xref: /netbsd-src/sys/netinet/tcp_input.c (revision 76c7fc5f6b13ed0b1508e6b313e88e59977ed78e)
1 /*	$NetBSD: tcp_input.c,v 1.416 2019/09/25 19:06:30 jnemeth Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74  * 2011 The NetBSD Foundation, Inc.
75  * All rights reserved.
76  *
77  * This code is derived from software contributed to The NetBSD Foundation
78  * by Coyote Point Systems, Inc.
79  * This code is derived from software contributed to The NetBSD Foundation
80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81  * Facility, NASA Ames Research Center.
82  * This code is derived from software contributed to The NetBSD Foundation
83  * by Charles M. Hannum.
84  * This code is derived from software contributed to The NetBSD Foundation
85  * by Rui Paulo.
86  *
87  * Redistribution and use in source and binary forms, with or without
88  * modification, are permitted provided that the following conditions
89  * are met:
90  * 1. Redistributions of source code must retain the above copyright
91  *    notice, this list of conditions and the following disclaimer.
92  * 2. Redistributions in binary form must reproduce the above copyright
93  *    notice, this list of conditions and the following disclaimer in the
94  *    documentation and/or other materials provided with the distribution.
95  *
96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106  * POSSIBILITY OF SUCH DAMAGE.
107  */
108 
109 /*
110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111  *	The Regents of the University of California.  All rights reserved.
112  *
113  * Redistribution and use in source and binary forms, with or without
114  * modification, are permitted provided that the following conditions
115  * are met:
116  * 1. Redistributions of source code must retain the above copyright
117  *    notice, this list of conditions and the following disclaimer.
118  * 2. Redistributions in binary form must reproduce the above copyright
119  *    notice, this list of conditions and the following disclaimer in the
120  *    documentation and/or other materials provided with the distribution.
121  * 3. Neither the name of the University nor the names of its contributors
122  *    may be used to endorse or promote products derived from this software
123  *    without specific prior written permission.
124  *
125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135  * SUCH DAMAGE.
136  *
137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
138  */
139 
140 /*
141  *	TODO list for SYN cache stuff:
142  *
143  *	Find room for a "state" field, which is needed to keep a
144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
145  *	that this is fairly important for very high-volume web and
146  *	mail servers, which use a large number of short-lived
147  *	connections.
148  */
149 
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.416 2019/09/25 19:06:30 jnemeth Exp $");
152 
153 #ifdef _KERNEL_OPT
154 #include "opt_inet.h"
155 #include "opt_ipsec.h"
156 #include "opt_inet_csum.h"
157 #include "opt_tcp_debug.h"
158 #endif
159 
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175 #include <sys/lwp.h> /* for lwp0 */
176 #include <sys/cprng.h>
177 
178 #include <net/if.h>
179 #include <net/if_types.h>
180 
181 #include <netinet/in.h>
182 #include <netinet/in_systm.h>
183 #include <netinet/ip.h>
184 #include <netinet/in_pcb.h>
185 #include <netinet/in_var.h>
186 #include <netinet/ip_var.h>
187 #include <netinet/in_offload.h>
188 
189 #ifdef INET6
190 #include <netinet/ip6.h>
191 #include <netinet6/ip6_var.h>
192 #include <netinet6/in6_pcb.h>
193 #include <netinet6/ip6_var.h>
194 #include <netinet6/in6_var.h>
195 #include <netinet/icmp6.h>
196 #include <netinet6/nd6.h>
197 #ifdef TCP_SIGNATURE
198 #include <netinet6/scope6_var.h>
199 #endif
200 #endif
201 
202 #ifndef INET6
203 #include <netinet/ip6.h>
204 #endif
205 
206 #include <netinet/tcp.h>
207 #include <netinet/tcp_fsm.h>
208 #include <netinet/tcp_seq.h>
209 #include <netinet/tcp_timer.h>
210 #include <netinet/tcp_var.h>
211 #include <netinet/tcp_private.h>
212 #include <netinet/tcp_congctl.h>
213 #include <netinet/tcp_debug.h>
214 
215 #ifdef INET6
216 #include "faith.h"
217 #if defined(NFAITH) && NFAITH > 0
218 #include <net/if_faith.h>
219 #endif
220 #endif
221 
222 #ifdef IPSEC
223 #include <netipsec/ipsec.h>
224 #include <netipsec/key.h>
225 #ifdef INET6
226 #include <netipsec/ipsec6.h>
227 #endif
228 #endif	/* IPSEC*/
229 
230 #include <netinet/tcp_vtw.h>
231 
232 int	tcprexmtthresh = 3;
233 int	tcp_log_refused;
234 
235 int	tcp_do_autorcvbuf = 1;
236 int	tcp_autorcvbuf_inc = 16 * 1024;
237 int	tcp_autorcvbuf_max = 256 * 1024;
238 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
239 
240 static int tcp_rst_ppslim_count = 0;
241 static struct timeval tcp_rst_ppslim_last;
242 static int tcp_ackdrop_ppslim_count = 0;
243 static struct timeval tcp_ackdrop_ppslim_last;
244 
245 static void syn_cache_timer(void *);
246 
247 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
248 
249 /* for modulo comparisons of timestamps */
250 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
251 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
252 
253 /*
254  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
255  */
256 #ifdef INET6
257 static inline void
258 nd6_hint(struct tcpcb *tp)
259 {
260 	struct rtentry *rt = NULL;
261 
262 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
263 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
264 		nd6_nud_hint(rt);
265 	rtcache_unref(rt, &tp->t_in6pcb->in6p_route);
266 }
267 #else
268 static inline void
269 nd6_hint(struct tcpcb *tp)
270 {
271 }
272 #endif
273 
274 /*
275  * Compute ACK transmission behavior.  Delay the ACK unless
276  * we have already delayed an ACK (must send an ACK every two segments).
277  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
278  * option is enabled.
279  */
280 static void
281 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
282 {
283 
284 	if (tp->t_flags & TF_DELACK ||
285 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
286 		tp->t_flags |= TF_ACKNOW;
287 	else
288 		TCP_SET_DELACK(tp);
289 }
290 
291 static void
292 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
293 {
294 
295 	/*
296 	 * If we had a pending ICMP message that refers to data that have
297 	 * just been acknowledged, disregard the recorded ICMP message.
298 	 */
299 	if ((tp->t_flags & TF_PMTUD_PEND) &&
300 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
301 		tp->t_flags &= ~TF_PMTUD_PEND;
302 
303 	/*
304 	 * Keep track of the largest chunk of data
305 	 * acknowledged since last PMTU update
306 	 */
307 	if (tp->t_pmtud_mss_acked < acked)
308 		tp->t_pmtud_mss_acked = acked;
309 }
310 
311 /*
312  * Convert TCP protocol fields to host order for easier processing.
313  */
314 static void
315 tcp_fields_to_host(struct tcphdr *th)
316 {
317 
318 	NTOHL(th->th_seq);
319 	NTOHL(th->th_ack);
320 	NTOHS(th->th_win);
321 	NTOHS(th->th_urp);
322 }
323 
324 /*
325  * ... and reverse the above.
326  */
327 static void
328 tcp_fields_to_net(struct tcphdr *th)
329 {
330 
331 	HTONL(th->th_seq);
332 	HTONL(th->th_ack);
333 	HTONS(th->th_win);
334 	HTONS(th->th_urp);
335 }
336 
337 static void
338 tcp_urp_drop(struct tcphdr *th, int todrop, int *tiflags)
339 {
340 	if (th->th_urp > todrop) {
341 		th->th_urp -= todrop;
342 	} else {
343 		*tiflags &= ~TH_URG;
344 		th->th_urp = 0;
345 	}
346 }
347 
348 #ifdef TCP_CSUM_COUNTERS
349 #include <sys/device.h>
350 
351 extern struct evcnt tcp_hwcsum_ok;
352 extern struct evcnt tcp_hwcsum_bad;
353 extern struct evcnt tcp_hwcsum_data;
354 extern struct evcnt tcp_swcsum;
355 #if defined(INET6)
356 extern struct evcnt tcp6_hwcsum_ok;
357 extern struct evcnt tcp6_hwcsum_bad;
358 extern struct evcnt tcp6_hwcsum_data;
359 extern struct evcnt tcp6_swcsum;
360 #endif /* defined(INET6) */
361 
362 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
363 
364 #else
365 
366 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
367 
368 #endif /* TCP_CSUM_COUNTERS */
369 
370 #ifdef TCP_REASS_COUNTERS
371 #include <sys/device.h>
372 
373 extern struct evcnt tcp_reass_;
374 extern struct evcnt tcp_reass_empty;
375 extern struct evcnt tcp_reass_iteration[8];
376 extern struct evcnt tcp_reass_prependfirst;
377 extern struct evcnt tcp_reass_prepend;
378 extern struct evcnt tcp_reass_insert;
379 extern struct evcnt tcp_reass_inserttail;
380 extern struct evcnt tcp_reass_append;
381 extern struct evcnt tcp_reass_appendtail;
382 extern struct evcnt tcp_reass_overlaptail;
383 extern struct evcnt tcp_reass_overlapfront;
384 extern struct evcnt tcp_reass_segdup;
385 extern struct evcnt tcp_reass_fragdup;
386 
387 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
388 
389 #else
390 
391 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
392 
393 #endif /* TCP_REASS_COUNTERS */
394 
395 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
396     int);
397 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
398     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
399 
400 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
401 #ifdef INET6
402 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
403 #endif
404 
405 #if defined(MBUFTRACE)
406 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
407 #endif /* defined(MBUFTRACE) */
408 
409 static struct pool tcpipqent_pool;
410 
411 void
412 tcpipqent_init(void)
413 {
414 
415 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
416 	    NULL, IPL_VM);
417 }
418 
419 struct ipqent *
420 tcpipqent_alloc(void)
421 {
422 	struct ipqent *ipqe;
423 	int s;
424 
425 	s = splvm();
426 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
427 	splx(s);
428 
429 	return ipqe;
430 }
431 
432 void
433 tcpipqent_free(struct ipqent *ipqe)
434 {
435 	int s;
436 
437 	s = splvm();
438 	pool_put(&tcpipqent_pool, ipqe);
439 	splx(s);
440 }
441 
442 /*
443  * Insert segment ti into reassembly queue of tcp with
444  * control block tp.  Return TH_FIN if reassembly now includes
445  * a segment with FIN.
446  */
447 static int
448 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int tlen)
449 {
450 	struct ipqent *p, *q, *nq, *tiqe = NULL;
451 	struct socket *so = NULL;
452 	int pkt_flags;
453 	tcp_seq pkt_seq;
454 	unsigned pkt_len;
455 	u_long rcvpartdupbyte = 0;
456 	u_long rcvoobyte;
457 #ifdef TCP_REASS_COUNTERS
458 	u_int count = 0;
459 #endif
460 	uint64_t *tcps;
461 
462 	if (tp->t_inpcb)
463 		so = tp->t_inpcb->inp_socket;
464 #ifdef INET6
465 	else if (tp->t_in6pcb)
466 		so = tp->t_in6pcb->in6p_socket;
467 #endif
468 
469 	TCP_REASS_LOCK_CHECK(tp);
470 
471 	/*
472 	 * Call with th==NULL after become established to
473 	 * force pre-ESTABLISHED data up to user socket.
474 	 */
475 	if (th == NULL)
476 		goto present;
477 
478 	m_claimm(m, &tcp_reass_mowner);
479 
480 	rcvoobyte = tlen;
481 	/*
482 	 * Copy these to local variables because the TCP header gets munged
483 	 * while we are collapsing mbufs.
484 	 */
485 	pkt_seq = th->th_seq;
486 	pkt_len = tlen;
487 	pkt_flags = th->th_flags;
488 
489 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
490 
491 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
492 		/*
493 		 * When we miss a packet, the vast majority of time we get
494 		 * packets that follow it in order.  So optimize for that.
495 		 */
496 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
497 			p->ipqe_len += pkt_len;
498 			p->ipqe_flags |= pkt_flags;
499 			m_cat(p->ipqe_m, m);
500 			m = NULL;
501 			tiqe = p;
502 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
503 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
504 			goto skip_replacement;
505 		}
506 		/*
507 		 * While we're here, if the pkt is completely beyond
508 		 * anything we have, just insert it at the tail.
509 		 */
510 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
511 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
512 			goto insert_it;
513 		}
514 	}
515 
516 	q = TAILQ_FIRST(&tp->segq);
517 
518 	if (q != NULL) {
519 		/*
520 		 * If this segment immediately precedes the first out-of-order
521 		 * block, simply slap the segment in front of it and (mostly)
522 		 * skip the complicated logic.
523 		 */
524 		if (pkt_seq + pkt_len == q->ipqe_seq) {
525 			q->ipqe_seq = pkt_seq;
526 			q->ipqe_len += pkt_len;
527 			q->ipqe_flags |= pkt_flags;
528 			m_cat(m, q->ipqe_m);
529 			q->ipqe_m = m;
530 			tiqe = q;
531 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
532 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
533 			goto skip_replacement;
534 		}
535 	} else {
536 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
537 	}
538 
539 	/*
540 	 * Find a segment which begins after this one does.
541 	 */
542 	for (p = NULL; q != NULL; q = nq) {
543 		nq = TAILQ_NEXT(q, ipqe_q);
544 #ifdef TCP_REASS_COUNTERS
545 		count++;
546 #endif
547 
548 		/*
549 		 * If the received segment is just right after this
550 		 * fragment, merge the two together and then check
551 		 * for further overlaps.
