xref: /netbsd-src/sys/netinet/tcp_input.c (revision 95d875fb90b1458e4f1de6950286ddcd6644bc61)
1 /*	$NetBSD: tcp_input.c,v 1.101 1999/12/22 04:03:02 itojun Exp $	*/
2 
3 /*
4 %%% portions-copyright-nrl-95
5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
7 Reserved. All rights under this copyright have been assigned to the US
8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
10 software.
11 You should have received a copy of the license with this software. If you
12 didn't get a copy, you may request one from <license@ipv6.nrl.navy.mil>.
13 
14 */
15 
16 /*
17  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
18  * All rights reserved.
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  * 1. Redistributions of source code must retain the above copyright
24  *    notice, this list of conditions and the following disclaimer.
25  * 2. Redistributions in binary form must reproduce the above copyright
26  *    notice, this list of conditions and the following disclaimer in the
27  *    documentation and/or other materials provided with the distribution.
28  * 3. Neither the name of the project nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  */
44 
45 /*-
46  * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
47  * All rights reserved.
48  *
49  * This code is derived from software contributed to The NetBSD Foundation
50  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
51  * Facility, NASA Ames Research Center.
52  *
53  * Redistribution and use in source and binary forms, with or without
54  * modification, are permitted provided that the following conditions
55  * are met:
56  * 1. Redistributions of source code must retain the above copyright
57  *    notice, this list of conditions and the following disclaimer.
58  * 2. Redistributions in binary form must reproduce the above copyright
59  *    notice, this list of conditions and the following disclaimer in the
60  *    documentation and/or other materials provided with the distribution.
61  * 3. All advertising materials mentioning features or use of this software
62  *    must display the following acknowledgement:
63  *	This product includes software developed by the NetBSD
64  *	Foundation, Inc. and its contributors.
65  * 4. Neither the name of The NetBSD Foundation nor the names of its
66  *    contributors may be used to endorse or promote products derived
67  *    from this software without specific prior written permission.
68  *
69  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
70  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
71  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
72  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
73  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
79  * POSSIBILITY OF SUCH DAMAGE.
80  */
81 
82 /*
83  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
84  *	The Regents of the University of California.  All rights reserved.
85  *
86  * Redistribution and use in source and binary forms, with or without
87  * modification, are permitted provided that the following conditions
88  * are met:
89  * 1. Redistributions of source code must retain the above copyright
90  *    notice, this list of conditions and the following disclaimer.
91  * 2. Redistributions in binary form must reproduce the above copyright
92  *    notice, this list of conditions and the following disclaimer in the
93  *    documentation and/or other materials provided with the distribution.
94  * 3. All advertising materials mentioning features or use of this software
95  *    must display the following acknowledgement:
96  *	This product includes software developed by the University of
97  *	California, Berkeley and its contributors.
98  * 4. Neither the name of the University nor the names of its contributors
99  *    may be used to endorse or promote products derived from this software
100  *    without specific prior written permission.
101  *
102  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
103  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
104  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
105  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
106  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
107  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
108  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
109  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
110  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
111  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
112  * SUCH DAMAGE.
113  *
114  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
115  */
116 
117 /*
118  *	TODO list for SYN cache stuff:
119  *
120  *	Find room for a "state" field, which is needed to keep a
121  *	compressed state for TIME_WAIT TCBs.  It's been noted already
122  *	that this is fairly important for very high-volume web and
123  *	mail servers, which use a large number of short-lived
124  *	connections.
125  */
126 
127 #include "opt_inet.h"
128 #include "opt_ipsec.h"
129 
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/malloc.h>
133 #include <sys/mbuf.h>
134 #include <sys/protosw.h>
135 #include <sys/socket.h>
136 #include <sys/socketvar.h>
137 #include <sys/errno.h>
138 #include <sys/syslog.h>
139 #include <sys/pool.h>
140 #include <sys/domain.h>
141 
142 #include <net/if.h>
143 #include <net/route.h>
144 #include <net/if_types.h>
145 
146 #include <netinet/in.h>
147 #include <netinet/in_systm.h>
148 #include <netinet/ip.h>
149 #include <netinet/in_pcb.h>
150 #include <netinet/ip_var.h>
151 
152 #ifdef INET6
153 #ifndef INET
154 #include <netinet/in.h>
155 #endif
156 #include <netinet/ip6.h>
157 #include <netinet6/in6_pcb.h>
158 #include <netinet6/ip6_var.h>
159 #include <netinet6/in6_var.h>
160 #include <netinet/icmp6.h>
161 #include <netinet6/nd6.h>
162 #endif
163 
164 #ifdef PULLDOWN_TEST
165 #ifndef INET6
166 /* always need ip6.h for IP6_EXTHDR_GET */
167 #include <netinet/ip6.h>
168 #endif
169 #endif
170 
171 #include <netinet/tcp.h>
172 #include <netinet/tcp_fsm.h>
173 #include <netinet/tcp_seq.h>
174 #include <netinet/tcp_timer.h>
175 #include <netinet/tcp_var.h>
176 #include <netinet/tcpip.h>
177 #include <netinet/tcp_debug.h>
178 
179 #include <machine/stdarg.h>
180 
181 #ifdef IPSEC
182 #include <netinet6/ipsec.h>
183 #include <netkey/key.h>
184 #include <netkey/key_debug.h>
185 #endif /*IPSEC*/
186 #ifdef INET6
187 #include "faith.h"
188 #endif
189 
190 int	tcprexmtthresh = 3;
191 int	tcp_log_refused;
192 
193 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
194 
195 /* for modulo comparisons of timestamps */
196 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
197 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
198 
199 /*
200  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
201  */
202 #ifdef INET6
203 #define ND6_HINT(tp) \
204 do { \
205 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
206 	 && tp->t_in6pcb->in6p_route.ro_rt) { \
207 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL); \
208 	} \
209 } while (0)
210 #else
211 #define ND6_HINT(tp)
212 #endif
213 
214 /*
215  * Macro to compute ACK transmission behavior.  Delay the ACK unless
216  * we have already delayed an ACK (must send an ACK every two segments).
217  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
218  * option is enabled.
219  */
220 #define	TCP_SETUP_ACK(tp, th) \
221 do { \
222 	if ((tp)->t_flags & TF_DELACK || \
223 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
224 		tp->t_flags |= TF_ACKNOW; \
225 	else \
226 		TCP_SET_DELACK(tp); \
227 } while (0)
228 
229 int
230 tcp_reass(tp, th, m, tlen)
231 	register struct tcpcb *tp;
232 	register struct tcphdr *th;
233 	struct mbuf *m;
234 	int *tlen;
235 {
236 	register struct ipqent *p, *q, *nq, *tiqe = NULL;
237 	struct socket *so = NULL;
238 	int pkt_flags;
239 	tcp_seq pkt_seq;
240 	unsigned pkt_len;
241 	u_long rcvpartdupbyte = 0;
242 	u_long rcvoobyte;
243 
244 	if (tp->t_inpcb)
245 		so = tp->t_inpcb->inp_socket;
246 #ifdef INET6
247 	else if (tp->t_in6pcb)
248 		so = tp->t_in6pcb->in6p_socket;
249 #endif
250 
251 	TCP_REASS_LOCK_CHECK(tp);
252 
253 	/*
254 	 * Call with th==0 after become established to
255 	 * force pre-ESTABLISHED data up to user socket.
256 	 */
257 	if (th == 0)
258 		goto present;
259 
260 	rcvoobyte = *tlen;
261 	/*
262 	 * Copy these to local variables because the tcpiphdr
263 	 * gets munged while we are collapsing mbufs.
264 	 */
265 	pkt_seq = th->th_seq;
266 	pkt_len = *tlen;
267 	pkt_flags = th->th_flags;
268 	/*
269 	 * Find a segment which begins after this one does.
270 	 */
271 	for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
272 		nq = q->ipqe_q.le_next;
273 		/*
274 		 * If the received segment is just right after this
275 		 * fragment, merge the two together and then check
276 		 * for further overlaps.
277 		 */
278 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
279 #ifdef TCPREASS_DEBUG
280 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
281 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
282 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
283 #endif
284 			pkt_len += q->ipqe_len;
285 			pkt_flags |= q->ipqe_flags;
286 			pkt_seq = q->ipqe_seq;
287 			m_cat(q->ipqe_m, m);
288 			m = q->ipqe_m;
289 			goto free_ipqe;
290 		}
291 		/*
292 		 * If the received segment is completely past this
293 		 * fragment, we need to go the next fragment.
294 		 */
295 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
296 			p = q;
297 			continue;
298 		}
299 		/*
300 		 * If the fragment is past the received segment,
301 		 * it (or any following) can't be concatenated.
302 		 */
303 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
304 			break;
305 		/*
306 		 * We've received all the data in this segment before.
307 		 * mark it as a duplicate and return.
308 		 */
309 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
310 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
311 			tcpstat.tcps_rcvduppack++;
312 			tcpstat.tcps_rcvdupbyte += pkt_len;
313 			m_freem(m);
314 			if (tiqe != NULL)
315 				pool_put(&ipqent_pool, tiqe);
316 			return (0);
317 		}
318 		/*
319 		 * Received segment completely overlaps this fragment
320 		 * so we drop the fragment (this keeps the temporal
321 		 * ordering of segments correct).
322 		 */
323 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
324 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
325 			rcvpartdupbyte += q->ipqe_len;
326 			m_freem(q->ipqe_m);
327 			goto free_ipqe;
328 		}
329 		/*
330 		 * RX'ed segment extends past the end of the
331 		 * fragment.  Drop the overlapping bytes.  Then
332 		 * merge the fragment and segment then treat as
333 		 * a longer received packet.
334 		 */
335 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
336 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
337 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
338 #ifdef TCPREASS_DEBUG
339 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
340 			       tp, overlap,
341 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
342 #endif
343 			m_adj(m, overlap);
344 			rcvpartdupbyte += overlap;
345 			m_cat(q->ipqe_m, m);
346 			m = q->ipqe_m;
347 			pkt_seq = q->ipqe_seq;
348 			pkt_len += q->ipqe_len - overlap;
349 			rcvoobyte -= overlap;
350 			goto free_ipqe;
351 		}
352 		/*
353 		 * RX'ed segment extends past the front of the
354 		 * fragment.  Drop the overlapping bytes on the
355 		 * received packet.  The packet will then be
356 		 * contatentated with this fragment a bit later.
357 		 */
358 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
359 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
360 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
361 #ifdef TCPREASS_DEBUG
362 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
363 			       tp, overlap,
364 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
365 #endif
366 			m_adj(m, -overlap);
367 			pkt_len -= overlap;
368 			rcvpartdupbyte += overlap;
369 			rcvoobyte -= overlap;
370 		}
371 		/*
372 		 * If the received segment immediates precedes this
373 		 * fragment then tack the fragment onto this segment
374 		 * and reinsert the data.
375 		 */
376 		if (q->ipqe_seq == pkt_seq + pkt_len) {
377 #ifdef TCPREASS_DEBUG
378 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
379 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
380 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
381 #endif
382 			pkt_len += q->ipqe_len;
383 			pkt_flags |= q->ipqe_flags;
384 			m_cat(m, q->ipqe_m);
385 			LIST_REMOVE(q, ipqe_q);
386 			LIST_REMOVE(q, ipqe_timeq);
387 			if (tiqe == NULL) {
388 			    tiqe = q;
389 			} else {
390 			    pool_put(&ipqent_pool, q);
391 			}
392 			break;
393 		}
394 		/*
395 		 * If the fragment is before the segment, remember it.
396 		 * When this loop is terminated, p will contain the
397 		 * pointer to fragment that is right before the received
398 		 * segment.
399 		 */
400 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
401 			p = q;
402 
403 		continue;
404 
405 		/*
406 		 * This is a common operation.  It also will allow
407 		 * to save doing a malloc/free in most instances.
408 		 */
409 	  free_ipqe:
410 		LIST_REMOVE(q, ipqe_q);
411 		LIST_REMOVE(q, ipqe_timeq);
412 		if (tiqe == NULL) {
413 		    tiqe = q;
414 		} else {
415 		    pool_put(&ipqent_pool, q);
416 		}
417 	}
418 
419 	/*
420 	 * Allocate a new queue entry since the received segment did not
421 	 * collapse onto any other out-of-order block; thus we are allocating
422 	 * a new block.  If it had collapsed, tiqe would not be NULL and
423 	 * we would be reusing it.
424 	 * XXX If we can't, just drop the packet.  XXX
425 	 */
426 	if (tiqe == NULL) {
427 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
428 		if (tiqe == NULL) {
429 			tcpstat.tcps_rcvmemdrop++;
430 			m_freem(m);
431 			return (0);
432 		}
433 	}
434 
435 	/*
436 	 * Update the counters.
437 	 */
438 	tcpstat.tcps_rcvoopack++;
439 	tcpstat.tcps_rcvoobyte += rcvoobyte;
440 	if (rcvpartdupbyte) {
441 	    tcpstat.tcps_rcvpartduppack++;
442 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
443 	}
444 
445 	/*
446 	 * Insert the new fragment queue entry into both queues.
447 	 */
448 	tiqe->ipqe_m = m;
449 	tiqe->ipqe_seq = pkt_seq;
450 	tiqe->ipqe_len = pkt_len;
451 	tiqe->ipqe_flags = pkt_flags;
452 	if (p == NULL) {
453 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
454 #ifdef TCPREASS_DEBUG
455 		if (tiqe->ipqe_seq != tp->rcv_nxt)
456 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
457 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
458 #endif
459 	} else {
460 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
461 #ifdef TCPREASS_DEBUG
462 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
463 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
464 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
465 #endif
466 	}
467 
468 	LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
469 
470 present:
471 	/*
472 	 * Present data to user, advancing rcv_nxt through
473 	 * completed sequence space.
474 	 */
475 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
476 		return (0);
477 	q = tp->segq.lh_first;
478 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
479 		return (0);
480 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
481 		return (0);
482 
483 	tp->rcv_nxt += q->ipqe_len;
484 	pkt_flags = q->ipqe_flags & TH_FIN;
485 	ND6_HINT(tp);
486 
487 	LIST_REMOVE(q, ipqe_q);
488 	LIST_REMOVE(q, ipqe_timeq);
489 	if (so->so_state & SS_CANTRCVMORE)
490 		m_freem(q->ipqe_m);
491 	else
492 		sbappend(&so->so_rcv, q->ipqe_m);
493 	pool_put(&ipqent_pool, q);
494 	sorwakeup(so);
495 	return (pkt_flags);
496 }
497 
498 #if defined(INET6) && !defined(TCP6)
499 int
500 tcp6_input(mp, offp, proto)
501 	struct mbuf **mp;
502 	int *offp, proto;
503 {
504 	struct mbuf *m = *mp;
505 
506 #if defined(NFAITH) && 0 < NFAITH
507 	if (m->m_pkthdr.rcvif) {
508 		if (m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
509 			/* XXX send icmp6 host/port unreach? */
510 			m_freem(m);
511 			return IPPROTO_DONE;
512 		}
513 	}
514 #endif
515 
516 	/*
517 	 * draft-itojun-ipv6-tcp-to-anycast
518 	 * better place to put this in?
