xref: /netbsd-src/sys/netinet/tcp_input.c (revision 7c7c171d130af9949261bc7dce2150a03c3d239c)
1 /*	$NetBSD: tcp_input.c,v 1.51 1998/04/13 21:18:19 kml Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
9  * Facility, NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
42  *	The Regents of the University of California.  All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. All advertising materials mentioning features or use of this software
53  *    must display the following acknowledgement:
54  *	This product includes software developed by the University of
55  *	California, Berkeley and its contributors.
56  * 4. Neither the name of the University nor the names of its contributors
57  *    may be used to endorse or promote products derived from this software
58  *    without specific prior written permission.
59  *
60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70  * SUCH DAMAGE.
71  *
72  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
73  */
74 
75 /*
76  *	TODO list for SYN cache stuff:
77  *
78  *	Find room for a "state" field, which is needed to keep a
79  *	compressed state for TIME_WAIT TCBs.  It's been noted already
80  *	that this is fairly important for very high-volume web and
81  *	mail servers, which use a large number of short-lived
82  *	connections.
83  */
84 
85 #ifndef TUBA_INCLUDE
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/malloc.h>
89 #include <sys/mbuf.h>
90 #include <sys/protosw.h>
91 #include <sys/socket.h>
92 #include <sys/socketvar.h>
93 #include <sys/errno.h>
94 
95 #include <net/if.h>
96 #include <net/route.h>
97 
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/in_pcb.h>
102 #include <netinet/ip_var.h>
103 #include <netinet/tcp.h>
104 #include <netinet/tcp_fsm.h>
105 #include <netinet/tcp_seq.h>
106 #include <netinet/tcp_timer.h>
107 #include <netinet/tcp_var.h>
108 #include <netinet/tcpip.h>
109 #include <netinet/tcp_debug.h>
110 
111 #include <machine/stdarg.h>
112 
113 int	tcprexmtthresh = 3;
114 struct	tcpiphdr tcp_saveti;
115 
116 extern u_long sb_max;
117 
118 #endif /* TUBA_INCLUDE */
119 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
120 
121 /* for modulo comparisons of timestamps */
122 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
123 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
124 
125 /*
126  * Macro to compute ACK transmission behavior.  Delay the ACK unless
127  * we have already delayed an ACK (must send an ACK every two segments).
128  */
129 #define	TCP_SETUP_ACK(tp, ti) \
130 do { \
131 	if ((tp)->t_flags & TF_DELACK) \
132 		tp->t_flags |= TF_ACKNOW; \
133 	else \
134 		TCP_SET_DELACK(tp); \
135 } while (0)
136 
137 /*
138  * Insert segment ti into reassembly queue of tcp with
139  * control block tp.  Return TH_FIN if reassembly now includes
140  * a segment with FIN.  The macro form does the common case inline
141  * (segment is the next to be received on an established connection,
142  * and the queue is empty), avoiding linkage into and removal
143  * from the queue and repetition of various conversions.
144  * Set DELACK for segments received in order, but ack immediately
145  * when segments are out of order (so fast retransmit can work).
146  */
147 #define	TCP_REASS(tp, ti, m, so, flags) { \
148 	if ((ti)->ti_seq == (tp)->rcv_nxt && \
149 	    (tp)->segq.lh_first == NULL && \
150 	    (tp)->t_state == TCPS_ESTABLISHED) { \
151 		TCP_SETUP_ACK(tp, ti); \
152 		(tp)->rcv_nxt += (ti)->ti_len; \
153 		flags = (ti)->ti_flags & TH_FIN; \
154 		tcpstat.tcps_rcvpack++;\
155 		tcpstat.tcps_rcvbyte += (ti)->ti_len;\
156 		sbappend(&(so)->so_rcv, (m)); \
157 		sorwakeup(so); \
158 	} else { \
159 		(flags) = tcp_reass((tp), (ti), (m)); \
160 		tp->t_flags |= TF_ACKNOW; \
161 	} \
162 }
163 #ifndef TUBA_INCLUDE
164 
165 int
166 tcp_reass(tp, ti, m)
167 	register struct tcpcb *tp;
168 	register struct tcpiphdr *ti;
169 	struct mbuf *m;
170 {
171 	register struct ipqent *p, *q, *nq, *tiqe;
172 	struct socket *so = tp->t_inpcb->inp_socket;
173 	int flags;
174 
175 	/*
176 	 * Call with ti==0 after become established to
177 	 * force pre-ESTABLISHED data up to user socket.
178 	 */
179 	if (ti == 0)
180 		goto present;
181 
182 	/*
183 	 * Allocate a new queue entry, before we throw away any data.
184 	 * If we can't, just drop the packet.  XXX
185 	 */
186 	MALLOC(tiqe, struct ipqent *, sizeof (struct ipqent), M_IPQ, M_NOWAIT);
187 	if (tiqe == NULL) {
188 		tcpstat.tcps_rcvmemdrop++;
189 		m_freem(m);
190 		return (0);
191 	}
192 
193 	/*
194 	 * Find a segment which begins after this one does.
195 	 */
196 	for (p = NULL, q = tp->segq.lh_first; q != NULL;
197 	    p = q, q = q->ipqe_q.le_next)
198 		if (SEQ_GT(q->ipqe_tcp->ti_seq, ti->ti_seq))
199 			break;
200 
201 	/*
202 	 * If there is a preceding segment, it may provide some of
203 	 * our data already.  If so, drop the data from the incoming
204 	 * segment.  If it provides all of our data, drop us.
205 	 */
206 	if (p != NULL) {
207 		register struct tcpiphdr *phdr = p->ipqe_tcp;
208 		register int i;
209 
210 		/* conversion to int (in i) handles seq wraparound */
211 		i = phdr->ti_seq + phdr->ti_len - ti->ti_seq;
212 		if (i > 0) {
213 			if (i >= ti->ti_len) {
214 				tcpstat.tcps_rcvduppack++;
215 				tcpstat.tcps_rcvdupbyte += ti->ti_len;
216 				m_freem(m);
217 				FREE(tiqe, M_IPQ);
218 				return (0);
219 			}
220 			m_adj(m, i);
221 			ti->ti_len -= i;
222 			ti->ti_seq += i;
223 		}
224 	}
225 	tcpstat.tcps_rcvoopack++;
226 	tcpstat.tcps_rcvoobyte += ti->ti_len;
227 
228 	/*
229 	 * While we overlap succeeding segments trim them or,
230 	 * if they are completely covered, dequeue them.
231 	 */
232 	for (; q != NULL; q = nq) {
233 		register struct tcpiphdr *qhdr = q->ipqe_tcp;
234 		register int i = (ti->ti_seq + ti->ti_len) - qhdr->ti_seq;
235 
236 		if (i <= 0)
237 			break;
238 		if (i < qhdr->ti_len) {
239 			qhdr->ti_seq += i;
240 			qhdr->ti_len -= i;
241 			m_adj(q->ipqe_m, i);
242 			break;
243 		}
244 		nq = q->ipqe_q.le_next;
245 		m_freem(q->ipqe_m);
246 		LIST_REMOVE(q, ipqe_q);
247 		FREE(q, M_IPQ);
248 	}
249 
250 	/* Insert the new fragment queue entry into place. */
251 	tiqe->ipqe_m = m;
252 	tiqe->ipqe_tcp = ti;
253 	if (p == NULL) {
254 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
255 	} else {
256 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
257 	}
258 
259 present:
260 	/*
261 	 * Present data to user, advancing rcv_nxt through
262 	 * completed sequence space.
263 	 */
264 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
265 		return (0);
266 	q = tp->segq.lh_first;
267 	if (q == NULL || q->ipqe_tcp->ti_seq != tp->rcv_nxt)
268 		return (0);
269 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_tcp->ti_len)
270 		return (0);
271 	do {
272 		tp->rcv_nxt += q->ipqe_tcp->ti_len;
273 		flags = q->ipqe_tcp->ti_flags & TH_FIN;
274 
275 		nq = q->ipqe_q.le_next;
276 		LIST_REMOVE(q, ipqe_q);
277 		if (so->so_state & SS_CANTRCVMORE)
278 			m_freem(q->ipqe_m);
279 		else
280 			sbappend(&so->so_rcv, q->ipqe_m);
281 		FREE(q, M_IPQ);
282 		q = nq;
283 	} while (q != NULL && q->ipqe_tcp->ti_seq == tp->rcv_nxt);
284 	sorwakeup(so);
285 	return (flags);
286 }
287 
288 /*
289  * TCP input routine, follows pages 65-76 of the
290  * protocol specification dated September, 1981 very closely.
291  */
292 void
293 #if __STDC__
294 tcp_input(struct mbuf *m, ...)
295 #else
296 tcp_input(m, va_alist)
297 	register struct mbuf *m;
298 #endif
299 {
300 	register struct tcpiphdr *ti;
301 	register struct inpcb *inp;
302 	caddr_t optp = NULL;
303 	int optlen = 0;
304 	int len, tlen, off, hdroptlen;
305 	register struct tcpcb *tp = 0;
306 	register int tiflags;
307 	struct socket *so = NULL;
308 	int todrop, acked, ourfinisacked, needoutput = 0;
309 	short ostate = 0;
310 	int iss = 0;
311 	u_long tiwin;
312 	struct tcp_opt_info opti;
313 	int iphlen;
314 	va_list ap;
315 
316 	va_start(ap, m);
317 	iphlen = va_arg(ap, int);
318 	va_end(ap);
319 
320 	tcpstat.tcps_rcvtotal++;
321 
322 	opti.ts_present = 0;
323 	opti.maxseg = 0;
324 
325 	/*
326 	 * Get IP and TCP header together in first mbuf.
327 	 * Note: IP leaves IP header in first mbuf.
328 	 */
329 	ti = mtod(m, struct tcpiphdr *);
330 	if (iphlen > sizeof (struct ip))
331 		ip_stripoptions(m, (struct mbuf *)0);
332 	if (m->m_len < sizeof (struct tcpiphdr)) {
333 		if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
334 			tcpstat.tcps_rcvshort++;
335 			return;
336 		}
337 		ti = mtod(m, struct tcpiphdr *);
338 	}
339 
340 	/*
341 	 * Checksum extended TCP header and data.