552 		 */
553 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
554 			pkt_len += q->ipqe_len;
555 			pkt_flags |= q->ipqe_flags;
556 			pkt_seq = q->ipqe_seq;
557 			m_cat(q->ipqe_m, m);
558 			m = q->ipqe_m;
559 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
560 			goto free_ipqe;
561 		}
562 
563 		/*
564 		 * If the received segment is completely past this
565 		 * fragment, we need to go to the next fragment.
566 		 */
567 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
568 			p = q;
569 			continue;
570 		}
571 
572 		/*
573 		 * If the fragment is past the received segment,
574 		 * it (or any following) can't be concatenated.
575 		 */
576 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
577 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
578 			break;
579 		}
580 
581 		/*
582 		 * We've received all the data in this segment before.
583 		 * Mark it as a duplicate and return.
584 		 */
585 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
586 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
587 			tcps = TCP_STAT_GETREF();
588 			tcps[TCP_STAT_RCVDUPPACK]++;
589 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
590 			TCP_STAT_PUTREF();
591 			tcp_new_dsack(tp, pkt_seq, pkt_len);
592 			m_freem(m);
593 			if (tiqe != NULL) {
594 				tcpipqent_free(tiqe);
595 			}
596 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
597 			goto out;
598 		}
599 
600 		/*
601 		 * Received segment completely overlaps this fragment
602 		 * so we drop the fragment (this keeps the temporal
603 		 * ordering of segments correct).
604 		 */
605 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
606 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
607 			rcvpartdupbyte += q->ipqe_len;
608 			m_freem(q->ipqe_m);
609 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
610 			goto free_ipqe;
611 		}
612 
613 		/*
614 		 * Received segment extends past the end of the fragment.
615 		 * Drop the overlapping bytes, merge the fragment and
616 		 * segment, and treat as a longer received packet.
617 		 */
618 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
619 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
620 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
621 			m_adj(m, overlap);
622 			rcvpartdupbyte += overlap;
623 			m_cat(q->ipqe_m, m);
624 			m = q->ipqe_m;
625 			pkt_seq = q->ipqe_seq;
626 			pkt_len += q->ipqe_len - overlap;
627 			rcvoobyte -= overlap;
628 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
629 			goto free_ipqe;
630 		}
631 
632 		/*
633 		 * Received segment extends past the front of the fragment.
634 		 * Drop the overlapping bytes on the received packet. The
635 		 * packet will then be concatenated with this fragment a
636 		 * bit later.
637 		 */
638 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
639 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
640 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
641 			m_adj(m, -overlap);
642 			pkt_len -= overlap;
643 			rcvpartdupbyte += overlap;
644 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
645 			rcvoobyte -= overlap;
646 		}
647 
648 		/*
649 		 * If the received segment immediately precedes this
650 		 * fragment then tack the fragment onto this segment
651 		 * and reinsert the data.
652 		 */
653 		if (q->ipqe_seq == pkt_seq + pkt_len) {
654 			pkt_len += q->ipqe_len;
655 			pkt_flags |= q->ipqe_flags;
656 			m_cat(m, q->ipqe_m);
657 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
658 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
659 			tp->t_segqlen--;
660 			KASSERT(tp->t_segqlen >= 0);
661 			KASSERT(tp->t_segqlen != 0 ||
662 			    (TAILQ_EMPTY(&tp->segq) &&
663 			    TAILQ_EMPTY(&tp->timeq)));
664 			if (tiqe == NULL) {
665 				tiqe = q;
666 			} else {
667 				tcpipqent_free(q);
668 			}
669 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
670 			break;
671 		}
672 
673 		/*
674 		 * If the fragment is before the segment, remember it.
675 		 * When this loop is terminated, p will contain the
676 		 * pointer to the fragment that is right before the
677 		 * received segment.
678 		 */
679 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
680 			p = q;
681 
682 		continue;
683 
684 		/*
685 		 * This is a common operation.  It also will allow
686 		 * to save doing a malloc/free in most instances.
687 		 */
688 	  free_ipqe:
689 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
690 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
691 		tp->t_segqlen--;
692 		KASSERT(tp->t_segqlen >= 0);
693 		KASSERT(tp->t_segqlen != 0 ||
694 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
695 		if (tiqe == NULL) {
696 			tiqe = q;
697 		} else {
698 			tcpipqent_free(q);
699 		}
700 	}
701 
702 #ifdef TCP_REASS_COUNTERS
703 	if (count > 7)
704 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
705 	else if (count > 0)
706 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
707 #endif
708 
709 insert_it:
710 	/*
711 	 * Allocate a new queue entry (block) since the received segment
712 	 * did not collapse onto any other out-of-order block. If it had
713 	 * collapsed, tiqe would not be NULL and we would be reusing it.
714 	 *
715 	 * If the allocation fails, drop the packet.
716 	 */
717 	if (tiqe == NULL) {
718 		tiqe = tcpipqent_alloc();
719 		if (tiqe == NULL) {
720 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
721 			m_freem(m);
722 			goto out;
723 		}
724 	}
725 
726 	/*
727 	 * Update the counters.
728 	 */
729 	tp->t_rcvoopack++;
730 	tcps = TCP_STAT_GETREF();
731 	tcps[TCP_STAT_RCVOOPACK]++;
732 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
733 	if (rcvpartdupbyte) {
734 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
735 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
736 	}
737 	TCP_STAT_PUTREF();
738 
739 	/*
740 	 * Insert the new fragment queue entry into both queues.
741 	 */
742 	tiqe->ipqe_m = m;
743 	tiqe->ipqe_seq = pkt_seq;
744 	tiqe->ipqe_len = pkt_len;
745 	tiqe->ipqe_flags = pkt_flags;
746 	if (p == NULL) {
747 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
748 	} else {
749 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
750 	}
751 	tp->t_segqlen++;
752 
753 skip_replacement:
754 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
755 
756 present:
757 	/*
758 	 * Present data to user, advancing rcv_nxt through
759 	 * completed sequence space.
760 	 */
761 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
762 		goto out;
763 	q = TAILQ_FIRST(&tp->segq);
764 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
765 		goto out;
766 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
767 		goto out;
768 
769 	tp->rcv_nxt += q->ipqe_len;
770 	pkt_flags = q->ipqe_flags & TH_FIN;
771 	nd6_hint(tp);
772 
773 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
774 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
775 	tp->t_segqlen--;
776 	KASSERT(tp->t_segqlen >= 0);
777 	KASSERT(tp->t_segqlen != 0 ||
778 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
779 	if (so->so_state & SS_CANTRCVMORE)
780 		m_freem(q->ipqe_m);
781 	else
782 		sbappendstream(&so->so_rcv, q->ipqe_m);
783 	tcpipqent_free(q);
784 	TCP_REASS_UNLOCK(tp);
785 	sorwakeup(so);
786 	return pkt_flags;
787 
788 out:
789 	TCP_REASS_UNLOCK(tp);
790 	return 0;
791 }
792 
793 #ifdef INET6
794 int
795 tcp6_input(struct mbuf **mp, int *offp, int proto)
796 {
797 	struct mbuf *m = *mp;
798 
799 	/*
800 	 * draft-itojun-ipv6-tcp-to-anycast
801 	 * better place to put this in?
802 	 */
803 	if (m->m_flags & M_ANYCAST6) {
804 		struct ip6_hdr *ip6;
805 		if (m->m_len < sizeof(struct ip6_hdr)) {
806 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
807 				TCP_STATINC(TCP_STAT_RCVSHORT);
808 				return IPPROTO_DONE;
809 			}
810 		}
811 		ip6 = mtod(m, struct ip6_hdr *);
812 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
813 		    (char *)&ip6->ip6_dst - (char *)ip6);
814 		return IPPROTO_DONE;
815 	}
816 
817 	tcp_input(m, *offp, proto);
818 	return IPPROTO_DONE;
819 }
820 #endif
821 
822 static void
823 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
824 {
825 	char src[INET_ADDRSTRLEN];
826 	char dst[INET_ADDRSTRLEN];
827 
828 	if (ip) {
829 		in_print(src, sizeof(src), &ip->ip_src);
830 		in_print(dst, sizeof(dst), &ip->ip_dst);
831 	} else {
832 		strlcpy(src, "(unknown)", sizeof(src));
833 		strlcpy(dst, "(unknown)", sizeof(dst));
834 	}
835 	log(LOG_INFO,
836 	    "Connection attempt to TCP %s:%d from %s:%d\n",
837 	    dst, ntohs(th->th_dport),
838 	    src, ntohs(th->th_sport));
839 }
840 
841 #ifdef INET6
842 static void
843 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
844 {
845 	char src[INET6_ADDRSTRLEN];
846 	char dst[INET6_ADDRSTRLEN];
847 
848 	if (ip6) {
849 		in6_print(src, sizeof(src), &ip6->ip6_src);
850 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
851 	} else {
852 		strlcpy(src, "(unknown v6)", sizeof(src));
853 		strlcpy(dst, "(unknown v6)", sizeof(dst));
854 	}
855 	log(LOG_INFO,
856 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
857 	    dst, ntohs(th->th_dport),
858 	    src, ntohs(th->th_sport));
859 }
860 #endif
861 
862 /*
863  * Checksum extended TCP header and data.
864  */
865 int
866 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
867     int toff, int off, int tlen)
868 {
869 	struct ifnet *rcvif;
870 	int s;
871 
872 	/*
873 	 * XXX it's better to record and check if this mbuf is
874 	 * already checked.
875 	 */
876 
877 	rcvif = m_get_rcvif(m, &s);
878 	if (__predict_false(rcvif == NULL))
879 		goto badcsum; /* XXX */
880 
881 	switch (af) {
882 	case AF_INET:
883 		switch (m->m_pkthdr.csum_flags &
884 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
885 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
886 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
887 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
888 			goto badcsum;
889 
890 		case M_CSUM_TCPv4|M_CSUM_DATA: {
891 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
892 
893 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
894 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
895 				const struct ip *ip =
896 				    mtod(m, const struct ip *);
897 
898 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
899 				    ip->ip_dst.s_addr,
900 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
901 			}
902 			if ((hw_csum ^ 0xffff) != 0)
903 				goto badcsum;
904 			break;
905 		}
906 
907 		case M_CSUM_TCPv4:
908 			/* Checksum was okay. */
909 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
910 			break;
911 
912 		default:
913 			/*
914 			 * Must compute it ourselves.  Maybe skip checksum
915 			 * on loopback interfaces.
916 			 */
917 			if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
918 					   tcp_do_loopback_cksum)) {
919 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
920 				if (in4_cksum(m, IPPROTO_TCP, toff,
921 					      tlen + off) != 0)
922 					goto badcsum;
923 			}
924 			break;
925 		}
926 		break;
927 
928 #ifdef INET6
929 	case AF_INET6:
930 		switch (m->m_pkthdr.csum_flags &
931 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
932 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
933 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
934 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
935 			goto badcsum;
936 
937 #if 0 /* notyet */
938 		case M_CSUM_TCPv6|M_CSUM_DATA:
939 #endif
940 
941 		case M_CSUM_TCPv6:
942 			/* Checksum was okay. */
943 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
944 			break;
945 
946 		default:
947 			/*
948 			 * Must compute it ourselves.  Maybe skip checksum
949 			 * on loopback interfaces.
950 			 */
951 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
952 			    tcp_do_loopback_cksum)) {
953 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
954 				if (in6_cksum(m, IPPROTO_TCP, toff,
955 				    tlen + off) != 0)
956 					goto badcsum;
957 			}
958 		}
959 		break;
960 #endif /* INET6 */
961 	}
962 	m_put_rcvif(rcvif, &s);
963 
964 	return 0;
965 
966 badcsum:
967 	m_put_rcvif(rcvif, &s);
968 	TCP_STATINC(TCP_STAT_RCVBADSUM);
969 	return -1;
970 }
971 
972 /*
973  * When a packet arrives addressed to a vestigial tcpbp, we
974  * nevertheless have to respond to it per the spec.
975  *
976  * This code is duplicated from the one in tcp_input().
977  */
978 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
979     struct mbuf *m, int tlen)
980 {
981 	int tiflags;
982 	int todrop;
983 	uint32_t t_flags = 0;
984 	uint64_t *tcps;
985 
986 	tiflags = th->th_flags;
987 	todrop  = vp->rcv_nxt - th->th_seq;
988 
989 	if (todrop > 0) {
990 		if (tiflags & TH_SYN) {
991 			tiflags &= ~TH_SYN;
992 			th->th_seq++;
993 			tcp_urp_drop(th, 1, &tiflags);
994 			todrop--;
995 		}
996 		if (todrop > tlen ||
997 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
998 			/*
999 			 * Any valid FIN or RST must be to the left of the
1000 			 * window.  At this point the FIN or RST must be a
1001 			 * duplicate or out of sequence; drop it.
1002 			 */
1003 			if (tiflags & TH_RST)
1004 				goto drop;
1005 			tiflags &= ~(TH_FIN|TH_RST);
1006 
1007 			/*
1008 			 * Send an ACK to resynchronize and drop any data.
1009 			 * But keep on processing for RST or ACK.
1010 			 */
1011 			t_flags |= TF_ACKNOW;
1012 			todrop = tlen;
1013 			tcps = TCP_STAT_GETREF();
1014 			tcps[TCP_STAT_RCVDUPPACK] += 1;
1015 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1016 			TCP_STAT_PUTREF();
1017 		} else if ((tiflags & TH_RST) &&
1018 		    th->th_seq != vp->rcv_nxt) {
1019 			/*
1020 			 * Test for reset before adjusting the sequence
1021 			 * number for overlapping data.
