xref: /netbsd-src/sys/netinet/tcp_input.c (revision 7c192b2a5e1093666e67801684f930ef49b3b363)
1 /*	$NetBSD: tcp_input.c,v 1.359 2017/07/07 01:37:34 ozaki-r Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74  * 2011 The NetBSD Foundation, Inc.
75  * All rights reserved.
76  *
77  * This code is derived from software contributed to The NetBSD Foundation
78  * by Coyote Point Systems, Inc.
79  * This code is derived from software contributed to The NetBSD Foundation
80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81  * Facility, NASA Ames Research Center.
82  * This code is derived from software contributed to The NetBSD Foundation
83  * by Charles M. Hannum.
84  * This code is derived from software contributed to The NetBSD Foundation
85  * by Rui Paulo.
86  *
87  * Redistribution and use in source and binary forms, with or without
88  * modification, are permitted provided that the following conditions
89  * are met:
90  * 1. Redistributions of source code must retain the above copyright
91  *    notice, this list of conditions and the following disclaimer.
92  * 2. Redistributions in binary form must reproduce the above copyright
93  *    notice, this list of conditions and the following disclaimer in the
94  *    documentation and/or other materials provided with the distribution.
95  *
96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106  * POSSIBILITY OF SUCH DAMAGE.
107  */
108 
109 /*
110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111  *	The Regents of the University of California.  All rights reserved.
112  *
113  * Redistribution and use in source and binary forms, with or without
114  * modification, are permitted provided that the following conditions
115  * are met:
116  * 1. Redistributions of source code must retain the above copyright
117  *    notice, this list of conditions and the following disclaimer.
118  * 2. Redistributions in binary form must reproduce the above copyright
119  *    notice, this list of conditions and the following disclaimer in the
120  *    documentation and/or other materials provided with the distribution.
121  * 3. Neither the name of the University nor the names of its contributors
122  *    may be used to endorse or promote products derived from this software
123  *    without specific prior written permission.
124  *
125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135  * SUCH DAMAGE.
136  *
137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
138  */
139 
140 /*
141  *	TODO list for SYN cache stuff:
142  *
143  *	Find room for a "state" field, which is needed to keep a
144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
145  *	that this is fairly important for very high-volume web and
146  *	mail servers, which use a large number of short-lived
147  *	connections.
148  */
149 
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.359 2017/07/07 01:37:34 ozaki-r Exp $");
152 
153 #ifdef _KERNEL_OPT
154 #include "opt_inet.h"
155 #include "opt_ipsec.h"
156 #include "opt_inet_csum.h"
157 #include "opt_tcp_debug.h"
158 #endif
159 
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175 #include <sys/lwp.h> /* for lwp0 */
176 #include <sys/cprng.h>
177 
178 #include <net/if.h>
179 #include <net/if_types.h>
180 
181 #include <netinet/in.h>
182 #include <netinet/in_systm.h>
183 #include <netinet/ip.h>
184 #include <netinet/in_pcb.h>
185 #include <netinet/in_var.h>
186 #include <netinet/ip_var.h>
187 #include <netinet/in_offload.h>
188 
189 #ifdef INET6
190 #ifndef INET
191 #include <netinet/in.h>
192 #endif
193 #include <netinet/ip6.h>
194 #include <netinet6/ip6_var.h>
195 #include <netinet6/in6_pcb.h>
196 #include <netinet6/ip6_var.h>
197 #include <netinet6/in6_var.h>
198 #include <netinet/icmp6.h>
199 #include <netinet6/nd6.h>
200 #ifdef TCP_SIGNATURE
201 #include <netinet6/scope6_var.h>
202 #endif
203 #endif
204 
205 #ifndef INET6
206 /* always need ip6.h for IP6_EXTHDR_GET */
207 #include <netinet/ip6.h>
208 #endif
209 
210 #include <netinet/tcp.h>
211 #include <netinet/tcp_fsm.h>
212 #include <netinet/tcp_seq.h>
213 #include <netinet/tcp_timer.h>
214 #include <netinet/tcp_var.h>
215 #include <netinet/tcp_private.h>
216 #include <netinet/tcpip.h>
217 #include <netinet/tcp_congctl.h>
218 #include <netinet/tcp_debug.h>
219 
220 #ifdef INET6
221 #include "faith.h"
222 #if defined(NFAITH) && NFAITH > 0
223 #include <net/if_faith.h>
224 #endif
225 #endif	/* INET6 */
226 
227 #ifdef IPSEC
228 #include <netipsec/ipsec.h>
229 #include <netipsec/ipsec_var.h>
230 #include <netipsec/ipsec_private.h>
231 #include <netipsec/key.h>
232 #ifdef INET6
233 #include <netipsec/ipsec6.h>
234 #endif
235 #endif	/* IPSEC*/
236 
237 #include <netinet/tcp_vtw.h>
238 
239 int	tcprexmtthresh = 3;
240 int	tcp_log_refused;
241 
242 int	tcp_do_autorcvbuf = 1;
243 int	tcp_autorcvbuf_inc = 16 * 1024;
244 int	tcp_autorcvbuf_max = 256 * 1024;
245 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
246 
247 static int tcp_rst_ppslim_count = 0;
248 static struct timeval tcp_rst_ppslim_last;
249 static int tcp_ackdrop_ppslim_count = 0;
250 static struct timeval tcp_ackdrop_ppslim_last;
251 
252 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
253 
254 /* for modulo comparisons of timestamps */
255 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
256 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
257 
258 /*
259  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
260  */
261 #ifdef INET6
262 static inline void
263 nd6_hint(struct tcpcb *tp)
264 {
265 	struct rtentry *rt = NULL;
266 
267 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
268 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
269 		nd6_nud_hint(rt);
270 	rtcache_unref(rt, &tp->t_in6pcb->in6p_route);
271 }
272 #else
273 static inline void
274 nd6_hint(struct tcpcb *tp)
275 {
276 }
277 #endif
278 
279 /*
280  * Compute ACK transmission behavior.  Delay the ACK unless
281  * we have already delayed an ACK (must send an ACK every two segments).
282  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
283  * option is enabled.
284  */
285 static void
286 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
287 {
288 
289 	if (tp->t_flags & TF_DELACK ||
290 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
291 		tp->t_flags |= TF_ACKNOW;
292 	else
293 		TCP_SET_DELACK(tp);
294 }
295 
296 static void
297 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
298 {
299 
300 	/*
301 	 * If we had a pending ICMP message that refers to data that have
302 	 * just been acknowledged, disregard the recorded ICMP message.
303 	 */
304 	if ((tp->t_flags & TF_PMTUD_PEND) &&
305 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
306 		tp->t_flags &= ~TF_PMTUD_PEND;
307 
308 	/*
309 	 * Keep track of the largest chunk of data
310 	 * acknowledged since last PMTU update
311 	 */
312 	if (tp->t_pmtud_mss_acked < acked)
313 		tp->t_pmtud_mss_acked = acked;
314 }
315 
316 /*
317  * Convert TCP protocol fields to host order for easier processing.
318  */
319 static void
320 tcp_fields_to_host(struct tcphdr *th)
321 {
322 
323 	NTOHL(th->th_seq);
324 	NTOHL(th->th_ack);
325 	NTOHS(th->th_win);
326 	NTOHS(th->th_urp);
327 }
328 
329 /*
330  * ... and reverse the above.
331  */
332 static void
333 tcp_fields_to_net(struct tcphdr *th)
334 {
335 
336 	HTONL(th->th_seq);
337 	HTONL(th->th_ack);
338 	HTONS(th->th_win);
339 	HTONS(th->th_urp);
340 }
341 
342 #ifdef TCP_CSUM_COUNTERS
343 #include <sys/device.h>
344 
345 #if defined(INET)
346 extern struct evcnt tcp_hwcsum_ok;
347 extern struct evcnt tcp_hwcsum_bad;
348 extern struct evcnt tcp_hwcsum_data;
349 extern struct evcnt tcp_swcsum;
350 #endif /* defined(INET) */
351 #if defined(INET6)
352 extern struct evcnt tcp6_hwcsum_ok;
353 extern struct evcnt tcp6_hwcsum_bad;
354 extern struct evcnt tcp6_hwcsum_data;
355 extern struct evcnt tcp6_swcsum;
356 #endif /* defined(INET6) */
357 
358 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
359 
360 #else
361 
362 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
363 
364 #endif /* TCP_CSUM_COUNTERS */
365 
366 #ifdef TCP_REASS_COUNTERS
367 #include <sys/device.h>
368 
369 extern struct evcnt tcp_reass_;
370 extern struct evcnt tcp_reass_empty;
371 extern struct evcnt tcp_reass_iteration[8];
372 extern struct evcnt tcp_reass_prependfirst;
373 extern struct evcnt tcp_reass_prepend;
374 extern struct evcnt tcp_reass_insert;
375 extern struct evcnt tcp_reass_inserttail;
376 extern struct evcnt tcp_reass_append;
377 extern struct evcnt tcp_reass_appendtail;
378 extern struct evcnt tcp_reass_overlaptail;
379 extern struct evcnt tcp_reass_overlapfront;
380 extern struct evcnt tcp_reass_segdup;
381 extern struct evcnt tcp_reass_fragdup;
382 
383 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
384 
385 #else
386 
387 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
388 
389 #endif /* TCP_REASS_COUNTERS */
390 
391 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
392     int *);
393 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
394     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
395 
396 #ifdef INET
397 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
398 #endif
399 #ifdef INET6
400 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
401 #endif
402 
403 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
404 
405 #if defined(MBUFTRACE)
406 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
407 #endif /* defined(MBUFTRACE) */
408 
409 static struct pool tcpipqent_pool;
410 
411 void
412 tcpipqent_init(void)
413 {
414 
415 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
416 	    NULL, IPL_VM);
417 }
418 
419 struct ipqent *
420 tcpipqent_alloc(void)
421 {
422 	struct ipqent *ipqe;
423 	int s;
424 
425 	s = splvm();
426 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
427 	splx(s);
428 
429 	return ipqe;
430 }
431 
432 void
433 tcpipqent_free(struct ipqent *ipqe)
434 {
435 	int s;
436 
437 	s = splvm();
438 	pool_put(&tcpipqent_pool, ipqe);
439 	splx(s);
440 }
441 
442 static int
443 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
444 {
445 	struct ipqent *p, *q, *nq, *tiqe = NULL;
446 	struct socket *so = NULL;
447 	int pkt_flags;
448 	tcp_seq pkt_seq;
449 	unsigned pkt_len;
450 	u_long rcvpartdupbyte = 0;
451 	u_long rcvoobyte;
452 #ifdef TCP_REASS_COUNTERS
453 	u_int count = 0;
454 #endif
455 	uint64_t *tcps;
456 
457 	if (tp->t_inpcb)
458 		so = tp->t_inpcb->inp_socket;
459 #ifdef INET6
460 	else if (tp->t_in6pcb)
461 		so = tp->t_in6pcb->in6p_socket;
462 #endif
463 
464 	TCP_REASS_LOCK_CHECK(tp);
465 
466 	/*
467 	 * Call with th==0 after become established to
468 	 * force pre-ESTABLISHED data up to user socket.
469 	 */
470 	if (th == 0)
471 		goto present;
472 
473 	m_claimm(m, &tcp_reass_mowner);
474 
475 	rcvoobyte = *tlen;
476 	/*
477 	 * Copy these to local variables because the tcpiphdr
478 	 * gets munged while we are collapsing mbufs.
479 	 */
480 	pkt_seq = th->th_seq;
481 	pkt_len = *tlen;
482 	pkt_flags = th->th_flags;
483 
484 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
485 
486 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
487 		/*
488 		 * When we miss a packet, the vast majority of time we get
489 		 * packets that follow it in order.  So optimize for that.
490 		 */
491 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
492 			p->ipqe_len += pkt_len;
493 			p->ipqe_flags |= pkt_flags;
494 			m_cat(p->ipre_mlast, m);
495 			TRAVERSE(p->ipre_mlast);
496 			m = NULL;
497 			tiqe = p;
498 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
499 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
500 			goto skip_replacement;
501 		}
502 		/*
503 		 * While we're here, if the pkt is completely beyond
504 		 * anything we have, just insert it at the tail.
505 		 */
506 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
507 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
508 			goto insert_it;
509 		}
510 	}
511 
512 	q = TAILQ_FIRST(&tp->segq);
513 
514 	if (q != NULL) {
515 		/*
516 		 * If this segment immediately precedes the first out-of-order
517 		 * block, simply slap the segment in front of it and (mostly)
518 		 * skip the complicated logic.
519 		 */
520 		if (pkt_seq + pkt_len == q->ipqe_seq) {
521 			q->ipqe_seq = pkt_seq;
522 			q->ipqe_len += pkt_len;
523 			q->ipqe_flags |= pkt_flags;
524 			m_cat(m, q->ipqe_m);
525 			q->ipqe_m = m;
526 			q->ipre_mlast = m; /* last mbuf may have changed */
527 			TRAVERSE(q->ipre_mlast);
528 			tiqe = q;
529 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
530 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
531 			goto skip_replacement;
532 		}
533 	} else {
534 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
535 	}
536 
537 	/*
538 	 * Find a segment which begins after this one does.
539 	 */
540 	for (p = NULL; q != NULL; q = nq) {
541 		nq = TAILQ_NEXT(q, ipqe_q);
542 #ifdef TCP_REASS_COUNTERS
543 		count++;
544 #endif
545 		/*
546 		 * If the received segment is just right after this
547 		 * fragment, merge the two together and then check
548 		 * for further overlaps.
549 		 */
550 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
551 #ifdef TCPREASS_DEBUG
552 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
553 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
554 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
555 #endif
556 			pkt_len += q->ipqe_len;
557 			pkt_flags |= q->ipqe_flags;
558 			pkt_seq = q->ipqe_seq;
559 			m_cat(q->ipre_mlast, m);
560 			TRAVERSE(q->ipre_mlast);
561 			m = q->ipqe_m;
562 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
563 			goto free_ipqe;
564 		}
565 		/*
566 		 * If the received segment is completely past this
567 		 * fragment, we need to go the next fragment.
568 		 */
569 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
570 			p = q;
571 			continue;
572 		}
573 		/*
574 		 * If the fragment is past the received segment,
575 		 * it (or any following) can't be concatenated.
576 		 */
577 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
578 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
579 			break;
580 		}
581 
582 		/*
583 		 * We've received all the data in this segment before.
584 		 * mark it as a duplicate and return.
585 		 */
586 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
587 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
588 			tcps = TCP_STAT_GETREF();
589 			tcps[TCP_STAT_RCVDUPPACK]++;
590 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
591 			TCP_STAT_PUTREF();
592 			tcp_new_dsack(tp, pkt_seq, pkt_len);
593 			m_freem(m);
594 			if (tiqe != NULL) {
595 				tcpipqent_free(tiqe);
596 			}
597 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
598 			goto out;
599 		}
600 		/*
601 		 * Received segment completely overlaps this fragment
602 		 * so we drop the fragment (this keeps the temporal
603 		 * ordering of segments correct).
604 		 */
605 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
606 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
607 			rcvpartdupbyte += q->ipqe_len;
608 			m_freem(q->ipqe_m);
609 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
610 			goto free_ipqe;
611 		}
612 		/*
613 		 * RX'ed segment extends past the end of the
614 		 * fragment.  Drop the overlapping bytes.  Then
615 		 * merge the fragment and segment then treat as
616 		 * a longer received packet.
617 		 */
618 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
619 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
620 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
621 #ifdef TCPREASS_DEBUG
622 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
623 			       tp, overlap,
624 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
625 #endif
626 			m_adj(m, overlap);
627 			rcvpartdupbyte += overlap;
628 			m_cat(q->ipre_mlast, m);
629 			TRAVERSE(q->ipre_mlast);
630 			m = q->ipqe_m;
631 			pkt_seq = q->ipqe_seq;
632 			pkt_len += q->ipqe_len - overlap;
633 			rcvoobyte -= overlap;
634 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
635 			goto free_ipqe;
636 		}
637 		/*
638 		 * RX'ed segment extends past the front of the
639 		 * fragment.  Drop the overlapping bytes on the
640 		 * received packet.  The packet will then be
641 		 * contatentated with this fragment a bit later.
642 		 */
643 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
644 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
645 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
646 #ifdef TCPREASS_DEBUG
647 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
648 			       tp, overlap,
649 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
650 #endif
651 			m_adj(m, -overlap);
652 			pkt_len -= overlap;
653 			rcvpartdupbyte += overlap;
654 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
655 			rcvoobyte -= overlap;
656 		}
657 		/*
658 		 * If the received segment immediates precedes this
659 		 * fragment then tack the fragment onto this segment
660 		 * and reinsert the data.
661 		 */
662 		if (q->ipqe_seq == pkt_seq + pkt_len) {
663 #ifdef TCPREASS_DEBUG
664 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
665 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
666 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
667 #endif
668 			pkt_len += q->ipqe_len;
669 			pkt_flags |= q->ipqe_flags;
670 			m_cat(m, q->ipqe_m);
671 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
672 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
673 			tp->t_segqlen--;
674 			KASSERT(tp->t_segqlen >= 0);
675 			KASSERT(tp->t_segqlen != 0 ||
676 			    (TAILQ_EMPTY(&tp->segq) &&
677 			    TAILQ_EMPTY(&tp->timeq)));
678 			if (tiqe == NULL) {
679 				tiqe = q;
680 			} else {
681 				tcpipqent_free(q);
682 			}
683 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
684 			break;
685 		}
686 		/*
687 		 * If the fragment is before the segment, remember it.
688 		 * When this loop is terminated, p will contain the
689 		 * pointer to fragment that is right before the received
690 		 * segment.
691 		 */
692 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
693 			p = q;
694 
695 		continue;
696 
697 		/*
698 		 * This is a common operation.  It also will allow
699 		 * to save doing a malloc/free in most instances.
700 		 */
701 	  free_ipqe:
702 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
703 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
704 		tp->t_segqlen--;
705 		KASSERT(tp->t_segqlen >= 0);
706 		KASSERT(tp->t_segqlen != 0 ||
707 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
708 		if (tiqe == NULL) {
709 			tiqe = q;
710 		} else {
711 			tcpipqent_free(q);
712 		}
713 	}
714 
715 #ifdef TCP_REASS_COUNTERS
716 	if (count > 7)
717 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
718 	else if (count > 0)
719 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
720 #endif
721 
722     insert_it:
723 
724 	/*
725 	 * Allocate a new queue entry since the received segment did not
726 	 * collapse onto any other out-of-order block; thus we are allocating
727 	 * a new block.  If it had collapsed, tiqe would not be NULL and
728 	 * we would be reusing it.
729 	 * XXX If we can't, just drop the packet.  XXX
730 	 */
731 	if (tiqe == NULL) {
732 		tiqe = tcpipqent_alloc();
733 		if (tiqe == NULL) {
734 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
735 			m_freem(m);
736 			goto out;
737 		}
738 	}
739 
740 	/*
741 	 * Update the counters.
742 	 */
743 	tp->t_rcvoopack++;
744 	tcps = TCP_STAT_GETREF();
745 	tcps[TCP_STAT_RCVOOPACK]++;
746 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
747 	if (rcvpartdupbyte) {
748 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
749 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
750 	}
751 	TCP_STAT_PUTREF();
752 
753 	/*
754 	 * Insert the new fragment queue entry into both queues.