342 	 */
343 	tlen = ((struct ip *)ti)->ip_len;
344 	len = sizeof (struct ip) + tlen;
345 	bzero(ti->ti_x1, sizeof ti->ti_x1);
346 	ti->ti_len = (u_int16_t)tlen;
347 	HTONS(ti->ti_len);
348 	if ((ti->ti_sum = in_cksum(m, len)) != 0) {
349 		tcpstat.tcps_rcvbadsum++;
350 		goto drop;
351 	}
352 #endif /* TUBA_INCLUDE */
353 
354 	/*
355 	 * Check that TCP offset makes sense,
356 	 * pull out TCP options and adjust length.		XXX
357 	 */
358 	off = ti->ti_off << 2;
359 	if (off < sizeof (struct tcphdr) || off > tlen) {
360 		tcpstat.tcps_rcvbadoff++;
361 		goto drop;
362 	}
363 	tlen -= off;
364 	ti->ti_len = tlen;
365 	if (off > sizeof (struct tcphdr)) {
366 		if (m->m_len < sizeof(struct ip) + off) {
367 			if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
368 				tcpstat.tcps_rcvshort++;
369 				return;
370 			}
371 			ti = mtod(m, struct tcpiphdr *);
372 		}
373 		optlen = off - sizeof (struct tcphdr);
374 		optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
375 		/*
376 		 * Do quick retrieval of timestamp options ("options
377 		 * prediction?").  If timestamp is the only option and it's
378 		 * formatted as recommended in RFC 1323 appendix A, we
379 		 * quickly get the values now and not bother calling
380 		 * tcp_dooptions(), etc.
381 		 */
382 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
383 		     (optlen > TCPOLEN_TSTAMP_APPA &&
384 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
385 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
386 		     (ti->ti_flags & TH_SYN) == 0) {
387 			opti.ts_present = 1;
388 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
389 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
390 			optp = NULL;	/* we've parsed the options */
391 		}
392 	}
393 	tiflags = ti->ti_flags;
394 
395 	/*
396 	 * Convert TCP protocol specific fields to host format.
397 	 */
398 	NTOHL(ti->ti_seq);
399 	NTOHL(ti->ti_ack);
400 	NTOHS(ti->ti_win);
401 	NTOHS(ti->ti_urp);
402 
403 	/*
404 	 * Locate pcb for segment.
405 	 */
406 findpcb:
407 	inp = in_pcblookup_connect(&tcbtable, ti->ti_src, ti->ti_sport,
408 	    ti->ti_dst, ti->ti_dport);
409 	if (inp == 0) {
410 		++tcpstat.tcps_pcbhashmiss;
411 		inp = in_pcblookup_bind(&tcbtable, ti->ti_dst, ti->ti_dport);
412 		if (inp == 0) {
413 			++tcpstat.tcps_noport;
414 			goto dropwithreset;
415 		}
416 	}
417 
418 	/*
419 	 * If the state is CLOSED (i.e., TCB does not exist) then
420 	 * all data in the incoming segment is discarded.
421 	 * If the TCB exists but is in CLOSED state, it is embryonic,
422 	 * but should either do a listen or a connect soon.
423 	 */
424 	tp = intotcpcb(inp);
425 	if (tp == 0)
426 		goto dropwithreset;
427 	if (tp->t_state == TCPS_CLOSED)
428 		goto drop;
429 
430 	/* Unscale the window into a 32-bit value. */
431 	if ((tiflags & TH_SYN) == 0)
432 		tiwin = ti->ti_win << tp->snd_scale;
433 	else
434 		tiwin = ti->ti_win;
435 
436 	so = inp->inp_socket;
437 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
438 		if (so->so_options & SO_DEBUG) {
439 			ostate = tp->t_state;
440 			tcp_saveti = *ti;
441 		}
442 		if (so->so_options & SO_ACCEPTCONN) {
443   			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
444 				if (tiflags & TH_RST) {
445 					syn_cache_reset(ti);
446 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
447 				    (TH_ACK|TH_SYN)) {
448 					/*
449 					 * Received a SYN,ACK.  This should
450 					 * never happen while we are in
451 					 * LISTEN.  Send an RST.
452 					 */
453 					goto badsyn;
454 				} else if (tiflags & TH_ACK) {
455 					so = syn_cache_get(so, m);
456 					if (so == NULL) {
457 						/*
458 						 * We don't have a SYN for
459 						 * this ACK; send an RST.
460 						 */
461 						goto badsyn;
462 					} else if (so ==
463 					    (struct socket *)(-1)) {
464 						/*
465 						 * We were unable to create
466 						 * the connection.  If the
467 						 * 3-way handshake was
468 						 * completeed, and RST has
469 						 * been sent to the peer.
470 						 * Since the mbuf might be
471 						 * in use for the reply,
472 						 * do not free it.
473 						 */
474 						m = NULL;
475 					} else {
476 						/*
477 						 * We have created a
478 						 * full-blown connection.
479 						 */
480 						inp = sotoinpcb(so);
481 						tp = intotcpcb(inp);
482 						tiwin <<= tp->snd_scale;
483 						goto after_listen;
484 					}
485   				}
486   			} else {
487 				/*
488 				 * Received a SYN.
489 				 */
490 				if (in_hosteq(ti->ti_src, ti->ti_dst) &&
491 				    ti->ti_sport == ti->ti_dport) {
492 					/*
493 					 * LISTEN socket received a SYN
494 					 * from itself?  This can't possibly
495 					 * be valid; drop the packet.
496 					 */
497 					tcpstat.tcps_badsyn++;
498 					goto drop;
499 				}
500 				/*
501 				 * SYN looks ok; create compressed TCP
502 				 * state for it.
503 				 */
504 				if (so->so_qlen <= so->so_qlimit &&
505 				    syn_cache_add(so, m, optp, optlen, &opti))
506 					m = NULL;
507 			}
508 			goto drop;
509 		}
510 	}
511 
512 after_listen:
513 #ifdef DIAGNOSTIC
514 	/*
515 	 * Should not happen now that all embryonic connections
516 	 * are handled with compressed state.
517 	 */
518 	if (tp->t_state == TCPS_LISTEN)
519 		panic("tcp_input: TCPS_LISTEN");
520 #endif
521 
522 	/*
523 	 * Segment received on connection.
524 	 * Reset idle time and keep-alive timer.
525 	 */
526 	tp->t_idle = 0;
527 	if (TCPS_HAVEESTABLISHED(tp->t_state))
528 		tp->t_timer[TCPT_KEEP] = tcp_keepidle;
529 
530 	/*
531 	 * Process options.
532 	 */
533 	if (optp)
534 		tcp_dooptions(tp, optp, optlen, ti, &opti);
535 
536 	/*
537 	 * Header prediction: check for the two common cases
538 	 * of a uni-directional data xfer.  If the packet has
539 	 * no control flags, is in-sequence, the window didn't
540 	 * change and we're not retransmitting, it's a
541 	 * candidate.  If the length is zero and the ack moved
542 	 * forward, we're the sender side of the xfer.  Just
543 	 * free the data acked & wake any higher level process
544 	 * that was blocked waiting for space.  If the length
545 	 * is non-zero and the ack didn't move, we're the
546 	 * receiver side.  If we're getting packets in-order
547 	 * (the reassembly queue is empty), add the data to
548 	 * the socket buffer and note that we need a delayed ack.
549 	 */
550 	if (tp->t_state == TCPS_ESTABLISHED &&
551 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
552 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
553 	    ti->ti_seq == tp->rcv_nxt &&
554 	    tiwin && tiwin == tp->snd_wnd &&
555 	    tp->snd_nxt == tp->snd_max) {
556 
557 		/*
558 		 * If last ACK falls within this segment's sequence numbers,
559 		 *  record the timestamp.
560 		 */
561 		if (opti.ts_present &&
562 		    SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
563 		    SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
564 			tp->ts_recent_age = tcp_now;
565 			tp->ts_recent = opti.ts_val;
566 		}
567 
568 		if (ti->ti_len == 0) {
569 			if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
570 			    SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
571 			    tp->snd_cwnd >= tp->snd_wnd &&
572 			    tp->t_dupacks < tcprexmtthresh) {
573 				/*
574 				 * this is a pure ack for outstanding data.
575 				 */
576 				++tcpstat.tcps_predack;
577 				if (opti.ts_present)
578 					tcp_xmit_timer(tp,
579 					    tcp_now-opti.ts_ecr+1);
580 				else if (tp->t_rtt &&
581 				    SEQ_GT(ti->ti_ack, tp->t_rtseq))
582 					tcp_xmit_timer(tp, tp->t_rtt);
583 				acked = ti->ti_ack - tp->snd_una;
584 				tcpstat.tcps_rcvackpack++;
585 				tcpstat.tcps_rcvackbyte += acked;
586 				sbdrop(&so->so_snd, acked);
587 				tp->snd_una = ti->ti_ack;
588 				m_freem(m);
589 
590 				/*
591 				 * If all outstanding data are acked, stop
592 				 * retransmit timer, otherwise restart timer
593 				 * using current (possibly backed-off) value.
594 				 * If process is waiting for space,
595 				 * wakeup/selwakeup/signal.  If data
596 				 * are ready to send, let tcp_output
597 				 * decide between more output or persist.
598 				 */
599 				if (tp->snd_una == tp->snd_max)
600 					tp->t_timer[TCPT_REXMT] = 0;
601 				else if (tp->t_timer[TCPT_PERSIST] == 0)
602 					tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
603 
604 				if (sb_notify(&so->so_snd))
605 					sowwakeup(so);
606 				if (so->so_snd.sb_cc)
607 					(void) tcp_output(tp);
608 				return;
609 			}
610 		} else if (ti->ti_ack == tp->snd_una &&
611 		    tp->segq.lh_first == NULL &&
612 		    ti->ti_len <= sbspace(&so->so_rcv)) {
613 			/*
614 			 * this is a pure, in-sequence data packet
615 			 * with nothing on the reassembly queue and
616 			 * we have enough buffer space to take it.
617 			 */
618 			++tcpstat.tcps_preddat;
619 			tp->rcv_nxt += ti->ti_len;
620 			tcpstat.tcps_rcvpack++;
621 			tcpstat.tcps_rcvbyte += ti->ti_len;
622 			/*
623 			 * Drop TCP, IP headers and TCP options then add data
624 			 * to socket buffer.
625 			 */
626 			m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
627 			m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
628 			sbappend(&so->so_rcv, m);
629 			sorwakeup(so);
630 			TCP_SETUP_ACK(tp, ti);
631 			if (tp->t_flags & TF_ACKNOW)
632 				(void) tcp_output(tp);
633 			return;
634 		}
635 	}
636 
637 	/*
638 	 * Drop TCP, IP headers and TCP options.