1022 			 */
1023 			goto dropafterack_ratelim;
1024 		} else {
1025 			tcps = TCP_STAT_GETREF();
1026 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1027 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1028 			TCP_STAT_PUTREF();
1029 		}
1030 
1031 //		tcp_new_dsack(tp, th->th_seq, todrop);
1032 //		hdroptlen += todrop;	/*drop from head afterwards*/
1033 
1034 		th->th_seq += todrop;
1035 		tlen -= todrop;
1036 		tcp_urp_drop(th, todrop, &tiflags);
1037 	}
1038 
1039 	/*
1040 	 * If new data are received on a connection after the
1041 	 * user processes are gone, then RST the other end.
1042 	 */
1043 	if (tlen) {
1044 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1045 		goto dropwithreset;
1046 	}
1047 
1048 	/*
1049 	 * If segment ends after window, drop trailing data
1050 	 * (and PUSH and FIN); if nothing left, just ACK.
1051 	 */
1052 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt + vp->rcv_wnd);
1053 
1054 	if (todrop > 0) {
1055 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1056 		if (todrop >= tlen) {
1057 			/*
1058 			 * The segment actually starts after the window.
1059 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1060 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1061 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1062 			 */
1063 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1064 
1065 			/*
1066 			 * If a new connection request is received
1067 			 * while in TIME_WAIT, drop the old connection
1068 			 * and start over if the sequence numbers
1069 			 * are above the previous ones.
1070 			 */
1071 			if ((tiflags & TH_SYN) &&
1072 			    SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1073 				/*
1074 				 * We only support this in the !NOFDREF case, which
1075 				 * is to say: not here.
1076 				 */
1077 				goto dropwithreset;
1078 			}
1079 
1080 			/*
1081 			 * If window is closed can only take segments at
1082 			 * window edge, and have to drop data and PUSH from
1083 			 * incoming segments.  Continue processing, but
1084 			 * remember to ack.  Otherwise, drop segment
1085 			 * and (if not RST) ack.
1086 			 */
1087 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1088 				t_flags |= TF_ACKNOW;
1089 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
1090 			} else {
1091 				goto dropafterack;
1092 			}
1093 		} else {
1094 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1095 		}
1096 		m_adj(m, -todrop);
1097 		tlen -= todrop;
1098 		tiflags &= ~(TH_PUSH|TH_FIN);
1099 	}
1100 
1101 	if (tiflags & TH_RST) {
1102 		if (th->th_seq != vp->rcv_nxt)
1103 			goto dropafterack_ratelim;
1104 
1105 		vtw_del(vp->ctl, vp->vtw);
1106 		goto drop;
1107 	}
1108 
1109 	/*
1110 	 * If the ACK bit is off we drop the segment and return.
1111 	 */
1112 	if ((tiflags & TH_ACK) == 0) {
1113 		if (t_flags & TF_ACKNOW)
1114 			goto dropafterack;
1115 		goto drop;
1116 	}
1117 
1118 	/*
1119 	 * In TIME_WAIT state the only thing that should arrive
1120 	 * is a retransmission of the remote FIN.  Acknowledge
1121 	 * it and restart the finack timer.
1122 	 */
1123 	vtw_restart(vp);
1124 	goto dropafterack;
1125 
1126 dropafterack:
1127 	/*
1128 	 * Generate an ACK dropping incoming segment if it occupies
1129 	 * sequence space, where the ACK reflects our state.
1130 	 */
1131 	if (tiflags & TH_RST)
1132 		goto drop;
1133 	goto dropafterack2;
1134 
1135 dropafterack_ratelim:
1136 	/*
1137 	 * We may want to rate-limit ACKs against SYN/RST attack.
1138 	 */
1139 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1140 	    tcp_ackdrop_ppslim) == 0) {
1141 		/* XXX stat */
1142 		goto drop;
1143 	}
1144 	/* ...fall into dropafterack2... */
1145 
1146 dropafterack2:
1147 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack, TH_ACK);
1148 	return;
1149 
1150 dropwithreset:
1151 	/*
1152 	 * Generate a RST, dropping incoming segment.
1153 	 * Make ACK acceptable to originator of segment.
1154 	 */
1155 	if (tiflags & TH_RST)
1156 		goto drop;
1157 
1158 	if (tiflags & TH_ACK) {
1159 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1160 	} else {
1161 		if (tiflags & TH_SYN)
1162 			++tlen;
1163 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1164 		    TH_RST|TH_ACK);
1165 	}
1166 	return;
1167 drop:
1168 	m_freem(m);
1169 }
1170 
1171 /*
1172  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1173  */
1174 void
1175 tcp_input(struct mbuf *m, int off, int proto)
1176 {
1177 	struct tcphdr *th;
1178 	struct ip *ip;
1179 	struct inpcb *inp;
1180 #ifdef INET6
1181 	struct ip6_hdr *ip6;
1182 	struct in6pcb *in6p;
1183 #endif
1184 	u_int8_t *optp = NULL;
1185 	int optlen = 0;
1186 	int len, tlen, hdroptlen = 0;
1187 	struct tcpcb *tp = NULL;
1188 	int tiflags;
1189 	struct socket *so = NULL;
1190 	int todrop, acked, ourfinisacked, needoutput = 0;
1191 	bool dupseg;
1192 #ifdef TCP_DEBUG
1193 	short ostate = 0;
1194 #endif
1195 	u_long tiwin;
1196 	struct tcp_opt_info opti;
1197 	int thlen, iphlen;
1198 	int af;		/* af on the wire */
1199 	struct mbuf *tcp_saveti = NULL;
1200 	uint32_t ts_rtt;
1201 	uint8_t iptos;
1202 	uint64_t *tcps;
1203 	vestigial_inpcb_t vestige;
1204 
1205 	vestige.valid = 0;
1206 
1207 	MCLAIM(m, &tcp_rx_mowner);
1208 
1209 	TCP_STATINC(TCP_STAT_RCVTOTAL);
1210 
1211 	memset(&opti, 0, sizeof(opti));
1212 	opti.ts_present = 0;
1213 	opti.maxseg = 0;
1214 
1215 	/*
1216 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1217 	 *
1218 	 * TCP is, by definition, unicast, so we reject all
1219 	 * multicast outright.
1220 	 *
1221 	 * Note, there are additional src/dst address checks in
1222 	 * the AF-specific code below.
1223 	 */
1224 	if (m->m_flags & (M_BCAST|M_MCAST)) {
1225 		/* XXX stat */
1226 		goto drop;
1227 	}
1228 #ifdef INET6
1229 	if (m->m_flags & M_ANYCAST6) {
1230 		/* XXX stat */
1231 		goto drop;
1232 	}
1233 #endif
1234 
1235 	M_REGION_GET(th, struct tcphdr *, m, off, sizeof(struct tcphdr));
1236 	if (th == NULL) {
1237 		TCP_STATINC(TCP_STAT_RCVSHORT);
1238 		return;
1239 	}
1240 
1241 	/*
1242 	 * Get IP and TCP header.
1243 	 * Note: IP leaves IP header in first mbuf.
1244 	 */
1245 	ip = mtod(m, struct ip *);
1246 	switch (ip->ip_v) {
1247 	case 4:
1248 #ifdef INET6
1249 		ip6 = NULL;
1250 #endif
1251 		af = AF_INET;
1252 		iphlen = sizeof(struct ip);
1253 
1254 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1255 		    in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
1256 			goto drop;
1257 
1258 		/* We do the checksum after PCB lookup... */
1259 		len = ntohs(ip->ip_len);
1260 		tlen = len - off;
1261 		iptos = ip->ip_tos;
1262 		break;
1263 #ifdef INET6
1264 	case 6:
1265 		ip = NULL;
1266 		iphlen = sizeof(struct ip6_hdr);
1267 		af = AF_INET6;
1268 		ip6 = mtod(m, struct ip6_hdr *);
1269 
1270 		/*
1271 		 * Be proactive about unspecified IPv6 address in source.
1272 		 * As we use all-zero to indicate unbounded/unconnected pcb,
1273 		 * unspecified IPv6 address can be used to confuse us.
1274 		 *
1275 		 * Note that packets with unspecified IPv6 destination is
1276 		 * already dropped in ip6_input.
1277 		 */
1278 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1279 			/* XXX stat */
1280 			goto drop;
1281 		}
1282 
1283 		/*
1284 		 * Make sure destination address is not multicast.
1285 		 * Source address checked in ip6_input().
1286 		 */
1287 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1288 			/* XXX stat */
1289 			goto drop;
1290 		}
1291 
1292 		/* We do the checksum after PCB lookup... */
1293 		len = m->m_pkthdr.len;
1294 		tlen = len - off;
1295 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1296 		break;
1297 #endif
1298 	default:
1299 		m_freem(m);
1300 		return;
1301 	}
1302 
1303 	/*
1304 	 * Enforce alignment requirements that are violated in
1305 	 * some cases, see kern/50766 for details.
1306 	 */
1307 	if (TCP_HDR_ALIGNED_P(th) == 0) {
1308 		m = m_copyup(m, off + sizeof(struct tcphdr), 0);
1309 		if (m == NULL) {
1310 			TCP_STATINC(TCP_STAT_RCVSHORT);
1311 			return;
1312 		}
1313 		ip = mtod(m, struct ip *);
1314 #ifdef INET6
1315 		ip6 = mtod(m, struct ip6_hdr *);
1316 #endif
1317 		th = (struct tcphdr *)(mtod(m, char *) + off);
1318 	}
1319 	KASSERT(TCP_HDR_ALIGNED_P(th));
1320 
1321 	/*
1322 	 * Check that TCP offset makes sense, pull out TCP options and
1323 	 * adjust length.
1324 	 */
1325 	thlen = th->th_off << 2;
1326 	if (thlen < sizeof(struct tcphdr) || thlen > tlen) {
1327 		TCP_STATINC(TCP_STAT_RCVBADOFF);
1328 		goto drop;
1329 	}
1330 	tlen -= thlen;
1331 
1332 	if (thlen > sizeof(struct tcphdr)) {
1333 		M_REGION_GET(th, struct tcphdr *, m, off, thlen);
1334 		if (th == NULL) {
1335 			TCP_STATINC(TCP_STAT_RCVSHORT);
1336 			return;
1337 		}
1338 		KASSERT(TCP_HDR_ALIGNED_P(th));
1339 		optlen = thlen - sizeof(struct tcphdr);
1340 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1341 
1342 		/*
1343 		 * Do quick retrieval of timestamp options.
1344 		 *
1345 		 * If timestamp is the only option and it's formatted as
1346 		 * recommended in RFC 1323 appendix A, we quickly get the
1347 		 * values now and don't bother calling tcp_dooptions(),
1348 		 * etc.
1349 		 */
1350 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1351 		     (optlen > TCPOLEN_TSTAMP_APPA &&
1352 		      optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1353 		    be32dec(optp) == TCPOPT_TSTAMP_HDR &&
1354 		    (th->th_flags & TH_SYN) == 0) {
1355 			opti.ts_present = 1;
1356 			opti.ts_val = be32dec(optp + 4);
1357 			opti.ts_ecr = be32dec(optp + 8);
1358 			optp = NULL;	/* we've parsed the options */
1359 		}
1360 	}
1361 	tiflags = th->th_flags;
1362 
1363 	/*
1364 	 * Checksum extended TCP header and data
1365 	 */
1366 	if (tcp_input_checksum(af, m, th, off, thlen, tlen))
1367 		goto badcsum;
1368 
1369 	/*
1370 	 * Locate pcb for segment.
1371 	 */
1372 findpcb:
1373 	inp = NULL;
1374 #ifdef INET6
1375 	in6p = NULL;
1376 #endif
1377 	switch (af) {
1378 	case AF_INET:
1379 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1380 		    ip->ip_dst, th->th_dport, &vestige);
1381 		if (inp == NULL && !vestige.valid) {
1382 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1383 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst,
1384 			    th->th_dport);
1385 		}
1386 #ifdef INET6
1387 		if (inp == NULL && !vestige.valid) {
1388 			struct in6_addr s, d;
1389 
1390 			/* mapped addr case */
1391 			in6_in_2_v4mapin6(&ip->ip_src, &s);
1392 			in6_in_2_v4mapin6(&ip->ip_dst, &d);
1393 			in6p = in6_pcblookup_connect(&tcbtable, &s,
1394 			    th->th_sport, &d, th->th_dport, 0, &vestige);
1395 			if (in6p == 0 && !vestige.valid) {
1396 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
1397 				in6p = in6_pcblookup_bind(&tcbtable, &d,
1398 				    th->th_dport, 0);
1399 			}
1400 		}
1401 #endif
1402 #ifndef INET6
1403 		if (inp == NULL && !vestige.valid)
1404 #else
1405 		if (inp == NULL && in6p == NULL && !vestige.valid)
1406 #endif
1407 		{
1408 			TCP_STATINC(TCP_STAT_NOPORT);
1409 			if (tcp_log_refused &&
1410 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1411 				tcp4_log_refused(ip, th);
1412 			}
1413 			tcp_fields_to_host(th);
1414 			goto dropwithreset_ratelim;
1415 		}
1416 #if defined(IPSEC)
1417 		if (ipsec_used) {
1418 			if (inp && ipsec_in_reject(m, inp)) {
1419 				goto drop;
1420 			}
1421 #ifdef INET6
1422 			else if (in6p && ipsec_in_reject(m, in6p)) {
1423 				goto drop;
1424 			}
1425 #endif
1426 		}
1427 #endif /*IPSEC*/
1428 		break;
1429 #ifdef INET6
1430 	case AF_INET6:
1431 	    {
1432 		int faith;
1433 
1434 #if defined(NFAITH) && NFAITH > 0
1435 		faith = faithprefix(&ip6->ip6_dst);
1436 #else
1437 		faith = 0;
1438 #endif
1439 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1440 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1441 		if (!in6p && !vestige.valid) {
1442 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1443 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1444 			    th->th_dport, faith);
1445 		}
1446 		if (!in6p && !vestige.valid) {
1447 			TCP_STATINC(TCP_STAT_NOPORT);
1448 			if (tcp_log_refused &&
1449 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1450 				tcp6_log_refused(ip6, th);
1451 			}
1452 			tcp_fields_to_host(th);
1453 			goto dropwithreset_ratelim;
1454 		}
1455 #if defined(IPSEC)
1456 		if (ipsec_used && in6p && ipsec_in_reject(m, in6p)) {
1457 			goto drop;
1458 		}
1459 #endif
1460 		break;
1461 	    }
1462 #endif
1463 	}
1464 
1465 	tcp_fields_to_host(th);
1466 
1467 	/*
1468 	 * If the state is CLOSED (i.e., TCB does not exist) then
1469 	 * all data in the incoming segment is discarded.
