xref: /netbsd-src/sys/netinet/tcp_input.c (revision 93f9db1b75d415b78f73ed629beeb86235153473)
1 /*	$NetBSD: tcp_input.c,v 1.71 1998/10/08 01:19:26 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
9  * Facility, NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
42  *	The Regents of the University of California.  All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. All advertising materials mentioning features or use of this software
53  *    must display the following acknowledgement:
54  *	This product includes software developed by the University of
55  *	California, Berkeley and its contributors.
56  * 4. Neither the name of the University nor the names of its contributors
57  *    may be used to endorse or promote products derived from this software
58  *    without specific prior written permission.
59  *
60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70  * SUCH DAMAGE.
71  *
72  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
73  */
74 
75 /*
76  *	TODO list for SYN cache stuff:
77  *
78  *	Find room for a "state" field, which is needed to keep a
79  *	compressed state for TIME_WAIT TCBs.  It's been noted already
80  *	that this is fairly important for very high-volume web and
81  *	mail servers, which use a large number of short-lived
82  *	connections.
83  */
84 
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/malloc.h>
88 #include <sys/mbuf.h>
89 #include <sys/protosw.h>
90 #include <sys/socket.h>
91 #include <sys/socketvar.h>
92 #include <sys/errno.h>
93 #include <sys/syslog.h>
94 #include <sys/pool.h>
95 
96 #include <net/if.h>
97 #include <net/route.h>
98 
99 #include <netinet/in.h>
100 #include <netinet/in_systm.h>
101 #include <netinet/ip.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/tcp.h>
105 #include <netinet/tcp_fsm.h>
106 #include <netinet/tcp_seq.h>
107 #include <netinet/tcp_timer.h>
108 #include <netinet/tcp_var.h>
109 #include <netinet/tcpip.h>
110 #include <netinet/tcp_debug.h>
111 
112 #include <machine/stdarg.h>
113 
114 int	tcprexmtthresh = 3;
115 struct	tcpiphdr tcp_saveti;
116 
117 extern u_long sb_max;
118 
119 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
120 
121 /* for modulo comparisons of timestamps */
122 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
123 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
124 
125 /*
126  * Macro to compute ACK transmission behavior.  Delay the ACK unless
127  * we have already delayed an ACK (must send an ACK every two segments).
128  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
129  * option is enabled.
130  */
131 #define	TCP_SETUP_ACK(tp, ti) \
132 do { \
133 	if ((tp)->t_flags & TF_DELACK || \
134 	    (tcp_ack_on_push && (ti)->ti_flags & TH_PUSH)) \
135 		tp->t_flags |= TF_ACKNOW; \
136 	else \
137 		TCP_SET_DELACK(tp); \
138 } while (0)
139 
140 /*
141  * Insert segment ti into reassembly queue of tcp with
142  * control block tp.  Return TH_FIN if reassembly now includes
143  * a segment with FIN.  The macro form does the common case inline
144  * (segment is the next to be received on an established connection,
145  * and the queue is empty), avoiding linkage into and removal
146  * from the queue and repetition of various conversions.
147  * Set DELACK for segments received in order, but ack immediately
148  * when segments are out of order (so fast retransmit can work).
149  */
150 #define	TCP_REASS(tp, ti, m, so, flags) { \
151 	if ((ti)->ti_seq == (tp)->rcv_nxt && \
152 	    (tp)->segq.lh_first == NULL && \
153 	    (tp)->t_state == TCPS_ESTABLISHED) { \
154 		TCP_SETUP_ACK(tp, ti); \
155 		(tp)->rcv_nxt += (ti)->ti_len; \
156 		flags = (ti)->ti_flags & TH_FIN; \
157 		tcpstat.tcps_rcvpack++;\
158 		tcpstat.tcps_rcvbyte += (ti)->ti_len;\
159 		sbappend(&(so)->so_rcv, (m)); \
160 		sorwakeup(so); \
161 	} else { \
162 		(flags) = tcp_reass((tp), (ti), (m)); \
163 		tp->t_flags |= TF_ACKNOW; \
164 	} \
165 }
166 
167 int
168 tcp_reass(tp, ti, m)
169 	register struct tcpcb *tp;
170 	register struct tcpiphdr *ti;
171 	struct mbuf *m;
172 {
173 	register struct ipqent *p, *q, *nq, *tiqe = NULL;
174 	struct socket *so = tp->t_inpcb->inp_socket;
175 	int pkt_flags;
176 	tcp_seq pkt_seq;
177 	unsigned pkt_len;
178 	u_long rcvpartdupbyte = 0;
179 	u_long rcvoobyte;
180 
181 	/*
182 	 * Call with ti==0 after become established to
183 	 * force pre-ESTABLISHED data up to user socket.
184 	 */
185 	if (ti == 0)
186 		goto present;
187 
188 	rcvoobyte = ti->ti_len;
189 	/*
190 	 * Copy these to local variables because the tcpiphdr
191 	 * gets munged while we are collapsing mbufs.
192 	 */
193 	pkt_seq = ti->ti_seq;
194 	pkt_len = ti->ti_len;
195 	pkt_flags = ti->ti_flags;
196 	/*
197 	 * Find a segment which begins after this one does.
198 	 */
199 	for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
200 		nq = q->ipqe_q.le_next;
201 		/*
202 		 * If the received segment is just right after this
203 		 * fragment, merge the two together and then check
204 		 * for further overlaps.
205 		 */
206 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
207 #ifdef TCPREASS_DEBUG
208 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
209 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
210 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
211 #endif
212 			pkt_len += q->ipqe_len;
213 			pkt_flags |= q->ipqe_flags;
214 			pkt_seq = q->ipqe_seq;
215 			m_cat(q->ipqe_m, m);
216 			m = q->ipqe_m;
217 			goto free_ipqe;
218 		}
219 		/*
220 		 * If the received segment is completely past this
221 		 * fragment, we need to go the next fragment.
222 		 */
223 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
224 			p = q;
225 			continue;
226 		}
227 		/*
228 		 * If the fragment is past the received segment,
229 		 * it (or any following) can't be concatenated.
230 		 */
231 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
232 			break;
233 		/*
234 		 * We've received all the data in this segment before.
235 		 * mark it as a duplicate and return.
236 		 */
237 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
238 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
239 			tcpstat.tcps_rcvduppack++;
240 			tcpstat.tcps_rcvdupbyte += pkt_len;
241 			m_freem(m);
242 			if (tiqe != NULL)
243 				pool_put(&ipqent_pool, tiqe);
244 			return (0);
245 		}
246 		/*
247 		 * Received segment completely overlaps this fragment
248 		 * so we drop the fragment (this keeps the temporal
249 		 * ordering of segments correct).
250 		 */
251 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
252 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
253 			rcvpartdupbyte += q->ipqe_len;
254 			m_freem(q->ipqe_m);
255 			goto free_ipqe;
256 		}
257 		/*
258 		 * RX'ed segment extends past the end of the
259 		 * fragment.  Drop the overlapping bytes.  Then
260 		 * merge the fragment and segment then treat as
261 		 * a longer received packet.
262 		 */
263 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
264 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
265 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
266 #ifdef TCPREASS_DEBUG
267 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
268 			       tp, overlap,
269 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
270 #endif
271 			m_adj(m, overlap);
272 			rcvpartdupbyte += overlap;
273 			m_cat(q->ipqe_m, m);
274 			m = q->ipqe_m;
275 			pkt_seq = q->ipqe_seq;
276 			pkt_len += q->ipqe_len - overlap;
277 			rcvoobyte -= overlap;
278 			goto free_ipqe;
279 		}
280 		/*
281 		 * RX'ed segment extends past the front of the
282 		 * fragment.  Drop the overlapping bytes on the
283 		 * received packet.  The packet will then be
284 		 * contatentated with this fragment a bit later.
285 		 */
286 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
287 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
288 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
289 #ifdef TCPREASS_DEBUG
290 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
291 			       tp, overlap,
292 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
293 #endif
294 			m_adj(m, -overlap);
295 			pkt_len -= overlap;
296 			rcvpartdupbyte += overlap;
297 			rcvoobyte -= overlap;
298 		}
299 		/*
300 		 * If the received segment immediates precedes this
301 		 * fragment then tack the fragment onto this segment
302 		 * and reinsert the data.
303 		 */
304 		if (q->ipqe_seq == pkt_seq + pkt_len) {
305 #ifdef TCPREASS_DEBUG
306 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
307 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
308 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
309 #endif
310 			pkt_len += q->ipqe_len;
311 			pkt_flags |= q->ipqe_flags;
312 			m_cat(m, q->ipqe_m);
313 			LIST_REMOVE(q, ipqe_q);
314 			LIST_REMOVE(q, ipqe_timeq);
315 			if (tiqe == NULL) {
316 			    tiqe = q;
317 			} else {
318 			    pool_put(&ipqent_pool, q);
319 			}
320 			break;
321 		}
322 		/*
323 		 * If the fragment is before the segment, remember it.
324 		 * When this loop is terminated, p will contain the
325 		 * pointer to fragment that is right before the received
326 		 * segment.
327 		 */
328 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
329 			p = q;
330 
331 		continue;
332 
333 		/*
334 		 * This is a common operation.  It also will allow
335 		 * to save doing a malloc/free in most instances.
336 		 */
337 	  free_ipqe:
338 		LIST_REMOVE(q, ipqe_q);
339 		LIST_REMOVE(q, ipqe_timeq);
340 		if (tiqe == NULL) {
341 		    tiqe = q;
342 		} else {
343 		    pool_put(&ipqent_pool, q);
344 		}
345 	}
346 
347 	/*
348 	 * Allocate a new queue entry since the received segment did not
349 	 * collapse onto any other out-of-order block; thus we are allocating
350 	 * a new block.  If it had collapsed, tiqe would not be NULL and
351 	 * we would be reusing it.
352 	 * XXX If we can't, just drop the packet.  XXX
353 	 */
354 	if (tiqe == NULL) {
355 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
356 		if (tiqe == NULL) {
357 			tcpstat.tcps_rcvmemdrop++;
358 			m_freem(m);
359 			return (0);
360 		}
361 	}
362 
363 	/*
364 	 * Update the counters.
365 	 */
366 	tcpstat.tcps_rcvoopack++;
367 	tcpstat.tcps_rcvoobyte += rcvoobyte;
368 	if (rcvpartdupbyte) {
369 	    tcpstat.tcps_rcvpartduppack++;
370 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
371 	}
372 
373 	/*
374 	 * Insert the new fragment queue entry into both queues.
375 	 */
376 	tiqe->ipqe_m = m;
377 	tiqe->ipqe_seq = pkt_seq;
378 	tiqe->ipqe_len = pkt_len;
379 	tiqe->ipqe_flags = pkt_flags;
380 	if (p == NULL) {
381 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
382 #ifdef TCPREASS_DEBUG
383 		if (tiqe->ipqe_seq != tp->rcv_nxt)
384 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
385 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
386 #endif
387 	} else {
388 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
389 #ifdef TCPREASS_DEBUG
390 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
391 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
392 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
393 #endif
394 	}
395 
396 	LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
397 
398 present:
399 	/*
400 	 * Present data to user, advancing rcv_nxt through
401 	 * completed sequence space.
