xref: /netbsd-src/sys/netinet/tcp_input.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /*	$NetBSD: tcp_input.c,v 1.363 2017/11/15 09:56:31 ozaki-r Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74  * 2011 The NetBSD Foundation, Inc.
75  * All rights reserved.
76  *
77  * This code is derived from software contributed to The NetBSD Foundation
78  * by Coyote Point Systems, Inc.
79  * This code is derived from software contributed to The NetBSD Foundation
80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81  * Facility, NASA Ames Research Center.
82  * This code is derived from software contributed to The NetBSD Foundation
83  * by Charles M. Hannum.
84  * This code is derived from software contributed to The NetBSD Foundation
85  * by Rui Paulo.
86  *
87  * Redistribution and use in source and binary forms, with or without
88  * modification, are permitted provided that the following conditions
89  * are met:
90  * 1. Redistributions of source code must retain the above copyright
91  *    notice, this list of conditions and the following disclaimer.
92  * 2. Redistributions in binary form must reproduce the above copyright
93  *    notice, this list of conditions and the following disclaimer in the
94  *    documentation and/or other materials provided with the distribution.
95  *
96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106  * POSSIBILITY OF SUCH DAMAGE.
107  */
108 
109 /*
110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111  *	The Regents of the University of California.  All rights reserved.
112  *
113  * Redistribution and use in source and binary forms, with or without
114  * modification, are permitted provided that the following conditions
115  * are met:
116  * 1. Redistributions of source code must retain the above copyright
117  *    notice, this list of conditions and the following disclaimer.
118  * 2. Redistributions in binary form must reproduce the above copyright
119  *    notice, this list of conditions and the following disclaimer in the
120  *    documentation and/or other materials provided with the distribution.
121  * 3. Neither the name of the University nor the names of its contributors
122  *    may be used to endorse or promote products derived from this software
123  *    without specific prior written permission.
124  *
125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135  * SUCH DAMAGE.
136  *
137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
138  */
139 
140 /*
141  *	TODO list for SYN cache stuff:
142  *
143  *	Find room for a "state" field, which is needed to keep a
144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
145  *	that this is fairly important for very high-volume web and
146  *	mail servers, which use a large number of short-lived
147  *	connections.
148  */
149 
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.363 2017/11/15 09:56:31 ozaki-r Exp $");
152 
153 #ifdef _KERNEL_OPT
154 #include "opt_inet.h"
155 #include "opt_ipsec.h"
156 #include "opt_inet_csum.h"
157 #include "opt_tcp_debug.h"
158 #endif
159 
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175 #include <sys/lwp.h> /* for lwp0 */
176 #include <sys/cprng.h>
177 
178 #include <net/if.h>
179 #include <net/if_types.h>
180 
181 #include <netinet/in.h>
182 #include <netinet/in_systm.h>
183 #include <netinet/ip.h>
184 #include <netinet/in_pcb.h>
185 #include <netinet/in_var.h>
186 #include <netinet/ip_var.h>
187 #include <netinet/in_offload.h>
188 
189 #ifdef INET6
190 #ifndef INET
191 #include <netinet/in.h>
192 #endif
193 #include <netinet/ip6.h>
194 #include <netinet6/ip6_var.h>
195 #include <netinet6/in6_pcb.h>
196 #include <netinet6/ip6_var.h>
197 #include <netinet6/in6_var.h>
198 #include <netinet/icmp6.h>
199 #include <netinet6/nd6.h>
200 #ifdef TCP_SIGNATURE
201 #include <netinet6/scope6_var.h>
202 #endif
203 #endif
204 
205 #ifndef INET6
206 /* always need ip6.h for IP6_EXTHDR_GET */
207 #include <netinet/ip6.h>
208 #endif
209 
210 #include <netinet/tcp.h>
211 #include <netinet/tcp_fsm.h>
212 #include <netinet/tcp_seq.h>
213 #include <netinet/tcp_timer.h>
214 #include <netinet/tcp_var.h>
215 #include <netinet/tcp_private.h>
216 #include <netinet/tcpip.h>
217 #include <netinet/tcp_congctl.h>
218 #include <netinet/tcp_debug.h>
219 
220 #ifdef INET6
221 #include "faith.h"
222 #if defined(NFAITH) && NFAITH > 0
223 #include <net/if_faith.h>
224 #endif
225 #endif	/* INET6 */
226 
227 #ifdef IPSEC
228 #include <netipsec/ipsec.h>
229 #include <netipsec/ipsec_var.h>
230 #include <netipsec/ipsec_private.h>
231 #include <netipsec/key.h>
232 #ifdef INET6
233 #include <netipsec/ipsec6.h>
234 #endif
235 #endif	/* IPSEC*/
236 
237 #include <netinet/tcp_vtw.h>
238 
239 int	tcprexmtthresh = 3;
240 int	tcp_log_refused;
241 
242 int	tcp_do_autorcvbuf = 1;
243 int	tcp_autorcvbuf_inc = 16 * 1024;
244 int	tcp_autorcvbuf_max = 256 * 1024;
245 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
246 
247 static int tcp_rst_ppslim_count = 0;
248 static struct timeval tcp_rst_ppslim_last;
249 static int tcp_ackdrop_ppslim_count = 0;
250 static struct timeval tcp_ackdrop_ppslim_last;
251 
252 static void syn_cache_timer(void *);
253 
254 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
255 
256 /* for modulo comparisons of timestamps */
257 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
258 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
259 
260 /*
261  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
262  */
263 #ifdef INET6
264 static inline void
265 nd6_hint(struct tcpcb *tp)
266 {
267 	struct rtentry *rt = NULL;
268 
269 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
270 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
271 		nd6_nud_hint(rt);
272 	rtcache_unref(rt, &tp->t_in6pcb->in6p_route);
273 }
274 #else
275 static inline void
276 nd6_hint(struct tcpcb *tp)
277 {
278 }
279 #endif
280 
281 /*
282  * Compute ACK transmission behavior.  Delay the ACK unless
283  * we have already delayed an ACK (must send an ACK every two segments).
284  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
285  * option is enabled.
286  */
287 static void
288 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
289 {
290 
291 	if (tp->t_flags & TF_DELACK ||
292 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
293 		tp->t_flags |= TF_ACKNOW;
294 	else
295 		TCP_SET_DELACK(tp);
296 }
297 
298 static void
299 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
300 {
301 
302 	/*
303 	 * If we had a pending ICMP message that refers to data that have
304 	 * just been acknowledged, disregard the recorded ICMP message.
305 	 */
306 	if ((tp->t_flags & TF_PMTUD_PEND) &&
307 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
308 		tp->t_flags &= ~TF_PMTUD_PEND;
309 
310 	/*
311 	 * Keep track of the largest chunk of data
312 	 * acknowledged since last PMTU update
313 	 */
314 	if (tp->t_pmtud_mss_acked < acked)
315 		tp->t_pmtud_mss_acked = acked;
316 }
317 
318 /*
319  * Convert TCP protocol fields to host order for easier processing.
320  */
321 static void
322 tcp_fields_to_host(struct tcphdr *th)
323 {
324 
325 	NTOHL(th->th_seq);
326 	NTOHL(th->th_ack);
327 	NTOHS(th->th_win);
328 	NTOHS(th->th_urp);
329 }
330 
331 /*
332  * ... and reverse the above.
333  */
334 static void
335 tcp_fields_to_net(struct tcphdr *th)
336 {
337 
338 	HTONL(th->th_seq);
339 	HTONL(th->th_ack);
340 	HTONS(th->th_win);
341 	HTONS(th->th_urp);
342 }
343 
344 #ifdef TCP_CSUM_COUNTERS
345 #include <sys/device.h>
346 
347 #if defined(INET)
348 extern struct evcnt tcp_hwcsum_ok;
349 extern struct evcnt tcp_hwcsum_bad;
350 extern struct evcnt tcp_hwcsum_data;
351 extern struct evcnt tcp_swcsum;
352 #endif /* defined(INET) */
353 #if defined(INET6)
354 extern struct evcnt tcp6_hwcsum_ok;
355 extern struct evcnt tcp6_hwcsum_bad;
356 extern struct evcnt tcp6_hwcsum_data;
357 extern struct evcnt tcp6_swcsum;
358 #endif /* defined(INET6) */
359 
360 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
361 
362 #else
363 
364 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
365 
366 #endif /* TCP_CSUM_COUNTERS */
367 
368 #ifdef TCP_REASS_COUNTERS
369 #include <sys/device.h>
370 
371 extern struct evcnt tcp_reass_;
372 extern struct evcnt tcp_reass_empty;
373 extern struct evcnt tcp_reass_iteration[8];
374 extern struct evcnt tcp_reass_prependfirst;
375 extern struct evcnt tcp_reass_prepend;
376 extern struct evcnt tcp_reass_insert;
377 extern struct evcnt tcp_reass_inserttail;
378 extern struct evcnt tcp_reass_append;
379 extern struct evcnt tcp_reass_appendtail;
380 extern struct evcnt tcp_reass_overlaptail;
381 extern struct evcnt tcp_reass_overlapfront;
382 extern struct evcnt tcp_reass_segdup;
383 extern struct evcnt tcp_reass_fragdup;
384 
385 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
386 
387 #else
388 
389 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
390 
391 #endif /* TCP_REASS_COUNTERS */
392 
393 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
394     int *);
395 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
396     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
397 
398 #ifdef INET
399 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
400 #endif
401 #ifdef INET6
402 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
403 #endif
404 
405 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
406 
407 #if defined(MBUFTRACE)
408 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
409 #endif /* defined(MBUFTRACE) */
410 
411 static struct pool tcpipqent_pool;
412 
413 void
414 tcpipqent_init(void)
415 {
416 
417 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
418 	    NULL, IPL_VM);
419 }
420 
421 struct ipqent *
422 tcpipqent_alloc(void)
423 {
424 	struct ipqent *ipqe;
425 	int s;
426 
427 	s = splvm();
428 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
429 	splx(s);
430 
431 	return ipqe;
432 }
433 
434 void
435 tcpipqent_free(struct ipqent *ipqe)
436 {
437 	int s;
438 
439 	s = splvm();
440 	pool_put(&tcpipqent_pool, ipqe);
441 	splx(s);
442 }
443 
444 static int
445 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
446 {
447 	struct ipqent *p, *q, *nq, *tiqe = NULL;
448 	struct socket *so = NULL;
449 	int pkt_flags;
450 	tcp_seq pkt_seq;
451 	unsigned pkt_len;
452 	u_long rcvpartdupbyte = 0;
453 	u_long rcvoobyte;
454 #ifdef TCP_REASS_COUNTERS
455 	u_int count = 0;
456 #endif
457 	uint64_t *tcps;
458 
459 	if (tp->t_inpcb)
460 		so = tp->t_inpcb->inp_socket;
461 #ifdef INET6
462 	else if (tp->t_in6pcb)
463 		so = tp->t_in6pcb->in6p_socket;
464 #endif
465 
466 	TCP_REASS_LOCK_CHECK(tp);
467 
468 	/*
469 	 * Call with th==0 after become established to
470 	 * force pre-ESTABLISHED data up to user socket.
471 	 */
472 	if (th == 0)
473 		goto present;
474 
475 	m_claimm(m, &tcp_reass_mowner);
476 
477 	rcvoobyte = *tlen;
478 	/*
479 	 * Copy these to local variables because the tcpiphdr
480 	 * gets munged while we are collapsing mbufs.
481 	 */
482 	pkt_seq = th->th_seq;
483 	pkt_len = *tlen;
484 	pkt_flags = th->th_flags;
485 
486 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
487 
488 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
489 		/*
490 		 * When we miss a packet, the vast majority of time we get
491 		 * packets that follow it in order.  So optimize for that.
492 		 */
493 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
494 			p->ipqe_len += pkt_len;
495 			p->ipqe_flags |= pkt_flags;
496 			m_cat(p->ipre_mlast, m);
497 			TRAVERSE(p->ipre_mlast);
498 			m = NULL;
499 			tiqe = p;
500 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
501 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
502 			goto skip_replacement;
503 		}
504 		/*
505 		 * While we're here, if the pkt is completely beyond
506 		 * anything we have, just insert it at the tail.
507 		 */
508 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
509 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
510 			goto insert_it;
511 		}
512 	}
513 
514 	q = TAILQ_FIRST(&tp->segq);
515 
516 	if (q != NULL) {
517 		/*
518 		 * If this segment immediately precedes the first out-of-order
519 		 * block, simply slap the segment in front of it and (mostly)
520 		 * skip the complicated logic.
521 		 */
522 		if (pkt_seq + pkt_len == q->ipqe_seq) {
523 			q->ipqe_seq = pkt_seq;
524 			q->ipqe_len += pkt_len;
525 			q->ipqe_flags |= pkt_flags;
526 			m_cat(m, q->ipqe_m);
527 			q->ipqe_m = m;
528 			q->ipre_mlast = m; /* last mbuf may have changed */
529 			TRAVERSE(q->ipre_mlast);
530 			tiqe = q;
531 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
532 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
533 			goto skip_replacement;
534 		}
535 	} else {
536 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
537 	}
538 
539 	/*
540 	 * Find a segment which begins after this one does.
541 	 */
542 	for (p = NULL; q != NULL; q = nq) {
543 		nq = TAILQ_NEXT(q, ipqe_q);
544 #ifdef TCP_REASS_COUNTERS
545 		count++;
546 #endif
547 		/*
548 		 * If the received segment is just right after this
549 		 * fragment, merge the two together and then check
550 		 * for further overlaps.
551 		 */
552 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
553 #ifdef TCPREASS_DEBUG
554 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
555 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
556 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
557 #endif
558 			pkt_len += q->ipqe_len;
559 			pkt_flags |= q->ipqe_flags;
560 			pkt_seq = q->ipqe_seq;
561 			m_cat(q->ipre_mlast, m);
562 			TRAVERSE(q->ipre_mlast);
563 			m = q->ipqe_m;
564 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
565 			goto free_ipqe;
566 		}
567 		/*
568 		 * If the received segment is completely past this
569 		 * fragment, we need to go the next fragment.
570 		 */
571 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
572 			p = q;
573 			continue;
574 		}
575 		/*
576 		 * If the fragment is past the received segment,
577 		 * it (or any following) can't be concatenated.
578 		 */
579 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
580 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
581 			break;
582 		}
583 
584 		/*
585 		 * We've received all the data in this segment before.
586 		 * mark it as a duplicate and return.
587 		 */
588 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
589 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
590 			tcps = TCP_STAT_GETREF();
591 			tcps[TCP_STAT_RCVDUPPACK]++;
592 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
593 			TCP_STAT_PUTREF();
594 			tcp_new_dsack(tp, pkt_seq, pkt_len);
595 			m_freem(m);
596 			if (tiqe != NULL) {
597 				tcpipqent_free(tiqe);
598 			}
599 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
600 			goto out;
601 		}
602 		/*
603 		 * Received segment completely overlaps this fragment
604 		 * so we drop the fragment (this keeps the temporal
605 		 * ordering of segments correct).
606 		 */
607 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
608 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
609 			rcvpartdupbyte += q->ipqe_len;
610 			m_freem(q->ipqe_m);
611 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
612 			goto free_ipqe;
613 		}
614 		/*
615 		 * RX'ed segment extends past the end of the
616 		 * fragment.  Drop the overlapping bytes.  Then
617 		 * merge the fragment and segment then treat as
618 		 * a longer received packet.
619 		 */
620 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
621 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
622 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
623 #ifdef TCPREASS_DEBUG
624 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
625 			       tp, overlap,
626 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
627 #endif
628 			m_adj(m, overlap);
629 			rcvpartdupbyte += overlap;
630 			m_cat(q->ipre_mlast, m);
631 			TRAVERSE(q->ipre_mlast);
632 			m = q->ipqe_m;
633 			pkt_seq = q->ipqe_seq;
634 			pkt_len += q->ipqe_len - overlap;
635 			rcvoobyte -= overlap;
636 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
637 			goto free_ipqe;
638 		}
639 		/*
640 		 * RX'ed segment extends past the front of the
641 		 * fragment.  Drop the overlapping bytes on the
642 		 * received packet.  The packet will then be
643 		 * contatentated with this fragment a bit later.
644 		 */
645 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
646 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
647 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
648 #ifdef TCPREASS_DEBUG
649 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
650 			       tp, overlap,
651 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
652 #endif
653 			m_adj(m, -overlap);
654 			pkt_len -= overlap;
655 			rcvpartdupbyte += overlap;
656 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
657 			rcvoobyte -= overlap;
658 		}
659 		/*
660 		 * If the received segment immediates precedes this
661 		 * fragment then tack the fragment onto this segment
662 		 * and reinsert the data.
663 		 */
664 		if (q->ipqe_seq == pkt_seq + pkt_len) {
665 #ifdef TCPREASS_DEBUG
666 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
667 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
668 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
669 #endif
670 			pkt_len += q->ipqe_len;
671 			pkt_flags |= q->ipqe_flags;
672 			m_cat(m, q->ipqe_m);
673 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
674 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
675 			tp->t_segqlen--;
676 			KASSERT(tp->t_segqlen >= 0);
677 			KASSERT(tp->t_segqlen != 0 ||
678 			    (TAILQ_EMPTY(&tp->segq) &&
679 			    TAILQ_EMPTY(&tp->timeq)));
680 			if (tiqe == NULL) {
681 				tiqe = q;
682 			} else {
683 				tcpipqent_free(q);
684 			}
685 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
686 			break;
687 		}
688 		/*
689 		 * If the fragment is before the segment, remember it.
690 		 * When this loop is terminated, p will contain the
691 		 * pointer to fragment that is right before the received
692 		 * segment.
693 		 */
694 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
695 			p = q;
696 
697 		continue;
698 
699 		/*
700 		 * This is a common operation.  It also will allow
701 		 * to save doing a malloc/free in most instances.
702 		 */
703 	  free_ipqe:
704 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
705 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
706 		tp->t_segqlen--;
707 		KASSERT(tp->t_segqlen >= 0);
708 		KASSERT(tp->t_segqlen != 0 ||
709 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
710 		if (tiqe == NULL) {
711 			tiqe = q;
712 		} else {
713 			tcpipqent_free(q);
714 		}
715 	}
716 
717 #ifdef TCP_REASS_COUNTERS
718 	if (count > 7)
719 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
720 	else if (count > 0)
721 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
722 #endif
723 
724     insert_it:
725 
726 	/*
727 	 * Allocate a new queue entry since the received segment did not
728 	 * collapse onto any other out-of-order block; thus we are allocating
729 	 * a new block.  If it had collapsed, tiqe would not be NULL and
730 	 * we would be reusing it.
731 	 * XXX If we can't, just drop the packet.  XXX
732 	 */
733 	if (tiqe == NULL) {
734 		tiqe = tcpipqent_alloc();
735 		if (tiqe == NULL) {
736 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
737 			m_freem(m);
738 			goto out;
739 		}
740 	}
741 
742 	/*
743 	 * Update the counters.
744 	 */
745 	tp->t_rcvoopack++;
746 	tcps = TCP_STAT_GETREF();
747 	tcps[TCP_STAT_RCVOOPACK]++;
748 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
749 	if (rcvpartdupbyte) {
750 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
751 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
752 	}
753 	TCP_STAT_PUTREF();
754 
755 	/*
756 	 * Insert the new fragment queue entry into both queues.