755 	 */
756 	tiqe->ipqe_m = m;
757 	tiqe->ipre_mlast = m;
758 	tiqe->ipqe_seq = pkt_seq;
759 	tiqe->ipqe_len = pkt_len;
760 	tiqe->ipqe_flags = pkt_flags;
761 	if (p == NULL) {
762 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
763 #ifdef TCPREASS_DEBUG
764 		if (tiqe->ipqe_seq != tp->rcv_nxt)
765 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
766 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
767 #endif
768 	} else {
769 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
770 #ifdef TCPREASS_DEBUG
771 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
772 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
773 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
774 #endif
775 	}
776 	tp->t_segqlen++;
777 
778 skip_replacement:
779 
780 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
781 
782 present:
783 	/*
784 	 * Present data to user, advancing rcv_nxt through
785 	 * completed sequence space.
786 	 */
787 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
788 		goto out;
789 	q = TAILQ_FIRST(&tp->segq);
790 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
791 		goto out;
792 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
793 		goto out;
794 
795 	tp->rcv_nxt += q->ipqe_len;
796 	pkt_flags = q->ipqe_flags & TH_FIN;
797 	nd6_hint(tp);
798 
799 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
800 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
801 	tp->t_segqlen--;
802 	KASSERT(tp->t_segqlen >= 0);
803 	KASSERT(tp->t_segqlen != 0 ||
804 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
805 	if (so->so_state & SS_CANTRCVMORE)
806 		m_freem(q->ipqe_m);
807 	else
808 		sbappendstream(&so->so_rcv, q->ipqe_m);
809 	tcpipqent_free(q);
810 	TCP_REASS_UNLOCK(tp);
811 	sorwakeup(so);
812 	return (pkt_flags);
813 out:
814 	TCP_REASS_UNLOCK(tp);
815 	return (0);
816 }
817 
818 #ifdef INET6
819 int
820 tcp6_input(struct mbuf **mp, int *offp, int proto)
821 {
822 	struct mbuf *m = *mp;
823 
824 	/*
825 	 * draft-itojun-ipv6-tcp-to-anycast
826 	 * better place to put this in?
827 	 */
828 	if (m->m_flags & M_ANYCAST6) {
829 		struct ip6_hdr *ip6;
830 		if (m->m_len < sizeof(struct ip6_hdr)) {
831 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
832 				TCP_STATINC(TCP_STAT_RCVSHORT);
833 				return IPPROTO_DONE;
834 			}
835 		}
836 		ip6 = mtod(m, struct ip6_hdr *);
837 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
838 		    (char *)&ip6->ip6_dst - (char *)ip6);
839 		return IPPROTO_DONE;
840 	}
841 
842 	tcp_input(m, *offp, proto);
843 	return IPPROTO_DONE;
844 }
845 #endif
846 
847 #ifdef INET
848 static void
849 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
850 {
851 	char src[INET_ADDRSTRLEN];
852 	char dst[INET_ADDRSTRLEN];
853 
854 	if (ip) {
855 		in_print(src, sizeof(src), &ip->ip_src);
856 		in_print(dst, sizeof(dst), &ip->ip_dst);
857 	}
858 	else {
859 		strlcpy(src, "(unknown)", sizeof(src));
860 		strlcpy(dst, "(unknown)", sizeof(dst));
861 	}
862 	log(LOG_INFO,
863 	    "Connection attempt to TCP %s:%d from %s:%d\n",
864 	    dst, ntohs(th->th_dport),
865 	    src, ntohs(th->th_sport));
866 }
867 #endif
868 
869 #ifdef INET6
870 static void
871 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
872 {
873 	char src[INET6_ADDRSTRLEN];
874 	char dst[INET6_ADDRSTRLEN];
875 
876 	if (ip6) {
877 		in6_print(src, sizeof(src), &ip6->ip6_src);
878 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
879 	}
880 	else {
881 		strlcpy(src, "(unknown v6)", sizeof(src));
882 		strlcpy(dst, "(unknown v6)", sizeof(dst));
883 	}
884 	log(LOG_INFO,
885 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
886 	    dst, ntohs(th->th_dport),
887 	    src, ntohs(th->th_sport));
888 }
889 #endif
890 
891 /*
892  * Checksum extended TCP header and data.
893  */
894 int
895 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
896     int toff, int off, int tlen)
897 {
898 	struct ifnet *rcvif;
899 	int s;
900 
901 	/*
902 	 * XXX it's better to record and check if this mbuf is
903 	 * already checked.
904 	 */
905 
906 	rcvif = m_get_rcvif(m, &s);
907 	if (__predict_false(rcvif == NULL))
908 		goto badcsum; /* XXX */
909 
910 	switch (af) {
911 #ifdef INET
912 	case AF_INET:
913 		switch (m->m_pkthdr.csum_flags &
914 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
915 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
916 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
917 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
918 			goto badcsum;
919 
920 		case M_CSUM_TCPv4|M_CSUM_DATA: {
921 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
922 
923 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
924 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
925 				const struct ip *ip =
926 				    mtod(m, const struct ip *);
927 
928 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
929 				    ip->ip_dst.s_addr,
930 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
931 			}
932 			if ((hw_csum ^ 0xffff) != 0)
933 				goto badcsum;
934 			break;
935 		}
936 
937 		case M_CSUM_TCPv4:
938 			/* Checksum was okay. */
939 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
940 			break;
941 
942 		default:
943 			/*
944 			 * Must compute it ourselves.  Maybe skip checksum
945 			 * on loopback interfaces.
946 			 */
947 			if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
948 					   tcp_do_loopback_cksum)) {
949 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
950 				if (in4_cksum(m, IPPROTO_TCP, toff,
951 					      tlen + off) != 0)
952 					goto badcsum;
953 			}
954 			break;
955 		}
956 		break;
957 #endif /* INET4 */
958 
959 #ifdef INET6
960 	case AF_INET6:
961 		switch (m->m_pkthdr.csum_flags &
962 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
963 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
964 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
965 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
966 			goto badcsum;
967 
968 #if 0 /* notyet */
969 		case M_CSUM_TCPv6|M_CSUM_DATA:
970 #endif
971 
972 		case M_CSUM_TCPv6:
973 			/* Checksum was okay. */
974 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
975 			break;
976 
977 		default:
978 			/*
979 			 * Must compute it ourselves.  Maybe skip checksum
980 			 * on loopback interfaces.
981 			 */
982 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
983 			    tcp_do_loopback_cksum)) {
984 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
985 				if (in6_cksum(m, IPPROTO_TCP, toff,
986 				    tlen + off) != 0)
987 					goto badcsum;
988 			}
989 		}
990 		break;
991 #endif /* INET6 */
992 	}
993 	m_put_rcvif(rcvif, &s);
994 
995 	return 0;
996 
997 badcsum:
998 	m_put_rcvif(rcvif, &s);
999 	TCP_STATINC(TCP_STAT_RCVBADSUM);
1000 	return -1;
1001 }
1002 
1003 /* When a packet arrives addressed to a vestigial tcpbp, we
1004  * nevertheless have to respond to it per the spec.
1005  */
1006 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
1007 			  struct mbuf *m, int tlen, int multicast)
1008 {
1009 	int		tiflags;
1010 	int		todrop;
1011 	uint32_t	t_flags = 0;
1012 	uint64_t	*tcps;
1013 
1014 	tiflags = th->th_flags;
1015 	todrop  = vp->rcv_nxt - th->th_seq;
1016 
1017 	if (todrop > 0) {
1018 		if (tiflags & TH_SYN) {
1019 			tiflags &= ~TH_SYN;
1020 			++th->th_seq;
1021 			if (th->th_urp > 1)
1022 				--th->th_urp;
1023 			else {
1024 				tiflags &= ~TH_URG;
1025 				th->th_urp = 0;
1026 			}
1027 			--todrop;
1028 		}
1029 		if (todrop > tlen ||
1030 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1031 			/*
1032 			 * Any valid FIN or RST must be to the left of the
1033 			 * window.  At this point the FIN or RST must be a
1034 			 * duplicate or out of sequence; drop it.
1035 			 */
1036 			if (tiflags & TH_RST)
1037 				goto drop;
1038 			tiflags &= ~(TH_FIN|TH_RST);
1039 			/*
1040 			 * Send an ACK to resynchronize and drop any data.
1041 			 * But keep on processing for RST or ACK.
1042 			 */
1043 			t_flags |= TF_ACKNOW;
1044 			todrop = tlen;
1045 			tcps = TCP_STAT_GETREF();
1046 			tcps[TCP_STAT_RCVDUPPACK] += 1;
1047 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1048 			TCP_STAT_PUTREF();
1049 		} else if ((tiflags & TH_RST)
1050 			   && th->th_seq != vp->rcv_nxt) {
1051 			/*
1052 			 * Test for reset before adjusting the sequence
1053 			 * number for overlapping data.
1054 			 */
1055 			goto dropafterack_ratelim;
1056 		} else {
1057 			tcps = TCP_STAT_GETREF();
1058 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1059 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1060 			TCP_STAT_PUTREF();
1061 		}
1062 
1063 //		tcp_new_dsack(tp, th->th_seq, todrop);
1064 //		hdroptlen += todrop;	/*drop from head afterwards*/
1065 
1066 		th->th_seq += todrop;
1067 		tlen -= todrop;
1068 
1069 		if (th->th_urp > todrop)
1070 			th->th_urp -= todrop;
1071 		else {
1072 			tiflags &= ~TH_URG;
1073 			th->th_urp = 0;
1074 		}
1075 	}
1076 
1077 	/*
1078 	 * If new data are received on a connection after the
1079 	 * user processes are gone, then RST the other end.
1080 	 */
1081 	if (tlen) {
1082 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1083 		goto dropwithreset;
1084 	}
1085 
1086 	/*
1087 	 * If segment ends after window, drop trailing data
1088 	 * (and PUSH and FIN); if nothing left, just ACK.
1089 	 */
1090 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
1091 
1092 	if (todrop > 0) {
1093 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1094 		if (todrop >= tlen) {
1095 			/*
1096 			 * The segment actually starts after the window.
1097 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1098 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1099 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1100 			 */
1101 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1102 			/*
1103 			 * If a new connection request is received
1104 			 * while in TIME_WAIT, drop the old connection
1105 			 * and start over if the sequence numbers
1106 			 * are above the previous ones.
1107 			 */
1108 			if ((tiflags & TH_SYN)
1109 			    && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1110 				/* We only support this in the !NOFDREF case, which
1111 				 * is to say: not here.
1112 				 */
1113 				goto dropwithreset;
1114 			}
1115 			/*
1116 			 * If window is closed can only take segments at
1117 			 * window edge, and have to drop data and PUSH from
1118 			 * incoming segments.  Continue processing, but
1119 			 * remember to ack.  Otherwise, drop segment
1120 			 * and (if not RST) ack.
1121 			 */
1122 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1123 				t_flags |= TF_ACKNOW;
1124 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
1125 			} else
1126 				goto dropafterack;
1127 		} else
1128 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1129 		m_adj(m, -todrop);
1130 		tlen -= todrop;
1131 		tiflags &= ~(TH_PUSH|TH_FIN);
1132 	}
1133 
1134 	if (tiflags & TH_RST) {
1135 		if (th->th_seq != vp->rcv_nxt)
1136 			goto dropafterack_ratelim;
1137 
1138 		vtw_del(vp->ctl, vp->vtw);
1139 		goto drop;
1140 	}
1141 
1142 	/*
1143 	 * If the ACK bit is off we drop the segment and return.
1144 	 */
1145 	if ((tiflags & TH_ACK) == 0) {
1146 		if (t_flags & TF_ACKNOW)
1147 			goto dropafterack;
1148 		else
1149 			goto drop;
1150 	}
1151 
1152 	/*
1153 	 * In TIME_WAIT state the only thing that should arrive
1154 	 * is a retransmission of the remote FIN.  Acknowledge
1155 	 * it and restart the finack timer.
1156 	 */
1157 	vtw_restart(vp);
1158 	goto dropafterack;
1159 
1160 dropafterack:
1161 	/*
1162 	 * Generate an ACK dropping incoming segment if it occupies
1163 	 * sequence space, where the ACK reflects our state.
1164 	 */
1165 	if (tiflags & TH_RST)
1166 		goto drop;
1167 	goto dropafterack2;
1168 
1169 dropafterack_ratelim:
1170 	/*
1171 	 * We may want to rate-limit ACKs against SYN/RST attack.
1172 	 */
1173 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1174 			 tcp_ackdrop_ppslim) == 0) {
1175 		/* XXX stat */
1176 		goto drop;
1177 	}
1178 	/* ...fall into dropafterack2... */
1179 
1180 dropafterack2:
1181 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
1182 			  TH_ACK);
1183 	return;
1184 
1185 dropwithreset:
1186 	/*
1187 	 * Generate a RST, dropping incoming segment.
1188 	 * Make ACK acceptable to originator of segment.
1189 	 */
1190 	if (tiflags & TH_RST)
1191 		goto drop;
1192 
1193 	if (tiflags & TH_ACK)
1194 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1195 	else {
1196 		if (tiflags & TH_SYN)
1197 			++tlen;
1198 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1199 				  TH_RST|TH_ACK);
1200 	}
1201 	return;
1202 drop:
1203 	m_freem(m);
1204 }
1205 
1206 /*
1207  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1208  */
1209 void
1210 tcp_input(struct mbuf *m, ...)
1211 {
1212 	struct tcphdr *th;
1213 	struct ip *ip;
1214 	struct inpcb *inp;
1215 #ifdef INET6
1216 	struct ip6_hdr *ip6;
1217 	struct in6pcb *in6p;
1218 #endif
1219 	u_int8_t *optp = NULL;
1220 	int optlen = 0;
1221 	int len, tlen, toff, hdroptlen = 0;
1222 	struct tcpcb *tp = 0;
1223 	int tiflags;
1224 	struct socket *so = NULL;
1225 	int todrop, acked, ourfinisacked, needoutput = 0;
1226 	bool dupseg;
1227 #ifdef TCP_DEBUG
1228 	short ostate = 0;
1229 #endif
1230 	u_long tiwin;
1231 	struct tcp_opt_info opti;
1232 	int off, iphlen;
1233 	va_list ap;
1234 	int af;		/* af on the wire */
1235 	struct mbuf *tcp_saveti = NULL;
1236 	uint32_t ts_rtt;
1237 	uint8_t iptos;
1238 	uint64_t *tcps;
1239 	vestigial_inpcb_t vestige;
1240 
1241 	vestige.valid = 0;
1242 
1243 	MCLAIM(m, &tcp_rx_mowner);
1244 	va_start(ap, m);
1245 	toff = va_arg(ap, int);
1246 	(void)va_arg(ap, int);		/* ignore value, advance ap */
1247 	va_end(ap);
1248 
1249 	TCP_STATINC(TCP_STAT_RCVTOTAL);
1250 
1251 	memset(&opti, 0, sizeof(opti));
1252 	opti.ts_present = 0;
1253 	opti.maxseg = 0;
1254 
1255 	/*
1256 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1257 	 *
1258 	 * TCP is, by definition, unicast, so we reject all
1259 	 * multicast outright.
1260 	 *
1261 	 * Note, there are additional src/dst address checks in
1262 	 * the AF-specific code below.
1263 	 */
1264 	if (m->m_flags & (M_BCAST|M_MCAST)) {
1265 		/* XXX stat */
1266 		goto drop;
1267 	}
1268 #ifdef INET6
1269 	if (m->m_flags & M_ANYCAST6) {
1270 		/* XXX stat */
1271 		goto drop;
1272 	}
1273 #endif
1274 
1275 	/*
1276 	 * Get IP and TCP header.
1277 	 * Note: IP leaves IP header in first mbuf.
1278 	 */
1279 	ip = mtod(m, struct ip *);
1280 	switch (ip->ip_v) {
1281 #ifdef INET
1282 	case 4:
1283 #ifdef INET6
1284 		ip6 = NULL;
1285 #endif
1286 		af = AF_INET;
1287 		iphlen = sizeof(struct ip);
1288 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1289 			sizeof(struct tcphdr));
1290 		if (th == NULL) {
1291 			TCP_STATINC(TCP_STAT_RCVSHORT);
1292 			return;
1293 		}
1294 		/* We do the checksum after PCB lookup... */
1295 		len = ntohs(ip->ip_len);
1296 		tlen = len - toff;
1297 		iptos = ip->ip_tos;
1298 		break;
1299 #endif
1300 #ifdef INET6
1301 	case 6:
1302 		ip = NULL;
1303 		iphlen = sizeof(struct ip6_hdr);
1304 		af = AF_INET6;
1305 		ip6 = mtod(m, struct ip6_hdr *);
1306 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1307 			sizeof(struct tcphdr));
1308 		if (th == NULL) {
1309 			TCP_STATINC(TCP_STAT_RCVSHORT);
1310 			return;
1311 		}
1312 
1313 		/* Be proactive about malicious use of IPv4 mapped address */
1314 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1315 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1316 			/* XXX stat */
1317 			goto drop;
1318 		}
1319 
1320 		/*
1321 		 * Be proactive about unspecified IPv6 address in source.
1322 		 * As we use all-zero to indicate unbounded/unconnected pcb,
1323 		 * unspecified IPv6 address can be used to confuse us.
1324 		 *
1325 		 * Note that packets with unspecified IPv6 destination is
1326 		 * already dropped in ip6_input.
1327 		 */
1328 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1329 			/* XXX stat */
1330 			goto drop;
1331 		}
1332 
1333 		/*
1334 		 * Make sure destination address is not multicast.
1335 		 * Source address checked in ip6_input().
1336 		 */
1337 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1338 			/* XXX stat */
1339 			goto drop;
1340 		}
1341 
1342 		/* We do the checksum after PCB lookup... */
1343 		len = m->m_pkthdr.len;
1344 		tlen = len - toff;
1345 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1346 		break;
1347 #endif
1348 	default:
1349 		m_freem(m);
1350 		return;
1351 	}
1352 	/*
1353          * Enforce alignment requirements that are violated in
1354 	 * some cases, see kern/50766 for details.
1355 	 */
1356 	if (TCP_HDR_ALIGNED_P(th) == 0) {
1357 		m = m_copyup(m, toff + sizeof(struct tcphdr), 0);
1358 		if (m == NULL) {
1359 			TCP_STATINC(TCP_STAT_RCVSHORT);
1360 			return;
1361 		}
1362 		ip = mtod(m, struct ip *);
1363 #ifdef INET6
1364 		ip6 = mtod(m, struct ip6_hdr *);
1365 #endif
1366 		th = (struct tcphdr *)(mtod(m, char *) + toff);
1367 	}
1368 	KASSERT(TCP_HDR_ALIGNED_P(th));
1369 
1370 	/*
1371 	 * Check that TCP offset makes sense,
1372 	 * pull out TCP options and adjust length.		XXX
1373 	 */
1374 	off = th->th_off << 2;
1375 	if (off < sizeof (struct tcphdr) || off > tlen) {
1376 		TCP_STATINC(TCP_STAT_RCVBADOFF);
1377 		goto drop;
1378 	}
1379 	tlen -= off;
1380 
1381 	/*
1382 	 * tcp_input() has been modified to use tlen to mean the TCP data
1383 	 * length throughout the function.  Other functions can use
1384 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1385 	 * rja
1386 	 */
1387 
1388 	if (off > sizeof (struct tcphdr)) {
1389 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1390 		if (th == NULL) {
1391 			TCP_STATINC(TCP_STAT_RCVSHORT);
1392 			return;
1393 		}
1394 		/*
1395 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
1396 		 * (as they're before toff) and we don't need to update those.
1397 		 */
1398 		KASSERT(TCP_HDR_ALIGNED_P(th));
1399 		optlen = off - sizeof (struct tcphdr);
1400 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1401 		/*
1402 		 * Do quick retrieval of timestamp options ("options
1403 		 * prediction?").  If timestamp is the only option and it's
1404 		 * formatted as recommended in RFC 1323 appendix A, we
1405 		 * quickly get the values now and not bother calling
1406 		 * tcp_dooptions(), etc.