1470 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1471 	 * but should either do a listen or a connect soon.
1472 	 */
1473 	tp = NULL;
1474 	so = NULL;
1475 	if (inp) {
1476 		/* Check the minimum TTL for socket. */
1477 		if (ip->ip_ttl < inp->inp_ip_minttl)
1478 			goto drop;
1479 
1480 		tp = intotcpcb(inp);
1481 		so = inp->inp_socket;
1482 	}
1483 #ifdef INET6
1484 	else if (in6p) {
1485 		tp = in6totcpcb(in6p);
1486 		so = in6p->in6p_socket;
1487 	}
1488 #endif
1489 	else if (vestige.valid) {
1490 		/* We do not support the resurrection of vtw tcpcps. */
1491 		tcp_vtw_input(th, &vestige, m, tlen);
1492 		m = NULL;
1493 		goto drop;
1494 	}
1495 
1496 	if (tp == NULL)
1497 		goto dropwithreset_ratelim;
1498 	if (tp->t_state == TCPS_CLOSED)
1499 		goto drop;
1500 
1501 	KASSERT(so->so_lock == softnet_lock);
1502 	KASSERT(solocked(so));
1503 
1504 	/* Unscale the window into a 32-bit value. */
1505 	if ((tiflags & TH_SYN) == 0)
1506 		tiwin = th->th_win << tp->snd_scale;
1507 	else
1508 		tiwin = th->th_win;
1509 
1510 #ifdef INET6
1511 	/* save packet options if user wanted */
1512 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1513 		if (in6p->in6p_options) {
1514 			m_freem(in6p->in6p_options);
1515 			in6p->in6p_options = NULL;
1516 		}
1517 		KASSERT(ip6 != NULL);
1518 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1519 	}
1520 #endif
1521 
1522 	if (so->so_options & SO_DEBUG) {
1523 #ifdef TCP_DEBUG
1524 		ostate = tp->t_state;
1525 #endif
1526 
1527 		tcp_saveti = NULL;
1528 		if (iphlen + sizeof(struct tcphdr) > MHLEN)
1529 			goto nosave;
1530 
1531 		if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1532 			tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1533 			if (tcp_saveti == NULL)
1534 				goto nosave;
1535 		} else {
1536 			MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1537 			if (tcp_saveti == NULL)
1538 				goto nosave;
1539 			MCLAIM(m, &tcp_mowner);
1540 			tcp_saveti->m_len = iphlen;
1541 			m_copydata(m, 0, iphlen,
1542 			    mtod(tcp_saveti, void *));
1543 		}
1544 
1545 		if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1546 			m_freem(tcp_saveti);
1547 			tcp_saveti = NULL;
1548 		} else {
1549 			tcp_saveti->m_len += sizeof(struct tcphdr);
1550 			memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1551 			    sizeof(struct tcphdr));
1552 		}
1553 nosave:;
1554 	}
1555 
1556 	if (so->so_options & SO_ACCEPTCONN) {
1557 		union syn_cache_sa src;
1558 		union syn_cache_sa dst;
1559 
1560 		KASSERT(tp->t_state == TCPS_LISTEN);
1561 
1562 		memset(&src, 0, sizeof(src));
1563 		memset(&dst, 0, sizeof(dst));
1564 		switch (af) {
1565 		case AF_INET:
1566 			src.sin.sin_len = sizeof(struct sockaddr_in);
1567 			src.sin.sin_family = AF_INET;
1568 			src.sin.sin_addr = ip->ip_src;
1569 			src.sin.sin_port = th->th_sport;
1570 
1571 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1572 			dst.sin.sin_family = AF_INET;
1573 			dst.sin.sin_addr = ip->ip_dst;
1574 			dst.sin.sin_port = th->th_dport;
1575 			break;
1576 #ifdef INET6
1577 		case AF_INET6:
1578 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1579 			src.sin6.sin6_family = AF_INET6;
1580 			src.sin6.sin6_addr = ip6->ip6_src;
1581 			src.sin6.sin6_port = th->th_sport;
1582 
1583 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1584 			dst.sin6.sin6_family = AF_INET6;
1585 			dst.sin6.sin6_addr = ip6->ip6_dst;
1586 			dst.sin6.sin6_port = th->th_dport;
1587 			break;
1588 #endif
1589 		}
1590 
1591 		if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1592 			if (tiflags & TH_RST) {
1593 				syn_cache_reset(&src.sa, &dst.sa, th);
1594 			} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1595 			    (TH_ACK|TH_SYN)) {
1596 				/*
1597 				 * Received a SYN,ACK. This should never
1598 				 * happen while we are in LISTEN. Send an RST.
1599 				 */
1600 				goto badsyn;
1601 			} else if (tiflags & TH_ACK) {
1602 				so = syn_cache_get(&src.sa, &dst.sa, th, so, m);
1603 				if (so == NULL) {
1604 					/*
1605 					 * We don't have a SYN for this ACK;
1606 					 * send an RST.
1607 					 */
1608 					goto badsyn;
1609 				} else if (so == (struct socket *)(-1)) {
1610 					/*
1611 					 * We were unable to create the
1612 					 * connection. If the 3-way handshake
1613 					 * was completed, and RST has been
1614 					 * sent to the peer. Since the mbuf
1615 					 * might be in use for the reply, do
1616 					 * not free it.
1617 					 */
1618 					m = NULL;
1619 				} else {
1620 					/*
1621 					 * We have created a full-blown
1622 					 * connection.
1623 					 */
1624 					tp = NULL;
1625 					inp = NULL;
1626 #ifdef INET6
1627 					in6p = NULL;
1628 #endif
1629 					switch (so->so_proto->pr_domain->dom_family) {
1630 					case AF_INET:
1631 						inp = sotoinpcb(so);
1632 						tp = intotcpcb(inp);
1633 						break;
1634 #ifdef INET6
1635 					case AF_INET6:
1636 						in6p = sotoin6pcb(so);
1637 						tp = in6totcpcb(in6p);
1638 						break;
1639 #endif
1640 					}
1641 					if (tp == NULL)
1642 						goto badsyn;	/*XXX*/
1643 					tiwin <<= tp->snd_scale;
1644 					goto after_listen;
1645 				}
1646 			} else {
1647 				/*
1648 				 * None of RST, SYN or ACK was set.
1649 				 * This is an invalid packet for a
1650 				 * TCB in LISTEN state.  Send a RST.
1651 				 */
1652 				goto badsyn;
1653 			}
1654 		} else {
1655 			/*
1656 			 * Received a SYN.
1657 			 */
1658 
1659 #ifdef INET6
1660 			/*
1661 			 * If deprecated address is forbidden, we do
1662 			 * not accept SYN to deprecated interface
1663 			 * address to prevent any new inbound
1664 			 * connection from getting established.
1665 			 * When we do not accept SYN, we send a TCP
1666 			 * RST, with deprecated source address (instead
1667 			 * of dropping it).  We compromise it as it is
1668 			 * much better for peer to send a RST, and
1669 			 * RST will be the final packet for the
1670 			 * exchange.
1671 			 *
1672 			 * If we do not forbid deprecated addresses, we
1673 			 * accept the SYN packet.  RFC2462 does not
1674 			 * suggest dropping SYN in this case.
1675 			 * If we decipher RFC2462 5.5.4, it says like
1676 			 * this:
1677 			 * 1. use of deprecated addr with existing
1678 			 *    communication is okay - "SHOULD continue
1679 			 *    to be used"
1680 			 * 2. use of it with new communication:
1681 			 *   (2a) "SHOULD NOT be used if alternate
1682 			 *        address with sufficient scope is
1683 			 *        available"
1684 			 *   (2b) nothing mentioned otherwise.
1685 			 * Here we fall into (2b) case as we have no
1686 			 * choice in our source address selection - we
1687 			 * must obey the peer.
1688 			 *
1689 			 * The wording in RFC2462 is confusing, and
1690 			 * there are multiple description text for
1691 			 * deprecated address handling - worse, they
1692 			 * are not exactly the same.  I believe 5.5.4
1693 			 * is the best one, so we follow 5.5.4.
1694 			 */
1695 			if (af == AF_INET6 && !ip6_use_deprecated) {
1696 				struct in6_ifaddr *ia6;
1697 				int s;
1698 				struct ifnet *rcvif = m_get_rcvif(m, &s);
1699 				if (rcvif == NULL)
1700 					goto dropwithreset; /* XXX */
1701 				if ((ia6 = in6ifa_ifpwithaddr(rcvif,
1702 				    &ip6->ip6_dst)) &&
1703 				    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1704 					tp = NULL;
1705 					m_put_rcvif(rcvif, &s);
1706 					goto dropwithreset;
1707 				}
1708 				m_put_rcvif(rcvif, &s);
1709 			}
1710 #endif
1711 
1712 			/*
1713 			 * LISTEN socket received a SYN from itself? This
1714 			 * can't possibly be valid; drop the packet.
1715 			 */
1716 			if (th->th_sport == th->th_dport) {
1717 				int eq = 0;
1718 
1719 				switch (af) {
1720 				case AF_INET:
1721 					eq = in_hosteq(ip->ip_src, ip->ip_dst);
1722 					break;
1723 #ifdef INET6
1724 				case AF_INET6:
1725 					eq = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
1726 					    &ip6->ip6_dst);
1727 					break;
1728 #endif
1729 				}
1730 				if (eq) {
1731 					TCP_STATINC(TCP_STAT_BADSYN);
1732 					goto drop;
1733 				}
1734 			}
1735 
1736 			/*
1737 			 * SYN looks ok; create compressed TCP
1738 			 * state for it.
1739 			 */
1740 			if (so->so_qlen <= so->so_qlimit &&
1741 			    syn_cache_add(&src.sa, &dst.sa, th, off,
1742 			    so, m, optp, optlen, &opti))
1743 				m = NULL;
1744 		}
1745 
1746 		goto drop;
1747 	}
1748 
1749 after_listen:
1750 	/*
1751 	 * From here on, we're dealing with !LISTEN.
1752 	 */
1753 	KASSERT(tp->t_state != TCPS_LISTEN);
1754 
1755 	/*
1756 	 * Segment received on connection.
1757 	 * Reset idle time and keep-alive timer.
1758 	 */
1759 	tp->t_rcvtime = tcp_now;
1760 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1761 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1762 
1763 	/*
1764 	 * Process options.
1765 	 */
1766 #ifdef TCP_SIGNATURE
1767 	if (optp || (tp->t_flags & TF_SIGNATURE))
1768 #else
1769 	if (optp)
1770 #endif
1771 		if (tcp_dooptions(tp, optp, optlen, th, m, off, &opti) < 0)
1772 			goto drop;
1773 
1774 	if (TCP_SACK_ENABLED(tp)) {
1775 		tcp_del_sackholes(tp, th);
1776 	}
1777 
1778 	if (TCP_ECN_ALLOWED(tp)) {
1779 		if (tiflags & TH_CWR) {
1780 			tp->t_flags &= ~TF_ECN_SND_ECE;
1781 		}
1782 		switch (iptos & IPTOS_ECN_MASK) {
1783 		case IPTOS_ECN_CE:
1784 			tp->t_flags |= TF_ECN_SND_ECE;
1785 			TCP_STATINC(TCP_STAT_ECN_CE);
1786 			break;
1787 		case IPTOS_ECN_ECT0:
1788 			TCP_STATINC(TCP_STAT_ECN_ECT);
1789 			break;
1790 		case IPTOS_ECN_ECT1:
1791 			/* XXX: ignore for now -- rpaulo */
1792 			break;
1793 		}
1794 		/*
1795 		 * Congestion experienced.
1796 		 * Ignore if we are already trying to recover.
1797 		 */
1798 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1799 			tp->t_congctl->cong_exp(tp);
1800 	}
1801 
1802 	if (opti.ts_present && opti.ts_ecr) {
1803 		/*
1804 		 * Calculate the RTT from the returned time stamp and the
1805 		 * connection's time base.  If the time stamp is later than
1806 		 * the current time, or is extremely old, fall back to non-1323
1807 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
1808 		 * at the same time.
1809 		 *
1810 		 * Note that ts_rtt is in units of slow ticks (500
1811 		 * ms).  Since most earthbound RTTs are < 500 ms,
1812 		 * observed values will have large quantization noise.
1813 		 * Our smoothed RTT is then the fraction of observed
1814 		 * samples that are 1 tick instead of 0 (times 500
1815 		 * ms).
1816 		 *
1817 		 * ts_rtt is increased by 1 to denote a valid sample,
1818 		 * with 0 indicating an invalid measurement.  This
1819 		 * extra 1 must be removed when ts_rtt is used, or
1820 		 * else an erroneous extra 500 ms will result.