639 	 */
640 	hdroptlen  = sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);
641 	m->m_data += hdroptlen;
642 	m->m_len  -= hdroptlen;
643 
644 	/*
645 	 * Calculate amount of space in receive window,
646 	 * and then do TCP input processing.
647 	 * Receive window is amount of space in rcv queue,
648 	 * but not less than advertised window.
649 	 */
650 	{ int win;
651 
652 	win = sbspace(&so->so_rcv);
653 	if (win < 0)
654 		win = 0;
655 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
656 	}
657 
658 	switch (tp->t_state) {
659 
660 	/*
661 	 * If the state is SYN_SENT:
662 	 *	if seg contains an ACK, but not for our SYN, drop the input.
663 	 *	if seg contains a RST, then drop the connection.
664 	 *	if seg does not contain SYN, then drop it.
665 	 * Otherwise this is an acceptable SYN segment
666 	 *	initialize tp->rcv_nxt and tp->irs
667 	 *	if seg contains ack then advance tp->snd_una
668 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
669 	 *	arrange for segment to be acked (eventually)
670 	 *	continue processing rest of data/controls, beginning with URG
671 	 */
672 	case TCPS_SYN_SENT:
673 		if ((tiflags & TH_ACK) &&
674 		    (SEQ_LEQ(ti->ti_ack, tp->iss) ||
675 		     SEQ_GT(ti->ti_ack, tp->snd_max)))
676 			goto dropwithreset;
677 		if (tiflags & TH_RST) {
678 			if (tiflags & TH_ACK)
679 				tp = tcp_drop(tp, ECONNREFUSED);
680 			goto drop;
681 		}
682 		if ((tiflags & TH_SYN) == 0)
683 			goto drop;
684 		if (tiflags & TH_ACK) {
685 			tp->snd_una = ti->ti_ack;
686 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
687 				tp->snd_nxt = tp->snd_una;
688 		}
689 		tp->t_timer[TCPT_REXMT] = 0;
690 		tp->irs = ti->ti_seq;
691 		tcp_rcvseqinit(tp);
692 		tp->t_flags |= TF_ACKNOW;
693 		tcp_mss_from_peer(tp, opti.maxseg);
694 
695 		/*
696 		 * Initialize the initial congestion window.  If we
697 		 * had to retransmit the SYN, we must initialize cwnd
698 		 * to 1 segment.
699 		 */
700 		tp->snd_cwnd =
701 		    TCP_INITIAL_WINDOW((tp->t_flags & TF_SYN_REXMT) ? 1 :
702 		    tcp_init_win, tp->t_peermss);
703 
704 		tcp_rmx_rtt(tp);
705 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
706 			tcpstat.tcps_connects++;
707 			soisconnected(so);
708 			tcp_established(tp);
709 			/* Do window scaling on this connection? */
710 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
711 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
712 				tp->snd_scale = tp->requested_s_scale;
713 				tp->rcv_scale = tp->request_r_scale;
714 			}
715 			(void) tcp_reass(tp, (struct tcpiphdr *)0,
716 				(struct mbuf *)0);
717 			/*
718 			 * if we didn't have to retransmit the SYN,
719 			 * use its rtt as our initial srtt & rtt var.
720 			 */
721 			if (tp->t_rtt)
722 				tcp_xmit_timer(tp, tp->t_rtt);
723 		} else
724 			tp->t_state = TCPS_SYN_RECEIVED;
725 
726 		/*
727 		 * Advance ti->ti_seq to correspond to first data byte.
728 		 * If data, trim to stay within window,
729 		 * dropping FIN if necessary.
730 		 */
731 		ti->ti_seq++;
732 		if (ti->ti_len > tp->rcv_wnd) {
733 			todrop = ti->ti_len - tp->rcv_wnd;
734 			m_adj(m, -todrop);
735 			ti->ti_len = tp->rcv_wnd;
736 			tiflags &= ~TH_FIN;
737 			tcpstat.tcps_rcvpackafterwin++;
738 			tcpstat.tcps_rcvbyteafterwin += todrop;
739 		}
740 		tp->snd_wl1 = ti->ti_seq - 1;
741 		tp->rcv_up = ti->ti_seq;
742 		goto step6;
743 
744 	/*
745 	 * If the state is SYN_RECEIVED:
746 	 *	If seg contains an ACK, but not for our SYN, drop the input
747 	 *	and generate an RST.  See page 36, rfc793
748 	 */
749 	case TCPS_SYN_RECEIVED:
750 		if ((tiflags & TH_ACK) &&
751 		    (SEQ_LEQ(ti->ti_ack, tp->iss) ||
752 		     SEQ_GT(ti->ti_ack, tp->snd_max)))
753 			goto dropwithreset;
754 		break;
755 	}
756 
757 	/*
758 	 * States other than LISTEN or SYN_SENT.
759 	 * First check timestamp, if present.
760 	 * Then check that at least some bytes of segment are within
761 	 * receive window.  If segment begins before rcv_nxt,
762 	 * drop leading data (and SYN); if nothing left, just ack.
763 	 *
764 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
765 	 * and it's less than ts_recent, drop it.
766 	 */
767 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
768 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
769 
770 		/* Check to see if ts_recent is over 24 days old.  */
771 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
772 			/*
773 			 * Invalidate ts_recent.  If this segment updates
774 			 * ts_recent, the age will be reset later and ts_recent
775 			 * will get a valid value.  If it does not, setting
776 			 * ts_recent to zero will at least satisfy the
777 			 * requirement that zero be placed in the timestamp
778 			 * echo reply when ts_recent isn't valid.  The
779 			 * age isn't reset until we get a valid ts_recent
780 			 * because we don't want out-of-order segments to be
781 			 * dropped when ts_recent is old.
782 			 */
783 			tp->ts_recent = 0;
784 		} else {
785 			tcpstat.tcps_rcvduppack++;
786 			tcpstat.tcps_rcvdupbyte += ti->ti_len;
787 			tcpstat.tcps_pawsdrop++;
788 			goto dropafterack;
789 		}
790 	}
791 
792 	todrop = tp->rcv_nxt - ti->ti_seq;
793 	if (todrop > 0) {
794 		if (tiflags & TH_SYN) {
795 			tiflags &= ~TH_SYN;
796 			ti->ti_seq++;
797 			if (ti->ti_urp > 1)
798 				ti->ti_urp--;
799 			else {
800 				tiflags &= ~TH_URG;
801 				ti->ti_urp = 0;
802 			}
803 			todrop--;
804 		}
805 		if (todrop > ti->ti_len ||
806 		    (todrop == ti->ti_len && (tiflags & TH_FIN) == 0)) {
807 			/*
808 			 * Any valid FIN must be to the left of the window.
809 			 * At this point the FIN must be a duplicate or
810 			 * out of sequence; drop it.
811 			 */
812 			tiflags &= ~TH_FIN;
813 			/*
814 			 * Send an ACK to resynchronize and drop any data.
815 			 * But keep on processing for RST or ACK.
816 			 */
817 			tp->t_flags |= TF_ACKNOW;
818 			todrop = ti->ti_len;
819 			tcpstat.tcps_rcvdupbyte += todrop;
820 			tcpstat.tcps_rcvduppack++;
821 		} else {
822 			tcpstat.tcps_rcvpartduppack++;
823 			tcpstat.tcps_rcvpartdupbyte += todrop;
824 		}
825 		m_adj(m, todrop);
826 		ti->ti_seq += todrop;
827 		ti->ti_len -= todrop;
828 		if (ti->ti_urp > todrop)
829 			ti->ti_urp -= todrop;
830 		else {
831 			tiflags &= ~TH_URG;
832 			ti->ti_urp = 0;
833 		}
834 	}
835 
836 	/*
837 	 * If new data are received on a connection after the
838 	 * user processes are gone, then RST the other end.
839 	 */
840 	if ((so->so_state & SS_NOFDREF) &&
841 	    tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
842 		tp = tcp_close(tp);
843 		tcpstat.tcps_rcvafterclose++;
844 		goto dropwithreset;
845 	}
846 
847 	/*
848 	 * If segment ends after window, drop trailing data
849 	 * (and PUSH and FIN); if nothing left, just ACK.
850 	 */
851 	todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
852 	if (todrop > 0) {
853 		tcpstat.tcps_rcvpackafterwin++;
854 		if (todrop >= ti->ti_len) {
855 			tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
856 			/*
857 			 * If a new connection request is received
858 			 * while in TIME_WAIT, drop the old connection
859 			 * and start over if the sequence numbers
860 			 * are above the previous ones.
861 			 */
862 			if (tiflags & TH_SYN &&
863 			    tp->t_state == TCPS_TIME_WAIT &&
864 			    SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
865 				iss = tcp_new_iss(tp, sizeof(struct tcpcb),
866 						  tp->rcv_nxt);
867 				tp = tcp_close(tp);
868 				/*
869 				 * We have already advanced the mbuf
870 				 * pointers past the IP+TCP headers and
871 				 * options.  Restore those pointers before
872 				 * attempting to use the TCP header again.
873 				 */
874 				m->m_data -= hdroptlen;
875 				m->m_len  += hdroptlen;
876 				goto findpcb;
877 			}
878 			/*
879 			 * If window is closed can only take segments at
880 			 * window edge, and have to drop data and PUSH from
881 			 * incoming segments.  Continue processing, but
882 			 * remember to ack.  Otherwise, drop segment
883 			 * and ack.
884 			 */
885 			if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
886 				tp->t_flags |= TF_ACKNOW;
887 				tcpstat.tcps_rcvwinprobe++;
888 			} else
889 				goto dropafterack;
890 		} else
891 			tcpstat.tcps_rcvbyteafterwin += todrop;
892 		m_adj(m, -todrop);
893 		ti->ti_len -= todrop;
894 		tiflags &= ~(TH_PUSH|TH_FIN);
895 	}
896 
897 	/*
898 	 * If last ACK falls within this segment's sequence numbers,
899 	 * record its timestamp.
900 	 */
901 	if (opti.ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
902 	    SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
903 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
904 		tp->ts_recent_age = tcp_now;
905 		tp->ts_recent = opti.ts_val;
906 	}
907 
908 	/*
909 	 * If the RST bit is set examine the state:
910 	 *    SYN_RECEIVED STATE:
911 	 *	If passive open, return to LISTEN state.