519 	 */
520 	if (m->m_flags & M_ANYCAST6) {
521 		struct ip6_hdr *ip6;
522 		if (m->m_len < sizeof(struct ip6_hdr)) {
523 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
524 				tcpstat.tcps_rcvshort++;
525 				return IPPROTO_DONE;
526 			}
527 		}
528 		ip6 = mtod(m, struct ip6_hdr *);
529 		icmp6_error(m, ICMP6_DST_UNREACH,
530 			ICMP6_DST_UNREACH_ADDR,
531 			(caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
532 		return IPPROTO_DONE;
533 	}
534 
535 	tcp_input(m, *offp, proto);
536 	return IPPROTO_DONE;
537 }
538 #endif
539 
540 /*
541  * TCP input routine, follows pages 65-76 of the
542  * protocol specification dated September, 1981 very closely.
543  */
544 void
545 #if __STDC__
546 tcp_input(struct mbuf *m, ...)
547 #else
548 tcp_input(m, va_alist)
549 	register struct mbuf *m;
550 #endif
551 {
552 	int proto;
553 	register struct tcphdr *th;
554 	struct ip *ip;
555 	register struct inpcb *inp;
556 #ifdef INET6
557 	struct ip6_hdr *ip6;
558 	register struct in6pcb *in6p;
559 #endif
560 	caddr_t optp = NULL;
561 	int optlen = 0;
562 	int len, tlen, toff, hdroptlen = 0;
563 	register struct tcpcb *tp = 0;
564 	register int tiflags;
565 	struct socket *so = NULL;
566 	int todrop, acked, ourfinisacked, needoutput = 0;
567 	short ostate = 0;
568 	int iss = 0;
569 	u_long tiwin;
570 	struct tcp_opt_info opti;
571 	int off, iphlen;
572 	va_list ap;
573 	int af;		/* af on the wire */
574 	struct mbuf *tcp_saveti = NULL;
575 
576 	va_start(ap, m);
577 	toff = va_arg(ap, int);
578 	proto = va_arg(ap, int);
579 	va_end(ap);
580 
581 	tcpstat.tcps_rcvtotal++;
582 
583 	bzero(&opti, sizeof(opti));
584 	opti.ts_present = 0;
585 	opti.maxseg = 0;
586 
587 	/*
588 	 * Get IP and TCP header together in first mbuf.
589 	 * Note: IP leaves IP header in first mbuf.
590 	 */
591 	ip = mtod(m, struct ip *);
592 #ifdef INET6
593 	ip6 = NULL;
594 #endif
595 	switch (ip->ip_v) {
596 	case 4:
597 		af = AF_INET;
598 		iphlen = sizeof(struct ip);
599 #ifndef PULLDOWN_TEST
600 		/* would like to get rid of this... */
601 		if (toff > sizeof (struct ip)) {
602 			ip_stripoptions(m, (struct mbuf *)0);
603 			toff = sizeof(struct ip);
604 		}
605 		if (m->m_len < toff + sizeof (struct tcphdr)) {
606 			if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
607 				tcpstat.tcps_rcvshort++;
608 				return;
609 			}
610 		}
611 		ip = mtod(m, struct ip *);
612 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
613 #else
614 		ip = mtod(m, struct ip *);
615 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
616 			sizeof(struct tcphdr));
617 		if (th == NULL) {
618 			tcpstat.tcps_rcvshort++;
619 			return;
620 		}
621 #endif
622 
623 		/*
624 		 * Checksum extended TCP header and data.
625 		 */
626 		len = ip->ip_len;
627 		tlen = len - toff;
628 #ifndef PULLDOWN_TEST
629 	    {
630 		struct ipovly *ipov;
631 		ipov = (struct ipovly *)ip;
632 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
633 		ipov->ih_len = htons(tlen);
634 	    }
635 		if (in_cksum(m, len) != 0) {
636 			tcpstat.tcps_rcvbadsum++;
637 			goto drop;
638 		}
639 #else
640 		if (in4_cksum(m, IPPROTO_TCP, toff, tlen) != 0) {
641 			tcpstat.tcps_rcvbadsum++;
642 			goto drop;
643 		}
644 #endif
645 		break;
646 #ifdef INET6
647 	case 6:
648 		ip = NULL;
649 		iphlen = sizeof(struct ip6_hdr);
650 		af = AF_INET6;
651 #ifndef PULLDOWN_TEST
652 		if (m->m_len < toff + sizeof(struct tcphdr)) {
653 			m = m_pullup(m, toff + sizeof(struct tcphdr));	/*XXX*/
654 			if (m == NULL) {
655 				tcpstat.tcps_rcvshort++;
656 				return;
657 			}
658 		}
659 		ip6 = mtod(m, struct ip6_hdr *);
660 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
661 #else
662 		ip6 = mtod(m, struct ip6_hdr *);
663 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
664 			sizeof(struct tcphdr));
665 		if (th == NULL) {
666 			tcpstat.tcps_rcvshort++;
667 			return;
668 		}
669 #endif
670 
671 		/* Be proactive about malicious use of IPv4 mapped address */
672 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
673 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
674 			/* XXX stat */
675 			goto drop;
676 		}
677 
678 		/*
679 		 * Checksum extended TCP header and data.
680 		 */
681 		len = m->m_pkthdr.len;
682 		tlen = len - toff;
683 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen)) {
684 			tcpstat.tcps_rcvbadsum++;
685 			goto drop;
686 		}
687 		break;
688 #endif
689 	default:
690 		m_freem(m);
691 		return;
692 	}
693 
694 	/*
695 	 * Check that TCP offset makes sense,
696 	 * pull out TCP options and adjust length.		XXX
697 	 */
698 	off = th->th_off << 2;
699 	if (off < sizeof (struct tcphdr) || off > tlen) {
700 		tcpstat.tcps_rcvbadoff++;
701 		goto drop;
702 	}
703 	tlen -= off;
704 
705 	/*
706 	 * tcp_input() has been modified to use tlen to mean the TCP data
707 	 * length throughout the function.  Other functions can use
708 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
709 	 * rja
710 	 */
711 
712 	if (off > sizeof (struct tcphdr)) {
713 #ifndef PULLDOWN_TEST
714 		if (m->m_len < toff + off) {
715 			if ((m = m_pullup(m, toff + off)) == 0) {
716 				tcpstat.tcps_rcvshort++;
717 				return;
718 			}
719 			switch (af) {
720 			case AF_INET:
721 				ip = mtod(m, struct ip *);
722 				break;
723 #ifdef INET6
724 			case AF_INET6:
725 				ip6 = mtod(m, struct ip6_hdr *);
726 				break;
727 #endif
728 			}
729 			th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
730 		}
731 #else
732 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
733 		if (th == NULL) {
734 			tcpstat.tcps_rcvshort++;
735 			return;
736 		}
737 		/*
738 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
739 		 * (as they're before toff) and we don't need to update those.
740 		 */
741 #endif
742 		optlen = off - sizeof (struct tcphdr);
743 		optp = ((caddr_t)th) + sizeof(struct tcphdr);
744 		/*
745 		 * Do quick retrieval of timestamp options ("options
746 		 * prediction?").  If timestamp is the only option and it's
747 		 * formatted as recommended in RFC 1323 appendix A, we
748 		 * quickly get the values now and not bother calling
749 		 * tcp_dooptions(), etc.
750 		 */
751 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
752 		     (optlen > TCPOLEN_TSTAMP_APPA &&
753 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
754 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
755 		     (th->th_flags & TH_SYN) == 0) {
756 			opti.ts_present = 1;
757 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
758 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
759 			optp = NULL;	/* we've parsed the options */
760 		}
761 	}
762 	tiflags = th->th_flags;
763 
764 	/*
765 	 * Convert TCP protocol specific fields to host format.
766 	 */
767 	NTOHL(th->th_seq);
768 	NTOHL(th->th_ack);
769 	NTOHS(th->th_win);
770 	NTOHS(th->th_urp);
771 
772 	/*
773 	 * Locate pcb for segment.
774 	 */
775 findpcb:
776 	inp = NULL;
777 #ifdef INET6
778 	in6p = NULL;
779 #endif
780 	switch (af) {
781 	case AF_INET:
782 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
783 		    ip->ip_dst, th->th_dport);
784 		if (inp == 0) {
785 			++tcpstat.tcps_pcbhashmiss;
786 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
787 		}
788 #if defined(INET6) && !defined(TCP6)
789 		if (inp == 0) {
790 			struct in6_addr s, d;
791 
792 			/* mapped addr case */
793 			bzero(&s, sizeof(s));
794 			s.s6_addr16[5] = htons(0xffff);
795 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
796 			bzero(&d, sizeof(d));
797 			d.s6_addr16[5] = htons(0xffff);
798 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
799 			in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
800 				&d, th->th_dport, 0);
801 			if (in6p == 0) {
802 				++tcpstat.tcps_pcbhashmiss;
803 				in6p = in6_pcblookup_bind(&tcb6, &d,
804 					th->th_dport, 0);
805 			}
806 		}
807 #endif
808 #ifndef INET6
809 		if (inp == 0)
810 #else
811 		if (inp == 0 && in6p == 0)
812 #endif
813 		{
814 			++tcpstat.tcps_noport;
815 			if (tcp_log_refused && (tiflags & TH_SYN)) {
816 #ifndef INET6
817 				char src[4*sizeof "123"];
818 				char dst[4*sizeof "123"];
819 #else
820 				char src[INET6_ADDRSTRLEN];
821 				char dst[INET6_ADDRSTRLEN];
822 #endif
823 				if (ip) {
824 					strcpy(src, inet_ntoa(ip->ip_src));
825 					strcpy(dst, inet_ntoa(ip->ip_dst));
826 				}
827 #ifdef INET6
828 				else if (ip6) {
829 					strcpy(src, ip6_sprintf(&ip6->ip6_src));
830 					strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
831 				}
832 #endif
833 				else {
834 					strcpy(src, "(unknown)");
835 					strcpy(dst, "(unknown)");
836 				}
837 				log(LOG_INFO,
838 				    "Connection attempt to TCP %s:%d from %s:%d\n",
839 				    dst, ntohs(th->th_dport),
840 				    src, ntohs(th->th_sport));
841 			}
842 			goto dropwithreset;
843 		}
844 #ifdef IPSEC
845 		if (inp && ipsec4_in_reject(m, inp)) {
846 			ipsecstat.in_polvio++;
847 			goto drop;
848 		}
849 #ifdef INET6
850 		else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
851 			ipsecstat.in_polvio++;
852 			goto drop;
853 		}
854 #endif
855 #endif /*IPSEC*/
856 		break;
857 #if defined(INET6) && !defined(TCP6)
858 	case AF_INET6:
859 	    {
860 		int faith;
861 
862 #if defined(NFAITH) && NFAITH > 0
863 		if (m->m_pkthdr.rcvif
864 		 && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
865 			faith = 1;
866 		} else
867 			faith = 0;
868 #else
869 		faith = 0;
870 #endif
871 		in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
872 			&ip6->ip6_dst, th->th_dport, faith);
873 		if (in6p == NULL) {
874 			++tcpstat.tcps_pcbhashmiss;
875 			in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
876 				th->th_dport, faith);
877 		}
878 		if (in6p == NULL) {
879 			++tcpstat.tcps_noport;
880 			goto dropwithreset;
881 		}
882 #ifdef IPSEC
883 		if (ipsec6_in_reject(m, in6p)) {
884 			ipsec6stat.in_polvio++;
885 			goto drop;
886 		}
887 #endif /*IPSEC*/
888 		break;
889 	    }
890 #endif
891 	}
892 
893 	/*
894 	 * If the state is CLOSED (i.e., TCB does not exist) then
895 	 * all data in the incoming segment is discarded.
896 	 * If the TCB exists but is in CLOSED state, it is embryonic,
897 	 * but should either do a listen or a connect soon.
898 	 */
899 	tp = NULL;
900 	so = NULL;
901 	if (inp) {
902 		tp = intotcpcb(inp);
903 		so = inp->inp_socket;
904 	}
905 #ifdef INET6
906 	else if (in6p) {
907 		tp = in6totcpcb(in6p);
908 		so = in6p->in6p_socket;
909 	}
910 #endif
911 	if (tp == 0) {
912 		goto dropwithreset;
913 	}
914 	if (tp->t_state == TCPS_CLOSED)
915 		goto drop;
916 
917 	/* Unscale the window into a 32-bit value. */
918 	if ((tiflags & TH_SYN) == 0)
919 		tiwin = th->th_win << tp->snd_scale;
920 	else
921 		tiwin = th->th_win;
922 
923 #ifdef INET6
924 	/* save packet options if user wanted */
925 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
926 		if (in6p->in6p_options) {
927 			m_freem(in6p->in6p_options);
928 			in6p->in6p_options = 0;
929 		}
930 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
931 	}
932 #endif
933 
934 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
935 		union syn_cache_sa src;
936 		union syn_cache_sa dst;
937 
938 		bzero(&src, sizeof(src));
939 		bzero(&dst, sizeof(dst));
940 		switch (af) {
941 		case AF_INET:
942 			src.sin.sin_len = sizeof(struct sockaddr_in);
943 			src.sin.sin_family = AF_INET;
944 			src.sin.sin_addr = ip->ip_src;
945 			src.sin.sin_port = th->th_sport;
946 
947 			dst.sin.sin_len = sizeof(struct sockaddr_in);
948 			dst.sin.sin_family = AF_INET;
949 			dst.sin.sin_addr = ip->ip_dst;
950 			dst.sin.sin_port = th->th_dport;
951 			break;
952 #ifdef INET6
953 		case AF_INET6:
954 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
955 			src.sin6.sin6_family = AF_INET6;
956 			src.sin6.sin6_addr = ip6->ip6_src;
957 			src.sin6.sin6_port = th->th_sport;
958 
959 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
960 			dst.sin6.sin6_family = AF_INET6;
961 			dst.sin6.sin6_addr = ip6->ip6_dst;
962 			dst.sin6.sin6_port = th->th_dport;
963 			break;
964 #endif /* INET6 */
965 		default:
966 			goto badsyn;	/*sanity*/
967 		}
968 
969 		if (so->so_options & SO_DEBUG) {
970 			ostate = tp->t_state;
971 			tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
972 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
973 				m_freem(tcp_saveti);
974 				tcp_saveti = NULL;
975 			} else {
976 				tcp_saveti->m_len += sizeof(struct tcphdr);
977 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
978 					sizeof(struct tcphdr));
979 			}
980 			if (tcp_saveti) {
981 				/*
982 				 * need to recover version # field, which was
983 				 * overwritten on ip_cksum computation.