1821 		 */
1822 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1823 		if (ts_rtt > TCP_PAWS_IDLE)
1824 			ts_rtt = 0;
1825 	} else {
1826 		ts_rtt = 0;
1827 	}
1828 
1829 	/*
1830 	 * Fast path: check for the two common cases of a uni-directional
1831 	 * data transfer. If:
1832 	 *    o We are in the ESTABLISHED state, and
1833 	 *    o The packet has no control flags, and
1834 	 *    o The packet is in-sequence, and
1835 	 *    o The window didn't change, and
1836 	 *    o We are not retransmitting
1837 	 * It's a candidate.
1838 	 *
1839 	 * If the length (tlen) is zero and the ack moved forward, we're
1840 	 * the sender side of the transfer. Just free the data acked and
1841 	 * wake any higher level process that was blocked waiting for
1842 	 * space.
1843 	 *
1844 	 * If the length is non-zero and the ack didn't move, we're the
1845 	 * receiver side. If we're getting packets in-order (the reassembly
1846 	 * queue is empty), add the data to the socket buffer and note
1847 	 * that we need a delayed ack.
1848 	 */
1849 	if (tp->t_state == TCPS_ESTABLISHED &&
1850 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1851 	        == TH_ACK &&
1852 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1853 	    th->th_seq == tp->rcv_nxt &&
1854 	    tiwin && tiwin == tp->snd_wnd &&
1855 	    tp->snd_nxt == tp->snd_max) {
1856 
1857 		/*
1858 		 * If last ACK falls within this segment's sequence numbers,
1859 		 * record the timestamp.
1860 		 * NOTE that the test is modified according to the latest
1861 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1862 		 *
1863 		 * note that we already know
1864 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1865 		 */
1866 		if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1867 			tp->ts_recent_age = tcp_now;
1868 			tp->ts_recent = opti.ts_val;
1869 		}
1870 
1871 		if (tlen == 0) {
1872 			/* Ack prediction. */
1873 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1874 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1875 			    tp->snd_cwnd >= tp->snd_wnd &&
1876 			    tp->t_partialacks < 0) {
1877 				/*
1878 				 * this is a pure ack for outstanding data.
1879 				 */
1880 				if (ts_rtt)
1881 					tcp_xmit_timer(tp, ts_rtt - 1);
1882 				else if (tp->t_rtttime &&
1883 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1884 					tcp_xmit_timer(tp,
1885 					  tcp_now - tp->t_rtttime);
1886 				acked = th->th_ack - tp->snd_una;
1887 				tcps = TCP_STAT_GETREF();
1888 				tcps[TCP_STAT_PREDACK]++;
1889 				tcps[TCP_STAT_RCVACKPACK]++;
1890 				tcps[TCP_STAT_RCVACKBYTE] += acked;
1891 				TCP_STAT_PUTREF();
1892 				nd6_hint(tp);
1893 
1894 				if (acked > (tp->t_lastoff - tp->t_inoff))
1895 					tp->t_lastm = NULL;
1896 				sbdrop(&so->so_snd, acked);
1897 				tp->t_lastoff -= acked;
1898 
1899 				icmp_check(tp, th, acked);
1900 
1901 				tp->snd_una = th->th_ack;
1902 				tp->snd_fack = tp->snd_una;
1903 				if (SEQ_LT(tp->snd_high, tp->snd_una))
1904 					tp->snd_high = tp->snd_una;
1905 				m_freem(m);
1906 
1907 				/*
1908 				 * If all outstanding data are acked, stop
1909 				 * retransmit timer, otherwise restart timer
1910 				 * using current (possibly backed-off) value.
1911 				 * If process is waiting for space,
1912 				 * wakeup/selnotify/signal.  If data
1913 				 * are ready to send, let tcp_output
1914 				 * decide between more output or persist.
1915 				 */
1916 				if (tp->snd_una == tp->snd_max)
1917 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1918 				else if (TCP_TIMER_ISARMED(tp,
1919 				    TCPT_PERSIST) == 0)
1920 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1921 					    tp->t_rxtcur);
1922 
1923 				sowwakeup(so);
1924 				if (so->so_snd.sb_cc) {
1925 					KERNEL_LOCK(1, NULL);
1926 					(void)tcp_output(tp);
1927 					KERNEL_UNLOCK_ONE(NULL);
1928 				}
1929 				if (tcp_saveti)
1930 					m_freem(tcp_saveti);
1931 				return;
1932 			}
1933 		} else if (th->th_ack == tp->snd_una &&
1934 		    TAILQ_FIRST(&tp->segq) == NULL &&
1935 		    tlen <= sbspace(&so->so_rcv)) {
1936 			int newsize = 0;
1937 
1938 			/*
1939 			 * this is a pure, in-sequence data packet
1940 			 * with nothing on the reassembly queue and
1941 			 * we have enough buffer space to take it.
1942 			 */
1943 			tp->rcv_nxt += tlen;
1944 			tcps = TCP_STAT_GETREF();
1945 			tcps[TCP_STAT_PREDDAT]++;
1946 			tcps[TCP_STAT_RCVPACK]++;
1947 			tcps[TCP_STAT_RCVBYTE] += tlen;
1948 			TCP_STAT_PUTREF();
1949 			nd6_hint(tp);
1950 
1951 		/*
1952 		 * Automatic sizing enables the performance of large buffers
1953 		 * and most of the efficiency of small ones by only allocating
1954 		 * space when it is needed.
1955 		 *
1956 		 * On the receive side the socket buffer memory is only rarely
1957 		 * used to any significant extent.  This allows us to be much
1958 		 * more aggressive in scaling the receive socket buffer.  For
1959 		 * the case that the buffer space is actually used to a large
1960 		 * extent and we run out of kernel memory we can simply drop
1961 		 * the new segments; TCP on the sender will just retransmit it
1962 		 * later.  Setting the buffer size too big may only consume too
1963 		 * much kernel memory if the application doesn't read() from
1964 		 * the socket or packet loss or reordering makes use of the
1965 		 * reassembly queue.
1966 		 *
1967 		 * The criteria to step up the receive buffer one notch are:
1968 		 *  1. the number of bytes received during the time it takes
1969 		 *     one timestamp to be reflected back to us (the RTT);
1970 		 *  2. received bytes per RTT is within seven eighth of the
1971 		 *     current socket buffer size;
1972 		 *  3. receive buffer size has not hit maximal automatic size;
1973 		 *
1974 		 * This algorithm does one step per RTT at most and only if
1975 		 * we receive a bulk stream w/o packet losses or reorderings.
1976 		 * Shrinking the buffer during idle times is not necessary as
1977 		 * it doesn't consume any memory when idle.
1978 		 *
1979 		 * TODO: Only step up if the application is actually serving
1980 		 * the buffer to better manage the socket buffer resources.
1981 		 */
1982 			if (tcp_do_autorcvbuf &&
1983 			    opti.ts_ecr &&
1984 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1985 				if (opti.ts_ecr > tp->rfbuf_ts &&
1986 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1987 					if (tp->rfbuf_cnt >
1988 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1989 					    so->so_rcv.sb_hiwat <
1990 					    tcp_autorcvbuf_max) {
1991 						newsize =
1992 						    uimin(so->so_rcv.sb_hiwat +
1993 						    tcp_autorcvbuf_inc,
1994 						    tcp_autorcvbuf_max);
1995 					}
1996 					/* Start over with next RTT. */
1997 					tp->rfbuf_ts = 0;
1998 					tp->rfbuf_cnt = 0;
1999 				} else
2000 					tp->rfbuf_cnt += tlen;	/* add up */
2001 			}
2002 
2003 			/*
2004 			 * Drop TCP, IP headers and TCP options then add data
2005 			 * to socket buffer.
2006 			 */
2007 			if (so->so_state & SS_CANTRCVMORE) {
2008 				m_freem(m);
2009 			} else {
2010 				/*
2011 				 * Set new socket buffer size.
2012 				 * Give up when limit is reached.
2013 				 */
2014 				if (newsize)
2015 					if (!sbreserve(&so->so_rcv,
2016 					    newsize, so))
2017 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2018 				m_adj(m, off + thlen);
2019 				sbappendstream(&so->so_rcv, m);
2020 			}
2021 			sorwakeup(so);
2022 			tcp_setup_ack(tp, th);
2023 			if (tp->t_flags & TF_ACKNOW) {
2024 				KERNEL_LOCK(1, NULL);
2025 				(void)tcp_output(tp);
2026 				KERNEL_UNLOCK_ONE(NULL);
2027 			}
2028 			if (tcp_saveti)
2029 				m_freem(tcp_saveti);
2030 			return;
2031 		}
2032 	}
2033 
2034 	/*
2035 	 * Compute mbuf offset to TCP data segment.
2036 	 */
2037 	hdroptlen = off + thlen;
2038 
2039 	/*
2040 	 * Calculate amount of space in receive window. Receive window is
2041 	 * amount of space in rcv queue, but not less than advertised
2042 	 * window.
2043 	 */
2044 	{
2045 		int win;
2046 		win = sbspace(&so->so_rcv);
2047 		if (win < 0)
2048 			win = 0;
2049 		tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2050 	}
2051 
2052 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
2053 	tp->rfbuf_ts = 0;
2054 	tp->rfbuf_cnt = 0;
2055 
2056 	switch (tp->t_state) {
2057 	/*
2058 	 * If the state is SYN_SENT:
2059 	 *	if seg contains an ACK, but not for our SYN, drop the input.
2060 	 *	if seg contains a RST, then drop the connection.
2061 	 *	if seg does not contain SYN, then drop it.
2062 	 * Otherwise this is an acceptable SYN segment
2063 	 *	initialize tp->rcv_nxt and tp->irs
2064 	 *	if seg contains ack then advance tp->snd_una
2065 	 *	if seg contains a ECE and ECN support is enabled, the stream
2066 	 *	    is ECN capable.
2067 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2068 	 *	arrange for segment to be acked (eventually)
2069 	 *	continue processing rest of data/controls, beginning with URG
2070 	 */
2071 	case TCPS_SYN_SENT:
2072 		if ((tiflags & TH_ACK) &&
2073 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2074 		     SEQ_GT(th->th_ack, tp->snd_max)))
2075 			goto dropwithreset;
2076 		if (tiflags & TH_RST) {
2077 			if (tiflags & TH_ACK)
2078 				tp = tcp_drop(tp, ECONNREFUSED);
2079 			goto drop;
2080 		}
2081 		if ((tiflags & TH_SYN) == 0)
2082 			goto drop;
2083 		if (tiflags & TH_ACK) {
2084 			tp->snd_una = th->th_ack;
2085 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2086 				tp->snd_nxt = tp->snd_una;
2087 			if (SEQ_LT(tp->snd_high, tp->snd_una))
2088 				tp->snd_high = tp->snd_una;
2089 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2090 
2091 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
2092 				tp->t_flags |= TF_ECN_PERMIT;
2093 				TCP_STATINC(TCP_STAT_ECN_SHS);
2094 			}
2095 		}
2096 		tp->irs = th->th_seq;
2097 		tcp_rcvseqinit(tp);
2098 		tp->t_flags |= TF_ACKNOW;
2099 		tcp_mss_from_peer(tp, opti.maxseg);
2100 
2101 		/*
2102 		 * Initialize the initial congestion window.  If we
2103 		 * had to retransmit the SYN, we must initialize cwnd
2104 		 * to 1 segment (i.e. the Loss Window).
2105 		 */
2106 		if (tp->t_flags & TF_SYN_REXMT)
2107 			tp->snd_cwnd = tp->t_peermss;
2108 		else {
2109 			int ss = tcp_init_win;
2110 			if (inp != NULL && in_localaddr(inp->inp_faddr))
2111 				ss = tcp_init_win_local;
2112 #ifdef INET6
2113 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2114 				ss = tcp_init_win_local;
2115 #endif
2116 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2117 		}
2118 
2119 		tcp_rmx_rtt(tp);
2120 		if (tiflags & TH_ACK) {
2121 			TCP_STATINC(TCP_STAT_CONNECTS);
2122 			/*
2123 			 * move tcp_established before soisconnected
2124 			 * because upcall handler can drive tcp_output
2125 			 * functionality.
2126 			 * XXX we might call soisconnected at the end of
2127 			 * all processing
2128 			 */
2129 			tcp_established(tp);
2130 			soisconnected(so);
2131 			/* Do window scaling on this connection? */
2132 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2133 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2134 				tp->snd_scale = tp->requested_s_scale;
2135 				tp->rcv_scale = tp->request_r_scale;
2136 			}
2137 			TCP_REASS_LOCK(tp);
2138 			(void)tcp_reass(tp, NULL, NULL, tlen);
2139 			/*
2140 			 * if we didn't have to retransmit the SYN,
2141 			 * use its rtt as our initial srtt & rtt var.
2142 			 */
2143 			if (tp->t_rtttime)
2144 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2145 		} else {
2146 			tp->t_state = TCPS_SYN_RECEIVED;
2147 		}
2148 
2149 		/*
2150 		 * Advance th->th_seq to correspond to first data byte.
2151 		 * If data, trim to stay within window,
2152 		 * dropping FIN if necessary.