912 	 *	If active open, inform user that connection was refused.
913 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
914 	 *	Inform user that connection was reset, and close tcb.
915 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
916 	 *	Close the tcb.
917 	 */
918 	if (tiflags&TH_RST) switch (tp->t_state) {
919 
920 	case TCPS_SYN_RECEIVED:
921 		so->so_error = ECONNREFUSED;
922 		goto close;
923 
924 	case TCPS_ESTABLISHED:
925 	case TCPS_FIN_WAIT_1:
926 	case TCPS_FIN_WAIT_2:
927 	case TCPS_CLOSE_WAIT:
928 		so->so_error = ECONNRESET;
929 	close:
930 		tp->t_state = TCPS_CLOSED;
931 		tcpstat.tcps_drops++;
932 		tp = tcp_close(tp);
933 		goto drop;
934 
935 	case TCPS_CLOSING:
936 	case TCPS_LAST_ACK:
937 	case TCPS_TIME_WAIT:
938 		tp = tcp_close(tp);
939 		goto drop;
940 	}
941 
942 	/*
943 	 * If a SYN is in the window, then this is an
944 	 * error and we send an RST and drop the connection.
945 	 */
946 	if (tiflags & TH_SYN) {
947 		tp = tcp_drop(tp, ECONNRESET);
948 		goto dropwithreset;
949 	}
950 
951 	/*
952 	 * If the ACK bit is off we drop the segment and return.
953 	 */
954 	if ((tiflags & TH_ACK) == 0)
955 		goto drop;
956 
957 	/*
958 	 * Ack processing.
959 	 */
960 	switch (tp->t_state) {
961 
962 	/*
963 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
964 	 * ESTABLISHED state and continue processing, otherwise
965 	 * send an RST.
966 	 */
967 	case TCPS_SYN_RECEIVED:
968 		if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
969 		    SEQ_GT(ti->ti_ack, tp->snd_max))
970 			goto dropwithreset;
971 		tcpstat.tcps_connects++;
972 		soisconnected(so);
973 		tcp_established(tp);
974 		/* Do window scaling? */
975 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
976 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
977 			tp->snd_scale = tp->requested_s_scale;
978 			tp->rcv_scale = tp->request_r_scale;
979 		}
980 		(void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
981 		tp->snd_wl1 = ti->ti_seq - 1;
982 		/* fall into ... */
983 
984 	/*
985 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
986 	 * ACKs.  If the ack is in the range
987 	 *	tp->snd_una < ti->ti_ack <= tp->snd_max
988 	 * then advance tp->snd_una to ti->ti_ack and drop
989 	 * data from the retransmission queue.  If this ACK reflects
990 	 * more up to date window information we update our window information.
991 	 */
992 	case TCPS_ESTABLISHED:
993 	case TCPS_FIN_WAIT_1:
994 	case TCPS_FIN_WAIT_2:
995 	case TCPS_CLOSE_WAIT:
996 	case TCPS_CLOSING:
997 	case TCPS_LAST_ACK:
998 	case TCPS_TIME_WAIT:
999 
1000 		if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
1001 			if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
1002 				tcpstat.tcps_rcvdupack++;
1003 				/*
1004 				 * If we have outstanding data (other than
1005 				 * a window probe), this is a completely
1006 				 * duplicate ack (ie, window info didn't
1007 				 * change), the ack is the biggest we've
1008 				 * seen and we've seen exactly our rexmt
1009 				 * threshhold of them, assume a packet
1010 				 * has been dropped and retransmit it.
1011 				 * Kludge snd_nxt & the congestion
1012 				 * window so we send only this one
1013 				 * packet.
1014 				 *
1015 				 * We know we're losing at the current
1016 				 * window size so do congestion avoidance
1017 				 * (set ssthresh to half the current window
1018 				 * and pull our congestion window back to
1019 				 * the new ssthresh).
1020 				 *
1021 				 * Dup acks mean that packets have left the
1022 				 * network (they're now cached at the receiver)
1023 				 * so bump cwnd by the amount in the receiver
1024 				 * to keep a constant cwnd packets in the
1025 				 * network.
1026 				 */
1027 				if (tp->t_timer[TCPT_REXMT] == 0 ||
1028 				    ti->ti_ack != tp->snd_una)
1029 					tp->t_dupacks = 0;
1030 				else if (++tp->t_dupacks == tcprexmtthresh) {
1031 					tcp_seq onxt = tp->snd_nxt;
1032 					u_int win =
1033 					    min(tp->snd_wnd, tp->snd_cwnd) /
1034 					    2 /	tp->t_segsz;
1035 
1036 					if (win < 2)
1037 						win = 2;
1038 					tp->snd_ssthresh = win * tp->t_segsz;
1039 					tp->t_timer[TCPT_REXMT] = 0;
1040 					tp->t_rtt = 0;
1041 					tp->snd_nxt = ti->ti_ack;
1042 					tp->snd_cwnd = tp->t_segsz;
1043 					(void) tcp_output(tp);
1044 					tp->snd_cwnd = tp->snd_ssthresh +
1045 					       tp->t_segsz * tp->t_dupacks;
1046 					if (SEQ_GT(onxt, tp->snd_nxt))
1047 						tp->snd_nxt = onxt;
1048 					goto drop;
1049 				} else if (tp->t_dupacks > tcprexmtthresh) {
1050 					tp->snd_cwnd += tp->t_segsz;
1051 					(void) tcp_output(tp);
1052 					goto drop;
1053 				}
1054 			} else
1055 				tp->t_dupacks = 0;
1056 			break;
1057 		}
1058 		/*
1059 		 * If the congestion window was inflated to account
1060 		 * for the other side's cached packets, retract it.
1061 		 */
1062 		if (tp->t_dupacks >= tcprexmtthresh &&
1063 		    tp->snd_cwnd > tp->snd_ssthresh)
1064 			tp->snd_cwnd = tp->snd_ssthresh;
1065 		tp->t_dupacks = 0;
1066 		if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
1067 			tcpstat.tcps_rcvacktoomuch++;
1068 			goto dropafterack;
1069 		}
1070 		acked = ti->ti_ack - tp->snd_una;
1071 		tcpstat.tcps_rcvackpack++;
1072 		tcpstat.tcps_rcvackbyte += acked;
1073 
1074 		/*
1075 		 * If we have a timestamp reply, update smoothed
1076 		 * round trip time.  If no timestamp is present but
1077 		 * transmit timer is running and timed sequence
1078 		 * number was acked, update smoothed round trip time.
1079 		 * Since we now have an rtt measurement, cancel the
1080 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1081 		 * Recompute the initial retransmit timer.
1082 		 */
1083 		if (opti.ts_present)
1084 			tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
1085 		else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
1086 			tcp_xmit_timer(tp,tp->t_rtt);
1087 
1088 		/*
1089 		 * If all outstanding data is acked, stop retransmit
1090 		 * timer and remember to restart (more output or persist).
1091 		 * If there is more data to be acked, restart retransmit
1092 		 * timer, using current (possibly backed-off) value.
1093 		 */
1094 		if (ti->ti_ack == tp->snd_max) {
1095 			tp->t_timer[TCPT_REXMT] = 0;
1096 			needoutput = 1;
1097 		} else if (tp->t_timer[TCPT_PERSIST] == 0)
1098 			tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1099 		/*
1100 		 * When new data is acked, open the congestion window.
1101 		 * If the window gives us less than ssthresh packets
1102 		 * in flight, open exponentially (segsz per packet).
1103 		 * Otherwise open linearly: segsz per window
1104 		 * (segsz^2 / cwnd per packet), plus a constant
1105 		 * fraction of a packet (segsz/8) to help larger windows
1106 		 * open quickly enough.
1107 		 */
1108 		{
1109 		register u_int cw = tp->snd_cwnd;
1110 		register u_int incr = tp->t_segsz;
1111 
1112 		if (cw > tp->snd_ssthresh)
1113 			incr = incr * incr / cw;
1114 		tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1115 		}
1116 		if (acked > so->so_snd.sb_cc) {
1117 			tp->snd_wnd -= so->so_snd.sb_cc;
1118 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1119 			ourfinisacked = 1;
1120 		} else {
1121 			sbdrop(&so->so_snd, acked);
1122 			tp->snd_wnd -= acked;
1123 			ourfinisacked = 0;
1124 		}
1125 		if (sb_notify(&so->so_snd))
1126 			sowwakeup(so);
1127 		tp->snd_una = ti->ti_ack;
1128 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1129 			tp->snd_nxt = tp->snd_una;
1130 
1131 		switch (tp->t_state) {
1132 
1133 		/*
1134 		 * In FIN_WAIT_1 STATE in addition to the processing
1135 		 * for the ESTABLISHED state if our FIN is now acknowledged
1136 		 * then enter FIN_WAIT_2.
1137 		 */
1138 		case TCPS_FIN_WAIT_1:
1139 			if (ourfinisacked) {
1140 				/*
1141 				 * If we can't receive any more
1142 				 * data, then closing user can proceed.
1143 				 * Starting the timer is contrary to the
1144 				 * specification, but if we don't get a FIN
1145 				 * we'll hang forever.
1146 				 */
1147 				if (so->so_state & SS_CANTRCVMORE) {
1148 					soisdisconnected(so);
1149 					tp->t_timer[TCPT_2MSL] = tcp_maxidle;
1150 				}
1151 				tp->t_state = TCPS_FIN_WAIT_2;
1152 			}
1153 			break;
1154 
1155 	 	/*
1156 		 * In CLOSING STATE in addition to the processing for
1157 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1158 		 * then enter the TIME-WAIT state, otherwise ignore
1159 		 * the segment.
1160 		 */
1161 		case TCPS_CLOSING:
1162 			if (ourfinisacked) {
1163 				tp->t_state = TCPS_TIME_WAIT;
1164 				tcp_canceltimers(tp);
1165 				tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1166 				soisdisconnected(so);
1167 			}
1168 			break;
1169 
1170 		/*
1171 		 * In LAST_ACK, we may still be waiting for data to drain
1172 		 * and/or to be acked, as well as for the ack of our FIN.
1173 		 * If our FIN is now acknowledged, delete the TCB,
1174 		 * enter the closed state and return.
1175 		 */
1176 		case TCPS_LAST_ACK:
1177 			if (ourfinisacked) {
1178 				tp = tcp_close(tp);
1179 				goto drop;
1180 			}
1181 			break;
1182 
1183 		/*
1184 		 * In TIME_WAIT state the only thing that should arrive
1185 		 * is a retransmission of the remote FIN.  Acknowledge
1186 		 * it and restart the finack timer.