984 				 */
985 				struct ip *sip;
986 				sip = mtod(tcp_saveti, struct ip *);
987 				switch (af) {
988 				case AF_INET:
989 					sip->ip_v = 4;
990 					break;
991 #ifdef INET6
992 				case AF_INET6:
993 					sip->ip_v = 6;
994 					break;
995 #endif
996 				}
997 			}
998 		}
999 		if (so->so_options & SO_ACCEPTCONN) {
1000   			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1001 				if (tiflags & TH_RST) {
1002 					syn_cache_reset(&src.sa, &dst.sa, th);
1003 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1004 				    (TH_ACK|TH_SYN)) {
1005 					/*
1006 					 * Received a SYN,ACK.  This should
1007 					 * never happen while we are in
1008 					 * LISTEN.  Send an RST.
1009 					 */
1010 					goto badsyn;
1011 				} else if (tiflags & TH_ACK) {
1012 					so = syn_cache_get(&src.sa, &dst.sa,
1013 						th, toff, tlen, so, m);
1014 					if (so == NULL) {
1015 						/*
1016 						 * We don't have a SYN for
1017 						 * this ACK; send an RST.
1018 						 */
1019 						goto badsyn;
1020 					} else if (so ==
1021 					    (struct socket *)(-1)) {
1022 						/*
1023 						 * We were unable to create
1024 						 * the connection.  If the
1025 						 * 3-way handshake was
1026 						 * completed, and RST has
1027 						 * been sent to the peer.
1028 						 * Since the mbuf might be
1029 						 * in use for the reply,
1030 						 * do not free it.
1031 						 */
1032 						m = NULL;
1033 					} else {
1034 						/*
1035 						 * We have created a
1036 						 * full-blown connection.
1037 						 */
1038 						tp = NULL;
1039 						inp = NULL;
1040 #ifdef INET6
1041 						in6p = NULL;
1042 #endif
1043 						switch (so->so_proto->pr_domain->dom_family) {
1044 						case AF_INET:
1045 							inp = sotoinpcb(so);
1046 							tp = intotcpcb(inp);
1047 							break;
1048 #ifdef INET6
1049 						case AF_INET6:
1050 							in6p = sotoin6pcb(so);
1051 							tp = in6totcpcb(in6p);
1052 							break;
1053 #endif
1054 						}
1055 						if (tp == NULL)
1056 							goto badsyn;	/*XXX*/
1057 						tiwin <<= tp->snd_scale;
1058 						goto after_listen;
1059 					}
1060   				} else {
1061 					/*
1062 					 * None of RST, SYN or ACK was set.
1063 					 * This is an invalid packet for a
1064 					 * TCB in LISTEN state.  Send a RST.
1065 					 */
1066 					goto badsyn;
1067 				}
1068   			} else {
1069 				/*
1070 				 * Received a SYN.
1071 				 */
1072 
1073 				/*
1074 				 * LISTEN socket received a SYN
1075 				 * from itself?  This can't possibly
1076 				 * be valid; drop the packet.
1077 				 */
1078 				if (th->th_sport == th->th_dport) {
1079 					int i;
1080 
1081 					switch (af) {
1082 					case AF_INET:
1083 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1084 						break;
1085 #ifdef INET6
1086 					case AF_INET6:
1087 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1088 						break;
1089 #endif
1090 					default:
1091 						i = 1;
1092 					}
1093 					if (i) {
1094 						tcpstat.tcps_badsyn++;
1095 						goto drop;
1096 					}
1097 				}
1098 
1099 				/*
1100 				 * SYN looks ok; create compressed TCP
1101 				 * state for it.
1102 				 */
1103 				if (so->so_qlen <= so->so_qlimit &&
1104 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1105 						so, m, optp, optlen, &opti))
1106 					m = NULL;
1107 			}
1108 			goto drop;
1109 		}
1110 	}
1111 
1112 after_listen:
1113 #ifdef DIAGNOSTIC
1114 	/*
1115 	 * Should not happen now that all embryonic connections
1116 	 * are handled with compressed state.
1117 	 */
1118 	if (tp->t_state == TCPS_LISTEN)
1119 		panic("tcp_input: TCPS_LISTEN");
1120 #endif
1121 
1122 	/*
1123 	 * Segment received on connection.
1124 	 * Reset idle time and keep-alive timer.
1125 	 */
1126 	tp->t_idle = 0;
1127 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1128 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1129 
1130 	/*
1131 	 * Process options.
1132 	 */
1133 	if (optp)
1134 		tcp_dooptions(tp, optp, optlen, th, &opti);
1135 
1136 	/*
1137 	 * Header prediction: check for the two common cases
1138 	 * of a uni-directional data xfer.  If the packet has
1139 	 * no control flags, is in-sequence, the window didn't
1140 	 * change and we're not retransmitting, it's a
1141 	 * candidate.  If the length is zero and the ack moved
1142 	 * forward, we're the sender side of the xfer.  Just
1143 	 * free the data acked & wake any higher level process
1144 	 * that was blocked waiting for space.  If the length
1145 	 * is non-zero and the ack didn't move, we're the
1146 	 * receiver side.  If we're getting packets in-order
1147 	 * (the reassembly queue is empty), add the data to
1148 	 * the socket buffer and note that we need a delayed ack.
1149 	 */
1150 	if (tp->t_state == TCPS_ESTABLISHED &&
1151 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1152 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1153 	    th->th_seq == tp->rcv_nxt &&
1154 	    tiwin && tiwin == tp->snd_wnd &&
1155 	    tp->snd_nxt == tp->snd_max) {
1156 
1157 		/*
1158 		 * If last ACK falls within this segment's sequence numbers,
1159 		 *  record the timestamp.
1160 		 */
1161 		if (opti.ts_present &&
1162 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1163 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1164 			tp->ts_recent_age = tcp_now;
1165 			tp->ts_recent = opti.ts_val;
1166 		}
1167 
1168 		if (tlen == 0) {
1169 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1170 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1171 			    tp->snd_cwnd >= tp->snd_wnd &&
1172 			    tp->t_dupacks < tcprexmtthresh) {
1173 				/*
1174 				 * this is a pure ack for outstanding data.
1175 				 */
1176 				++tcpstat.tcps_predack;
1177 				if (opti.ts_present && opti.ts_ecr)
1178 					tcp_xmit_timer(tp,
1179 					    tcp_now - opti.ts_ecr + 1);
1180 				else if (tp->t_rtt &&
1181 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1182 					tcp_xmit_timer(tp, tp->t_rtt);
1183 				acked = th->th_ack - tp->snd_una;
1184 				tcpstat.tcps_rcvackpack++;
1185 				tcpstat.tcps_rcvackbyte += acked;
1186 				ND6_HINT(tp);
1187 				sbdrop(&so->so_snd, acked);
1188 				/*
1189 				 * We want snd_recover to track snd_una to
1190 				 * avoid sequence wraparound problems for
1191 				 * very large transfers.
1192 				 */
1193 				tp->snd_una = tp->snd_recover = th->th_ack;
1194 				m_freem(m);
1195 
1196 				/*
1197 				 * If all outstanding data are acked, stop
1198 				 * retransmit timer, otherwise restart timer
1199 				 * using current (possibly backed-off) value.
1200 				 * If process is waiting for space,
1201 				 * wakeup/selwakeup/signal.  If data
1202 				 * are ready to send, let tcp_output
1203 				 * decide between more output or persist.
1204 				 */
1205 				if (tp->snd_una == tp->snd_max)
1206 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1207 				else if (TCP_TIMER_ISARMED(tp,
1208 				    TCPT_PERSIST) == 0)
1209 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1210 					    tp->t_rxtcur);
1211 
1212 				sowwakeup(so);
1213 				if (so->so_snd.sb_cc)
1214 					(void) tcp_output(tp);
1215 				if (tcp_saveti)
1216 					m_freem(tcp_saveti);
1217 				return;
1218 			}
1219 		} else if (th->th_ack == tp->snd_una &&
1220 		    tp->segq.lh_first == NULL &&
1221 		    tlen <= sbspace(&so->so_rcv)) {
1222 			/*
1223 			 * this is a pure, in-sequence data packet
1224 			 * with nothing on the reassembly queue and
1225 			 * we have enough buffer space to take it.
1226 			 */
1227 			++tcpstat.tcps_preddat;
1228 			tp->rcv_nxt += tlen;
1229 			tcpstat.tcps_rcvpack++;
1230 			tcpstat.tcps_rcvbyte += tlen;
1231 			ND6_HINT(tp);
1232 			/*
1233 			 * Drop TCP, IP headers and TCP options then add data
1234 			 * to socket buffer.
1235 			 */
1236 			m_adj(m, toff + off);
1237 			sbappend(&so->so_rcv, m);
1238 			sorwakeup(so);
1239 			TCP_SETUP_ACK(tp, th);
1240 			if (tp->t_flags & TF_ACKNOW)
1241 				(void) tcp_output(tp);
1242 			if (tcp_saveti)
1243 				m_freem(tcp_saveti);
1244 			return;
1245 		}
1246 	}
1247 
1248 	/*
1249 	 * Compute mbuf offset to TCP data segment.
1250 	 */
1251 	hdroptlen = toff + off;
1252 
1253 	/*
1254 	 * Calculate amount of space in receive window,
1255 	 * and then do TCP input processing.
1256 	 * Receive window is amount of space in rcv queue,
1257 	 * but not less than advertised window.
1258 	 */
1259 	{ int win;
1260 
1261 	win = sbspace(&so->so_rcv);
1262 	if (win < 0)
1263 		win = 0;
1264 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1265 	}
1266 
1267 	switch (tp->t_state) {
1268 
1269 	/*
1270 	 * If the state is SYN_SENT:
1271 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1272 	 *	if seg contains a RST, then drop the connection.
1273 	 *	if seg does not contain SYN, then drop it.
1274 	 * Otherwise this is an acceptable SYN segment
1275 	 *	initialize tp->rcv_nxt and tp->irs
1276 	 *	if seg contains ack then advance tp->snd_una
1277 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1278 	 *	arrange for segment to be acked (eventually)
1279 	 *	continue processing rest of data/controls, beginning with URG
1280 	 */
1281 	case TCPS_SYN_SENT:
1282 		if ((tiflags & TH_ACK) &&
1283 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1284 		     SEQ_GT(th->th_ack, tp->snd_max)))
1285 			goto dropwithreset;
1286 		if (tiflags & TH_RST) {
1287 			if (tiflags & TH_ACK)
1288 				tp = tcp_drop(tp, ECONNREFUSED);
1289 			goto drop;
1290 		}
1291 		if ((tiflags & TH_SYN) == 0)
1292 			goto drop;
1293 		if (tiflags & TH_ACK) {
1294 			tp->snd_una = tp->snd_recover = th->th_ack;
1295 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1296 				tp->snd_nxt = tp->snd_una;
1297 		}
1298 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
1299 		tp->irs = th->th_seq;
1300 		tcp_rcvseqinit(tp);
1301 		tp->t_flags |= TF_ACKNOW;
1302 		tcp_mss_from_peer(tp, opti.maxseg);
1303 
1304 		/*
1305 		 * Initialize the initial congestion window.  If we
1306 		 * had to retransmit the SYN, we must initialize cwnd
1307 		 * to 1 segment (i.e. the Loss Window).
1308 		 */
1309 		if (tp->t_flags & TF_SYN_REXMT)
1310 			tp->snd_cwnd = tp->t_peermss;
1311 		else
1312 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1313 			    tp->t_peermss);
1314 
1315 		tcp_rmx_rtt(tp);
1316 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
1317 			tcpstat.tcps_connects++;
1318 			soisconnected(so);
1319 			tcp_established(tp);
1320 			/* Do window scaling on this connection? */
1321 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1322 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1323 				tp->snd_scale = tp->requested_s_scale;
1324 				tp->rcv_scale = tp->request_r_scale;
1325 			}
1326 			TCP_REASS_LOCK(tp);
1327 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1328 			TCP_REASS_UNLOCK(tp);
1329 			/*
1330 			 * if we didn't have to retransmit the SYN,
1331 			 * use its rtt as our initial srtt & rtt var.
1332 			 */
1333 			if (tp->t_rtt)
1334 				tcp_xmit_timer(tp, tp->t_rtt);
1335 		} else
1336 			tp->t_state = TCPS_SYN_RECEIVED;
1337 
1338 		/*
1339 		 * Advance th->th_seq to correspond to first data byte.
1340 		 * If data, trim to stay within window,
1341 		 * dropping FIN if necessary.
1342 		 */
1343 		th->th_seq++;
1344 		if (tlen > tp->rcv_wnd) {
1345 			todrop = tlen - tp->rcv_wnd;
1346 			m_adj(m, -todrop);
1347 			tlen = tp->rcv_wnd;
1348 			tiflags &= ~TH_FIN;
1349 			tcpstat.tcps_rcvpackafterwin++;
1350 			tcpstat.tcps_rcvbyteafterwin += todrop;
1351 		}
1352 		tp->snd_wl1 = th->th_seq - 1;
1353 		tp->rcv_up = th->th_seq;
1354 		goto step6;
1355 
1356 	/*
1357 	 * If the state is SYN_RECEIVED:
1358 	 *	If seg contains an ACK, but not for our SYN, drop the input
1359 	 *	and generate an RST.  See page 36, rfc793
1360 	 */
1361 	case TCPS_SYN_RECEIVED:
1362 		if ((tiflags & TH_ACK) &&
1363 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1364 		     SEQ_GT(th->th_ack, tp->snd_max)))
1365 			goto dropwithreset;
1366 		break;
1367 	}
1368 
1369 	/*
1370 	 * States other than LISTEN or SYN_SENT.
1371 	 * First check timestamp, if present.
1372 	 * Then check that at least some bytes of segment are within
1373 	 * receive window.  If segment begins before rcv_nxt,
1374 	 * drop leading data (and SYN); if nothing left, just ack.
1375 	 *
1376 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1377 	 * and it's less than ts_recent, drop it.
1378 	 */
1379 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1380 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1381 
1382 		/* Check to see if ts_recent is over 24 days old.  */
1383 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1384 			/*
1385 			 * Invalidate ts_recent.  If this segment updates
1386 			 * ts_recent, the age will be reset later and ts_recent
1387 			 * will get a valid value.  If it does not, setting
1388 			 * ts_recent to zero will at least satisfy the
1389 			 * requirement that zero be placed in the timestamp
1390 			 * echo reply when ts_recent isn't valid.  The
1391 			 * age isn't reset until we get a valid ts_recent
1392 			 * because we don't want out-of-order segments to be
1393 			 * dropped when ts_recent is old.