2153 		 */
2154 		th->th_seq++;
2155 		if (tlen > tp->rcv_wnd) {
2156 			todrop = tlen - tp->rcv_wnd;
2157 			m_adj(m, -todrop);
2158 			tlen = tp->rcv_wnd;
2159 			tiflags &= ~TH_FIN;
2160 			tcps = TCP_STAT_GETREF();
2161 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2162 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2163 			TCP_STAT_PUTREF();
2164 		}
2165 		tp->snd_wl1 = th->th_seq - 1;
2166 		tp->rcv_up = th->th_seq;
2167 		goto step6;
2168 
2169 	/*
2170 	 * If the state is SYN_RECEIVED:
2171 	 *	If seg contains an ACK, but not for our SYN, drop the input
2172 	 *	and generate an RST.  See page 36, rfc793
2173 	 */
2174 	case TCPS_SYN_RECEIVED:
2175 		if ((tiflags & TH_ACK) &&
2176 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2177 		     SEQ_GT(th->th_ack, tp->snd_max)))
2178 			goto dropwithreset;
2179 		break;
2180 	}
2181 
2182 	/*
2183 	 * From here on, we're dealing with !LISTEN and !SYN_SENT.
2184 	 */
2185 	KASSERT(tp->t_state != TCPS_LISTEN &&
2186 	    tp->t_state != TCPS_SYN_SENT);
2187 
2188 	/*
2189 	 * RFC1323 PAWS: if we have a timestamp reply on this segment and
2190 	 * it's less than ts_recent, drop it.
2191 	 */
2192 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2193 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2194 		/* Check to see if ts_recent is over 24 days old.  */
2195 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2196 			/*
2197 			 * Invalidate ts_recent.  If this segment updates
2198 			 * ts_recent, the age will be reset later and ts_recent
2199 			 * will get a valid value.  If it does not, setting
2200 			 * ts_recent to zero will at least satisfy the
2201 			 * requirement that zero be placed in the timestamp
2202 			 * echo reply when ts_recent isn't valid.  The
2203 			 * age isn't reset until we get a valid ts_recent
2204 			 * because we don't want out-of-order segments to be
2205 			 * dropped when ts_recent is old.
2206 			 */
2207 			tp->ts_recent = 0;
2208 		} else {
2209 			tcps = TCP_STAT_GETREF();
2210 			tcps[TCP_STAT_RCVDUPPACK]++;
2211 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2212 			tcps[TCP_STAT_PAWSDROP]++;
2213 			TCP_STAT_PUTREF();
2214 			tcp_new_dsack(tp, th->th_seq, tlen);
2215 			goto dropafterack;
2216 		}
2217 	}
2218 
2219 	/*
2220 	 * Check that at least some bytes of the segment are within the
2221 	 * receive window. If segment begins before rcv_nxt, drop leading
2222 	 * data (and SYN); if nothing left, just ack.
2223 	 */
2224 	todrop = tp->rcv_nxt - th->th_seq;
2225 	dupseg = false;
2226 	if (todrop > 0) {
2227 		if (tiflags & TH_SYN) {
2228 			tiflags &= ~TH_SYN;
2229 			th->th_seq++;
2230 			tcp_urp_drop(th, 1, &tiflags);
2231 			todrop--;
2232 		}
2233 		if (todrop > tlen ||
2234 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2235 			/*
2236 			 * Any valid FIN or RST must be to the left of the
2237 			 * window.  At this point the FIN or RST must be a
2238 			 * duplicate or out of sequence; drop it.
2239 			 */
2240 			if (tiflags & TH_RST)
2241 				goto drop;
2242 			tiflags &= ~(TH_FIN|TH_RST);
2243 
2244 			/*
2245 			 * Send an ACK to resynchronize and drop any data.
2246 			 * But keep on processing for RST or ACK.
2247 			 */
2248 			tp->t_flags |= TF_ACKNOW;
2249 			todrop = tlen;
2250 			dupseg = true;
2251 			tcps = TCP_STAT_GETREF();
2252 			tcps[TCP_STAT_RCVDUPPACK]++;
2253 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2254 			TCP_STAT_PUTREF();
2255 		} else if ((tiflags & TH_RST) && th->th_seq != tp->rcv_nxt) {
2256 			/*
2257 			 * Test for reset before adjusting the sequence
2258 			 * number for overlapping data.
2259 			 */
2260 			goto dropafterack_ratelim;
2261 		} else {
2262 			tcps = TCP_STAT_GETREF();
2263 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
2264 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2265 			TCP_STAT_PUTREF();
2266 		}
2267 		tcp_new_dsack(tp, th->th_seq, todrop);
2268 		hdroptlen += todrop;	/* drop from head afterwards (m_adj) */
2269 		th->th_seq += todrop;
2270 		tlen -= todrop;
2271 		tcp_urp_drop(th, todrop, &tiflags);
2272 	}
2273 
2274 	/*
2275 	 * If new data is received on a connection after the user processes
2276 	 * are gone, then RST the other end.
2277 	 */
2278 	if ((so->so_state & SS_NOFDREF) &&
2279 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2280 		tp = tcp_close(tp);
2281 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2282 		goto dropwithreset;
2283 	}
2284 
2285 	/*
2286 	 * If the segment ends after the window, drop trailing data (and
2287 	 * PUSH and FIN); if nothing left, just ACK.
2288 	 */
2289 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2290 	if (todrop > 0) {
2291 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2292 		if (todrop >= tlen) {
2293 			/*
2294 			 * The segment actually starts after the window.
2295 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2296 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2297 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2298 			 */
2299 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2300 
2301 			/*
2302 			 * If a new connection request is received while in
2303 			 * TIME_WAIT, drop the old connection and start over
2304 			 * if the sequence numbers are above the previous
2305 			 * ones.
2306 			 *
2307 			 * NOTE: We need to put the header fields back into
2308 			 * network order.
2309 			 */
2310 			if ((tiflags & TH_SYN) &&
2311 			    tp->t_state == TCPS_TIME_WAIT &&
2312 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2313 				tp = tcp_close(tp);
2314 				tcp_fields_to_net(th);
2315 				m_freem(tcp_saveti);
2316 				tcp_saveti = NULL;
2317 				goto findpcb;
2318 			}
2319 
2320 			/*
2321 			 * If window is closed can only take segments at
2322 			 * window edge, and have to drop data and PUSH from
2323 			 * incoming segments.  Continue processing, but
2324 			 * remember to ack.  Otherwise, drop segment
2325 			 * and (if not RST) ack.
2326 			 */
2327 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2328 				KASSERT(todrop == tlen);
2329 				tp->t_flags |= TF_ACKNOW;
2330 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
2331 			} else {
2332 				goto dropafterack;
2333 			}
2334 		} else {
2335 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2336 		}
2337 		m_adj(m, -todrop);
2338 		tlen -= todrop;
2339 		tiflags &= ~(TH_PUSH|TH_FIN);
2340 	}
2341 
2342 	/*
2343 	 * If last ACK falls within this segment's sequence numbers,
2344 	 *  record the timestamp.
2345 	 * NOTE:
2346 	 * 1) That the test incorporates suggestions from the latest
2347 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2348 	 * 2) That updating only on newer timestamps interferes with
2349 	 *    our earlier PAWS tests, so this check should be solely
2350 	 *    predicated on the sequence space of this segment.
2351 	 * 3) That we modify the segment boundary check to be
2352 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2353 	 *    instead of RFC1323's
2354 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2355 	 *    This modified check allows us to overcome RFC1323's
2356 	 *    limitations as described in Stevens TCP/IP Illustrated
2357 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2358 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2359 	 */
2360 	if (opti.ts_present &&
2361 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2362 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2363 	         ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2364 		tp->ts_recent_age = tcp_now;
2365 		tp->ts_recent = opti.ts_val;
2366 	}
2367 
2368 	/*
2369 	 * If the RST bit is set examine the state:
2370 	 *    RECEIVED state:
2371 	 *        If passive open, return to LISTEN state.
2372 	 *        If active open, inform user that connection was refused.
2373 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT states:
2374 	 *        Inform user that connection was reset, and close tcb.
2375 	 *    CLOSING, LAST_ACK, TIME_WAIT states:
2376 	 *        Close the tcb.
2377 	 */
2378 	if (tiflags & TH_RST) {
2379 		if (th->th_seq != tp->rcv_nxt)
2380 			goto dropafterack_ratelim;
2381 
2382 		switch (tp->t_state) {
2383 		case TCPS_SYN_RECEIVED:
2384 			so->so_error = ECONNREFUSED;
2385 			goto close;
2386 
2387 		case TCPS_ESTABLISHED:
2388 		case TCPS_FIN_WAIT_1:
2389 		case TCPS_FIN_WAIT_2:
2390 		case TCPS_CLOSE_WAIT:
2391 			so->so_error = ECONNRESET;
2392 		close:
2393 			tp->t_state = TCPS_CLOSED;
2394 			TCP_STATINC(TCP_STAT_DROPS);
2395 			tp = tcp_close(tp);
2396 			goto drop;
2397 
2398 		case TCPS_CLOSING:
2399 		case TCPS_LAST_ACK:
2400 		case TCPS_TIME_WAIT:
2401 			tp = tcp_close(tp);
2402 			goto drop;
2403 		}
2404 	}
2405 
2406 	/*
2407 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2408 	 * we must be in a synchronized state.  RFC793 states (under Reset
2409 	 * Generation) that any unacceptable segment (an out-of-order SYN
2410 	 * qualifies) received in a synchronized state must elicit only an
2411 	 * empty acknowledgment segment ... and the connection remains in
2412 	 * the same state.
2413 	 */
2414 	if (tiflags & TH_SYN) {
2415 		if (tp->rcv_nxt == th->th_seq) {
2416 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2417 			    TH_ACK);
2418 			if (tcp_saveti)
2419 				m_freem(tcp_saveti);
2420 			return;
2421 		}
2422 
2423 		goto dropafterack_ratelim;
2424 	}
2425 
2426 	/*
2427 	 * If the ACK bit is off we drop the segment and return.
2428 	 */
2429 	if ((tiflags & TH_ACK) == 0) {
2430 		if (tp->t_flags & TF_ACKNOW)
2431 			goto dropafterack;
2432 		goto drop;
2433 	}
2434 
2435 	/*
2436 	 * From here on, we're doing ACK processing.
2437 	 */
2438 
2439 	switch (tp->t_state) {
2440 	/*
2441 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2442 	 * ESTABLISHED state and continue processing, otherwise
2443 	 * send an RST.
2444 	 */
2445 	case TCPS_SYN_RECEIVED:
2446 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
2447 		    SEQ_GT(th->th_ack, tp->snd_max))
2448 			goto dropwithreset;
2449 		TCP_STATINC(TCP_STAT_CONNECTS);
2450 		soisconnected(so);
2451 		tcp_established(tp);
2452 		/* Do window scaling? */
2453 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2454 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2455 			tp->snd_scale = tp->requested_s_scale;
2456 			tp->rcv_scale = tp->request_r_scale;
2457 		}
2458 		TCP_REASS_LOCK(tp);
2459 		(void)tcp_reass(tp, NULL, NULL, tlen);
2460 		tp->snd_wl1 = th->th_seq - 1;
2461 		/* FALLTHROUGH */
2462 
2463 	/*
2464 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2465 	 * ACKs.  If the ack is in the range
2466 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2467 	 * then advance tp->snd_una to th->th_ack and drop
2468 	 * data from the retransmission queue.  If this ACK reflects
2469 	 * more up to date window information we update our window information.
2470 	 */
2471 	case TCPS_ESTABLISHED:
2472 	case TCPS_FIN_WAIT_1:
2473 	case TCPS_FIN_WAIT_2:
2474 	case TCPS_CLOSE_WAIT:
2475 	case TCPS_CLOSING:
2476 	case TCPS_LAST_ACK:
2477 	case TCPS_TIME_WAIT:
2478 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2479 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2480 				TCP_STATINC(TCP_STAT_RCVDUPACK);
2481 				/*
2482 				 * If we have outstanding data (other than
2483 				 * a window probe), this is a completely
2484 				 * duplicate ack (ie, window info didn't
2485 				 * change), the ack is the biggest we've
2486 				 * seen and we've seen exactly our rexmt
2487 				 * threshhold of them, assume a packet
2488 				 * has been dropped and retransmit it.
2489 				 * Kludge snd_nxt & the congestion
2490 				 * window so we send only this one
2491 				 * packet.
2492 				 */
2493 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2494 				    th->th_ack != tp->snd_una)
2495 					tp->t_dupacks = 0;
2496 				else if (tp->t_partialacks < 0 &&
2497 				    (++tp->t_dupacks == tcprexmtthresh ||
2498 				     TCP_FACK_FASTRECOV(tp))) {
2499 					/*
2500 					 * Do the fast retransmit, and adjust
2501 					 * congestion control paramenters.
2502 					 */
2503 					if (tp->t_congctl->fast_retransmit(tp, th)) {
2504 						/* False fast retransmit */
2505 						break;
2506 					}
2507 					goto drop;
2508 				} else if (tp->t_dupacks > tcprexmtthresh) {
2509 					tp->snd_cwnd += tp->t_segsz;
2510 					KERNEL_LOCK(1, NULL);
2511 					(void)tcp_output(tp);
2512 					KERNEL_UNLOCK_ONE(NULL);
2513 					goto drop;
2514 				}
2515 			} else {
2516 				/*
2517 				 * If the ack appears to be very old, only
2518 				 * allow data that is in-sequence.  This
2519 				 * makes it somewhat more difficult to insert
2520 				 * forged data by guessing sequence numbers.
2521 				 * Sent an ack to try to update the send
2522 				 * sequence number on the other side.
2523 				 */
2524 				if (tlen && th->th_seq != tp->rcv_nxt &&
2525 				    SEQ_LT(th->th_ack,
2526 				    tp->snd_una - tp->max_sndwnd))
2527 					goto dropafterack;
2528 			}
2529 			break;
2530 		}
2531 		/*
2532 		 * If the congestion window was inflated to account
2533 		 * for the other side's cached packets, retract it.
