	    (sc), sc_bucketq);						\
2618 	(sc)->sc_tp = NULL;						\
2619 	LIST_REMOVE((sc), sc_tpq);					\
2620 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
2621 	callout_stop(&(sc)->sc_timer);					\
2622 	syn_cache_count--;						\
2623 } while (/*CONSTCOND*/0)
2624 
2625 #define	SYN_CACHE_PUT(sc)						\
2626 do {									\
2627 	if ((sc)->sc_ipopts)						\
2628 		(void) m_free((sc)->sc_ipopts);				\
2629 	if ((sc)->sc_route4.ro_rt != NULL)				\
2630 		RTFREE((sc)->sc_route4.ro_rt);				\
2631 	pool_put(&syn_cache_pool, (sc));				\
2632 } while (/*CONSTCOND*/0)
2633 
2634 struct pool syn_cache_pool;
2635 
2636 /*
2637  * We don't estimate RTT with SYNs, so each packet starts with the default
2638  * RTT and each timer step has a fixed timeout value.
2639  */
2640 #define	SYN_CACHE_TIMER_ARM(sc)						\
2641 do {									\
2642 	TCPT_RANGESET((sc)->sc_rxtcur,					\
2643 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
2644 	    TCPTV_REXMTMAX);						\
2645 	callout_reset(&(sc)->sc_timer,					\
2646 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
2647 } while (/*CONSTCOND*/0)
2648 
2649 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
2650 
2651 void
2652 syn_cache_init()
2653 {
2654 	int i;
2655 
2656 	/* Initialize the hash buckets. */
2657 	for (i = 0; i < tcp_syn_cache_size; i++)
2658 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2659 
2660 	/* Initialize the syn cache pool. */
2661 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2662 	    "synpl", 0, NULL, NULL, M_PCB);
2663 }
2664 
2665 void
2666 syn_cache_insert(sc, tp)
2667 	struct syn_cache *sc;
2668 	struct tcpcb *tp;
2669 {
2670 	struct syn_cache_head *scp;
2671 	struct syn_cache *sc2;
2672 	int s;
2673 
2674 	/*
2675 	 * If there are no entries in the hash table, reinitialize
2676 	 * the hash secrets.
2677 	 */
2678 	if (syn_cache_count == 0) {
2679 		struct timeval tv;
2680 		microtime(&tv);
2681 		syn_hash1 = random() ^ (u_long)&sc;
2682 		syn_hash2 = random() ^ tv.tv_usec;
2683 	}
2684 
2685 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2686 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2687 	scp = &tcp_syn_cache[sc->sc_bucketidx];
2688 
2689 	/*
2690 	 * Make sure that we don't overflow the per-bucket
2691 	 * limit or the total cache size limit.
2692 	 */
2693 	s = splsoftnet();
2694 	if (scp->sch_length >= tcp_syn_bucket_limit) {
2695 		tcpstat.tcps_sc_bucketoverflow++;
2696 		/*
2697 		 * The bucket is full.  Toss the oldest element in the
2698 		 * bucket.  This will be the first entry in the bucket.
2699 		 */
2700 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
2701 #ifdef DIAGNOSTIC
2702 		/*
2703 		 * This should never happen; we should always find an
2704 		 * entry in our bucket.
2705 		 */
2706 		if (sc2 == NULL)
2707 			panic("syn_cache_insert: bucketoverflow: impossible");
2708 #endif
2709 		SYN_CACHE_RM(sc2);
2710 		SYN_CACHE_PUT(sc2);
2711 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
2712 		struct syn_cache_head *scp2, *sce;
2713 
2714 		tcpstat.tcps_sc_overflowed++;
2715 		/*
2716 		 * The cache is full.  Toss the oldest entry in the
2717 		 * first non-empty bucket we can find.
2718 		 *
2719 		 * XXX We would really like to toss the oldest
2720 		 * entry in the cache, but we hope that this
2721 		 * condition doesn't happen very often.
2722 		 */
2723 		scp2 = scp;
2724 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2725 			sce = &tcp_syn_cache[tcp_syn_cache_size];
2726 			for (++scp2; scp2 != scp; scp2++) {
2727 				if (scp2 >= sce)
2728 					scp2 = &tcp_syn_cache[0];
2729 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
2730 					break;
2731 			}
2732 #ifdef DIAGNOSTIC
2733 			/*
2734 			 * This should never happen; we should always find a
2735 			 * non-empty bucket.