1394 			 */
1395 			tp->ts_recent = 0;
1396 		} else {
1397 			tcpstat.tcps_rcvduppack++;
1398 			tcpstat.tcps_rcvdupbyte += tlen;
1399 			tcpstat.tcps_pawsdrop++;
1400 			goto dropafterack;
1401 		}
1402 	}
1403 
1404 	todrop = tp->rcv_nxt - th->th_seq;
1405 	if (todrop > 0) {
1406 		if (tiflags & TH_SYN) {
1407 			tiflags &= ~TH_SYN;
1408 			th->th_seq++;
1409 			if (th->th_urp > 1)
1410 				th->th_urp--;
1411 			else {
1412 				tiflags &= ~TH_URG;
1413 				th->th_urp = 0;
1414 			}
1415 			todrop--;
1416 		}
1417 		if (todrop > tlen ||
1418 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1419 			/*
1420 			 * Any valid FIN must be to the left of the window.
1421 			 * At this point the FIN must be a duplicate or
1422 			 * out of sequence; drop it.
1423 			 */
1424 			tiflags &= ~TH_FIN;
1425 			/*
1426 			 * Send an ACK to resynchronize and drop any data.
1427 			 * But keep on processing for RST or ACK.
1428 			 */
1429 			tp->t_flags |= TF_ACKNOW;
1430 			todrop = tlen;
1431 			tcpstat.tcps_rcvdupbyte += todrop;
1432 			tcpstat.tcps_rcvduppack++;
1433 		} else {
1434 			tcpstat.tcps_rcvpartduppack++;
1435 			tcpstat.tcps_rcvpartdupbyte += todrop;
1436 		}
1437 		hdroptlen += todrop;	/*drop from head afterwards*/
1438 		th->th_seq += todrop;
1439 		tlen -= todrop;
1440 		if (th->th_urp > todrop)
1441 			th->th_urp -= todrop;
1442 		else {
1443 			tiflags &= ~TH_URG;
1444 			th->th_urp = 0;
1445 		}
1446 	}
1447 
1448 	/*
1449 	 * If new data are received on a connection after the
1450 	 * user processes are gone, then RST the other end.
1451 	 */
1452 	if ((so->so_state & SS_NOFDREF) &&
1453 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1454 		tp = tcp_close(tp);
1455 		tcpstat.tcps_rcvafterclose++;
1456 		goto dropwithreset;
1457 	}
1458 
1459 	/*
1460 	 * If segment ends after window, drop trailing data
1461 	 * (and PUSH and FIN); if nothing left, just ACK.
1462 	 */
1463 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1464 	if (todrop > 0) {
1465 		tcpstat.tcps_rcvpackafterwin++;
1466 		if (todrop >= tlen) {
1467 			tcpstat.tcps_rcvbyteafterwin += tlen;
1468 			/*
1469 			 * If a new connection request is received
1470 			 * while in TIME_WAIT, drop the old connection
1471 			 * and start over if the sequence numbers
1472 			 * are above the previous ones.
1473 			 */
1474 			if (tiflags & TH_SYN &&
1475 			    tp->t_state == TCPS_TIME_WAIT &&
1476 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1477 				iss = tcp_new_iss(tp, sizeof(struct tcpcb),
1478 						  tp->snd_nxt);
1479 				tp = tcp_close(tp);
1480 				goto findpcb;
1481 			}
1482 			/*
1483 			 * If window is closed can only take segments at
1484 			 * window edge, and have to drop data and PUSH from
1485 			 * incoming segments.  Continue processing, but
1486 			 * remember to ack.  Otherwise, drop segment
1487 			 * and ack.
1488 			 */
1489 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1490 				tp->t_flags |= TF_ACKNOW;
1491 				tcpstat.tcps_rcvwinprobe++;
1492 			} else
1493 				goto dropafterack;
1494 		} else
1495 			tcpstat.tcps_rcvbyteafterwin += todrop;
1496 		m_adj(m, -todrop);
1497 		tlen -= todrop;
1498 		tiflags &= ~(TH_PUSH|TH_FIN);
1499 	}
1500 
1501 	/*
1502 	 * If last ACK falls within this segment's sequence numbers,
1503 	 * and the timestamp is newer, record it.
1504 	 */
1505 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1506 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1507 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1508 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1509 		tp->ts_recent_age = tcp_now;
1510 		tp->ts_recent = opti.ts_val;
1511 	}
1512 
1513 	/*
1514 	 * If the RST bit is set examine the state:
1515 	 *    SYN_RECEIVED STATE:
1516 	 *	If passive open, return to LISTEN state.
1517 	 *	If active open, inform user that connection was refused.
1518 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1519 	 *	Inform user that connection was reset, and close tcb.
1520 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1521 	 *	Close the tcb.
1522 	 */
1523 	if (tiflags&TH_RST) switch (tp->t_state) {
1524 
1525 	case TCPS_SYN_RECEIVED:
1526 		so->so_error = ECONNREFUSED;
1527 		goto close;
1528 
1529 	case TCPS_ESTABLISHED:
1530 	case TCPS_FIN_WAIT_1:
1531 	case TCPS_FIN_WAIT_2:
1532 	case TCPS_CLOSE_WAIT:
1533 		so->so_error = ECONNRESET;
1534 	close:
1535 		tp->t_state = TCPS_CLOSED;
1536 		tcpstat.tcps_drops++;
1537 		tp = tcp_close(tp);
1538 		goto drop;
1539 
1540 	case TCPS_CLOSING:
1541 	case TCPS_LAST_ACK:
1542 	case TCPS_TIME_WAIT:
1543 		tp = tcp_close(tp);
1544 		goto drop;
1545 	}
1546 
1547 	/*
1548 	 * If a SYN is in the window, then this is an
1549 	 * error and we send an RST and drop the connection.
1550 	 */
1551 	if (tiflags & TH_SYN) {
1552 		tp = tcp_drop(tp, ECONNRESET);
1553 		goto dropwithreset;
1554 	}
1555 
1556 	/*
1557 	 * If the ACK bit is off we drop the segment and return.
1558 	 */
1559 	if ((tiflags & TH_ACK) == 0) {
1560 		if (tp->t_flags & TF_ACKNOW)
1561 			goto dropafterack;
1562 		else
1563 			goto drop;
1564 	}
1565 
1566 	/*
1567 	 * Ack processing.
1568 	 */
1569 	switch (tp->t_state) {
1570 
1571 	/*
1572 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1573 	 * ESTABLISHED state and continue processing, otherwise
1574 	 * send an RST.
1575 	 */
1576 	case TCPS_SYN_RECEIVED:
1577 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
1578 		    SEQ_GT(th->th_ack, tp->snd_max))
1579 			goto dropwithreset;
1580 		tcpstat.tcps_connects++;
1581 		soisconnected(so);
1582 		tcp_established(tp);
1583 		/* Do window scaling? */
1584 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1585 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1586 			tp->snd_scale = tp->requested_s_scale;
1587 			tp->rcv_scale = tp->request_r_scale;
1588 		}
1589 		TCP_REASS_LOCK(tp);
1590 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1591 		TCP_REASS_UNLOCK(tp);
1592 		tp->snd_wl1 = th->th_seq - 1;
1593 		/* fall into ... */
1594 
1595 	/*
1596 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1597 	 * ACKs.  If the ack is in the range
1598 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1599 	 * then advance tp->snd_una to th->th_ack and drop
1600 	 * data from the retransmission queue.  If this ACK reflects
1601 	 * more up to date window information we update our window information.
1602 	 */
1603 	case TCPS_ESTABLISHED:
1604 	case TCPS_FIN_WAIT_1:
1605 	case TCPS_FIN_WAIT_2:
1606 	case TCPS_CLOSE_WAIT:
1607 	case TCPS_CLOSING:
1608 	case TCPS_LAST_ACK:
1609 	case TCPS_TIME_WAIT:
1610 
1611 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1612 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1613 				tcpstat.tcps_rcvdupack++;
1614 				/*
1615 				 * If we have outstanding data (other than
1616 				 * a window probe), this is a completely
1617 				 * duplicate ack (ie, window info didn't
1618 				 * change), the ack is the biggest we've
1619 				 * seen and we've seen exactly our rexmt
1620 				 * threshhold of them, assume a packet
1621 				 * has been dropped and retransmit it.
1622 				 * Kludge snd_nxt & the congestion
1623 				 * window so we send only this one
1624 				 * packet.
1625 				 *
1626 				 * We know we're losing at the current
1627 				 * window size so do congestion avoidance
1628 				 * (set ssthresh to half the current window
1629 				 * and pull our congestion window back to
1630 				 * the new ssthresh).
1631 				 *
1632 				 * Dup acks mean that packets have left the
1633 				 * network (they're now cached at the receiver)
1634 				 * so bump cwnd by the amount in the receiver
1635 				 * to keep a constant cwnd packets in the
1636 				 * network.
1637 				 */
1638 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1639 				    th->th_ack != tp->snd_una)
1640 					tp->t_dupacks = 0;
1641 				else if (++tp->t_dupacks == tcprexmtthresh) {
1642 					tcp_seq onxt = tp->snd_nxt;
1643 					u_int win =
1644 					    min(tp->snd_wnd, tp->snd_cwnd) /
1645 					    2 /	tp->t_segsz;
1646 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
1647 					    tp->snd_recover)) {
1648 						/*
1649 						 * False fast retransmit after
1650 						 * timeout.  Do not cut window.
1651 						 */
1652 						tp->snd_cwnd += tp->t_segsz;
1653 						tp->t_dupacks = 0;
1654 						(void) tcp_output(tp);
1655 						goto drop;
1656 					}
1657 
1658 					if (win < 2)
1659 						win = 2;
1660 					tp->snd_ssthresh = win * tp->t_segsz;
1661 					tp->snd_recover = tp->snd_max;
1662 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1663 					tp->t_rtt = 0;
1664 					tp->snd_nxt = th->th_ack;
1665 					tp->snd_cwnd = tp->t_segsz;
1666 					(void) tcp_output(tp);
1667 					tp->snd_cwnd = tp->snd_ssthresh +
1668 					       tp->t_segsz * tp->t_dupacks;
1669 					if (SEQ_GT(onxt, tp->snd_nxt))
1670 						tp->snd_nxt = onxt;
1671 					goto drop;
1672 				} else if (tp->t_dupacks > tcprexmtthresh) {
1673 					tp->snd_cwnd += tp->t_segsz;
1674 					(void) tcp_output(tp);
1675 					goto drop;
1676 				}
1677 			} else
1678 				tp->t_dupacks = 0;
1679 			break;
1680 		}
1681 		/*
1682 		 * If the congestion window was inflated to account
1683 		 * for the other side's cached packets, retract it.
1684 		 */
1685 		if (tcp_do_newreno == 0) {
1686 			if (tp->t_dupacks >= tcprexmtthresh &&
1687 			    tp->snd_cwnd > tp->snd_ssthresh)
1688 				tp->snd_cwnd = tp->snd_ssthresh;
1689 			tp->t_dupacks = 0;
1690 		} else if (tp->t_dupacks >= tcprexmtthresh &&
1691 			   tcp_newreno(tp, th) == 0) {
1692 			tp->snd_cwnd = tp->snd_ssthresh;
1693 			/*
1694 			 * Window inflation should have left us with approx.
1695 			 * snd_ssthresh outstanding data.  But in case we
1696 			 * would be inclined to send a burst, better to do
1697 			 * it via the slow start mechanism.
1698 			 */
1699 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1700 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1701 				    + tp->t_segsz;
1702 			tp->t_dupacks = 0;
1703 		}
1704 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1705 			tcpstat.tcps_rcvacktoomuch++;
1706 			goto dropafterack;
1707 		}
1708 		acked = th->th_ack - tp->snd_una;
1709 		tcpstat.tcps_rcvackpack++;
1710 		tcpstat.tcps_rcvackbyte += acked;
1711 
1712 		/*
1713 		 * If we have a timestamp reply, update smoothed
1714 		 * round trip time.  If no timestamp is present but
1715 		 * transmit timer is running and timed sequence
1716 		 * number was acked, update smoothed round trip time.
1717 		 * Since we now have an rtt measurement, cancel the
1718 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1719 		 * Recompute the initial retransmit timer.
1720 		 */
1721 		if (opti.ts_present && opti.ts_ecr)
1722 			tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
1723 		else if (tp->t_rtt && SEQ_GT(th->th_ack, tp->t_rtseq))
1724 			tcp_xmit_timer(tp,tp->t_rtt);
1725 
1726 		/*
1727 		 * If all outstanding data is acked, stop retransmit
1728 		 * timer and remember to restart (more output or persist).
1729 		 * If there is more data to be acked, restart retransmit
1730 		 * timer, using current (possibly backed-off) value.
1731 		 */
1732 		if (th->th_ack == tp->snd_max) {
1733 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1734 			needoutput = 1;
1735 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1736 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1737 		/*
1738 		 * When new data is acked, open the congestion window.
1739 		 * If the window gives us less than ssthresh packets
1740 		 * in flight, open exponentially (segsz per packet).
1741 		 * Otherwise open linearly: segsz per window
1742 		 * (segsz^2 / cwnd per packet), plus a constant
1743 		 * fraction of a packet (segsz/8) to help larger windows
1744 		 * open quickly enough.
1745 		 */
1746 		{
1747 		register u_int cw = tp->snd_cwnd;
1748 		register u_int incr = tp->t_segsz;
1749 
1750 		if (cw > tp->snd_ssthresh)
1751 			incr = incr * incr / cw;
1752 		if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
1753 			tp->snd_cwnd = min(cw + incr,
1754 			    TCP_MAXWIN << tp->snd_scale);
1755 		}
1756 		ND6_HINT(tp);
1757 		if (acked > so->so_snd.sb_cc) {
1758 			tp->snd_wnd -= so->so_snd.sb_cc;
1759 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1760 			ourfinisacked = 1;
1761 		} else {
1762 			sbdrop(&so->so_snd, acked);
1763 			tp->snd_wnd -= acked;
1764 			ourfinisacked = 0;
1765 		}
1766 		sowwakeup(so);
1767 		/*
1768 		 * We want snd_recover to track snd_una to
1769 		 * avoid sequence wraparound problems for
1770 		 * very large transfers.
1771 		 */
1772 		tp->snd_una = tp->snd_recover = th->th_ack;
1773 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1774 			tp->snd_nxt = tp->snd_una;
1775 
1776 		switch (tp->t_state) {
1777 
1778 		/*
1779 		 * In FIN_WAIT_1 STATE in addition to the processing
1780 		 * for the ESTABLISHED state if our FIN is now acknowledged
1781 		 * then enter FIN_WAIT_2.
1782 		 */
1783 		case TCPS_FIN_WAIT_1:
1784 			if (ourfinisacked) {
1785 				/*
1786 				 * If we can't receive any more
1787 				 * data, then closing user can proceed.
1788 				 * Starting the timer is contrary to the
1789 				 * specification, but if we don't get a FIN
1790 				 * we'll hang forever.