757 	 */
758 	tiqe->ipqe_m = m;
759 	tiqe->ipre_mlast = m;
760 	tiqe->ipqe_seq = pkt_seq;
761 	tiqe->ipqe_len = pkt_len;
762 	tiqe->ipqe_flags = pkt_flags;
763 	if (p == NULL) {
764 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
765 #ifdef TCPREASS_DEBUG
766 		if (tiqe->ipqe_seq != tp->rcv_nxt)
767 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
768 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
769 #endif
770 	} else {
771 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
772 #ifdef TCPREASS_DEBUG
773 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
774 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
775 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
776 #endif
777 	}
778 	tp->t_segqlen++;
779 
780 skip_replacement:
781 
782 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
783 
784 present:
785 	/*
786 	 * Present data to user, advancing rcv_nxt through
787 	 * completed sequence space.
788 	 */
789 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
790 		goto out;
791 	q = TAILQ_FIRST(&tp->segq);
792 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
793 		goto out;
794 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
795 		goto out;
796 
797 	tp->rcv_nxt += q->ipqe_len;
798 	pkt_flags = q->ipqe_flags & TH_FIN;
799 	nd6_hint(tp);
800 
801 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
802 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
803 	tp->t_segqlen--;
804 	KASSERT(tp->t_segqlen >= 0);
805 	KASSERT(tp->t_segqlen != 0 ||
806 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
807 	if (so->so_state & SS_CANTRCVMORE)
808 		m_freem(q->ipqe_m);
809 	else
810 		sbappendstream(&so->so_rcv, q->ipqe_m);
811 	tcpipqent_free(q);
812 	TCP_REASS_UNLOCK(tp);
813 	sorwakeup(so);
814 	return (pkt_flags);
815 out:
816 	TCP_REASS_UNLOCK(tp);
817 	return (0);
818 }
819 
820 #ifdef INET6
821 int
822 tcp6_input(struct mbuf **mp, int *offp, int proto)
823 {
824 	struct mbuf *m = *mp;
825 
826 	/*
827 	 * draft-itojun-ipv6-tcp-to-anycast
828 	 * better place to put this in?
829 	 */
830 	if (m->m_flags & M_ANYCAST6) {
831 		struct ip6_hdr *ip6;
832 		if (m->m_len < sizeof(struct ip6_hdr)) {
833 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
834 				TCP_STATINC(TCP_STAT_RCVSHORT);
835 				return IPPROTO_DONE;
836 			}
837 		}
838 		ip6 = mtod(m, struct ip6_hdr *);
839 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
840 		    (char *)&ip6->ip6_dst - (char *)ip6);
841 		return IPPROTO_DONE;
842 	}
843 
844 	tcp_input(m, *offp, proto);
845 	return IPPROTO_DONE;
846 }
847 #endif
848 
849 #ifdef INET
850 static void
851 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
852 {
853 	char src[INET_ADDRSTRLEN];
854 	char dst[INET_ADDRSTRLEN];
855 
856 	if (ip) {
857 		in_print(src, sizeof(src), &ip->ip_src);
858 		in_print(dst, sizeof(dst), &ip->ip_dst);
859 	}
860 	else {
861 		strlcpy(src, "(unknown)", sizeof(src));
862 		strlcpy(dst, "(unknown)", sizeof(dst));
863 	}
864 	log(LOG_INFO,
865 	    "Connection attempt to TCP %s:%d from %s:%d\n",
866 	    dst, ntohs(th->th_dport),
867 	    src, ntohs(th->th_sport));
868 }
869 #endif
870 
871 #ifdef INET6
872 static void
873 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
874 {
875 	char src[INET6_ADDRSTRLEN];
876 	char dst[INET6_ADDRSTRLEN];
877 
878 	if (ip6) {
879 		in6_print(src, sizeof(src), &ip6->ip6_src);
880 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
881 	}
882 	else {
883 		strlcpy(src, "(unknown v6)", sizeof(src));
884 		strlcpy(dst, "(unknown v6)", sizeof(dst));
885 	}
886 	log(LOG_INFO,
887 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
888 	    dst, ntohs(th->th_dport),
889 	    src, ntohs(th->th_sport));
890 }
891 #endif
892 
893 /*
894  * Checksum extended TCP header and data.
895  */
896 int
897 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
898     int toff, int off, int tlen)
899 {
900 	struct ifnet *rcvif;
901 	int s;
902 
903 	/*
904 	 * XXX it's better to record and check if this mbuf is
905 	 * already checked.
906 	 */
907 
908 	rcvif = m_get_rcvif(m, &s);
909 	if (__predict_false(rcvif == NULL))
910 		goto badcsum; /* XXX */
911 
912 	switch (af) {
913 #ifdef INET
914 	case AF_INET:
915 		switch (m->m_pkthdr.csum_flags &
916 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
917 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
918 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
919 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
920 			goto badcsum;
921 
922 		case M_CSUM_TCPv4|M_CSUM_DATA: {
923 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
924 
925 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
926 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
927 				const struct ip *ip =
928 				    mtod(m, const struct ip *);
929 
930 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
931 				    ip->ip_dst.s_addr,
932 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
933 			}
934 			if ((hw_csum ^ 0xffff) != 0)
935 				goto badcsum;
936 			break;
937 		}
938 
939 		case M_CSUM_TCPv4:
940 			/* Checksum was okay. */
941 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
942 			break;
943 
944 		default:
945 			/*
946 			 * Must compute it ourselves.  Maybe skip checksum
947 			 * on loopback interfaces.
948 			 */
949 			if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
950 					   tcp_do_loopback_cksum)) {
951 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
952 				if (in4_cksum(m, IPPROTO_TCP, toff,
953 					      tlen + off) != 0)
954 					goto badcsum;
955 			}
956 			break;
957 		}
958 		break;
959 #endif /* INET4 */
960 
961 #ifdef INET6
962 	case AF_INET6:
963 		switch (m->m_pkthdr.csum_flags &
964 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
965 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
966 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
967 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
968 			goto badcsum;
969 
970 #if 0 /* notyet */
971 		case M_CSUM_TCPv6|M_CSUM_DATA:
972 #endif
973 
974 		case M_CSUM_TCPv6:
975 			/* Checksum was okay. */
976 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
977 			break;
978 
979 		default:
980 			/*
981 			 * Must compute it ourselves.  Maybe skip checksum
982 			 * on loopback interfaces.
983 			 */
984 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
985 			    tcp_do_loopback_cksum)) {
986 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
987 				if (in6_cksum(m, IPPROTO_TCP, toff,
988 				    tlen + off) != 0)
989 					goto badcsum;
990 			}
991 		}
992 		break;
993 #endif /* INET6 */
994 	}
995 	m_put_rcvif(rcvif, &s);
996 
997 	return 0;
998 
999 badcsum:
1000 	m_put_rcvif(rcvif, &s);
1001 	TCP_STATINC(TCP_STAT_RCVBADSUM);
1002 	return -1;
1003 }
1004 
1005 /* When a packet arrives addressed to a vestigial tcpbp, we
1006  * nevertheless have to respond to it per the spec.
1007  */
1008 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
1009 			  struct mbuf *m, int tlen, int multicast)
1010 {
1011 	int		tiflags;
1012 	int		todrop;
1013 	uint32_t	t_flags = 0;
1014 	uint64_t	*tcps;
1015 
1016 	tiflags = th->th_flags;
1017 	todrop  = vp->rcv_nxt - th->th_seq;
1018 
1019 	if (todrop > 0) {
1020 		if (tiflags & TH_SYN) {
1021 			tiflags &= ~TH_SYN;
1022 			++th->th_seq;
1023 			if (th->th_urp > 1)
1024 				--th->th_urp;
1025 			else {
1026 				tiflags &= ~TH_URG;
1027 				th->th_urp = 0;
1028 			}
1029 			--todrop;
1030 		}
1031 		if (todrop > tlen ||
1032 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1033 			/*
1034 			 * Any valid FIN or RST must be to the left of the
1035 			 * window.  At this point the FIN or RST must be a
1036 			 * duplicate or out of sequence; drop it.
1037 			 */
1038 			if (tiflags & TH_RST)
1039 				goto drop;
1040 			tiflags &= ~(TH_FIN|TH_RST);
1041 			/*
1042 			 * Send an ACK to resynchronize and drop any data.
1043 			 * But keep on processing for RST or ACK.
1044 			 */
1045 			t_flags |= TF_ACKNOW;
1046 			todrop = tlen;
1047 			tcps = TCP_STAT_GETREF();
1048 			tcps[TCP_STAT_RCVDUPPACK] += 1;
1049 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1050 			TCP_STAT_PUTREF();
1051 		} else if ((tiflags & TH_RST)
1052 			   && th->th_seq != vp->rcv_nxt) {
1053 			/*
1054 			 * Test for reset before adjusting the sequence
1055 			 * number for overlapping data.
1056 			 */
1057 			goto dropafterack_ratelim;
1058 		} else {
1059 			tcps = TCP_STAT_GETREF();
1060 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1061 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1062 			TCP_STAT_PUTREF();
1063 		}
1064 
1065 //		tcp_new_dsack(tp, th->th_seq, todrop);
1066 //		hdroptlen += todrop;	/*drop from head afterwards*/
1067 
1068 		th->th_seq += todrop;
1069 		tlen -= todrop;
1070 
1071 		if (th->th_urp > todrop)
1072 			th->th_urp -= todrop;
1073 		else {
1074 			tiflags &= ~TH_URG;
1075 			th->th_urp = 0;
1076 		}
1077 	}
1078 
1079 	/*
1080 	 * If new data are received on a connection after the
1081 	 * user processes are gone, then RST the other end.
1082 	 */
1083 	if (tlen) {
1084 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1085 		goto dropwithreset;
1086 	}
1087 
1088 	/*
1089 	 * If segment ends after window, drop trailing data
1090 	 * (and PUSH and FIN); if nothing left, just ACK.
1091 	 */
1092 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
1093 
1094 	if (todrop > 0) {
1095 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1096 		if (todrop >= tlen) {
1097 			/*
1098 			 * The segment actually starts after the window.
1099 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1100 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1101 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1102 			 */
1103 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1104 			/*
1105 			 * If a new connection request is received
1106 			 * while in TIME_WAIT, drop the old connection
1107 			 * and start over if the sequence numbers
1108 			 * are above the previous ones.
1109 			 */
1110 			if ((tiflags & TH_SYN)
1111 			    && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1112 				/* We only support this in the !NOFDREF case, which
1113 				 * is to say: not here.
1114 				 */
1115 				goto dropwithreset;
1116 			}
1117 			/*
1118 			 * If window is closed can only take segments at
1119 			 * window edge, and have to drop data and PUSH from
1120 			 * incoming segments.  Continue processing, but
1121 			 * remember to ack.  Otherwise, drop segment
1122 			 * and (if not RST) ack.
1123 			 */
1124 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1125 				t_flags |= TF_ACKNOW;
1126 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
1127 			} else
1128 				goto dropafterack;
1129 		} else
1130 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1131 		m_adj(m, -todrop);
1132 		tlen -= todrop;
1133 		tiflags &= ~(TH_PUSH|TH_FIN);
1134 	}
1135 
1136 	if (tiflags & TH_RST) {
1137 		if (th->th_seq != vp->rcv_nxt)
1138 			goto dropafterack_ratelim;
1139 
1140 		vtw_del(vp->ctl, vp->vtw);
1141 		goto drop;
1142 	}
1143 
1144 	/*
1145 	 * If the ACK bit is off we drop the segment and return.
1146 	 */
1147 	if ((tiflags & TH_ACK) == 0) {
1148 		if (t_flags & TF_ACKNOW)
1149 			goto dropafterack;
1150 		else
1151 			goto drop;
1152 	}
1153 
1154 	/*
1155 	 * In TIME_WAIT state the only thing that should arrive
1156 	 * is a retransmission of the remote FIN.  Acknowledge
1157 	 * it and restart the finack timer.
1158 	 */
1159 	vtw_restart(vp);
1160 	goto dropafterack;
1161 
1162 dropafterack:
1163 	/*
1164 	 * Generate an ACK dropping incoming segment if it occupies
1165 	 * sequence space, where the ACK reflects our state.
1166 	 */
1167 	if (tiflags & TH_RST)
1168 		goto drop;
1169 	goto dropafterack2;
1170 
1171 dropafterack_ratelim:
1172 	/*
1173 	 * We may want to rate-limit ACKs against SYN/RST attack.
1174 	 */
1175 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1176 			 tcp_ackdrop_ppslim) == 0) {
1177 		/* XXX stat */
1178 		goto drop;
1179 	}
1180 	/* ...fall into dropafterack2... */
1181 
1182 dropafterack2:
1183 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
1184 			  TH_ACK);
1185 	return;
1186 
1187 dropwithreset:
1188 	/*
1189 	 * Generate a RST, dropping incoming segment.
1190 	 * Make ACK acceptable to originator of segment.
1191 	 */
1192 	if (tiflags & TH_RST)
1193 		goto drop;
1194 
1195 	if (tiflags & TH_ACK)
1196 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1197 	else {
1198 		if (tiflags & TH_SYN)
1199 			++tlen;
1200 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1201 				  TH_RST|TH_ACK);
1202 	}
1203 	return;
1204 drop:
1205 	m_freem(m);
1206 }
1207 
1208 /*
1209  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1210  */
1211 void
1212 tcp_input(struct mbuf *m, ...)
1213 {
1214 	struct tcphdr *th;
1215 	struct ip *ip;
1216 	struct inpcb *inp;
1217 #ifdef INET6
1218 	struct ip6_hdr *ip6;
1219 	struct in6pcb *in6p;
1220 #endif
1221 	u_int8_t *optp = NULL;
1222 	int optlen = 0;
1223 	int len, tlen, toff, hdroptlen = 0;
1224 	struct tcpcb *tp = 0;
1225 	int tiflags;
1226 	struct socket *so = NULL;
1227 	int todrop, acked, ourfinisacked, needoutput = 0;
1228 	bool dupseg;
1229 #ifdef TCP_DEBUG
1230 	short ostate = 0;
1231 #endif
1232 	u_long tiwin;
1233 	struct tcp_opt_info opti;
1234 	int off, iphlen;
1235 	va_list ap;
1236 	int af;		/* af on the wire */
1237 	struct mbuf *tcp_saveti = NULL;
1238 	uint32_t ts_rtt;
1239 	uint8_t iptos;
1240 	uint64_t *tcps;
1241 	vestigial_inpcb_t vestige;
1242 
1243 	vestige.valid = 0;
1244 
1245 	MCLAIM(m, &tcp_rx_mowner);
1246 	va_start(ap, m);
1247 	toff = va_arg(ap, int);
1248 	(void)va_arg(ap, int);		/* ignore value, advance ap */
1249 	va_end(ap);
1250 
1251 	TCP_STATINC(TCP_STAT_RCVTOTAL);
1252 
1253 	memset(&opti, 0, sizeof(opti));
1254 	opti.ts_present = 0;
1255 	opti.maxseg = 0;
1256 
1257 	/*
1258 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1259 	 *
1260 	 * TCP is, by definition, unicast, so we reject all
1261 	 * multicast outright.
1262 	 *
1263 	 * Note, there are additional src/dst address checks in
1264 	 * the AF-specific code below.
1265 	 */
1266 	if (m->m_flags & (M_BCAST|M_MCAST)) {
1267 		/* XXX stat */
1268 		goto drop;
1269 	}
1270 #ifdef INET6
1271 	if (m->m_flags & M_ANYCAST6) {
1272 		/* XXX stat */
1273 		goto drop;
1274 	}
1275 #endif
1276 
1277 	/*
1278 	 * Get IP and TCP header.
1279 	 * Note: IP leaves IP header in first mbuf.
1280 	 */
1281 	ip = mtod(m, struct ip *);
1282 	switch (ip->ip_v) {
1283 #ifdef INET
1284 	case 4:
1285 #ifdef INET6
1286 		ip6 = NULL;
1287 #endif
1288 		af = AF_INET;
1289 		iphlen = sizeof(struct ip);
1290 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1291 			sizeof(struct tcphdr));
1292 		if (th == NULL) {
1293 			TCP_STATINC(TCP_STAT_RCVSHORT);
1294 			return;
1295 		}
1296 		/* We do the checksum after PCB lookup... */
1297 		len = ntohs(ip->ip_len);
1298 		tlen = len - toff;
1299 		iptos = ip->ip_tos;
1300 		break;
1301 #endif
1302 #ifdef INET6
1303 	case 6:
1304 		ip = NULL;
1305 		iphlen = sizeof(struct ip6_hdr);
1306 		af = AF_INET6;
1307 		ip6 = mtod(m, struct ip6_hdr *);
1308 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1309 			sizeof(struct tcphdr));
1310 		if (th == NULL) {
1311 			TCP_STATINC(TCP_STAT_RCVSHORT);
1312 			return;
1313 		}
1314 
1315 		/* Be proactive about malicious use of IPv4 mapped address */
1316 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1317 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1318 			/* XXX stat */
1319 			goto drop;
1320 		}
1321 
1322 		/*
1323 		 * Be proactive about unspecified IPv6 address in source.
1324 		 * As we use all-zero to indicate unbounded/unconnected pcb,
1325 		 * unspecified IPv6 address can be used to confuse us.
1326 		 *
1327 		 * Note that packets with unspecified IPv6 destination is
1328 		 * already dropped in ip6_input.
1329 		 */
1330 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1331 			/* XXX stat */
1332 			goto drop;
1333 		}
1334 
1335 		/*
1336 		 * Make sure destination address is not multicast.
1337 		 * Source address checked in ip6_input().
1338 		 */
1339 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1340 			/* XXX stat */
1341 			goto drop;
1342 		}
1343 
1344 		/* We do the checksum after PCB lookup... */
1345 		len = m->m_pkthdr.len;
1346 		tlen = len - toff;
1347 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1348 		break;
1349 #endif
1350 	default:
1351 		m_freem(m);
1352 		return;
1353 	}
1354 	/*
1355          * Enforce alignment requirements that are violated in
1356 	 * some cases, see kern/50766 for details.
1357 	 */
1358 	if (TCP_HDR_ALIGNED_P(th) == 0) {
1359 		m = m_copyup(m, toff + sizeof(struct tcphdr), 0);
1360 		if (m == NULL) {
1361 			TCP_STATINC(TCP_STAT_RCVSHORT);
1362 			return;
1363 		}
1364 		ip = mtod(m, struct ip *);
1365 #ifdef INET6
1366 		ip6 = mtod(m, struct ip6_hdr *);
1367 #endif
1368 		th = (struct tcphdr *)(mtod(m, char *) + toff);
1369 	}
1370 	KASSERT(TCP_HDR_ALIGNED_P(th));
1371 
1372 	/*
1373 	 * Check that TCP offset makes sense,
1374 	 * pull out TCP options and adjust length.		XXX
1375 	 */
1376 	off = th->th_off << 2;
1377 	if (off < sizeof (struct tcphdr) || off > tlen) {
1378 		TCP_STATINC(TCP_STAT_RCVBADOFF);
1379 		goto drop;
1380 	}
1381 	tlen -= off;
1382 
1383 	/*
1384 	 * tcp_input() has been modified to use tlen to mean the TCP data
1385 	 * length throughout the function.  Other functions can use
1386 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1387 	 * rja
1388 	 */
1389 
1390 	if (off > sizeof (struct tcphdr)) {
1391 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1392 		if (th == NULL) {
1393 			TCP_STATINC(TCP_STAT_RCVSHORT);
1394 			return;
1395 		}
1396 		/*
1397 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
1398 		 * (as they're before toff) and we don't need to update those.
1399 		 */
1400 		KASSERT(TCP_HDR_ALIGNED_P(th));
1401 		optlen = off - sizeof (struct tcphdr);
1402 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1403 		/*
1404 		 * Do quick retrieval of timestamp options ("options
1405 		 * prediction?").  If timestamp is the only option and it's
1406 		 * formatted as recommended in RFC 1323 appendix A, we
1407 		 * quickly get the values now and not bother calling
1408 		 * tcp_dooptions(), etc.