2736 			 */
2737 			if (scp2 == scp)
2738 				panic("syn_cache_insert: cacheoverflow: "
2739 				    "impossible");
2740 #endif
2741 		}
2742 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2743 		SYN_CACHE_RM(sc2);
2744 		SYN_CACHE_PUT(sc2);
2745 	}
2746 
2747 	/*
2748 	 * Initialize the entry's timer.
2749 	 */
2750 	sc->sc_rxttot = 0;
2751 	sc->sc_rxtshift = 0;
2752 	SYN_CACHE_TIMER_ARM(sc);
2753 
2754 	/* Link it from tcpcb entry */
2755 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2756 
2757 	/* Put it into the bucket. */
2758 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
2759 	scp->sch_length++;
2760 	syn_cache_count++;
2761 
2762 	tcpstat.tcps_sc_added++;
2763 	splx(s);
2764 }
2765 
2766 /*
2767  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2768  * If we have retransmitted an entry the maximum number of times, expire
2769  * that entry.
2770  */
2771 void
2772 syn_cache_timer(void *arg)
2773 {
2774 	struct syn_cache *sc = arg;
2775 	int s;
2776 
2777 	s = splsoftnet();
2778 
2779 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
2780 		/* Drop it -- too many retransmissions. */
2781 		goto dropit;
2782 	}
2783 
2784 	/*
2785 	 * Compute the total amount of time this entry has
2786 	 * been on a queue.  If this entry has been on longer
2787 	 * than the keep alive timer would allow, expire it.
2788 	 */
2789 	sc->sc_rxttot += sc->sc_rxtcur;
2790 	if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
2791 		goto dropit;
2792 
2793 	tcpstat.tcps_sc_retransmitted++;
2794 	(void) syn_cache_respond(sc, NULL);
2795 
2796 	/* Advance the timer back-off. */
2797 	sc->sc_rxtshift++;
2798 	SYN_CACHE_TIMER_ARM(sc);
2799 
2800 	splx(s);
2801 	return;
2802 
2803  dropit:
2804 	tcpstat.tcps_sc_timed_out++;
2805 	SYN_CACHE_RM(sc);
2806 	SYN_CACHE_PUT(sc);
2807 	splx(s);
2808 }
2809 
2810 /*
2811  * Remove syn cache created by the specified tcb entry,
2812  * because this does not make sense to keep them
2813  * (if there's no tcb entry, syn cache entry will never be used)
2814  */
2815 void
2816 syn_cache_cleanup(tp)
2817 	struct tcpcb *tp;
2818 {
2819 	struct syn_cache *sc, *nsc;
2820 	int s;
2821 
2822 	s = splsoftnet();
2823 
2824 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2825 		nsc = LIST_NEXT(sc, sc_tpq);
2826 
2827 #ifdef DIAGNOSTIC
2828 		if (sc->sc_tp != tp)
2829 			panic("invalid sc_tp in syn_cache_cleanup");
2830 #endif
2831 		SYN_CACHE_RM(sc);
2832 		SYN_CACHE_PUT(sc);
2833 	}
2834 	/* just for safety */
2835 	LIST_INIT(&tp->t_sc);
2836 
2837 	splx(s);
2838 }
2839 
2840 /*
2841  * Find an entry in the syn cache.
2842  */
2843 struct syn_cache *
2844 syn_cache_lookup(src, dst, headp)
2845 	struct sockaddr *src;
2846 	struct sockaddr *dst;
2847 	struct syn_cache_head **headp;
2848 {
2849 	struct syn_cache *sc;
2850 	struct syn_cache_head *scp;
2851 	u_int32_t hash;
2852 	int s;
2853 
2854 	SYN_HASHALL(hash, src, dst);
2855 
2856 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2857 	*headp = scp;
2858 	s = splsoftnet();
2859 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
2860 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
2861 		if (sc->sc_hash != hash)
2862 			continue;
2863 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2864 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2865 			splx(s);
2866 			return (sc);
2867 		}
2868 	}
2869 	splx(s);
2870 	return (NULL);
2871 }
2872 
2873 /*
2874  * This function gets called when we receive an ACK for a
2875  * socket in the LISTEN state.  We look up the connection
2876  * in the syn cache, and if its there, we pull it out of
2877  * the cache and turn it into a full-blown connection in
2878  * the SYN-RECEIVED state.