1791 				 */
1792 				if (so->so_state & SS_CANTRCVMORE) {
1793 					soisdisconnected(so);
1794 					if (tcp_maxidle > 0)
1795 						TCP_TIMER_ARM(tp, TCPT_2MSL,
1796 						    tcp_maxidle);
1797 				}
1798 				tp->t_state = TCPS_FIN_WAIT_2;
1799 			}
1800 			break;
1801 
1802 	 	/*
1803 		 * In CLOSING STATE in addition to the processing for
1804 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1805 		 * then enter the TIME-WAIT state, otherwise ignore
1806 		 * the segment.
1807 		 */
1808 		case TCPS_CLOSING:
1809 			if (ourfinisacked) {
1810 				tp->t_state = TCPS_TIME_WAIT;
1811 				tcp_canceltimers(tp);
1812 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1813 				soisdisconnected(so);
1814 			}
1815 			break;
1816 
1817 		/*
1818 		 * In LAST_ACK, we may still be waiting for data to drain
1819 		 * and/or to be acked, as well as for the ack of our FIN.
1820 		 * If our FIN is now acknowledged, delete the TCB,
1821 		 * enter the closed state and return.
1822 		 */
1823 		case TCPS_LAST_ACK:
1824 			if (ourfinisacked) {
1825 				tp = tcp_close(tp);
1826 				goto drop;
1827 			}
1828 			break;
1829 
1830 		/*
1831 		 * In TIME_WAIT state the only thing that should arrive
1832 		 * is a retransmission of the remote FIN.  Acknowledge
1833 		 * it and restart the finack timer.
1834 		 */
1835 		case TCPS_TIME_WAIT:
1836 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1837 			goto dropafterack;
1838 		}
1839 	}
1840 
1841 step6:
1842 	/*
1843 	 * Update window information.
1844 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1845 	 */
1846 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1847 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
1848 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
1849 		/* keep track of pure window updates */
1850 		if (tlen == 0 &&
1851 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1852 			tcpstat.tcps_rcvwinupd++;
1853 		tp->snd_wnd = tiwin;
1854 		tp->snd_wl1 = th->th_seq;
1855 		tp->snd_wl2 = th->th_ack;
1856 		if (tp->snd_wnd > tp->max_sndwnd)
1857 			tp->max_sndwnd = tp->snd_wnd;
1858 		needoutput = 1;
1859 	}
1860 
1861 	/*
1862 	 * Process segments with URG.
1863 	 */
1864 	if ((tiflags & TH_URG) && th->th_urp &&
1865 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1866 		/*
1867 		 * This is a kludge, but if we receive and accept
1868 		 * random urgent pointers, we'll crash in
1869 		 * soreceive.  It's hard to imagine someone
1870 		 * actually wanting to send this much urgent data.
1871 		 */
1872 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
1873 			th->th_urp = 0;			/* XXX */
1874 			tiflags &= ~TH_URG;		/* XXX */
1875 			goto dodata;			/* XXX */
1876 		}
1877 		/*
1878 		 * If this segment advances the known urgent pointer,
1879 		 * then mark the data stream.  This should not happen
1880 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1881 		 * a FIN has been received from the remote side.
1882 		 * In these states we ignore the URG.
1883 		 *
1884 		 * According to RFC961 (Assigned Protocols),
1885 		 * the urgent pointer points to the last octet
1886 		 * of urgent data.  We continue, however,
1887 		 * to consider it to indicate the first octet
1888 		 * of data past the urgent section as the original
1889 		 * spec states (in one of two places).
1890 		 */
1891 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
1892 			tp->rcv_up = th->th_seq + th->th_urp;
1893 			so->so_oobmark = so->so_rcv.sb_cc +
1894 			    (tp->rcv_up - tp->rcv_nxt) - 1;
1895 			if (so->so_oobmark == 0)
1896 				so->so_state |= SS_RCVATMARK;
1897 			sohasoutofband(so);
1898 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1899 		}
1900 		/*
1901 		 * Remove out of band data so doesn't get presented to user.
1902 		 * This can happen independent of advancing the URG pointer,
1903 		 * but if two URG's are pending at once, some out-of-band
1904 		 * data may creep in... ick.
1905 		 */
1906 		if (th->th_urp <= (u_int16_t) tlen
1907 #ifdef SO_OOBINLINE
1908 		     && (so->so_options & SO_OOBINLINE) == 0
1909 #endif
1910 		     )
1911 			tcp_pulloutofband(so, th, m, hdroptlen);
1912 	} else
1913 		/*
1914 		 * If no out of band data is expected,
1915 		 * pull receive urgent pointer along
1916 		 * with the receive window.
1917 		 */
1918 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1919 			tp->rcv_up = tp->rcv_nxt;
1920 dodata:							/* XXX */
1921 
1922 	/*
1923 	 * Process the segment text, merging it into the TCP sequencing queue,
1924 	 * and arranging for acknowledgement of receipt if necessary.
1925 	 * This process logically involves adjusting tp->rcv_wnd as data
1926 	 * is presented to the user (this happens in tcp_usrreq.c,
1927 	 * case PRU_RCVD).  If a FIN has already been received on this
1928 	 * connection then we just ignore the text.
1929 	 */
1930 	if ((tlen || (tiflags & TH_FIN)) &&
1931 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1932 		/*
1933 		 * Insert segment ti into reassembly queue of tcp with
1934 		 * control block tp.  Return TH_FIN if reassembly now includes
1935 		 * a segment with FIN.  The macro form does the common case
1936 		 * inline (segment is the next to be received on an
1937 		 * established connection, and the queue is empty),
1938 		 * avoiding linkage into and removal from the queue and
1939 		 * repetition of various conversions.
1940 		 * Set DELACK for segments received in order, but ack
1941 		 * immediately when segments are out of order
1942 		 * (so fast retransmit can work).
1943 		 */
1944 		/* NOTE: this was TCP_REASS() macro, but used only once */
1945 		TCP_REASS_LOCK(tp);
1946 		if (th->th_seq == tp->rcv_nxt &&
1947 		    tp->segq.lh_first == NULL &&
1948 		    tp->t_state == TCPS_ESTABLISHED) {
1949 			TCP_SETUP_ACK(tp, th);
1950 			tp->rcv_nxt += tlen;
1951 			tiflags = th->th_flags & TH_FIN;
1952 			tcpstat.tcps_rcvpack++;
1953 			tcpstat.tcps_rcvbyte += tlen;
1954 			ND6_HINT(tp);
1955 			m_adj(m, hdroptlen);
1956 			sbappend(&(so)->so_rcv, m);
1957 			sorwakeup(so);
1958 		} else {
1959 			m_adj(m, hdroptlen);
1960 			tiflags = tcp_reass(tp, th, m, &tlen);
1961 			tp->t_flags |= TF_ACKNOW;
1962 		}
1963 		TCP_REASS_UNLOCK(tp);
1964 
1965 		/*
1966 		 * Note the amount of data that peer has sent into
1967 		 * our window, in order to estimate the sender's
1968 		 * buffer size.
1969 		 */
1970 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1971 	} else {
1972 		m_freem(m);
1973 		m = NULL;
1974 		tiflags &= ~TH_FIN;
1975 	}
1976 
1977 	/*
1978 	 * If FIN is received ACK the FIN and let the user know
1979 	 * that the connection is closing.  Ignore a FIN received before
1980 	 * the connection is fully established.
1981 	 */
1982 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
1983 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1984 			socantrcvmore(so);
1985 			tp->t_flags |= TF_ACKNOW;
1986 			tp->rcv_nxt++;
1987 		}
1988 		switch (tp->t_state) {
1989 
1990 	 	/*
1991 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
1992 		 */
1993 		case TCPS_ESTABLISHED:
1994 			tp->t_state = TCPS_CLOSE_WAIT;
1995 			break;
1996 
1997 	 	/*
1998 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1999 		 * enter the CLOSING state.
2000 		 */
2001 		case TCPS_FIN_WAIT_1:
2002 			tp->t_state = TCPS_CLOSING;
2003 			break;
2004 
2005 	 	/*
2006 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2007 		 * starting the time-wait timer, turning off the other
2008 		 * standard timers.
2009 		 */
2010 		case TCPS_FIN_WAIT_2:
2011 			tp->t_state = TCPS_TIME_WAIT;
2012 			tcp_canceltimers(tp);
2013 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2014 			soisdisconnected(so);
2015 			break;
2016 
2017 		/*
2018 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2019 		 */
2020 		case TCPS_TIME_WAIT:
2021 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2022 			break;
2023 		}
2024 	}
2025 	if (so->so_options & SO_DEBUG) {
2026 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2027 	}
2028 
2029 	/*
2030 	 * Return any desired output.
2031 	 */
2032 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2033 		(void) tcp_output(tp);
2034 	if (tcp_saveti)
2035 		m_freem(tcp_saveti);
2036 	return;
2037 
2038 badsyn:
2039 	/*
2040 	 * Received a bad SYN.  Increment counters and dropwithreset.
2041 	 */
2042 	tcpstat.tcps_badsyn++;
2043 	tp = NULL;
2044 	goto dropwithreset;
2045 
2046 dropafterack:
2047 	/*
2048 	 * Generate an ACK dropping incoming segment if it occupies
2049 	 * sequence space, where the ACK reflects our state.
2050 	 */
2051 	if (tiflags & TH_RST)
2052 		goto drop;
2053 	m_freem(m);
2054 	tp->t_flags |= TF_ACKNOW;
2055 	(void) tcp_output(tp);
2056 	if (tcp_saveti)
2057 		m_freem(tcp_saveti);
2058 	return;
2059 
2060 dropwithreset:
2061 	/*
2062 	 * Generate a RST, dropping incoming segment.
2063 	 * Make ACK acceptable to originator of segment.
2064 	 * Don't bother to respond if destination was broadcast/multicast.
2065 	 */
2066 	if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2067 		goto drop;
2068 	if (ip && IN_MULTICAST(ip->ip_dst.s_addr))
2069 		goto drop;
2070 #ifdef INET6
2071 	if (m->m_flags & M_ANYCAST6)
2072 		goto drop;
2073 	else if (ip6 && IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2074 		goto drop;
2075 #endif
2076     {
2077 	/*
2078 	 * need to recover version # field, which was overwritten on
2079 	 * ip_cksum computation.
2080 	 */
2081 	struct ip *sip;
2082 	sip = mtod(m, struct ip *);
2083 	switch (af) {
2084 	case AF_INET:
2085 		sip->ip_v = 4;
2086 		break;
2087 #ifdef INET6
2088 	case AF_INET6:
2089 		sip->ip_v = 6;
2090 		break;
2091 #endif
2092 	}
2093     }
2094 	if (tiflags & TH_ACK)
2095 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2096 	else {
2097 		if (tiflags & TH_SYN)
2098 			tlen++;
2099 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2100 		    TH_RST|TH_ACK);
2101 	}
2102 	if (tcp_saveti)
2103 		m_freem(tcp_saveti);
2104 	return;
2105 
2106 drop:
2107 	/*
2108 	 * Drop space held by incoming segment and return.
2109 	 */
2110 	if (tp) {
2111 		if (tp->t_inpcb)
2112 			so = tp->t_inpcb->inp_socket;
2113 #ifdef INET6
2114 		else if (tp->t_in6pcb)
2115 			so = tp->t_in6pcb->in6p_socket;
2116 #endif
2117 		else
2118 			so = NULL;
2119 		if (so && (so->so_options & SO_DEBUG) != 0)
2120 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2121 	}
2122 	if (tcp_saveti)
2123 		m_freem(tcp_saveti);
2124 	m_freem(m);
2125 	return;
2126 }
2127 
2128 void
2129 tcp_dooptions(tp, cp, cnt, th, oi)
2130 	struct tcpcb *tp;
2131 	u_char *cp;
2132 	int cnt;
2133 	struct tcphdr *th;
2134 	struct tcp_opt_info *oi;
2135 {
2136 	u_int16_t mss;
2137 	int opt, optlen;
2138 
2139 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2140 		opt = cp[0];
2141 		if (opt == TCPOPT_EOL)
2142 			break;
2143 		if (opt == TCPOPT_NOP)
2144 			optlen = 1;
2145 		else {
2146 			optlen = cp[1];
2147 			if (optlen <= 0)
2148 				break;
2149 		}
2150 		switch (opt) {
2151 
2152 		default:
2153 			continue;
2154 
2155 		case TCPOPT_MAXSEG:
2156 			if (optlen != TCPOLEN_MAXSEG)
2157 				continue;
2158 			if (!(th->th_flags & TH_SYN))
2159 				continue;
2160 			bcopy(cp + 2, &mss, sizeof(mss));
2161 			oi->maxseg = ntohs(mss);
2162 			break;
2163 
2164 		case TCPOPT_WINDOW:
2165 			if (optlen != TCPOLEN_WINDOW)
2166 				continue;
2167 			if (!(th->th_flags & TH_SYN))
2168 				continue;
2169 			tp->t_flags |= TF_RCVD_SCALE;
2170 			tp->requested_s_scale = cp[2];
2171 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2172 #if 0	/*XXX*/
2173 				char *p;
2174 
2175 				if (ip)
2176 					p = ntohl(ip->ip_src);
2177 #ifdef INET6
2178 				else if (ip6)
2179 					p = ip6_sprintf(&ip6->ip6_src);
2180 #endif
2181 				else
2182 					p = "(unknown)";
2183 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2184 				    "assuming %d\n",
2185 				    tp->requested_s_scale, p,
2186 				    TCP_MAX_WINSHIFT);
2187 #else
2188 				log(LOG_ERR, "TCP: invalid wscale %d, "
2189 				    "assuming %d\n",
2190 				    tp->requested_s_scale,
2191 				    TCP_MAX_WINSHIFT);
2192 #endif
2193 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
2194 			}
2195 			break;
2196 
2197 		case TCPOPT_TIMESTAMP:
2198 			if (optlen != TCPOLEN_TIMESTAMP)
2199 				continue;
2200 			oi->ts_present = 1;
2201 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2202 			NTOHL(oi->ts_val);
2203 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2204 			NTOHL(oi->ts_ecr);
2205 
2206 			/*
2207 			 * A timestamp received in a SYN makes
2208 			 * it ok to send timestamp requests and replies.
2209 			 */
2210 			if (th->th_flags & TH_SYN) {
2211 				tp->t_flags |= TF_RCVD_TSTMP;
2212 				tp->ts_recent = oi->ts_val;
2213 				tp->ts_recent_age = tcp_now;
2214 			}
2215 			break;
2216 		case TCPOPT_SACK_PERMITTED:
2217 			if (optlen != TCPOLEN_SACK_PERMITTED)
2218 				continue;
2219 			if (!(th->th_flags & TH_SYN))
2220 				continue;
2221 			tp->t_flags &= ~TF_CANT_TXSACK;
2222 			break;
2223 
2224 		case TCPOPT_SACK:
2225 			if (tp->t_flags & TF_IGNR_RXSACK)
2226 				continue;
2227 			if (optlen % 8 != 2 || optlen < 10)
2228 				continue;
2229 			cp += 2;
2230 			optlen -= 2;
2231 			for (; optlen > 0; cp -= 8, optlen -= 8) {
2232 				tcp_seq lwe, rwe;
2233 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2234 				NTOHL(lwe);
2235 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2236 				NTOHL(rwe);
2237 				/* tcp_mark_sacked(tp, lwe, rwe); */
2238 			}
2239 			break;
2240 		}
2241 	}
2242 }
2243 
2244 /*
2245  * Pull out of band byte out of a segment so
2246  * it doesn't appear in the user's data queue.