1409 		 */
1410 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1411 		     (optlen > TCPOLEN_TSTAMP_APPA &&
1412 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1413 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1414 		     (th->th_flags & TH_SYN) == 0) {
1415 			opti.ts_present = 1;
1416 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1417 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1418 			optp = NULL;	/* we've parsed the options */
1419 		}
1420 	}
1421 	tiflags = th->th_flags;
1422 
1423 	/*
1424 	 * Checksum extended TCP header and data
1425 	 */
1426 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
1427 		goto badcsum;
1428 
1429 	/*
1430 	 * Locate pcb for segment.
1431 	 */
1432 findpcb:
1433 	inp = NULL;
1434 #ifdef INET6
1435 	in6p = NULL;
1436 #endif
1437 	switch (af) {
1438 #ifdef INET
1439 	case AF_INET:
1440 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1441 					   ip->ip_dst, th->th_dport,
1442 					   &vestige);
1443 		if (inp == 0 && !vestige.valid) {
1444 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1445 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1446 		}
1447 #ifdef INET6
1448 		if (inp == 0 && !vestige.valid) {
1449 			struct in6_addr s, d;
1450 
1451 			/* mapped addr case */
1452 			in6_in_2_v4mapin6(&ip->ip_src, &s);
1453 			in6_in_2_v4mapin6(&ip->ip_dst, &d);
1454 			in6p = in6_pcblookup_connect(&tcbtable, &s,
1455 						     th->th_sport, &d, th->th_dport,
1456 						     0, &vestige);
1457 			if (in6p == 0 && !vestige.valid) {
1458 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
1459 				in6p = in6_pcblookup_bind(&tcbtable, &d,
1460 				    th->th_dport, 0);
1461 			}
1462 		}
1463 #endif
1464 #ifndef INET6
1465 		if (inp == 0 && !vestige.valid)
1466 #else
1467 		if (inp == 0 && in6p == 0 && !vestige.valid)
1468 #endif
1469 		{
1470 			TCP_STATINC(TCP_STAT_NOPORT);
1471 			if (tcp_log_refused &&
1472 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1473 				tcp4_log_refused(ip, th);
1474 			}
1475 			tcp_fields_to_host(th);
1476 			goto dropwithreset_ratelim;
1477 		}
1478 #if defined(IPSEC)
1479 		if (ipsec_used) {
1480 			if (inp &&
1481 			    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0
1482 			    && ipsec4_in_reject(m, inp)) {
1483 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1484 				goto drop;
1485 			}
1486 #ifdef INET6
1487 			else if (in6p &&
1488 			    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1489 			    && ipsec6_in_reject(m, in6p)) {
1490 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1491 				goto drop;
1492 			}
1493 #endif
1494 		}
1495 #endif /*IPSEC*/
1496 		break;
1497 #endif /*INET*/
1498 #ifdef INET6
1499 	case AF_INET6:
1500 	    {
1501 		int faith;
1502 
1503 #if defined(NFAITH) && NFAITH > 0
1504 		faith = faithprefix(&ip6->ip6_dst);
1505 #else
1506 		faith = 0;
1507 #endif
1508 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1509 					     th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1510 		if (!in6p && !vestige.valid) {
1511 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1512 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1513 				th->th_dport, faith);
1514 		}
1515 		if (!in6p && !vestige.valid) {
1516 			TCP_STATINC(TCP_STAT_NOPORT);
1517 			if (tcp_log_refused &&
1518 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1519 				tcp6_log_refused(ip6, th);
1520 			}
1521 			tcp_fields_to_host(th);
1522 			goto dropwithreset_ratelim;
1523 		}
1524 #if defined(IPSEC)
1525 		if (ipsec_used && in6p
1526 		    && (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1527 		    && ipsec6_in_reject(m, in6p)) {
1528 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1529 			goto drop;
1530 		}
1531 #endif /*IPSEC*/
1532 		break;
1533 	    }
1534 #endif
1535 	}
1536 
1537 	/*
1538 	 * If the state is CLOSED (i.e., TCB does not exist) then
1539 	 * all data in the incoming segment is discarded.
1540 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1541 	 * but should either do a listen or a connect soon.
1542 	 */
1543 	tp = NULL;
1544 	so = NULL;
1545 	if (inp) {
1546 		/* Check the minimum TTL for socket. */
1547 		if (ip->ip_ttl < inp->inp_ip_minttl)
1548 			goto drop;
1549 
1550 		tp = intotcpcb(inp);
1551 		so = inp->inp_socket;
1552 	}
1553 #ifdef INET6
1554 	else if (in6p) {
1555 		tp = in6totcpcb(in6p);
1556 		so = in6p->in6p_socket;
1557 	}
1558 #endif
1559 	else if (vestige.valid) {
1560 		int mc = 0;
1561 
1562 		/* We do not support the resurrection of vtw tcpcps.
1563 		 */
1564 		if (tcp_input_checksum(af, m, th, toff, off, tlen))
1565 			goto badcsum;
1566 
1567 		switch (af) {
1568 #ifdef INET6
1569 		case AF_INET6:
1570 			mc = IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst);
1571 			break;
1572 #endif
1573 
1574 		case AF_INET:
1575 			mc = (IN_MULTICAST(ip->ip_dst.s_addr)
1576 			      || in_broadcast(ip->ip_dst,
1577 			                      m_get_rcvif_NOMPSAFE(m)));
1578 			break;
1579 		}
1580 
1581 		tcp_fields_to_host(th);
1582 		tcp_vtw_input(th, &vestige, m, tlen, mc);
1583 		m = 0;
1584 		goto drop;
1585 	}
1586 
1587 	if (tp == 0) {
1588 		tcp_fields_to_host(th);
1589 		goto dropwithreset_ratelim;
1590 	}
1591 	if (tp->t_state == TCPS_CLOSED)
1592 		goto drop;
1593 
1594 	KASSERT(so->so_lock == softnet_lock);
1595 	KASSERT(solocked(so));
1596 
1597 	tcp_fields_to_host(th);
1598 
1599 	/* Unscale the window into a 32-bit value. */
1600 	if ((tiflags & TH_SYN) == 0)
1601 		tiwin = th->th_win << tp->snd_scale;
1602 	else
1603 		tiwin = th->th_win;
1604 
1605 #ifdef INET6
1606 	/* save packet options if user wanted */
1607 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1608 		if (in6p->in6p_options) {
1609 			m_freem(in6p->in6p_options);
1610 			in6p->in6p_options = 0;
1611 		}
1612 		KASSERT(ip6 != NULL);
1613 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1614 	}
1615 #endif
1616 
1617 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1618 		union syn_cache_sa src;
1619 		union syn_cache_sa dst;
1620 
1621 		memset(&src, 0, sizeof(src));
1622 		memset(&dst, 0, sizeof(dst));
1623 		switch (af) {
1624 #ifdef INET
1625 		case AF_INET:
1626 			src.sin.sin_len = sizeof(struct sockaddr_in);
1627 			src.sin.sin_family = AF_INET;
1628 			src.sin.sin_addr = ip->ip_src;
1629 			src.sin.sin_port = th->th_sport;
1630 
1631 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1632 			dst.sin.sin_family = AF_INET;
1633 			dst.sin.sin_addr = ip->ip_dst;
1634 			dst.sin.sin_port = th->th_dport;
1635 			break;
1636 #endif
1637 #ifdef INET6
1638 		case AF_INET6:
1639 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1640 			src.sin6.sin6_family = AF_INET6;
1641 			src.sin6.sin6_addr = ip6->ip6_src;
1642 			src.sin6.sin6_port = th->th_sport;
1643 
1644 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1645 			dst.sin6.sin6_family = AF_INET6;
1646 			dst.sin6.sin6_addr = ip6->ip6_dst;
1647 			dst.sin6.sin6_port = th->th_dport;
1648 			break;
1649 #endif /* INET6 */
1650 		default:
1651 			goto badsyn;	/*sanity*/
1652 		}
1653 
1654 		if (so->so_options & SO_DEBUG) {
1655 #ifdef TCP_DEBUG
1656 			ostate = tp->t_state;
1657 #endif
1658 
1659 			tcp_saveti = NULL;
1660 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1661 				goto nosave;
1662 
1663 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1664 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1665 				if (!tcp_saveti)
1666 					goto nosave;
1667 			} else {
1668 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1669 				if (!tcp_saveti)
1670 					goto nosave;
1671 				MCLAIM(m, &tcp_mowner);
1672 				tcp_saveti->m_len = iphlen;
1673 				m_copydata(m, 0, iphlen,
1674 				    mtod(tcp_saveti, void *));
1675 			}
1676 
1677 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1678 				m_freem(tcp_saveti);
1679 				tcp_saveti = NULL;
1680 			} else {
1681 				tcp_saveti->m_len += sizeof(struct tcphdr);
1682 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1683 				    sizeof(struct tcphdr));
1684 			}
1685 	nosave:;
1686 		}
1687 		if (so->so_options & SO_ACCEPTCONN) {
1688 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1689 				if (tiflags & TH_RST) {
1690 					syn_cache_reset(&src.sa, &dst.sa, th);
1691 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1692 				    (TH_ACK|TH_SYN)) {
1693 					/*
1694 					 * Received a SYN,ACK.  This should
1695 					 * never happen while we are in
1696 					 * LISTEN.  Send an RST.
1697 					 */
1698 					goto badsyn;
1699 				} else if (tiflags & TH_ACK) {
1700 					so = syn_cache_get(&src.sa, &dst.sa,
1701 						th, toff, tlen, so, m);
1702 					if (so == NULL) {
1703 						/*
1704 						 * We don't have a SYN for
1705 						 * this ACK; send an RST.
1706 						 */
1707 						goto badsyn;
1708 					} else if (so ==
1709 					    (struct socket *)(-1)) {
1710 						/*
1711 						 * We were unable to create
1712 						 * the connection.  If the
1713 						 * 3-way handshake was
1714 						 * completed, and RST has
1715 						 * been sent to the peer.
1716 						 * Since the mbuf might be
1717 						 * in use for the reply,
1718 						 * do not free it.
1719 						 */
1720 						m = NULL;
1721 					} else {
1722 						/*
1723 						 * We have created a
1724 						 * full-blown connection.
1725 						 */
1726 						tp = NULL;
1727 						inp = NULL;
1728 #ifdef INET6
1729 						in6p = NULL;
1730 #endif
1731 						switch (so->so_proto->pr_domain->dom_family) {
1732 #ifdef INET
1733 						case AF_INET:
1734 							inp = sotoinpcb(so);
1735 							tp = intotcpcb(inp);
1736 							break;
1737 #endif
1738 #ifdef INET6
1739 						case AF_INET6:
1740 							in6p = sotoin6pcb(so);
1741 							tp = in6totcpcb(in6p);
1742 							break;
1743 #endif
1744 						}
1745 						if (tp == NULL)
1746 							goto badsyn;	/*XXX*/
1747 						tiwin <<= tp->snd_scale;
1748 						goto after_listen;
1749 					}
1750 				} else {
1751 					/*
1752 					 * None of RST, SYN or ACK was set.
1753 					 * This is an invalid packet for a
1754 					 * TCB in LISTEN state.  Send a RST.
1755 					 */
1756 					goto badsyn;
1757 				}
1758 			} else {
1759 				/*
1760 				 * Received a SYN.
1761 				 *
1762 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1763 				 */
1764 				if (m->m_flags & (M_BCAST|M_MCAST))
1765 					goto drop;
1766 
1767 				switch (af) {
1768 #ifdef INET6
1769 				case AF_INET6:
1770 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1771 						goto drop;
1772 					break;
1773 #endif /* INET6 */
1774 				case AF_INET:
1775 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1776 					    in_broadcast(ip->ip_dst,
1777 					                 m_get_rcvif_NOMPSAFE(m)))
1778 						goto drop;
1779 				break;
1780 				}
1781 
1782 #ifdef INET6
1783 				/*
1784 				 * If deprecated address is forbidden, we do
1785 				 * not accept SYN to deprecated interface
1786 				 * address to prevent any new inbound
1787 				 * connection from getting established.
1788 				 * When we do not accept SYN, we send a TCP
1789 				 * RST, with deprecated source address (instead
1790 				 * of dropping it).  We compromise it as it is
1791 				 * much better for peer to send a RST, and
1792 				 * RST will be the final packet for the
1793 				 * exchange.
1794 				 *
1795 				 * If we do not forbid deprecated addresses, we
1796 				 * accept the SYN packet.  RFC2462 does not
1797 				 * suggest dropping SYN in this case.
1798 				 * If we decipher RFC2462 5.5.4, it says like
1799 				 * this:
1800 				 * 1. use of deprecated addr with existing
1801 				 *    communication is okay - "SHOULD continue
1802 				 *    to be used"
1803 				 * 2. use of it with new communication:
1804 				 *   (2a) "SHOULD NOT be used if alternate
1805 				 *        address with sufficient scope is
1806 				 *        available"
1807 				 *   (2b) nothing mentioned otherwise.
1808 				 * Here we fall into (2b) case as we have no
1809 				 * choice in our source address selection - we
1810 				 * must obey the peer.
1811 				 *
1812 				 * The wording in RFC2462 is confusing, and
1813 				 * there are multiple description text for
1814 				 * deprecated address handling - worse, they
1815 				 * are not exactly the same.  I believe 5.5.4
1816 				 * is the best one, so we follow 5.5.4.
1817 				 */
1818 				if (af == AF_INET6 && !ip6_use_deprecated) {
1819 					struct in6_ifaddr *ia6;
1820 					int s;
1821 					struct ifnet *rcvif = m_get_rcvif(m, &s);
1822 					if (rcvif == NULL)
1823 						goto dropwithreset; /* XXX */
1824 					if ((ia6 = in6ifa_ifpwithaddr(rcvif,
1825 					    &ip6->ip6_dst)) &&
1826 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1827 						tp = NULL;
1828 						m_put_rcvif(rcvif, &s);
1829 						goto dropwithreset;
1830 					}
1831 					m_put_rcvif(rcvif, &s);
1832 				}
1833 #endif
1834 
1835 #if defined(IPSEC)
1836 				if (ipsec_used) {
1837 					switch (af) {
1838 #ifdef INET
1839 					case AF_INET:
1840 						/*
1841 						 * inp can be NULL when
1842 						 * receiving an IPv4 packet on
1843 						 * an IPv4-mapped IPv6 address.
1844 						 */
1845 						KASSERT(inp == NULL ||
1846 						    sotoinpcb(so) == inp);
1847 						if (!ipsec4_in_reject(m, inp))
1848 							break;
1849 						IPSEC_STATINC(
1850 						    IPSEC_STAT_IN_POLVIO);
1851 						tp = NULL;
1852 						goto dropwithreset;
1853 #endif
1854 #ifdef INET6
1855 					case AF_INET6:
1856 						KASSERT(sotoin6pcb(so) == in6p);
1857 						if (!ipsec6_in_reject(m, in6p))
1858 							break;
1859 						IPSEC6_STATINC(
1860 						    IPSEC_STAT_IN_POLVIO);
1861 						tp = NULL;
1862 						goto dropwithreset;
1863 #endif /*INET6*/
1864 					}
1865 				}
1866 #endif /*IPSEC*/
1867 
1868 				/*
1869 				 * LISTEN socket received a SYN
1870 				 * from itself?  This can't possibly
1871 				 * be valid; drop the packet.
1872 				 */
1873 				if (th->th_sport == th->th_dport) {
1874 					int i;
1875 
1876 					switch (af) {
1877 #ifdef INET
1878 					case AF_INET:
1879 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1880 						break;
1881 #endif
1882 #ifdef INET6
1883 					case AF_INET6:
1884 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1885 						break;
1886 #endif
1887 					default:
1888 						i = 1;
1889 					}
1890 					if (i) {
1891 						TCP_STATINC(TCP_STAT_BADSYN);
1892 						goto drop;
1893 					}
1894 				}
1895 
1896 				/*
1897 				 * SYN looks ok; create compressed TCP
1898 				 * state for it.
1899 				 */
1900 				if (so->so_qlen <= so->so_qlimit &&
1901 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1902 						so, m, optp, optlen, &opti))
1903 					m = NULL;
1904 			}
1905 			goto drop;
1906 		}
1907 	}
1908 
1909 after_listen:
1910 #ifdef DIAGNOSTIC
1911 	/*
1912 	 * Should not happen now that all embryonic connections
1913 	 * are handled with compressed state.
1914 	 */
1915 	if (tp->t_state == TCPS_LISTEN)
1916 		panic("tcp_input: TCPS_LISTEN");
1917 #endif
1918 
1919 	/*
1920 	 * Segment received on connection.
1921 	 * Reset idle time and keep-alive timer.
1922 	 */
1923 	tp->t_rcvtime = tcp_now;
1924 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1925 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1926 
1927 	/*
1928 	 * Process options.
1929 	 */
1930 #ifdef TCP_SIGNATURE
1931 	if (optp || (tp->t_flags & TF_SIGNATURE))
1932 #else
1933 	if (optp)
1934 #endif
1935 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1936 			goto drop;
1937 
1938 	if (TCP_SACK_ENABLED(tp)) {
1939 		tcp_del_sackholes(tp, th);
1940 	}
1941 
1942 	if (TCP_ECN_ALLOWED(tp)) {
1943 		if (tiflags & TH_CWR) {
1944 			tp->t_flags &= ~TF_ECN_SND_ECE;
1945 		}
1946 		switch (iptos & IPTOS_ECN_MASK) {
1947 		case IPTOS_ECN_CE:
1948 			tp->t_flags |= TF_ECN_SND_ECE;
1949 			TCP_STATINC(TCP_STAT_ECN_CE);
1950 			break;
1951 		case IPTOS_ECN_ECT0:
1952 			TCP_STATINC(TCP_STAT_ECN_ECT);
1953 			break;
1954 		case IPTOS_ECN_ECT1:
1955 			/* XXX: ignore for now -- rpaulo */
1956 			break;
1957 		}
1958 		/*
1959 		 * Congestion experienced.
1960 		 * Ignore if we are already trying to recover.
1961 		 */
1962 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1963 			tp->t_congctl->cong_exp(tp);
1964 	}
1965 
1966 	if (opti.ts_present && opti.ts_ecr) {
1967 		/*
1968 		 * Calculate the RTT from the returned time stamp and the
1969 		 * connection's time base.  If the time stamp is later than
1970 		 * the current time, or is extremely old, fall back to non-1323
1971 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
1972 		 * at the same time.
1973 		 *
1974 		 * Note that ts_rtt is in units of slow ticks (500
1975 		 * ms).  Since most earthbound RTTs are < 500 ms,
1976 		 * observed values will have large quantization noise.
1977 		 * Our smoothed RTT is then the fraction of observed
1978 		 * samples that are 1 tick instead of 0 (times 500
1979 		 * ms).
1980 		 *
1981 		 * ts_rtt is increased by 1 to denote a valid sample,
1982 		 * with 0 indicating an invalid measurement.  This
1983 		 * extra 1 must be removed when ts_rtt is used, or
1984 		 * else an an erroneous extra 500 ms will result.
1985 		 */
1986 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1987 		if (ts_rtt > TCP_PAWS_IDLE)
1988 			ts_rtt = 0;
1989 	} else {
1990 		ts_rtt = 0;
1991 	}
1992 
1993 	/*
1994 	 * Header prediction: check for the two common cases
1995 	 * of a uni-directional data xfer.  If the packet has
1996 	 * no control flags, is in-sequence, the window didn't
1997 	 * change and we're not retransmitting, it's a
1998 	 * candidate.  If the length is zero and the ack moved
1999 	 * forward, we're the sender side of the xfer.  Just
2000 	 * free the data acked & wake any higher level process
2001 	 * that was blocked waiting for space.  If the length
2002 	 * is non-zero and the ack didn't move, we're the
2003 	 * receiver side.  If we're getting packets in-order
2004 	 * (the reassembly queue is empty), add the data to
2005 	 * the socket buffer and note that we need a delayed ack.