1187 		 */
1188 		case TCPS_TIME_WAIT:
1189 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1190 			goto dropafterack;
1191 		}
1192 	}
1193 
1194 step6:
1195 	/*
1196 	 * Update window information.
1197 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1198 	 */
1199 	if (((tiflags & TH_ACK) && SEQ_LT(tp->snd_wl1, ti->ti_seq)) ||
1200 	    (tp->snd_wl1 == ti->ti_seq && SEQ_LT(tp->snd_wl2, ti->ti_ack)) ||
1201 	    (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)) {
1202 		/* keep track of pure window updates */
1203 		if (ti->ti_len == 0 &&
1204 		    tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
1205 			tcpstat.tcps_rcvwinupd++;
1206 		tp->snd_wnd = tiwin;
1207 		tp->snd_wl1 = ti->ti_seq;
1208 		tp->snd_wl2 = ti->ti_ack;
1209 		if (tp->snd_wnd > tp->max_sndwnd)
1210 			tp->max_sndwnd = tp->snd_wnd;
1211 		needoutput = 1;
1212 	}
1213 
1214 	/*
1215 	 * Process segments with URG.
1216 	 */
1217 	if ((tiflags & TH_URG) && ti->ti_urp &&
1218 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1219 		/*
1220 		 * This is a kludge, but if we receive and accept
1221 		 * random urgent pointers, we'll crash in
1222 		 * soreceive.  It's hard to imagine someone
1223 		 * actually wanting to send this much urgent data.
1224 		 */
1225 		if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
1226 			ti->ti_urp = 0;			/* XXX */
1227 			tiflags &= ~TH_URG;		/* XXX */
1228 			goto dodata;			/* XXX */
1229 		}
1230 		/*
1231 		 * If this segment advances the known urgent pointer,
1232 		 * then mark the data stream.  This should not happen
1233 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1234 		 * a FIN has been received from the remote side.
1235 		 * In these states we ignore the URG.
1236 		 *
1237 		 * According to RFC961 (Assigned Protocols),
1238 		 * the urgent pointer points to the last octet
1239 		 * of urgent data.  We continue, however,
1240 		 * to consider it to indicate the first octet
1241 		 * of data past the urgent section as the original
1242 		 * spec states (in one of two places).
1243 		 */
1244 		if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1245 			tp->rcv_up = ti->ti_seq + ti->ti_urp;
1246 			so->so_oobmark = so->so_rcv.sb_cc +
1247 			    (tp->rcv_up - tp->rcv_nxt) - 1;
1248 			if (so->so_oobmark == 0)
1249 				so->so_state |= SS_RCVATMARK;
1250 			sohasoutofband(so);
1251 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1252 		}
1253 		/*
1254 		 * Remove out of band data so doesn't get presented to user.
1255 		 * This can happen independent of advancing the URG pointer,
1256 		 * but if two URG's are pending at once, some out-of-band
1257 		 * data may creep in... ick.
1258 		 */
1259 		if (ti->ti_urp <= (u_int16_t) ti->ti_len
1260 #ifdef SO_OOBINLINE
1261 		     && (so->so_options & SO_OOBINLINE) == 0
1262 #endif
1263 		     )
1264 			tcp_pulloutofband(so, ti, m);
1265 	} else
1266 		/*
1267 		 * If no out of band data is expected,
1268 		 * pull receive urgent pointer along
1269 		 * with the receive window.
1270 		 */
1271 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1272 			tp->rcv_up = tp->rcv_nxt;
1273 dodata:							/* XXX */
1274 
1275 	/*
1276 	 * Process the segment text, merging it into the TCP sequencing queue,
1277 	 * and arranging for acknowledgment of receipt if necessary.
1278 	 * This process logically involves adjusting tp->rcv_wnd as data
1279 	 * is presented to the user (this happens in tcp_usrreq.c,
1280 	 * case PRU_RCVD).  If a FIN has already been received on this
1281 	 * connection then we just ignore the text.
1282 	 */
1283 	if ((ti->ti_len || (tiflags & TH_FIN)) &&
1284 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1285 		TCP_REASS(tp, ti, m, so, tiflags);
1286 		/*
1287 		 * Note the amount of data that peer has sent into
1288 		 * our window, in order to estimate the sender's
1289 		 * buffer size.
1290 		 */
1291 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1292 	} else {
1293 		m_freem(m);
1294 		tiflags &= ~TH_FIN;
1295 	}
1296 
1297 	/*
1298 	 * If FIN is received ACK the FIN and let the user know
1299 	 * that the connection is closing.  Ignore a FIN received before
1300 	 * the connection is fully established.
1301 	 */
1302 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
1303 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1304 			socantrcvmore(so);
1305 			tp->t_flags |= TF_ACKNOW;
1306 			tp->rcv_nxt++;
1307 		}
1308 		switch (tp->t_state) {
1309 
1310 	 	/*
1311 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
1312 		 */
1313 		case TCPS_ESTABLISHED:
1314 			tp->t_state = TCPS_CLOSE_WAIT;
1315 			break;
1316 
1317 	 	/*
1318 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1319 		 * enter the CLOSING state.
1320 		 */
1321 		case TCPS_FIN_WAIT_1:
1322 			tp->t_state = TCPS_CLOSING;
1323 			break;
1324 
1325 	 	/*
1326 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1327 		 * starting the time-wait timer, turning off the other
1328 		 * standard timers.
1329 		 */
1330 		case TCPS_FIN_WAIT_2:
1331 			tp->t_state = TCPS_TIME_WAIT;
1332 			tcp_canceltimers(tp);
1333 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1334 			soisdisconnected(so);
1335 			break;
1336 
1337 		/*
1338 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1339 		 */
1340 		case TCPS_TIME_WAIT:
1341 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1342 			break;
1343 		}
1344 	}
1345 	if (so->so_options & SO_DEBUG)
1346 		tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1347 
1348 	/*
1349 	 * Return any desired output.
1350 	 */
1351 	if (needoutput || (tp->t_flags & TF_ACKNOW))
1352 		(void) tcp_output(tp);
1353 	return;
1354 
1355 badsyn:
1356 	/*
1357 	 * Received a bad SYN.  Increment counters and dropwithreset.
1358 	 */
1359 	tcpstat.tcps_badsyn++;
1360 	tp = NULL;
1361 	goto dropwithreset;
1362 
1363 dropafterack:
1364 	/*
1365 	 * Generate an ACK dropping incoming segment if it occupies
1366 	 * sequence space, where the ACK reflects our state.
1367 	 */
1368 	if (tiflags & TH_RST)
1369 		goto drop;
1370 	m_freem(m);
1371 	tp->t_flags |= TF_ACKNOW;
1372 	(void) tcp_output(tp);
1373 	return;
1374 
1375 dropwithreset:
1376 	/*
1377 	 * Generate a RST, dropping incoming segment.
1378 	 * Make ACK acceptable to originator of segment.
1379 	 * Don't bother to respond if destination was broadcast/multicast.
1380 	 */
1381 	if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
1382 	    IN_MULTICAST(ti->ti_dst.s_addr))
1383 		goto drop;
1384 	if (tiflags & TH_ACK)
1385 		(void)tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1386 	else {
1387 		if (tiflags & TH_SYN)
1388 			ti->ti_len++;
1389 		(void)tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1390 		    TH_RST|TH_ACK);
1391 	}
1392 	return;
1393 
1394 drop:
1395 	/*
1396 	 * Drop space held by incoming segment and return.
1397 	 */
1398 	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1399 		tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1400 	m_freem(m);
1401 	return;
1402 #ifndef TUBA_INCLUDE
1403 }
1404 
1405 void
1406 tcp_dooptions(tp, cp, cnt, ti, oi)
1407 	struct tcpcb *tp;
1408 	u_char *cp;
1409 	int cnt;
1410 	struct tcpiphdr *ti;
1411 	struct tcp_opt_info *oi;
1412 {
1413 	u_int16_t mss;
1414 	int opt, optlen;
1415 
1416 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1417 		opt = cp[0];
1418 		if (opt == TCPOPT_EOL)
1419 			break;
1420 		if (opt == TCPOPT_NOP)
1421 			optlen = 1;
1422 		else {
1423 			optlen = cp[1];
1424 			if (optlen <= 0)
1425 				break;
1426 		}
1427 		switch (opt) {
1428 
1429 		default:
1430 			continue;
1431 
1432 		case TCPOPT_MAXSEG:
1433 			if (optlen != TCPOLEN_MAXSEG)
1434 				continue;
1435 			if (!(ti->ti_flags & TH_SYN))
1436 				continue;
1437 			bcopy(cp + 2, &mss, sizeof(mss));
1438 			oi->maxseg = ntohs(mss);
1439 			break;
1440 
1441 		case TCPOPT_WINDOW:
1442 			if (optlen != TCPOLEN_WINDOW)
1443 				continue;
1444 			if (!(ti->ti_flags & TH_SYN))
1445 				continue;
1446 			tp->t_flags |= TF_RCVD_SCALE;
1447 			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
1448 			break;
1449 
1450 		case TCPOPT_TIMESTAMP:
1451 			if (optlen != TCPOLEN_TIMESTAMP)
1452 				continue;
1453 			oi->ts_present = 1;
1454 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
1455 			NTOHL(oi->ts_val);
1456 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
1457 			NTOHL(oi->ts_ecr);
1458 
1459 			/*
1460 			 * A timestamp received in a SYN makes
1461 			 * it ok to send timestamp requests and replies.
1462 			 */
1463 			if (ti->ti_flags & TH_SYN) {
1464 				tp->t_flags |= TF_RCVD_TSTMP;
1465 				tp->ts_recent = oi->ts_val;
1466 				tp->ts_recent_age = tcp_now;
1467 			}
1468 			break;
1469 		}
1470 	}
1471 }
1472 
1473 /*
1474  * Pull out of band byte out of a segment so
1475  * it doesn't appear in the user's data queue.
1476  * It is still reflected in the segment length for
1477  * sequencing purposes.