2247  * It is still reflected in the segment length for
2248  * sequencing purposes.
2249  */
2250 void
2251 tcp_pulloutofband(so, th, m, off)
2252 	struct socket *so;
2253 	struct tcphdr *th;
2254 	register struct mbuf *m;
2255 	int off;
2256 {
2257 	int cnt = off + th->th_urp - 1;
2258 
2259 	while (cnt >= 0) {
2260 		if (m->m_len > cnt) {
2261 			char *cp = mtod(m, caddr_t) + cnt;
2262 			struct tcpcb *tp = sototcpcb(so);
2263 
2264 			tp->t_iobc = *cp;
2265 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2266 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2267 			m->m_len--;
2268 			return;
2269 		}
2270 		cnt -= m->m_len;
2271 		m = m->m_next;
2272 		if (m == 0)
2273 			break;
2274 	}
2275 	panic("tcp_pulloutofband");
2276 }
2277 
2278 /*
2279  * Collect new round-trip time estimate
2280  * and update averages and current timeout.
2281  */
2282 void
2283 tcp_xmit_timer(tp, rtt)
2284 	register struct tcpcb *tp;
2285 	short rtt;
2286 {
2287 	register short delta;
2288 	short rttmin;
2289 
2290 	tcpstat.tcps_rttupdated++;
2291 	--rtt;
2292 	if (tp->t_srtt != 0) {
2293 		/*
2294 		 * srtt is stored as fixed point with 3 bits after the
2295 		 * binary point (i.e., scaled by 8).  The following magic
2296 		 * is equivalent to the smoothing algorithm in rfc793 with
2297 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2298 		 * point).  Adjust rtt to origin 0.
2299 		 */
2300 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2301 		if ((tp->t_srtt += delta) <= 0)
2302 			tp->t_srtt = 1 << 2;
2303 		/*
2304 		 * We accumulate a smoothed rtt variance (actually, a
2305 		 * smoothed mean difference), then set the retransmit
2306 		 * timer to smoothed rtt + 4 times the smoothed variance.
2307 		 * rttvar is stored as fixed point with 2 bits after the
2308 		 * binary point (scaled by 4).  The following is
2309 		 * equivalent to rfc793 smoothing with an alpha of .75
2310 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2311 		 * rfc793's wired-in beta.
2312 		 */
2313 		if (delta < 0)
2314 			delta = -delta;
2315 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2316 		if ((tp->t_rttvar += delta) <= 0)
2317 			tp->t_rttvar = 1 << 2;
2318 	} else {
2319 		/*
2320 		 * No rtt measurement yet - use the unsmoothed rtt.
2321 		 * Set the variance to half the rtt (so our first
2322 		 * retransmit happens at 3*rtt).
2323 		 */
2324 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2325 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2326 	}
2327 	tp->t_rtt = 0;
2328 	tp->t_rxtshift = 0;
2329 
2330 	/*
2331 	 * the retransmit should happen at rtt + 4 * rttvar.
2332 	 * Because of the way we do the smoothing, srtt and rttvar
2333 	 * will each average +1/2 tick of bias.  When we compute
2334 	 * the retransmit timer, we want 1/2 tick of rounding and
2335 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2336 	 * firing of the timer.  The bias will give us exactly the
2337 	 * 1.5 tick we need.  But, because the bias is
2338 	 * statistical, we have to test that we don't drop below
2339 	 * the minimum feasible timer (which is 2 ticks).
2340 	 */
2341 	if (tp->t_rttmin > rtt + 2)
2342 		rttmin = tp->t_rttmin;
2343 	else
2344 		rttmin = rtt + 2;
2345 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2346 
2347 	/*
2348 	 * We received an ack for a packet that wasn't retransmitted;
2349 	 * it is probably safe to discard any error indications we've
2350 	 * received recently.  This isn't quite right, but close enough
2351 	 * for now (a route might have failed after we sent a segment,
2352 	 * and the return path might not be symmetrical).
2353 	 */
2354 	tp->t_softerror = 0;
2355 }
2356 
2357 /*
2358  * Checks for partial ack.  If partial ack arrives, force the retransmission
2359  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2360  * 1.  By setting snd_nxt to th_ack, this forces retransmission timer to
2361  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
2362  */
2363 int
2364 tcp_newreno(tp, th)
2365 	struct tcpcb *tp;
2366 	struct tcphdr *th;
2367 {
2368 	tcp_seq onxt = tp->snd_nxt;
2369 	u_long ocwnd = tp->snd_cwnd;
2370 
2371 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2372 		/*
2373 		 * snd_una has not yet been updated and the socket's send
2374 		 * buffer has not yet drained off the ACK'd data, so we
2375 		 * have to leave snd_una as it was to get the correct data
2376 		 * offset in tcp_output().
2377 		 */
2378 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
2379 	        tp->t_rtt = 0;
2380 	        tp->snd_nxt = th->th_ack;
2381 		/*
2382 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
2383 		 * is not yet updated when we're called.
2384 		 */
2385 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2386 	        (void) tcp_output(tp);
2387 	        tp->snd_cwnd = ocwnd;
2388 	        if (SEQ_GT(onxt, tp->snd_nxt))
2389 	                tp->snd_nxt = onxt;
2390 	        /*
2391 	         * Partial window deflation.  Relies on fact that tp->snd_una
2392 	         * not updated yet.
2393 	         */
2394 	        tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2395 	        return 1;
2396 	}
2397 	return 0;
2398 }
2399 
2400 
2401 /*
2402  * TCP compressed state engine.  Currently used to hold compressed
2403  * state for SYN_RECEIVED.
2404  */
2405 
2406 u_long	syn_cache_count;
2407 u_int32_t syn_hash1, syn_hash2;
2408 
2409 #define SYN_HASH(sa, sp, dp) \
2410 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2411 				     ((u_int32_t)(sp)))^syn_hash2)))
2412 #ifndef INET6
2413 #define	SYN_HASHALL(hash, src, dst) \
2414 do {									\
2415 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
2416 		((struct sockaddr_in *)(src))->sin_port,		\
2417 		((struct sockaddr_in *)(dst))->sin_port);		\
2418 } while (0)
2419 #else
2420 #define SYN_HASH6(sa, sp, dp) \
2421 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2422 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2423 	 & 0x7fffffff)
2424 
2425 #define SYN_HASHALL(hash, src, dst) \
2426 do {									\
2427 	switch ((src)->sa_family) {					\
2428 	case AF_INET:							\
2429 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2430 			((struct sockaddr_in *)(src))->sin_port,	\
2431 			((struct sockaddr_in *)(dst))->sin_port);	\
2432 		break;							\
2433 	case AF_INET6:							\
2434 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2435 			((struct sockaddr_in6 *)(src))->sin6_port,	\
2436 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
2437 		break;							\
2438 	default:							\
2439 		hash = 0;						\
2440 	}								\
2441 } while (0)
2442 #endif /* INET6 */
2443 
2444 #define	SYN_CACHE_RM(sc)						\
2445 do {									\
2446 	LIST_REMOVE((sc), sc_bucketq);					\
2447 	(sc)->sc_tp = NULL;						\
2448 	LIST_REMOVE((sc), sc_tpq);					\
2449 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
2450 	TAILQ_REMOVE(&tcp_syn_cache_timeq[(sc)->sc_rxtshift], (sc), sc_timeq); \
2451 	syn_cache_count--;						\
2452 } while (0)
2453 
2454 #define	SYN_CACHE_PUT(sc)						\
2455 do {									\
2456 	if ((sc)->sc_ipopts)						\
2457 		(void) m_free((sc)->sc_ipopts);				\
2458 	if ((sc)->sc_route4.ro_rt != NULL)				\
2459 		RTFREE((sc)->sc_route4.ro_rt);				\
2460 	pool_put(&syn_cache_pool, (sc));				\
2461 } while (0)
2462 
2463 struct pool syn_cache_pool;
2464 
2465 /*
2466  * We don't estimate RTT with SYNs, so each packet starts with the default
2467  * RTT and each timer queue has a fixed timeout value.  This allows us to
2468  * optimize the timer queues somewhat.
2469  */
2470 #define	SYN_CACHE_TIMER_ARM(sc)						\
2471 do {									\
2472 	TCPT_RANGESET((sc)->sc_rxtcur,					\
2473 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
2474 	    TCPTV_REXMTMAX);						\
2475 	PRT_SLOW_ARM((sc)->sc_rexmt, (sc)->sc_rxtcur);			\
2476 } while (0)
2477 
2478 TAILQ_HEAD(, syn_cache) tcp_syn_cache_timeq[TCP_MAXRXTSHIFT + 1];
2479 
2480 void
2481 syn_cache_init()
2482 {
2483 	int i;
2484 
2485 	/* Initialize the hash buckets. */
2486 	for (i = 0; i < tcp_syn_cache_size; i++)
2487 		LIST_INIT(&tcp_syn_cache[i].sch_bucket);
2488 
2489 	/* Initialize the timer queues. */
2490 	for (i = 0; i <= TCP_MAXRXTSHIFT; i++)
2491 		TAILQ_INIT(&tcp_syn_cache_timeq[i]);
2492 
2493 	/* Initialize the syn cache pool. */
2494 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2495 	    "synpl", 0, NULL, NULL, M_PCB);
2496 }
2497 
2498 void
2499 syn_cache_insert(sc, tp)
2500 	struct syn_cache *sc;
2501 	struct tcpcb *tp;
2502 {
2503 	struct syn_cache_head *scp;
2504 	struct syn_cache *sc2;
2505 	int s, i;
2506 
2507 	/*
2508 	 * If there are no entries in the hash table, reinitialize
2509 	 * the hash secrets.
2510 	 */
2511 	if (syn_cache_count == 0) {
2512 		struct timeval tv;
2513 		microtime(&tv);
2514 		syn_hash1 = random() ^ (u_long)&sc;
2515 		syn_hash2 = random() ^ tv.tv_usec;
2516 	}
2517 
2518 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2519 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2520 	scp = &tcp_syn_cache[sc->sc_bucketidx];
2521 
2522 	/*
2523 	 * Make sure that we don't overflow the per-bucket
2524 	 * limit or the total cache size limit.
2525 	 */
2526 	s = splsoftnet();
2527 	if (scp->sch_length >= tcp_syn_bucket_limit) {
2528 		tcpstat.tcps_sc_bucketoverflow++;
2529 		/*
2530 		 * The bucket is full.  Toss the oldest element in the
2531 		 * bucket.  This will be the entry with our bucket
2532 		 * index closest to the front of the timer queue with
2533 		 * the largest timeout value.
2534 		 *
2535 		 * Note: This timer queue traversal may be expensive, so
2536 		 * we hope that this doesn't happen very often.  It is
2537 		 * much more likely that we'll overflow the entire
2538 		 * cache, which is much easier to handle; see below.
2539 		 */
2540 		for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2541 			for (sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2542 			     sc2 != NULL;
2543 			     sc2 = TAILQ_NEXT(sc2, sc_timeq)) {
2544 				if (sc2->sc_bucketidx == sc->sc_bucketidx) {
2545 					SYN_CACHE_RM(sc2);
2546 					SYN_CACHE_PUT(sc2);
2547 					goto insert;	/* 2 level break */
2548 				}
2549 			}
2550 		}
2551 #ifdef DIAGNOSTIC
2552 		/*
2553 		 * This should never happen; we should always find an
2554 		 * entry in our bucket.
2555 		 */
2556 		panic("syn_cache_insert: bucketoverflow: impossible");
2557 #endif
2558 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
2559 		tcpstat.tcps_sc_overflowed++;
2560 		/*
2561 		 * The cache is full.  Toss the oldest entry in the
2562 		 * entire cache.  This is the front entry in the
2563 		 * first non-empty timer queue with the largest
2564 		 * timeout value.
2565 		 */
2566 		for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2567 			sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2568 			if (sc2 == NULL)
2569 				continue;
2570 			SYN_CACHE_RM(sc2);
2571 			SYN_CACHE_PUT(sc2);
2572 			goto insert;		/* symmetry with above */
2573 		}
2574 #ifdef DIAGNOSTIC
2575 		/*
2576 		 * This should never happen; we should always find an
2577 		 * entry in the cache.
2578 		 */
2579 		panic("syn_cache_insert: cache overflow: impossible");
2580 #endif
2581 	}
2582 
2583  insert:
2584 	/*
2585 	 * Initialize the entry's timer.
2586 	 */
2587 	sc->sc_rxttot = 0;
2588 	sc->sc_rxtshift = 0;
2589 	SYN_CACHE_TIMER_ARM(sc);
2590 	TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift], sc, sc_timeq);
2591 
2592 	/* Link it from tcpcb entry */
2593 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2594 
2595 	/* Put it into the bucket. */
2596 	LIST_INSERT_HEAD(&scp->sch_bucket, sc, sc_bucketq);
2597 	scp->sch_length++;
2598 	syn_cache_count++;
2599 
2600 	tcpstat.tcps_sc_added++;
2601 	splx(s);
2602 }
2603 
2604 /*
2605  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2606  * If we have retransmitted an entry the maximum number of times, expire
2607  * that entry.
2608  */
2609 void
2610 syn_cache_timer()
2611 {
2612 	struct syn_cache *sc, *nsc;
2613 	int i, s;
2614 
2615 	s = splsoftnet();
2616 
2617 	/*
2618 	 * First, get all the entries that need to be retransmitted, or
2619 	 * must be expired due to exceeding the initial keepalive time.
2620 	 */
2621 	for (i = 0; i < TCP_MAXRXTSHIFT; i++) {
2622 		for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2623 		     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2624 		     sc = nsc) {
2625 			nsc = TAILQ_NEXT(sc, sc_timeq);
2626 
2627 			/*
2628 			 * Compute the total amount of time this entry has
2629 			 * been on a queue.  If this entry has been on longer
2630 			 * than the keep alive timer would allow, expire it.
2631 			 */
2632 			sc->sc_rxttot += sc->sc_rxtcur;
2633 			if (sc->sc_rxttot >= TCPTV_KEEP_INIT) {
2634 				tcpstat.tcps_sc_timed_out++;
2635 				SYN_CACHE_RM(sc);
2636 				SYN_CACHE_PUT(sc);
2637 				continue;
2638 			}
2639 
2640 			tcpstat.tcps_sc_retransmitted++;
2641 			(void) syn_cache_respond(sc, NULL);
2642 
2643 			/* Advance this entry onto the next timer queue. */
2644 			TAILQ_REMOVE(&tcp_syn_cache_timeq[i], sc, sc_timeq);
2645 			sc->sc_rxtshift = i + 1;
2646 			SYN_CACHE_TIMER_ARM(sc);
2647 			TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift],
2648 			    sc, sc_timeq);
2649 		}
2650 	}
2651 
2652 	/*
2653 	 * Now get all the entries that are expired due to too many
2654 	 * retransmissions.