2534 		 */
2535 		tp->t_congctl->fast_retransmit_newack(tp, th);
2536 
2537 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2538 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2539 			goto dropafterack;
2540 		}
2541 		acked = th->th_ack - tp->snd_una;
2542 		tcps = TCP_STAT_GETREF();
2543 		tcps[TCP_STAT_RCVACKPACK]++;
2544 		tcps[TCP_STAT_RCVACKBYTE] += acked;
2545 		TCP_STAT_PUTREF();
2546 
2547 		/*
2548 		 * If we have a timestamp reply, update smoothed
2549 		 * round trip time.  If no timestamp is present but
2550 		 * transmit timer is running and timed sequence
2551 		 * number was acked, update smoothed round trip time.
2552 		 * Since we now have an rtt measurement, cancel the
2553 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2554 		 * Recompute the initial retransmit timer.
2555 		 */
2556 		if (ts_rtt)
2557 			tcp_xmit_timer(tp, ts_rtt - 1);
2558 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2559 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2560 
2561 		/*
2562 		 * If all outstanding data is acked, stop retransmit
2563 		 * timer and remember to restart (more output or persist).
2564 		 * If there is more data to be acked, restart retransmit
2565 		 * timer, using current (possibly backed-off) value.
2566 		 */
2567 		if (th->th_ack == tp->snd_max) {
2568 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2569 			needoutput = 1;
2570 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2571 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2572 
2573 		/*
2574 		 * New data has been acked, adjust the congestion window.
2575 		 */
2576 		tp->t_congctl->newack(tp, th);
2577 
2578 		nd6_hint(tp);
2579 		if (acked > so->so_snd.sb_cc) {
2580 			tp->snd_wnd -= so->so_snd.sb_cc;
2581 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2582 			ourfinisacked = 1;
2583 		} else {
2584 			if (acked > (tp->t_lastoff - tp->t_inoff))
2585 				tp->t_lastm = NULL;
2586 			sbdrop(&so->so_snd, acked);
2587 			tp->t_lastoff -= acked;
2588 			if (tp->snd_wnd > acked)
2589 				tp->snd_wnd -= acked;
2590 			else
2591 				tp->snd_wnd = 0;
2592 			ourfinisacked = 0;
2593 		}
2594 		sowwakeup(so);
2595 
2596 		icmp_check(tp, th, acked);
2597 
2598 		tp->snd_una = th->th_ack;
2599 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
2600 			tp->snd_fack = tp->snd_una;
2601 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2602 			tp->snd_nxt = tp->snd_una;
2603 		if (SEQ_LT(tp->snd_high, tp->snd_una))
2604 			tp->snd_high = tp->snd_una;
2605 
2606 		switch (tp->t_state) {
2607 
2608 		/*
2609 		 * In FIN_WAIT_1 STATE in addition to the processing
2610 		 * for the ESTABLISHED state if our FIN is now acknowledged
2611 		 * then enter FIN_WAIT_2.
2612 		 */
2613 		case TCPS_FIN_WAIT_1:
2614 			if (ourfinisacked) {
2615 				/*
2616 				 * If we can't receive any more
2617 				 * data, then closing user can proceed.
2618 				 * Starting the timer is contrary to the
2619 				 * specification, but if we don't get a FIN
2620 				 * we'll hang forever.
2621 				 */
2622 				if (so->so_state & SS_CANTRCVMORE) {
2623 					soisdisconnected(so);
2624 					if (tp->t_maxidle > 0)
2625 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2626 						    tp->t_maxidle);
2627 				}
2628 				tp->t_state = TCPS_FIN_WAIT_2;
2629 			}
2630 			break;
2631 
2632 	 	/*
2633 		 * In CLOSING STATE in addition to the processing for
2634 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2635 		 * then enter the TIME-WAIT state, otherwise ignore
2636 		 * the segment.
2637 		 */
2638 		case TCPS_CLOSING:
2639 			if (ourfinisacked) {
2640 				tp->t_state = TCPS_TIME_WAIT;
2641 				tcp_canceltimers(tp);
2642 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2643 				soisdisconnected(so);
2644 			}
2645 			break;
2646 
2647 		/*
2648 		 * In LAST_ACK, we may still be waiting for data to drain
2649 		 * and/or to be acked, as well as for the ack of our FIN.
2650 		 * If our FIN is now acknowledged, delete the TCB,
2651 		 * enter the closed state and return.
2652 		 */
2653 		case TCPS_LAST_ACK:
2654 			if (ourfinisacked) {
2655 				tp = tcp_close(tp);
2656 				goto drop;
2657 			}
2658 			break;
2659 
2660 		/*
2661 		 * In TIME_WAIT state the only thing that should arrive
2662 		 * is a retransmission of the remote FIN.  Acknowledge
2663 		 * it and restart the finack timer.
2664 		 */
2665 		case TCPS_TIME_WAIT:
2666 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2667 			goto dropafterack;
2668 		}
2669 	}
2670 
2671 step6:
2672 	/*
2673 	 * Update window information.
2674 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2675 	 */
2676 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2677 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2678 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2679 		/* keep track of pure window updates */
2680 		if (tlen == 0 &&
2681 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2682 			TCP_STATINC(TCP_STAT_RCVWINUPD);
2683 		tp->snd_wnd = tiwin;
2684 		tp->snd_wl1 = th->th_seq;
2685 		tp->snd_wl2 = th->th_ack;
2686 		if (tp->snd_wnd > tp->max_sndwnd)
2687 			tp->max_sndwnd = tp->snd_wnd;
2688 		needoutput = 1;
2689 	}
2690 
2691 	/*
2692 	 * Process segments with URG.
2693 	 */
2694 	if ((tiflags & TH_URG) && th->th_urp &&
2695 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2696 		/*
2697 		 * This is a kludge, but if we receive and accept
2698 		 * random urgent pointers, we'll crash in
2699 		 * soreceive.  It's hard to imagine someone
2700 		 * actually wanting to send this much urgent data.
2701 		 */
2702 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2703 			th->th_urp = 0;			/* XXX */
2704 			tiflags &= ~TH_URG;		/* XXX */
2705 			goto dodata;			/* XXX */
2706 		}
2707 
2708 		/*
2709 		 * If this segment advances the known urgent pointer,
2710 		 * then mark the data stream.  This should not happen
2711 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2712 		 * a FIN has been received from the remote side.
2713 		 * In these states we ignore the URG.
2714 		 *
2715 		 * According to RFC961 (Assigned Protocols),
2716 		 * the urgent pointer points to the last octet
2717 		 * of urgent data.  We continue, however,
2718 		 * to consider it to indicate the first octet
2719 		 * of data past the urgent section as the original
2720 		 * spec states (in one of two places).
2721 		 */
2722 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2723 			tp->rcv_up = th->th_seq + th->th_urp;
2724 			so->so_oobmark = so->so_rcv.sb_cc +
2725 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2726 			if (so->so_oobmark == 0)
2727 				so->so_state |= SS_RCVATMARK;
2728 			sohasoutofband(so);
2729 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2730 		}
2731 
2732 		/*
2733 		 * Remove out of band data so doesn't get presented to user.
2734 		 * This can happen independent of advancing the URG pointer,
2735 		 * but if two URG's are pending at once, some out-of-band
2736 		 * data may creep in... ick.
2737 		 */
2738 		if (th->th_urp <= (u_int16_t)tlen &&
2739 		    (so->so_options & SO_OOBINLINE) == 0)
2740 			tcp_pulloutofband(so, th, m, hdroptlen);
2741 	} else {
2742 		/*
2743 		 * If no out of band data is expected,
2744 		 * pull receive urgent pointer along
2745 		 * with the receive window.
2746 		 */
2747 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2748 			tp->rcv_up = tp->rcv_nxt;
2749 	}
2750 dodata:
2751 
2752 	/*
2753 	 * Process the segment text, merging it into the TCP sequencing queue,
2754 	 * and arranging for acknowledgement of receipt if necessary.
2755 	 * This process logically involves adjusting tp->rcv_wnd as data
2756 	 * is presented to the user (this happens in tcp_usrreq.c,
2757 	 * tcp_rcvd()).  If a FIN has already been received on this
2758 	 * connection then we just ignore the text.
2759 	 */
2760 	if ((tlen || (tiflags & TH_FIN)) &&
2761 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2762 		/*
2763 		 * Handle the common case:
2764 		 *  o Segment is the next to be received, and
2765 		 *  o The queue is empty, and
2766 		 *  o The connection is established
2767 		 * In this case, we avoid calling tcp_reass.
2768 		 *
2769 		 * tcp_setup_ack: set DELACK for segments received in order,
2770 		 * but ack immediately when segments are out of order (so that
2771 		 * fast retransmit can work).
2772 		 */
2773 		TCP_REASS_LOCK(tp);
2774 		if (th->th_seq == tp->rcv_nxt &&
2775 		    TAILQ_FIRST(&tp->segq) == NULL &&
2776 		    tp->t_state == TCPS_ESTABLISHED) {
2777 			tcp_setup_ack(tp, th);
2778 			tp->rcv_nxt += tlen;
2779 			tiflags = th->th_flags & TH_FIN;
2780 			tcps = TCP_STAT_GETREF();
2781 			tcps[TCP_STAT_RCVPACK]++;
2782 			tcps[TCP_STAT_RCVBYTE] += tlen;
2783 			TCP_STAT_PUTREF();
2784 			nd6_hint(tp);
2785 			if (so->so_state & SS_CANTRCVMORE) {
2786 				m_freem(m);
2787 			} else {
2788 				m_adj(m, hdroptlen);
2789 				sbappendstream(&(so)->so_rcv, m);
2790 			}
2791 			TCP_REASS_UNLOCK(tp);
2792 			sorwakeup(so);
2793 		} else {
2794 			m_adj(m, hdroptlen);
2795 			tiflags = tcp_reass(tp, th, m, tlen);
2796 			tp->t_flags |= TF_ACKNOW;
2797 		}
2798 
2799 		/*
2800 		 * Note the amount of data that peer has sent into
2801 		 * our window, in order to estimate the sender's
2802 		 * buffer size.
2803 		 */
2804 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2805 	} else {
2806 		m_freem(m);
2807 		m = NULL;
2808 		tiflags &= ~TH_FIN;
2809 	}
2810 
2811 	/*
2812 	 * If FIN is received ACK the FIN and let the user know
2813 	 * that the connection is closing.  Ignore a FIN received before
2814 	 * the connection is fully established.
2815 	 */
2816 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2817 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2818 			socantrcvmore(so);
2819 			tp->t_flags |= TF_ACKNOW;
2820 			tp->rcv_nxt++;
2821 		}
2822 		switch (tp->t_state) {
2823 
2824 	 	/*
2825 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2826 		 */
2827 		case TCPS_ESTABLISHED:
2828 			tp->t_state = TCPS_CLOSE_WAIT;
2829 			break;
2830 
2831 	 	/*
2832 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2833 		 * enter the CLOSING state.
2834 		 */
2835 		case TCPS_FIN_WAIT_1:
2836 			tp->t_state = TCPS_CLOSING;
2837 			break;
2838 
2839 	 	/*
2840 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2841 		 * starting the time-wait timer, turning off the other
2842 		 * standard timers.
2843 		 */
2844 		case TCPS_FIN_WAIT_2:
2845 			tp->t_state = TCPS_TIME_WAIT;
2846 			tcp_canceltimers(tp);
2847 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2848 			soisdisconnected(so);
2849 			break;
2850 
2851 		/*
2852 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2853 		 */
2854 		case TCPS_TIME_WAIT:
2855 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2856 			break;
2857 		}
2858 	}
2859 #ifdef TCP_DEBUG
2860 	if (so->so_options & SO_DEBUG)
2861 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2862 #endif
2863 
2864 	/*
2865 	 * Return any desired output.
2866 	 */
2867 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2868 		KERNEL_LOCK(1, NULL);
2869 		(void)tcp_output(tp);
2870 		KERNEL_UNLOCK_ONE(NULL);
2871 	}
2872 	if (tcp_saveti)
2873 		m_freem(tcp_saveti);
2874 
2875 	if (tp->t_state == TCPS_TIME_WAIT
2876 	    && (so->so_state & SS_NOFDREF)
2877 	    && (tp->t_inpcb || af != AF_INET)
2878 	    && (tp->t_in6pcb || af != AF_INET6)
2879 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
2880 	    && TAILQ_EMPTY(&tp->segq)
2881 	    && vtw_add(af, tp)) {
2882 		;
2883 	}
2884 	return;
2885 
2886 badsyn:
2887 	/*
2888 	 * Received a bad SYN.  Increment counters and dropwithreset.
2889 	 */
2890 	TCP_STATINC(TCP_STAT_BADSYN);
2891 	tp = NULL;
2892 	goto dropwithreset;
2893 
2894 dropafterack:
2895 	/*
2896 	 * Generate an ACK dropping incoming segment if it occupies
2897 	 * sequence space, where the ACK reflects our state.
2898 	 */
2899 	if (tiflags & TH_RST)
2900 		goto drop;
2901 	goto dropafterack2;
2902 
2903 dropafterack_ratelim:
2904 	/*
2905 	 * We may want to rate-limit ACKs against SYN/RST attack.
2906 	 */
2907 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2908 	    tcp_ackdrop_ppslim) == 0) {
2909 		/* XXX stat */
2910 		goto drop;
2911 	}
2912 
2913 dropafterack2:
2914 	m_freem(m);
2915 	tp->t_flags |= TF_ACKNOW;
2916 	KERNEL_LOCK(1, NULL);
2917 	(void)tcp_output(tp);
2918 	KERNEL_UNLOCK_ONE(NULL);
2919 	if (tcp_saveti)
2920 		m_freem(tcp_saveti);
2921 	return;
2922 
2923 dropwithreset_ratelim:
2924 	/*
2925 	 * We may want to rate-limit RSTs in certain situations,
2926 	 * particularly if we are sending an RST in response to
2927 	 * an attempt to connect to or otherwise communicate with
2928 	 * a port for which we have no socket.