1478  */
1479 void
1480 tcp_pulloutofband(so, ti, m)
1481 	struct socket *so;
1482 	struct tcpiphdr *ti;
1483 	register struct mbuf *m;
1484 {
1485 	int cnt = ti->ti_urp - 1;
1486 
1487 	while (cnt >= 0) {
1488 		if (m->m_len > cnt) {
1489 			char *cp = mtod(m, caddr_t) + cnt;
1490 			struct tcpcb *tp = sototcpcb(so);
1491 
1492 			tp->t_iobc = *cp;
1493 			tp->t_oobflags |= TCPOOB_HAVEDATA;
1494 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1495 			m->m_len--;
1496 			return;
1497 		}
1498 		cnt -= m->m_len;
1499 		m = m->m_next;
1500 		if (m == 0)
1501 			break;
1502 	}
1503 	panic("tcp_pulloutofband");
1504 }
1505 
1506 /*
1507  * Collect new round-trip time estimate
1508  * and update averages and current timeout.
1509  */
1510 void
1511 tcp_xmit_timer(tp, rtt)
1512 	register struct tcpcb *tp;
1513 	short rtt;
1514 {
1515 	register short delta;
1516 	short rttmin;
1517 
1518 	tcpstat.tcps_rttupdated++;
1519 	--rtt;
1520 	if (tp->t_srtt != 0) {
1521 		/*
1522 		 * srtt is stored as fixed point with 3 bits after the
1523 		 * binary point (i.e., scaled by 8).  The following magic
1524 		 * is equivalent to the smoothing algorithm in rfc793 with
1525 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1526 		 * point).  Adjust rtt to origin 0.
1527 		 */
1528 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
1529 		if ((tp->t_srtt += delta) <= 0)
1530 			tp->t_srtt = 1 << 2;
1531 		/*
1532 		 * We accumulate a smoothed rtt variance (actually, a
1533 		 * smoothed mean difference), then set the retransmit
1534 		 * timer to smoothed rtt + 4 times the smoothed variance.
1535 		 * rttvar is stored as fixed point with 2 bits after the
1536 		 * binary point (scaled by 4).  The following is
1537 		 * equivalent to rfc793 smoothing with an alpha of .75
1538 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
1539 		 * rfc793's wired-in beta.
1540 		 */
1541 		if (delta < 0)
1542 			delta = -delta;
1543 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1544 		if ((tp->t_rttvar += delta) <= 0)
1545 			tp->t_rttvar = 1 << 2;
1546 	} else {
1547 		/*
1548 		 * No rtt measurement yet - use the unsmoothed rtt.
1549 		 * Set the variance to half the rtt (so our first
1550 		 * retransmit happens at 3*rtt).
1551 		 */
1552 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
1553 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
1554 	}
1555 	tp->t_rtt = 0;
1556 	tp->t_rxtshift = 0;
1557 
1558 	/*
1559 	 * the retransmit should happen at rtt + 4 * rttvar.
1560 	 * Because of the way we do the smoothing, srtt and rttvar
1561 	 * will each average +1/2 tick of bias.  When we compute
1562 	 * the retransmit timer, we want 1/2 tick of rounding and
1563 	 * 1 extra tick because of +-1/2 tick uncertainty in the
1564 	 * firing of the timer.  The bias will give us exactly the
1565 	 * 1.5 tick we need.  But, because the bias is
1566 	 * statistical, we have to test that we don't drop below
1567 	 * the minimum feasible timer (which is 2 ticks).
1568 	 */
1569 	if (tp->t_rttmin > rtt + 2)
1570 		rttmin = tp->t_rttmin;
1571 	else
1572 		rttmin = rtt + 2;
1573 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
1574 
1575 	/*
1576 	 * We received an ack for a packet that wasn't retransmitted;
1577 	 * it is probably safe to discard any error indications we've
1578 	 * received recently.  This isn't quite right, but close enough
1579 	 * for now (a route might have failed after we sent a segment,
1580 	 * and the return path might not be symmetrical).
1581 	 */
1582 	tp->t_softerror = 0;
1583 }
1584 
1585 /*
1586  * TCP compressed state engine.  Currently used to hold compressed
1587  * state for SYN_RECEIVED.
1588  */
1589 
1590 u_long	syn_cache_count;
1591 u_int32_t syn_hash1, syn_hash2;
1592 
1593 #define SYN_HASH(sa, sp, dp) \
1594 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
1595 				     ((u_int32_t)(sp)))^syn_hash2)))
1596 
1597 #define	eptosp(ep, e, s)	((struct s *)((char *)(ep) - \
1598 			    ((char *)(&((struct s *)0)->e) - (char *)0)))
1599 
1600 #define	SYN_CACHE_RM(sc, p, scp) {					\
1601 	*(p) = (sc)->sc_next;						\
1602 	if ((sc)->sc_next)						\
1603 		(sc)->sc_next->sc_timer += (sc)->sc_timer;		\
1604 	else {								\
1605 		(scp)->sch_timer_sum -= (sc)->sc_timer;			\
1606 		if ((scp)->sch_timer_sum <= 0)				\
1607 			(scp)->sch_timer_sum = -1;			\
1608 		/* If need be, fix up the last pointer */		\
1609 		if ((scp)->sch_first)					\
1610 			(scp)->sch_last = eptosp(p, sc_next, syn_cache); \
1611 	}								\
1612 	(scp)->sch_length--;						\
1613 	syn_cache_count--;						\
1614 }
1615 
1616 void
1617 syn_cache_insert(sc, prevp, headp)
1618 	struct syn_cache *sc;
1619 	struct syn_cache ***prevp;
1620 	struct syn_cache_head **headp;
1621 {
1622 	struct syn_cache_head *scp, *scp2, *sce;
1623 	struct syn_cache *sc2;
1624 	static u_int timeo_val;
1625 	int s;
1626 
1627 	/* Initialize the hash secrets when adding the first entry */
1628 	if (syn_cache_count == 0) {
1629 		struct timeval tv;
1630 		microtime(&tv);
1631 		syn_hash1 = random() ^ (u_long)&sc;
1632 		syn_hash2 = random() ^ tv.tv_usec;
1633 	}
1634 
1635 	sc->sc_hash = SYN_HASH(&sc->sc_src, sc->sc_sport, sc->sc_dport);
1636 	sc->sc_next = NULL;
1637 	scp = &tcp_syn_cache[sc->sc_hash % tcp_syn_cache_size];
1638 	*headp = scp;
1639 
1640 	/*
1641 	 * Make sure that we don't overflow the per-bucket
1642 	 * limit or the total cache size limit.
1643 	 */
1644 	s = splsoftnet();
1645 	if (scp->sch_length >= tcp_syn_bucket_limit) {
1646 		tcpstat.tcps_sc_bucketoverflow++;
1647 		sc2 = scp->sch_first;
1648 		scp->sch_first = sc2->sc_next;
1649 		if (sc2->sc_ipopts)
1650 			(void) m_free(sc2->sc_ipopts);
1651 		FREE(sc2, M_PCB);
1652 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
1653 		tcpstat.tcps_sc_overflowed++;
1654 		/*
1655 		 * The cache is full.  Toss the first (i.e, oldest)
1656 		 * element in this bucket.
1657 		 */
1658 		scp2 = scp;
1659 		if (scp2->sch_first == NULL) {
1660 			sce = &tcp_syn_cache[tcp_syn_cache_size];
1661 			for (++scp2; scp2 != scp; scp2++) {
1662 				if (scp2 >= sce)
1663 					scp2 = &tcp_syn_cache[0];
1664 				if (scp2->sch_first)
1665 					break;
1666 			}
1667 		}
1668 		sc2 = scp2->sch_first;
1669 		if (sc2 == NULL) {
1670 			if (sc->sc_ipopts)
1671 				(void) m_free(sc->sc_ipopts);
1672 			FREE(sc, M_PCB);
1673 			return;
1674 		}
1675 		if ((scp2->sch_first = sc2->sc_next) == NULL)
1676 			scp2->sch_last = NULL;
1677 		else
1678 			sc2->sc_next->sc_timer += sc2->sc_timer;
1679 		if (sc2->sc_ipopts)
1680 			(void) m_free(sc2->sc_ipopts);
1681 		FREE(sc2, M_PCB);
1682 	} else {
1683 		scp->sch_length++;
1684 		syn_cache_count++;
1685 	}
1686 	tcpstat.tcps_sc_added++;
1687 
1688 	/*
1689 	 * Put it into the bucket.
1690 	 */
1691 	if (scp->sch_first == NULL)
1692 		*prevp = &scp->sch_first;
1693 	else {
1694 		*prevp = &scp->sch_last->sc_next;
1695 		tcpstat.tcps_sc_collisions++;
1696 	}
1697 	**prevp = sc;
1698 	scp->sch_last = sc;
1699 
1700 	/*
1701 	 * If the timeout value has changed
1702 	 *   1) force it to fit in a u_char
1703 	 *   2) Run the timer routine to truncate all
1704 	 *	existing entries to the new timeout value.
1705 	 */
1706 	if (timeo_val != tcp_syn_cache_timeo) {
1707 		tcp_syn_cache_timeo = min(tcp_syn_cache_timeo, UCHAR_MAX);
1708 		if (timeo_val > tcp_syn_cache_timeo)
1709 			syn_cache_timer(timeo_val - tcp_syn_cache_timeo);
1710 		timeo_val = tcp_syn_cache_timeo;
1711 	}
1712 	if (scp->sch_timer_sum > 0)
1713 		sc->sc_timer = tcp_syn_cache_timeo - scp->sch_timer_sum;
1714 	else {
1715 		if (scp->sch_timer_sum == 0) {
1716 			/*
1717 			 * When the bucket timer is 0, it is not in the
1718 			 * cache queue.
1719 			 */
1720 			scp->sch_headq = tcp_syn_cache_first;
1721 			tcp_syn_cache_first = scp;
1722 		}
1723 		sc->sc_timer = tcp_syn_cache_timeo;
1724 	}
1725 	scp->sch_timer_sum = tcp_syn_cache_timeo;
1726 	splx(s);
1727 }
1728 
1729 /*
1730  * Walk down the cache list, decrementing the timer of
1731  * the first element on each entry.  If the timer goes
1732  * to zero, remove it and all successive entries with
1733  * a zero timer.
1734  */
1735 void
1736 syn_cache_timer(interval)
1737 	int interval;
1738 {
1739 	struct syn_cache_head *scp, **pscp;
1740 	struct syn_cache *sc, *scn;
1741 	int n, s;
1742 
1743 	pscp = &tcp_syn_cache_first;
1744 	scp = tcp_syn_cache_first;
1745 	s = splsoftnet();
1746 	while (scp) {
1747 		/*
1748 		 * Remove any empty hash buckets
1749 		 * from the cache queue.