402 	 */
403 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
404 		return (0);
405 	q = tp->segq.lh_first;
406 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
407 		return (0);
408 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
409 		return (0);
410 
411 	tp->rcv_nxt += q->ipqe_len;
412 	pkt_flags = q->ipqe_flags & TH_FIN;
413 
414 	LIST_REMOVE(q, ipqe_q);
415 	LIST_REMOVE(q, ipqe_timeq);
416 	if (so->so_state & SS_CANTRCVMORE)
417 		m_freem(q->ipqe_m);
418 	else
419 		sbappend(&so->so_rcv, q->ipqe_m);
420 	pool_put(&ipqent_pool, q);
421 	sorwakeup(so);
422 	return (pkt_flags);
423 }
424 
425 /*
426  * TCP input routine, follows pages 65-76 of the
427  * protocol specification dated September, 1981 very closely.
428  */
429 void
430 #if __STDC__
431 tcp_input(struct mbuf *m, ...)
432 #else
433 tcp_input(m, va_alist)
434 	register struct mbuf *m;
435 #endif
436 {
437 	register struct tcpiphdr *ti;
438 	register struct inpcb *inp;
439 	caddr_t optp = NULL;
440 	int optlen = 0;
441 	int len, tlen, off, hdroptlen;
442 	register struct tcpcb *tp = 0;
443 	register int tiflags;
444 	struct socket *so = NULL;
445 	int todrop, acked, ourfinisacked, needoutput = 0;
446 	short ostate = 0;
447 	int iss = 0;
448 	u_long tiwin;
449 	struct tcp_opt_info opti;
450 	int iphlen;
451 	va_list ap;
452 
453 	va_start(ap, m);
454 	iphlen = va_arg(ap, int);
455 	va_end(ap);
456 
457 	tcpstat.tcps_rcvtotal++;
458 
459 	opti.ts_present = 0;
460 	opti.maxseg = 0;
461 
462 	/*
463 	 * Get IP and TCP header together in first mbuf.
464 	 * Note: IP leaves IP header in first mbuf.
465 	 */
466 	ti = mtod(m, struct tcpiphdr *);
467 	if (iphlen > sizeof (struct ip))
468 		ip_stripoptions(m, (struct mbuf *)0);
469 	if (m->m_len < sizeof (struct tcpiphdr)) {
470 		if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
471 			tcpstat.tcps_rcvshort++;
472 			return;
473 		}
474 		ti = mtod(m, struct tcpiphdr *);
475 	}
476 
477 	/*
478 	 * Checksum extended TCP header and data.
479 	 */
480 	tlen = ((struct ip *)ti)->ip_len;
481 	len = sizeof (struct ip) + tlen;
482 	bzero(ti->ti_x1, sizeof ti->ti_x1);
483 	ti->ti_len = (u_int16_t)tlen;
484 	HTONS(ti->ti_len);
485 	if ((ti->ti_sum = in_cksum(m, len)) != 0) {
486 		tcpstat.tcps_rcvbadsum++;
487 		goto drop;
488 	}
489 
490 	/*
491 	 * Check that TCP offset makes sense,
492 	 * pull out TCP options and adjust length.		XXX
493 	 */
494 	off = ti->ti_off << 2;
495 	if (off < sizeof (struct tcphdr) || off > tlen) {
496 		tcpstat.tcps_rcvbadoff++;
497 		goto drop;
498 	}
499 	tlen -= off;
500 	ti->ti_len = tlen;
501 	if (off > sizeof (struct tcphdr)) {
502 		if (m->m_len < sizeof(struct ip) + off) {
503 			if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
504 				tcpstat.tcps_rcvshort++;
505 				return;
506 			}
507 			ti = mtod(m, struct tcpiphdr *);
508 		}
509 		optlen = off - sizeof (struct tcphdr);
510 		optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
511 		/*
512 		 * Do quick retrieval of timestamp options ("options
513 		 * prediction?").  If timestamp is the only option and it's
514 		 * formatted as recommended in RFC 1323 appendix A, we
515 		 * quickly get the values now and not bother calling
516 		 * tcp_dooptions(), etc.
517 		 */
518 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
519 		     (optlen > TCPOLEN_TSTAMP_APPA &&
520 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
521 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
522 		     (ti->ti_flags & TH_SYN) == 0) {
523 			opti.ts_present = 1;
524 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
525 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
526 			optp = NULL;	/* we've parsed the options */
527 		}
528 	}
529 	tiflags = ti->ti_flags;
530 
531 	/*
532 	 * Convert TCP protocol specific fields to host format.
533 	 */
534 	NTOHL(ti->ti_seq);
535 	NTOHL(ti->ti_ack);
536 	NTOHS(ti->ti_win);
537 	NTOHS(ti->ti_urp);
538 
539 	/*
540 	 * Locate pcb for segment.
541 	 */
542 findpcb:
543 	inp = in_pcblookup_connect(&tcbtable, ti->ti_src, ti->ti_sport,
544 	    ti->ti_dst, ti->ti_dport);
545 	if (inp == 0) {
546 		++tcpstat.tcps_pcbhashmiss;
547 		inp = in_pcblookup_bind(&tcbtable, ti->ti_dst, ti->ti_dport);
548 		if (inp == 0) {
549 			++tcpstat.tcps_noport;
550 			goto dropwithreset;
551 		}
552 	}
553 
554 	/*
555 	 * If the state is CLOSED (i.e., TCB does not exist) then
556 	 * all data in the incoming segment is discarded.
557 	 * If the TCB exists but is in CLOSED state, it is embryonic,
558 	 * but should either do a listen or a connect soon.
559 	 */
560 	tp = intotcpcb(inp);
561 	if (tp == 0)
562 		goto dropwithreset;
563 	if (tp->t_state == TCPS_CLOSED)
564 		goto drop;
565 
566 	/* Unscale the window into a 32-bit value. */
567 	if ((tiflags & TH_SYN) == 0)
568 		tiwin = ti->ti_win << tp->snd_scale;
569 	else
570 		tiwin = ti->ti_win;
571 
572 	so = inp->inp_socket;
573 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
574 		if (so->so_options & SO_DEBUG) {
575 			ostate = tp->t_state;
576 			tcp_saveti = *ti;
577 		}
578 		if (so->so_options & SO_ACCEPTCONN) {
579   			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
580 				if (tiflags & TH_RST) {
581 					syn_cache_reset(ti);
582 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
583 				    (TH_ACK|TH_SYN)) {
584 					/*
585 					 * Received a SYN,ACK.  This should
586 					 * never happen while we are in
587 					 * LISTEN.  Send an RST.
588 					 */
589 					goto badsyn;
590 				} else if (tiflags & TH_ACK) {
591 					so = syn_cache_get(so, m);
592 					if (so == NULL) {
593 						/*
594 						 * We don't have a SYN for
595 						 * this ACK; send an RST.
596 						 */
597 						goto badsyn;
598 					} else if (so ==
599 					    (struct socket *)(-1)) {
600 						/*
601 						 * We were unable to create
602 						 * the connection.  If the
603 						 * 3-way handshake was
604 						 * completed, and RST has
605 						 * been sent to the peer.
606 						 * Since the mbuf might be
607 						 * in use for the reply,
608 						 * do not free it.
609 						 */
610 						m = NULL;
611 					} else {
612 						/*
613 						 * We have created a
614 						 * full-blown connection.
615 						 */
616 						inp = sotoinpcb(so);
617 						tp = intotcpcb(inp);
618 						tiwin <<= tp->snd_scale;
619 						goto after_listen;
620 					}
621   				} else {
622 					/*
623 					 * None of RST, SYN or ACK was set.
624 					 * This is an invalid packet for a
625 					 * TCB in LISTEN state.  Send a RST.
626 					 */
627 					goto badsyn;
628 				}
629   			} else {
630 				/*
631 				 * Received a SYN.
632 				 */
633 				if (in_hosteq(ti->ti_src, ti->ti_dst) &&
634 				    ti->ti_sport == ti->ti_dport) {
635 					/*
636 					 * LISTEN socket received a SYN
637 					 * from itself?  This can't possibly
638 					 * be valid; drop the packet.
639 					 */
640 					tcpstat.tcps_badsyn++;
641 					goto drop;
642 				}
643 				/*
644 				 * SYN looks ok; create compressed TCP
645 				 * state for it.
646 				 */
647 				if (so->so_qlen <= so->so_qlimit &&
648 				    syn_cache_add(so, m, optp, optlen, &opti))
649 					m = NULL;
650 			}
651 			goto drop;
652 		}
653 	}
654 
655 after_listen:
656 #ifdef DIAGNOSTIC
657 	/*
658 	 * Should not happen now that all embryonic connections
659 	 * are handled with compressed state.
660 	 */
661 	if (tp->t_state == TCPS_LISTEN)
662 		panic("tcp_input: TCPS_LISTEN");
663 #endif
664 
665 	/*
666 	 * Segment received on connection.
667 	 * Reset idle time and keep-alive timer.
668 	 */
669 	tp->t_idle = 0;
670 	if (TCPS_HAVEESTABLISHED(tp->t_state))
671 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
672 
673 	/*
674 	 * Process options.
675 	 */
676 	if (optp)
677 		tcp_dooptions(tp, optp, optlen, ti, &opti);
678 
679 	/*
680 	 * Header prediction: check for the two common cases
681 	 * of a uni-directional data xfer.  If the packet has
682 	 * no control flags, is in-sequence, the window didn't
683 	 * change and we're not retransmitting, it's a
684 	 * candidate.  If the length is zero and the ack moved
685 	 * forward, we're the sender side of the xfer.  Just
686 	 * free the data acked & wake any higher level process
687 	 * that was blocked waiting for space.  If the length
688 	 * is non-zero and the ack didn't move, we're the
689 	 * receiver side.  If we're getting packets in-order
690 	 * (the reassembly queue is empty), add the data to
691 	 * the socket buffer and note that we need a delayed ack.
692 	 */
693 	if (tp->t_state == TCPS_ESTABLISHED &&
694 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
695 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
696 	    ti->ti_seq == tp->rcv_nxt &&
697 	    tiwin && tiwin == tp->snd_wnd &&
698 	    tp->snd_nxt == tp->snd_max) {
699 
700 		/*
701 		 * If last ACK falls within this segment's sequence numbers,
702 		 *  record the timestamp.
703 		 */
704 		if (opti.ts_present &&
705 		    SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
706 		    SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
707 			tp->ts_recent_age = tcp_now;
708 			tp->ts_recent = opti.ts_val;
709 		}
710 
711 		if (ti->ti_len == 0) {
712 			if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
713 			    SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
714 			    tp->snd_cwnd >= tp->snd_wnd &&
715 			    tp->t_dupacks < tcprexmtthresh) {
716 				/*
717 				 * this is a pure ack for outstanding data.
718 				 */
719 				++tcpstat.tcps_predack;
720 				if (opti.ts_present)
721 					tcp_xmit_timer(tp,
722 					    tcp_now-opti.ts_ecr+1);
723 				else if (tp->t_rtt &&
724 				    SEQ_GT(ti->ti_ack, tp->t_rtseq))
725 					tcp_xmit_timer(tp, tp->t_rtt);
726 				acked = ti->ti_ack - tp->snd_una;
727 				tcpstat.tcps_rcvackpack++;
728 				tcpstat.tcps_rcvackbyte += acked;
729 				sbdrop(&so->so_snd, acked);
730 				tp->snd_una = ti->ti_ack;
731 				m_freem(m);
732 
733 				/*
734 				 * If all outstanding data are acked, stop
735 				 * retransmit timer, otherwise restart timer
736 				 * using current (possibly backed-off) value.