2879  *
2880  * The return values may not be immediately obvious, and their effects
2881  * can be subtle, so here they are:
2882  *
2883  *	NULL	SYN was not found in cache; caller should drop the
2884  *		packet and send an RST.
2885  *
2886  *	-1	We were unable to create the new connection, and are
2887  *		aborting it.  An ACK,RST is being sent to the peer
2888  *		(unless we got screwey sequence numbners; see below),
2889  *		because the 3-way handshake has been completed.  Caller
2890  *		should not free the mbuf, since we may be using it.  If
2891  *		we are not, we will free it.
2892  *
2893  *	Otherwise, the return value is a pointer to the new socket
2894  *	associated with the connection.
2895  */
2896 struct socket *
2897 syn_cache_get(src, dst, th, hlen, tlen, so, m)
2898 	struct sockaddr *src;
2899 	struct sockaddr *dst;
2900 	struct tcphdr *th;
2901 	unsigned int hlen, tlen;
2902 	struct socket *so;
2903 	struct mbuf *m;
2904 {
2905 	struct syn_cache *sc;
2906 	struct syn_cache_head *scp;
2907 	struct inpcb *inp = NULL;
2908 #ifdef INET6
2909 	struct in6pcb *in6p = NULL;
2910 #endif
2911 	struct tcpcb *tp = 0;
2912 	struct mbuf *am;
2913 	int s;
2914 	struct socket *oso;
2915 
2916 	s = splsoftnet();
2917 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
2918 		splx(s);
2919 		return (NULL);
2920 	}
2921 
2922 	/*
2923 	 * Verify the sequence and ack numbers.  Try getting the correct
2924 	 * response again.
2925 	 */
2926 	if ((th->th_ack != sc->sc_iss + 1) ||
2927 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
2928 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
2929 		(void) syn_cache_respond(sc, m);
2930 		splx(s);
2931 		return ((struct socket *)(-1));
2932 	}
2933 
2934 	/* Remove this cache entry */
2935 	SYN_CACHE_RM(sc);
2936 	splx(s);
2937 
2938 	/*
2939 	 * Ok, create the full blown connection, and set things up
2940 	 * as they would have been set up if we had created the
2941 	 * connection when the SYN arrived.  If we can't create
2942 	 * the connection, abort it.
2943 	 */
2944 	/*
2945 	 * inp still has the OLD in_pcb stuff, set the
2946 	 * v6-related flags on the new guy, too.   This is
2947 	 * done particularly for the case where an AF_INET6
2948 	 * socket is bound only to a port, and a v4 connection
2949 	 * comes in on that port.
2950 	 * we also copy the flowinfo from the original pcb
2951 	 * to the new one.
2952 	 */
2953     {
2954 	struct inpcb *parentinpcb;
2955 
2956 	parentinpcb = (struct inpcb *)so->so_pcb;
2957 
2958 	oso = so;
2959 	so = sonewconn(so, SS_ISCONNECTED);
2960 	if (so == NULL)
2961 		goto resetandabort;
2962 
2963 	switch (so->so_proto->pr_domain->dom_family) {
2964 #ifdef INET
2965 	case AF_INET:
2966 		inp = sotoinpcb(so);
2967 		break;
2968 #endif
2969 #ifdef INET6
2970 	case AF_INET6:
2971 		in6p = sotoin6pcb(so);
2972 		break;
2973 #endif
2974 	}
2975     }
2976 	switch (src->sa_family) {
2977 #ifdef INET
2978 	case AF_INET:
2979 		if (inp) {
2980 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
2981 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
2982 			inp->inp_options = ip_srcroute();
2983 			in_pcbstate(inp, INP_BOUND);
2984 			if (inp->inp_options == NULL) {
2985 				inp->inp_options = sc->sc_ipopts;
2986 				sc->sc_ipopts = NULL;
2987 			}
2988 		}
2989 #ifdef INET6
2990 		else if (in6p) {
2991 			/* IPv4 packet to AF_INET6 socket */
2992 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
2993 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
2994 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
2995 				&in6p->in6p_laddr.s6_addr32[3],
2996 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
2997 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
2998 			in6totcpcb(in6p)->t_family = AF_INET;
2999 		}
3000 #endif
3001 		break;
3002 #endif
3003 #ifdef INET6
3004 	case AF_INET6:
3005 		if (in6p) {
3006 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3007 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3008 #if 0
3009 			in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
3010 			/*inp->inp_options = ip6_srcroute();*/ /* soon. */
3011 #endif
3012 		}
3013 		break;
3014 #endif
3015 	}
3016 #ifdef INET6
3017 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3018 		struct in6pcb *oin6p = sotoin6pcb(oso);
3019 		/* inherit socket options from the listening socket */
3020 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3021 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3022 			m_freem(in6p->in6p_options);
3023 			in6p->in6p_options = 0;
3024 		}
3025 		ip6_savecontrol(in6p, &in6p->in6p_options,
3026 			mtod(m, struct ip6_hdr *), m);
3027 	}
3028 #endif
3029 
3030 #ifdef IPSEC
3031 	/*
3032 	 * we make a copy of policy, instead of sharing the policy,
3033 	 * for better behavior in terms of SA lookup and dead SA removal.