1407 		 */
1408 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1409 		     (optlen > TCPOLEN_TSTAMP_APPA &&
1410 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1411 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1412 		     (th->th_flags & TH_SYN) == 0) {
1413 			opti.ts_present = 1;
1414 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1415 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1416 			optp = NULL;	/* we've parsed the options */
1417 		}
1418 	}
1419 	tiflags = th->th_flags;
1420 
1421 	/*
1422 	 * Checksum extended TCP header and data
1423 	 */
1424 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
1425 		goto badcsum;
1426 
1427 	/*
1428 	 * Locate pcb for segment.
1429 	 */
1430 findpcb:
1431 	inp = NULL;
1432 #ifdef INET6
1433 	in6p = NULL;
1434 #endif
1435 	switch (af) {
1436 #ifdef INET
1437 	case AF_INET:
1438 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1439 					   ip->ip_dst, th->th_dport,
1440 					   &vestige);
1441 		if (inp == 0 && !vestige.valid) {
1442 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1443 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1444 		}
1445 #ifdef INET6
1446 		if (inp == 0 && !vestige.valid) {
1447 			struct in6_addr s, d;
1448 
1449 			/* mapped addr case */
1450 			in6_in_2_v4mapin6(&ip->ip_src, &s);
1451 			in6_in_2_v4mapin6(&ip->ip_dst, &d);
1452 			in6p = in6_pcblookup_connect(&tcbtable, &s,
1453 						     th->th_sport, &d, th->th_dport,
1454 						     0, &vestige);
1455 			if (in6p == 0 && !vestige.valid) {
1456 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
1457 				in6p = in6_pcblookup_bind(&tcbtable, &d,
1458 				    th->th_dport, 0);
1459 			}
1460 		}
1461 #endif
1462 #ifndef INET6
1463 		if (inp == 0 && !vestige.valid)
1464 #else
1465 		if (inp == 0 && in6p == 0 && !vestige.valid)
1466 #endif
1467 		{
1468 			TCP_STATINC(TCP_STAT_NOPORT);
1469 			if (tcp_log_refused &&
1470 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1471 				tcp4_log_refused(ip, th);
1472 			}
1473 			tcp_fields_to_host(th);
1474 			goto dropwithreset_ratelim;
1475 		}
1476 #if defined(IPSEC)
1477 		if (ipsec_used) {
1478 			if (inp &&
1479 			    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0
1480 			    && ipsec4_in_reject(m, inp)) {
1481 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1482 				goto drop;
1483 			}
1484 #ifdef INET6
1485 			else if (in6p &&
1486 			    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1487 			    && ipsec6_in_reject(m, in6p)) {
1488 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1489 				goto drop;
1490 			}
1491 #endif
1492 		}
1493 #endif /*IPSEC*/
1494 		break;
1495 #endif /*INET*/
1496 #ifdef INET6
1497 	case AF_INET6:
1498 	    {
1499 		int faith;
1500 
1501 #if defined(NFAITH) && NFAITH > 0
1502 		faith = faithprefix(&ip6->ip6_dst);
1503 #else
1504 		faith = 0;
1505 #endif
1506 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1507 					     th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1508 		if (!in6p && !vestige.valid) {
1509 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1510 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1511 				th->th_dport, faith);
1512 		}
1513 		if (!in6p && !vestige.valid) {
1514 			TCP_STATINC(TCP_STAT_NOPORT);
1515 			if (tcp_log_refused &&
1516 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1517 				tcp6_log_refused(ip6, th);
1518 			}
1519 			tcp_fields_to_host(th);
1520 			goto dropwithreset_ratelim;
1521 		}
1522 #if defined(IPSEC)
1523 		if (ipsec_used && in6p
1524 		    && (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1525 		    && ipsec6_in_reject(m, in6p)) {
1526 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1527 			goto drop;
1528 		}
1529 #endif /*IPSEC*/
1530 		break;
1531 	    }
1532 #endif
1533 	}
1534 
1535 	/*
1536 	 * If the state is CLOSED (i.e., TCB does not exist) then
1537 	 * all data in the incoming segment is discarded.
1538 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1539 	 * but should either do a listen or a connect soon.
1540 	 */
1541 	tp = NULL;
1542 	so = NULL;
1543 	if (inp) {
1544 		/* Check the minimum TTL for socket. */
1545 		if (ip->ip_ttl < inp->inp_ip_minttl)
1546 			goto drop;
1547 
1548 		tp = intotcpcb(inp);
1549 		so = inp->inp_socket;
1550 	}
1551 #ifdef INET6
1552 	else if (in6p) {
1553 		tp = in6totcpcb(in6p);
1554 		so = in6p->in6p_socket;
1555 	}
1556 #endif
1557 	else if (vestige.valid) {
1558 		int mc = 0;
1559 
1560 		/* We do not support the resurrection of vtw tcpcps.
1561 		 */
1562 		if (tcp_input_checksum(af, m, th, toff, off, tlen))
1563 			goto badcsum;
1564 
1565 		switch (af) {
1566 #ifdef INET6
1567 		case AF_INET6:
1568 			mc = IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst);
1569 			break;
1570 #endif
1571 
1572 		case AF_INET:
1573 			mc = (IN_MULTICAST(ip->ip_dst.s_addr)
1574 			      || in_broadcast(ip->ip_dst,
1575 			                      m_get_rcvif_NOMPSAFE(m)));
1576 			break;
1577 		}
1578 
1579 		tcp_fields_to_host(th);
1580 		tcp_vtw_input(th, &vestige, m, tlen, mc);
1581 		m = 0;
1582 		goto drop;
1583 	}
1584 
1585 	if (tp == 0) {
1586 		tcp_fields_to_host(th);
1587 		goto dropwithreset_ratelim;
1588 	}
1589 	if (tp->t_state == TCPS_CLOSED)
1590 		goto drop;
1591 
1592 	KASSERT(so->so_lock == softnet_lock);
1593 	KASSERT(solocked(so));
1594 
1595 	tcp_fields_to_host(th);
1596 
1597 	/* Unscale the window into a 32-bit value. */
1598 	if ((tiflags & TH_SYN) == 0)
1599 		tiwin = th->th_win << tp->snd_scale;
1600 	else
1601 		tiwin = th->th_win;
1602 
1603 #ifdef INET6
1604 	/* save packet options if user wanted */
1605 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1606 		if (in6p->in6p_options) {
1607 			m_freem(in6p->in6p_options);
1608 			in6p->in6p_options = 0;
1609 		}
1610 		KASSERT(ip6 != NULL);
1611 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1612 	}
1613 #endif
1614 
1615 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1616 		union syn_cache_sa src;
1617 		union syn_cache_sa dst;
1618 
1619 		memset(&src, 0, sizeof(src));
1620 		memset(&dst, 0, sizeof(dst));
1621 		switch (af) {
1622 #ifdef INET
1623 		case AF_INET:
1624 			src.sin.sin_len = sizeof(struct sockaddr_in);
1625 			src.sin.sin_family = AF_INET;
1626 			src.sin.sin_addr = ip->ip_src;
1627 			src.sin.sin_port = th->th_sport;
1628 
1629 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1630 			dst.sin.sin_family = AF_INET;
1631 			dst.sin.sin_addr = ip->ip_dst;
1632 			dst.sin.sin_port = th->th_dport;
1633 			break;
1634 #endif
1635 #ifdef INET6
1636 		case AF_INET6:
1637 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1638 			src.sin6.sin6_family = AF_INET6;
1639 			src.sin6.sin6_addr = ip6->ip6_src;
1640 			src.sin6.sin6_port = th->th_sport;
1641 
1642 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1643 			dst.sin6.sin6_family = AF_INET6;
1644 			dst.sin6.sin6_addr = ip6->ip6_dst;
1645 			dst.sin6.sin6_port = th->th_dport;
1646 			break;
1647 #endif /* INET6 */
1648 		default:
1649 			goto badsyn;	/*sanity*/
1650 		}
1651 
1652 		if (so->so_options & SO_DEBUG) {
1653 #ifdef TCP_DEBUG
1654 			ostate = tp->t_state;
1655 #endif
1656 
1657 			tcp_saveti = NULL;
1658 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1659 				goto nosave;
1660 
1661 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1662 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1663 				if (!tcp_saveti)
1664 					goto nosave;
1665 			} else {
1666 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1667 				if (!tcp_saveti)
1668 					goto nosave;
1669 				MCLAIM(m, &tcp_mowner);
1670 				tcp_saveti->m_len = iphlen;
1671 				m_copydata(m, 0, iphlen,
1672 				    mtod(tcp_saveti, void *));
1673 			}
1674 
1675 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1676 				m_freem(tcp_saveti);
1677 				tcp_saveti = NULL;
1678 			} else {
1679 				tcp_saveti->m_len += sizeof(struct tcphdr);
1680 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1681 				    sizeof(struct tcphdr));
1682 			}
1683 	nosave:;
1684 		}
1685 		if (so->so_options & SO_ACCEPTCONN) {
1686 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1687 				if (tiflags & TH_RST) {
1688 					syn_cache_reset(&src.sa, &dst.sa, th);
1689 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1690 				    (TH_ACK|TH_SYN)) {
1691 					/*
1692 					 * Received a SYN,ACK.  This should
1693 					 * never happen while we are in
1694 					 * LISTEN.  Send an RST.
1695 					 */
1696 					goto badsyn;
1697 				} else if (tiflags & TH_ACK) {
1698 					so = syn_cache_get(&src.sa, &dst.sa,
1699 						th, toff, tlen, so, m);
1700 					if (so == NULL) {
1701 						/*
1702 						 * We don't have a SYN for
1703 						 * this ACK; send an RST.
1704 						 */
1705 						goto badsyn;
1706 					} else if (so ==
1707 					    (struct socket *)(-1)) {
1708 						/*
1709 						 * We were unable to create
1710 						 * the connection.  If the
1711 						 * 3-way handshake was
1712 						 * completed, and RST has
1713 						 * been sent to the peer.
1714 						 * Since the mbuf might be
1715 						 * in use for the reply,
1716 						 * do not free it.
1717 						 */
1718 						m = NULL;
1719 					} else {
1720 						/*
1721 						 * We have created a
1722 						 * full-blown connection.
1723 						 */
1724 						tp = NULL;
1725 						inp = NULL;
1726 #ifdef INET6
1727 						in6p = NULL;
1728 #endif
1729 						switch (so->so_proto->pr_domain->dom_family) {
1730 #ifdef INET
1731 						case AF_INET:
1732 							inp = sotoinpcb(so);
1733 							tp = intotcpcb(inp);
1734 							break;
1735 #endif
1736 #ifdef INET6
1737 						case AF_INET6:
1738 							in6p = sotoin6pcb(so);
1739 							tp = in6totcpcb(in6p);
1740 							break;
1741 #endif
1742 						}
1743 						if (tp == NULL)
1744 							goto badsyn;	/*XXX*/
1745 						tiwin <<= tp->snd_scale;
1746 						goto after_listen;
1747 					}
1748 				} else {
1749 					/*
1750 					 * None of RST, SYN or ACK was set.
1751 					 * This is an invalid packet for a
1752 					 * TCB in LISTEN state.  Send a RST.
1753 					 */
1754 					goto badsyn;
1755 				}
1756 			} else {
1757 				/*
1758 				 * Received a SYN.
1759 				 *
1760 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1761 				 */
1762 				if (m->m_flags & (M_BCAST|M_MCAST))
1763 					goto drop;
1764 
1765 				switch (af) {
1766 #ifdef INET6
1767 				case AF_INET6:
1768 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1769 						goto drop;
1770 					break;
1771 #endif /* INET6 */
1772 				case AF_INET:
1773 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1774 					    in_broadcast(ip->ip_dst,
1775 					                 m_get_rcvif_NOMPSAFE(m)))
1776 						goto drop;
1777 				break;
1778 				}
1779 
1780 #ifdef INET6
1781 				/*
1782 				 * If deprecated address is forbidden, we do
1783 				 * not accept SYN to deprecated interface
1784 				 * address to prevent any new inbound
1785 				 * connection from getting established.
1786 				 * When we do not accept SYN, we send a TCP
1787 				 * RST, with deprecated source address (instead
1788 				 * of dropping it).  We compromise it as it is
1789 				 * much better for peer to send a RST, and
1790 				 * RST will be the final packet for the
1791 				 * exchange.
1792 				 *
1793 				 * If we do not forbid deprecated addresses, we
1794 				 * accept the SYN packet.  RFC2462 does not
1795 				 * suggest dropping SYN in this case.
1796 				 * If we decipher RFC2462 5.5.4, it says like
1797 				 * this:
1798 				 * 1. use of deprecated addr with existing
1799 				 *    communication is okay - "SHOULD continue
1800 				 *    to be used"
1801 				 * 2. use of it with new communication:
1802 				 *   (2a) "SHOULD NOT be used if alternate
1803 				 *        address with sufficient scope is
1804 				 *        available"
1805 				 *   (2b) nothing mentioned otherwise.
1806 				 * Here we fall into (2b) case as we have no
1807 				 * choice in our source address selection - we
1808 				 * must obey the peer.
1809 				 *
1810 				 * The wording in RFC2462 is confusing, and
1811 				 * there are multiple description text for
1812 				 * deprecated address handling - worse, they
1813 				 * are not exactly the same.  I believe 5.5.4
1814 				 * is the best one, so we follow 5.5.4.
1815 				 */
1816 				if (af == AF_INET6 && !ip6_use_deprecated) {
1817 					struct in6_ifaddr *ia6;
1818 					int s;
1819 					struct ifnet *rcvif = m_get_rcvif(m, &s);
1820 					if (rcvif == NULL)
1821 						goto dropwithreset; /* XXX */
1822 					if ((ia6 = in6ifa_ifpwithaddr(rcvif,
1823 					    &ip6->ip6_dst)) &&
1824 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1825 						tp = NULL;
1826 						m_put_rcvif(rcvif, &s);
1827 						goto dropwithreset;
1828 					}
1829 					m_put_rcvif(rcvif, &s);
1830 				}
1831 #endif
1832 
1833 #if defined(IPSEC)
1834 				if (ipsec_used) {
1835 					switch (af) {
1836 #ifdef INET
1837 					case AF_INET:
1838 						/*
1839 						 * inp can be NULL when
1840 						 * receiving an IPv4 packet on
1841 						 * an IPv4-mapped IPv6 address.
1842 						 */
1843 						KASSERT(inp == NULL ||
1844 						    sotoinpcb(so) == inp);
1845 						if (!ipsec4_in_reject(m, inp))
1846 							break;
1847 						IPSEC_STATINC(
1848 						    IPSEC_STAT_IN_POLVIO);
1849 						tp = NULL;
1850 						goto dropwithreset;
1851 #endif
1852 #ifdef INET6
1853 					case AF_INET6:
1854 						KASSERT(sotoin6pcb(so) == in6p);
1855 						if (!ipsec6_in_reject(m, in6p))
1856 							break;
1857 						IPSEC6_STATINC(
1858 						    IPSEC_STAT_IN_POLVIO);
1859 						tp = NULL;
1860 						goto dropwithreset;
1861 #endif /*INET6*/
1862 					}
1863 				}
1864 #endif /*IPSEC*/
1865 
1866 				/*
1867 				 * LISTEN socket received a SYN
1868 				 * from itself?  This can't possibly
1869 				 * be valid; drop the packet.
1870 				 */
1871 				if (th->th_sport == th->th_dport) {
1872 					int i;
1873 
1874 					switch (af) {
1875 #ifdef INET
1876 					case AF_INET:
1877 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1878 						break;
1879 #endif
1880 #ifdef INET6
1881 					case AF_INET6:
1882 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1883 						break;
1884 #endif
1885 					default:
1886 						i = 1;
1887 					}
1888 					if (i) {
1889 						TCP_STATINC(TCP_STAT_BADSYN);
1890 						goto drop;
1891 					}
1892 				}
1893 
1894 				/*
1895 				 * SYN looks ok; create compressed TCP
1896 				 * state for it.
1897 				 */
1898 				if (so->so_qlen <= so->so_qlimit &&
1899 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1900 						so, m, optp, optlen, &opti))
1901 					m = NULL;
1902 			}
1903 			goto drop;
1904 		}
1905 	}
1906 
1907 after_listen:
1908 #ifdef DIAGNOSTIC
1909 	/*
1910 	 * Should not happen now that all embryonic connections
1911 	 * are handled with compressed state.
1912 	 */
1913 	if (tp->t_state == TCPS_LISTEN)
1914 		panic("tcp_input: TCPS_LISTEN");
1915 #endif
1916 
1917 	/*
1918 	 * Segment received on connection.
1919 	 * Reset idle time and keep-alive timer.
1920 	 */
1921 	tp->t_rcvtime = tcp_now;
1922 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1923 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1924 
1925 	/*
1926 	 * Process options.
1927 	 */
1928 #ifdef TCP_SIGNATURE
1929 	if (optp || (tp->t_flags & TF_SIGNATURE))
1930 #else
1931 	if (optp)
1932 #endif
1933 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1934 			goto drop;
1935 
1936 	if (TCP_SACK_ENABLED(tp)) {
1937 		tcp_del_sackholes(tp, th);
1938 	}
1939 
1940 	if (TCP_ECN_ALLOWED(tp)) {
1941 		if (tiflags & TH_CWR) {
1942 			tp->t_flags &= ~TF_ECN_SND_ECE;
1943 		}
1944 		switch (iptos & IPTOS_ECN_MASK) {
1945 		case IPTOS_ECN_CE:
1946 			tp->t_flags |= TF_ECN_SND_ECE;
1947 			TCP_STATINC(TCP_STAT_ECN_CE);
1948 			break;
1949 		case IPTOS_ECN_ECT0:
1950 			TCP_STATINC(TCP_STAT_ECN_ECT);
1951 			break;
1952 		case IPTOS_ECN_ECT1:
1953 			/* XXX: ignore for now -- rpaulo */
1954 			break;
1955 		}
1956 		/*
1957 		 * Congestion experienced.
1958 		 * Ignore if we are already trying to recover.
1959 		 */
1960 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1961 			tp->t_congctl->cong_exp(tp);
1962 	}
1963 
1964 	if (opti.ts_present && opti.ts_ecr) {
1965 		/*
1966 		 * Calculate the RTT from the returned time stamp and the
1967 		 * connection's time base.  If the time stamp is later than
1968 		 * the current time, or is extremely old, fall back to non-1323
1969 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
1970 		 * at the same time.
1971 		 *
1972 		 * Note that ts_rtt is in units of slow ticks (500
1973 		 * ms).  Since most earthbound RTTs are < 500 ms,
1974 		 * observed values will have large quantization noise.
1975 		 * Our smoothed RTT is then the fraction of observed
1976 		 * samples that are 1 tick instead of 0 (times 500
1977 		 * ms).
1978 		 *
1979 		 * ts_rtt is increased by 1 to denote a valid sample,
1980 		 * with 0 indicating an invalid measurement.  This
1981 		 * extra 1 must be removed when ts_rtt is used, or
1982 		 * else an an erroneous extra 500 ms will result.
1983 		 */
1984 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1985 		if (ts_rtt > TCP_PAWS_IDLE)
1986 			ts_rtt = 0;
1987 	} else {
1988 		ts_rtt = 0;
1989 	}
1990 
1991 	/*
1992 	 * Header prediction: check for the two common cases
1993 	 * of a uni-directional data xfer.  If the packet has
1994 	 * no control flags, is in-sequence, the window didn't
1995 	 * change and we're not retransmitting, it's a
1996 	 * candidate.  If the length is zero and the ack moved
1997 	 * forward, we're the sender side of the xfer.  Just
1998 	 * free the data acked & wake any higher level process
1999 	 * that was blocked waiting for space.  If the length
2000 	 * is non-zero and the ack didn't move, we're the
2001 	 * receiver side.  If we're getting packets in-order
2002 	 * (the reassembly queue is empty), add the data to
2003 	 * the socket buffer and note that we need a delayed ack.