737 				 * If process is waiting for space,
738 				 * wakeup/selwakeup/signal.  If data
739 				 * are ready to send, let tcp_output
740 				 * decide between more output or persist.
741 				 */
742 				if (tp->snd_una == tp->snd_max)
743 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
744 				else if (TCP_TIMER_ISARMED(tp,
745 				    TCPT_PERSIST) == 0)
746 					TCP_TIMER_ARM(tp, TCPT_REXMT,
747 					    tp->t_rxtcur);
748 
749 				sowwakeup(so);
750 				if (so->so_snd.sb_cc)
751 					(void) tcp_output(tp);
752 				return;
753 			}
754 		} else if (ti->ti_ack == tp->snd_una &&
755 		    tp->segq.lh_first == NULL &&
756 		    ti->ti_len <= sbspace(&so->so_rcv)) {
757 			/*
758 			 * this is a pure, in-sequence data packet
759 			 * with nothing on the reassembly queue and
760 			 * we have enough buffer space to take it.
761 			 */
762 			++tcpstat.tcps_preddat;
763 			tp->rcv_nxt += ti->ti_len;
764 			tcpstat.tcps_rcvpack++;
765 			tcpstat.tcps_rcvbyte += ti->ti_len;
766 			/*
767 			 * Drop TCP, IP headers and TCP options then add data
768 			 * to socket buffer.
769 			 */
770 			m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
771 			m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
772 			sbappend(&so->so_rcv, m);
773 			sorwakeup(so);
774 			TCP_SETUP_ACK(tp, ti);
775 			if (tp->t_flags & TF_ACKNOW)
776 				(void) tcp_output(tp);
777 			return;
778 		}
779 	}
780 
781 	/*
782 	 * Drop TCP, IP headers and TCP options.
783 	 */
784 	hdroptlen  = sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);
785 	m->m_data += hdroptlen;
786 	m->m_len  -= hdroptlen;
787 
788 	/*
789 	 * Calculate amount of space in receive window,
790 	 * and then do TCP input processing.
791 	 * Receive window is amount of space in rcv queue,
792 	 * but not less than advertised window.
793 	 */
794 	{ int win;
795 
796 	win = sbspace(&so->so_rcv);
797 	if (win < 0)
798 		win = 0;
799 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
800 	}
801 
802 	switch (tp->t_state) {
803 
804 	/*
805 	 * If the state is SYN_SENT:
806 	 *	if seg contains an ACK, but not for our SYN, drop the input.
807 	 *	if seg contains a RST, then drop the connection.
808 	 *	if seg does not contain SYN, then drop it.
809 	 * Otherwise this is an acceptable SYN segment
810 	 *	initialize tp->rcv_nxt and tp->irs
811 	 *	if seg contains ack then advance tp->snd_una
812 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
813 	 *	arrange for segment to be acked (eventually)
814 	 *	continue processing rest of data/controls, beginning with URG
815 	 */
816 	case TCPS_SYN_SENT:
817 		if ((tiflags & TH_ACK) &&
818 		    (SEQ_LEQ(ti->ti_ack, tp->iss) ||
819 		     SEQ_GT(ti->ti_ack, tp->snd_max)))
820 			goto dropwithreset;
821 		if (tiflags & TH_RST) {
822 			if (tiflags & TH_ACK)
823 				tp = tcp_drop(tp, ECONNREFUSED);
824 			goto drop;
825 		}
826 		if ((tiflags & TH_SYN) == 0)
827 			goto drop;
828 		if (tiflags & TH_ACK) {
829 			tp->snd_una = ti->ti_ack;
830 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
831 				tp->snd_nxt = tp->snd_una;
832 		}
833 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
834 		tp->irs = ti->ti_seq;
835 		tcp_rcvseqinit(tp);
836 		tp->t_flags |= TF_ACKNOW;
837 		tcp_mss_from_peer(tp, opti.maxseg);
838 
839 		/*
840 		 * Initialize the initial congestion window.  If we
841 		 * had to retransmit the SYN, we must initialize cwnd
842 		 * to 1 segment (i.e. the Loss Window).
843 		 */
844 		if (tp->t_flags & TF_SYN_REXMT)
845 			tp->snd_cwnd = tp->t_peermss;
846 		else
847 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
848 			    tp->t_peermss);
849 
850 		tcp_rmx_rtt(tp);
851 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
852 			tcpstat.tcps_connects++;
853 			soisconnected(so);
854 			tcp_established(tp);
855 			/* Do window scaling on this connection? */
856 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
857 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
858 				tp->snd_scale = tp->requested_s_scale;
859 				tp->rcv_scale = tp->request_r_scale;
860 			}
861 			(void) tcp_reass(tp, (struct tcpiphdr *)0,
862 				(struct mbuf *)0);
863 			/*
864 			 * if we didn't have to retransmit the SYN,
865 			 * use its rtt as our initial srtt & rtt var.
866 			 */
867 			if (tp->t_rtt)
868 				tcp_xmit_timer(tp, tp->t_rtt);
869 		} else
870 			tp->t_state = TCPS_SYN_RECEIVED;
871 
872 		/*
873 		 * Advance ti->ti_seq to correspond to first data byte.
874 		 * If data, trim to stay within window,
875 		 * dropping FIN if necessary.
876 		 */
877 		ti->ti_seq++;
878 		if (ti->ti_len > tp->rcv_wnd) {
879 			todrop = ti->ti_len - tp->rcv_wnd;
880 			m_adj(m, -todrop);
881 			ti->ti_len = tp->rcv_wnd;
882 			tiflags &= ~TH_FIN;
883 			tcpstat.tcps_rcvpackafterwin++;
884 			tcpstat.tcps_rcvbyteafterwin += todrop;
885 		}
886 		tp->snd_wl1 = ti->ti_seq - 1;
887 		tp->rcv_up = ti->ti_seq;
888 		goto step6;
889 
890 	/*
891 	 * If the state is SYN_RECEIVED:
892 	 *	If seg contains an ACK, but not for our SYN, drop the input
893 	 *	and generate an RST.  See page 36, rfc793
894 	 */
895 	case TCPS_SYN_RECEIVED:
896 		if ((tiflags & TH_ACK) &&
897 		    (SEQ_LEQ(ti->ti_ack, tp->iss) ||
898 		     SEQ_GT(ti->ti_ack, tp->snd_max)))
899 			goto dropwithreset;
900 		break;
901 	}
902 
903 	/*
904 	 * States other than LISTEN or SYN_SENT.
905 	 * First check timestamp, if present.
906 	 * Then check that at least some bytes of segment are within
907 	 * receive window.  If segment begins before rcv_nxt,
908 	 * drop leading data (and SYN); if nothing left, just ack.
909 	 *
910 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
911 	 * and it's less than ts_recent, drop it.
912 	 */
913 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
914 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
915 
916 		/* Check to see if ts_recent is over 24 days old.  */
917 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
918 			/*
919 			 * Invalidate ts_recent.  If this segment updates
920 			 * ts_recent, the age will be reset later and ts_recent
921 			 * will get a valid value.  If it does not, setting
922 			 * ts_recent to zero will at least satisfy the
923 			 * requirement that zero be placed in the timestamp
924 			 * echo reply when ts_recent isn't valid.  The
925 			 * age isn't reset until we get a valid ts_recent
926 			 * because we don't want out-of-order segments to be
927 			 * dropped when ts_recent is old.
928 			 */
929 			tp->ts_recent = 0;
930 		} else {
931 			tcpstat.tcps_rcvduppack++;
932 			tcpstat.tcps_rcvdupbyte += ti->ti_len;
933 			tcpstat.tcps_pawsdrop++;
934 			goto dropafterack;
935 		}
936 	}
937 
938 	todrop = tp->rcv_nxt - ti->ti_seq;
939 	if (todrop > 0) {
940 		if (tiflags & TH_SYN) {
941 			tiflags &= ~TH_SYN;
942 			ti->ti_seq++;
943 			if (ti->ti_urp > 1)
944 				ti->ti_urp--;
945 			else {
946 				tiflags &= ~TH_URG;
947 				ti->ti_urp = 0;
948 			}
949 			todrop--;
950 		}
951 		if (todrop > ti->ti_len ||
952 		    (todrop == ti->ti_len && (tiflags & TH_FIN) == 0)) {
953 			/*
954 			 * Any valid FIN must be to the left of the window.
955 			 * At this point the FIN must be a duplicate or
956 			 * out of sequence; drop it.
957 			 */
958 			tiflags &= ~TH_FIN;
959 			/*
960 			 * Send an ACK to resynchronize and drop any data.
961 			 * But keep on processing for RST or ACK.
962 			 */
963 			tp->t_flags |= TF_ACKNOW;
964 			todrop = ti->ti_len;
965 			tcpstat.tcps_rcvdupbyte += todrop;
966 			tcpstat.tcps_rcvduppack++;
967 		} else {
968 			tcpstat.tcps_rcvpartduppack++;
969 			tcpstat.tcps_rcvpartdupbyte += todrop;
970 		}
971 		m_adj(m, todrop);
972 		ti->ti_seq += todrop;
973 		ti->ti_len -= todrop;
974 		if (ti->ti_urp > todrop)
975 			ti->ti_urp -= todrop;
976 		else {
977 			tiflags &= ~TH_URG;
978 			ti->ti_urp = 0;
979 		}
980 	}
981 
982 	/*
983 	 * If new data are received on a connection after the
984 	 * user processes are gone, then RST the other end.
985 	 */
986 	if ((so->so_state & SS_NOFDREF) &&
987 	    tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
988 		tp = tcp_close(tp);
989 		tcpstat.tcps_rcvafterclose++;
990 		goto dropwithreset;
991 	}
992 
993 	/*
994 	 * If segment ends after window, drop trailing data
995 	 * (and PUSH and FIN); if nothing left, just ACK.
996 	 */
997 	todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
998 	if (todrop > 0) {
999 		tcpstat.tcps_rcvpackafterwin++;
1000 		if (todrop >= ti->ti_len) {
1001 			tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
1002 			/*
1003 			 * If a new connection request is received
1004 			 * while in TIME_WAIT, drop the old connection
1005 			 * and start over if the sequence numbers
1006 			 * are above the previous ones.
1007 			 */
1008 			if (tiflags & TH_SYN &&
1009 			    tp->t_state == TCPS_TIME_WAIT &&
1010 			    SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
1011 				iss = tcp_new_iss(tp, sizeof(struct tcpcb),
1012 						  tp->rcv_nxt);
1013 				tp = tcp_close(tp);
1014 				/*
1015 				 * We have already advanced the mbuf
1016 				 * pointers past the IP+TCP headers and
1017 				 * options.  Restore those pointers before
1018 				 * attempting to use the TCP header again.