3034 	 */
3035 	if (inp) {
3036 		/* copy old policy into new socket's */
3037 		if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3038 			printf("tcp_input: could not copy policy\n");
3039 	}
3040 #ifdef INET6
3041 	else if (in6p) {
3042 		/* copy old policy into new socket's */
3043 		if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
3044 			printf("tcp_input: could not copy policy\n");
3045 	}
3046 #endif
3047 #endif
3048 
3049 	/*
3050 	 * Give the new socket our cached route reference.
3051 	 */
3052 	if (inp)
3053 		inp->inp_route = sc->sc_route4;		/* struct assignment */
3054 #ifdef INET6
3055 	else
3056 		in6p->in6p_route = sc->sc_route6;
3057 #endif
3058 	sc->sc_route4.ro_rt = NULL;
3059 
3060 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3061 	if (am == NULL)
3062 		goto resetandabort;
3063 	am->m_len = src->sa_len;
3064 	bcopy(src, mtod(am, caddr_t), src->sa_len);
3065 	if (inp) {
3066 		if (in_pcbconnect(inp, am)) {
3067 			(void) m_free(am);
3068 			goto resetandabort;
3069 		}
3070 	}
3071 #ifdef INET6
3072 	else if (in6p) {
3073 		if (src->sa_family == AF_INET) {
3074 			/* IPv4 packet to AF_INET6 socket */
3075 			struct sockaddr_in6 *sin6;
3076 			sin6 = mtod(am, struct sockaddr_in6 *);
3077 			am->m_len = sizeof(*sin6);
3078 			bzero(sin6, sizeof(*sin6));
3079 			sin6->sin6_family = AF_INET6;
3080 			sin6->sin6_len = sizeof(*sin6);
3081 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3082 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3083 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
3084 				&sin6->sin6_addr.s6_addr32[3],
3085 				sizeof(sin6->sin6_addr.s6_addr32[3]));
3086 		}
3087 		if (in6_pcbconnect(in6p, am)) {
3088 			(void) m_free(am);
3089 			goto resetandabort;
3090 		}
3091 	}
3092 #endif
3093 	else {
3094 		(void) m_free(am);
3095 		goto resetandabort;
3096 	}
3097 	(void) m_free(am);
3098 
3099 	if (inp)
3100 		tp = intotcpcb(inp);
3101 #ifdef INET6
3102 	else if (in6p)
3103 		tp = in6totcpcb(in6p);
3104 #endif
3105 	else
3106 		tp = NULL;
3107 	if (sc->sc_request_r_scale != 15) {
3108 		tp->requested_s_scale = sc->sc_requested_s_scale;
3109 		tp->request_r_scale = sc->sc_request_r_scale;
3110 		tp->snd_scale = sc->sc_requested_s_scale;
3111 		tp->rcv_scale = sc->sc_request_r_scale;
3112 		tp->t_flags |= TF_RCVD_SCALE;
3113 	}
3114 	if (sc->sc_flags & SCF_TIMESTAMP)
3115 		tp->t_flags |= TF_RCVD_TSTMP;
3116 	tp->ts_timebase = sc->sc_timebase;
3117 
3118 	tp->t_template = tcp_template(tp);
3119 	if (tp->t_template == 0) {
3120 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3121 		so = NULL;
3122 		m_freem(m);
3123 		goto abort;
3124 	}
3125 
3126 	tp->iss = sc->sc_iss;
3127 	tp->irs = sc->sc_irs;
3128 	tcp_sendseqinit(tp);
3129 	tcp_rcvseqinit(tp);
3130 	tp->t_state = TCPS_SYN_RECEIVED;
3131 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3132 	tcpstat.tcps_accepts++;
3133 
3134 	/* Initialize tp->t_ourmss before we deal with the peer's! */
3135 	tp->t_ourmss = sc->sc_ourmaxseg;
3136 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3137 
3138 	/*
3139 	 * Initialize the initial congestion window.  If we
3140 	 * had to retransmit the SYN,ACK, we must initialize cwnd
3141 	 * to 1 segment (i.e. the Loss Window).