1750 		 */
1751 		if ((sc = scp->sch_first) == NULL) {
1752 			*pscp = scp->sch_headq;
1753 			scp->sch_headq = NULL;
1754 			scp->sch_timer_sum = 0;
1755 			scp->sch_first = scp->sch_last = NULL;
1756 			scp->sch_length = 0;
1757 			scp = *pscp;
1758 			continue;
1759 		}
1760 
1761 		scp->sch_timer_sum -= interval;
1762 		if (scp->sch_timer_sum <= 0)
1763 			scp->sch_timer_sum = -1;
1764 		n = interval;
1765 		while (sc->sc_timer <= n) {
1766 			n -= sc->sc_timer;
1767 			scn = sc->sc_next;
1768 			tcpstat.tcps_sc_timed_out++;
1769 			syn_cache_count--;
1770 			if (sc->sc_ipopts)
1771 				(void) m_free(sc->sc_ipopts);
1772 			FREE(sc, M_PCB);
1773 			scp->sch_length--;
1774 			if ((sc = scn) == NULL)
1775 				break;
1776 		}
1777 		if ((scp->sch_first = sc) != NULL) {
1778 			sc->sc_timer -= n;
1779 			pscp = &scp->sch_headq;
1780 			scp = scp->sch_headq;
1781 		}
1782 	}
1783 	splx(s);
1784 }
1785 
1786 /*
1787  * Find an entry in the syn cache.
1788  */
1789 struct syn_cache *
1790 syn_cache_lookup(ti, prevp, headp)
1791 	struct tcpiphdr *ti;
1792 	struct syn_cache ***prevp;
1793 	struct syn_cache_head **headp;
1794 {
1795 	struct syn_cache *sc, **prev;
1796 	struct syn_cache_head *head;
1797 	u_int32_t hash;
1798 	int s;
1799 
1800 	hash = SYN_HASH(&ti->ti_src, ti->ti_sport, ti->ti_dport);
1801 
1802 	head = &tcp_syn_cache[hash % tcp_syn_cache_size];
1803 	*headp = head;
1804 	prev = &head->sch_first;
1805 	s = splsoftnet();
1806 	for (sc = head->sch_first; sc; prev = &sc->sc_next, sc = sc->sc_next) {
1807 		if (sc->sc_hash != hash)
1808 			continue;
1809 		if (sc->sc_src.s_addr == ti->ti_src.s_addr &&
1810 		    sc->sc_sport == ti->ti_sport &&
1811 		    sc->sc_dport == ti->ti_dport &&
1812 		    sc->sc_dst.s_addr == ti->ti_dst.s_addr) {
1813 			*prevp = prev;
1814 			splx(s);
1815 			return (sc);
1816 		}
1817 	}
1818 	splx(s);
1819 	return (NULL);
1820 }
1821 
1822 /*
1823  * This function gets called when we receive an ACK for a
1824  * socket in the LISTEN state.  We look up the connection
1825  * in the syn cache, and if its there, we pull it out of
1826  * the cache and turn it into a full-blown connection in
1827  * the SYN-RECEIVED state.
1828  *
1829  * The return values may not be immediately obvious, and their effects
1830  * can be subtle, so here they are:
1831  *
1832  *	NULL	SYN was not found in cache; caller should drop the
1833  *		packet and send an RST.
1834  *
1835  *	-1	We were unable to create the new connection, and are
1836  *		aborting it.  An ACK,RST is being sent to the peer
1837  *		(unless we got screwey sequence numbners; see below),
1838  *		because the 3-way handshake has been completed.  Caller
1839  *		should not free the mbuf, since we may be using it.  If
1840  *		we are not, we will free it.
1841  *
1842  *	Otherwise, the return value is a pointer to the new socket
1843  *	associated with the connection.
1844  */
1845 struct socket *
1846 syn_cache_get(so, m)
1847 	struct socket *so;
1848 	struct mbuf *m;
1849 {
1850 	struct syn_cache *sc, **sc_prev;
1851 	struct syn_cache_head *head;
1852 	register struct inpcb *inp;
1853 	register struct tcpcb *tp = 0;
1854 	register struct tcpiphdr *ti;
1855 	struct sockaddr_in *sin;
1856 	struct mbuf *am;
1857 	long win;
1858 	int s;
1859 
1860 	ti = mtod(m, struct tcpiphdr *);
1861 	s = splsoftnet();
1862 	if ((sc = syn_cache_lookup(ti, &sc_prev, &head)) == NULL) {
1863 		splx(s);
1864 		return (NULL);
1865 	}
1866 
1867 	win = sbspace(&so->so_rcv);
1868 	if (win > TCP_MAXWIN)
1869 		win = TCP_MAXWIN;
1870 
1871 	/*
1872 	 * Verify the sequence and ack numbers.
1873 	 */
1874 	if ((ti->ti_ack != sc->sc_iss + 1) ||
1875 	    SEQ_LEQ(ti->ti_seq, sc->sc_irs) ||
1876 	    SEQ_GT(ti->ti_seq, sc->sc_irs + 1 + win)) {
1877 		(void) syn_cache_respond(sc, m, ti, win, 0);
1878 		splx(s);
1879 		return ((struct socket *)(-1));
1880 	}
1881 
1882 	/* Remove this cache entry */
1883 	SYN_CACHE_RM(sc, sc_prev, head);
1884 	splx(s);
1885 
1886 	/*
1887 	 * Ok, create the full blown connection, and set things up
1888 	 * as they would have been set up if we had created the
1889 	 * connection when the SYN arrived.  If we can't create
1890 	 * the connection, abort it.
1891 	 */
1892 	so = sonewconn(so, SS_ISCONNECTED);
1893 	if (so == NULL)
1894 		goto resetandabort;
1895 
1896 	inp = sotoinpcb(so);
1897 	inp->inp_laddr = sc->sc_dst;
1898 	inp->inp_lport = sc->sc_dport;
1899 	in_pcbstate(inp, INP_BOUND);
1900 	inp->inp_options = ip_srcroute();
1901 	if (inp->inp_options == NULL) {
1902 		inp->inp_options = sc->sc_ipopts;
1903 		sc->sc_ipopts = NULL;
1904 	}
1905 
1906 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
1907 	if (am == NULL)
1908 		goto resetandabort;
1909 	am->m_len = sizeof(struct sockaddr_in);
1910 	sin = mtod(am, struct sockaddr_in *);
1911 	sin->sin_family = AF_INET;
1912 	sin->sin_len = sizeof(*sin);
1913 	sin->sin_addr = sc->sc_src;
1914 	sin->sin_port = sc->sc_sport;
1915 	bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
1916 	if (in_pcbconnect(inp, am)) {
1917 		(void) m_free(am);
1918 		goto resetandabort;
1919 	}
1920 	(void) m_free(am);
1921 
1922 	tp = intotcpcb(inp);
1923 	if (sc->sc_request_r_scale != 15) {
1924 		tp->requested_s_scale = sc->sc_requested_s_scale;
1925 		tp->request_r_scale = sc->sc_request_r_scale;
1926 		tp->snd_scale = sc->sc_requested_s_scale;
1927 		tp->rcv_scale = sc->sc_request_r_scale;
1928 		tp->t_flags |= TF_RCVD_SCALE;
1929 	}
1930 	if (sc->sc_flags & SCF_TIMESTAMP)
1931 		tp->t_flags |= TF_RCVD_TSTMP;
1932 
1933 	tp->t_template = tcp_template(tp);
1934 	if (tp->t_template == 0) {
1935 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
1936 		so = NULL;
1937 		m_freem(m);
1938 		goto abort;
1939 	}
1940 
1941 	tp->iss = sc->sc_iss;
1942 	tp->irs = sc->sc_irs;
1943 	tcp_sendseqinit(tp);
1944 	tcp_rcvseqinit(tp);
1945 	tp->t_state = TCPS_SYN_RECEIVED;
1946 	tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
1947 	tcpstat.tcps_accepts++;
1948 
1949 	/* Initialize tp->t_ourmss before we deal with the peer's! */
1950 	tp->t_ourmss = sc->sc_ourmaxseg;
1951 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
1952 
1953 	/*
1954 	 * Initialize the initial congestion window.  If we
1955 	 * had to retransmit the SYN,ACK, we must initialize cwnd
1956 	 * to 1 segment.
1957 	 */
1958 	tp->snd_cwnd =
1959 	    TCP_INITIAL_WINDOW((sc->sc_flags & SCF_SYNACK_REXMT) ? 1 :
1960 	    tcp_init_win, tp->t_peermss);
1961 
1962 	tcp_rmx_rtt(tp);
1963 	tp->snd_wl1 = sc->sc_irs;
1964 	tp->rcv_up = sc->sc_irs + 1;
1965 
1966 	/*
1967 	 * This is what whould have happened in tcp_ouput() when
1968 	 * the SYN,ACK was sent.
1969 	 */
1970 	tp->snd_up = tp->snd_una;
1971 	tp->snd_max = tp->snd_nxt = tp->iss+1;
1972 	tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1973 	if (win > 0 && SEQ_GT(tp->rcv_nxt+win, tp->rcv_adv))
1974 		tp->rcv_adv = tp->rcv_nxt + win;
1975 	tp->last_ack_sent = tp->rcv_nxt;
1976 
1977 	tcpstat.tcps_sc_completed++;
1978 	if (sc->sc_ipopts)
1979 		(void) m_free(sc->sc_ipopts);
1980 	FREE(sc, M_PCB);
1981 	return (so);
1982 
1983 resetandabort:
1984 	(void) tcp_respond(NULL, ti, m, ti->ti_seq+ti->ti_len,
1985 	    (tcp_seq)0, TH_RST|TH_ACK);
1986 abort:
1987 	if (so != NULL)
1988 		(void) soabort(so);
1989 	if (sc->sc_ipopts)
1990 		(void) m_free(sc->sc_ipopts);
1991 	FREE(sc, M_PCB);
1992 	tcpstat.tcps_sc_aborted++;
1993 	return ((struct socket *)(-1));
1994 }
1995 
1996 /*
1997  * This function is called when we get a RST for a
1998  * non-existant connection, so that we can see if the
1999  * connection is in the syn cache.  If it is, zap it.