1019 				 */
1020 				m->m_data -= hdroptlen;
1021 				m->m_len  += hdroptlen;
1022 				goto findpcb;
1023 			}
1024 			/*
1025 			 * If window is closed can only take segments at
1026 			 * window edge, and have to drop data and PUSH from
1027 			 * incoming segments.  Continue processing, but
1028 			 * remember to ack.  Otherwise, drop segment
1029 			 * and ack.
1030 			 */
1031 			if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
1032 				tp->t_flags |= TF_ACKNOW;
1033 				tcpstat.tcps_rcvwinprobe++;
1034 			} else
1035 				goto dropafterack;
1036 		} else
1037 			tcpstat.tcps_rcvbyteafterwin += todrop;
1038 		m_adj(m, -todrop);
1039 		ti->ti_len -= todrop;
1040 		tiflags &= ~(TH_PUSH|TH_FIN);
1041 	}
1042 
1043 	/*
1044 	 * If last ACK falls within this segment's sequence numbers,
1045 	 * and the timestamp is newer, record it.
1046 	 */
1047 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1048 	    SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
1049 	    SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
1050 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1051 		tp->ts_recent_age = tcp_now;
1052 		tp->ts_recent = opti.ts_val;
1053 	}
1054 
1055 	/*
1056 	 * If the RST bit is set examine the state:
1057 	 *    SYN_RECEIVED STATE:
1058 	 *	If passive open, return to LISTEN state.
1059 	 *	If active open, inform user that connection was refused.
1060 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1061 	 *	Inform user that connection was reset, and close tcb.
1062 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1063 	 *	Close the tcb.
1064 	 */
1065 	if (tiflags&TH_RST) switch (tp->t_state) {
1066 
1067 	case TCPS_SYN_RECEIVED:
1068 		so->so_error = ECONNREFUSED;
1069 		goto close;
1070 
1071 	case TCPS_ESTABLISHED:
1072 	case TCPS_FIN_WAIT_1:
1073 	case TCPS_FIN_WAIT_2:
1074 	case TCPS_CLOSE_WAIT:
1075 		so->so_error = ECONNRESET;
1076 	close:
1077 		tp->t_state = TCPS_CLOSED;
1078 		tcpstat.tcps_drops++;
1079 		tp = tcp_close(tp);
1080 		goto drop;
1081 
1082 	case TCPS_CLOSING:
1083 	case TCPS_LAST_ACK:
1084 	case TCPS_TIME_WAIT:
1085 		tp = tcp_close(tp);
1086 		goto drop;
1087 	}
1088 
1089 	/*
1090 	 * If a SYN is in the window, then this is an
1091 	 * error and we send an RST and drop the connection.
1092 	 */
1093 	if (tiflags & TH_SYN) {
1094 		tp = tcp_drop(tp, ECONNRESET);
1095 		goto dropwithreset;
1096 	}
1097 
1098 	/*
1099 	 * If the ACK bit is off we drop the segment and return.
1100 	 */
1101 	if ((tiflags & TH_ACK) == 0)
1102 		goto drop;
1103 
1104 	/*
1105 	 * Ack processing.
1106 	 */
1107 	switch (tp->t_state) {
1108 
1109 	/*
1110 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1111 	 * ESTABLISHED state and continue processing, otherwise
1112 	 * send an RST.
1113 	 */
1114 	case TCPS_SYN_RECEIVED:
1115 		if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
1116 		    SEQ_GT(ti->ti_ack, tp->snd_max))
1117 			goto dropwithreset;
1118 		tcpstat.tcps_connects++;
1119 		soisconnected(so);
1120 		tcp_established(tp);
1121 		/* Do window scaling? */
1122 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1123 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1124 			tp->snd_scale = tp->requested_s_scale;
1125 			tp->rcv_scale = tp->request_r_scale;
1126 		}
1127 		(void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
1128 		tp->snd_wl1 = ti->ti_seq - 1;
1129 		/* fall into ... */
1130 
1131 	/*
1132 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1133 	 * ACKs.  If the ack is in the range
1134 	 *	tp->snd_una < ti->ti_ack <= tp->snd_max
1135 	 * then advance tp->snd_una to ti->ti_ack and drop
1136 	 * data from the retransmission queue.  If this ACK reflects
1137 	 * more up to date window information we update our window information.
1138 	 */
1139 	case TCPS_ESTABLISHED:
1140 	case TCPS_FIN_WAIT_1:
1141 	case TCPS_FIN_WAIT_2:
1142 	case TCPS_CLOSE_WAIT:
1143 	case TCPS_CLOSING:
1144 	case TCPS_LAST_ACK:
1145 	case TCPS_TIME_WAIT:
1146 
1147 		if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
1148 			if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
1149 				tcpstat.tcps_rcvdupack++;
1150 				/*
1151 				 * If we have outstanding data (other than
1152 				 * a window probe), this is a completely
1153 				 * duplicate ack (ie, window info didn't
1154 				 * change), the ack is the biggest we've
1155 				 * seen and we've seen exactly our rexmt
1156 				 * threshhold of them, assume a packet
1157 				 * has been dropped and retransmit it.
1158 				 * Kludge snd_nxt & the congestion
1159 				 * window so we send only this one
1160 				 * packet.
1161 				 *
1162 				 * We know we're losing at the current
1163 				 * window size so do congestion avoidance
1164 				 * (set ssthresh to half the current window
1165 				 * and pull our congestion window back to
1166 				 * the new ssthresh).
1167 				 *
1168 				 * Dup acks mean that packets have left the
1169 				 * network (they're now cached at the receiver)
1170 				 * so bump cwnd by the amount in the receiver
1171 				 * to keep a constant cwnd packets in the
1172 				 * network.
1173 				 */
1174 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1175 				    ti->ti_ack != tp->snd_una)
1176 					tp->t_dupacks = 0;
1177 				else if (++tp->t_dupacks == tcprexmtthresh) {
1178 					tcp_seq onxt = tp->snd_nxt;
1179 					u_int win =
1180 					    min(tp->snd_wnd, tp->snd_cwnd) /
1181 					    2 /	tp->t_segsz;
1182 					if (SEQ_LT(ti->ti_ack, tp->snd_recover)) {
1183 						/*
1184 						 * False fast retransmit after
1185 						 * timeout.  Do not cut window.
1186 						 */
1187 						tp->snd_cwnd += tp->t_segsz;
1188 						tp->t_dupacks = 0;
1189 						(void) tcp_output(tp);
1190 						goto drop;
1191 					}
1192 
1193 					if (win < 2)
1194 						win = 2;
1195 					tp->snd_ssthresh = win * tp->t_segsz;
1196 					tp->snd_recover = tp->snd_max;
1197 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1198 					tp->t_rtt = 0;
1199 					tp->snd_nxt = ti->ti_ack;
1200 					tp->snd_cwnd = tp->t_segsz;
1201 					(void) tcp_output(tp);
1202 					tp->snd_cwnd = tp->snd_ssthresh +
1203 					       tp->t_segsz * tp->t_dupacks;
1204 					if (SEQ_GT(onxt, tp->snd_nxt))
1205 						tp->snd_nxt = onxt;
1206 					goto drop;
1207 				} else if (tp->t_dupacks > tcprexmtthresh) {
1208 					tp->snd_cwnd += tp->t_segsz;
1209 					(void) tcp_output(tp);
1210 					goto drop;
1211 				}
1212 			} else
1213 				tp->t_dupacks = 0;
1214 			break;
1215 		}
1216 		/*
1217 		 * If the congestion window was inflated to account
1218 		 * for the other side's cached packets, retract it.
1219 		 */
1220 		if (!tcp_do_newreno) {
1221 			if (tp->t_dupacks >= tcprexmtthresh &&
1222 			    tp->snd_cwnd > tp->snd_ssthresh)
1223 				tp->snd_cwnd = tp->snd_ssthresh;
1224 			tp->t_dupacks = 0;
1225 		} else if (tp->t_dupacks >= tcprexmtthresh
1226 		    && !tcp_newreno(tp, ti)) {
1227 			tp->snd_cwnd = tp->snd_ssthresh;
1228 			/*
1229 			 * Window inflation should have left us with approx.
1230 			 * snd_ssthresh outstanding data.  But in case we
1231 			 * would be inclined to send a burst, better to do
1232 			 * it via the slow start mechanism.
1233 			 */
1234 			if (SEQ_SUB(tp->snd_max, ti->ti_ack) < tp->snd_ssthresh)
1235 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, ti->ti_ack)
1236 				     + tp->t_segsz;
1237 			tp->t_dupacks = 0;
1238 		}
1239 		if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
1240 			tcpstat.tcps_rcvacktoomuch++;
1241 			goto dropafterack;
1242 		}
1243 		acked = ti->ti_ack - tp->snd_una;
1244 		tcpstat.tcps_rcvackpack++;
1245 		tcpstat.tcps_rcvackbyte += acked;
1246 
1247 		/*
1248 		 * If we have a timestamp reply, update smoothed
1249 		 * round trip time.  If no timestamp is present but
1250 		 * transmit timer is running and timed sequence
1251 		 * number was acked, update smoothed round trip time.
1252 		 * Since we now have an rtt measurement, cancel the
1253 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1254 		 * Recompute the initial retransmit timer.
1255 		 */
1256 		if (opti.ts_present)
1257 			tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
1258 		else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
1259 			tcp_xmit_timer(tp,tp->t_rtt);
1260 
1261 		/*
1262 		 * If all outstanding data is acked, stop retransmit
1263 		 * timer and remember to restart (more output or persist).
1264 		 * If there is more data to be acked, restart retransmit
1265 		 * timer, using current (possibly backed-off) value.
1266 		 */
1267 		if (ti->ti_ack == tp->snd_max) {
1268 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1269 			needoutput = 1;
1270 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1271 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1272 		/*
1273 		 * When new data is acked, open the congestion window.
1274 		 * If the window gives us less than ssthresh packets
1275 		 * in flight, open exponentially (segsz per packet).
1276 		 * Otherwise open linearly: segsz per window
1277 		 * (segsz^2 / cwnd per packet), plus a constant
1278 		 * fraction of a packet (segsz/8) to help larger windows
1279 		 * open quickly enough.
1280 		 */
1281 		{
1282 		register u_int cw = tp->snd_cwnd;
1283 		register u_int incr = tp->t_segsz;
1284 
1285 		if (cw > tp->snd_ssthresh)
1286 			incr = incr * incr / cw;
1287 		if (!tcp_do_newreno || SEQ_GEQ(ti->ti_ack, tp->snd_recover))
1288 			tp->snd_cwnd = min(cw + incr,TCP_MAXWIN<<tp->snd_scale);
1289 		}
1290 		if (acked > so->so_snd.sb_cc) {
1291 			tp->snd_wnd -= so->so_snd.sb_cc;
1292 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1293 			ourfinisacked = 1;
1294 		} else {
1295 			sbdrop(&so->so_snd, acked);
1296 			tp->snd_wnd -= acked;
1297 			ourfinisacked = 0;
1298 		}
1299 		sowwakeup(so);
1300 		tp->snd_una = ti->ti_ack;
1301 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1302 			tp->snd_nxt = tp->snd_una;
1303 
1304 		switch (tp->t_state) {
1305 
1306 		/*
1307 		 * In FIN_WAIT_1 STATE in addition to the processing
1308 		 * for the ESTABLISHED state if our FIN is now acknowledged
1309 		 * then enter FIN_WAIT_2.