2006 	 */
2007 	if (tp->t_state == TCPS_ESTABLISHED &&
2008 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
2009 	        == TH_ACK &&
2010 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
2011 	    th->th_seq == tp->rcv_nxt &&
2012 	    tiwin && tiwin == tp->snd_wnd &&
2013 	    tp->snd_nxt == tp->snd_max) {
2014 
2015 		/*
2016 		 * If last ACK falls within this segment's sequence numbers,
2017 		 * record the timestamp.
2018 		 * NOTE that the test is modified according to the latest
2019 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
2020 		 *
2021 		 * note that we already know
2022 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
2023 		 */
2024 		if (opti.ts_present &&
2025 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
2026 			tp->ts_recent_age = tcp_now;
2027 			tp->ts_recent = opti.ts_val;
2028 		}
2029 
2030 		if (tlen == 0) {
2031 			/* Ack prediction. */
2032 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
2033 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
2034 			    tp->snd_cwnd >= tp->snd_wnd &&
2035 			    tp->t_partialacks < 0) {
2036 				/*
2037 				 * this is a pure ack for outstanding data.
2038 				 */
2039 				if (ts_rtt)
2040 					tcp_xmit_timer(tp, ts_rtt - 1);
2041 				else if (tp->t_rtttime &&
2042 				    SEQ_GT(th->th_ack, tp->t_rtseq))
2043 					tcp_xmit_timer(tp,
2044 					  tcp_now - tp->t_rtttime);
2045 				acked = th->th_ack - tp->snd_una;
2046 				tcps = TCP_STAT_GETREF();
2047 				tcps[TCP_STAT_PREDACK]++;
2048 				tcps[TCP_STAT_RCVACKPACK]++;
2049 				tcps[TCP_STAT_RCVACKBYTE] += acked;
2050 				TCP_STAT_PUTREF();
2051 				nd6_hint(tp);
2052 
2053 				if (acked > (tp->t_lastoff - tp->t_inoff))
2054 					tp->t_lastm = NULL;
2055 				sbdrop(&so->so_snd, acked);
2056 				tp->t_lastoff -= acked;
2057 
2058 				icmp_check(tp, th, acked);
2059 
2060 				tp->snd_una = th->th_ack;
2061 				tp->snd_fack = tp->snd_una;
2062 				if (SEQ_LT(tp->snd_high, tp->snd_una))
2063 					tp->snd_high = tp->snd_una;
2064 				m_freem(m);
2065 
2066 				/*
2067 				 * If all outstanding data are acked, stop
2068 				 * retransmit timer, otherwise restart timer
2069 				 * using current (possibly backed-off) value.
2070 				 * If process is waiting for space,
2071 				 * wakeup/selnotify/signal.  If data
2072 				 * are ready to send, let tcp_output
2073 				 * decide between more output or persist.
2074 				 */
2075 				if (tp->snd_una == tp->snd_max)
2076 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
2077 				else if (TCP_TIMER_ISARMED(tp,
2078 				    TCPT_PERSIST) == 0)
2079 					TCP_TIMER_ARM(tp, TCPT_REXMT,
2080 					    tp->t_rxtcur);
2081 
2082 				sowwakeup(so);
2083 				if (so->so_snd.sb_cc) {
2084 					KERNEL_LOCK(1, NULL);
2085 					(void) tcp_output(tp);
2086 					KERNEL_UNLOCK_ONE(NULL);
2087 				}
2088 				if (tcp_saveti)
2089 					m_freem(tcp_saveti);
2090 				return;
2091 			}
2092 		} else if (th->th_ack == tp->snd_una &&
2093 		    TAILQ_FIRST(&tp->segq) == NULL &&
2094 		    tlen <= sbspace(&so->so_rcv)) {
2095 			int newsize = 0;	/* automatic sockbuf scaling */
2096 
2097 			/*
2098 			 * this is a pure, in-sequence data packet
2099 			 * with nothing on the reassembly queue and
2100 			 * we have enough buffer space to take it.
2101 			 */
2102 			tp->rcv_nxt += tlen;
2103 			tcps = TCP_STAT_GETREF();
2104 			tcps[TCP_STAT_PREDDAT]++;
2105 			tcps[TCP_STAT_RCVPACK]++;
2106 			tcps[TCP_STAT_RCVBYTE] += tlen;
2107 			TCP_STAT_PUTREF();
2108 			nd6_hint(tp);
2109 
2110 		/*
2111 		 * Automatic sizing enables the performance of large buffers
2112 		 * and most of the efficiency of small ones by only allocating
2113 		 * space when it is needed.
2114 		 *
2115 		 * On the receive side the socket buffer memory is only rarely
2116 		 * used to any significant extent.  This allows us to be much
2117 		 * more aggressive in scaling the receive socket buffer.  For
2118 		 * the case that the buffer space is actually used to a large
2119 		 * extent and we run out of kernel memory we can simply drop
2120 		 * the new segments; TCP on the sender will just retransmit it
2121 		 * later.  Setting the buffer size too big may only consume too
2122 		 * much kernel memory if the application doesn't read() from
2123 		 * the socket or packet loss or reordering makes use of the
2124 		 * reassembly queue.
2125 		 *
2126 		 * The criteria to step up the receive buffer one notch are:
2127 		 *  1. the number of bytes received during the time it takes
2128 		 *     one timestamp to be reflected back to us (the RTT);
2129 		 *  2. received bytes per RTT is within seven eighth of the
2130 		 *     current socket buffer size;
2131 		 *  3. receive buffer size has not hit maximal automatic size;
2132 		 *
2133 		 * This algorithm does one step per RTT at most and only if
2134 		 * we receive a bulk stream w/o packet losses or reorderings.
2135 		 * Shrinking the buffer during idle times is not necessary as
2136 		 * it doesn't consume any memory when idle.
2137 		 *
2138 		 * TODO: Only step up if the application is actually serving
2139 		 * the buffer to better manage the socket buffer resources.
2140 		 */
2141 			if (tcp_do_autorcvbuf &&
2142 			    opti.ts_ecr &&
2143 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
2144 				if (opti.ts_ecr > tp->rfbuf_ts &&
2145 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
2146 					if (tp->rfbuf_cnt >
2147 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
2148 					    so->so_rcv.sb_hiwat <
2149 					    tcp_autorcvbuf_max) {
2150 						newsize =
2151 						    min(so->so_rcv.sb_hiwat +
2152 						    tcp_autorcvbuf_inc,
2153 						    tcp_autorcvbuf_max);
2154 					}
2155 					/* Start over with next RTT. */
2156 					tp->rfbuf_ts = 0;
2157 					tp->rfbuf_cnt = 0;
2158 				} else
2159 					tp->rfbuf_cnt += tlen;	/* add up */
2160 			}
2161 
2162 			/*
2163 			 * Drop TCP, IP headers and TCP options then add data
2164 			 * to socket buffer.
2165 			 */
2166 			if (so->so_state & SS_CANTRCVMORE)
2167 				m_freem(m);
2168 			else {
2169 				/*
2170 				 * Set new socket buffer size.
2171 				 * Give up when limit is reached.
2172 				 */
2173 				if (newsize)
2174 					if (!sbreserve(&so->so_rcv,
2175 					    newsize, so))
2176 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2177 				m_adj(m, toff + off);
2178 				sbappendstream(&so->so_rcv, m);
2179 			}
2180 			sorwakeup(so);
2181 			tcp_setup_ack(tp, th);
2182 			if (tp->t_flags & TF_ACKNOW) {
2183 				KERNEL_LOCK(1, NULL);
2184 				(void) tcp_output(tp);
2185 				KERNEL_UNLOCK_ONE(NULL);
2186 			}
2187 			if (tcp_saveti)
2188 				m_freem(tcp_saveti);
2189 			return;
2190 		}
2191 	}
2192 
2193 	/*
2194 	 * Compute mbuf offset to TCP data segment.
2195 	 */
2196 	hdroptlen = toff + off;
2197 
2198 	/*
2199 	 * Calculate amount of space in receive window,
2200 	 * and then do TCP input processing.
2201 	 * Receive window is amount of space in rcv queue,
2202 	 * but not less than advertised window.
2203 	 */
2204 	{ int win;
2205 
2206 	win = sbspace(&so->so_rcv);
2207 	if (win < 0)
2208 		win = 0;
2209 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2210 	}
2211 
2212 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
2213 	tp->rfbuf_ts = 0;
2214 	tp->rfbuf_cnt = 0;
2215 
2216 	switch (tp->t_state) {
2217 	/*
2218 	 * If the state is SYN_SENT:
2219 	 *	if seg contains an ACK, but not for our SYN, drop the input.
2220 	 *	if seg contains a RST, then drop the connection.
2221 	 *	if seg does not contain SYN, then drop it.
2222 	 * Otherwise this is an acceptable SYN segment
2223 	 *	initialize tp->rcv_nxt and tp->irs
2224 	 *	if seg contains ack then advance tp->snd_una
2225 	 *	if seg contains a ECE and ECN support is enabled, the stream
2226 	 *	    is ECN capable.
2227 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2228 	 *	arrange for segment to be acked (eventually)
2229 	 *	continue processing rest of data/controls, beginning with URG
2230 	 */
2231 	case TCPS_SYN_SENT:
2232 		if ((tiflags & TH_ACK) &&
2233 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2234 		     SEQ_GT(th->th_ack, tp->snd_max)))
2235 			goto dropwithreset;
2236 		if (tiflags & TH_RST) {
2237 			if (tiflags & TH_ACK)
2238 				tp = tcp_drop(tp, ECONNREFUSED);
2239 			goto drop;
2240 		}
2241 		if ((tiflags & TH_SYN) == 0)
2242 			goto drop;
2243 		if (tiflags & TH_ACK) {
2244 			tp->snd_una = th->th_ack;
2245 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2246 				tp->snd_nxt = tp->snd_una;
2247 			if (SEQ_LT(tp->snd_high, tp->snd_una))
2248 				tp->snd_high = tp->snd_una;
2249 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2250 
2251 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
2252 				tp->t_flags |= TF_ECN_PERMIT;
2253 				TCP_STATINC(TCP_STAT_ECN_SHS);
2254 			}
2255 
2256 		}
2257 		tp->irs = th->th_seq;
2258 		tcp_rcvseqinit(tp);
2259 		tp->t_flags |= TF_ACKNOW;
2260 		tcp_mss_from_peer(tp, opti.maxseg);
2261 
2262 		/*
2263 		 * Initialize the initial congestion window.  If we
2264 		 * had to retransmit the SYN, we must initialize cwnd
2265 		 * to 1 segment (i.e. the Loss Window).
2266 		 */
2267 		if (tp->t_flags & TF_SYN_REXMT)
2268 			tp->snd_cwnd = tp->t_peermss;
2269 		else {
2270 			int ss = tcp_init_win;
2271 #ifdef INET
2272 			if (inp != NULL && in_localaddr(inp->inp_faddr))
2273 				ss = tcp_init_win_local;
2274 #endif
2275 #ifdef INET6
2276 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2277 				ss = tcp_init_win_local;
2278 #endif
2279 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2280 		}
2281 
2282 		tcp_rmx_rtt(tp);
2283 		if (tiflags & TH_ACK) {
2284 			TCP_STATINC(TCP_STAT_CONNECTS);
2285 			/*
2286 			 * move tcp_established before soisconnected
2287 			 * because upcall handler can drive tcp_output
2288 			 * functionality.
2289 			 * XXX we might call soisconnected at the end of
2290 			 * all processing
2291 			 */
2292 			tcp_established(tp);
2293 			soisconnected(so);
2294 			/* Do window scaling on this connection? */
2295 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2296 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2297 				tp->snd_scale = tp->requested_s_scale;
2298 				tp->rcv_scale = tp->request_r_scale;
2299 			}
2300 			TCP_REASS_LOCK(tp);
2301 			(void) tcp_reass(tp, NULL, NULL, &tlen);
2302 			/*
2303 			 * if we didn't have to retransmit the SYN,
2304 			 * use its rtt as our initial srtt & rtt var.
2305 			 */
2306 			if (tp->t_rtttime)
2307 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2308 		} else
2309 			tp->t_state = TCPS_SYN_RECEIVED;
2310 
2311 		/*
2312 		 * Advance th->th_seq to correspond to first data byte.
2313 		 * If data, trim to stay within window,
2314 		 * dropping FIN if necessary.
2315 		 */
2316 		th->th_seq++;
2317 		if (tlen > tp->rcv_wnd) {
2318 			todrop = tlen - tp->rcv_wnd;
2319 			m_adj(m, -todrop);
2320 			tlen = tp->rcv_wnd;
2321 			tiflags &= ~TH_FIN;
2322 			tcps = TCP_STAT_GETREF();
2323 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2324 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2325 			TCP_STAT_PUTREF();
2326 		}
2327 		tp->snd_wl1 = th->th_seq - 1;
2328 		tp->rcv_up = th->th_seq;
2329 		goto step6;
2330 
2331 	/*
2332 	 * If the state is SYN_RECEIVED:
2333 	 *	If seg contains an ACK, but not for our SYN, drop the input
2334 	 *	and generate an RST.  See page 36, rfc793
2335 	 */
2336 	case TCPS_SYN_RECEIVED:
2337 		if ((tiflags & TH_ACK) &&
2338 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2339 		     SEQ_GT(th->th_ack, tp->snd_max)))
2340 			goto dropwithreset;
2341 		break;
2342 	}
2343 
2344 	/*
2345 	 * States other than LISTEN or SYN_SENT.
2346 	 * First check timestamp, if present.
2347 	 * Then check that at least some bytes of segment are within
2348 	 * receive window.  If segment begins before rcv_nxt,
2349 	 * drop leading data (and SYN); if nothing left, just ack.
2350 	 *
2351 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2352 	 * and it's less than ts_recent, drop it.
2353 	 */
2354 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2355 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2356 
2357 		/* Check to see if ts_recent is over 24 days old.  */
2358 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2359 			/*
2360 			 * Invalidate ts_recent.  If this segment updates
2361 			 * ts_recent, the age will be reset later and ts_recent
2362 			 * will get a valid value.  If it does not, setting
2363 			 * ts_recent to zero will at least satisfy the
2364 			 * requirement that zero be placed in the timestamp
2365 			 * echo reply when ts_recent isn't valid.  The
2366 			 * age isn't reset until we get a valid ts_recent
2367 			 * because we don't want out-of-order segments to be
2368 			 * dropped when ts_recent is old.
2369 			 */
2370 			tp->ts_recent = 0;
2371 		} else {
2372 			tcps = TCP_STAT_GETREF();
2373 			tcps[TCP_STAT_RCVDUPPACK]++;
2374 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2375 			tcps[TCP_STAT_PAWSDROP]++;
2376 			TCP_STAT_PUTREF();
2377 			tcp_new_dsack(tp, th->th_seq, tlen);
2378 			goto dropafterack;
2379 		}
2380 	}
2381 
2382 	todrop = tp->rcv_nxt - th->th_seq;
2383 	dupseg = false;
2384 	if (todrop > 0) {
2385 		if (tiflags & TH_SYN) {
2386 			tiflags &= ~TH_SYN;
2387 			th->th_seq++;
2388 			if (th->th_urp > 1)
2389 				th->th_urp--;
2390 			else {
2391 				tiflags &= ~TH_URG;
2392 				th->th_urp = 0;
2393 			}
2394 			todrop--;
2395 		}
2396 		if (todrop > tlen ||
2397 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2398 			/*
2399 			 * Any valid FIN or RST must be to the left of the
2400 			 * window.  At this point the FIN or RST must be a
2401 			 * duplicate or out of sequence; drop it.
2402 			 */
2403 			if (tiflags & TH_RST)
2404 				goto drop;
2405 			tiflags &= ~(TH_FIN|TH_RST);
2406 			/*
2407 			 * Send an ACK to resynchronize and drop any data.
2408 			 * But keep on processing for RST or ACK.
2409 			 */
2410 			tp->t_flags |= TF_ACKNOW;
2411 			todrop = tlen;
2412 			dupseg = true;
2413 			tcps = TCP_STAT_GETREF();
2414 			tcps[TCP_STAT_RCVDUPPACK]++;
2415 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2416 			TCP_STAT_PUTREF();
2417 		} else if ((tiflags & TH_RST) &&
2418 			   th->th_seq != tp->rcv_nxt) {
2419 			/*
2420 			 * Test for reset before adjusting the sequence
2421 			 * number for overlapping data.
2422 			 */
2423 			goto dropafterack_ratelim;
2424 		} else {
2425 			tcps = TCP_STAT_GETREF();
2426 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
2427 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2428 			TCP_STAT_PUTREF();
2429 		}
2430 		tcp_new_dsack(tp, th->th_seq, todrop);
2431 		hdroptlen += todrop;	/*drop from head afterwards*/
2432 		th->th_seq += todrop;
2433 		tlen -= todrop;
2434 		if (th->th_urp > todrop)
2435 			th->th_urp -= todrop;
2436 		else {
2437 			tiflags &= ~TH_URG;
2438 			th->th_urp = 0;
2439 		}
2440 	}
2441 
2442 	/*
2443 	 * If new data are received on a connection after the
2444 	 * user processes are gone, then RST the other end.
2445 	 */
2446 	if ((so->so_state & SS_NOFDREF) &&
2447 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2448 		tp = tcp_close(tp);
2449 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2450 		goto dropwithreset;
2451 	}
2452 
2453 	/*
2454 	 * If segment ends after window, drop trailing data
2455 	 * (and PUSH and FIN); if nothing left, just ACK.
2456 	 */
2457 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2458 	if (todrop > 0) {
2459 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2460 		if (todrop >= tlen) {
2461 			/*
2462 			 * The segment actually starts after the window.
2463 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2464 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2465 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2466 			 */
2467 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2468 			/*
2469 			 * If a new connection request is received
2470 			 * while in TIME_WAIT, drop the old connection
2471 			 * and start over if the sequence numbers
2472 			 * are above the previous ones.
2473 			 *
2474 			 * NOTE: We will checksum the packet again, and
2475 			 * so we need to put the header fields back into
2476 			 * network order!
2477 			 * XXX This kind of sucks, but we don't expect
2478 			 * XXX this to happen very often, so maybe it
2479 			 * XXX doesn't matter so much.
2480 			 */
2481 			if (tiflags & TH_SYN &&
2482 			    tp->t_state == TCPS_TIME_WAIT &&
2483 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2484 				tp = tcp_close(tp);
2485 				tcp_fields_to_net(th);
2486 				goto findpcb;
2487 			}
2488 			/*
2489 			 * If window is closed can only take segments at
2490 			 * window edge, and have to drop data and PUSH from
2491 			 * incoming segments.  Continue processing, but
2492 			 * remember to ack.  Otherwise, drop segment
2493 			 * and (if not RST) ack.
2494 			 */
2495 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2496 				tp->t_flags |= TF_ACKNOW;
2497 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
2498 			} else
2499 				goto dropafterack;
2500 		} else
2501 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2502 		m_adj(m, -todrop);
2503 		tlen -= todrop;
2504 		tiflags &= ~(TH_PUSH|TH_FIN);
2505 	}
2506 
2507 	/*
2508 	 * If last ACK falls within this segment's sequence numbers,
2509 	 *  record the timestamp.