2655 	 */
2656 	for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[TCP_MAXRXTSHIFT]);
2657 	     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2658 	     sc = nsc) {
2659 		nsc = TAILQ_NEXT(sc, sc_timeq);
2660 		tcpstat.tcps_sc_timed_out++;
2661 		SYN_CACHE_RM(sc);
2662 		SYN_CACHE_PUT(sc);
2663 	}
2664 	splx(s);
2665 }
2666 
2667 /*
2668  * Remove syn cache created by the specified tcb entry,
2669  * because this does not make sense to keep them
2670  * (if there's no tcb entry, syn cache entry will never be used)
2671  */
2672 void
2673 syn_cache_cleanup(tp)
2674 	struct tcpcb *tp;
2675 {
2676 	struct syn_cache *sc, *nsc;
2677 	int s;
2678 
2679 	s = splsoftnet();
2680 
2681 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2682 		nsc = LIST_NEXT(sc, sc_tpq);
2683 
2684 #ifdef DIAGNOSTIC
2685 		if (sc->sc_tp != tp)
2686 			panic("invalid sc_tp in syn_cache_cleanup");
2687 #endif
2688 		SYN_CACHE_RM(sc);
2689 		SYN_CACHE_PUT(sc);
2690 	}
2691 	/* just for safety */
2692 	LIST_INIT(&tp->t_sc);
2693 
2694 	splx(s);
2695 }
2696 
2697 /*
2698  * Find an entry in the syn cache.
2699  */
2700 struct syn_cache *
2701 syn_cache_lookup(src, dst, headp)
2702 	struct sockaddr *src;
2703 	struct sockaddr *dst;
2704 	struct syn_cache_head **headp;
2705 {
2706 	struct syn_cache *sc;
2707 	struct syn_cache_head *scp;
2708 	u_int32_t hash;
2709 	int s;
2710 
2711 	SYN_HASHALL(hash, src, dst);
2712 
2713 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2714 	*headp = scp;
2715 	s = splsoftnet();
2716 	for (sc = LIST_FIRST(&scp->sch_bucket); sc != NULL;
2717 	     sc = LIST_NEXT(sc, sc_bucketq)) {
2718 		if (sc->sc_hash != hash)
2719 			continue;
2720 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2721 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2722 			splx(s);
2723 			return (sc);
2724 		}
2725 	}
2726 	splx(s);
2727 	return (NULL);
2728 }
2729 
2730 /*
2731  * This function gets called when we receive an ACK for a
2732  * socket in the LISTEN state.  We look up the connection
2733  * in the syn cache, and if its there, we pull it out of
2734  * the cache and turn it into a full-blown connection in
2735  * the SYN-RECEIVED state.
2736  *
2737  * The return values may not be immediately obvious, and their effects
2738  * can be subtle, so here they are:
2739  *
2740  *	NULL	SYN was not found in cache; caller should drop the
2741  *		packet and send an RST.
2742  *
2743  *	-1	We were unable to create the new connection, and are
2744  *		aborting it.  An ACK,RST is being sent to the peer
2745  *		(unless we got screwey sequence numbners; see below),
2746  *		because the 3-way handshake has been completed.  Caller
2747  *		should not free the mbuf, since we may be using it.  If
2748  *		we are not, we will free it.
2749  *
2750  *	Otherwise, the return value is a pointer to the new socket
2751  *	associated with the connection.
2752  */
2753 struct socket *
2754 syn_cache_get(src, dst, th, hlen, tlen, so, m)
2755 	struct sockaddr *src;
2756 	struct sockaddr *dst;
2757 	struct tcphdr *th;
2758 	unsigned int hlen, tlen;
2759 	struct socket *so;
2760 	struct mbuf *m;
2761 {
2762 	struct syn_cache *sc;
2763 	struct syn_cache_head *scp;
2764 	register struct inpcb *inp = NULL;
2765 #ifdef INET6
2766 	register struct in6pcb *in6p = NULL;
2767 #endif
2768 	register struct tcpcb *tp = 0;
2769 	struct mbuf *am;
2770 	int s;
2771 	struct socket *oso;
2772 
2773 	s = splsoftnet();
2774 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
2775 		splx(s);
2776 		return (NULL);
2777 	}
2778 
2779 	/*
2780 	 * Verify the sequence and ack numbers.  Try getting the correct
2781 	 * response again.
2782 	 */
2783 	if ((th->th_ack != sc->sc_iss + 1) ||
2784 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
2785 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
2786 		(void) syn_cache_respond(sc, m);
2787 		splx(s);
2788 		return ((struct socket *)(-1));
2789 	}
2790 
2791 	/* Remove this cache entry */
2792 	SYN_CACHE_RM(sc);
2793 	splx(s);
2794 
2795 	/*
2796 	 * Ok, create the full blown connection, and set things up
2797 	 * as they would have been set up if we had created the
2798 	 * connection when the SYN arrived.  If we can't create
2799 	 * the connection, abort it.
2800 	 */
2801 	/*
2802 	 * inp still has the OLD in_pcb stuff, set the
2803 	 * v6-related flags on the new guy, too.   This is
2804 	 * done particularly for the case where an AF_INET6
2805 	 * socket is bound only to a port, and a v4 connection
2806 	 * comes in on that port.
2807 	 * we also copy the flowinfo from the original pcb
2808 	 * to the new one.
2809 	 */
2810     {
2811 	struct inpcb *parentinpcb;
2812 
2813 	parentinpcb = (struct inpcb *)so->so_pcb;
2814 
2815 	oso = so;
2816 	so = sonewconn(so, SS_ISCONNECTED);
2817 	if (so == NULL)
2818 		goto resetandabort;
2819 
2820 	switch (so->so_proto->pr_domain->dom_family) {
2821 	case AF_INET:
2822 		inp = sotoinpcb(so);
2823 		break;
2824 #ifdef INET6
2825 	case AF_INET6:
2826 		in6p = sotoin6pcb(so);
2827 #if 0 /*def INET6*/
2828 		inp->inp_flags |= (parentinpcb->inp_flags &
2829 			(INP_IPV6 | INP_IPV6_UNDEC | INP_IPV6_MAPPED));
2830 		if ((inp->inp_flags & INP_IPV6) &&
2831 		   !(inp->inp_flags & INP_IPV6_MAPPED)) {
2832 			inp->inp_ipv6.ip6_hlim = parentinpcb->inp_ipv6.ip6_hlim;
2833 			inp->inp_ipv6.ip6_vfc = parentinpcb->inp_ipv6.ip6_vfc;
2834 		}
2835 #endif
2836 		break;
2837 #endif
2838 	}
2839     }
2840 	switch (src->sa_family) {
2841 	case AF_INET:
2842 		if (inp) {
2843 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
2844 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
2845 			inp->inp_options = ip_srcroute();
2846 			in_pcbstate(inp, INP_BOUND);
2847 			if (inp->inp_options == NULL) {
2848 				inp->inp_options = sc->sc_ipopts;
2849 				sc->sc_ipopts = NULL;
2850 			}
2851 		}
2852 #ifdef INET6
2853 		else if (in6p) {
2854 			/* IPv4 packet to AF_INET6 socket */
2855 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
2856 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
2857 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
2858 				&in6p->in6p_laddr.s6_addr32[3],
2859 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
2860 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
2861 			in6totcpcb(in6p)->t_family = AF_INET;
2862 		}
2863 #endif
2864 		break;
2865 #ifdef INET6
2866 	case AF_INET6:
2867 		if (in6p) {
2868 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
2869 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
2870 #if 0
2871 			in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
2872 			/*inp->inp_options = ip6_srcroute();*/ /* soon. */
2873 #endif
2874 		}
2875 		break;
2876 #endif
2877 	}
2878 #ifdef INET6
2879 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
2880 		struct in6pcb *oin6p = sotoin6pcb(oso);
2881 		/* inherit socket options from the listening socket */
2882 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
2883 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
2884 			m_freem(in6p->in6p_options);
2885 			in6p->in6p_options = 0;
2886 		}
2887 		ip6_savecontrol(in6p, &in6p->in6p_options,
2888 			mtod(m, struct ip6_hdr *), m);
2889 	}
2890 #endif
2891 
2892 #ifdef IPSEC
2893     {
2894 	struct secpolicy *sp;
2895 	if (inp) {
2896 		sp = ipsec_copy_policy(sotoinpcb(oso)->inp_sp);
2897 		if (sp) {
2898 			key_freesp(inp->inp_sp);
2899 			inp->inp_sp = sp;
2900 		} else
2901 			printf("tcp_input: could not copy policy\n");
2902 	}
2903 #ifdef INET6
2904 	else if (in6p) {
2905 		sp = ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp);
2906 		if (sp) {
2907 			key_freesp(in6p->in6p_sp);
2908 			in6p->in6p_sp = sp;
2909 		} else
2910 			printf("tcp_input: could not copy policy\n");
2911 	}
2912 #endif
2913     }
2914 #endif
2915 
2916 	/*
2917 	 * Give the new socket our cached route reference.
2918 	 */
2919 	if (inp)
2920 		inp->inp_route = sc->sc_route4;		/* struct assignment */
2921 #ifdef INET6
2922 	else
2923 		in6p->in6p_route = sc->sc_route6;
2924 #endif
2925 	sc->sc_route4.ro_rt = NULL;
2926 
2927 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
2928 	if (am == NULL)
2929 		goto resetandabort;
2930 	am->m_len = src->sa_len;
2931 	bcopy(src, mtod(am, caddr_t), src->sa_len);
2932 	if (inp) {
2933 		if (in_pcbconnect(inp, am)) {
2934 			(void) m_free(am);
2935 			goto resetandabort;
2936 		}
2937 	}
2938 #ifdef INET6
2939 	else if (in6p) {
2940 		if (src->sa_family == AF_INET) {
2941 			/* IPv4 packet to AF_INET6 socket */
2942 			struct sockaddr_in6 *sin6;
2943 			sin6 = mtod(am, struct sockaddr_in6 *);
2944 			am->m_len = sizeof(*sin6);
2945 			bzero(sin6, sizeof(*sin6));
2946 			sin6->sin6_family = AF_INET6;
2947 			sin6->sin6_len = sizeof(*sin6);
2948 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
2949 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
2950 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
2951 				&sin6->sin6_addr.s6_addr32[3],
2952 				sizeof(sin6->sin6_addr.s6_addr32[3]));
2953 		}
2954 		if (in6_pcbconnect(in6p, am)) {
2955 			(void) m_free(am);
2956 			goto resetandabort;
2957 		}
2958 	}
2959 #endif
2960 	else {
2961 		(void) m_free(am);
2962 		goto resetandabort;
2963 	}
2964 	(void) m_free(am);
2965 
2966 	if (inp)
2967 		tp = intotcpcb(inp);
2968 #ifdef INET6
2969 	else if (in6p)
2970 		tp = in6totcpcb(in6p);
2971 #endif
2972 	else
2973 		tp = NULL;
2974 	if (sc->sc_request_r_scale != 15) {
2975 		tp->requested_s_scale = sc->sc_requested_s_scale;
2976 		tp->request_r_scale = sc->sc_request_r_scale;
2977 		tp->snd_scale = sc->sc_requested_s_scale;
2978 		tp->rcv_scale = sc->sc_request_r_scale;
2979 		tp->t_flags |= TF_RCVD_SCALE;
2980 	}
2981 	if (sc->sc_flags & SCF_TIMESTAMP)
2982 		tp->t_flags |= TF_RCVD_TSTMP;
2983 
2984 	tp->t_template = tcp_template(tp);
2985 	if (tp->t_template == 0) {
2986 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
2987 		so = NULL;
2988 		m_freem(m);
2989 		goto abort;
2990 	}
2991 
2992 	tp->iss = sc->sc_iss;
2993 	tp->irs = sc->sc_irs;
2994 	tcp_sendseqinit(tp);
2995 	tcp_rcvseqinit(tp);
2996 	tp->t_state = TCPS_SYN_RECEIVED;
2997 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
2998 	tcpstat.tcps_accepts++;
2999 
3000 	/* Initialize tp->t_ourmss before we deal with the peer's! */
3001 	tp->t_ourmss = sc->sc_ourmaxseg;
3002 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3003 
3004 	/*
3005 	 * Initialize the initial congestion window.  If we
3006 	 * had to retransmit the SYN,ACK, we must initialize cwnd
3007 	 * to 1 segment (i.e. the Loss Window).
3008 	 */
3009 	if (sc->sc_rxtshift)
3010 		tp->snd_cwnd = tp->t_peermss;
3011 	else
3012 		tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3013 
3014 	tcp_rmx_rtt(tp);
3015 	tp->snd_wl1 = sc->sc_irs;
3016 	tp->rcv_up = sc->sc_irs + 1;
3017 
3018 	/*
3019 	 * This is what whould have happened in tcp_ouput() when
3020 	 * the SYN,ACK was sent.
3021 	 */
3022 	tp->snd_up = tp->snd_una;
3023 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3024 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3025 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3026 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3027 	tp->last_ack_sent = tp->rcv_nxt;
3028 
3029 	tcpstat.tcps_sc_completed++;
3030 	SYN_CACHE_PUT(sc);
3031 	return (so);
3032 
3033 resetandabort:
3034 	(void) tcp_respond(NULL, m, m, th,
3035 			   th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3036 abort:
3037 	if (so != NULL)
3038 		(void) soabort(so);
3039 	SYN_CACHE_PUT(sc);
3040 	tcpstat.tcps_sc_aborted++;
3041 	return ((struct socket *)(-1));
3042 }
3043 
3044 /*
3045  * This function is called when we get a RST for a
3046  * non-existant connection, so that we can see if the
3047  * connection is in the syn cache.  If it is, zap it.
3048  */
3049 
3050 void
3051 syn_cache_reset(src, dst, th)
3052 	struct sockaddr *src;
3053 	struct sockaddr *dst;
3054 	struct tcphdr *th;
3055 {
3056 	struct syn_cache *sc;
3057 	struct syn_cache_head *scp;
3058 	int s = splsoftnet();
3059 
3060 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3061 		splx(s);
3062 		return;
3063 	}
3064 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3065 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3066 		splx(s);
3067 		return;
3068 	}
3069 	SYN_CACHE_RM(sc);
3070 	splx(s);
3071 	tcpstat.tcps_sc_reset++;
3072 	SYN_CACHE_PUT(sc);
3073 }
3074 
3075 void
3076 syn_cache_unreach(src, dst, th)
3077 	struct sockaddr *src;
3078 	struct sockaddr *dst;
3079 	struct tcphdr *th;
3080 {
3081 	struct syn_cache *sc;
3082 	struct syn_cache_head *scp;
3083 	int s;
3084 
3085 	s = splsoftnet();
3086 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3087 		splx(s);
3088 		return;
3089 	}
3090 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3091 	if (ntohl (th->th_seq) != sc->sc_iss) {
3092 		splx(s);
3093 		return;
3094 	}
3095 
3096 	/*
3097 	 * If we've rertransmitted 3 times and this is our second error,
3098 	 * we remove the entry.  Otherwise, we allow it to continue on.