3142 	 */
3143 	if (sc->sc_rxtshift)
3144 		tp->snd_cwnd = tp->t_peermss;
3145 	else
3146 		tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3147 
3148 	tcp_rmx_rtt(tp);
3149 	tp->snd_wl1 = sc->sc_irs;
3150 	tp->rcv_up = sc->sc_irs + 1;
3151 
3152 	/*
3153 	 * This is what whould have happened in tcp_ouput() when
3154 	 * the SYN,ACK was sent.
3155 	 */
3156 	tp->snd_up = tp->snd_una;
3157 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3158 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3159 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3160 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3161 	tp->last_ack_sent = tp->rcv_nxt;
3162 
3163 	tcpstat.tcps_sc_completed++;
3164 	SYN_CACHE_PUT(sc);
3165 	return (so);
3166 
3167 resetandabort:
3168 	(void) tcp_respond(NULL, m, m, th,
3169 			   th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3170 abort:
3171 	if (so != NULL)
3172 		(void) soabort(so);
3173 	SYN_CACHE_PUT(sc);
3174 	tcpstat.tcps_sc_aborted++;
3175 	return ((struct socket *)(-1));
3176 }
3177 
3178 /*
3179  * This function is called when we get a RST for a
3180  * non-existent connection, so that we can see if the
3181  * connection is in the syn cache.  If it is, zap it.
3182  */
3183 
3184 void
3185 syn_cache_reset(src, dst, th)
3186 	struct sockaddr *src;
3187 	struct sockaddr *dst;
3188 	struct tcphdr *th;
3189 {
3190 	struct syn_cache *sc;
3191 	struct syn_cache_head *scp;
3192 	int s = splsoftnet();
3193 
3194 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3195 		splx(s);
3196 		return;
3197 	}
3198 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3199 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3200 		splx(s);
3201 		return;
3202 	}
3203 	SYN_CACHE_RM(sc);
3204 	splx(s);
3205 	tcpstat.tcps_sc_reset++;
3206 	SYN_CACHE_PUT(sc);
3207 }
3208 
3209 void
3210 syn_cache_unreach(src, dst, th)
3211 	struct sockaddr *src;
3212 	struct sockaddr *dst;
3213 	struct tcphdr *th;
3214 {
3215 	struct syn_cache *sc;
3216 	struct syn_cache_head *scp;
3217 	int s;
3218 
3219 	s = splsoftnet();
3220 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3221 		splx(s);
3222 		return;
3223 	}
3224 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3225 	if (ntohl (th->th_seq) != sc->sc_iss) {
3226 		splx(s);
3227 		return;
3228 	}
3229 
3230 	/*
3231 	 * If we've rertransmitted 3 times and this is our second error,
3232 	 * we remove the entry.  Otherwise, we allow it to continue on.
3233 	 * This prevents us from incorrectly nuking an entry during a
3234 	 * spurious network outage.
3235 	 *
3236 	 * See tcp_notify().
3237 	 */
3238 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3239 		sc->sc_flags |= SCF_UNREACH;
3240 		splx(s);
3241 		return;
3242 	}
3243 
3244 	SYN_CACHE_RM(sc);
3245 	splx(s);
3246 	tcpstat.tcps_sc_unreach++;
3247 	SYN_CACHE_PUT(sc);
3248 }
3249 
3250 /*
3251  * Given a LISTEN socket and an inbound SYN request, add
3252  * this to the syn cache, and send back a segment:
3253  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3254  * to the source.