2510 	 * NOTE:
2511 	 * 1) That the test incorporates suggestions from the latest
2512 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2513 	 * 2) That updating only on newer timestamps interferes with
2514 	 *    our earlier PAWS tests, so this check should be solely
2515 	 *    predicated on the sequence space of this segment.
2516 	 * 3) That we modify the segment boundary check to be
2517 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2518 	 *    instead of RFC1323's
2519 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2520 	 *    This modified check allows us to overcome RFC1323's
2521 	 *    limitations as described in Stevens TCP/IP Illustrated
2522 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2523 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2524 	 */
2525 	if (opti.ts_present &&
2526 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2527 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2528 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2529 		tp->ts_recent_age = tcp_now;
2530 		tp->ts_recent = opti.ts_val;
2531 	}
2532 
2533 	/*
2534 	 * If the RST bit is set examine the state:
2535 	 *    SYN_RECEIVED STATE:
2536 	 *	If passive open, return to LISTEN state.
2537 	 *	If active open, inform user that connection was refused.
2538 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2539 	 *	Inform user that connection was reset, and close tcb.
2540 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
2541 	 *	Close the tcb.
2542 	 */
2543 	if (tiflags & TH_RST) {
2544 		if (th->th_seq != tp->rcv_nxt)
2545 			goto dropafterack_ratelim;
2546 
2547 		switch (tp->t_state) {
2548 		case TCPS_SYN_RECEIVED:
2549 			so->so_error = ECONNREFUSED;
2550 			goto close;
2551 
2552 		case TCPS_ESTABLISHED:
2553 		case TCPS_FIN_WAIT_1:
2554 		case TCPS_FIN_WAIT_2:
2555 		case TCPS_CLOSE_WAIT:
2556 			so->so_error = ECONNRESET;
2557 		close:
2558 			tp->t_state = TCPS_CLOSED;
2559 			TCP_STATINC(TCP_STAT_DROPS);
2560 			tp = tcp_close(tp);
2561 			goto drop;
2562 
2563 		case TCPS_CLOSING:
2564 		case TCPS_LAST_ACK:
2565 		case TCPS_TIME_WAIT:
2566 			tp = tcp_close(tp);
2567 			goto drop;
2568 		}
2569 	}
2570 
2571 	/*
2572 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2573 	 * we must be in a synchronized state.  RFC791 states (under RST
2574 	 * generation) that any unacceptable segment (an out-of-order SYN
2575 	 * qualifies) received in a synchronized state must elicit only an
2576 	 * empty acknowledgment segment ... and the connection remains in
2577 	 * the same state.
2578 	 */
2579 	if (tiflags & TH_SYN) {
2580 		if (tp->rcv_nxt == th->th_seq) {
2581 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2582 			    TH_ACK);
2583 			if (tcp_saveti)
2584 				m_freem(tcp_saveti);
2585 			return;
2586 		}
2587 
2588 		goto dropafterack_ratelim;
2589 	}
2590 
2591 	/*
2592 	 * If the ACK bit is off we drop the segment and return.
2593 	 */
2594 	if ((tiflags & TH_ACK) == 0) {
2595 		if (tp->t_flags & TF_ACKNOW)
2596 			goto dropafterack;
2597 		else
2598 			goto drop;
2599 	}
2600 
2601 	/*
2602 	 * Ack processing.
2603 	 */
2604 	switch (tp->t_state) {
2605 
2606 	/*
2607 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2608 	 * ESTABLISHED state and continue processing, otherwise
2609 	 * send an RST.
2610 	 */
2611 	case TCPS_SYN_RECEIVED:
2612 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
2613 		    SEQ_GT(th->th_ack, tp->snd_max))
2614 			goto dropwithreset;
2615 		TCP_STATINC(TCP_STAT_CONNECTS);
2616 		soisconnected(so);
2617 		tcp_established(tp);
2618 		/* Do window scaling? */
2619 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2620 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2621 			tp->snd_scale = tp->requested_s_scale;
2622 			tp->rcv_scale = tp->request_r_scale;
2623 		}
2624 		TCP_REASS_LOCK(tp);
2625 		(void) tcp_reass(tp, NULL, NULL, &tlen);
2626 		tp->snd_wl1 = th->th_seq - 1;
2627 		/* fall into ... */
2628 
2629 	/*
2630 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2631 	 * ACKs.  If the ack is in the range
2632 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2633 	 * then advance tp->snd_una to th->th_ack and drop
2634 	 * data from the retransmission queue.  If this ACK reflects
2635 	 * more up to date window information we update our window information.
2636 	 */
2637 	case TCPS_ESTABLISHED:
2638 	case TCPS_FIN_WAIT_1:
2639 	case TCPS_FIN_WAIT_2:
2640 	case TCPS_CLOSE_WAIT:
2641 	case TCPS_CLOSING:
2642 	case TCPS_LAST_ACK:
2643 	case TCPS_TIME_WAIT:
2644 
2645 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2646 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2647 				TCP_STATINC(TCP_STAT_RCVDUPACK);
2648 				/*
2649 				 * If we have outstanding data (other than
2650 				 * a window probe), this is a completely
2651 				 * duplicate ack (ie, window info didn't
2652 				 * change), the ack is the biggest we've
2653 				 * seen and we've seen exactly our rexmt
2654 				 * threshhold of them, assume a packet
2655 				 * has been dropped and retransmit it.
2656 				 * Kludge snd_nxt & the congestion
2657 				 * window so we send only this one
2658 				 * packet.
2659 				 */
2660 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2661 				    th->th_ack != tp->snd_una)
2662 					tp->t_dupacks = 0;
2663 				else if (tp->t_partialacks < 0 &&
2664 					 (++tp->t_dupacks == tcprexmtthresh ||
2665 					 TCP_FACK_FASTRECOV(tp))) {
2666 					/*
2667 					 * Do the fast retransmit, and adjust
2668 					 * congestion control paramenters.
2669 					 */
2670 					if (tp->t_congctl->fast_retransmit(tp, th)) {
2671 						/* False fast retransmit */
2672 						break;
2673 					} else
2674 						goto drop;
2675 				} else if (tp->t_dupacks > tcprexmtthresh) {
2676 					tp->snd_cwnd += tp->t_segsz;
2677 					KERNEL_LOCK(1, NULL);
2678 					(void) tcp_output(tp);
2679 					KERNEL_UNLOCK_ONE(NULL);
2680 					goto drop;
2681 				}
2682 			} else {
2683 				/*
2684 				 * If the ack appears to be very old, only
2685 				 * allow data that is in-sequence.  This
2686 				 * makes it somewhat more difficult to insert
2687 				 * forged data by guessing sequence numbers.
2688 				 * Sent an ack to try to update the send
2689 				 * sequence number on the other side.
2690 				 */
2691 				if (tlen && th->th_seq != tp->rcv_nxt &&
2692 				    SEQ_LT(th->th_ack,
2693 				    tp->snd_una - tp->max_sndwnd))
2694 					goto dropafterack;
2695 			}
2696 			break;
2697 		}
2698 		/*
2699 		 * If the congestion window was inflated to account
2700 		 * for the other side's cached packets, retract it.
2701 		 */
2702 		tp->t_congctl->fast_retransmit_newack(tp, th);
2703 
2704 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2705 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2706 			goto dropafterack;
2707 		}
2708 		acked = th->th_ack - tp->snd_una;
2709 		tcps = TCP_STAT_GETREF();
2710 		tcps[TCP_STAT_RCVACKPACK]++;
2711 		tcps[TCP_STAT_RCVACKBYTE] += acked;
2712 		TCP_STAT_PUTREF();
2713 
2714 		/*
2715 		 * If we have a timestamp reply, update smoothed
2716 		 * round trip time.  If no timestamp is present but
2717 		 * transmit timer is running and timed sequence
2718 		 * number was acked, update smoothed round trip time.
2719 		 * Since we now have an rtt measurement, cancel the
2720 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2721 		 * Recompute the initial retransmit timer.
2722 		 */
2723 		if (ts_rtt)
2724 			tcp_xmit_timer(tp, ts_rtt - 1);
2725 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2726 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2727 
2728 		/*
2729 		 * If all outstanding data is acked, stop retransmit
2730 		 * timer and remember to restart (more output or persist).
2731 		 * If there is more data to be acked, restart retransmit
2732 		 * timer, using current (possibly backed-off) value.
2733 		 */
2734 		if (th->th_ack == tp->snd_max) {
2735 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2736 			needoutput = 1;
2737 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2738 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2739 
2740 		/*
2741 		 * New data has been acked, adjust the congestion window.
2742 		 */
2743 		tp->t_congctl->newack(tp, th);
2744 
2745 		nd6_hint(tp);
2746 		if (acked > so->so_snd.sb_cc) {
2747 			tp->snd_wnd -= so->so_snd.sb_cc;
2748 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2749 			ourfinisacked = 1;
2750 		} else {
2751 			if (acked > (tp->t_lastoff - tp->t_inoff))
2752 				tp->t_lastm = NULL;
2753 			sbdrop(&so->so_snd, acked);
2754 			tp->t_lastoff -= acked;
2755 			if (tp->snd_wnd > acked)
2756 				tp->snd_wnd -= acked;
2757 			else
2758 				tp->snd_wnd = 0;
2759 			ourfinisacked = 0;
2760 		}
2761 		sowwakeup(so);
2762 
2763 		icmp_check(tp, th, acked);
2764 
2765 		tp->snd_una = th->th_ack;
2766 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
2767 			tp->snd_fack = tp->snd_una;
2768 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2769 			tp->snd_nxt = tp->snd_una;
2770 		if (SEQ_LT(tp->snd_high, tp->snd_una))
2771 			tp->snd_high = tp->snd_una;
2772 
2773 		switch (tp->t_state) {
2774 
2775 		/*
2776 		 * In FIN_WAIT_1 STATE in addition to the processing
2777 		 * for the ESTABLISHED state if our FIN is now acknowledged
2778 		 * then enter FIN_WAIT_2.
2779 		 */
2780 		case TCPS_FIN_WAIT_1:
2781 			if (ourfinisacked) {
2782 				/*
2783 				 * If we can't receive any more
2784 				 * data, then closing user can proceed.
2785 				 * Starting the timer is contrary to the
2786 				 * specification, but if we don't get a FIN
2787 				 * we'll hang forever.
2788 				 */
2789 				if (so->so_state & SS_CANTRCVMORE) {
2790 					soisdisconnected(so);
2791 					if (tp->t_maxidle > 0)
2792 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2793 						    tp->t_maxidle);
2794 				}
2795 				tp->t_state = TCPS_FIN_WAIT_2;
2796 			}
2797 			break;
2798 
2799 	 	/*
2800 		 * In CLOSING STATE in addition to the processing for
2801 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2802 		 * then enter the TIME-WAIT state, otherwise ignore
2803 		 * the segment.
2804 		 */
2805 		case TCPS_CLOSING:
2806 			if (ourfinisacked) {
2807 				tp->t_state = TCPS_TIME_WAIT;
2808 				tcp_canceltimers(tp);
2809 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2810 				soisdisconnected(so);
2811 			}
2812 			break;
2813 
2814 		/*
2815 		 * In LAST_ACK, we may still be waiting for data to drain
2816 		 * and/or to be acked, as well as for the ack of our FIN.
2817 		 * If our FIN is now acknowledged, delete the TCB,
2818 		 * enter the closed state and return.
2819 		 */
2820 		case TCPS_LAST_ACK:
2821 			if (ourfinisacked) {
2822 				tp = tcp_close(tp);
2823 				goto drop;
2824 			}
2825 			break;
2826 
2827 		/*
2828 		 * In TIME_WAIT state the only thing that should arrive
2829 		 * is a retransmission of the remote FIN.  Acknowledge
2830 		 * it and restart the finack timer.
2831 		 */
2832 		case TCPS_TIME_WAIT:
2833 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2834 			goto dropafterack;
2835 		}
2836 	}
2837 
2838 step6:
2839 	/*
2840 	 * Update window information.
2841 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2842 	 */
2843 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2844 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2845 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2846 		/* keep track of pure window updates */
2847 		if (tlen == 0 &&
2848 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2849 			TCP_STATINC(TCP_STAT_RCVWINUPD);
2850 		tp->snd_wnd = tiwin;
2851 		tp->snd_wl1 = th->th_seq;
2852 		tp->snd_wl2 = th->th_ack;
2853 		if (tp->snd_wnd > tp->max_sndwnd)
2854 			tp->max_sndwnd = tp->snd_wnd;
2855 		needoutput = 1;
2856 	}
2857 
2858 	/*
2859 	 * Process segments with URG.
2860 	 */
2861 	if ((tiflags & TH_URG) && th->th_urp &&
2862 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2863 		/*
2864 		 * This is a kludge, but if we receive and accept
2865 		 * random urgent pointers, we'll crash in
2866 		 * soreceive.  It's hard to imagine someone
2867 		 * actually wanting to send this much urgent data.
2868 		 */
2869 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2870 			th->th_urp = 0;			/* XXX */
2871 			tiflags &= ~TH_URG;		/* XXX */
2872 			goto dodata;			/* XXX */
2873 		}
2874 		/*
2875 		 * If this segment advances the known urgent pointer,
2876 		 * then mark the data stream.  This should not happen
2877 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2878 		 * a FIN has been received from the remote side.
2879 		 * In these states we ignore the URG.
2880 		 *
2881 		 * According to RFC961 (Assigned Protocols),
2882 		 * the urgent pointer points to the last octet
2883 		 * of urgent data.  We continue, however,
2884 		 * to consider it to indicate the first octet
2885 		 * of data past the urgent section as the original
2886 		 * spec states (in one of two places).
2887 		 */
2888 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2889 			tp->rcv_up = th->th_seq + th->th_urp;
2890 			so->so_oobmark = so->so_rcv.sb_cc +
2891 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2892 			if (so->so_oobmark == 0)
2893 				so->so_state |= SS_RCVATMARK;
2894 			sohasoutofband(so);
2895 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2896 		}
2897 		/*
2898 		 * Remove out of band data so doesn't get presented to user.
2899 		 * This can happen independent of advancing the URG pointer,
2900 		 * but if two URG's are pending at once, some out-of-band
2901 		 * data may creep in... ick.
2902 		 */
2903 		if (th->th_urp <= (u_int16_t) tlen
2904 #ifdef SO_OOBINLINE
2905 		     && (so->so_options & SO_OOBINLINE) == 0
2906 #endif
2907 		     )
2908 			tcp_pulloutofband(so, th, m, hdroptlen);
2909 	} else
2910 		/*
2911 		 * If no out of band data is expected,
2912 		 * pull receive urgent pointer along
2913 		 * with the receive window.
2914 		 */
2915 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2916 			tp->rcv_up = tp->rcv_nxt;
2917 dodata:							/* XXX */
2918 
2919 	/*
2920 	 * Process the segment text, merging it into the TCP sequencing queue,
2921 	 * and arranging for acknowledgement of receipt if necessary.
2922 	 * This process logically involves adjusting tp->rcv_wnd as data
2923 	 * is presented to the user (this happens in tcp_usrreq.c,
2924 	 * tcp_rcvd()).  If a FIN has already been received on this
2925 	 * connection then we just ignore the text.
2926 	 */
2927 	if ((tlen || (tiflags & TH_FIN)) &&
2928 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2929 		/*
2930 		 * Insert segment ti into reassembly queue of tcp with
2931 		 * control block tp.  Return TH_FIN if reassembly now includes
2932 		 * a segment with FIN.  The macro form does the common case
2933 		 * inline (segment is the next to be received on an
2934 		 * established connection, and the queue is empty),
2935 		 * avoiding linkage into and removal from the queue and
2936 		 * repetition of various conversions.
2937 		 * Set DELACK for segments received in order, but ack
2938 		 * immediately when segments are out of order
2939 		 * (so fast retransmit can work).
2940 		 */
2941 		/* NOTE: this was TCP_REASS() macro, but used only once */
2942 		TCP_REASS_LOCK(tp);
2943 		if (th->th_seq == tp->rcv_nxt &&
2944 		    TAILQ_FIRST(&tp->segq) == NULL &&
2945 		    tp->t_state == TCPS_ESTABLISHED) {
2946 			tcp_setup_ack(tp, th);
2947 			tp->rcv_nxt += tlen;
2948 			tiflags = th->th_flags & TH_FIN;
2949 			tcps = TCP_STAT_GETREF();
2950 			tcps[TCP_STAT_RCVPACK]++;
2951 			tcps[TCP_STAT_RCVBYTE] += tlen;
2952 			TCP_STAT_PUTREF();
2953 			nd6_hint(tp);
2954 			if (so->so_state & SS_CANTRCVMORE)
2955 				m_freem(m);
2956 			else {
2957 				m_adj(m, hdroptlen);
2958 				sbappendstream(&(so)->so_rcv, m);
2959 			}
2960 			TCP_REASS_UNLOCK(tp);
2961 			sorwakeup(so);
2962 		} else {
2963 			m_adj(m, hdroptlen);
2964 			tiflags = tcp_reass(tp, th, m, &tlen);
2965 			tp->t_flags |= TF_ACKNOW;
2966 		}
2967 
2968 		/*
2969 		 * Note the amount of data that peer has sent into
2970 		 * our window, in order to estimate the sender's
2971 		 * buffer size.
2972 		 */
2973 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2974 	} else {
2975 		m_freem(m);
2976 		m = NULL;
2977 		tiflags &= ~TH_FIN;
2978 	}
2979 
2980 	/*
2981 	 * If FIN is received ACK the FIN and let the user know
2982 	 * that the connection is closing.  Ignore a FIN received before
2983 	 * the connection is fully established.
2984 	 */
2985 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2986 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2987 			socantrcvmore(so);
2988 			tp->t_flags |= TF_ACKNOW;
2989 			tp->rcv_nxt++;
2990 		}
2991 		switch (tp->t_state) {
2992 
2993 	 	/*
2994 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2995 		 */
2996 		case TCPS_ESTABLISHED:
2997 			tp->t_state = TCPS_CLOSE_WAIT;
2998 			break;
2999 
3000 	 	/*
3001 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3002 		 * enter the CLOSING state.
3003 		 */
3004 		case TCPS_FIN_WAIT_1:
3005 			tp->t_state = TCPS_CLOSING;
3006 			break;
3007 
3008 	 	/*
3009 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3010 		 * starting the time-wait timer, turning off the other
3011 		 * standard timers.
3012 		 */
3013 		case TCPS_FIN_WAIT_2:
3014 			tp->t_state = TCPS_TIME_WAIT;
3015 			tcp_canceltimers(tp);
3016 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
3017 			soisdisconnected(so);
3018 			break;
3019 
3020 		/*
3021 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
3022 		 */
3023 		case TCPS_TIME_WAIT:
3024 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
3025 			break;
3026 		}
3027 	}
3028 #ifdef TCP_DEBUG
3029 	if (so->so_options & SO_DEBUG)
3030 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
3031 #endif
3032 
3033 	/*
3034 	 * Return any desired output.
3035 	 */
3036 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
3037 		KERNEL_LOCK(1, NULL);
3038 		(void) tcp_output(tp);
3039 		KERNEL_UNLOCK_ONE(NULL);
3040 	}
3041 	if (tcp_saveti)
3042 		m_freem(tcp_saveti);
3043 
3044 	if (tp->t_state == TCPS_TIME_WAIT
3045 	    && (so->so_state & SS_NOFDREF)
3046 	    && (tp->t_inpcb || af != AF_INET)
3047 	    && (tp->t_in6pcb || af != AF_INET6)
3048 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
3049 	    && TAILQ_EMPTY(&tp->segq)
3050 	    && vtw_add(af, tp)) {
3051 		;
3052 	}
3053 	return;
3054 
3055 badsyn:
3056 	/*
3057 	 * Received a bad SYN.  Increment counters and dropwithreset.