3099 	 * This prevents us from incorrectly nuking an entry during a
3100 	 * spurious network outage.
3101 	 *
3102 	 * See tcp_notify().
3103 	 */
3104 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3105 		sc->sc_flags |= SCF_UNREACH;
3106 		splx(s);
3107 		return;
3108 	}
3109 
3110 	SYN_CACHE_RM(sc);
3111 	splx(s);
3112 	tcpstat.tcps_sc_unreach++;
3113 	SYN_CACHE_PUT(sc);
3114 }
3115 
3116 /*
3117  * Given a LISTEN socket and an inbound SYN request, add
3118  * this to the syn cache, and send back a segment:
3119  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3120  * to the source.
3121  *
3122  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3123  * Doing so would require that we hold onto the data and deliver it
3124  * to the application.  However, if we are the target of a SYN-flood
3125  * DoS attack, an attacker could send data which would eventually
3126  * consume all available buffer space if it were ACKed.  By not ACKing
3127  * the data, we avoid this DoS scenario.
3128  */
3129 
3130 int
3131 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3132 	struct sockaddr *src;
3133 	struct sockaddr *dst;
3134 	struct tcphdr *th;
3135 	unsigned int hlen;
3136 	struct socket *so;
3137 	struct mbuf *m;
3138 	u_char *optp;
3139 	int optlen;
3140 	struct tcp_opt_info *oi;
3141 {
3142 	struct tcpcb tb, *tp;
3143 	long win;
3144 	struct syn_cache *sc;
3145 	struct syn_cache_head *scp;
3146 	struct mbuf *ipopts;
3147 
3148 	tp = sototcpcb(so);
3149 
3150 	/*
3151 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3152 	 * in_broadcast() should never return true on a received
3153 	 * packet with M_BCAST not set.
3154 	 */
3155 	if (m->m_flags & (M_BCAST|M_MCAST))
3156 		return 0;
3157 #ifdef INET6
3158 	if (m->m_flags & M_ANYCAST6)
3159 		return 0;
3160 #endif
3161 
3162 	switch (src->sa_family) {
3163 	case AF_INET:
3164 		if (IN_MULTICAST(((struct sockaddr_in *)src)->sin_addr.s_addr)
3165 		 || IN_MULTICAST(((struct sockaddr_in *)dst)->sin_addr.s_addr))
3166 			return 0;
3167 		break;
3168 #ifdef INET6
3169 	case AF_INET6:
3170 		if (IN6_IS_ADDR_MULTICAST(&((struct sockaddr_in6 *)src)->sin6_addr)
3171 		 || IN6_IS_ADDR_MULTICAST(&((struct sockaddr_in6 *)dst)->sin6_addr))
3172 			return 0;
3173 		break;
3174 #endif
3175 	default:
3176 		return 0;
3177 	}
3178 
3179 	/*
3180 	 * Initialize some local state.
3181 	 */
3182 	win = sbspace(&so->so_rcv);
3183 	if (win > TCP_MAXWIN)
3184 		win = TCP_MAXWIN;
3185 
3186 	if (src->sa_family == AF_INET) {
3187 		/*
3188 		 * Remember the IP options, if any.
3189 		 */
3190 		ipopts = ip_srcroute();
3191 	} else
3192 		ipopts = NULL;
3193 
3194 	if (optp) {
3195 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3196 		tcp_dooptions(&tb, optp, optlen, th, oi);
3197 	} else
3198 		tb.t_flags = 0;
3199 
3200 	/*
3201 	 * See if we already have an entry for this connection.
3202 	 * If we do, resend the SYN,ACK.  We do not count this
3203 	 * as a retransmission (XXX though maybe we should).
3204 	 */
3205 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3206 		tcpstat.tcps_sc_dupesyn++;
3207 		if (ipopts) {
3208 			/*
3209 			 * If we were remembering a previous source route,
3210 			 * forget it and use the new one we've been given.
3211 			 */
3212 			if (sc->sc_ipopts)
3213 				(void) m_free(sc->sc_ipopts);
3214 			sc->sc_ipopts = ipopts;
3215 		}
3216 		sc->sc_timestamp = tb.ts_recent;
3217 		if (syn_cache_respond(sc, m) == 0) {
3218 			tcpstat.tcps_sndacks++;
3219 			tcpstat.tcps_sndtotal++;
3220 		}
3221 		return (1);
3222 	}
3223 
3224 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3225 	if (sc == NULL) {
3226 		if (ipopts)
3227 			(void) m_free(ipopts);
3228 		return (0);
3229 	}
3230 
3231 	/*
3232 	 * Fill in the cache, and put the necessary IP and TCP
3233 	 * options into the reply.
3234 	 */
3235 	bzero(sc, sizeof(struct syn_cache));
3236 	bcopy(src, &sc->sc_src, src->sa_len);
3237 	bcopy(dst, &sc->sc_dst, dst->sa_len);
3238 	sc->sc_flags = 0;
3239 	sc->sc_ipopts = ipopts;
3240 	sc->sc_irs = th->th_seq;
3241 	sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
3242 	sc->sc_peermaxseg = oi->maxseg;
3243 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3244 						m->m_pkthdr.rcvif : NULL,
3245 						sc->sc_src.sa.sa_family);
3246 	sc->sc_win = win;
3247 	sc->sc_timestamp = tb.ts_recent;
3248 	if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3249 		sc->sc_flags |= SCF_TIMESTAMP;
3250 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3251 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3252 		sc->sc_requested_s_scale = tb.requested_s_scale;
3253 		sc->sc_request_r_scale = 0;
3254 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3255 		    TCP_MAXWIN << sc->sc_request_r_scale <
3256 		    so->so_rcv.sb_hiwat)
3257 			sc->sc_request_r_scale++;
3258 	} else {
3259 		sc->sc_requested_s_scale = 15;
3260 		sc->sc_request_r_scale = 15;
3261 	}
3262 	sc->sc_tp = tp;
3263 	if (syn_cache_respond(sc, m) == 0) {
3264 		syn_cache_insert(sc, tp);
3265 		tcpstat.tcps_sndacks++;
3266 		tcpstat.tcps_sndtotal++;
3267 	} else {
3268 		SYN_CACHE_PUT(sc);
3269 		tcpstat.tcps_sc_dropped++;
3270 	}
3271 	return (1);
3272 }
3273 
3274 int
3275 syn_cache_respond(sc, m)
3276 	struct syn_cache *sc;
3277 	struct mbuf *m;
3278 {
3279 	struct route *ro;
3280 	struct rtentry *rt;
3281 	u_int8_t *optp;
3282 	int optlen, error;
3283 	u_int16_t tlen;
3284 	struct ip *ip = NULL;
3285 #ifdef INET6
3286 	struct ip6_hdr *ip6 = NULL;
3287 #endif
3288 	struct tcphdr *th;
3289 	u_int hlen;
3290 
3291 	switch (sc->sc_src.sa.sa_family) {
3292 	case AF_INET:
3293 		hlen = sizeof(struct ip);
3294 		ro = &sc->sc_route4;
3295 		break;
3296 #ifdef INET6
3297 	case AF_INET6:
3298 		hlen = sizeof(struct ip6_hdr);
3299 		ro = (struct route *)&sc->sc_route6;
3300 		break;
3301 #endif
3302 	default:
3303 		if (m)
3304 			m_freem(m);
3305 		return EAFNOSUPPORT;
3306 	}
3307 
3308 	/* Compute the size of the TCP options. */
3309 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3310 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3311 
3312 	tlen = hlen + sizeof(struct tcphdr) + optlen;
3313 
3314 	/*
3315 	 * Create the IP+TCP header from scratch.  Reuse the received mbuf
3316 	 * if possible.
3317 	 */
3318 	if (m != NULL) {
3319 		m_freem(m->m_next);
3320 		m->m_next = NULL;
3321 		MRESETDATA(m);
3322 	} else {
3323 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3324 		if (m == NULL)
3325 			return (ENOBUFS);
3326 	}
3327 
3328 	/* Fixup the mbuf. */
3329 	m->m_data += max_linkhdr;
3330 	m->m_len = m->m_pkthdr.len = tlen;
3331 #ifdef IPSEC
3332 	if (sc->sc_tp) {
3333 		struct tcpcb *tp;
3334 		struct socket *so;
3335 
3336 		tp = sc->sc_tp;
3337 		if (tp->t_inpcb)
3338 			so = tp->t_inpcb->inp_socket;
3339 #ifdef INET6
3340 		else if (tp->t_in6pcb)
3341 			so = tp->t_in6pcb->in6p_socket;
3342 #endif
3343 		else
3344 			so = NULL;
3345 		/* use IPsec policy on listening socket, on SYN ACK */
3346 		m->m_pkthdr.rcvif = (struct ifnet *)so;
3347 	}
3348 #else
3349 	m->m_pkthdr.rcvif = NULL;
3350 #endif
3351 	memset(mtod(m, u_char *), 0, tlen);
3352 
3353 	switch (sc->sc_src.sa.sa_family) {
3354 	case AF_INET:
3355 		ip = mtod(m, struct ip *);
3356 		ip->ip_dst = sc->sc_src.sin.sin_addr;
3357 		ip->ip_src = sc->sc_dst.sin.sin_addr;
3358 		ip->ip_p = IPPROTO_TCP;
3359 		th = (struct tcphdr *)(ip + 1);
3360 		th->th_dport = sc->sc_src.sin.sin_port;
3361 		th->th_sport = sc->sc_dst.sin.sin_port;
3362 		break;
3363 #ifdef INET6
3364 	case AF_INET6:
3365 		ip6 = mtod(m, struct ip6_hdr *);
3366 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3367 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3368 		ip6->ip6_nxt = IPPROTO_TCP;
3369 		/* ip6_plen will be updated in ip6_output() */
3370 		th = (struct tcphdr *)(ip6 + 1);
3371 		th->th_dport = sc->sc_src.sin6.sin6_port;
3372 		th->th_sport = sc->sc_dst.sin6.sin6_port;
3373 		break;
3374 #endif
3375 	default:
3376 		th = NULL;
3377 	}
3378 
3379 	th->th_seq = htonl(sc->sc_iss);
3380 	th->th_ack = htonl(sc->sc_irs + 1);
3381 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3382 	th->th_flags = TH_SYN|TH_ACK;
3383 	th->th_win = htons(sc->sc_win);
3384 	/* th_sum already 0 */
3385 	/* th_urp already 0 */
3386 
3387 	/* Tack on the TCP options. */
3388 	optp = (u_int8_t *)(th + 1);
3389 	*optp++ = TCPOPT_MAXSEG;
3390 	*optp++ = 4;
3391 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3392 	*optp++ = sc->sc_ourmaxseg & 0xff;
3393 
3394 	if (sc->sc_request_r_scale != 15) {
3395 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3396 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3397 		    sc->sc_request_r_scale);
3398 		optp += 4;
3399 	}
3400 
3401 	if (sc->sc_flags & SCF_TIMESTAMP) {
3402 		u_int32_t *lp = (u_int32_t *)(optp);
3403 		/* Form timestamp option as shown in appendix A of RFC 1323. */
3404 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
3405 		*lp++ = htonl(tcp_now);
3406 		*lp   = htonl(sc->sc_timestamp);
3407 		optp += TCPOLEN_TSTAMP_APPA;
3408 	}
3409 
3410 	/* Compute the packet's checksum. */
3411 	switch (sc->sc_src.sa.sa_family) {
3412 	case AF_INET:
3413 		ip->ip_len = htons(tlen - hlen);
3414 		th->th_sum = 0;
3415 		th->th_sum = in_cksum(m, tlen);
3416 		break;
3417 #ifdef INET6
3418 	case AF_INET6:
3419 		ip6->ip6_plen = htons(tlen - hlen);
3420 		th->th_sum = 0;
3421 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3422 		break;
3423 #endif
3424 	}
3425 
3426 	/*
3427 	 * Fill in some straggling IP bits.  Note the stack expects
3428 	 * ip_len to be in host order, for convenience.
3429 	 */
3430 	switch (sc->sc_src.sa.sa_family) {
3431 	case AF_INET:
3432 		ip->ip_len = tlen;
3433 		ip->ip_ttl = ip_defttl;
3434 		/* XXX tos? */
3435 		break;
3436 #ifdef INET6
3437 	case AF_INET6:
3438 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3439 		ip6->ip6_vfc |= IPV6_VERSION;
3440 		ip6->ip6_plen = htons(tlen - hlen);
3441 		/* ip6_hlim will be initialized afterwards */
3442 		/* XXX flowlabel? */
3443 		break;
3444 #endif
3445 	}
3446 
3447 	/*
3448 	 * If we're doing Path MTU discovery, we need to set DF unless
3449 	 * the route's MTU is locked.  If we don't yet know the route,
3450 	 * look it up now.  We will copy this reference to the inpcb
3451 	 * when we finish creating the connection.
3452 	 */
3453 	if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
3454 		if (ro->ro_rt != NULL) {
3455 			RTFREE(ro->ro_rt);
3456 			ro->ro_rt = NULL;
3457 		}
3458 		bcopy(&sc->sc_src, &ro->ro_dst, sc->sc_src.sa.sa_len);
3459 		rtalloc(ro);
3460 		if ((rt = ro->ro_rt) == NULL) {
3461 			m_freem(m);
3462 			switch (sc->sc_src.sa.sa_family) {
3463 			case AF_INET:
3464 				ipstat.ips_noroute++;
3465 				break;
3466 #ifdef INET6
3467 			case AF_INET6:
3468 				ip6stat.ip6s_noroute++;
3469 				break;
3470 #endif
3471 			}
3472 			return (EHOSTUNREACH);
3473 		}
3474 	}
3475 
3476 	switch (sc->sc_src.sa.sa_family) {
3477 	case AF_INET:
3478 		if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
3479 			ip->ip_off |= IP_DF;
3480 
3481 		/* ...and send it off! */
3482 		error = ip_output(m, sc->sc_ipopts, ro, 0, NULL);
3483 		break;
3484 #ifdef INET6
3485 	case AF_INET6:
3486 		ip6->ip6_hlim = in6_selecthlim(NULL,
3487 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3488 
3489 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3490 			0, NULL, NULL);
3491 		break;
3492 #endif
3493 	default:
3494 		error = EAFNOSUPPORT;
3495 		break;
3496 	}
3497 	return (error);
3498 }
3499