2004 	 */
2005 	if (tp->t_state == TCPS_ESTABLISHED &&
2006 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
2007 	        == TH_ACK &&
2008 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
2009 	    th->th_seq == tp->rcv_nxt &&
2010 	    tiwin && tiwin == tp->snd_wnd &&
2011 	    tp->snd_nxt == tp->snd_max) {
2012 
2013 		/*
2014 		 * If last ACK falls within this segment's sequence numbers,
2015 		 * record the timestamp.
2016 		 * NOTE that the test is modified according to the latest
2017 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
2018 		 *
2019 		 * note that we already know
2020 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
2021 		 */
2022 		if (opti.ts_present &&
2023 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
2024 			tp->ts_recent_age = tcp_now;
2025 			tp->ts_recent = opti.ts_val;
2026 		}
2027 
2028 		if (tlen == 0) {
2029 			/* Ack prediction. */
2030 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
2031 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
2032 			    tp->snd_cwnd >= tp->snd_wnd &&
2033 			    tp->t_partialacks < 0) {
2034 				/*
2035 				 * this is a pure ack for outstanding data.
2036 				 */
2037 				if (ts_rtt)
2038 					tcp_xmit_timer(tp, ts_rtt - 1);
2039 				else if (tp->t_rtttime &&
2040 				    SEQ_GT(th->th_ack, tp->t_rtseq))
2041 					tcp_xmit_timer(tp,
2042 					  tcp_now - tp->t_rtttime);
2043 				acked = th->th_ack - tp->snd_una;
2044 				tcps = TCP_STAT_GETREF();
2045 				tcps[TCP_STAT_PREDACK]++;
2046 				tcps[TCP_STAT_RCVACKPACK]++;
2047 				tcps[TCP_STAT_RCVACKBYTE] += acked;
2048 				TCP_STAT_PUTREF();
2049 				nd6_hint(tp);
2050 
2051 				if (acked > (tp->t_lastoff - tp->t_inoff))
2052 					tp->t_lastm = NULL;
2053 				sbdrop(&so->so_snd, acked);
2054 				tp->t_lastoff -= acked;
2055 
2056 				icmp_check(tp, th, acked);
2057 
2058 				tp->snd_una = th->th_ack;
2059 				tp->snd_fack = tp->snd_una;
2060 				if (SEQ_LT(tp->snd_high, tp->snd_una))
2061 					tp->snd_high = tp->snd_una;
2062 				m_freem(m);
2063 
2064 				/*
2065 				 * If all outstanding data are acked, stop
2066 				 * retransmit timer, otherwise restart timer
2067 				 * using current (possibly backed-off) value.
2068 				 * If process is waiting for space,
2069 				 * wakeup/selnotify/signal.  If data
2070 				 * are ready to send, let tcp_output
2071 				 * decide between more output or persist.
2072 				 */
2073 				if (tp->snd_una == tp->snd_max)
2074 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
2075 				else if (TCP_TIMER_ISARMED(tp,
2076 				    TCPT_PERSIST) == 0)
2077 					TCP_TIMER_ARM(tp, TCPT_REXMT,
2078 					    tp->t_rxtcur);
2079 
2080 				sowwakeup(so);
2081 				if (so->so_snd.sb_cc) {
2082 					KERNEL_LOCK(1, NULL);
2083 					(void) tcp_output(tp);
2084 					KERNEL_UNLOCK_ONE(NULL);
2085 				}
2086 				if (tcp_saveti)
2087 					m_freem(tcp_saveti);
2088 				return;
2089 			}
2090 		} else if (th->th_ack == tp->snd_una &&
2091 		    TAILQ_FIRST(&tp->segq) == NULL &&
2092 		    tlen <= sbspace(&so->so_rcv)) {
2093 			int newsize = 0;	/* automatic sockbuf scaling */
2094 
2095 			/*
2096 			 * this is a pure, in-sequence data packet
2097 			 * with nothing on the reassembly queue and
2098 			 * we have enough buffer space to take it.
2099 			 */
2100 			tp->rcv_nxt += tlen;
2101 			tcps = TCP_STAT_GETREF();
2102 			tcps[TCP_STAT_PREDDAT]++;
2103 			tcps[TCP_STAT_RCVPACK]++;
2104 			tcps[TCP_STAT_RCVBYTE] += tlen;
2105 			TCP_STAT_PUTREF();
2106 			nd6_hint(tp);
2107 
2108 		/*
2109 		 * Automatic sizing enables the performance of large buffers
2110 		 * and most of the efficiency of small ones by only allocating
2111 		 * space when it is needed.
2112 		 *
2113 		 * On the receive side the socket buffer memory is only rarely
2114 		 * used to any significant extent.  This allows us to be much
2115 		 * more aggressive in scaling the receive socket buffer.  For
2116 		 * the case that the buffer space is actually used to a large
2117 		 * extent and we run out of kernel memory we can simply drop
2118 		 * the new segments; TCP on the sender will just retransmit it
2119 		 * later.  Setting the buffer size too big may only consume too
2120 		 * much kernel memory if the application doesn't read() from
2121 		 * the socket or packet loss or reordering makes use of the
2122 		 * reassembly queue.
2123 		 *
2124 		 * The criteria to step up the receive buffer one notch are:
2125 		 *  1. the number of bytes received during the time it takes
2126 		 *     one timestamp to be reflected back to us (the RTT);
2127 		 *  2. received bytes per RTT is within seven eighth of the
2128 		 *     current socket buffer size;
2129 		 *  3. receive buffer size has not hit maximal automatic size;
2130 		 *
2131 		 * This algorithm does one step per RTT at most and only if
2132 		 * we receive a bulk stream w/o packet losses or reorderings.
2133 		 * Shrinking the buffer during idle times is not necessary as
2134 		 * it doesn't consume any memory when idle.
2135 		 *
2136 		 * TODO: Only step up if the application is actually serving
2137 		 * the buffer to better manage the socket buffer resources.
2138 		 */
2139 			if (tcp_do_autorcvbuf &&
2140 			    opti.ts_ecr &&
2141 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
2142 				if (opti.ts_ecr > tp->rfbuf_ts &&
2143 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
2144 					if (tp->rfbuf_cnt >
2145 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
2146 					    so->so_rcv.sb_hiwat <
2147 					    tcp_autorcvbuf_max) {
2148 						newsize =
2149 						    min(so->so_rcv.sb_hiwat +
2150 						    tcp_autorcvbuf_inc,
2151 						    tcp_autorcvbuf_max);
2152 					}
2153 					/* Start over with next RTT. */
2154 					tp->rfbuf_ts = 0;
2155 					tp->rfbuf_cnt = 0;
2156 				} else
2157 					tp->rfbuf_cnt += tlen;	/* add up */
2158 			}
2159 
2160 			/*
2161 			 * Drop TCP, IP headers and TCP options then add data
2162 			 * to socket buffer.
2163 			 */
2164 			if (so->so_state & SS_CANTRCVMORE)
2165 				m_freem(m);
2166 			else {
2167 				/*
2168 				 * Set new socket buffer size.
2169 				 * Give up when limit is reached.
2170 				 */
2171 				if (newsize)
2172 					if (!sbreserve(&so->so_rcv,
2173 					    newsize, so))
2174 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2175 				m_adj(m, toff + off);
2176 				sbappendstream(&so->so_rcv, m);
2177 			}
2178 			sorwakeup(so);
2179 			tcp_setup_ack(tp, th);
2180 			if (tp->t_flags & TF_ACKNOW) {
2181 				KERNEL_LOCK(1, NULL);
2182 				(void) tcp_output(tp);
2183 				KERNEL_UNLOCK_ONE(NULL);
2184 			}
2185 			if (tcp_saveti)
2186 				m_freem(tcp_saveti);
2187 			return;
2188 		}
2189 	}
2190 
2191 	/*
2192 	 * Compute mbuf offset to TCP data segment.
2193 	 */
2194 	hdroptlen = toff + off;
2195 
2196 	/*
2197 	 * Calculate amount of space in receive window,
2198 	 * and then do TCP input processing.
2199 	 * Receive window is amount of space in rcv queue,
2200 	 * but not less than advertised window.
2201 	 */
2202 	{ int win;
2203 
2204 	win = sbspace(&so->so_rcv);
2205 	if (win < 0)
2206 		win = 0;
2207 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2208 	}
2209 
2210 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
2211 	tp->rfbuf_ts = 0;
2212 	tp->rfbuf_cnt = 0;
2213 
2214 	switch (tp->t_state) {
2215 	/*
2216 	 * If the state is SYN_SENT:
2217 	 *	if seg contains an ACK, but not for our SYN, drop the input.
2218 	 *	if seg contains a RST, then drop the connection.
2219 	 *	if seg does not contain SYN, then drop it.
2220 	 * Otherwise this is an acceptable SYN segment
2221 	 *	initialize tp->rcv_nxt and tp->irs
2222 	 *	if seg contains ack then advance tp->snd_una
2223 	 *	if seg contains a ECE and ECN support is enabled, the stream
2224 	 *	    is ECN capable.
2225 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2226 	 *	arrange for segment to be acked (eventually)
2227 	 *	continue processing rest of data/controls, beginning with URG
2228 	 */
2229 	case TCPS_SYN_SENT:
2230 		if ((tiflags & TH_ACK) &&
2231 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2232 		     SEQ_GT(th->th_ack, tp->snd_max)))
2233 			goto dropwithreset;
2234 		if (tiflags & TH_RST) {
2235 			if (tiflags & TH_ACK)
2236 				tp = tcp_drop(tp, ECONNREFUSED);
2237 			goto drop;
2238 		}
2239 		if ((tiflags & TH_SYN) == 0)
2240 			goto drop;
2241 		if (tiflags & TH_ACK) {
2242 			tp->snd_una = th->th_ack;
2243 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2244 				tp->snd_nxt = tp->snd_una;
2245 			if (SEQ_LT(tp->snd_high, tp->snd_una))
2246 				tp->snd_high = tp->snd_una;
2247 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2248 
2249 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
2250 				tp->t_flags |= TF_ECN_PERMIT;
2251 				TCP_STATINC(TCP_STAT_ECN_SHS);
2252 			}
2253 
2254 		}
2255 		tp->irs = th->th_seq;
2256 		tcp_rcvseqinit(tp);
2257 		tp->t_flags |= TF_ACKNOW;
2258 		tcp_mss_from_peer(tp, opti.maxseg);
2259 
2260 		/*
2261 		 * Initialize the initial congestion window.  If we
2262 		 * had to retransmit the SYN, we must initialize cwnd
2263 		 * to 1 segment (i.e. the Loss Window).
2264 		 */
2265 		if (tp->t_flags & TF_SYN_REXMT)
2266 			tp->snd_cwnd = tp->t_peermss;
2267 		else {
2268 			int ss = tcp_init_win;
2269 #ifdef INET
2270 			if (inp != NULL && in_localaddr(inp->inp_faddr))
2271 				ss = tcp_init_win_local;
2272 #endif
2273 #ifdef INET6
2274 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2275 				ss = tcp_init_win_local;
2276 #endif
2277 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2278 		}
2279 
2280 		tcp_rmx_rtt(tp);
2281 		if (tiflags & TH_ACK) {
2282 			TCP_STATINC(TCP_STAT_CONNECTS);
2283 			/*
2284 			 * move tcp_established before soisconnected
2285 			 * because upcall handler can drive tcp_output
2286 			 * functionality.
2287 			 * XXX we might call soisconnected at the end of
2288 			 * all processing
2289 			 */
2290 			tcp_established(tp);
2291 			soisconnected(so);
2292 			/* Do window scaling on this connection? */
2293 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2294 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2295 				tp->snd_scale = tp->requested_s_scale;
2296 				tp->rcv_scale = tp->request_r_scale;
2297 			}
2298 			TCP_REASS_LOCK(tp);
2299 			(void) tcp_reass(tp, NULL, NULL, &tlen);
2300 			/*
2301 			 * if we didn't have to retransmit the SYN,
2302 			 * use its rtt as our initial srtt & rtt var.
2303 			 */
2304 			if (tp->t_rtttime)
2305 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2306 		} else
2307 			tp->t_state = TCPS_SYN_RECEIVED;
2308 
2309 		/*
2310 		 * Advance th->th_seq to correspond to first data byte.
2311 		 * If data, trim to stay within window,
2312 		 * dropping FIN if necessary.
2313 		 */
2314 		th->th_seq++;
2315 		if (tlen > tp->rcv_wnd) {
2316 			todrop = tlen - tp->rcv_wnd;
2317 			m_adj(m, -todrop);
2318 			tlen = tp->rcv_wnd;
2319 			tiflags &= ~TH_FIN;
2320 			tcps = TCP_STAT_GETREF();
2321 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2322 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2323 			TCP_STAT_PUTREF();
2324 		}
2325 		tp->snd_wl1 = th->th_seq - 1;
2326 		tp->rcv_up = th->th_seq;
2327 		goto step6;
2328 
2329 	/*
2330 	 * If the state is SYN_RECEIVED:
2331 	 *	If seg contains an ACK, but not for our SYN, drop the input
2332 	 *	and generate an RST.  See page 36, rfc793
2333 	 */
2334 	case TCPS_SYN_RECEIVED:
2335 		if ((tiflags & TH_ACK) &&
2336 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2337 		     SEQ_GT(th->th_ack, tp->snd_max)))
2338 			goto dropwithreset;
2339 		break;
2340 	}
2341 
2342 	/*
2343 	 * States other than LISTEN or SYN_SENT.
2344 	 * First check timestamp, if present.
2345 	 * Then check that at least some bytes of segment are within
2346 	 * receive window.  If segment begins before rcv_nxt,
2347 	 * drop leading data (and SYN); if nothing left, just ack.
2348 	 *
2349 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2350 	 * and it's less than ts_recent, drop it.
2351 	 */
2352 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2353 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2354 
2355 		/* Check to see if ts_recent is over 24 days old.  */
2356 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2357 			/*
2358 			 * Invalidate ts_recent.  If this segment updates
2359 			 * ts_recent, the age will be reset later and ts_recent
2360 			 * will get a valid value.  If it does not, setting
2361 			 * ts_recent to zero will at least satisfy the
2362 			 * requirement that zero be placed in the timestamp
2363 			 * echo reply when ts_recent isn't valid.  The
2364 			 * age isn't reset until we get a valid ts_recent
2365 			 * because we don't want out-of-order segments to be
2366 			 * dropped when ts_recent is old.
2367 			 */
2368 			tp->ts_recent = 0;
2369 		} else {
2370 			tcps = TCP_STAT_GETREF();
2371 			tcps[TCP_STAT_RCVDUPPACK]++;
2372 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2373 			tcps[TCP_STAT_PAWSDROP]++;
2374 			TCP_STAT_PUTREF();
2375 			tcp_new_dsack(tp, th->th_seq, tlen);
2376 			goto dropafterack;
2377 		}
2378 	}
2379 
2380 	todrop = tp->rcv_nxt - th->th_seq;
2381 	dupseg = false;
2382 	if (todrop > 0) {
2383 		if (tiflags & TH_SYN) {
2384 			tiflags &= ~TH_SYN;
2385 			th->th_seq++;
2386 			if (th->th_urp > 1)
2387 				th->th_urp--;
2388 			else {
2389 				tiflags &= ~TH_URG;
2390 				th->th_urp = 0;
2391 			}
2392 			todrop--;
2393 		}
2394 		if (todrop > tlen ||
2395 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2396 			/*
2397 			 * Any valid FIN or RST must be to the left of the
2398 			 * window.  At this point the FIN or RST must be a
2399 			 * duplicate or out of sequence; drop it.
2400 			 */
2401 			if (tiflags & TH_RST)
2402 				goto drop;
2403 			tiflags &= ~(TH_FIN|TH_RST);
2404 			/*
2405 			 * Send an ACK to resynchronize and drop any data.
2406 			 * But keep on processing for RST or ACK.
2407 			 */
2408 			tp->t_flags |= TF_ACKNOW;
2409 			todrop = tlen;
2410 			dupseg = true;
2411 			tcps = TCP_STAT_GETREF();
2412 			tcps[TCP_STAT_RCVDUPPACK]++;
2413 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2414 			TCP_STAT_PUTREF();
2415 		} else if ((tiflags & TH_RST) &&
2416 			   th->th_seq != tp->rcv_nxt) {
2417 			/*
2418 			 * Test for reset before adjusting the sequence
2419 			 * number for overlapping data.
2420 			 */
2421 			goto dropafterack_ratelim;
2422 		} else {
2423 			tcps = TCP_STAT_GETREF();
2424 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
2425 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2426 			TCP_STAT_PUTREF();
2427 		}
2428 		tcp_new_dsack(tp, th->th_seq, todrop);
2429 		hdroptlen += todrop;	/*drop from head afterwards*/
2430 		th->th_seq += todrop;
2431 		tlen -= todrop;
2432 		if (th->th_urp > todrop)
2433 			th->th_urp -= todrop;
2434 		else {
2435 			tiflags &= ~TH_URG;
2436 			th->th_urp = 0;
2437 		}
2438 	}
2439 
2440 	/*
2441 	 * If new data are received on a connection after the
2442 	 * user processes are gone, then RST the other end.
2443 	 */
2444 	if ((so->so_state & SS_NOFDREF) &&
2445 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2446 		tp = tcp_close(tp);
2447 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2448 		goto dropwithreset;
2449 	}
2450 
2451 	/*
2452 	 * If segment ends after window, drop trailing data
2453 	 * (and PUSH and FIN); if nothing left, just ACK.
2454 	 */
2455 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2456 	if (todrop > 0) {
2457 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2458 		if (todrop >= tlen) {
2459 			/*
2460 			 * The segment actually starts after the window.
2461 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2462 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2463 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2464 			 */
2465 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2466 			/*
2467 			 * If a new connection request is received
2468 			 * while in TIME_WAIT, drop the old connection
2469 			 * and start over if the sequence numbers
2470 			 * are above the previous ones.
2471 			 *
2472 			 * NOTE: We will checksum the packet again, and
2473 			 * so we need to put the header fields back into
2474 			 * network order!
2475 			 * XXX This kind of sucks, but we don't expect
2476 			 * XXX this to happen very often, so maybe it
2477 			 * XXX doesn't matter so much.
2478 			 */
2479 			if (tiflags & TH_SYN &&
2480 			    tp->t_state == TCPS_TIME_WAIT &&
2481 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2482 				tp = tcp_close(tp);
2483 				tcp_fields_to_net(th);
2484 				goto findpcb;
2485 			}
2486 			/*
2487 			 * If window is closed can only take segments at
2488 			 * window edge, and have to drop data and PUSH from
2489 			 * incoming segments.  Continue processing, but
2490 			 * remember to ack.  Otherwise, drop segment
2491 			 * and (if not RST) ack.
2492 			 */
2493 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2494 				tp->t_flags |= TF_ACKNOW;
2495 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
2496 			} else
2497 				goto dropafterack;
2498 		} else
2499 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2500 		m_adj(m, -todrop);
2501 		tlen -= todrop;
2502 		tiflags &= ~(TH_PUSH|TH_FIN);
2503 	}
2504 
2505 	/*
2506 	 * If last ACK falls within this segment's sequence numbers,
2507 	 *  record the timestamp.
2508 	 * NOTE:
2509 	 * 1) That the test incorporates suggestions from the latest
2510 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2511 	 * 2) That updating only on newer timestamps interferes with
2512 	 *    our earlier PAWS tests, so this check should be solely
2513 	 *    predicated on the sequence space of this segment.