1310 		 */
1311 		case TCPS_FIN_WAIT_1:
1312 			if (ourfinisacked) {
1313 				/*
1314 				 * If we can't receive any more
1315 				 * data, then closing user can proceed.
1316 				 * Starting the timer is contrary to the
1317 				 * specification, but if we don't get a FIN
1318 				 * we'll hang forever.
1319 				 */
1320 				if (so->so_state & SS_CANTRCVMORE) {
1321 					soisdisconnected(so);
1322 					if (tcp_maxidle > 0)
1323 						TCP_TIMER_ARM(tp, TCPT_2MSL,
1324 						    tcp_maxidle);
1325 				}
1326 				tp->t_state = TCPS_FIN_WAIT_2;
1327 			}
1328 			break;
1329 
1330 	 	/*
1331 		 * In CLOSING STATE in addition to the processing for
1332 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1333 		 * then enter the TIME-WAIT state, otherwise ignore
1334 		 * the segment.
1335 		 */
1336 		case TCPS_CLOSING:
1337 			if (ourfinisacked) {
1338 				tp->t_state = TCPS_TIME_WAIT;
1339 				tcp_canceltimers(tp);
1340 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1341 				soisdisconnected(so);
1342 			}
1343 			break;
1344 
1345 		/*
1346 		 * In LAST_ACK, we may still be waiting for data to drain
1347 		 * and/or to be acked, as well as for the ack of our FIN.
1348 		 * If our FIN is now acknowledged, delete the TCB,
1349 		 * enter the closed state and return.
1350 		 */
1351 		case TCPS_LAST_ACK:
1352 			if (ourfinisacked) {
1353 				tp = tcp_close(tp);
1354 				goto drop;
1355 			}
1356 			break;
1357 
1358 		/*
1359 		 * In TIME_WAIT state the only thing that should arrive
1360 		 * is a retransmission of the remote FIN.  Acknowledge
1361 		 * it and restart the finack timer.
1362 		 */
1363 		case TCPS_TIME_WAIT:
1364 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1365 			goto dropafterack;
1366 		}
1367 	}
1368 
1369 step6:
1370 	/*
1371 	 * Update window information.
1372 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1373 	 */
1374 	if (((tiflags & TH_ACK) && SEQ_LT(tp->snd_wl1, ti->ti_seq)) ||
1375 	    (tp->snd_wl1 == ti->ti_seq && SEQ_LT(tp->snd_wl2, ti->ti_ack)) ||
1376 	    (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)) {
1377 		/* keep track of pure window updates */
1378 		if (ti->ti_len == 0 &&
1379 		    tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
1380 			tcpstat.tcps_rcvwinupd++;
1381 		tp->snd_wnd = tiwin;
1382 		tp->snd_wl1 = ti->ti_seq;
1383 		tp->snd_wl2 = ti->ti_ack;
1384 		if (tp->snd_wnd > tp->max_sndwnd)
1385 			tp->max_sndwnd = tp->snd_wnd;
1386 		needoutput = 1;
1387 	}
1388 
1389 	/*
1390 	 * Process segments with URG.
1391 	 */
1392 	if ((tiflags & TH_URG) && ti->ti_urp &&
1393 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1394 		/*
1395 		 * This is a kludge, but if we receive and accept
1396 		 * random urgent pointers, we'll crash in
1397 		 * soreceive.  It's hard to imagine someone
1398 		 * actually wanting to send this much urgent data.
1399 		 */
1400 		if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
1401 			ti->ti_urp = 0;			/* XXX */
1402 			tiflags &= ~TH_URG;		/* XXX */
1403 			goto dodata;			/* XXX */
1404 		}
1405 		/*
1406 		 * If this segment advances the known urgent pointer,
1407 		 * then mark the data stream.  This should not happen
1408 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1409 		 * a FIN has been received from the remote side.
1410 		 * In these states we ignore the URG.
1411 		 *
1412 		 * According to RFC961 (Assigned Protocols),
1413 		 * the urgent pointer points to the last octet
1414 		 * of urgent data.  We continue, however,
1415 		 * to consider it to indicate the first octet
1416 		 * of data past the urgent section as the original
1417 		 * spec states (in one of two places).
1418 		 */
1419 		if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1420 			tp->rcv_up = ti->ti_seq + ti->ti_urp;
1421 			so->so_oobmark = so->so_rcv.sb_cc +
1422 			    (tp->rcv_up - tp->rcv_nxt) - 1;
1423 			if (so->so_oobmark == 0)
1424 				so->so_state |= SS_RCVATMARK;
1425 			sohasoutofband(so);
1426 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1427 		}
1428 		/*
1429 		 * Remove out of band data so doesn't get presented to user.
1430 		 * This can happen independent of advancing the URG pointer,
1431 		 * but if two URG's are pending at once, some out-of-band
1432 		 * data may creep in... ick.
1433 		 */
1434 		if (ti->ti_urp <= (u_int16_t) ti->ti_len
1435 #ifdef SO_OOBINLINE
1436 		     && (so->so_options & SO_OOBINLINE) == 0
1437 #endif
1438 		     )
1439 			tcp_pulloutofband(so, ti, m);
1440 	} else
1441 		/*
1442 		 * If no out of band data is expected,
1443 		 * pull receive urgent pointer along
1444 		 * with the receive window.
1445 		 */
1446 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1447 			tp->rcv_up = tp->rcv_nxt;
1448 dodata:							/* XXX */
1449 
1450 	/*
1451 	 * Process the segment text, merging it into the TCP sequencing queue,
1452 	 * and arranging for acknowledgment of receipt if necessary.
1453 	 * This process logically involves adjusting tp->rcv_wnd as data
1454 	 * is presented to the user (this happens in tcp_usrreq.c,
1455 	 * case PRU_RCVD).  If a FIN has already been received on this
1456 	 * connection then we just ignore the text.
1457 	 */
1458 	if ((ti->ti_len || (tiflags & TH_FIN)) &&
1459 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1460 		TCP_REASS(tp, ti, m, so, tiflags);
1461 		/*
1462 		 * Note the amount of data that peer has sent into
1463 		 * our window, in order to estimate the sender's
1464 		 * buffer size.
1465 		 */
1466 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1467 	} else {
1468 		m_freem(m);
1469 		tiflags &= ~TH_FIN;
1470 	}
1471 
1472 	/*
1473 	 * If FIN is received ACK the FIN and let the user know
1474 	 * that the connection is closing.  Ignore a FIN received before
1475 	 * the connection is fully established.
1476 	 */
1477 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
1478 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1479 			socantrcvmore(so);
1480 			tp->t_flags |= TF_ACKNOW;
1481 			tp->rcv_nxt++;
1482 		}
1483 		switch (tp->t_state) {
1484 
1485 	 	/*
1486 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
1487 		 */
1488 		case TCPS_ESTABLISHED:
1489 			tp->t_state = TCPS_CLOSE_WAIT;
1490 			break;
1491 
1492 	 	/*
1493 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1494 		 * enter the CLOSING state.
1495 		 */
1496 		case TCPS_FIN_WAIT_1:
1497 			tp->t_state = TCPS_CLOSING;
1498 			break;
1499 
1500 	 	/*
1501 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1502 		 * starting the time-wait timer, turning off the other
1503 		 * standard timers.
1504 		 */
1505 		case TCPS_FIN_WAIT_2:
1506 			tp->t_state = TCPS_TIME_WAIT;
1507 			tcp_canceltimers(tp);
1508 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1509 			soisdisconnected(so);
1510 			break;
1511 
1512 		/*
1513 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1514 		 */
1515 		case TCPS_TIME_WAIT:
1516 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1517 			break;
1518 		}
1519 	}
1520 	if (so->so_options & SO_DEBUG)
1521 		tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1522 
1523 	/*
1524 	 * Return any desired output.
1525 	 */
1526 	if (needoutput || (tp->t_flags & TF_ACKNOW))
1527 		(void) tcp_output(tp);
1528 	return;
1529 
1530 badsyn:
1531 	/*
1532 	 * Received a bad SYN.  Increment counters and dropwithreset.
1533 	 */
1534 	tcpstat.tcps_badsyn++;
1535 	tp = NULL;
1536 	goto dropwithreset;
1537 
1538 dropafterack:
1539 	/*
1540 	 * Generate an ACK dropping incoming segment if it occupies
1541 	 * sequence space, where the ACK reflects our state.
1542 	 */
1543 	if (tiflags & TH_RST)
1544 		goto drop;
1545 	m_freem(m);
1546 	tp->t_flags |= TF_ACKNOW;
1547 	(void) tcp_output(tp);
1548 	return;
1549 
1550 dropwithreset:
1551 	/*
1552 	 * Generate a RST, dropping incoming segment.
1553 	 * Make ACK acceptable to originator of segment.
1554 	 * Don't bother to respond if destination was broadcast/multicast.
1555 	 */
1556 	if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
1557 	    IN_MULTICAST(ti->ti_dst.s_addr))
1558 		goto drop;
1559 	if (tiflags & TH_ACK)
1560 		(void)tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1561 	else {
1562 		if (tiflags & TH_SYN)
1563 			ti->ti_len++;
1564 		(void)tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1565 		    TH_RST|TH_ACK);
1566 	}
1567 	return;
1568 
1569 drop:
1570 	/*
1571 	 * Drop space held by incoming segment and return.
1572 	 */
1573 	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1574 		tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1575 	m_freem(m);
1576 	return;
1577 }
1578 
1579 void
1580 tcp_dooptions(tp, cp, cnt, ti, oi)
1581 	struct tcpcb *tp;
1582 	u_char *cp;
1583 	int cnt;
1584 	struct tcpiphdr *ti;
1585 	struct tcp_opt_info *oi;
1586 {
1587 	u_int16_t mss;
1588 	int opt, optlen;
1589 
1590 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1591 		opt = cp[0];
1592 		if (opt == TCPOPT_EOL)
1593 			break;
1594 		if (opt == TCPOPT_NOP)
1595 			optlen = 1;
1596 		else {
1597 			optlen = cp[1];
1598 			if (optlen <= 0)
1599 				break;
1600 		}
1601 		switch (opt) {
1602 
1603 		default:
1604 			continue;
1605 
1606 		case TCPOPT_MAXSEG:
1607 			if (optlen != TCPOLEN_MAXSEG)
1608 				continue;
1609 			if (!(ti->ti_flags & TH_SYN))
1610 				continue;
1611 			bcopy(cp + 2, &mss, sizeof(mss));
1612 			oi->maxseg = ntohs(mss);
1613 			break;
1614 
1615 		case TCPOPT_WINDOW:
1616 			if (optlen != TCPOLEN_WINDOW)
1617 				continue;
1618 			if (!(ti->ti_flags & TH_SYN))
1619 				continue;
1620 			tp->t_flags |= TF_RCVD_SCALE;
1621 			tp->requested_s_scale = cp[2];
1622 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
1623 				log(LOG_ERR, "TCP: invalid wscale %d from "
1624 				    "0x%08x, assuming %d\n",
1625 				    tp->requested_s_scale,
1626 				    ntohl(ti->ti_src.s_addr),
1627 				    TCP_MAX_WINSHIFT);
1628 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
1629 			}
1630 			break;
1631 
1632 		case TCPOPT_TIMESTAMP:
1633 			if (optlen != TCPOLEN_TIMESTAMP)
1634 				continue;
1635 			oi->ts_present = 1;
1636 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
1637 			NTOHL(oi->ts_val);
1638 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
1639 			NTOHL(oi->ts_ecr);
1640 
1641 			/*
1642 			 * A timestamp received in a SYN makes
1643 			 * it ok to send timestamp requests and replies.