3058 	 */
3059 	TCP_STATINC(TCP_STAT_BADSYN);
3060 	tp = NULL;
3061 	goto dropwithreset;
3062 
3063 dropafterack:
3064 	/*
3065 	 * Generate an ACK dropping incoming segment if it occupies
3066 	 * sequence space, where the ACK reflects our state.
3067 	 */
3068 	if (tiflags & TH_RST)
3069 		goto drop;
3070 	goto dropafterack2;
3071 
3072 dropafterack_ratelim:
3073 	/*
3074 	 * We may want to rate-limit ACKs against SYN/RST attack.
3075 	 */
3076 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
3077 	    tcp_ackdrop_ppslim) == 0) {
3078 		/* XXX stat */
3079 		goto drop;
3080 	}
3081 	/* ...fall into dropafterack2... */
3082 
3083 dropafterack2:
3084 	m_freem(m);
3085 	tp->t_flags |= TF_ACKNOW;
3086 	KERNEL_LOCK(1, NULL);
3087 	(void) tcp_output(tp);
3088 	KERNEL_UNLOCK_ONE(NULL);
3089 	if (tcp_saveti)
3090 		m_freem(tcp_saveti);
3091 	return;
3092 
3093 dropwithreset_ratelim:
3094 	/*
3095 	 * We may want to rate-limit RSTs in certain situations,
3096 	 * particularly if we are sending an RST in response to
3097 	 * an attempt to connect to or otherwise communicate with
3098 	 * a port for which we have no socket.
3099 	 */
3100 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
3101 	    tcp_rst_ppslim) == 0) {
3102 		/* XXX stat */
3103 		goto drop;
3104 	}
3105 	/* ...fall into dropwithreset... */
3106 
3107 dropwithreset:
3108 	/*
3109 	 * Generate a RST, dropping incoming segment.
3110 	 * Make ACK acceptable to originator of segment.
3111 	 */
3112 	if (tiflags & TH_RST)
3113 		goto drop;
3114 
3115 	switch (af) {
3116 #ifdef INET6
3117 	case AF_INET6:
3118 		/* For following calls to tcp_respond */
3119 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
3120 			goto drop;
3121 		break;
3122 #endif /* INET6 */
3123 	case AF_INET:
3124 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
3125 		    in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
3126 			goto drop;
3127 	}
3128 
3129 	if (tiflags & TH_ACK)
3130 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3131 	else {
3132 		if (tiflags & TH_SYN)
3133 			tlen++;
3134 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
3135 		    TH_RST|TH_ACK);
3136 	}
3137 	if (tcp_saveti)
3138 		m_freem(tcp_saveti);
3139 	return;
3140 
3141 badcsum:
3142 drop:
3143 	/*
3144 	 * Drop space held by incoming segment and return.
3145 	 */
3146 	if (tp) {
3147 		if (tp->t_inpcb)
3148 			so = tp->t_inpcb->inp_socket;
3149 #ifdef INET6
3150 		else if (tp->t_in6pcb)
3151 			so = tp->t_in6pcb->in6p_socket;
3152 #endif
3153 		else
3154 			so = NULL;
3155 #ifdef TCP_DEBUG
3156 		if (so && (so->so_options & SO_DEBUG) != 0)
3157 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
3158 #endif
3159 	}
3160 	if (tcp_saveti)
3161 		m_freem(tcp_saveti);
3162 	m_freem(m);
3163 	return;
3164 }
3165 
3166 #ifdef TCP_SIGNATURE
3167 int
3168 tcp_signature_apply(void *fstate, void *data, u_int len)
3169 {
3170 
3171 	MD5Update(fstate, (u_char *)data, len);
3172 	return (0);
3173 }
3174 
3175 struct secasvar *
3176 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
3177 {
3178 	struct ip *ip;
3179 	struct ip6_hdr *ip6;
3180 
3181 	ip = mtod(m, struct ip *);
3182 	switch (ip->ip_v) {
3183 	case 4:
3184 		ip = mtod(m, struct ip *);
3185 		ip6 = NULL;
3186 		break;
3187 	case 6:
3188 		ip = NULL;
3189 		ip6 = mtod(m, struct ip6_hdr *);
3190 		break;
3191 	default:
3192 		return (NULL);
3193 	}
3194 
3195 #ifdef IPSEC
3196 	union sockaddr_union dst;
3197 
3198 	/* Extract the destination from the IP header in the mbuf. */
3199 	memset(&dst, 0, sizeof(union sockaddr_union));
3200 	if (ip != NULL) {
3201 		dst.sa.sa_len = sizeof(struct sockaddr_in);
3202 		dst.sa.sa_family = AF_INET;
3203 		dst.sin.sin_addr = ip->ip_dst;
3204 	} else {
3205 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
3206 		dst.sa.sa_family = AF_INET6;
3207 		dst.sin6.sin6_addr = ip6->ip6_dst;
3208 	}
3209 
3210 	/*
3211 	 * Look up an SADB entry which matches the address of the peer.
3212 	 */
3213 	return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3214 #else
3215 	return NULL;
3216 #endif
3217 }
3218 
3219 int
3220 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3221     struct secasvar *sav, char *sig)
3222 {
3223 	MD5_CTX ctx;
3224 	struct ip *ip;
3225 	struct ipovly *ipovly;
3226 #ifdef INET6
3227 	struct ip6_hdr *ip6;
3228 	struct ip6_hdr_pseudo ip6pseudo;
3229 #endif /* INET6 */
3230 	struct ippseudo ippseudo;
3231 	struct tcphdr th0;
3232 	int l, tcphdrlen;
3233 
3234 	if (sav == NULL)
3235 		return (-1);
3236 
3237 	tcphdrlen = th->th_off * 4;
3238 
3239 	switch (mtod(m, struct ip *)->ip_v) {
3240 	case 4:
3241 		MD5Init(&ctx);
3242 		ip = mtod(m, struct ip *);
3243 		memset(&ippseudo, 0, sizeof(ippseudo));
3244 		ipovly = (struct ipovly *)ip;
3245 		ippseudo.ippseudo_src = ipovly->ih_src;
3246 		ippseudo.ippseudo_dst = ipovly->ih_dst;
3247 		ippseudo.ippseudo_pad = 0;
3248 		ippseudo.ippseudo_p = IPPROTO_TCP;
3249 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3250 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3251 		break;
3252 #if INET6
3253 	case 6:
3254 		MD5Init(&ctx);
3255 		ip6 = mtod(m, struct ip6_hdr *);
3256 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3257 		ip6pseudo.ip6ph_src = ip6->ip6_src;
3258 		in6_clearscope(&ip6pseudo.ip6ph_src);
3259 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3260 		in6_clearscope(&ip6pseudo.ip6ph_dst);
3261 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3262 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3263 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3264 		break;
3265 #endif /* INET6 */
3266 	default:
3267 		return (-1);
3268 	}
3269 
3270 	th0 = *th;
3271 	th0.th_sum = 0;
3272 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
3273 
3274 	l = m->m_pkthdr.len - thoff - tcphdrlen;
3275 	if (l > 0)
3276 		m_apply(m, thoff + tcphdrlen,
3277 		    m->m_pkthdr.len - thoff - tcphdrlen,
3278 		    tcp_signature_apply, &ctx);
3279 
3280 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3281 	MD5Final(sig, &ctx);
3282 
3283 	return (0);
3284 }
3285 #endif
3286 
3287 /*
3288  * tcp_dooptions: parse and process tcp options.
3289  *
3290  * returns -1 if this segment should be dropped.  (eg. wrong signature)
3291  * otherwise returns 0.
3292  */
3293 
3294 static int
3295 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
3296     struct tcphdr *th,
3297     struct mbuf *m, int toff, struct tcp_opt_info *oi)
3298 {
3299 	u_int16_t mss;
3300 	int opt, optlen = 0;
3301 #ifdef TCP_SIGNATURE
3302 	void *sigp = NULL;
3303 	char sigbuf[TCP_SIGLEN];
3304 	struct secasvar *sav = NULL;
3305 #endif
3306 
3307 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3308 		opt = cp[0];
3309 		if (opt == TCPOPT_EOL)
3310 			break;
3311 		if (opt == TCPOPT_NOP)
3312 			optlen = 1;
3313 		else {
3314 			if (cnt < 2)
3315 				break;
3316 			optlen = cp[1];
3317 			if (optlen < 2 || optlen > cnt)
3318 				break;
3319 		}
3320 		switch (opt) {
3321 
3322 		default:
3323 			continue;
3324 
3325 		case TCPOPT_MAXSEG:
3326 			if (optlen != TCPOLEN_MAXSEG)
3327 				continue;
3328 			if (!(th->th_flags & TH_SYN))
3329 				continue;
3330 			if (TCPS_HAVERCVDSYN(tp->t_state))
3331 				continue;
3332 			bcopy(cp + 2, &mss, sizeof(mss));
3333 			oi->maxseg = ntohs(mss);
3334 			break;
3335 
3336 		case TCPOPT_WINDOW:
3337 			if (optlen != TCPOLEN_WINDOW)
3338 				continue;
3339 			if (!(th->th_flags & TH_SYN))
3340 				continue;
3341 			if (TCPS_HAVERCVDSYN(tp->t_state))
3342 				continue;
3343 			tp->t_flags |= TF_RCVD_SCALE;
3344 			tp->requested_s_scale = cp[2];
3345 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3346 				char buf[INET6_ADDRSTRLEN];
3347 				struct ip *ip = mtod(m, struct ip *);
3348 #ifdef INET6
3349 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3350 #endif
3351 				if (ip)
3352 					in_print(buf, sizeof(buf),
3353 					    &ip->ip_src);
3354 #ifdef INET6
3355 				else if (ip6)
3356 					in6_print(buf, sizeof(buf),
3357 					    &ip6->ip6_src);
3358 #endif
3359 				else
3360 					strlcpy(buf, "(unknown)", sizeof(buf));
3361 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3362 				    "assuming %d\n",
3363 				    tp->requested_s_scale, buf,
3364 				    TCP_MAX_WINSHIFT);
3365 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
3366 			}
3367 			break;
3368 
3369 		case TCPOPT_TIMESTAMP:
3370 			if (optlen != TCPOLEN_TIMESTAMP)
3371 				continue;
3372 			oi->ts_present = 1;
3373 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3374 			NTOHL(oi->ts_val);
3375 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3376 			NTOHL(oi->ts_ecr);
3377 
3378 			if (!(th->th_flags & TH_SYN))
3379 				continue;
3380 			if (TCPS_HAVERCVDSYN(tp->t_state))
3381 				continue;
3382 			/*
3383 			 * A timestamp received in a SYN makes
3384 			 * it ok to send timestamp requests and replies.
3385 			 */
3386 			tp->t_flags |= TF_RCVD_TSTMP;
3387 			tp->ts_recent = oi->ts_val;
3388 			tp->ts_recent_age = tcp_now;
3389                         break;
3390 
3391 		case TCPOPT_SACK_PERMITTED:
3392 			if (optlen != TCPOLEN_SACK_PERMITTED)
3393 				continue;
3394 			if (!(th->th_flags & TH_SYN))
3395 				continue;
3396 			if (TCPS_HAVERCVDSYN(tp->t_state))
3397 				continue;
3398 			if (tcp_do_sack) {
3399 				tp->t_flags |= TF_SACK_PERMIT;
3400 				tp->t_flags |= TF_WILL_SACK;
3401 			}
3402 			break;
3403 
3404 		case TCPOPT_SACK:
3405 			tcp_sack_option(tp, th, cp, optlen);
3406 			break;
3407 #ifdef TCP_SIGNATURE
3408 		case TCPOPT_SIGNATURE:
3409 			if (optlen != TCPOLEN_SIGNATURE)
3410 				continue;
3411 			if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
3412 				return (-1);
3413 
3414 			sigp = sigbuf;
3415 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3416 			tp->t_flags |= TF_SIGNATURE;
3417 			break;
3418 #endif
3419 		}
3420 	}
3421 
3422 #ifndef TCP_SIGNATURE
3423 	return 0;
3424 #else
3425 	if (tp->t_flags & TF_SIGNATURE) {
3426 
3427 		sav = tcp_signature_getsav(m, th);
3428 
3429 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
3430 			return (-1);
3431 	}
3432 
3433 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3434 		goto out;
3435 
3436 	if (sigp) {
3437 		char sig[TCP_SIGLEN];
3438 
3439 		tcp_fields_to_net(th);
3440 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
3441 			tcp_fields_to_host(th);
3442 			goto out;
3443 		}
3444 		tcp_fields_to_host(th);
3445 
3446 		if (memcmp(sig, sigp, TCP_SIGLEN)) {
3447 			TCP_STATINC(TCP_STAT_BADSIG);
3448 			goto out;
3449 		} else
3450 			TCP_STATINC(TCP_STAT_GOODSIG);
3451 
3452 		key_sa_recordxfer(sav, m);
3453 		KEY_SA_UNREF(&sav);
3454 	}
3455 	return 0;
3456 out:
3457 	if (sav != NULL)
3458 		KEY_SA_UNREF(&sav);
3459 	return -1;
3460 #endif
3461 }
3462 
3463 /*
3464  * Pull out of band byte out of a segment so
3465  * it doesn't appear in the user's data queue.
3466  * It is still reflected in the segment length for
3467  * sequencing purposes.
3468  */
3469 void
3470 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3471     struct mbuf *m, int off)
3472 {
3473 	int cnt = off + th->th_urp - 1;
3474 
3475 	while (cnt >= 0) {
3476 		if (m->m_len > cnt) {
3477 			char *cp = mtod(m, char *) + cnt;
3478 			struct tcpcb *tp = sototcpcb(so);
3479 
3480 			tp->t_iobc = *cp;
3481 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3482 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3483 			m->m_len--;
3484 			return;
3485 		}
3486 		cnt -= m->m_len;
3487 		m = m->m_next;
3488 		if (m == 0)
3489 			break;
3490 	}
3491 	panic("tcp_pulloutofband");
3492 }
3493 
3494 /*
3495  * Collect new round-trip time estimate
3496  * and update averages and current timeout.
3497  *
3498  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3499  * difference of two timestamps.
3500  */
3501 void
3502 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3503 {
3504 	int32_t delta;
3505 
3506 	TCP_STATINC(TCP_STAT_RTTUPDATED);
3507 	if (tp->t_srtt != 0) {
3508 		/*
3509 		 * Compute the amount to add to srtt for smoothing,
3510 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
3511 		 * srtt is stored in 1/32 slow ticks, we conceptually
3512 		 * shift left 5 bits, subtract srtt to get the
3513 		 * diference, and then shift right by TCP_RTT_SHIFT
3514 		 * (3) to obtain 1/8 of the difference.
3515 		 */
3516 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3517 		/*
3518 		 * This can never happen, because delta's lowest
3519 		 * possible value is 1/8 of t_srtt.  But if it does,
3520 		 * set srtt to some reasonable value, here chosen
3521 		 * as 1/8 tick.
3522 		 */
3523 		if ((tp->t_srtt += delta) <= 0)
3524 			tp->t_srtt = 1 << 2;
3525 		/*
3526 		 * RFC2988 requires that rttvar be updated first.
3527 		 * This code is compliant because "delta" is the old
3528 		 * srtt minus the new observation (scaled).
3529 		 *
3530 		 * RFC2988 says:
3531 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3532 		 *
3533 		 * delta is in units of 1/32 ticks, and has then been
3534 		 * divided by 8.  This is equivalent to being in 1/16s
3535 		 * units and divided by 4.  Subtract from it 1/4 of
3536 		 * the existing rttvar to form the (signed) amount to
3537 		 * adjust.
3538 		 */
3539 		if (delta < 0)
3540 			delta = -delta;
3541 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3542 		/*
3543 		 * As with srtt, this should never happen.  There is
3544 		 * no support in RFC2988 for this operation.  But 1/4s
3545 		 * as rttvar when faced with something arguably wrong
3546 		 * is ok.
3547 		 */
3548 		if ((tp->t_rttvar += delta) <= 0)
3549 			tp->t_rttvar = 1 << 2;
3550 
3551 		/*
3552 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3553 		 * Problem is: it doesn't work.  Disabled by defaulting
3554 		 * tcp_rttlocal to 0; see corresponding code in
3555 		 * tcp_subr that selects local vs remote in a different way.
3556 		 *
3557 		 * The static branch prediction hint here should be removed
3558 		 * when the rtt estimator is fixed and the rtt_enable code
3559 		 * is turned back on.
3560 		 */
3561 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3562 		    && tp->t_srtt > tcp_msl_remote_threshold
3563 		    && tp->t_msl  < tcp_msl_remote) {
3564 			tp->t_msl = tcp_msl_remote;
3565 		}
3566 	} else {
3567 		/*
3568 		 * This is the first measurement.  Per RFC2988, 2.2,
3569 		 * set rtt=R and srtt=R/2.
3570 		 * For srtt, storage representation is 1/32 ticks,
3571 		 * so shift left by 5.
3572 		 * For rttvar, storage representation is 1/16 ticks,
3573 		 * So shift left by 4, but then right by 1 to halve.
3574 		 */
3575 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3576 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3577 	}
3578 	tp->t_rtttime = 0;
3579 	tp->t_rxtshift = 0;
3580 
3581 	/*
3582 	 * the retransmit should happen at rtt + 4 * rttvar.
3583 	 * Because of the way we do the smoothing, srtt and rttvar
3584 	 * will each average +1/2 tick of bias.  When we compute
3585 	 * the retransmit timer, we want 1/2 tick of rounding and
3586 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3587 	 * firing of the timer.  The bias will give us exactly the
3588 	 * 1.5 tick we need.  But, because the bias is
3589 	 * statistical, we have to test that we don't drop below
3590 	 * the minimum feasible timer (which is 2 ticks).
3591 	 */
3592 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3593 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3594 
3595 	/*
3596 	 * We received an ack for a packet that wasn't retransmitted;
3597 	 * it is probably safe to discard any error indications we've
3598 	 * received recently.  This isn't quite right, but close enough
3599 	 * for now (a route might have failed after we sent a segment,
3600 	 * and the return path might not be symmetrical).
3601 	 */
3602 	tp->t_softerror = 0;
3603 }
3604 
3605 
3606 /*
3607  * TCP compressed state engine.  Currently used to hold compressed
3608  * state for SYN_RECEIVED.
3609  */
3610 
3611 u_long	syn_cache_count;
3612 u_int32_t syn_hash1, syn_hash2;
3613 
3614 #define SYN_HASH(sa, sp, dp) \
3615 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3616 				     ((u_int32_t)(sp)))^syn_hash2)))
3617 #ifndef INET6
3618 #define	SYN_HASHALL(hash, src, dst) \
3619 do {									\
3620 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
3621 		((const struct sockaddr_in *)(src))->sin_port,		\
3622 		((const struct sockaddr_in *)(dst))->sin_port);		\
3623 } while (/*CONSTCOND*/ 0)
3624 #else
3625 #define SYN_HASH6(sa, sp, dp) \
3626 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3627 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3628 	 & 0x7fffffff)
3629 
3630 #define SYN_HASHALL(hash, src, dst) \
3631 do {									\
3632 	switch ((src)->sa_family) {					\
3633 	case AF_INET:							\
3634 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3635 			((const struct sockaddr_in *)(src))->sin_port,	\
3636 			((const struct sockaddr_in *)(dst))->sin_port);	\
3637 		break;							\
3638 	case AF_INET6:							\
3639 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3640 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
3641 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
3642 		break;							\
3643 	default:							\
3644 		hash = 0;						\
3645 	}								\
3646 } while (/*CONSTCOND*/0)
3647 #endif /* INET6 */
3648 
3649 static struct pool syn_cache_pool;
3650 
3651 /*
3652  * We don't estimate RTT with SYNs, so each packet starts with the default
3653  * RTT and each timer step has a fixed timeout value.