2514 	 * 3) That we modify the segment boundary check to be
2515 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2516 	 *    instead of RFC1323's
2517 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2518 	 *    This modified check allows us to overcome RFC1323's
2519 	 *    limitations as described in Stevens TCP/IP Illustrated
2520 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2521 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2522 	 */
2523 	if (opti.ts_present &&
2524 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2525 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2526 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2527 		tp->ts_recent_age = tcp_now;
2528 		tp->ts_recent = opti.ts_val;
2529 	}
2530 
2531 	/*
2532 	 * If the RST bit is set examine the state:
2533 	 *    SYN_RECEIVED STATE:
2534 	 *	If passive open, return to LISTEN state.
2535 	 *	If active open, inform user that connection was refused.
2536 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2537 	 *	Inform user that connection was reset, and close tcb.
2538 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
2539 	 *	Close the tcb.
2540 	 */
2541 	if (tiflags & TH_RST) {
2542 		if (th->th_seq != tp->rcv_nxt)
2543 			goto dropafterack_ratelim;
2544 
2545 		switch (tp->t_state) {
2546 		case TCPS_SYN_RECEIVED:
2547 			so->so_error = ECONNREFUSED;
2548 			goto close;
2549 
2550 		case TCPS_ESTABLISHED:
2551 		case TCPS_FIN_WAIT_1:
2552 		case TCPS_FIN_WAIT_2:
2553 		case TCPS_CLOSE_WAIT:
2554 			so->so_error = ECONNRESET;
2555 		close:
2556 			tp->t_state = TCPS_CLOSED;
2557 			TCP_STATINC(TCP_STAT_DROPS);
2558 			tp = tcp_close(tp);
2559 			goto drop;
2560 
2561 		case TCPS_CLOSING:
2562 		case TCPS_LAST_ACK:
2563 		case TCPS_TIME_WAIT:
2564 			tp = tcp_close(tp);
2565 			goto drop;
2566 		}
2567 	}
2568 
2569 	/*
2570 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2571 	 * we must be in a synchronized state.  RFC791 states (under RST
2572 	 * generation) that any unacceptable segment (an out-of-order SYN
2573 	 * qualifies) received in a synchronized state must elicit only an
2574 	 * empty acknowledgment segment ... and the connection remains in
2575 	 * the same state.
2576 	 */
2577 	if (tiflags & TH_SYN) {
2578 		if (tp->rcv_nxt == th->th_seq) {
2579 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2580 			    TH_ACK);
2581 			if (tcp_saveti)
2582 				m_freem(tcp_saveti);
2583 			return;
2584 		}
2585 
2586 		goto dropafterack_ratelim;
2587 	}
2588 
2589 	/*
2590 	 * If the ACK bit is off we drop the segment and return.
2591 	 */
2592 	if ((tiflags & TH_ACK) == 0) {
2593 		if (tp->t_flags & TF_ACKNOW)
2594 			goto dropafterack;
2595 		else
2596 			goto drop;
2597 	}
2598 
2599 	/*
2600 	 * Ack processing.
2601 	 */
2602 	switch (tp->t_state) {
2603 
2604 	/*
2605 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2606 	 * ESTABLISHED state and continue processing, otherwise
2607 	 * send an RST.
2608 	 */
2609 	case TCPS_SYN_RECEIVED:
2610 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
2611 		    SEQ_GT(th->th_ack, tp->snd_max))
2612 			goto dropwithreset;
2613 		TCP_STATINC(TCP_STAT_CONNECTS);
2614 		soisconnected(so);
2615 		tcp_established(tp);
2616 		/* Do window scaling? */
2617 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2618 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2619 			tp->snd_scale = tp->requested_s_scale;
2620 			tp->rcv_scale = tp->request_r_scale;
2621 		}
2622 		TCP_REASS_LOCK(tp);
2623 		(void) tcp_reass(tp, NULL, NULL, &tlen);
2624 		tp->snd_wl1 = th->th_seq - 1;
2625 		/* fall into ... */
2626 
2627 	/*
2628 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2629 	 * ACKs.  If the ack is in the range
2630 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2631 	 * then advance tp->snd_una to th->th_ack and drop
2632 	 * data from the retransmission queue.  If this ACK reflects
2633 	 * more up to date window information we update our window information.
2634 	 */
2635 	case TCPS_ESTABLISHED:
2636 	case TCPS_FIN_WAIT_1:
2637 	case TCPS_FIN_WAIT_2:
2638 	case TCPS_CLOSE_WAIT:
2639 	case TCPS_CLOSING:
2640 	case TCPS_LAST_ACK:
2641 	case TCPS_TIME_WAIT:
2642 
2643 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2644 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2645 				TCP_STATINC(TCP_STAT_RCVDUPACK);
2646 				/*
2647 				 * If we have outstanding data (other than
2648 				 * a window probe), this is a completely
2649 				 * duplicate ack (ie, window info didn't
2650 				 * change), the ack is the biggest we've
2651 				 * seen and we've seen exactly our rexmt
2652 				 * threshhold of them, assume a packet
2653 				 * has been dropped and retransmit it.
2654 				 * Kludge snd_nxt & the congestion
2655 				 * window so we send only this one
2656 				 * packet.
2657 				 */
2658 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2659 				    th->th_ack != tp->snd_una)
2660 					tp->t_dupacks = 0;
2661 				else if (tp->t_partialacks < 0 &&
2662 					 (++tp->t_dupacks == tcprexmtthresh ||
2663 					 TCP_FACK_FASTRECOV(tp))) {
2664 					/*
2665 					 * Do the fast retransmit, and adjust
2666 					 * congestion control paramenters.
2667 					 */
2668 					if (tp->t_congctl->fast_retransmit(tp, th)) {
2669 						/* False fast retransmit */
2670 						break;
2671 					} else
2672 						goto drop;
2673 				} else if (tp->t_dupacks > tcprexmtthresh) {
2674 					tp->snd_cwnd += tp->t_segsz;
2675 					KERNEL_LOCK(1, NULL);
2676 					(void) tcp_output(tp);
2677 					KERNEL_UNLOCK_ONE(NULL);
2678 					goto drop;
2679 				}
2680 			} else {
2681 				/*
2682 				 * If the ack appears to be very old, only
2683 				 * allow data that is in-sequence.  This
2684 				 * makes it somewhat more difficult to insert
2685 				 * forged data by guessing sequence numbers.
2686 				 * Sent an ack to try to update the send
2687 				 * sequence number on the other side.
2688 				 */
2689 				if (tlen && th->th_seq != tp->rcv_nxt &&
2690 				    SEQ_LT(th->th_ack,
2691 				    tp->snd_una - tp->max_sndwnd))
2692 					goto dropafterack;
2693 			}
2694 			break;
2695 		}
2696 		/*
2697 		 * If the congestion window was inflated to account
2698 		 * for the other side's cached packets, retract it.
2699 		 */
2700 		tp->t_congctl->fast_retransmit_newack(tp, th);
2701 
2702 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2703 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2704 			goto dropafterack;
2705 		}
2706 		acked = th->th_ack - tp->snd_una;
2707 		tcps = TCP_STAT_GETREF();
2708 		tcps[TCP_STAT_RCVACKPACK]++;
2709 		tcps[TCP_STAT_RCVACKBYTE] += acked;
2710 		TCP_STAT_PUTREF();
2711 
2712 		/*
2713 		 * If we have a timestamp reply, update smoothed
2714 		 * round trip time.  If no timestamp is present but
2715 		 * transmit timer is running and timed sequence
2716 		 * number was acked, update smoothed round trip time.
2717 		 * Since we now have an rtt measurement, cancel the
2718 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2719 		 * Recompute the initial retransmit timer.
2720 		 */
2721 		if (ts_rtt)
2722 			tcp_xmit_timer(tp, ts_rtt - 1);
2723 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2724 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2725 
2726 		/*
2727 		 * If all outstanding data is acked, stop retransmit
2728 		 * timer and remember to restart (more output or persist).
2729 		 * If there is more data to be acked, restart retransmit
2730 		 * timer, using current (possibly backed-off) value.
2731 		 */
2732 		if (th->th_ack == tp->snd_max) {
2733 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2734 			needoutput = 1;
2735 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2736 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2737 
2738 		/*
2739 		 * New data has been acked, adjust the congestion window.
2740 		 */
2741 		tp->t_congctl->newack(tp, th);
2742 
2743 		nd6_hint(tp);
2744 		if (acked > so->so_snd.sb_cc) {
2745 			tp->snd_wnd -= so->so_snd.sb_cc;
2746 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2747 			ourfinisacked = 1;
2748 		} else {
2749 			if (acked > (tp->t_lastoff - tp->t_inoff))
2750 				tp->t_lastm = NULL;
2751 			sbdrop(&so->so_snd, acked);
2752 			tp->t_lastoff -= acked;
2753 			if (tp->snd_wnd > acked)
2754 				tp->snd_wnd -= acked;
2755 			else
2756 				tp->snd_wnd = 0;
2757 			ourfinisacked = 0;
2758 		}
2759 		sowwakeup(so);
2760 
2761 		icmp_check(tp, th, acked);
2762 
2763 		tp->snd_una = th->th_ack;
2764 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
2765 			tp->snd_fack = tp->snd_una;
2766 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2767 			tp->snd_nxt = tp->snd_una;
2768 		if (SEQ_LT(tp->snd_high, tp->snd_una))
2769 			tp->snd_high = tp->snd_una;
2770 
2771 		switch (tp->t_state) {
2772 
2773 		/*
2774 		 * In FIN_WAIT_1 STATE in addition to the processing
2775 		 * for the ESTABLISHED state if our FIN is now acknowledged
2776 		 * then enter FIN_WAIT_2.
2777 		 */
2778 		case TCPS_FIN_WAIT_1:
2779 			if (ourfinisacked) {
2780 				/*
2781 				 * If we can't receive any more
2782 				 * data, then closing user can proceed.
2783 				 * Starting the timer is contrary to the
2784 				 * specification, but if we don't get a FIN
2785 				 * we'll hang forever.
2786 				 */
2787 				if (so->so_state & SS_CANTRCVMORE) {
2788 					soisdisconnected(so);
2789 					if (tp->t_maxidle > 0)
2790 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2791 						    tp->t_maxidle);
2792 				}
2793 				tp->t_state = TCPS_FIN_WAIT_2;
2794 			}
2795 			break;
2796 
2797 	 	/*
2798 		 * In CLOSING STATE in addition to the processing for
2799 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2800 		 * then enter the TIME-WAIT state, otherwise ignore
2801 		 * the segment.
2802 		 */
2803 		case TCPS_CLOSING:
2804 			if (ourfinisacked) {
2805 				tp->t_state = TCPS_TIME_WAIT;
2806 				tcp_canceltimers(tp);
2807 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2808 				soisdisconnected(so);
2809 			}
2810 			break;
2811 
2812 		/*
2813 		 * In LAST_ACK, we may still be waiting for data to drain
2814 		 * and/or to be acked, as well as for the ack of our FIN.
2815 		 * If our FIN is now acknowledged, delete the TCB,
2816 		 * enter the closed state and return.
2817 		 */
2818 		case TCPS_LAST_ACK:
2819 			if (ourfinisacked) {
2820 				tp = tcp_close(tp);
2821 				goto drop;
2822 			}
2823 			break;
2824 
2825 		/*
2826 		 * In TIME_WAIT state the only thing that should arrive
2827 		 * is a retransmission of the remote FIN.  Acknowledge
2828 		 * it and restart the finack timer.
2829 		 */
2830 		case TCPS_TIME_WAIT:
2831 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2832 			goto dropafterack;
2833 		}
2834 	}
2835 
2836 step6:
2837 	/*
2838 	 * Update window information.
2839 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2840 	 */
2841 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2842 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2843 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2844 		/* keep track of pure window updates */
2845 		if (tlen == 0 &&
2846 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2847 			TCP_STATINC(TCP_STAT_RCVWINUPD);
2848 		tp->snd_wnd = tiwin;
2849 		tp->snd_wl1 = th->th_seq;
2850 		tp->snd_wl2 = th->th_ack;
2851 		if (tp->snd_wnd > tp->max_sndwnd)
2852 			tp->max_sndwnd = tp->snd_wnd;
2853 		needoutput = 1;
2854 	}
2855 
2856 	/*
2857 	 * Process segments with URG.
2858 	 */
2859 	if ((tiflags & TH_URG) && th->th_urp &&
2860 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2861 		/*
2862 		 * This is a kludge, but if we receive and accept
2863 		 * random urgent pointers, we'll crash in
2864 		 * soreceive.  It's hard to imagine someone
2865 		 * actually wanting to send this much urgent data.
2866 		 */
2867 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2868 			th->th_urp = 0;			/* XXX */
2869 			tiflags &= ~TH_URG;		/* XXX */
2870 			goto dodata;			/* XXX */
2871 		}
2872 		/*
2873 		 * If this segment advances the known urgent pointer,
2874 		 * then mark the data stream.  This should not happen
2875 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2876 		 * a FIN has been received from the remote side.
2877 		 * In these states we ignore the URG.
2878 		 *
2879 		 * According to RFC961 (Assigned Protocols),
2880 		 * the urgent pointer points to the last octet
2881 		 * of urgent data.  We continue, however,
2882 		 * to consider it to indicate the first octet
2883 		 * of data past the urgent section as the original
2884 		 * spec states (in one of two places).
2885 		 */
2886 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2887 			tp->rcv_up = th->th_seq + th->th_urp;
2888 			so->so_oobmark = so->so_rcv.sb_cc +
2889 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2890 			if (so->so_oobmark == 0)
2891 				so->so_state |= SS_RCVATMARK;
2892 			sohasoutofband(so);
2893 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2894 		}
2895 		/*
2896 		 * Remove out of band data so doesn't get presented to user.
2897 		 * This can happen independent of advancing the URG pointer,
2898 		 * but if two URG's are pending at once, some out-of-band
2899 		 * data may creep in... ick.
2900 		 */
2901 		if (th->th_urp <= (u_int16_t) tlen
2902 #ifdef SO_OOBINLINE
2903 		     && (so->so_options & SO_OOBINLINE) == 0
2904 #endif
2905 		     )
2906 			tcp_pulloutofband(so, th, m, hdroptlen);
2907 	} else
2908 		/*
2909 		 * If no out of band data is expected,
2910 		 * pull receive urgent pointer along
2911 		 * with the receive window.
2912 		 */
2913 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2914 			tp->rcv_up = tp->rcv_nxt;
2915 dodata:							/* XXX */
2916 
2917 	/*
2918 	 * Process the segment text, merging it into the TCP sequencing queue,
2919 	 * and arranging for acknowledgement of receipt if necessary.
2920 	 * This process logically involves adjusting tp->rcv_wnd as data
2921 	 * is presented to the user (this happens in tcp_usrreq.c,
2922 	 * tcp_rcvd()).  If a FIN has already been received on this
2923 	 * connection then we just ignore the text.
2924 	 */
2925 	if ((tlen || (tiflags & TH_FIN)) &&
2926 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2927 		/*
2928 		 * Insert segment ti into reassembly queue of tcp with
2929 		 * control block tp.  Return TH_FIN if reassembly now includes
2930 		 * a segment with FIN.  The macro form does the common case
2931 		 * inline (segment is the next to be received on an
2932 		 * established connection, and the queue is empty),
2933 		 * avoiding linkage into and removal from the queue and
2934 		 * repetition of various conversions.
2935 		 * Set DELACK for segments received in order, but ack
2936 		 * immediately when segments are out of order
2937 		 * (so fast retransmit can work).
2938 		 */
2939 		/* NOTE: this was TCP_REASS() macro, but used only once */
2940 		TCP_REASS_LOCK(tp);
2941 		if (th->th_seq == tp->rcv_nxt &&
2942 		    TAILQ_FIRST(&tp->segq) == NULL &&
2943 		    tp->t_state == TCPS_ESTABLISHED) {
2944 			tcp_setup_ack(tp, th);
2945 			tp->rcv_nxt += tlen;
2946 			tiflags = th->th_flags & TH_FIN;
2947 			tcps = TCP_STAT_GETREF();
2948 			tcps[TCP_STAT_RCVPACK]++;
2949 			tcps[TCP_STAT_RCVBYTE] += tlen;
2950 			TCP_STAT_PUTREF();
2951 			nd6_hint(tp);
2952 			if (so->so_state & SS_CANTRCVMORE)
2953 				m_freem(m);
2954 			else {
2955 				m_adj(m, hdroptlen);
2956 				sbappendstream(&(so)->so_rcv, m);
2957 			}
2958 			TCP_REASS_UNLOCK(tp);
2959 			sorwakeup(so);
2960 		} else {
2961 			m_adj(m, hdroptlen);
2962 			tiflags = tcp_reass(tp, th, m, &tlen);
2963 			tp->t_flags |= TF_ACKNOW;
2964 		}
2965 
2966 		/*
2967 		 * Note the amount of data that peer has sent into
2968 		 * our window, in order to estimate the sender's
2969 		 * buffer size.
2970 		 */
2971 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2972 	} else {
2973 		m_freem(m);
2974 		m = NULL;
2975 		tiflags &= ~TH_FIN;
2976 	}
2977 
2978 	/*
2979 	 * If FIN is received ACK the FIN and let the user know
2980 	 * that the connection is closing.  Ignore a FIN received before
2981 	 * the connection is fully established.
2982 	 */
2983 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2984 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2985 			socantrcvmore(so);
2986 			tp->t_flags |= TF_ACKNOW;
2987 			tp->rcv_nxt++;
2988 		}
2989 		switch (tp->t_state) {
2990 
2991 	 	/*
2992 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2993 		 */
2994 		case TCPS_ESTABLISHED:
2995 			tp->t_state = TCPS_CLOSE_WAIT;
2996 			break;
2997 
2998 	 	/*
2999 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3000 		 * enter the CLOSING state.
3001 		 */
3002 		case TCPS_FIN_WAIT_1:
3003 			tp->t_state = TCPS_CLOSING;
3004 			break;
3005 
3006 	 	/*
3007 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3008 		 * starting the time-wait timer, turning off the other
3009 		 * standard timers.
3010 		 */
3011 		case TCPS_FIN_WAIT_2:
3012 			tp->t_state = TCPS_TIME_WAIT;
3013 			tcp_canceltimers(tp);
3014 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
3015 			soisdisconnected(so);
3016 			break;
3017 
3018 		/*
3019 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
3020 		 */
3021 		case TCPS_TIME_WAIT:
3022 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
3023 			break;
3024 		}
3025 	}
3026 #ifdef TCP_DEBUG
3027 	if (so->so_options & SO_DEBUG)
3028 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
3029 #endif
3030 
3031 	/*
3032 	 * Return any desired output.
3033 	 */
3034 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
3035 		KERNEL_LOCK(1, NULL);
3036 		(void) tcp_output(tp);
3037 		KERNEL_UNLOCK_ONE(NULL);
3038 	}
3039 	if (tcp_saveti)
3040 		m_freem(tcp_saveti);
3041 
3042 	if (tp->t_state == TCPS_TIME_WAIT
3043 	    && (so->so_state & SS_NOFDREF)
3044 	    && (tp->t_inpcb || af != AF_INET)
3045 	    && (tp->t_in6pcb || af != AF_INET6)
3046 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
3047 	    && TAILQ_EMPTY(&tp->segq)
3048 	    && vtw_add(af, tp)) {
3049 		;
3050 	}
3051 	return;
3052 
3053 badsyn:
3054 	/*
3055 	 * Received a bad SYN.  Increment counters and dropwithreset.