2000  */
2001 
2002 void
2003 syn_cache_reset(ti)
2004 	register struct tcpiphdr *ti;
2005 {
2006 	struct syn_cache *sc, **sc_prev;
2007 	struct syn_cache_head *head;
2008 	int s = splsoftnet();
2009 
2010 	if ((sc = syn_cache_lookup(ti, &sc_prev, &head)) == NULL) {
2011 		splx(s);
2012 		return;
2013 	}
2014 	if (SEQ_LT(ti->ti_seq,sc->sc_irs) ||
2015 	    SEQ_GT(ti->ti_seq, sc->sc_irs+1)) {
2016 		splx(s);
2017 		return;
2018 	}
2019 	SYN_CACHE_RM(sc, sc_prev, head);
2020 	splx(s);
2021 	tcpstat.tcps_sc_reset++;
2022 	if (sc->sc_ipopts)
2023 		(void) m_free(sc->sc_ipopts);
2024 	FREE(sc, M_PCB);
2025 }
2026 
2027 void
2028 syn_cache_unreach(ip, th)
2029 	struct ip *ip;
2030 	struct tcphdr *th;
2031 {
2032 	struct syn_cache *sc, **sc_prev;
2033 	struct syn_cache_head *head;
2034 	struct tcpiphdr ti2;
2035 	int s;
2036 
2037 	ti2.ti_src.s_addr = ip->ip_dst.s_addr;
2038 	ti2.ti_dst.s_addr = ip->ip_src.s_addr;
2039 	ti2.ti_sport = th->th_dport;
2040 	ti2.ti_dport = th->th_sport;
2041 
2042 	s = splsoftnet();
2043 	if ((sc = syn_cache_lookup(&ti2, &sc_prev, &head)) == NULL) {
2044 		splx(s);
2045 		return;
2046 	}
2047 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
2048 	if (ntohl (th->th_seq) != sc->sc_iss) {
2049 		splx(s);
2050 		return;
2051 	}
2052 	SYN_CACHE_RM(sc, sc_prev, head);
2053 	splx(s);
2054 	tcpstat.tcps_sc_unreach++;
2055 	if (sc->sc_ipopts)
2056 		(void) m_free(sc->sc_ipopts);
2057 	FREE(sc, M_PCB);
2058 }
2059 
2060 /*
2061  * Given a LISTEN socket and an inbound SYN request, add
2062  * this to the syn cache, and send back a segment:
2063  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
2064  * to the source.
2065  *
2066  * XXX We don't properly handle SYN-with-data!
2067  */
2068 
2069 int
2070 syn_cache_add(so, m, optp, optlen, oi)
2071 	struct socket *so;
2072 	struct mbuf *m;
2073 	u_char *optp;
2074 	int optlen;
2075 	struct tcp_opt_info *oi;
2076 {
2077 	register struct tcpiphdr *ti;
2078 	struct tcpcb tb, *tp;
2079 	long win;
2080 	struct syn_cache *sc, **sc_prev;
2081 	struct syn_cache_head *scp;
2082 	struct mbuf *ipopts;
2083 	extern int tcp_do_rfc1323;
2084 
2085 	tp = sototcpcb(so);
2086 	ti = mtod(m, struct tcpiphdr *);
2087 
2088 	/*
2089 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
2090 	 * in_broadcast() should never return true on a received
2091 	 * packet with M_BCAST not set.
2092 	 */
2093 	if (m->m_flags & (M_BCAST|M_MCAST) ||
2094 	    IN_MULTICAST(ti->ti_src.s_addr) ||
2095 	    IN_MULTICAST(ti->ti_dst.s_addr))
2096 		return (0);
2097 
2098 	/*
2099 	 * Initialize some local state.
2100 	 */
2101 	win = sbspace(&so->so_rcv);
2102 	if (win > TCP_MAXWIN)
2103 		win = TCP_MAXWIN;
2104 
2105 	/*
2106 	 * Remember the IP options, if any.
2107 	 */
2108 	ipopts = ip_srcroute();
2109 
2110 	if (optp) {
2111 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
2112 		tcp_dooptions(&tb, optp, optlen, ti, oi);
2113 	} else
2114 		tb.t_flags = 0;
2115 
2116 	/*
2117 	 * See if we already have an entry for this connection.
2118 	 * If we do, resend the SYN,ACK, and remember since the
2119 	 * initial congestion window must be initialized to 1
2120 	 * segment when the connection completes.
2121 	 */
2122 	if ((sc = syn_cache_lookup(ti, &sc_prev, &scp)) != NULL) {
2123 		tcpstat.tcps_sc_dupesyn++;
2124 		sc->sc_flags |= SCF_SYNACK_REXMT;
2125 
2126 		if (ipopts) {
2127 			/*
2128 			 * If we were remembering a previous source route,
2129 			 * forget it and use the new one we've been given.
2130 			 */
2131 			if (sc->sc_ipopts)
2132 				(void) m_free(sc->sc_ipopts);
2133 			sc->sc_ipopts = ipopts;
2134 		}
2135 
2136 		if (syn_cache_respond(sc, m, ti, win, tb.ts_recent) == 0) {
2137 			tcpstat.tcps_sndacks++;
2138 			tcpstat.tcps_sndtotal++;
2139 		}
2140 		return (1);
2141 	}
2142 
2143 	MALLOC(sc, struct syn_cache *, sizeof(*sc), M_PCB, M_NOWAIT);
2144 	if (sc == NULL) {
2145 		if (ipopts)
2146 			(void) m_free(ipopts);
2147 		return (0);
2148 	}
2149 
2150 	/*
2151 	 * Fill in the cache, and put the necessary IP and TCP
2152 	 * options into the reply.
2153 	 */
2154 	sc->sc_src.s_addr = ti->ti_src.s_addr;
2155 	sc->sc_dst.s_addr = ti->ti_dst.s_addr;
2156 	sc->sc_sport = ti->ti_sport;
2157 	sc->sc_dport = ti->ti_dport;
2158 	sc->sc_flags = 0;
2159 	sc->sc_ipopts = ipopts;
2160 	sc->sc_irs = ti->ti_seq;
2161 	sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
2162 	sc->sc_peermaxseg = oi->maxseg;
2163 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
2164 						m->m_pkthdr.rcvif : NULL);
2165 	if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
2166 		sc->sc_flags |= SCF_TIMESTAMP;
2167 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2168 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2169 		sc->sc_requested_s_scale = tb.requested_s_scale;
2170 		sc->sc_request_r_scale = 0;
2171 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
2172 		    TCP_MAXWIN << sc->sc_request_r_scale <
2173 		    so->so_rcv.sb_hiwat)
2174 			sc->sc_request_r_scale++;
2175 	} else {
2176 		sc->sc_requested_s_scale = 15;
2177 		sc->sc_request_r_scale = 15;
2178 	}
2179 	if (syn_cache_respond(sc, m, ti, win, tb.ts_recent) == 0) {
2180 		syn_cache_insert(sc, &sc_prev, &scp);
2181 		tcpstat.tcps_sndacks++;
2182 		tcpstat.tcps_sndtotal++;
2183 	} else {
2184 		if (sc->sc_ipopts)
2185 			(void) m_free(sc->sc_ipopts);
2186 		FREE(sc, M_PCB);
2187 		tcpstat.tcps_sc_dropped++;
2188 	}
2189 	return (1);
2190 }
2191 
2192 int
2193 syn_cache_respond(sc, m, ti, win, ts)
2194 	struct syn_cache *sc;
2195 	struct mbuf *m;
2196 	register struct tcpiphdr *ti;
2197 	long win;
2198 	u_long ts;
2199 {
2200 	u_int8_t *optp;
2201 	int optlen;
2202 
2203 	/*
2204 	 * Tack on the TCP options.  If there isn't enough trailing
2205 	 * space for them, move up the fixed header to make space.
2206 	 */
2207 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
2208 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
2209 	if (optlen > M_TRAILINGSPACE(m)) {
2210 		if (M_LEADINGSPACE(m) >= optlen) {
2211 			m->m_data -= optlen;
2212 			m->m_len += optlen;
2213 		} else {
2214 			struct mbuf *m0 = m;
2215 			if ((m = m_gethdr(M_DONTWAIT, MT_HEADER)) == NULL) {
2216 				m_freem(m0);
2217 				return (ENOBUFS);
2218 			}
2219 			MH_ALIGN(m, sizeof(*ti) + optlen);
2220 			m->m_next = m0; /* this gets freed below */
2221 		}
2222 		ovbcopy((caddr_t)ti, mtod(m, caddr_t), sizeof(*ti));
2223 		ti = mtod(m, struct tcpiphdr *);
2224 	}
2225 
2226 	optp = (u_int8_t *)(ti + 1);
2227 	optp[0] = TCPOPT_MAXSEG;
2228 	optp[1] = 4;
2229 	optp[2] = (sc->sc_ourmaxseg >> 8) & 0xff;
2230 	optp[3] = sc->sc_ourmaxseg & 0xff;
2231 	optlen = 4;
2232 
2233 	if (sc->sc_request_r_scale != 15) {
2234 		*((u_int32_t *)(optp + optlen)) = htonl(TCPOPT_NOP << 24 |
2235 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
2236 		    sc->sc_request_r_scale);
2237 		optlen += 4;
2238 	}
2239 
2240 	if (sc->sc_flags & SCF_TIMESTAMP) {
2241 		u_int32_t *lp = (u_int32_t *)(optp + optlen);
2242 		/* Form timestamp option as shown in appendix A of RFC 1323. */
2243 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
2244 		*lp++ = htonl(tcp_now);
2245 		*lp   = htonl(ts);
2246 		optlen += TCPOLEN_TSTAMP_APPA;
2247 	}
2248 
2249 	/*
2250 	 * Toss any trailing mbufs.  No need to worry about
2251 	 * m_len and m_pkthdr.len, since tcp_respond() will
2252 	 * unconditionally set them.
2253 	 */
2254 	if (m->m_next) {
2255 		m_freem(m->m_next);
2256 		m->m_next = NULL;
2257   	}
2258 
2259 	/*
2260 	 * Fill in the fields that tcp_respond() will not touch, and
2261 	 * then send the response.
2262 	 */
2263 	ti->ti_off = (sizeof(struct tcphdr) + optlen) >> 2;
2264 	ti->ti_win = htons(win);
2265 	return (tcp_respond(NULL, ti, m, sc->sc_irs + 1, sc->sc_iss,
2266 	    TH_SYN|TH_ACK));
2267 }
2268 #endif /* TUBA_INCLUDE */
2269