3654  */
3655 static inline void
3656 syn_cache_timer_arm(struct syn_cache *sc)
3657 {
3658 
3659 	TCPT_RANGESET(sc->sc_rxtcur,
3660 	    TCPTV_SRTTDFLT * tcp_backoff[sc->sc_rxtshift], TCPTV_MIN,
3661 	    TCPTV_REXMTMAX);
3662 	callout_reset(&sc->sc_timer,
3663 	    sc->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, sc);
3664 }
3665 
3666 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
3667 
3668 static inline void
3669 syn_cache_rm(struct syn_cache *sc)
3670 {
3671 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3672 	    sc, sc_bucketq);
3673 	sc->sc_tp = NULL;
3674 	LIST_REMOVE(sc, sc_tpq);
3675 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3676 	callout_stop(&sc->sc_timer);
3677 	syn_cache_count--;
3678 }
3679 
3680 static inline void
3681 syn_cache_put(struct syn_cache *sc)
3682 {
3683 	if (sc->sc_ipopts)
3684 		(void) m_free(sc->sc_ipopts);
3685 	rtcache_free(&sc->sc_route);
3686 	sc->sc_flags |= SCF_DEAD;
3687 	if (!callout_invoking(&sc->sc_timer))
3688 		callout_schedule(&(sc)->sc_timer, 1);
3689 }
3690 
3691 void
3692 syn_cache_init(void)
3693 {
3694 	int i;
3695 
3696 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3697 	    "synpl", NULL, IPL_SOFTNET);
3698 
3699 	/* Initialize the hash buckets. */
3700 	for (i = 0; i < tcp_syn_cache_size; i++)
3701 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3702 }
3703 
3704 void
3705 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3706 {
3707 	struct syn_cache_head *scp;
3708 	struct syn_cache *sc2;
3709 	int s;
3710 
3711 	/*
3712 	 * If there are no entries in the hash table, reinitialize
3713 	 * the hash secrets.
3714 	 */
3715 	if (syn_cache_count == 0) {
3716 		syn_hash1 = cprng_fast32();
3717 		syn_hash2 = cprng_fast32();
3718 	}
3719 
3720 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3721 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3722 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3723 
3724 	/*
3725 	 * Make sure that we don't overflow the per-bucket
3726 	 * limit or the total cache size limit.
3727 	 */
3728 	s = splsoftnet();
3729 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3730 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3731 		/*
3732 		 * The bucket is full.  Toss the oldest element in the
3733 		 * bucket.  This will be the first entry in the bucket.
3734 		 */
3735 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3736 #ifdef DIAGNOSTIC
3737 		/*
3738 		 * This should never happen; we should always find an
3739 		 * entry in our bucket.
3740 		 */
3741 		if (sc2 == NULL)
3742 			panic("syn_cache_insert: bucketoverflow: impossible");
3743 #endif
3744 		syn_cache_rm(sc2);
3745 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3746 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3747 		struct syn_cache_head *scp2, *sce;
3748 
3749 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3750 		/*
3751 		 * The cache is full.  Toss the oldest entry in the
3752 		 * first non-empty bucket we can find.
3753 		 *
3754 		 * XXX We would really like to toss the oldest
3755 		 * entry in the cache, but we hope that this
3756 		 * condition doesn't happen very often.
3757 		 */
3758 		scp2 = scp;
3759 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3760 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3761 			for (++scp2; scp2 != scp; scp2++) {
3762 				if (scp2 >= sce)
3763 					scp2 = &tcp_syn_cache[0];
3764 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3765 					break;
3766 			}
3767 #ifdef DIAGNOSTIC
3768 			/*
3769 			 * This should never happen; we should always find a
3770 			 * non-empty bucket.
3771 			 */
3772 			if (scp2 == scp)
3773 				panic("syn_cache_insert: cacheoverflow: "
3774 				    "impossible");
3775 #endif
3776 		}
3777 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3778 		syn_cache_rm(sc2);
3779 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3780 	}
3781 
3782 	/*
3783 	 * Initialize the entry's timer.
3784 	 */
3785 	sc->sc_rxttot = 0;
3786 	sc->sc_rxtshift = 0;
3787 	syn_cache_timer_arm(sc);
3788 
3789 	/* Link it from tcpcb entry */
3790 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3791 
3792 	/* Put it into the bucket. */
3793 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3794 	scp->sch_length++;
3795 	syn_cache_count++;
3796 
3797 	TCP_STATINC(TCP_STAT_SC_ADDED);
3798 	splx(s);
3799 }
3800 
3801 /*
3802  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3803  * If we have retransmitted an entry the maximum number of times, expire
3804  * that entry.
3805  */
3806 static void
3807 syn_cache_timer(void *arg)
3808 {
3809 	struct syn_cache *sc = arg;
3810 
3811 	mutex_enter(softnet_lock);
3812 	KERNEL_LOCK(1, NULL);
3813 
3814 	callout_ack(&sc->sc_timer);
3815 
3816 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3817 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3818 		goto free;
3819 	}
3820 
3821 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3822 		/* Drop it -- too many retransmissions. */
3823 		goto dropit;
3824 	}
3825 
3826 	/*
3827 	 * Compute the total amount of time this entry has
3828 	 * been on a queue.  If this entry has been on longer
3829 	 * than the keep alive timer would allow, expire it.
3830 	 */
3831 	sc->sc_rxttot += sc->sc_rxtcur;
3832 	if (sc->sc_rxttot >= tcp_keepinit)
3833 		goto dropit;
3834 
3835 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3836 	(void) syn_cache_respond(sc, NULL);
3837 
3838 	/* Advance the timer back-off. */
3839 	sc->sc_rxtshift++;
3840 	syn_cache_timer_arm(sc);
3841 
3842 	goto out;
3843 
3844  dropit:
3845 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3846 	syn_cache_rm(sc);
3847 	if (sc->sc_ipopts)
3848 		(void) m_free(sc->sc_ipopts);
3849 	rtcache_free(&sc->sc_route);
3850 
3851  free:
3852 	callout_destroy(&sc->sc_timer);
3853 	pool_put(&syn_cache_pool, sc);
3854 
3855  out:
3856 	KERNEL_UNLOCK_ONE(NULL);
3857 	mutex_exit(softnet_lock);
3858 }
3859 
3860 /*
3861  * Remove syn cache created by the specified tcb entry,
3862  * because this does not make sense to keep them
3863  * (if there's no tcb entry, syn cache entry will never be used)
3864  */
3865 void
3866 syn_cache_cleanup(struct tcpcb *tp)
3867 {
3868 	struct syn_cache *sc, *nsc;
3869 	int s;
3870 
3871 	s = splsoftnet();
3872 
3873 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3874 		nsc = LIST_NEXT(sc, sc_tpq);
3875 
3876 #ifdef DIAGNOSTIC
3877 		if (sc->sc_tp != tp)
3878 			panic("invalid sc_tp in syn_cache_cleanup");
3879 #endif
3880 		syn_cache_rm(sc);
3881 		syn_cache_put(sc);	/* calls pool_put but see spl above */
3882 	}
3883 	/* just for safety */
3884 	LIST_INIT(&tp->t_sc);
3885 
3886 	splx(s);
3887 }
3888 
3889 /*
3890  * Find an entry in the syn cache.
3891  */
3892 struct syn_cache *
3893 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3894     struct syn_cache_head **headp)
3895 {
3896 	struct syn_cache *sc;
3897 	struct syn_cache_head *scp;
3898 	u_int32_t hash;
3899 	int s;
3900 
3901 	SYN_HASHALL(hash, src, dst);
3902 
3903 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3904 	*headp = scp;
3905 	s = splsoftnet();
3906 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3907 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3908 		if (sc->sc_hash != hash)
3909 			continue;
3910 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3911 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3912 			splx(s);
3913 			return (sc);
3914 		}
3915 	}
3916 	splx(s);
3917 	return (NULL);
3918 }
3919 
3920 /*
3921  * This function gets called when we receive an ACK for a
3922  * socket in the LISTEN state.  We look up the connection
3923  * in the syn cache, and if its there, we pull it out of
3924  * the cache and turn it into a full-blown connection in
3925  * the SYN-RECEIVED state.
3926  *
3927  * The return values may not be immediately obvious, and their effects
3928  * can be subtle, so here they are:
3929  *
3930  *	NULL	SYN was not found in cache; caller should drop the
3931  *		packet and send an RST.
3932  *
3933  *	-1	We were unable to create the new connection, and are
3934  *		aborting it.  An ACK,RST is being sent to the peer
3935  *		(unless we got screwey sequence numbners; see below),
3936  *		because the 3-way handshake has been completed.  Caller
3937  *		should not free the mbuf, since we may be using it.  If
3938  *		we are not, we will free it.
3939  *
3940  *	Otherwise, the return value is a pointer to the new socket
3941  *	associated with the connection.
3942  */
3943 struct socket *
3944 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3945     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3946     struct socket *so, struct mbuf *m)
3947 {
3948 	struct syn_cache *sc;
3949 	struct syn_cache_head *scp;
3950 	struct inpcb *inp = NULL;
3951 #ifdef INET6
3952 	struct in6pcb *in6p = NULL;
3953 #endif
3954 	struct tcpcb *tp = 0;
3955 	int s;
3956 	struct socket *oso;
3957 
3958 	s = splsoftnet();
3959 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3960 		splx(s);
3961 		return (NULL);
3962 	}
3963 
3964 	/*
3965 	 * Verify the sequence and ack numbers.  Try getting the correct
3966 	 * response again.
3967 	 */
3968 	if ((th->th_ack != sc->sc_iss + 1) ||
3969 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3970 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3971 		(void) syn_cache_respond(sc, m);
3972 		splx(s);
3973 		return ((struct socket *)(-1));
3974 	}
3975 
3976 	/* Remove this cache entry */
3977 	syn_cache_rm(sc);
3978 	splx(s);
3979 
3980 	/*
3981 	 * Ok, create the full blown connection, and set things up
3982 	 * as they would have been set up if we had created the
3983 	 * connection when the SYN arrived.  If we can't create
3984 	 * the connection, abort it.
3985 	 */
3986 	/*
3987 	 * inp still has the OLD in_pcb stuff, set the
3988 	 * v6-related flags on the new guy, too.   This is
3989 	 * done particularly for the case where an AF_INET6
3990 	 * socket is bound only to a port, and a v4 connection
3991 	 * comes in on that port.
3992 	 * we also copy the flowinfo from the original pcb
3993 	 * to the new one.
3994 	 */
3995 	oso = so;
3996 	so = sonewconn(so, true);
3997 	if (so == NULL)
3998 		goto resetandabort;
3999 
4000 	switch (so->so_proto->pr_domain->dom_family) {
4001 #ifdef INET
4002 	case AF_INET:
4003 		inp = sotoinpcb(so);
4004 		break;
4005 #endif
4006 #ifdef INET6
4007 	case AF_INET6:
4008 		in6p = sotoin6pcb(so);
4009 		break;
4010 #endif
4011 	}
4012 	switch (src->sa_family) {
4013 #ifdef INET
4014 	case AF_INET:
4015 		if (inp) {
4016 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
4017 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
4018 			inp->inp_options = ip_srcroute(m);
4019 			in_pcbstate(inp, INP_BOUND);
4020 			if (inp->inp_options == NULL) {
4021 				inp->inp_options = sc->sc_ipopts;
4022 				sc->sc_ipopts = NULL;
4023 			}
4024 		}
4025 #ifdef INET6
4026 		else if (in6p) {
4027 			/* IPv4 packet to AF_INET6 socket */
4028 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
4029 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
4030 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
4031 				&in6p->in6p_laddr.s6_addr32[3],
4032 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
4033 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
4034 			in6totcpcb(in6p)->t_family = AF_INET;
4035 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
4036 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
4037 			else
4038 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
4039 			in6_pcbstate(in6p, IN6P_BOUND);
4040 		}
4041 #endif
4042 		break;
4043 #endif
4044 #ifdef INET6
4045 	case AF_INET6:
4046 		if (in6p) {
4047 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
4048 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
4049 			in6_pcbstate(in6p, IN6P_BOUND);
4050 		}
4051 		break;
4052 #endif
4053 	}
4054 #ifdef INET6
4055 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
4056 		struct in6pcb *oin6p = sotoin6pcb(oso);
4057 		/* inherit socket options from the listening socket */
4058 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
4059 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
4060 			m_freem(in6p->in6p_options);
4061 			in6p->in6p_options = 0;
4062 		}
4063 		ip6_savecontrol(in6p, &in6p->in6p_options,
4064 			mtod(m, struct ip6_hdr *), m);
4065 	}
4066 #endif
4067 
4068 #if defined(IPSEC)
4069 	if (ipsec_used) {
4070 		/*
4071 		 * we make a copy of policy, instead of sharing the policy, for
4072 		 * better behavior in terms of SA lookup and dead SA removal.
4073 		 */
4074 		if (inp) {
4075 			/* copy old policy into new socket's */
4076 			if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp,
4077 			    inp->inp_sp))
4078 				printf("tcp_input: could not copy policy\n");
4079 		}
4080 #ifdef INET6
4081 		else if (in6p) {
4082 			/* copy old policy into new socket's */
4083 			if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
4084 			    in6p->in6p_sp))
4085 				printf("tcp_input: could not copy policy\n");
4086 		}
4087 #endif
4088 	}
4089 #endif
4090 
4091 	/*
4092 	 * Give the new socket our cached route reference.
4093 	 */
4094 	if (inp) {
4095 		rtcache_copy(&inp->inp_route, &sc->sc_route);
4096 		rtcache_free(&sc->sc_route);
4097 	}
4098 #ifdef INET6
4099 	else {
4100 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
4101 		rtcache_free(&sc->sc_route);
4102 	}
4103 #endif
4104 
4105 	if (inp) {
4106 		struct sockaddr_in sin;
4107 		memcpy(&sin, src, src->sa_len);
4108 		if (in_pcbconnect(inp, &sin, &lwp0)) {
4109 			goto resetandabort;
4110 		}
4111 	}
4112 #ifdef INET6
4113 	else if (in6p) {
4114 		struct sockaddr_in6 sin6;
4115 		memcpy(&sin6, src, src->sa_len);
4116 		if (src->sa_family == AF_INET) {
4117 			/* IPv4 packet to AF_INET6 socket */
4118 			in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
4119 		}
4120 		if (in6_pcbconnect(in6p, &sin6, NULL)) {
4121 			goto resetandabort;
4122 		}
4123 	}
4124 #endif
4125 	else {
4126 		goto resetandabort;
4127 	}
4128 
4129 	if (inp)
4130 		tp = intotcpcb(inp);
4131 #ifdef INET6
4132 	else if (in6p)
4133 		tp = in6totcpcb(in6p);
4134 #endif
4135 	else
4136 		tp = NULL;
4137 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
4138 	if (sc->sc_request_r_scale != 15) {
4139 		tp->requested_s_scale = sc->sc_requested_s_scale;
4140 		tp->request_r_scale = sc->sc_request_r_scale;
4141 		tp->snd_scale = sc->sc_requested_s_scale;
4142 		tp->rcv_scale = sc->sc_request_r_scale;
4143 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
4144 	}
4145 	if (sc->sc_flags & SCF_TIMESTAMP)
4146 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
4147 	tp->ts_timebase = sc->sc_timebase;
4148 
4149 	tp->t_template = tcp_template(tp);
4150 	if (tp->t_template == 0) {
4151 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
4152 		so = NULL;
4153 		m_freem(m);
4154 		goto abort;
4155 	}
4156 
4157 	tp->iss = sc->sc_iss;
4158 	tp->irs = sc->sc_irs;
4159 	tcp_sendseqinit(tp);
4160 	tcp_rcvseqinit(tp);
4161 	tp->t_state = TCPS_SYN_RECEIVED;
4162 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
4163 	TCP_STATINC(TCP_STAT_ACCEPTS);
4164 
4165 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
4166 		tp->t_flags |= TF_WILL_SACK;
4167 
4168 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
4169 		tp->t_flags |= TF_ECN_PERMIT;
4170 
4171 #ifdef TCP_SIGNATURE
4172 	if (sc->sc_flags & SCF_SIGNATURE)
4173 		tp->t_flags |= TF_SIGNATURE;
4174 #endif
4175 
4176 	/* Initialize tp->t_ourmss before we deal with the peer's! */
4177 	tp->t_ourmss = sc->sc_ourmaxseg;
4178 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
4179 
4180 	/*
4181 	 * Initialize the initial congestion window.  If we
4182 	 * had to retransmit the SYN,ACK, we must initialize cwnd
4183 	 * to 1 segment (i.e. the Loss Window).
4184 	 */
4185 	if (sc->sc_rxtshift)
4186 		tp->snd_cwnd = tp->t_peermss;
4187 	else {
4188 		int ss = tcp_init_win;
4189 #ifdef INET
4190 		if (inp != NULL && in_localaddr(inp->inp_faddr))
4191 			ss = tcp_init_win_local;
4192 #endif
4193 #ifdef INET6
4194 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
4195 			ss = tcp_init_win_local;
4196 #endif
4197 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
4198 	}
4199 
4200 	tcp_rmx_rtt(tp);
4201 	tp->snd_wl1 = sc->sc_irs;
4202 	tp->rcv_up = sc->sc_irs + 1;
4203 
4204 	/*
4205 	 * This is what whould have happened in tcp_output() when
4206 	 * the SYN,ACK was sent.
4207 	 */
4208 	tp->snd_up = tp->snd_una;
4209 	tp->snd_max = tp->snd_nxt = tp->iss+1;
4210 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4211 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4212 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4213 	tp->last_ack_sent = tp->rcv_nxt;
4214 	tp->t_partialacks = -1;
4215 	tp->t_dupacks = 0;
4216 
4217 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
4218 	s = splsoftnet();
4219 	syn_cache_put(sc);
4220 	splx(s);
4221 	return (so);
4222 
4223 resetandabort:
4224 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4225 abort:
4226 	if (so != NULL) {
4227 		(void) soqremque(so, 1);
4228 		(void) soabort(so);
4229 		mutex_enter(softnet_lock);
4230 	}
4231 	s = splsoftnet();
4232 	syn_cache_put(sc);
4233 	splx(s);
4234 	TCP_STATINC(TCP_STAT_SC_ABORTED);
4235 	return ((struct socket *)(-1));
4236 }
4237 
4238 /*
4239  * This function is called when we get a RST for a
4240  * non-existent connection, so that we can see if the
4241  * connection is in the syn cache.  If it is, zap it.
4242  */
4243 
4244 void
4245 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4246 {
4247 	struct syn_cache *sc;
4248 	struct syn_cache_head *scp;
4249 	int s = splsoftnet();
4250 
4251 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4252 		splx(s);
4253 		return;
4254 	}
4255 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4256 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4257 		splx(s);
4258 		return;
4259 	}
4260 	syn_cache_rm(sc);
4261 	TCP_STATINC(TCP_STAT_SC_RESET);
4262 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4263 	splx(s);
4264 }
4265 
4266 void
4267 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4268     struct tcphdr *th)
4269 {
4270 	struct syn_cache *sc;
4271 	struct syn_cache_head *scp;
4272 	int s;
4273 
4274 	s = splsoftnet();
4275 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4276 		splx(s);
4277 		return;
4278 	}
4279 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4280 	if (ntohl (th->th_seq) != sc->sc_iss) {
4281 		splx(s);
4282 		return;
4283 	}
4284 
4285 	/*
4286 	 * If we've retransmitted 3 times and this is our second error,
4287 	 * we remove the entry.  Otherwise, we allow it to continue on.