3255  *
3256  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3257  * Doing so would require that we hold onto the data and deliver it
3258  * to the application.  However, if we are the target of a SYN-flood
3259  * DoS attack, an attacker could send data which would eventually
3260  * consume all available buffer space if it were ACKed.  By not ACKing
3261  * the data, we avoid this DoS scenario.
3262  */
3263 
3264 int
3265 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3266 	struct sockaddr *src;
3267 	struct sockaddr *dst;
3268 	struct tcphdr *th;
3269 	unsigned int hlen;
3270 	struct socket *so;
3271 	struct mbuf *m;
3272 	u_char *optp;
3273 	int optlen;
3274 	struct tcp_opt_info *oi;
3275 {
3276 	struct tcpcb tb, *tp;
3277 	long win;
3278 	struct syn_cache *sc;
3279 	struct syn_cache_head *scp;
3280 	struct mbuf *ipopts;
3281 
3282 	tp = sototcpcb(so);
3283 
3284 	/*
3285 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3286 	 *
3287 	 * Note this check is performed in tcp_input() very early on.
3288 	 */
3289 
3290 	/*
3291 	 * Initialize some local state.
3292 	 */
3293 	win = sbspace(&so->so_rcv);
3294 	if (win > TCP_MAXWIN)
3295 		win = TCP_MAXWIN;
3296 
3297 	switch (src->sa_family) {
3298 #ifdef INET
3299 	case AF_INET:
3300 		/*
3301 		 * Remember the IP options, if any.
3302 		 */
3303 		ipopts = ip_srcroute();
3304 		break;
3305 #endif
3306 	default:
3307 		ipopts = NULL;
3308 	}
3309 
3310 	if (optp) {
3311 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3312 		tcp_dooptions(&tb, optp, optlen, th, oi);
3313 	} else
3314 		tb.t_flags = 0;
3315 
3316 	/*
3317 	 * See if we already have an entry for this connection.
3318 	 * If we do, resend the SYN,ACK.  We do not count this
3319 	 * as a retransmission (XXX though maybe we should).
3320 	 */
3321 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3322 		tcpstat.tcps_sc_dupesyn++;
3323 		if (ipopts) {
3324 			/*
3325 			 * If we were remembering a previous source route,
3326 			 * forget it and use the new one we've been given.
3327 			 */
3328 			if (sc->sc_ipopts)
3329 				(void) m_free(sc->sc_ipopts);
3330 			sc->sc_ipopts = ipopts;
3331 		}
3332 		sc->sc_timestamp = tb.ts_recent;
3333 		if (syn_cache_respond(sc, m) == 0) {
3334 			tcpstat.tcps_sndacks++;
3335 			tcpstat.tcps_sndtotal++;
3336 		}
3337 		return (1);
3338 	}
3339 
3340 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3341 	if (sc == NULL) {
3342 		if (ipopts)
3343 			(void) m_free(ipopts);
3344 		return (0);
3345 	}
3346 
3347 	/*
3348 	 * Fill in the cache, and put the necessary IP and TCP
3349 	 * options into the reply.
3350 	 */
3351 	callout_init(&sc->sc_timer);
3352 	bzero(sc, sizeof(struct syn_cache));
3353 	bcopy(src, &sc->sc_src, src->sa_len);
3354 	bcopy(dst, &sc->sc_dst, dst->sa_len);
3355 	sc->sc_flags = 0;
3356 	sc->sc_ipopts = ipopts;
3357 	sc->sc_irs = th->th_seq;
3358 	switch (src->sa_family) {
3359 #ifdef INET
3360 	case AF_INET:
3361 	    {
3362 		struct sockaddr_in *srcin = (void *) src;
3363 		struct sockaddr_in *dstin = (void *) dst;
3364 
3365 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3366 		    &srcin->sin_addr, dstin->sin_port,
3367 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
3368 		break;
3369 	    }
3370 #endif /* INET */
3371 #ifdef INET6
3372 	case AF_INET6:
3373 	    {
3374 		struct sockaddr_in6 *srcin6 = (void *) src;
3375 		struct sockaddr_in6 *dstin6 = (void *) dst;
3376 