3056 	 */
3057 	TCP_STATINC(TCP_STAT_BADSYN);
3058 	tp = NULL;
3059 	goto dropwithreset;
3060 
3061 dropafterack:
3062 	/*
3063 	 * Generate an ACK dropping incoming segment if it occupies
3064 	 * sequence space, where the ACK reflects our state.
3065 	 */
3066 	if (tiflags & TH_RST)
3067 		goto drop;
3068 	goto dropafterack2;
3069 
3070 dropafterack_ratelim:
3071 	/*
3072 	 * We may want to rate-limit ACKs against SYN/RST attack.
3073 	 */
3074 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
3075 	    tcp_ackdrop_ppslim) == 0) {
3076 		/* XXX stat */
3077 		goto drop;
3078 	}
3079 	/* ...fall into dropafterack2... */
3080 
3081 dropafterack2:
3082 	m_freem(m);
3083 	tp->t_flags |= TF_ACKNOW;
3084 	KERNEL_LOCK(1, NULL);
3085 	(void) tcp_output(tp);
3086 	KERNEL_UNLOCK_ONE(NULL);
3087 	if (tcp_saveti)
3088 		m_freem(tcp_saveti);
3089 	return;
3090 
3091 dropwithreset_ratelim:
3092 	/*
3093 	 * We may want to rate-limit RSTs in certain situations,
3094 	 * particularly if we are sending an RST in response to
3095 	 * an attempt to connect to or otherwise communicate with
3096 	 * a port for which we have no socket.
3097 	 */
3098 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
3099 	    tcp_rst_ppslim) == 0) {
3100 		/* XXX stat */
3101 		goto drop;
3102 	}
3103 	/* ...fall into dropwithreset... */
3104 
3105 dropwithreset:
3106 	/*
3107 	 * Generate a RST, dropping incoming segment.
3108 	 * Make ACK acceptable to originator of segment.
3109 	 */
3110 	if (tiflags & TH_RST)
3111 		goto drop;
3112 
3113 	switch (af) {
3114 #ifdef INET6
3115 	case AF_INET6:
3116 		/* For following calls to tcp_respond */
3117 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
3118 			goto drop;
3119 		break;
3120 #endif /* INET6 */
3121 	case AF_INET:
3122 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
3123 		    in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
3124 			goto drop;
3125 	}
3126 
3127 	if (tiflags & TH_ACK)
3128 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3129 	else {
3130 		if (tiflags & TH_SYN)
3131 			tlen++;
3132 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
3133 		    TH_RST|TH_ACK);
3134 	}
3135 	if (tcp_saveti)
3136 		m_freem(tcp_saveti);
3137 	return;
3138 
3139 badcsum:
3140 drop:
3141 	/*
3142 	 * Drop space held by incoming segment and return.
3143 	 */
3144 	if (tp) {
3145 		if (tp->t_inpcb)
3146 			so = tp->t_inpcb->inp_socket;
3147 #ifdef INET6
3148 		else if (tp->t_in6pcb)
3149 			so = tp->t_in6pcb->in6p_socket;
3150 #endif
3151 		else
3152 			so = NULL;
3153 #ifdef TCP_DEBUG
3154 		if (so && (so->so_options & SO_DEBUG) != 0)
3155 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
3156 #endif
3157 	}
3158 	if (tcp_saveti)
3159 		m_freem(tcp_saveti);
3160 	m_freem(m);
3161 	return;
3162 }
3163 
3164 #ifdef TCP_SIGNATURE
3165 int
3166 tcp_signature_apply(void *fstate, void *data, u_int len)
3167 {
3168 
3169 	MD5Update(fstate, (u_char *)data, len);
3170 	return (0);
3171 }
3172 
3173 struct secasvar *
3174 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
3175 {
3176 	struct ip *ip;
3177 	struct ip6_hdr *ip6;
3178 
3179 	ip = mtod(m, struct ip *);
3180 	switch (ip->ip_v) {
3181 	case 4:
3182 		ip = mtod(m, struct ip *);
3183 		ip6 = NULL;
3184 		break;
3185 	case 6:
3186 		ip = NULL;
3187 		ip6 = mtod(m, struct ip6_hdr *);
3188 		break;
3189 	default:
3190 		return (NULL);
3191 	}
3192 
3193 #ifdef IPSEC
3194 	union sockaddr_union dst;
3195 
3196 	/* Extract the destination from the IP header in the mbuf. */
3197 	memset(&dst, 0, sizeof(union sockaddr_union));
3198 	if (ip != NULL) {
3199 		dst.sa.sa_len = sizeof(struct sockaddr_in);
3200 		dst.sa.sa_family = AF_INET;
3201 		dst.sin.sin_addr = ip->ip_dst;
3202 	} else {
3203 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
3204 		dst.sa.sa_family = AF_INET6;
3205 		dst.sin6.sin6_addr = ip6->ip6_dst;
3206 	}
3207 
3208 	/*
3209 	 * Look up an SADB entry which matches the address of the peer.
3210 	 */
3211 	return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3212 #else
3213 	return NULL;
3214 #endif
3215 }
3216 
3217 int
3218 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3219     struct secasvar *sav, char *sig)
3220 {
3221 	MD5_CTX ctx;
3222 	struct ip *ip;
3223 	struct ipovly *ipovly;
3224 #ifdef INET6
3225 	struct ip6_hdr *ip6;
3226 	struct ip6_hdr_pseudo ip6pseudo;
3227 #endif /* INET6 */
3228 	struct ippseudo ippseudo;
3229 	struct tcphdr th0;
3230 	int l, tcphdrlen;
3231 
3232 	if (sav == NULL)
3233 		return (-1);
3234 
3235 	tcphdrlen = th->th_off * 4;
3236 
3237 	switch (mtod(m, struct ip *)->ip_v) {
3238 	case 4:
3239 		MD5Init(&ctx);
3240 		ip = mtod(m, struct ip *);
3241 		memset(&ippseudo, 0, sizeof(ippseudo));
3242 		ipovly = (struct ipovly *)ip;
3243 		ippseudo.ippseudo_src = ipovly->ih_src;
3244 		ippseudo.ippseudo_dst = ipovly->ih_dst;
3245 		ippseudo.ippseudo_pad = 0;
3246 		ippseudo.ippseudo_p = IPPROTO_TCP;
3247 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3248 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3249 		break;
3250 #if INET6
3251 	case 6:
3252 		MD5Init(&ctx);
3253 		ip6 = mtod(m, struct ip6_hdr *);
3254 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3255 		ip6pseudo.ip6ph_src = ip6->ip6_src;
3256 		in6_clearscope(&ip6pseudo.ip6ph_src);
3257 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3258 		in6_clearscope(&ip6pseudo.ip6ph_dst);
3259 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3260 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3261 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3262 		break;
3263 #endif /* INET6 */
3264 	default:
3265 		return (-1);
3266 	}
3267 
3268 	th0 = *th;
3269 	th0.th_sum = 0;
3270 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
3271 
3272 	l = m->m_pkthdr.len - thoff - tcphdrlen;
3273 	if (l > 0)
3274 		m_apply(m, thoff + tcphdrlen,
3275 		    m->m_pkthdr.len - thoff - tcphdrlen,
3276 		    tcp_signature_apply, &ctx);
3277 
3278 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3279 	MD5Final(sig, &ctx);
3280 
3281 	return (0);
3282 }
3283 #endif
3284 
3285 /*
3286  * tcp_dooptions: parse and process tcp options.
3287  *
3288  * returns -1 if this segment should be dropped.  (eg. wrong signature)
3289  * otherwise returns 0.
3290  */
3291 
3292 static int
3293 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
3294     struct tcphdr *th,
3295     struct mbuf *m, int toff, struct tcp_opt_info *oi)
3296 {
3297 	u_int16_t mss;
3298 	int opt, optlen = 0;
3299 #ifdef TCP_SIGNATURE
3300 	void *sigp = NULL;
3301 	char sigbuf[TCP_SIGLEN];
3302 	struct secasvar *sav = NULL;
3303 #endif
3304 
3305 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3306 		opt = cp[0];
3307 		if (opt == TCPOPT_EOL)
3308 			break;
3309 		if (opt == TCPOPT_NOP)
3310 			optlen = 1;
3311 		else {
3312 			if (cnt < 2)
3313 				break;
3314 			optlen = cp[1];
3315 			if (optlen < 2 || optlen > cnt)
3316 				break;
3317 		}
3318 		switch (opt) {
3319 
3320 		default:
3321 			continue;
3322 
3323 		case TCPOPT_MAXSEG:
3324 			if (optlen != TCPOLEN_MAXSEG)
3325 				continue;
3326 			if (!(th->th_flags & TH_SYN))
3327 				continue;
3328 			if (TCPS_HAVERCVDSYN(tp->t_state))
3329 				continue;
3330 			bcopy(cp + 2, &mss, sizeof(mss));
3331 			oi->maxseg = ntohs(mss);
3332 			break;
3333 
3334 		case TCPOPT_WINDOW:
3335 			if (optlen != TCPOLEN_WINDOW)
3336 				continue;
3337 			if (!(th->th_flags & TH_SYN))
3338 				continue;
3339 			if (TCPS_HAVERCVDSYN(tp->t_state))
3340 				continue;
3341 			tp->t_flags |= TF_RCVD_SCALE;
3342 			tp->requested_s_scale = cp[2];
3343 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3344 				char buf[INET6_ADDRSTRLEN];
3345 				struct ip *ip = mtod(m, struct ip *);
3346 #ifdef INET6
3347 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3348 #endif
3349 				if (ip)
3350 					in_print(buf, sizeof(buf),
3351 					    &ip->ip_src);
3352 #ifdef INET6
3353 				else if (ip6)
3354 					in6_print(buf, sizeof(buf),
3355 					    &ip6->ip6_src);
3356 #endif
3357 				else
3358 					strlcpy(buf, "(unknown)", sizeof(buf));
3359 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3360 				    "assuming %d\n",
3361 				    tp->requested_s_scale, buf,
3362 				    TCP_MAX_WINSHIFT);
3363 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
3364 			}
3365 			break;
3366 
3367 		case TCPOPT_TIMESTAMP:
3368 			if (optlen != TCPOLEN_TIMESTAMP)
3369 				continue;
3370 			oi->ts_present = 1;
3371 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3372 			NTOHL(oi->ts_val);
3373 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3374 			NTOHL(oi->ts_ecr);
3375 
3376 			if (!(th->th_flags & TH_SYN))
3377 				continue;
3378 			if (TCPS_HAVERCVDSYN(tp->t_state))
3379 				continue;
3380 			/*
3381 			 * A timestamp received in a SYN makes
3382 			 * it ok to send timestamp requests and replies.
3383 			 */
3384 			tp->t_flags |= TF_RCVD_TSTMP;
3385 			tp->ts_recent = oi->ts_val;
3386 			tp->ts_recent_age = tcp_now;
3387                         break;
3388 
3389 		case TCPOPT_SACK_PERMITTED:
3390 			if (optlen != TCPOLEN_SACK_PERMITTED)
3391 				continue;
3392 			if (!(th->th_flags & TH_SYN))
3393 				continue;
3394 			if (TCPS_HAVERCVDSYN(tp->t_state))
3395 				continue;
3396 			if (tcp_do_sack) {
3397 				tp->t_flags |= TF_SACK_PERMIT;
3398 				tp->t_flags |= TF_WILL_SACK;
3399 			}
3400 			break;
3401 
3402 		case TCPOPT_SACK:
3403 			tcp_sack_option(tp, th, cp, optlen);
3404 			break;
3405 #ifdef TCP_SIGNATURE
3406 		case TCPOPT_SIGNATURE:
3407 			if (optlen != TCPOLEN_SIGNATURE)
3408 				continue;
3409 			if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
3410 				return (-1);
3411 
3412 			sigp = sigbuf;
3413 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3414 			tp->t_flags |= TF_SIGNATURE;
3415 			break;
3416 #endif
3417 		}
3418 	}
3419 
3420 #ifndef TCP_SIGNATURE
3421 	return 0;
3422 #else
3423 	if (tp->t_flags & TF_SIGNATURE) {
3424 
3425 		sav = tcp_signature_getsav(m, th);
3426 
3427 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
3428 			return (-1);
3429 	}
3430 
3431 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3432 		goto out;
3433 
3434 	if (sigp) {
3435 		char sig[TCP_SIGLEN];
3436 
3437 		tcp_fields_to_net(th);
3438 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
3439 			tcp_fields_to_host(th);
3440 			goto out;
3441 		}
3442 		tcp_fields_to_host(th);
3443 
3444 		if (memcmp(sig, sigp, TCP_SIGLEN)) {
3445 			TCP_STATINC(TCP_STAT_BADSIG);
3446 			goto out;
3447 		} else
3448 			TCP_STATINC(TCP_STAT_GOODSIG);
3449 
3450 		key_sa_recordxfer(sav, m);
3451 		KEY_FREESAV(&sav);
3452 	}
3453 	return 0;
3454 out:
3455 	if (sav != NULL)
3456 		KEY_FREESAV(&sav);
3457 	return -1;
3458 #endif
3459 }
3460 
3461 /*
3462  * Pull out of band byte out of a segment so
3463  * it doesn't appear in the user's data queue.
3464  * It is still reflected in the segment length for
3465  * sequencing purposes.
3466  */
3467 void
3468 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3469     struct mbuf *m, int off)
3470 {
3471 	int cnt = off + th->th_urp - 1;
3472 
3473 	while (cnt >= 0) {
3474 		if (m->m_len > cnt) {
3475 			char *cp = mtod(m, char *) + cnt;
3476 			struct tcpcb *tp = sototcpcb(so);
3477 
3478 			tp->t_iobc = *cp;
3479 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3480 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3481 			m->m_len--;
3482 			return;
3483 		}
3484 		cnt -= m->m_len;
3485 		m = m->m_next;
3486 		if (m == 0)
3487 			break;
3488 	}
3489 	panic("tcp_pulloutofband");
3490 }
3491 
3492 /*
3493  * Collect new round-trip time estimate
3494  * and update averages and current timeout.
3495  *
3496  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3497  * difference of two timestamps.
3498  */
3499 void
3500 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3501 {
3502 	int32_t delta;
3503 
3504 	TCP_STATINC(TCP_STAT_RTTUPDATED);
3505 	if (tp->t_srtt != 0) {
3506 		/*
3507 		 * Compute the amount to add to srtt for smoothing,
3508 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
3509 		 * srtt is stored in 1/32 slow ticks, we conceptually
3510 		 * shift left 5 bits, subtract srtt to get the
3511 		 * diference, and then shift right by TCP_RTT_SHIFT
3512 		 * (3) to obtain 1/8 of the difference.
3513 		 */
3514 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3515 		/*
3516 		 * This can never happen, because delta's lowest
3517 		 * possible value is 1/8 of t_srtt.  But if it does,
3518 		 * set srtt to some reasonable value, here chosen
3519 		 * as 1/8 tick.
3520 		 */
3521 		if ((tp->t_srtt += delta) <= 0)
3522 			tp->t_srtt = 1 << 2;
3523 		/*
3524 		 * RFC2988 requires that rttvar be updated first.
3525 		 * This code is compliant because "delta" is the old
3526 		 * srtt minus the new observation (scaled).
3527 		 *
3528 		 * RFC2988 says:
3529 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3530 		 *
3531 		 * delta is in units of 1/32 ticks, and has then been
3532 		 * divided by 8.  This is equivalent to being in 1/16s
3533 		 * units and divided by 4.  Subtract from it 1/4 of
3534 		 * the existing rttvar to form the (signed) amount to
3535 		 * adjust.
3536 		 */
3537 		if (delta < 0)
3538 			delta = -delta;
3539 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3540 		/*
3541 		 * As with srtt, this should never happen.  There is
3542 		 * no support in RFC2988 for this operation.  But 1/4s
3543 		 * as rttvar when faced with something arguably wrong
3544 		 * is ok.
3545 		 */
3546 		if ((tp->t_rttvar += delta) <= 0)
3547 			tp->t_rttvar = 1 << 2;
3548 
3549 		/*
3550 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3551 		 * Problem is: it doesn't work.  Disabled by defaulting
3552 		 * tcp_rttlocal to 0; see corresponding code in
3553 		 * tcp_subr that selects local vs remote in a different way.
3554 		 *
3555 		 * The static branch prediction hint here should be removed
3556 		 * when the rtt estimator is fixed and the rtt_enable code
3557 		 * is turned back on.
3558 		 */
3559 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3560 		    && tp->t_srtt > tcp_msl_remote_threshold
3561 		    && tp->t_msl  < tcp_msl_remote) {
3562 			tp->t_msl = tcp_msl_remote;
3563 		}
3564 	} else {
3565 		/*
3566 		 * This is the first measurement.  Per RFC2988, 2.2,
3567 		 * set rtt=R and srtt=R/2.
3568 		 * For srtt, storage representation is 1/32 ticks,
3569 		 * so shift left by 5.
3570 		 * For rttvar, storage representation is 1/16 ticks,
3571 		 * So shift left by 4, but then right by 1 to halve.
3572 		 */
3573 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3574 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3575 	}
3576 	tp->t_rtttime = 0;
3577 	tp->t_rxtshift = 0;
3578 
3579 	/*
3580 	 * the retransmit should happen at rtt + 4 * rttvar.
3581 	 * Because of the way we do the smoothing, srtt and rttvar
3582 	 * will each average +1/2 tick of bias.  When we compute
3583 	 * the retransmit timer, we want 1/2 tick of rounding and
3584 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3585 	 * firing of the timer.  The bias will give us exactly the
3586 	 * 1.5 tick we need.  But, because the bias is
3587 	 * statistical, we have to test that we don't drop below
3588 	 * the minimum feasible timer (which is 2 ticks).
3589 	 */
3590 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3591 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3592 
3593 	/*
3594 	 * We received an ack for a packet that wasn't retransmitted;
3595 	 * it is probably safe to discard any error indications we've
3596 	 * received recently.  This isn't quite right, but close enough
3597 	 * for now (a route might have failed after we sent a segment,
3598 	 * and the return path might not be symmetrical).
3599 	 */
3600 	tp->t_softerror = 0;
3601 }
3602 
3603 
3604 /*
3605  * TCP compressed state engine.  Currently used to hold compressed
3606  * state for SYN_RECEIVED.
3607  */
3608 
3609 u_long	syn_cache_count;
3610 u_int32_t syn_hash1, syn_hash2;
3611 
3612 #define SYN_HASH(sa, sp, dp) \
3613 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3614 				     ((u_int32_t)(sp)))^syn_hash2)))
3615 #ifndef INET6
3616 #define	SYN_HASHALL(hash, src, dst) \
3617 do {									\
3618 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
3619 		((const struct sockaddr_in *)(src))->sin_port,		\
3620 		((const struct sockaddr_in *)(dst))->sin_port);		\
3621 } while (/*CONSTCOND*/ 0)
3622 #else
3623 #define SYN_HASH6(sa, sp, dp) \
3624 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3625 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3626 	 & 0x7fffffff)
3627 
3628 #define SYN_HASHALL(hash, src, dst) \
3629 do {									\
3630 	switch ((src)->sa_family) {					\
3631 	case AF_INET:							\
3632 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3633 			((const struct sockaddr_in *)(src))->sin_port,	\
3634 			((const struct sockaddr_in *)(dst))->sin_port);	\
3635 		break;							\
3636 	case AF_INET6:							\
3637 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3638 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
3639 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
3640 		break;							\
3641 	default:							\
3642 		hash = 0;						\
3643 	}								\
3644 } while (/*CONSTCOND*/0)
3645 #endif /* INET6 */
3646 
3647 static struct pool syn_cache_pool;
3648 
3649 /*
3650  * We don't estimate RTT with SYNs, so each packet starts with the default
3651  * RTT and each timer step has a fixed timeout value.