1644 			 */
1645 			if (ti->ti_flags & TH_SYN) {
1646 				tp->t_flags |= TF_RCVD_TSTMP;
1647 				tp->ts_recent = oi->ts_val;
1648 				tp->ts_recent_age = tcp_now;
1649 			}
1650 			break;
1651 		case TCPOPT_SACK_PERMITTED:
1652 			if (optlen != TCPOLEN_SACK_PERMITTED)
1653 				continue;
1654 			if (!(ti->ti_flags & TH_SYN))
1655 				continue;
1656 			tp->t_flags &= ~TF_CANT_TXSACK;
1657 			break;
1658 
1659 		case TCPOPT_SACK:
1660 			if (tp->t_flags & TF_IGNR_RXSACK)
1661 				continue;
1662 			if (optlen % 8 != 2 || optlen < 10)
1663 				continue;
1664 			cp += 2;
1665 			optlen -= 2;
1666 			for (; optlen > 0; cp -= 8, optlen -= 8) {
1667 				tcp_seq lwe, rwe;
1668 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
1669 				NTOHL(lwe);
1670 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
1671 				NTOHL(rwe);
1672 				/* tcp_mark_sacked(tp, lwe, rwe); */
1673 			}
1674 			break;
1675 		}
1676 	}
1677 }
1678 
1679 /*
1680  * Pull out of band byte out of a segment so
1681  * it doesn't appear in the user's data queue.
1682  * It is still reflected in the segment length for
1683  * sequencing purposes.
1684  */
1685 void
1686 tcp_pulloutofband(so, ti, m)
1687 	struct socket *so;
1688 	struct tcpiphdr *ti;
1689 	register struct mbuf *m;
1690 {
1691 	int cnt = ti->ti_urp - 1;
1692 
1693 	while (cnt >= 0) {
1694 		if (m->m_len > cnt) {
1695 			char *cp = mtod(m, caddr_t) + cnt;
1696 			struct tcpcb *tp = sototcpcb(so);
1697 
1698 			tp->t_iobc = *cp;
1699 			tp->t_oobflags |= TCPOOB_HAVEDATA;
1700 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1701 			m->m_len--;
1702 			return;
1703 		}
1704 		cnt -= m->m_len;
1705 		m = m->m_next;
1706 		if (m == 0)
1707 			break;
1708 	}
1709 	panic("tcp_pulloutofband");
1710 }
1711 
1712 /*
1713  * Collect new round-trip time estimate
1714  * and update averages and current timeout.
1715  */
1716 void
1717 tcp_xmit_timer(tp, rtt)
1718 	register struct tcpcb *tp;
1719 	short rtt;
1720 {
1721 	register short delta;
1722 	short rttmin;
1723 
1724 	tcpstat.tcps_rttupdated++;
1725 	--rtt;
1726 	if (tp->t_srtt != 0) {
1727 		/*
1728 		 * srtt is stored as fixed point with 3 bits after the
1729 		 * binary point (i.e., scaled by 8).  The following magic
1730 		 * is equivalent to the smoothing algorithm in rfc793 with
1731 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1732 		 * point).  Adjust rtt to origin 0.
1733 		 */
1734 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
1735 		if ((tp->t_srtt += delta) <= 0)
1736 			tp->t_srtt = 1 << 2;
1737 		/*
1738 		 * We accumulate a smoothed rtt variance (actually, a
1739 		 * smoothed mean difference), then set the retransmit
1740 		 * timer to smoothed rtt + 4 times the smoothed variance.
1741 		 * rttvar is stored as fixed point with 2 bits after the
1742 		 * binary point (scaled by 4).  The following is
1743 		 * equivalent to rfc793 smoothing with an alpha of .75
1744 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
1745 		 * rfc793's wired-in beta.
1746 		 */
1747 		if (delta < 0)
1748 			delta = -delta;
1749 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1750 		if ((tp->t_rttvar += delta) <= 0)
1751 			tp->t_rttvar = 1 << 2;
1752 	} else {
1753 		/*
1754 		 * No rtt measurement yet - use the unsmoothed rtt.
1755 		 * Set the variance to half the rtt (so our first
1756 		 * retransmit happens at 3*rtt).
1757 		 */
1758 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
1759 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
1760 	}
1761 	tp->t_rtt = 0;
1762 	tp->t_rxtshift = 0;
1763 
1764 	/*
1765 	 * the retransmit should happen at rtt + 4 * rttvar.
1766 	 * Because of the way we do the smoothing, srtt and rttvar
1767 	 * will each average +1/2 tick of bias.  When we compute
1768 	 * the retransmit timer, we want 1/2 tick of rounding and
1769 	 * 1 extra tick because of +-1/2 tick uncertainty in the
1770 	 * firing of the timer.  The bias will give us exactly the
1771 	 * 1.5 tick we need.  But, because the bias is
1772 	 * statistical, we have to test that we don't drop below
1773 	 * the minimum feasible timer (which is 2 ticks).
1774 	 */
1775 	if (tp->t_rttmin > rtt + 2)
1776 		rttmin = tp->t_rttmin;
1777 	else
1778 		rttmin = rtt + 2;
1779 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
1780 
1781 	/*
1782 	 * We received an ack for a packet that wasn't retransmitted;
1783 	 * it is probably safe to discard any error indications we've
1784 	 * received recently.  This isn't quite right, but close enough
1785 	 * for now (a route might have failed after we sent a segment,
1786 	 * and the return path might not be symmetrical).
1787 	 */
1788 	tp->t_softerror = 0;
1789 }
1790 
1791 /*
1792  * Checks for partial ack.  If partial ack arrives, force the retransmission
1793  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
1794  * 1.  By setting snd_nxt to ti_ack, this forces retransmission timer to
1795  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
1796  */
1797 int
1798 tcp_newreno(tp, ti)
1799 	struct tcpcb *tp;
1800 	struct tcpiphdr *ti;
1801 {
1802 	if (SEQ_LT(ti->ti_ack, tp->snd_recover)) {
1803 	        tcp_seq onxt = tp->snd_nxt;
1804 	        tcp_seq ouna = tp->snd_una;  /* Haven't updated snd_una yet*/
1805 	        u_long  ocwnd = tp->snd_cwnd;
1806 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
1807 	        tp->t_rtt = 0;
1808 	        tp->snd_nxt = ti->ti_ack;
1809 	        tp->snd_cwnd = tp->t_segsz;
1810 	        tp->snd_una = ti->ti_ack;
1811 	        (void) tcp_output(tp);
1812 	        tp->snd_cwnd = ocwnd;
1813 	        tp->snd_una = ouna;
1814 	        if (SEQ_GT(onxt, tp->snd_nxt))
1815 	                tp->snd_nxt = onxt;
1816 	        /*
1817 	         * Partial window deflation.  Relies on fact that tp->snd_una
1818 	         * not updated yet.
1819 	         */
1820 	        tp->snd_cwnd -= (ti->ti_ack - tp->snd_una - tp->t_segsz);
1821 	        return 1;
1822 	}
1823 	return 0;
1824 }
1825 
1826 
1827 /*
1828  * TCP compressed state engine.  Currently used to hold compressed
1829  * state for SYN_RECEIVED.
1830  */
1831 
1832 u_long	syn_cache_count;
1833 u_int32_t syn_hash1, syn_hash2;
1834 
1835 #define SYN_HASH(sa, sp, dp) \
1836 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
1837 				     ((u_int32_t)(sp)))^syn_hash2)))
1838 
1839 LIST_HEAD(, syn_cache_head) tcp_syn_cache_queue;
1840 
1841 #define	SYN_CACHE_RM(sc, scp)						\
1842 do {									\
1843 	TAILQ_REMOVE(&(scp)->sch_queue, (sc), sc_queue);		\
1844 	if (--(scp)->sch_length	== 0)					\
1845 		LIST_REMOVE((scp), sch_headq);				\
1846 	syn_cache_count--;						\
1847 } while (0)
1848 
1849 struct pool syn_cache_pool;
1850 
1851 void
1852 syn_cache_init()
1853 {
1854 	int i;
1855 
1856 	/* Initialize the hash bucket queues. */
1857 	for (i = 0; i < tcp_syn_cache_size; i++)
1858 		TAILQ_INIT(&tcp_syn_cache[i].sch_queue);
1859 
1860 	/* Initialize the active hash bucket cache. */
1861 	LIST_INIT(&tcp_syn_cache_queue);
1862 
1863 	/* Initialize the syn cache pool. */
1864 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
1865 	    "synpl", 0, NULL, NULL, M_PCB);
1866 }
1867 
1868 void
1869 syn_cache_insert(sc)
1870 	struct syn_cache *sc;
1871 {
1872 	struct syn_cache_head *scp, *scp2, *sce;
1873 	struct syn_cache *sc2;
1874 	int s;
1875 
1876 	/*
1877 	 * If there are no entries in the hash table, reinitialize
1878 	 * the hash secrets.
1879 	 */
1880 	if (syn_cache_count == 0) {
1881 		struct timeval tv;
1882 		microtime(&tv);
1883 		syn_hash1 = random() ^ (u_long)&sc;
1884 		syn_hash2 = random() ^ tv.tv_usec;
1885 	}
1886 
1887 	sc->sc_hash = SYN_HASH(&sc->sc_src, sc->sc_sport, sc->sc_dport);
1888 	scp = &tcp_syn_cache[sc->sc_hash % tcp_syn_cache_size];
1889 
1890 	/*
1891 	 * Make sure that we don't overflow the per-bucket
1892 	 * limit or the total cache size limit.
1893 	 */
1894 	s = splsoftnet();
1895 	if (scp->sch_length >= tcp_syn_bucket_limit) {
1896 		tcpstat.tcps_sc_bucketoverflow++;
1897 		/*
1898 		 * The bucket is full.  Toss the first (i.e. oldest)
1899 		 * element in this bucket.
1900 		 */
1901 		sc2 = TAILQ_FIRST(&scp->sch_queue);
1902 		SYN_CACHE_RM(sc2, scp);
1903 		if (sc2->sc_ipopts)
1904 			(void) m_free(sc2->sc_ipopts);
1905 		pool_put(&syn_cache_pool, sc2);
1906 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
1907 		tcpstat.tcps_sc_overflowed++;
1908 		/*
1909 		 * The cache is full.  Toss the first (i.e. oldest)
1910 		 * element in the first non-empty bucket we can find.