4288 	 * This prevents us from incorrectly nuking an entry during a
4289 	 * spurious network outage.
4290 	 *
4291 	 * See tcp_notify().
4292 	 */
4293 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4294 		sc->sc_flags |= SCF_UNREACH;
4295 		splx(s);
4296 		return;
4297 	}
4298 
4299 	syn_cache_rm(sc);
4300 	TCP_STATINC(TCP_STAT_SC_UNREACH);
4301 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4302 	splx(s);
4303 }
4304 
4305 /*
4306  * Given a LISTEN socket and an inbound SYN request, add
4307  * this to the syn cache, and send back a segment:
4308  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4309  * to the source.
4310  *
4311  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4312  * Doing so would require that we hold onto the data and deliver it
4313  * to the application.  However, if we are the target of a SYN-flood
4314  * DoS attack, an attacker could send data which would eventually
4315  * consume all available buffer space if it were ACKed.  By not ACKing
4316  * the data, we avoid this DoS scenario.
4317  */
4318 
4319 int
4320 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4321     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
4322     int optlen, struct tcp_opt_info *oi)
4323 {
4324 	struct tcpcb tb, *tp;
4325 	long win;
4326 	struct syn_cache *sc;
4327 	struct syn_cache_head *scp;
4328 	struct mbuf *ipopts;
4329 	struct tcp_opt_info opti;
4330 	int s;
4331 
4332 	tp = sototcpcb(so);
4333 
4334 	memset(&opti, 0, sizeof(opti));
4335 
4336 	/*
4337 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4338 	 *
4339 	 * Note this check is performed in tcp_input() very early on.
4340 	 */
4341 
4342 	/*
4343 	 * Initialize some local state.
4344 	 */
4345 	win = sbspace(&so->so_rcv);
4346 	if (win > TCP_MAXWIN)
4347 		win = TCP_MAXWIN;
4348 
4349 	switch (src->sa_family) {
4350 #ifdef INET
4351 	case AF_INET:
4352 		/*
4353 		 * Remember the IP options, if any.
4354 		 */
4355 		ipopts = ip_srcroute(m);
4356 		break;
4357 #endif
4358 	default:
4359 		ipopts = NULL;
4360 	}
4361 
4362 #ifdef TCP_SIGNATURE
4363 	if (optp || (tp->t_flags & TF_SIGNATURE))
4364 #else
4365 	if (optp)
4366 #endif
4367 	{
4368 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4369 #ifdef TCP_SIGNATURE
4370 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4371 #endif
4372 		tb.t_state = TCPS_LISTEN;
4373 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4374 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4375 			return (0);
4376 	} else
4377 		tb.t_flags = 0;
4378 
4379 	/*
4380 	 * See if we already have an entry for this connection.
4381 	 * If we do, resend the SYN,ACK.  We do not count this
4382 	 * as a retransmission (XXX though maybe we should).
4383 	 */
4384 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4385 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
4386 		if (ipopts) {
4387 			/*
4388 			 * If we were remembering a previous source route,
4389 			 * forget it and use the new one we've been given.
4390 			 */
4391 			if (sc->sc_ipopts)
4392 				(void) m_free(sc->sc_ipopts);
4393 			sc->sc_ipopts = ipopts;
4394 		}
4395 		sc->sc_timestamp = tb.ts_recent;
4396 		if (syn_cache_respond(sc, m) == 0) {
4397 			uint64_t *tcps = TCP_STAT_GETREF();
4398 			tcps[TCP_STAT_SNDACKS]++;
4399 			tcps[TCP_STAT_SNDTOTAL]++;
4400 			TCP_STAT_PUTREF();
4401 		}
4402 		return (1);
4403 	}
4404 
4405 	s = splsoftnet();
4406 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4407 	splx(s);
4408 	if (sc == NULL) {
4409 		if (ipopts)
4410 			(void) m_free(ipopts);
4411 		return (0);
4412 	}
4413 
4414 	/*
4415 	 * Fill in the cache, and put the necessary IP and TCP
4416 	 * options into the reply.
4417 	 */
4418 	memset(sc, 0, sizeof(struct syn_cache));
4419 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4420 	bcopy(src, &sc->sc_src, src->sa_len);
4421 	bcopy(dst, &sc->sc_dst, dst->sa_len);
4422 	sc->sc_flags = 0;
4423 	sc->sc_ipopts = ipopts;
4424 	sc->sc_irs = th->th_seq;
4425 	switch (src->sa_family) {
4426 #ifdef INET
4427 	case AF_INET:
4428 	    {
4429 		struct sockaddr_in *srcin = (void *) src;
4430 		struct sockaddr_in *dstin = (void *) dst;
4431 
4432 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4433 		    &srcin->sin_addr, dstin->sin_port,
4434 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
4435 		break;
4436 	    }
4437 #endif /* INET */
4438 #ifdef INET6
4439 	case AF_INET6:
4440 	    {
4441 		struct sockaddr_in6 *srcin6 = (void *) src;
4442 		struct sockaddr_in6 *dstin6 = (void *) dst;
4443 
4444 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4445 		    &srcin6->sin6_addr, dstin6->sin6_port,
4446 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4447 		break;
4448 	    }
4449 #endif /* INET6 */
4450 	}
4451 	sc->sc_peermaxseg = oi->maxseg;
4452 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4453 						m_get_rcvif_NOMPSAFE(m) : NULL,
4454 						sc->sc_src.sa.sa_family);
4455 	sc->sc_win = win;
4456 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
4457 	sc->sc_timestamp = tb.ts_recent;
4458 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4459 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4460 		sc->sc_flags |= SCF_TIMESTAMP;
4461 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4462 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4463 		sc->sc_requested_s_scale = tb.requested_s_scale;
4464 		sc->sc_request_r_scale = 0;
4465 		/*
4466 		 * Pick the smallest possible scaling factor that
4467 		 * will still allow us to scale up to sb_max.
4468 		 *
4469 		 * We do this because there are broken firewalls that
4470 		 * will corrupt the window scale option, leading to
4471 		 * the other endpoint believing that our advertised
4472 		 * window is unscaled.  At scale factors larger than
4473 		 * 5 the unscaled window will drop below 1500 bytes,
4474 		 * leading to serious problems when traversing these
4475 		 * broken firewalls.
4476 		 *
4477 		 * With the default sbmax of 256K, a scale factor
4478 		 * of 3 will be chosen by this algorithm.  Those who
4479 		 * choose a larger sbmax should watch out
4480 		 * for the compatiblity problems mentioned above.
4481 		 *
4482 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4483 		 * or <SYN,ACK>) segment itself is never scaled.
4484 		 */
4485 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4486 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4487 			sc->sc_request_r_scale++;
4488 	} else {
4489 		sc->sc_requested_s_scale = 15;
4490 		sc->sc_request_r_scale = 15;
4491 	}
4492 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4493 		sc->sc_flags |= SCF_SACK_PERMIT;
4494 
4495 	/*
4496 	 * ECN setup packet recieved.
4497 	 */
4498 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4499 		sc->sc_flags |= SCF_ECN_PERMIT;
4500 
4501 #ifdef TCP_SIGNATURE
4502 	if (tb.t_flags & TF_SIGNATURE)
4503 		sc->sc_flags |= SCF_SIGNATURE;
4504 #endif
4505 	sc->sc_tp = tp;
4506 	if (syn_cache_respond(sc, m) == 0) {
4507 		uint64_t *tcps = TCP_STAT_GETREF();
4508 		tcps[TCP_STAT_SNDACKS]++;
4509 		tcps[TCP_STAT_SNDTOTAL]++;
4510 		TCP_STAT_PUTREF();
4511 		syn_cache_insert(sc, tp);
4512 	} else {
4513 		s = splsoftnet();
4514 		/*
4515 		 * syn_cache_put() will try to schedule the timer, so
4516 		 * we need to initialize it
4517 		 */
4518 		syn_cache_timer_arm(sc);
4519 		syn_cache_put(sc);
4520 		splx(s);
4521 		TCP_STATINC(TCP_STAT_SC_DROPPED);
4522 	}
4523 	return (1);
4524 }
4525 
4526 /*
4527  * syn_cache_respond: (re)send SYN+ACK.
4528  *
4529  * returns 0 on success.  otherwise returns an errno, typically ENOBUFS.
4530  */
4531 
4532 int
4533 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4534 {
4535 #ifdef INET6
4536 	struct rtentry *rt = NULL;
4537 #endif
4538 	struct route *ro;
4539 	u_int8_t *optp;
4540 	int optlen, error;
4541 	u_int16_t tlen;
4542 	struct ip *ip = NULL;
4543 #ifdef INET6
4544 	struct ip6_hdr *ip6 = NULL;
4545 #endif
4546 	struct tcpcb *tp = NULL;
4547 	struct tcphdr *th;
4548 	u_int hlen;
4549 #ifdef TCP_SIGNATURE
4550 	struct secasvar *sav = NULL;
4551 	u_int8_t *sigp = NULL;
4552 #endif
4553 
4554 	ro = &sc->sc_route;
4555 	switch (sc->sc_src.sa.sa_family) {
4556 	case AF_INET:
4557 		hlen = sizeof(struct ip);
4558 		break;
4559 #ifdef INET6
4560 	case AF_INET6:
4561 		hlen = sizeof(struct ip6_hdr);
4562 		break;
4563 #endif
4564 	default:
4565 		if (m)
4566 			m_freem(m);
4567 		return (EAFNOSUPPORT);
4568 	}
4569 
4570 	/* worst case scanario, since we don't know the option size yet  */
4571 	tlen = hlen + sizeof(struct tcphdr) + MAX_TCPOPTLEN;
4572 
4573 	/*
4574 	 * Create the IP+TCP header from scratch.
4575 	 */
4576 	if (m)
4577 		m_freem(m);
4578 #ifdef DIAGNOSTIC
4579 	if (max_linkhdr + tlen > MCLBYTES)
4580 		return ENOBUFS;
4581 #endif
4582 
4583 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4584 	if (m && (max_linkhdr + tlen) > MHLEN) {
4585 		MCLGET(m, M_DONTWAIT);
4586 		if ((m->m_flags & M_EXT) == 0) {
4587 			m_freem(m);
4588 			m = NULL;
4589 		}
4590 	}
4591 	if (m == NULL)
4592 		return ENOBUFS;
4593 	MCLAIM(m, &tcp_tx_mowner);
4594 
4595 	/* Fixup the mbuf. */
4596 	m->m_data += max_linkhdr;
4597 	if (sc->sc_tp)
4598 		tp = sc->sc_tp;
4599 	m_reset_rcvif(m);
4600 	memset(mtod(m, u_char *), 0, tlen);
4601 
4602 	switch (sc->sc_src.sa.sa_family) {
4603 	case AF_INET:
4604 		ip = mtod(m, struct ip *);
4605 		ip->ip_v = 4;
4606 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4607 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4608 		ip->ip_p = IPPROTO_TCP;
4609 		th = (struct tcphdr *)(ip + 1);
4610 		th->th_dport = sc->sc_src.sin.sin_port;
4611 		th->th_sport = sc->sc_dst.sin.sin_port;
4612 		break;
4613 #ifdef INET6
4614 	case AF_INET6:
4615 		ip6 = mtod(m, struct ip6_hdr *);
4616 		ip6->ip6_vfc = IPV6_VERSION;
4617 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4618 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4619 		ip6->ip6_nxt = IPPROTO_TCP;
4620 		/* ip6_plen will be updated in ip6_output() */
4621 		th = (struct tcphdr *)(ip6 + 1);
4622 		th->th_dport = sc->sc_src.sin6.sin6_port;
4623 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4624 		break;
4625 #endif
4626 	default:
4627 		return ENOBUFS;
4628 	}
4629 
4630 	th->th_seq = htonl(sc->sc_iss);
4631 	th->th_ack = htonl(sc->sc_irs + 1);
4632 	th->th_flags = TH_SYN|TH_ACK;
4633 	th->th_win = htons(sc->sc_win);
4634 	/* th_x2, th_sum, th_urp already 0 from memset */
4635 
4636 	/* Tack on the TCP options. */
4637 	optp = (u_int8_t *)(th + 1);
4638 	optlen = 0;
4639 	*optp++ = TCPOPT_MAXSEG;
4640 	*optp++ = TCPOLEN_MAXSEG;
4641 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4642 	*optp++ = sc->sc_ourmaxseg & 0xff;
4643 	optlen += TCPOLEN_MAXSEG;
4644 
4645 	if (sc->sc_request_r_scale != 15) {
4646 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4647 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4648 		    sc->sc_request_r_scale);
4649 		optp += TCPOLEN_WINDOW + TCPOLEN_NOP;
4650 		optlen += TCPOLEN_WINDOW + TCPOLEN_NOP;
4651 	}
4652 
4653 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4654 		/* Let the peer know that we will SACK. */
4655 		*optp++ = TCPOPT_SACK_PERMITTED;
4656 		*optp++ = TCPOLEN_SACK_PERMITTED;
4657 		optlen += TCPOLEN_SACK_PERMITTED;
4658 	}
4659 
4660 	if (sc->sc_flags & SCF_TIMESTAMP) {
4661                 while (optlen % 4 != 2) {
4662                         optlen += TCPOLEN_NOP;
4663                         *optp++ = TCPOPT_NOP;
4664                 }
4665 		*optp++ = TCPOPT_TIMESTAMP;
4666 		*optp++ = TCPOLEN_TIMESTAMP;
4667 		u_int32_t *lp = (u_int32_t *)(optp);
4668 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4669 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4670 		*lp   = htonl(sc->sc_timestamp);
4671 		optp += TCPOLEN_TIMESTAMP - 2;
4672 		optlen += TCPOLEN_TIMESTAMP;
4673 	}
4674 
4675 #ifdef TCP_SIGNATURE
4676 	if (sc->sc_flags & SCF_SIGNATURE) {
4677 
4678 		sav = tcp_signature_getsav(m, th);
4679 
4680 		if (sav == NULL) {
4681 			if (m)
4682 				m_freem(m);
4683 			return (EPERM);
4684 		}
4685 
4686 		*optp++ = TCPOPT_SIGNATURE;
4687 		*optp++ = TCPOLEN_SIGNATURE;
4688 		sigp = optp;
4689 		memset(optp, 0, TCP_SIGLEN);
4690 		optp += TCP_SIGLEN;
4691 		optlen += TCPOLEN_SIGNATURE;
4692 
4693 	}
4694 #endif
4695 	/* Terminate and pad TCP options to a 4 byte boundary. */
4696 	if (optlen % 4) {
4697 		optlen += TCPOLEN_EOL;
4698 		*optp++ = TCPOPT_EOL;
4699 	}
4700 	/*
4701 	 * According to RFC 793 (STD0007):
4702 	 *   "The content of the header beyond the End-of-Option option
4703 	 *    must be header padding (i.e., zero)."
4704 	 *   and later: "The padding is composed of zeros."
4705 	 */
4706 	while (optlen % 4) {
4707 		optlen += TCPOLEN_PAD;
4708 		*optp++ = TCPOPT_PAD;
4709 	}
4710 
4711 	/* compute the actual values now that we've added the options */
4712 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4713 	m->m_len = m->m_pkthdr.len = tlen;
4714 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4715 
4716 #ifdef TCP_SIGNATURE
4717 	if (sav) {
4718 		(void)tcp_signature(m, th, hlen, sav, sigp);
4719 		key_sa_recordxfer(sav, m);
4720 		KEY_SA_UNREF(&sav);
4721 	}
4722 #endif
4723 
4724 	/*
4725 	 * Send ECN SYN-ACK setup packet.
4726 	 * Routes can be asymetric, so, even if we receive a packet
4727 	 * with ECE and CWR set, we must not assume no one will block
4728 	 * the ECE packet we are about to send.
4729 	 */
4730 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4731 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4732 		th->th_flags |= TH_ECE;
4733 		TCP_STATINC(TCP_STAT_ECN_SHS);
4734 
4735 		/*
4736 		 * draft-ietf-tcpm-ecnsyn-00.txt
4737 		 *
4738 		 * "[...] a TCP node MAY respond to an ECN-setup
4739 		 * SYN packet by setting ECT in the responding
4740 		 * ECN-setup SYN/ACK packet, indicating to routers
4741 		 * that the SYN/ACK packet is ECN-Capable.
4742 		 * This allows a congested router along the path
4743 		 * to mark the packet instead of dropping the
4744 		 * packet as an indication of congestion."
4745 		 *
4746 		 * "[...] There can be a great benefit in setting
4747 		 * an ECN-capable codepoint in SYN/ACK packets [...]
4748 		 * Congestion is  most likely to occur in
4749 		 * the server-to-client direction.  As a result,
4750 		 * setting an ECN-capable codepoint in SYN/ACK
4751 		 * packets can reduce the occurence of three-second
4752 		 * retransmit timeouts resulting from the drop
4753 		 * of SYN/ACK packets."
4754 		 *
4755 		 * Page 4 and 6, January 2006.
4756 		 */
4757 
4758 		switch (sc->sc_src.sa.sa_family) {
4759 #ifdef INET
4760 		case AF_INET:
4761 			ip->ip_tos |= IPTOS_ECN_ECT0;
4762 			break;
4763 #endif
4764 #ifdef INET6
4765 		case AF_INET6:
4766 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4767 			break;
4768 #endif
4769 		}
4770 		TCP_STATINC(TCP_STAT_ECN_ECT);
4771 	}
4772 
4773 
4774 	/* Compute the packet's checksum. */
4775 	switch (sc->sc_src.sa.sa_family) {
4776 	case AF_INET:
4777 		ip->ip_len = htons(tlen - hlen);
4778 		th->th_sum = 0;
4779 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4780 		break;
4781 #ifdef INET6
4782 	case AF_INET6:
4783 		ip6->ip6_plen = htons(tlen - hlen);
4784 		th->th_sum = 0;
4785 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4786 		break;
4787 #endif
4788 	}
4789 
4790 	/*
4791 	 * Fill in some straggling IP bits.  Note the stack expects
4792 	 * ip_len to be in host order, for convenience.
4793 	 */
4794 	switch (sc->sc_src.sa.sa_family) {
4795 #ifdef INET
4796 	case AF_INET:
4797 		ip->ip_len = htons(tlen);
4798 		ip->ip_ttl = ip_defttl;
4799 		/* XXX tos? */
4800 		break;
4801 #endif
4802 #ifdef INET6
4803 	case AF_INET6:
4804 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4805 		ip6->ip6_vfc |= IPV6_VERSION;
4806 		ip6->ip6_plen = htons(tlen - hlen);
4807 		/* ip6_hlim will be initialized afterwards */
4808 		/* XXX flowlabel? */
4809 		break;
4810 #endif
4811 	}
4812 
4813 	/* XXX use IPsec policy on listening socket, on SYN ACK */
4814 	tp = sc->sc_tp;
4815 
4816 	switch (sc->sc_src.sa.sa_family) {
4817 #ifdef INET
4818 	case AF_INET:
4819 		error = ip_output(m, sc->sc_ipopts, ro,
4820 		    (ip_mtudisc ? IP_MTUDISC : 0),
4821 		    NULL, tp ? tp->t_inpcb : NULL);
4822 		break;
4823 #endif
4824 #ifdef INET6
4825 	case AF_INET6:
4826 		ip6->ip6_hlim = in6_selecthlim(NULL,
4827 		    (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
4828 		rtcache_unref(rt, ro);
4829 
4830 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL,
4831 		    tp ? tp->t_in6pcb : NULL, NULL);
4832 		break;
4833 #endif
4834 	default:
4835 		error = EAFNOSUPPORT;
4836 		break;
4837 	}
4838 	return (error);
4839 }
4840