3377 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3378 		    &srcin6->sin6_addr, dstin6->sin6_port,
3379 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3380 		break;
3381 	    }
3382 #endif /* INET6 */
3383 	}
3384 	sc->sc_peermaxseg = oi->maxseg;
3385 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3386 						m->m_pkthdr.rcvif : NULL,
3387 						sc->sc_src.sa.sa_family);
3388 	sc->sc_win = win;
3389 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
3390 	sc->sc_timestamp = tb.ts_recent;
3391 	if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3392 		sc->sc_flags |= SCF_TIMESTAMP;
3393 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3394 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3395 		sc->sc_requested_s_scale = tb.requested_s_scale;
3396 		sc->sc_request_r_scale = 0;
3397 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3398 		    TCP_MAXWIN << sc->sc_request_r_scale <
3399 		    so->so_rcv.sb_hiwat)
3400 			sc->sc_request_r_scale++;
3401 	} else {
3402 		sc->sc_requested_s_scale = 15;
3403 		sc->sc_request_r_scale = 15;
3404 	}
3405 	sc->sc_tp = tp;
3406 	if (syn_cache_respond(sc, m) == 0) {
3407 		syn_cache_insert(sc, tp);
3408 		tcpstat.tcps_sndacks++;
3409 		tcpstat.tcps_sndtotal++;
3410 	} else {
3411 		SYN_CACHE_PUT(sc);
3412 		tcpstat.tcps_sc_dropped++;
3413 	}
3414 	return (1);
3415 }
3416 
3417 int
3418 syn_cache_respond(sc, m)
3419 	struct syn_cache *sc;
3420 	struct mbuf *m;
3421 {
3422 	struct route *ro;
3423 	u_int8_t *optp;
3424 	int optlen, error;
3425 	u_int16_t tlen;
3426 	struct ip *ip = NULL;
3427 #ifdef INET6
3428 	struct ip6_hdr *ip6 = NULL;
3429 #endif
3430 	struct tcphdr *th;
3431 	u_int hlen;
3432 
3433 	switch (sc->sc_src.sa.sa_family) {
3434 	case AF_INET:
3435 		hlen = sizeof(struct ip);
3436 		ro = &sc->sc_route4;
3437 		break;
3438 #ifdef INET6
3439 	case AF_INET6:
3440 		hlen = sizeof(struct ip6_hdr);
3441 		ro = (struct route *)&sc->sc_route6;
3442 		break;
3443 #endif
3444 	default:
3445 		if (m)
3446 			m_freem(m);
3447 		return EAFNOSUPPORT;
3448 	}
3449 
3450 	/* Compute the size of the TCP options. */
3451 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3452 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3453 
3454 	tlen = hlen + sizeof(struct tcphdr) + optlen;
3455 
3456 	/*
3457 	 * Create the IP+TCP header from scratch.
3458 	 */
3459 	if (m)
3460 		m_freem(m);
3461 #ifdef DIAGNOSTIC
3462 	if (max_linkhdr + tlen > MCLBYTES)
3463 		return (ENOBUFS);
3464 #endif
3465 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3466 	if (m && tlen > MHLEN) {
3467 		MCLGET(m, M_DONTWAIT);
3468 		if ((m->m_flags & M_EXT) == 0) {
3469 			m_freem(m);
3470 			m = NULL;
3471 		}
3472 	}
3473 	if (m == NULL)
3474 		return (ENOBUFS);
3475 
3476 	/* Fixup the mbuf. */
3477 	m->m_data += max_linkhdr;
3478 	m->m_len = m->m_pkthdr.len = tlen;
3479 #ifdef IPSEC
3480 	if (sc->sc_tp) {
3481 		struct tcpcb *tp;
3482 		struct socket *so;
3483 
3484 		tp = sc->sc_tp;
3485 		if (tp->t_inpcb)
3486 			so = tp->t_inpcb->inp_socket;
3487 #ifdef INET6
3488 		else if (tp->t_in6pcb)
3489 			so = tp->t_in6pcb->in6p_socket;
3490 #endif
3491 		else
3492 			so = NULL;
3493 		/* use IPsec policy on listening socket, on SYN ACK */
3494 		if (ipsec_setsocket(m, so) != 0) {
3495 			m_freem(m);
3496 			return ENOBUFS;
3497 		}
3498 	}
3499 #endif
3500 	m->m_pkthdr.rcvif = NULL;
3501 	memset(mtod(m, u_char *), 0, tlen);
3502 
3503 	switch (sc->sc_src.sa.sa_family) {
3504 	case AF_INET:
3505 		ip = mtod(m, struct ip *);
3506 		ip->ip_dst = sc->sc_src.sin.sin_addr;
3507 		ip->ip_src = sc->sc_dst.sin.sin_addr;
3508 		ip->ip_p = IPPROTO_TCP;
3509 		th = (struct tcphdr *)(ip + 1);
3510 		th->th_dport = sc->sc_src.sin.sin_port;
3511 		th->th_sport = sc->sc_dst.sin.sin_port;
3512 		break;
3513 #ifdef INET6
3514 	case AF_INET6:
3515 		ip6 = mtod(m, struct ip6_hdr *);
3516 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3517 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3518 		ip6->ip6_nxt = IPPROTO_TCP;
3519 		/* ip6_plen will be updated in ip6_output() */
3520 		th = (struct tcphdr *)(ip6 + 1);
3521 		th->th_dport = sc->sc_src.sin6.sin6_port;
3522 		th->th_sport = sc->sc_dst.sin6.sin6_port;
3523 		break;
3524 #endif
3525 	default:
3526 		th = NULL;
3527 	}
3528 
3529 	th->th_seq = htonl(sc->sc_iss);
3530 	th->th_ack = htonl(sc->sc_irs + 1);
3531 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3532 	th->th_flags = TH_SYN|TH_ACK;
3533 	th->th_win = htons(sc->sc_win);
3534 	/* th_sum already 0 */
3535 	/* th_urp already 0 */
3536 
3537 	/* Tack on the TCP options. */
3538 	optp = (u_int8_t *)(th + 1);
3539 	*optp++ = TCPOPT_MAXSEG;
3540 	*optp++ = 4;
3541 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3542 	*optp++ = sc->sc_ourmaxseg & 0xff;
3543 
3544 	if (sc->sc_request_r_scale != 15) {
3545 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3546 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3547 		    sc->sc_request_r_scale);
3548 		optp += 4;
3549 	}
3550 
3551 	if (sc->sc_flags & SCF_TIMESTAMP) {
3552 		u_int32_t *lp = (u_int32_t *)(optp);
3553 		/* Form timestamp option as shown in appendix A of RFC 1323. */
3554 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
3555 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3556 		*lp   = htonl(sc->sc_timestamp);
3557 		optp += TCPOLEN_TSTAMP_APPA;
3558 	}
3559 
3560 	/* Compute the packet's checksum. */
3561 	switch (sc->sc_src.sa.sa_family) {
3562 	case AF_INET:
3563 		ip->ip_len = htons(tlen - hlen);
3564 		th->th_sum = 0;
3565 		th->th_sum = in_cksum(m, tlen);
3566 		break;
3567 #ifdef INET6
3568 	case AF_INET6:
3569 		ip6->ip6_plen = htons(tlen - hlen);
3570 		th->th_sum = 0;
3571 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3572 		break;
3573 #endif
3574 	}
3575 
3576 	/*
3577 	 * Fill in some straggling IP bits.  Note the stack expects
3578 	 * ip_len to be in host order, for convenience.
3579 	 */
3580 	switch (sc->sc_src.sa.sa_family) {
3581 #ifdef INET
3582 	case AF_INET:
3583 		ip->ip_len = tlen;
3584 		ip->ip_ttl = ip_defttl;
3585 		/* XXX tos? */
3586 		break;
3587 #endif
3588 #ifdef INET6
3589 	case AF_INET6:
3590 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3591 		ip6->ip6_vfc |= IPV6_VERSION;
3592 		ip6->ip6_plen = htons(tlen - hlen);
3593 		/* ip6_hlim will be initialized afterwards */
3594 		/* XXX flowlabel? */
3595 		break;
3596 #endif
3597 	}
3598 
3599 	switch (sc->sc_src.sa.sa_family) {
3600 #ifdef INET
3601 	case AF_INET:
3602 		error = ip_output(m, sc->sc_ipopts, ro,
3603 		    (ip_mtudisc ? IP_MTUDISC : 0),
3604 		    NULL);
3605 		break;
3606 #endif
3607 #ifdef INET6
3608 	case AF_INET6:
3609 		ip6->ip6_hlim = in6_selecthlim(NULL,
3610 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3611 
3612 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3613 			0, NULL, NULL);
3614 		break;
3615 #endif
3616 	default:
3617 		error = EAFNOSUPPORT;
3618 		break;
3619 	}
3620 	return (error);
3621 }
3622