1911 		 */
1912 		scp2 = scp;
1913 		if (TAILQ_FIRST(&scp2->sch_queue) == NULL) {
1914 			sce = &tcp_syn_cache[tcp_syn_cache_size];
1915 			for (++scp2; scp2 != scp; scp2++) {
1916 				if (scp2 >= sce)
1917 					scp2 = &tcp_syn_cache[0];
1918 				if (TAILQ_FIRST(&scp2->sch_queue) != NULL)
1919 					break;
1920 			}
1921 		}
1922 		sc2 = TAILQ_FIRST(&scp2->sch_queue);
1923 		if (sc2 == NULL) {
1924 			if (sc->sc_ipopts)
1925 				(void) m_free(sc->sc_ipopts);
1926 			pool_put(&syn_cache_pool, sc);
1927 			return;
1928 		}
1929 		SYN_CACHE_RM(sc2, scp2);
1930 		if (sc2->sc_ipopts)
1931 			(void) m_free(sc2->sc_ipopts);
1932 		pool_put(&syn_cache_pool, sc2);
1933 	}
1934 
1935 	/* Set entry's timer. */
1936 	PRT_SLOW_ARM(sc->sc_timer, tcp_syn_cache_timeo);
1937 
1938 	/* Put it into the bucket. */
1939 	TAILQ_INSERT_TAIL(&scp->sch_queue, sc, sc_queue);
1940 	if (++scp->sch_length == 1)
1941 		LIST_INSERT_HEAD(&tcp_syn_cache_queue, scp, sch_headq);
1942 	syn_cache_count++;
1943 
1944 	tcpstat.tcps_sc_added++;
1945 	splx(s);
1946 }
1947 
1948 /*
1949  * Walk down the cache list, looking for expired entries in each bucket.
1950  */
1951 void
1952 syn_cache_timer()
1953 {
1954 	struct syn_cache_head *scp, *nscp;
1955 	struct syn_cache *sc, *nsc;
1956 	int s;
1957 
1958 	s = splsoftnet();
1959 	for (scp = LIST_FIRST(&tcp_syn_cache_queue); scp != NULL; scp = nscp) {
1960 #ifdef DIAGNOSTIC
1961 		if (TAILQ_FIRST(&scp->sch_queue) == NULL)
1962 			panic("syn_cache_timer: queue inconsistency");
1963 #endif
1964 		nscp = LIST_NEXT(scp, sch_headq);
1965 		for (sc = TAILQ_FIRST(&scp->sch_queue);
1966 		     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_timer);
1967 		     sc = nsc) {
1968 			nsc = TAILQ_NEXT(sc, sc_queue);
1969 			tcpstat.tcps_sc_timed_out++;
1970 			SYN_CACHE_RM(sc, scp);
1971 			if (sc->sc_ipopts)
1972 				(void) m_free(sc->sc_ipopts);
1973 			pool_put(&syn_cache_pool, sc);
1974 		}
1975 	}
1976 	splx(s);
1977 }
1978 
1979 /*
1980  * Find an entry in the syn cache.
1981  */
1982 struct syn_cache *
1983 syn_cache_lookup(ti, headp)
1984 	struct tcpiphdr *ti;
1985 	struct syn_cache_head **headp;
1986 {
1987 	struct syn_cache *sc;
1988 	struct syn_cache_head *scp;
1989 	u_int32_t hash;
1990 	int s;
1991 
1992 	hash = SYN_HASH(&ti->ti_src, ti->ti_sport, ti->ti_dport);
1993 
1994 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
1995 	*headp = scp;
1996 	s = splsoftnet();
1997 	for (sc = TAILQ_FIRST(&scp->sch_queue); sc != NULL;
1998 	     sc = TAILQ_NEXT(sc, sc_queue)) {
1999 		if (sc->sc_hash != hash)
2000 			continue;
2001 		if (sc->sc_src.s_addr == ti->ti_src.s_addr &&
2002 		    sc->sc_sport == ti->ti_sport &&
2003 		    sc->sc_dport == ti->ti_dport &&
2004 		    sc->sc_dst.s_addr == ti->ti_dst.s_addr) {
2005 			splx(s);
2006 			return (sc);
2007 		}
2008 	}
2009 	splx(s);
2010 	return (NULL);
2011 }
2012 
2013 /*
2014  * This function gets called when we receive an ACK for a
2015  * socket in the LISTEN state.  We look up the connection
2016  * in the syn cache, and if its there, we pull it out of
2017  * the cache and turn it into a full-blown connection in
2018  * the SYN-RECEIVED state.
2019  *
2020  * The return values may not be immediately obvious, and their effects
2021  * can be subtle, so here they are:
2022  *
2023  *	NULL	SYN was not found in cache; caller should drop the
2024  *		packet and send an RST.
2025  *
2026  *	-1	We were unable to create the new connection, and are
2027  *		aborting it.  An ACK,RST is being sent to the peer
2028  *		(unless we got screwey sequence numbners; see below),
2029  *		because the 3-way handshake has been completed.  Caller
2030  *		should not free the mbuf, since we may be using it.  If
2031  *		we are not, we will free it.
2032  *
2033  *	Otherwise, the return value is a pointer to the new socket
2034  *	associated with the connection.
2035  */
2036 struct socket *
2037 syn_cache_get(so, m)
2038 	struct socket *so;
2039 	struct mbuf *m;
2040 {
2041 	struct syn_cache *sc;
2042 	struct syn_cache_head *scp;
2043 	register struct inpcb *inp;
2044 	register struct tcpcb *tp = 0;
2045 	register struct tcpiphdr *ti;
2046 	struct sockaddr_in *sin;
2047 	struct mbuf *am;
2048 	long win;
2049 	int s;
2050 
2051 	ti = mtod(m, struct tcpiphdr *);
2052 	s = splsoftnet();
2053 	if ((sc = syn_cache_lookup(ti, &scp)) == NULL) {
2054 		splx(s);
2055 		return (NULL);
2056 	}
2057 
2058 	win = sbspace(&so->so_rcv);
2059 	if (win > TCP_MAXWIN)
2060 		win = TCP_MAXWIN;
2061 
2062 	/*
2063 	 * Verify the sequence and ack numbers.
2064 	 */
2065 	if ((ti->ti_ack != sc->sc_iss + 1) ||
2066 	    SEQ_LEQ(ti->ti_seq, sc->sc_irs) ||
2067 	    SEQ_GT(ti->ti_seq, sc->sc_irs + 1 + win)) {
2068 		(void) syn_cache_respond(sc, m, ti, win, 0);
2069 		splx(s);
2070 		return ((struct socket *)(-1));
2071 	}
2072 
2073 	/* Remove this cache entry */
2074 	SYN_CACHE_RM(sc, scp);
2075 	splx(s);
2076 
2077 	/*
2078 	 * Ok, create the full blown connection, and set things up
2079 	 * as they would have been set up if we had created the
2080 	 * connection when the SYN arrived.  If we can't create
2081 	 * the connection, abort it.
2082 	 */
2083 	so = sonewconn(so, SS_ISCONNECTED);
2084 	if (so == NULL)
2085 		goto resetandabort;
2086 
2087 	inp = sotoinpcb(so);
2088 	inp->inp_laddr = sc->sc_dst;
2089 	inp->inp_lport = sc->sc_dport;
2090 	in_pcbstate(inp, INP_BOUND);
2091 	inp->inp_options = ip_srcroute();
2092 	if (inp->inp_options == NULL) {
2093 		inp->inp_options = sc->sc_ipopts;
2094 		sc->sc_ipopts = NULL;
2095 	}
2096 
2097 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
2098 	if (am == NULL)
2099 		goto resetandabort;
2100 	am->m_len = sizeof(struct sockaddr_in);
2101 	sin = mtod(am, struct sockaddr_in *);
2102 	sin->sin_family = AF_INET;
2103 	sin->sin_len = sizeof(*sin);
2104 	sin->sin_addr = sc->sc_src;
2105 	sin->sin_port = sc->sc_sport;
2106 	bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
2107 	if (in_pcbconnect(inp, am)) {
2108 		(void) m_free(am);
2109 		goto resetandabort;
2110 	}
2111 	(void) m_free(am);
2112 
2113 	tp = intotcpcb(inp);
2114 	if (sc->sc_request_r_scale != 15) {
2115 		tp->requested_s_scale = sc->sc_requested_s_scale;
2116 		tp->request_r_scale = sc->sc_request_r_scale;
2117 		tp->snd_scale = sc->sc_requested_s_scale;
2118 		tp->rcv_scale = sc->sc_request_r_scale;
2119 		tp->t_flags |= TF_RCVD_SCALE;
2120 	}
2121 	if (sc->sc_flags & SCF_TIMESTAMP)
2122 		tp->t_flags |= TF_RCVD_TSTMP;
2123 
2124 	tp->t_template = tcp_template(tp);
2125 	if (tp->t_template == 0) {
2126 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
2127 		so = NULL;
2128 		m_freem(m);
2129 		goto abort;
2130 	}
2131 
2132 	tp->iss = sc->sc_iss;
2133 	tp->irs = sc->sc_irs;
2134 	tcp_sendseqinit(tp);
2135 	tcp_rcvseqinit(tp);
2136 	tp->t_state = TCPS_SYN_RECEIVED;
2137 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
2138 	tcpstat.tcps_accepts++;
2139 
2140 	/* Initialize tp->t_ourmss before we deal with the peer's! */
2141 	tp->t_ourmss = sc->sc_ourmaxseg;
2142 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
2143 
2144 	/*
2145 	 * Initialize the initial congestion window.  If we
2146 	 * had to retransmit the SYN,ACK, we must initialize cwnd
2147 	 * to 1 segment (i.e. the Loss Window).
2148 	 */
2149 	if (sc->sc_rexmt_count)
2150 		tp->snd_cwnd = tp->t_peermss;
2151 	else
2152 		tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
2153 
2154 	tcp_rmx_rtt(tp);
2155 	tp->snd_wl1 = sc->sc_irs;
2156 	tp->rcv_up = sc->sc_irs + 1;
2157 
2158 	/*
2159 	 * This is what whould have happened in tcp_ouput() when
2160 	 * the SYN,ACK was sent.
2161 	 */
2162 	tp->snd_up = tp->snd_una;
2163 	tp->snd_max = tp->snd_nxt = tp->iss+1;
2164 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2165 	if (win > 0 && SEQ_GT(tp->rcv_nxt+win, tp->rcv_adv))
2166 		tp->rcv_adv = tp->rcv_nxt + win;
2167 	tp->last_ack_sent = tp->rcv_nxt;
2168 
2169 	tcpstat.tcps_sc_completed++;
2170 	if (sc->sc_ipopts)
2171 		(void) m_free(sc->sc_ipopts);
2172 	pool_put(&syn_cache_pool, sc);
2173 	return (so);
2174 
2175 resetandabort:
2176 	(void) tcp_respond(NULL, ti, m, ti->ti_seq+ti->ti_len,
2177 	    (tcp_seq)0, TH_RST|TH_ACK);
2178 abort:
2179 	if (so != NULL)
2180 		(void) soabort(so);
2181 	if (sc->sc_ipopts)
2182 		(void) m_free(sc->sc_ipopts);
2183 	pool_put(&syn_cache_pool, sc);
2184 	tcpstat.tcps_sc_aborted++;
2185 	return ((struct socket *)(-1));
2186 }
2187 
2188 /*
2189  * This function is called when we get a RST for a
2190  * non-existant connection, so that we can see if the
2191  * connection is in the syn cache.  If it is, zap it.