3652  */
3653 #define	SYN_CACHE_TIMER_ARM(sc)						\
3654 do {									\
3655 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3656 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3657 	    TCPTV_REXMTMAX);						\
3658 	callout_reset(&(sc)->sc_timer,					\
3659 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
3660 } while (/*CONSTCOND*/0)
3661 
3662 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
3663 
3664 static inline void
3665 syn_cache_rm(struct syn_cache *sc)
3666 {
3667 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3668 	    sc, sc_bucketq);
3669 	sc->sc_tp = NULL;
3670 	LIST_REMOVE(sc, sc_tpq);
3671 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3672 	callout_stop(&sc->sc_timer);
3673 	syn_cache_count--;
3674 }
3675 
3676 static inline void
3677 syn_cache_put(struct syn_cache *sc)
3678 {
3679 	if (sc->sc_ipopts)
3680 		(void) m_free(sc->sc_ipopts);
3681 	rtcache_free(&sc->sc_route);
3682 	sc->sc_flags |= SCF_DEAD;
3683 	if (!callout_invoking(&sc->sc_timer))
3684 		callout_schedule(&(sc)->sc_timer, 1);
3685 }
3686 
3687 void
3688 syn_cache_init(void)
3689 {
3690 	int i;
3691 
3692 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3693 	    "synpl", NULL, IPL_SOFTNET);
3694 
3695 	/* Initialize the hash buckets. */
3696 	for (i = 0; i < tcp_syn_cache_size; i++)
3697 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3698 }
3699 
3700 void
3701 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3702 {
3703 	struct syn_cache_head *scp;
3704 	struct syn_cache *sc2;
3705 	int s;
3706 
3707 	/*
3708 	 * If there are no entries in the hash table, reinitialize
3709 	 * the hash secrets.
3710 	 */
3711 	if (syn_cache_count == 0) {
3712 		syn_hash1 = cprng_fast32();
3713 		syn_hash2 = cprng_fast32();
3714 	}
3715 
3716 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3717 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3718 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3719 
3720 	/*
3721 	 * Make sure that we don't overflow the per-bucket
3722 	 * limit or the total cache size limit.
3723 	 */
3724 	s = splsoftnet();
3725 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3726 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3727 		/*
3728 		 * The bucket is full.  Toss the oldest element in the
3729 		 * bucket.  This will be the first entry in the bucket.
3730 		 */
3731 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3732 #ifdef DIAGNOSTIC
3733 		/*
3734 		 * This should never happen; we should always find an
3735 		 * entry in our bucket.
3736 		 */
3737 		if (sc2 == NULL)
3738 			panic("syn_cache_insert: bucketoverflow: impossible");
3739 #endif
3740 		syn_cache_rm(sc2);
3741 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3742 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3743 		struct syn_cache_head *scp2, *sce;
3744 
3745 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3746 		/*
3747 		 * The cache is full.  Toss the oldest entry in the
3748 		 * first non-empty bucket we can find.
3749 		 *
3750 		 * XXX We would really like to toss the oldest
3751 		 * entry in the cache, but we hope that this
3752 		 * condition doesn't happen very often.
3753 		 */
3754 		scp2 = scp;
3755 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3756 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3757 			for (++scp2; scp2 != scp; scp2++) {
3758 				if (scp2 >= sce)
3759 					scp2 = &tcp_syn_cache[0];
3760 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3761 					break;
3762 			}
3763 #ifdef DIAGNOSTIC
3764 			/*
3765 			 * This should never happen; we should always find a
3766 			 * non-empty bucket.
3767 			 */
3768 			if (scp2 == scp)
3769 				panic("syn_cache_insert: cacheoverflow: "
3770 				    "impossible");
3771 #endif
3772 		}
3773 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3774 		syn_cache_rm(sc2);
3775 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3776 	}
3777 
3778 	/*
3779 	 * Initialize the entry's timer.
3780 	 */
3781 	sc->sc_rxttot = 0;
3782 	sc->sc_rxtshift = 0;
3783 	SYN_CACHE_TIMER_ARM(sc);
3784 
3785 	/* Link it from tcpcb entry */
3786 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3787 
3788 	/* Put it into the bucket. */
3789 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3790 	scp->sch_length++;
3791 	syn_cache_count++;
3792 
3793 	TCP_STATINC(TCP_STAT_SC_ADDED);
3794 	splx(s);
3795 }
3796 
3797 /*
3798  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3799  * If we have retransmitted an entry the maximum number of times, expire
3800  * that entry.
3801  */
3802 void
3803 syn_cache_timer(void *arg)
3804 {
3805 	struct syn_cache *sc = arg;
3806 
3807 	mutex_enter(softnet_lock);
3808 	KERNEL_LOCK(1, NULL);
3809 	callout_ack(&sc->sc_timer);
3810 
3811 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3812 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3813 		callout_destroy(&sc->sc_timer);
3814 		pool_put(&syn_cache_pool, sc);
3815 		KERNEL_UNLOCK_ONE(NULL);
3816 		mutex_exit(softnet_lock);
3817 		return;
3818 	}
3819 
3820 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3821 		/* Drop it -- too many retransmissions. */
3822 		goto dropit;
3823 	}
3824 
3825 	/*
3826 	 * Compute the total amount of time this entry has
3827 	 * been on a queue.  If this entry has been on longer
3828 	 * than the keep alive timer would allow, expire it.
3829 	 */
3830 	sc->sc_rxttot += sc->sc_rxtcur;
3831 	if (sc->sc_rxttot >= tcp_keepinit)
3832 		goto dropit;
3833 
3834 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3835 	(void) syn_cache_respond(sc, NULL);
3836 
3837 	/* Advance the timer back-off. */
3838 	sc->sc_rxtshift++;
3839 	SYN_CACHE_TIMER_ARM(sc);
3840 
3841 	KERNEL_UNLOCK_ONE(NULL);
3842 	mutex_exit(softnet_lock);
3843 	return;
3844 
3845  dropit:
3846 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3847 	syn_cache_rm(sc);
3848 	if (sc->sc_ipopts)
3849 		(void) m_free(sc->sc_ipopts);
3850 	rtcache_free(&sc->sc_route);
3851 	callout_destroy(&sc->sc_timer);
3852 	pool_put(&syn_cache_pool, sc);
3853 	KERNEL_UNLOCK_ONE(NULL);
3854 	mutex_exit(softnet_lock);
3855 }
3856 
3857 /*
3858  * Remove syn cache created by the specified tcb entry,
3859  * because this does not make sense to keep them
3860  * (if there's no tcb entry, syn cache entry will never be used)
3861  */
3862 void
3863 syn_cache_cleanup(struct tcpcb *tp)
3864 {
3865 	struct syn_cache *sc, *nsc;
3866 	int s;
3867 
3868 	s = splsoftnet();
3869 
3870 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3871 		nsc = LIST_NEXT(sc, sc_tpq);
3872 
3873 #ifdef DIAGNOSTIC
3874 		if (sc->sc_tp != tp)
3875 			panic("invalid sc_tp in syn_cache_cleanup");
3876 #endif
3877 		syn_cache_rm(sc);
3878 		syn_cache_put(sc);	/* calls pool_put but see spl above */
3879 	}
3880 	/* just for safety */
3881 	LIST_INIT(&tp->t_sc);
3882 
3883 	splx(s);
3884 }
3885 
3886 /*
3887  * Find an entry in the syn cache.
3888  */
3889 struct syn_cache *
3890 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3891     struct syn_cache_head **headp)
3892 {
3893 	struct syn_cache *sc;
3894 	struct syn_cache_head *scp;
3895 	u_int32_t hash;
3896 	int s;
3897 
3898 	SYN_HASHALL(hash, src, dst);
3899 
3900 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3901 	*headp = scp;
3902 	s = splsoftnet();
3903 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3904 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3905 		if (sc->sc_hash != hash)
3906 			continue;
3907 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3908 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3909 			splx(s);
3910 			return (sc);
3911 		}
3912 	}
3913 	splx(s);
3914 	return (NULL);
3915 }
3916 
3917 /*
3918  * This function gets called when we receive an ACK for a
3919  * socket in the LISTEN state.  We look up the connection
3920  * in the syn cache, and if its there, we pull it out of
3921  * the cache and turn it into a full-blown connection in
3922  * the SYN-RECEIVED state.
3923  *
3924  * The return values may not be immediately obvious, and their effects
3925  * can be subtle, so here they are:
3926  *
3927  *	NULL	SYN was not found in cache; caller should drop the
3928  *		packet and send an RST.
3929  *
3930  *	-1	We were unable to create the new connection, and are
3931  *		aborting it.  An ACK,RST is being sent to the peer
3932  *		(unless we got screwey sequence numbners; see below),
3933  *		because the 3-way handshake has been completed.  Caller
3934  *		should not free the mbuf, since we may be using it.  If
3935  *		we are not, we will free it.
3936  *
3937  *	Otherwise, the return value is a pointer to the new socket
3938  *	associated with the connection.
3939  */
3940 struct socket *
3941 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3942     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3943     struct socket *so, struct mbuf *m)
3944 {
3945 	struct syn_cache *sc;
3946 	struct syn_cache_head *scp;
3947 	struct inpcb *inp = NULL;
3948 #ifdef INET6
3949 	struct in6pcb *in6p = NULL;
3950 #endif
3951 	struct tcpcb *tp = 0;
3952 	int s;
3953 	struct socket *oso;
3954 
3955 	s = splsoftnet();
3956 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3957 		splx(s);
3958 		return (NULL);
3959 	}
3960 
3961 	/*
3962 	 * Verify the sequence and ack numbers.  Try getting the correct
3963 	 * response again.
3964 	 */
3965 	if ((th->th_ack != sc->sc_iss + 1) ||
3966 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3967 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3968 		(void) syn_cache_respond(sc, m);
3969 		splx(s);
3970 		return ((struct socket *)(-1));
3971 	}
3972 
3973 	/* Remove this cache entry */
3974 	syn_cache_rm(sc);
3975 	splx(s);
3976 
3977 	/*
3978 	 * Ok, create the full blown connection, and set things up
3979 	 * as they would have been set up if we had created the
3980 	 * connection when the SYN arrived.  If we can't create
3981 	 * the connection, abort it.
3982 	 */
3983 	/*
3984 	 * inp still has the OLD in_pcb stuff, set the
3985 	 * v6-related flags on the new guy, too.   This is
3986 	 * done particularly for the case where an AF_INET6
3987 	 * socket is bound only to a port, and a v4 connection
3988 	 * comes in on that port.
3989 	 * we also copy the flowinfo from the original pcb
3990 	 * to the new one.
3991 	 */
3992 	oso = so;
3993 	so = sonewconn(so, true);
3994 	if (so == NULL)
3995 		goto resetandabort;
3996 
3997 	switch (so->so_proto->pr_domain->dom_family) {
3998 #ifdef INET
3999 	case AF_INET:
4000 		inp = sotoinpcb(so);
4001 		break;
4002 #endif
4003 #ifdef INET6
4004 	case AF_INET6:
4005 		in6p = sotoin6pcb(so);
4006 		break;
4007 #endif
4008 	}
4009 	switch (src->sa_family) {
4010 #ifdef INET
4011 	case AF_INET:
4012 		if (inp) {
4013 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
4014 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
4015 			inp->inp_options = ip_srcroute(m);
4016 			in_pcbstate(inp, INP_BOUND);
4017 			if (inp->inp_options == NULL) {
4018 				inp->inp_options = sc->sc_ipopts;
4019 				sc->sc_ipopts = NULL;
4020 			}
4021 		}
4022 #ifdef INET6
4023 		else if (in6p) {
4024 			/* IPv4 packet to AF_INET6 socket */
4025 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
4026 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
4027 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
4028 				&in6p->in6p_laddr.s6_addr32[3],
4029 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
4030 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
4031 			in6totcpcb(in6p)->t_family = AF_INET;
4032 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
4033 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
4034 			else
4035 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
4036 			in6_pcbstate(in6p, IN6P_BOUND);
4037 		}
4038 #endif
4039 		break;
4040 #endif
4041 #ifdef INET6
4042 	case AF_INET6:
4043 		if (in6p) {
4044 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
4045 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
4046 			in6_pcbstate(in6p, IN6P_BOUND);
4047 		}
4048 		break;
4049 #endif
4050 	}
4051 #ifdef INET6
4052 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
4053 		struct in6pcb *oin6p = sotoin6pcb(oso);
4054 		/* inherit socket options from the listening socket */
4055 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
4056 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
4057 			m_freem(in6p->in6p_options);
4058 			in6p->in6p_options = 0;
4059 		}
4060 		ip6_savecontrol(in6p, &in6p->in6p_options,
4061 			mtod(m, struct ip6_hdr *), m);
4062 	}
4063 #endif
4064 
4065 #if defined(IPSEC)
4066 	if (ipsec_used) {
4067 		/*
4068 		 * we make a copy of policy, instead of sharing the policy, for
4069 		 * better behavior in terms of SA lookup and dead SA removal.
4070 		 */
4071 		if (inp) {
4072 			/* copy old policy into new socket's */
4073 			if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp,
4074 			    inp->inp_sp))
4075 				printf("tcp_input: could not copy policy\n");
4076 		}
4077 #ifdef INET6
4078 		else if (in6p) {
4079 			/* copy old policy into new socket's */
4080 			if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
4081 			    in6p->in6p_sp))
4082 				printf("tcp_input: could not copy policy\n");
4083 		}
4084 #endif
4085 	}
4086 #endif
4087 
4088 	/*
4089 	 * Give the new socket our cached route reference.
4090 	 */
4091 	if (inp) {
4092 		rtcache_copy(&inp->inp_route, &sc->sc_route);
4093 		rtcache_free(&sc->sc_route);
4094 	}
4095 #ifdef INET6
4096 	else {
4097 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
4098 		rtcache_free(&sc->sc_route);
4099 	}
4100 #endif
4101 
4102 	if (inp) {
4103 		struct sockaddr_in sin;
4104 		memcpy(&sin, src, src->sa_len);
4105 		if (in_pcbconnect(inp, &sin, &lwp0)) {
4106 			goto resetandabort;
4107 		}
4108 	}
4109 #ifdef INET6
4110 	else if (in6p) {
4111 		struct sockaddr_in6 sin6;
4112 		memcpy(&sin6, src, src->sa_len);
4113 		if (src->sa_family == AF_INET) {
4114 			/* IPv4 packet to AF_INET6 socket */
4115 			in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
4116 		}
4117 		if (in6_pcbconnect(in6p, &sin6, NULL)) {
4118 			goto resetandabort;
4119 		}
4120 	}
4121 #endif
4122 	else {
4123 		goto resetandabort;
4124 	}
4125 
4126 	if (inp)
4127 		tp = intotcpcb(inp);
4128 #ifdef INET6
4129 	else if (in6p)
4130 		tp = in6totcpcb(in6p);
4131 #endif
4132 	else
4133 		tp = NULL;
4134 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
4135 	if (sc->sc_request_r_scale != 15) {
4136 		tp->requested_s_scale = sc->sc_requested_s_scale;
4137 		tp->request_r_scale = sc->sc_request_r_scale;
4138 		tp->snd_scale = sc->sc_requested_s_scale;
4139 		tp->rcv_scale = sc->sc_request_r_scale;
4140 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
4141 	}
4142 	if (sc->sc_flags & SCF_TIMESTAMP)
4143 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
4144 	tp->ts_timebase = sc->sc_timebase;
4145 
4146 	tp->t_template = tcp_template(tp);
4147 	if (tp->t_template == 0) {
4148 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
4149 		so = NULL;
4150 		m_freem(m);
4151 		goto abort;
4152 	}
4153 
4154 	tp->iss = sc->sc_iss;
4155 	tp->irs = sc->sc_irs;
4156 	tcp_sendseqinit(tp);
4157 	tcp_rcvseqinit(tp);
4158 	tp->t_state = TCPS_SYN_RECEIVED;
4159 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
4160 	TCP_STATINC(TCP_STAT_ACCEPTS);
4161 
4162 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
4163 		tp->t_flags |= TF_WILL_SACK;
4164 
4165 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
4166 		tp->t_flags |= TF_ECN_PERMIT;
4167 
4168 #ifdef TCP_SIGNATURE
4169 	if (sc->sc_flags & SCF_SIGNATURE)
4170 		tp->t_flags |= TF_SIGNATURE;
4171 #endif
4172 
4173 	/* Initialize tp->t_ourmss before we deal with the peer's! */
4174 	tp->t_ourmss = sc->sc_ourmaxseg;
4175 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
4176 
4177 	/*
4178 	 * Initialize the initial congestion window.  If we
4179 	 * had to retransmit the SYN,ACK, we must initialize cwnd
4180 	 * to 1 segment (i.e. the Loss Window).
4181 	 */
4182 	if (sc->sc_rxtshift)
4183 		tp->snd_cwnd = tp->t_peermss;
4184 	else {
4185 		int ss = tcp_init_win;
4186 #ifdef INET
4187 		if (inp != NULL && in_localaddr(inp->inp_faddr))
4188 			ss = tcp_init_win_local;
4189 #endif
4190 #ifdef INET6
4191 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
4192 			ss = tcp_init_win_local;
4193 #endif
4194 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
4195 	}
4196 
4197 	tcp_rmx_rtt(tp);
4198 	tp->snd_wl1 = sc->sc_irs;
4199 	tp->rcv_up = sc->sc_irs + 1;
4200 
4201 	/*
4202 	 * This is what whould have happened in tcp_output() when
4203 	 * the SYN,ACK was sent.
4204 	 */
4205 	tp->snd_up = tp->snd_una;
4206 	tp->snd_max = tp->snd_nxt = tp->iss+1;
4207 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4208 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4209 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4210 	tp->last_ack_sent = tp->rcv_nxt;
4211 	tp->t_partialacks = -1;
4212 	tp->t_dupacks = 0;
4213 
4214 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
4215 	s = splsoftnet();
4216 	syn_cache_put(sc);
4217 	splx(s);
4218 	return (so);
4219 
4220 resetandabort:
4221 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4222 abort:
4223 	if (so != NULL) {
4224 		(void) soqremque(so, 1);
4225 		(void) soabort(so);
4226 		mutex_enter(softnet_lock);
4227 	}
4228 	s = splsoftnet();
4229 	syn_cache_put(sc);
4230 	splx(s);
4231 	TCP_STATINC(TCP_STAT_SC_ABORTED);
4232 	return ((struct socket *)(-1));
4233 }
4234 
4235 /*
4236  * This function is called when we get a RST for a
4237  * non-existent connection, so that we can see if the
4238  * connection is in the syn cache.  If it is, zap it.
4239  */
4240 
4241 void
4242 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4243 {
4244 	struct syn_cache *sc;
4245 	struct syn_cache_head *scp;
4246 	int s = splsoftnet();
4247 
4248 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4249 		splx(s);
4250 		return;
4251 	}
4252 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4253 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4254 		splx(s);
4255 		return;
4256 	}
4257 	syn_cache_rm(sc);
4258 	TCP_STATINC(TCP_STAT_SC_RESET);
4259 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4260 	splx(s);
4261 }
4262 
4263 void
4264 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4265     struct tcphdr *th)
4266 {
4267 	struct syn_cache *sc;
4268 	struct syn_cache_head *scp;
4269 	int s;
4270 
4271 	s = splsoftnet();
4272 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4273 		splx(s);
4274 		return;
4275 	}
4276 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4277 	if (ntohl (th->th_seq) != sc->sc_iss) {
4278 		splx(s);
4279 		return;
4280 	}
4281 
4282 	/*
4283 	 * If we've retransmitted 3 times and this is our second error,
4284 	 * we remove the entry.  Otherwise, we allow it to continue on.
4285 	 * This prevents us from incorrectly nuking an entry during a
4286 	 * spurious network outage.
4287 	 *
4288 	 * See tcp_notify().
4289 	 */
4290 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4291 		sc->sc_flags |= SCF_UNREACH;
4292 		splx(s);
4293 		return;
4294 	}
4295 
4296 	syn_cache_rm(sc);
4297 	TCP_STATINC(TCP_STAT_SC_UNREACH);
4298 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4299 	splx(s);
4300 }
4301 
4302 /*
4303  * Given a LISTEN socket and an inbound SYN request, add
4304  * this to the syn cache, and send back a segment:
4305  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4306  * to the source.
4307  *
4308  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4309  * Doing so would require that we hold onto the data and deliver it
4310  * to the application.  However, if we are the target of a SYN-flood
4311  * DoS attack, an attacker could send data which would eventually
4312  * consume all available buffer space if it were ACKed.  By not ACKing
4313  * the data, we avoid this DoS scenario.
4314  */
4315 
4316 int
4317 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4318     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
4319     int optlen, struct tcp_opt_info *oi)
4320 {
4321 	struct tcpcb tb, *tp;
4322 	long win;
4323 	struct syn_cache *sc;
4324 	struct syn_cache_head *scp;
4325 	struct mbuf *ipopts;
4326 	struct tcp_opt_info opti;
4327 	int s;
4328 
4329 	tp = sototcpcb(so);
4330 
4331 	memset(&opti, 0, sizeof(opti));
4332 
4333 	/*
4334 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4335 	 *
4336 	 * Note this check is performed in tcp_input() very early on.
4337 	 */
4338 
4339 	/*
4340 	 * Initialize some local state.
4341 	 */
4342 	win = sbspace(&so->so_rcv);
4343 	if (win > TCP_MAXWIN)
4344 		win = TCP_MAXWIN;
4345 
4346 	switch (src->sa_family) {
4347 #ifdef INET
4348 	case AF_INET:
4349 		/*
4350 		 * Remember the IP options, if any.
4351 		 */
4352 		ipopts = ip_srcroute(m);
4353 		break;
4354 #endif
4355 	default:
4356 		ipopts = NULL;
4357 	}
4358 
4359 #ifdef TCP_SIGNATURE
4360 	if (optp || (tp->t_flags & TF_SIGNATURE))
4361 #else
4362 	if (optp)
4363 #endif
4364 	{
4365 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4366 #ifdef TCP_SIGNATURE
4367 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4368 #endif
4369 		tb.t_state = TCPS_LISTEN;
4370 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4371 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4372 			return (0);
4373 	} else
4374 		tb.t_flags = 0;
4375 
4376 	/*
4377 	 * See if we already have an entry for this connection.
4378 	 * If we do, resend the SYN,ACK.  We do not count this
4379 	 * as a retransmission (XXX though maybe we should).
4380 	 */
4381 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4382 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
4383 		if (ipopts) {
4384 			/*
4385 			 * If we were remembering a previous source route,
4386 			 * forget it and use the new one we've been given.
4387 			 */
4388 			if (sc->sc_ipopts)
4389 				(void) m_free(sc->sc_ipopts);
4390 			sc->sc_ipopts = ipopts;
4391 		}
4392 		sc->sc_timestamp = tb.ts_recent;
4393 		if (syn_cache_respond(sc, m) == 0) {
4394 			uint64_t *tcps = TCP_STAT_GETREF();
4395 			tcps[TCP_STAT_SNDACKS]++;
4396 			tcps[TCP_STAT_SNDTOTAL]++;
4397 			TCP_STAT_PUTREF();
4398 		}
4399 		return (1);
4400 	}
4401 
4402 	s = splsoftnet();
4403 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4404 	splx(s);
4405 	if (sc == NULL) {
4406 		if (ipopts)
4407 			(void) m_free(ipopts);
4408 		return (0);
4409 	}
4410 
4411 	/*
4412 	 * Fill in the cache, and put the necessary IP and TCP
4413 	 * options into the reply.
4414 	 */
4415 	memset(sc, 0, sizeof(struct syn_cache));
4416 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4417 	bcopy(src, &sc->sc_src, src->sa_len);
4418 	bcopy(dst, &sc->sc_dst, dst->sa_len);
4419 	sc->sc_flags = 0;
4420 	sc->sc_ipopts = ipopts;
4421 	sc->sc_irs = th->th_seq;
4422 	switch (src->sa_family) {
4423 #ifdef INET
4424 	case AF_INET:
4425 	    {
4426 		struct sockaddr_in *srcin = (void *) src;
4427 		struct sockaddr_in *dstin = (void *) dst;
4428 
4429 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4430 		    &srcin->sin_addr, dstin->sin_port,
4431 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
4432 		break;
4433 	    }
4434 #endif /* INET */
4435 #ifdef INET6
4436 	case AF_INET6:
4437 	    {
4438 		struct sockaddr_in6 *srcin6 = (void *) src;
4439 		struct sockaddr_in6 *dstin6 = (void *) dst;
4440 
4441 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4442 		    &srcin6->sin6_addr, dstin6->sin6_port,
4443 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4444 		break;
4445 	    }
4446 #endif /* INET6 */
4447 	}
4448 	sc->sc_peermaxseg = oi->maxseg;
4449 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4450 						m_get_rcvif_NOMPSAFE(m) : NULL,
4451 						sc->sc_src.sa.sa_family);
4452 	sc->sc_win = win;
4453 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
4454 	sc->sc_timestamp = tb.ts_recent;
4455 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4456 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4457 		sc->sc_flags |= SCF_TIMESTAMP;
4458 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4459 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4460 		sc->sc_requested_s_scale = tb.requested_s_scale;
4461 		sc->sc_request_r_scale = 0;
4462 		/*
4463 		 * Pick the smallest possible scaling factor that
4464 		 * will still allow us to scale up to sb_max.
4465 		 *
4466 		 * We do this because there are broken firewalls that
4467 		 * will corrupt the window scale option, leading to
4468 		 * the other endpoint believing that our advertised
4469 		 * window is unscaled.  At scale factors larger than
4470 		 * 5 the unscaled window will drop below 1500 bytes,
4471 		 * leading to serious problems when traversing these
4472 		 * broken firewalls.
4473 		 *
4474 		 * With the default sbmax of 256K, a scale factor
4475 		 * of 3 will be chosen by this algorithm.  Those who
4476 		 * choose a larger sbmax should watch out
4477 		 * for the compatiblity problems mentioned above.
4478 		 *
4479 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4480 		 * or <SYN,ACK>) segment itself is never scaled.
4481 		 */
4482 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4483 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4484 			sc->sc_request_r_scale++;
4485 	} else {
4486 		sc->sc_requested_s_scale = 15;
4487 		sc->sc_request_r_scale = 15;
4488 	}
4489 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4490 		sc->sc_flags |= SCF_SACK_PERMIT;
4491 
4492 	/*
4493 	 * ECN setup packet recieved.
4494 	 */
4495 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4496 		sc->sc_flags |= SCF_ECN_PERMIT;
4497 
4498 #ifdef TCP_SIGNATURE
4499 	if (tb.t_flags & TF_SIGNATURE)
4500 		sc->sc_flags |= SCF_SIGNATURE;
4501 #endif
4502 	sc->sc_tp = tp;
4503 	if (syn_cache_respond(sc, m) == 0) {
4504 		uint64_t *tcps = TCP_STAT_GETREF();
4505 		tcps[TCP_STAT_SNDACKS]++;
4506 		tcps[TCP_STAT_SNDTOTAL]++;
4507 		TCP_STAT_PUTREF();
4508 		syn_cache_insert(sc, tp);
4509 	} else {
4510 		s = splsoftnet();
4511 		/*
4512 		 * syn_cache_put() will try to schedule the timer, so
4513 		 * we need to initialize it
4514 		 */
4515 		SYN_CACHE_TIMER_ARM(sc);
4516 		syn_cache_put(sc);
4517 		splx(s);
4518 		TCP_STATINC(TCP_STAT_SC_DROPPED);
4519 	}
4520 	return (1);
4521 }
4522 
4523 /*
4524  * syn_cache_respond: (re)send SYN+ACK.
4525  *
4526  * returns 0 on success.  otherwise returns an errno, typically ENOBUFS.
4527  */
4528 
4529 int
4530 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4531 {
4532 #ifdef INET6
4533 	struct rtentry *rt = NULL;
4534 #endif
4535 	struct route *ro;
4536 	u_int8_t *optp;
4537 	int optlen, error;
4538 	u_int16_t tlen;
4539 	struct ip *ip = NULL;
4540 #ifdef INET6
4541 	struct ip6_hdr *ip6 = NULL;
4542 #endif
4543 	struct tcpcb *tp = NULL;
4544 	struct tcphdr *th;
4545 	u_int hlen;
4546 #ifdef TCP_SIGNATURE
4547 	struct secasvar *sav = NULL;
4548 	u_int8_t *sigp = NULL;
4549 #endif
4550 
4551 	ro = &sc->sc_route;
4552 	switch (sc->sc_src.sa.sa_family) {
4553 	case AF_INET:
4554 		hlen = sizeof(struct ip);
4555 		break;
4556 #ifdef INET6
4557 	case AF_INET6:
4558 		hlen = sizeof(struct ip6_hdr);
4559 		break;
4560 #endif
4561 	default:
4562 		if (m)
4563 			m_freem(m);
4564 		return (EAFNOSUPPORT);
4565 	}
4566 
4567 	/* worst case scanario, since we don't know the option size yet  */
4568 	tlen = hlen + sizeof(struct tcphdr) + MAX_TCPOPTLEN;
4569 
4570 	/*
4571 	 * Create the IP+TCP header from scratch.
4572 	 */
4573 	if (m)
4574 		m_freem(m);
4575 #ifdef DIAGNOSTIC
4576 	if (max_linkhdr + tlen > MCLBYTES)
4577 		return ENOBUFS;
4578 #endif
4579 
4580 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4581 	if (m && (max_linkhdr + tlen) > MHLEN) {
4582 		MCLGET(m, M_DONTWAIT);
4583 		if ((m->m_flags & M_EXT) == 0) {
4584 			m_freem(m);
4585 			m = NULL;
4586 		}
4587 	}
4588 	if (m == NULL)
4589 		return ENOBUFS;
4590 	MCLAIM(m, &tcp_tx_mowner);
4591 
4592 	/* Fixup the mbuf. */
4593 	m->m_data += max_linkhdr;
4594 	if (sc->sc_tp)
4595 		tp = sc->sc_tp;
4596 	m_reset_rcvif(m);
4597 	memset(mtod(m, u_char *), 0, tlen);
4598 
4599 	switch (sc->sc_src.sa.sa_family) {
4600 	case AF_INET:
4601 		ip = mtod(m, struct ip *);
4602 		ip->ip_v = 4;
4603 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4604 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4605 		ip->ip_p = IPPROTO_TCP;
4606 		th = (struct tcphdr *)(ip + 1);
4607 		th->th_dport = sc->sc_src.sin.sin_port;
4608 		th->th_sport = sc->sc_dst.sin.sin_port;
4609 		break;
4610 #ifdef INET6
4611 	case AF_INET6:
4612 		ip6 = mtod(m, struct ip6_hdr *);
4613 		ip6->ip6_vfc = IPV6_VERSION;
4614 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4615 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4616 		ip6->ip6_nxt = IPPROTO_TCP;
4617 		/* ip6_plen will be updated in ip6_output() */
4618 		th = (struct tcphdr *)(ip6 + 1);
4619 		th->th_dport = sc->sc_src.sin6.sin6_port;
4620 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4621 		break;
4622 #endif
4623 	default:
4624 		return ENOBUFS;
4625 	}
4626 
4627 	th->th_seq = htonl(sc->sc_iss);
4628 	th->th_ack = htonl(sc->sc_irs + 1);
4629 	th->th_flags = TH_SYN|TH_ACK;
4630 	th->th_win = htons(sc->sc_win);
4631 	/* th_x2, th_sum, th_urp already 0 from memset */
4632 
4633 	/* Tack on the TCP options. */
4634 	optp = (u_int8_t *)(th + 1);
4635 	optlen = 0;
4636 	*optp++ = TCPOPT_MAXSEG;
4637 	*optp++ = TCPOLEN_MAXSEG;
4638 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4639 	*optp++ = sc->sc_ourmaxseg & 0xff;
4640 	optlen += TCPOLEN_MAXSEG;
4641 
4642 	if (sc->sc_request_r_scale != 15) {
4643 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4644 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4645 		    sc->sc_request_r_scale);
4646 		optp += TCPOLEN_WINDOW + TCPOLEN_NOP;
4647 		optlen += TCPOLEN_WINDOW + TCPOLEN_NOP;
4648 	}
4649 
4650 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4651 		/* Let the peer know that we will SACK. */
4652 		*optp++ = TCPOPT_SACK_PERMITTED;
4653 		*optp++ = TCPOLEN_SACK_PERMITTED;
4654 		optlen += TCPOLEN_SACK_PERMITTED;
4655 	}
4656 
4657 	if (sc->sc_flags & SCF_TIMESTAMP) {
4658                 while (optlen % 4 != 2) {
4659                         optlen += TCPOLEN_NOP;
4660                         *optp++ = TCPOPT_NOP;
4661                 }
4662 		*optp++ = TCPOPT_TIMESTAMP;
4663 		*optp++ = TCPOLEN_TIMESTAMP;
4664 		u_int32_t *lp = (u_int32_t *)(optp);
4665 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4666 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4667 		*lp   = htonl(sc->sc_timestamp);
4668 		optp += TCPOLEN_TIMESTAMP - 2;
4669 		optlen += TCPOLEN_TIMESTAMP;
4670 	}
4671 
4672 #ifdef TCP_SIGNATURE
4673 	if (sc->sc_flags & SCF_SIGNATURE) {
4674 
4675 		sav = tcp_signature_getsav(m, th);
4676 
4677 		if (sav == NULL) {
4678 			if (m)
4679 				m_freem(m);
4680 			return (EPERM);
4681 		}
4682 
4683 		*optp++ = TCPOPT_SIGNATURE;
4684 		*optp++ = TCPOLEN_SIGNATURE;
4685 		sigp = optp;
4686 		memset(optp, 0, TCP_SIGLEN);
4687 		optp += TCP_SIGLEN;
4688 		optlen += TCPOLEN_SIGNATURE;
4689 
4690 	}
4691 #endif
4692 	/* Terminate and pad TCP options to a 4 byte boundary. */
4693 	if (optlen % 4) {
4694 		optlen += TCPOLEN_EOL;
4695 		*optp++ = TCPOPT_EOL;
4696 	}
4697 	/*
4698 	 * According to RFC 793 (STD0007):
4699 	 *   "The content of the header beyond the End-of-Option option
4700 	 *    must be header padding (i.e., zero)."
4701 	 *   and later: "The padding is composed of zeros."
4702 	 */
4703 	while (optlen % 4) {
4704 		optlen += TCPOLEN_PAD;
4705 		*optp++ = TCPOPT_PAD;
4706 	}
4707 
4708 	/* compute the actual values now that we've added the options */
4709 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4710 	m->m_len = m->m_pkthdr.len = tlen;
4711 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4712 
4713 #ifdef TCP_SIGNATURE
4714 	if (sav) {
4715 		(void)tcp_signature(m, th, hlen, sav, sigp);
4716 		key_sa_recordxfer(sav, m);
4717 		KEY_FREESAV(&sav);
4718 	}
4719 #endif
4720 
4721 	/*
4722 	 * Send ECN SYN-ACK setup packet.
4723 	 * Routes can be asymetric, so, even if we receive a packet
4724 	 * with ECE and CWR set, we must not assume no one will block
4725 	 * the ECE packet we are about to send.
4726 	 */
4727 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4728 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4729 		th->th_flags |= TH_ECE;
4730 		TCP_STATINC(TCP_STAT_ECN_SHS);
4731 
4732 		/*
4733 		 * draft-ietf-tcpm-ecnsyn-00.txt
4734 		 *
4735 		 * "[...] a TCP node MAY respond to an ECN-setup
4736 		 * SYN packet by setting ECT in the responding
4737 		 * ECN-setup SYN/ACK packet, indicating to routers
4738 		 * that the SYN/ACK packet is ECN-Capable.
4739 		 * This allows a congested router along the path
4740 		 * to mark the packet instead of dropping the
4741 		 * packet as an indication of congestion."
4742 		 *
4743 		 * "[...] There can be a great benefit in setting
4744 		 * an ECN-capable codepoint in SYN/ACK packets [...]
4745 		 * Congestion is  most likely to occur in
4746 		 * the server-to-client direction.  As a result,
4747 		 * setting an ECN-capable codepoint in SYN/ACK
4748 		 * packets can reduce the occurence of three-second
4749 		 * retransmit timeouts resulting from the drop
4750 		 * of SYN/ACK packets."
4751 		 *
4752 		 * Page 4 and 6, January 2006.
4753 		 */
4754 
4755 		switch (sc->sc_src.sa.sa_family) {
4756 #ifdef INET
4757 		case AF_INET:
4758 			ip->ip_tos |= IPTOS_ECN_ECT0;
4759 			break;
4760 #endif
4761 #ifdef INET6
4762 		case AF_INET6:
4763 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4764 			break;
4765 #endif
4766 		}
4767 		TCP_STATINC(TCP_STAT_ECN_ECT);
4768 	}
4769 
4770 
4771 	/* Compute the packet's checksum. */
4772 	switch (sc->sc_src.sa.sa_family) {
4773 	case AF_INET:
4774 		ip->ip_len = htons(tlen - hlen);
4775 		th->th_sum = 0;
4776 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4777 		break;
4778 #ifdef INET6
4779 	case AF_INET6:
4780 		ip6->ip6_plen = htons(tlen - hlen);
4781 		th->th_sum = 0;
4782 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4783 		break;
4784 #endif
4785 	}
4786 
4787 	/*
4788 	 * Fill in some straggling IP bits.  Note the stack expects
4789 	 * ip_len to be in host order, for convenience.
4790 	 */
4791 	switch (sc->sc_src.sa.sa_family) {
4792 #ifdef INET
4793 	case AF_INET:
4794 		ip->ip_len = htons(tlen);
4795 		ip->ip_ttl = ip_defttl;
4796 		/* XXX tos? */
4797 		break;
4798 #endif
4799 #ifdef INET6
4800 	case AF_INET6:
4801 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4802 		ip6->ip6_vfc |= IPV6_VERSION;
4803 		ip6->ip6_plen = htons(tlen - hlen);
4804 		/* ip6_hlim will be initialized afterwards */
4805 		/* XXX flowlabel? */
4806 		break;
4807 #endif
4808 	}
4809 
4810 	/* XXX use IPsec policy on listening socket, on SYN ACK */
4811 	tp = sc->sc_tp;
4812 
4813 	switch (sc->sc_src.sa.sa_family) {
4814 #ifdef INET
4815 	case AF_INET:
4816 		error = ip_output(m, sc->sc_ipopts, ro,
4817 		    (ip_mtudisc ? IP_MTUDISC : 0),
4818 		    NULL, tp ? tp->t_inpcb : NULL);
4819 		break;
4820 #endif
4821 #ifdef INET6
4822 	case AF_INET6:
4823 		ip6->ip6_hlim = in6_selecthlim(NULL,
4824 		    (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
4825 		rtcache_unref(rt, ro);
4826 
4827 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL,
4828 		    tp ? tp->t_in6pcb : NULL, NULL);
4829 		break;
4830 #endif
4831 	default:
4832 		error = EAFNOSUPPORT;
4833 		break;
4834 	}
4835 	return (error);
4836 }
4837