2192  */
2193 
2194 void
2195 syn_cache_reset(ti)
2196 	register struct tcpiphdr *ti;
2197 {
2198 	struct syn_cache *sc;
2199 	struct syn_cache_head *scp;
2200 	int s = splsoftnet();
2201 
2202 	if ((sc = syn_cache_lookup(ti, &scp)) == NULL) {
2203 		splx(s);
2204 		return;
2205 	}
2206 	if (SEQ_LT(ti->ti_seq,sc->sc_irs) ||
2207 	    SEQ_GT(ti->ti_seq, sc->sc_irs+1)) {
2208 		splx(s);
2209 		return;
2210 	}
2211 	SYN_CACHE_RM(sc, scp);
2212 	splx(s);
2213 	tcpstat.tcps_sc_reset++;
2214 	if (sc->sc_ipopts)
2215 		(void) m_free(sc->sc_ipopts);
2216 	pool_put(&syn_cache_pool, sc);
2217 }
2218 
2219 void
2220 syn_cache_unreach(ip, th)
2221 	struct ip *ip;
2222 	struct tcphdr *th;
2223 {
2224 	struct syn_cache *sc;
2225 	struct syn_cache_head *scp;
2226 	struct tcpiphdr ti2;
2227 	int s;
2228 
2229 	ti2.ti_src.s_addr = ip->ip_dst.s_addr;
2230 	ti2.ti_dst.s_addr = ip->ip_src.s_addr;
2231 	ti2.ti_sport = th->th_dport;
2232 	ti2.ti_dport = th->th_sport;
2233 
2234 	s = splsoftnet();
2235 	if ((sc = syn_cache_lookup(&ti2, &scp)) == NULL) {
2236 		splx(s);
2237 		return;
2238 	}
2239 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
2240 	if (ntohl (th->th_seq) != sc->sc_iss) {
2241 		splx(s);
2242 		return;
2243 	}
2244 
2245 	/*
2246 	 * If we've rertransmitted 3 times and this is our second error,
2247 	 * we remove the entry.  Otherwise, we allow it to continue on.
2248 	 * This prevents us from incorrectly nuking an entry during a
2249 	 * spurious network outage.
2250 	 *
2251 	 * See tcp_notify().
2252 	 */
2253 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rexmt_count < 3) {
2254 		sc->sc_flags |= SCF_UNREACH;
2255 		splx(s);
2256 		return;
2257 	}
2258 
2259 	SYN_CACHE_RM(sc, scp);
2260 	splx(s);
2261 	tcpstat.tcps_sc_unreach++;
2262 	if (sc->sc_ipopts)
2263 		(void) m_free(sc->sc_ipopts);
2264 	pool_put(&syn_cache_pool, sc);
2265 }
2266 
2267 /*
2268  * Given a LISTEN socket and an inbound SYN request, add
2269  * this to the syn cache, and send back a segment:
2270  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
2271  * to the source.
2272  *
2273  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
2274  * Doing so would require that we hold onto the data and deliver it
2275  * to the application.  However, if we are the target of a SYN-flood
2276  * DoS attack, an attacker could send data which would eventually
2277  * consume all available buffer space if it were ACKed.  By not ACKing
2278  * the data, we avoid this DoS scenario.
2279  */
2280 
2281 int
2282 syn_cache_add(so, m, optp, optlen, oi)
2283 	struct socket *so;
2284 	struct mbuf *m;
2285 	u_char *optp;
2286 	int optlen;
2287 	struct tcp_opt_info *oi;
2288 {
2289 	register struct tcpiphdr *ti;
2290 	struct tcpcb tb, *tp;
2291 	long win;
2292 	struct syn_cache *sc;
2293 	struct syn_cache_head *scp;
2294 	struct mbuf *ipopts;
2295 
2296 	tp = sototcpcb(so);
2297 	ti = mtod(m, struct tcpiphdr *);
2298 
2299 	/*
2300 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
2301 	 * in_broadcast() should never return true on a received
2302 	 * packet with M_BCAST not set.
2303 	 */
2304 	if (m->m_flags & (M_BCAST|M_MCAST) ||
2305 	    IN_MULTICAST(ti->ti_src.s_addr) ||
2306 	    IN_MULTICAST(ti->ti_dst.s_addr))
2307 		return (0);
2308 
2309 	/*
2310 	 * Initialize some local state.
2311 	 */
2312 	win = sbspace(&so->so_rcv);
2313 	if (win > TCP_MAXWIN)
2314 		win = TCP_MAXWIN;
2315 
2316 	/*
2317 	 * Remember the IP options, if any.
2318 	 */
2319 	ipopts = ip_srcroute();
2320 
2321 	if (optp) {
2322 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
2323 		tcp_dooptions(&tb, optp, optlen, ti, oi);
2324 	} else
2325 		tb.t_flags = 0;
2326 
2327 	/*
2328 	 * See if we already have an entry for this connection.
2329 	 * If we do, resend the SYN,ACK, and remember since the
2330 	 * initial congestion window must be initialized to 1
2331 	 * segment when the connection completes.
2332 	 */
2333 	if ((sc = syn_cache_lookup(ti, &scp)) != NULL) {
2334 		tcpstat.tcps_sc_dupesyn++;
2335 		sc->sc_rexmt_count++;
2336 		if (sc->sc_rexmt_count == 0) {
2337 			/*
2338 			 * Eeek!  We rolled the counter.  Just set it
2339 			 * to the max value.  This shouldn't ever happen,
2340 			 * but there's no real reason to panic here, since
2341 			 * the count doesn't have to be very precise.
2342 			 */
2343 			sc->sc_rexmt_count = USHRT_MAX;
2344 		}
2345 
2346 		if (ipopts) {
2347 			/*
2348 			 * If we were remembering a previous source route,
2349 			 * forget it and use the new one we've been given.
2350 			 */
2351 			if (sc->sc_ipopts)
2352 				(void) m_free(sc->sc_ipopts);
2353 			sc->sc_ipopts = ipopts;
2354 		}
2355 
2356 		if (syn_cache_respond(sc, m, ti, win, tb.ts_recent) == 0) {
2357 			tcpstat.tcps_sndacks++;
2358 			tcpstat.tcps_sndtotal++;
2359 		}
2360 		return (1);
2361 	}
2362 
2363 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
2364 	if (sc == NULL) {
2365 		if (ipopts)
2366 			(void) m_free(ipopts);
2367 		return (0);
2368 	}
2369 
2370 	/*
2371 	 * Fill in the cache, and put the necessary IP and TCP
2372 	 * options into the reply.
2373 	 */
2374 	sc->sc_src.s_addr = ti->ti_src.s_addr;
2375 	sc->sc_dst.s_addr = ti->ti_dst.s_addr;
2376 	sc->sc_sport = ti->ti_sport;
2377 	sc->sc_dport = ti->ti_dport;
2378 	sc->sc_flags = 0;
2379 	sc->sc_ipopts = ipopts;
2380 	sc->sc_irs = ti->ti_seq;
2381 	sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
2382 	sc->sc_peermaxseg = oi->maxseg;
2383 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
2384 						m->m_pkthdr.rcvif : NULL);
2385 	if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
2386 		sc->sc_flags |= SCF_TIMESTAMP;
2387 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2388 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2389 		sc->sc_requested_s_scale = tb.requested_s_scale;
2390 		sc->sc_request_r_scale = 0;
2391 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
2392 		    TCP_MAXWIN << sc->sc_request_r_scale <
2393 		    so->so_rcv.sb_hiwat)
2394 			sc->sc_request_r_scale++;
2395 	} else {
2396 		sc->sc_requested_s_scale = 15;
2397 		sc->sc_request_r_scale = 15;
2398 	}
2399 	if (syn_cache_respond(sc, m, ti, win, tb.ts_recent) == 0) {
2400 		syn_cache_insert(sc);
2401 		tcpstat.tcps_sndacks++;
2402 		tcpstat.tcps_sndtotal++;
2403 	} else {
2404 		if (sc->sc_ipopts)
2405 			(void) m_free(sc->sc_ipopts);
2406 		pool_put(&syn_cache_pool, sc);
2407 		tcpstat.tcps_sc_dropped++;
2408 	}
2409 	return (1);
2410 }
2411 
2412 int
2413 syn_cache_respond(sc, m, ti, win, ts)
2414 	struct syn_cache *sc;
2415 	struct mbuf *m;
2416 	register struct tcpiphdr *ti;
2417 	long win;
2418 	u_long ts;
2419 {
2420 	u_int8_t *optp;
2421 	int optlen;
2422 
2423 	/*
2424 	 * Tack on the TCP options.  If there isn't enough trailing
2425 	 * space for them, move up the fixed header to make space.
2426 	 */
2427 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
2428 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
2429 	if (optlen > M_TRAILINGSPACE(m)) {
2430 		if (M_LEADINGSPACE(m) >= optlen) {
2431 			m->m_data -= optlen;
2432 			m->m_len += optlen;
2433 		} else {
2434 			struct mbuf *m0 = m;
2435 			if ((m = m_gethdr(M_DONTWAIT, MT_HEADER)) == NULL) {
2436 				m_freem(m0);
2437 				return (ENOBUFS);
2438 			}
2439 			MH_ALIGN(m, sizeof(*ti) + optlen);
2440 			m->m_next = m0; /* this gets freed below */
2441 		}
2442 		bcopy((caddr_t)ti, mtod(m, caddr_t), sizeof(*ti));
2443 		ti = mtod(m, struct tcpiphdr *);
2444 	}
2445 
2446 	optp = (u_int8_t *)(ti + 1);
2447 	optp[0] = TCPOPT_MAXSEG;
2448 	optp[1] = 4;
2449 	optp[2] = (sc->sc_ourmaxseg >> 8) & 0xff;
2450 	optp[3] = sc->sc_ourmaxseg & 0xff;
2451 	optlen = 4;
2452 
2453 	if (sc->sc_request_r_scale != 15) {
2454 		*((u_int32_t *)(optp + optlen)) = htonl(TCPOPT_NOP << 24 |
2455 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
2456 		    sc->sc_request_r_scale);
2457 		optlen += 4;
2458 	}
2459 
2460 	if (sc->sc_flags & SCF_TIMESTAMP) {
2461 		u_int32_t *lp = (u_int32_t *)(optp + optlen);
2462 		/* Form timestamp option as shown in appendix A of RFC 1323. */
2463 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
2464 		*lp++ = htonl(tcp_now);
2465 		*lp   = htonl(ts);
2466 		optlen += TCPOLEN_TSTAMP_APPA;
2467 	}
2468 
2469 	/*
2470 	 * Toss any trailing mbufs.  No need to worry about
2471 	 * m_len and m_pkthdr.len, since tcp_respond() will
2472 	 * unconditionally set them.
2473 	 */
2474 	if (m->m_next) {
2475 		m_freem(m->m_next);
2476 		m->m_next = NULL;
2477   	}
2478 
2479 	/*
2480 	 * Fill in the fields that tcp_respond() will not touch, and
2481 	 * then send the response.
2482 	 */
2483 	ti->ti_off = (sizeof(struct tcphdr) + optlen) >> 2;
2484 	ti->ti_win = htons(win);
2485 	return (tcp_respond(NULL, ti, m, sc->sc_irs + 1, sc->sc_iss,
2486 	    TH_SYN|TH_ACK));
2487 }
2488