2929 	 */
2930 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2931 	    tcp_rst_ppslim) == 0) {
2932 		/* XXX stat */
2933 		goto drop;
2934 	}
2935 
2936 dropwithreset:
2937 	/*
2938 	 * Generate a RST, dropping incoming segment.
2939 	 * Make ACK acceptable to originator of segment.
2940 	 */
2941 	if (tiflags & TH_RST)
2942 		goto drop;
2943 	if (tiflags & TH_ACK) {
2944 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2945 	} else {
2946 		if (tiflags & TH_SYN)
2947 			tlen++;
2948 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2949 		    TH_RST|TH_ACK);
2950 	}
2951 	if (tcp_saveti)
2952 		m_freem(tcp_saveti);
2953 	return;
2954 
2955 badcsum:
2956 drop:
2957 	/*
2958 	 * Drop space held by incoming segment and return.
2959 	 */
2960 	if (tp) {
2961 		if (tp->t_inpcb)
2962 			so = tp->t_inpcb->inp_socket;
2963 #ifdef INET6
2964 		else if (tp->t_in6pcb)
2965 			so = tp->t_in6pcb->in6p_socket;
2966 #endif
2967 		else
2968 			so = NULL;
2969 #ifdef TCP_DEBUG
2970 		if (so && (so->so_options & SO_DEBUG) != 0)
2971 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2972 #endif
2973 	}
2974 	if (tcp_saveti)
2975 		m_freem(tcp_saveti);
2976 	m_freem(m);
2977 	return;
2978 }
2979 
2980 #ifdef TCP_SIGNATURE
2981 int
2982 tcp_signature_apply(void *fstate, void *data, u_int len)
2983 {
2984 
2985 	MD5Update(fstate, (u_char *)data, len);
2986 	return (0);
2987 }
2988 
2989 struct secasvar *
2990 tcp_signature_getsav(struct mbuf *m)
2991 {
2992 	struct ip *ip;
2993 	struct ip6_hdr *ip6;
2994 
2995 	ip = mtod(m, struct ip *);
2996 	switch (ip->ip_v) {
2997 	case 4:
2998 		ip = mtod(m, struct ip *);
2999 		ip6 = NULL;
3000 		break;
3001 	case 6:
3002 		ip = NULL;
3003 		ip6 = mtod(m, struct ip6_hdr *);
3004 		break;
3005 	default:
3006 		return (NULL);
3007 	}
3008 
3009 #ifdef IPSEC
3010 	union sockaddr_union dst;
3011 
3012 	/* Extract the destination from the IP header in the mbuf. */
3013 	memset(&dst, 0, sizeof(union sockaddr_union));
3014 	if (ip != NULL) {
3015 		dst.sa.sa_len = sizeof(struct sockaddr_in);
3016 		dst.sa.sa_family = AF_INET;
3017 		dst.sin.sin_addr = ip->ip_dst;
3018 	} else {
3019 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
3020 		dst.sa.sa_family = AF_INET6;
3021 		dst.sin6.sin6_addr = ip6->ip6_dst;
3022 	}
3023 
3024 	/*
3025 	 * Look up an SADB entry which matches the address of the peer.
3026 	 */
3027 	return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3028 #else
3029 	return NULL;
3030 #endif
3031 }
3032 
3033 int
3034 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3035     struct secasvar *sav, char *sig)
3036 {
3037 	MD5_CTX ctx;
3038 	struct ip *ip;
3039 	struct ipovly *ipovly;
3040 #ifdef INET6
3041 	struct ip6_hdr *ip6;
3042 	struct ip6_hdr_pseudo ip6pseudo;
3043 #endif
3044 	struct ippseudo ippseudo;
3045 	struct tcphdr th0;
3046 	int l, tcphdrlen;
3047 
3048 	if (sav == NULL)
3049 		return (-1);
3050 
3051 	tcphdrlen = th->th_off * 4;
3052 
3053 	switch (mtod(m, struct ip *)->ip_v) {
3054 	case 4:
3055 		MD5Init(&ctx);
3056 		ip = mtod(m, struct ip *);
3057 		memset(&ippseudo, 0, sizeof(ippseudo));
3058 		ipovly = (struct ipovly *)ip;
3059 		ippseudo.ippseudo_src = ipovly->ih_src;
3060 		ippseudo.ippseudo_dst = ipovly->ih_dst;
3061 		ippseudo.ippseudo_pad = 0;
3062 		ippseudo.ippseudo_p = IPPROTO_TCP;
3063 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3064 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3065 		break;
3066 #if INET6
3067 	case 6:
3068 		MD5Init(&ctx);
3069 		ip6 = mtod(m, struct ip6_hdr *);
3070 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3071 		ip6pseudo.ip6ph_src = ip6->ip6_src;
3072 		in6_clearscope(&ip6pseudo.ip6ph_src);
3073 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3074 		in6_clearscope(&ip6pseudo.ip6ph_dst);
3075 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3076 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3077 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3078 		break;
3079 #endif
3080 	default:
3081 		return (-1);
3082 	}
3083 
3084 	th0 = *th;
3085 	th0.th_sum = 0;
3086 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
3087 
3088 	l = m->m_pkthdr.len - thoff - tcphdrlen;
3089 	if (l > 0)
3090 		m_apply(m, thoff + tcphdrlen,
3091 		    m->m_pkthdr.len - thoff - tcphdrlen,
3092 		    tcp_signature_apply, &ctx);
3093 
3094 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3095 	MD5Final(sig, &ctx);
3096 
3097 	return (0);
3098 }
3099 #endif
3100 
3101 /*
3102  * Parse and process tcp options.
3103  *
3104  * Returns -1 if this segment should be dropped.  (eg. wrong signature)
3105  * Otherwise returns 0.
3106  */
3107 static int
3108 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt, struct tcphdr *th,
3109     struct mbuf *m, int toff, struct tcp_opt_info *oi)
3110 {
3111 	u_int16_t mss;
3112 	int opt, optlen = 0;
3113 #ifdef TCP_SIGNATURE
3114 	void *sigp = NULL;
3115 	char sigbuf[TCP_SIGLEN];
3116 	struct secasvar *sav = NULL;
3117 #endif
3118 
3119 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3120 		opt = cp[0];
3121 		if (opt == TCPOPT_EOL)
3122 			break;
3123 		if (opt == TCPOPT_NOP)
3124 			optlen = 1;
3125 		else {
3126 			if (cnt < 2)
3127 				break;
3128 			optlen = cp[1];
3129 			if (optlen < 2 || optlen > cnt)
3130 				break;
3131 		}
3132 		switch (opt) {
3133 
3134 		default:
3135 			continue;
3136 
3137 		case TCPOPT_MAXSEG:
3138 			if (optlen != TCPOLEN_MAXSEG)
3139 				continue;
3140 			if (!(th->th_flags & TH_SYN))
3141 				continue;
3142 			if (TCPS_HAVERCVDSYN(tp->t_state))
3143 				continue;
3144 			memcpy(&mss, cp + 2, sizeof(mss));
3145 			oi->maxseg = ntohs(mss);
3146 			break;
3147 
3148 		case TCPOPT_WINDOW:
3149 			if (optlen != TCPOLEN_WINDOW)
3150 				continue;
3151 			if (!(th->th_flags & TH_SYN))
3152 				continue;
3153 			if (TCPS_HAVERCVDSYN(tp->t_state))
3154 				continue;
3155 			tp->t_flags |= TF_RCVD_SCALE;
3156 			tp->requested_s_scale = cp[2];
3157 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3158 				char buf[INET6_ADDRSTRLEN];
3159 				struct ip *ip = mtod(m, struct ip *);
3160 #ifdef INET6
3161 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3162 #endif
3163 
3164 				switch (ip->ip_v) {
3165 				case 4:
3166 					in_print(buf, sizeof(buf),
3167 					    &ip->ip_src);
3168 					break;
3169 #ifdef INET6
3170 				case 6:
3171 					in6_print(buf, sizeof(buf),
3172 					    &ip6->ip6_src);
3173 					break;
3174 #endif
3175 				default:
3176 					strlcpy(buf, "(unknown)", sizeof(buf));
3177 					break;
3178 				}
3179 
3180 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3181 				    "assuming %d\n",
3182 				    tp->requested_s_scale, buf,
3183 				    TCP_MAX_WINSHIFT);
3184 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
3185 			}
3186 			break;
3187 
3188 		case TCPOPT_TIMESTAMP:
3189 			if (optlen != TCPOLEN_TIMESTAMP)
3190 				continue;
3191 			oi->ts_present = 1;
3192 			memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val));
3193 			NTOHL(oi->ts_val);
3194 			memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr));
3195 			NTOHL(oi->ts_ecr);
3196 
3197 			if (!(th->th_flags & TH_SYN))
3198 				continue;
3199 			if (TCPS_HAVERCVDSYN(tp->t_state))
3200 				continue;
3201 			/*
3202 			 * A timestamp received in a SYN makes
3203 			 * it ok to send timestamp requests and replies.
3204 			 */
3205 			tp->t_flags |= TF_RCVD_TSTMP;
3206 			tp->ts_recent = oi->ts_val;
3207 			tp->ts_recent_age = tcp_now;
3208                         break;
3209 
3210 		case TCPOPT_SACK_PERMITTED:
3211 			if (optlen != TCPOLEN_SACK_PERMITTED)
3212 				continue;
3213 			if (!(th->th_flags & TH_SYN))
3214 				continue;
3215 			if (TCPS_HAVERCVDSYN(tp->t_state))
3216 				continue;
3217 			if (tcp_do_sack) {
3218 				tp->t_flags |= TF_SACK_PERMIT;
3219 				tp->t_flags |= TF_WILL_SACK;
3220 			}
3221 			break;
3222 
3223 		case TCPOPT_SACK:
3224 			tcp_sack_option(tp, th, cp, optlen);
3225 			break;
3226 #ifdef TCP_SIGNATURE
3227 		case TCPOPT_SIGNATURE:
3228 			if (optlen != TCPOLEN_SIGNATURE)
3229 				continue;
3230 			if (sigp &&
3231 			    !consttime_memequal(sigp, cp + 2, TCP_SIGLEN))
3232 				return (-1);
3233 
3234 			sigp = sigbuf;
3235 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3236 			tp->t_flags |= TF_SIGNATURE;
3237 			break;
3238 #endif
3239 		}
3240 	}
3241 
3242 #ifndef TCP_SIGNATURE
3243 	return 0;
3244 #else
3245 	if (tp->t_flags & TF_SIGNATURE) {
3246 		sav = tcp_signature_getsav(m);
3247 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
3248 			return (-1);
3249 	}
3250 
3251 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3252 		goto out;
3253 
3254 	if (sigp) {
3255 		char sig[TCP_SIGLEN];
3256 
3257 		tcp_fields_to_net(th);
3258 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
3259 			tcp_fields_to_host(th);
3260 			goto out;
3261 		}
3262 		tcp_fields_to_host(th);
3263 
3264 		if (!consttime_memequal(sig, sigp, TCP_SIGLEN)) {
3265 			TCP_STATINC(TCP_STAT_BADSIG);
3266 			goto out;
3267 		} else
3268 			TCP_STATINC(TCP_STAT_GOODSIG);
3269 
3270 		key_sa_recordxfer(sav, m);
3271 		KEY_SA_UNREF(&sav);
3272 	}
3273 	return 0;
3274 out:
3275 	if (sav != NULL)
3276 		KEY_SA_UNREF(&sav);
3277 	return -1;
3278 #endif
3279 }
3280 
3281 /*
3282  * Pull out of band byte out of a segment so
3283  * it doesn't appear in the user's data queue.
3284  * It is still reflected in the segment length for
3285  * sequencing purposes.
3286  */
3287 void
3288 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3289     struct mbuf *m, int off)
3290 {
3291 	int cnt = off + th->th_urp - 1;
3292 
3293 	while (cnt >= 0) {
3294 		if (m->m_len > cnt) {
3295 			char *cp = mtod(m, char *) + cnt;
3296 			struct tcpcb *tp = sototcpcb(so);
3297 
3298 			tp->t_iobc = *cp;
3299 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3300 			memmove(cp, cp + 1, (unsigned)(m->m_len - cnt - 1));
3301 			m->m_len--;
3302 			return;
3303 		}
3304 		cnt -= m->m_len;
3305 		m = m->m_next;
3306 		if (m == NULL)
3307 			break;
3308 	}
3309 	panic("tcp_pulloutofband");
3310 }
3311 
3312 /*
3313  * Collect new round-trip time estimate
3314  * and update averages and current timeout.
3315  *
3316  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3317  * difference of two timestamps.
3318  */
3319 void
3320 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3321 {
3322 	int32_t delta;
3323 
3324 	TCP_STATINC(TCP_STAT_RTTUPDATED);
3325 	if (tp->t_srtt != 0) {
3326 		/*
3327 		 * Compute the amount to add to srtt for smoothing,
3328 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
3329 		 * srtt is stored in 1/32 slow ticks, we conceptually
3330 		 * shift left 5 bits, subtract srtt to get the
3331 		 * diference, and then shift right by TCP_RTT_SHIFT
3332 		 * (3) to obtain 1/8 of the difference.
3333 		 */
3334 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3335 		/*
3336 		 * This can never happen, because delta's lowest
3337 		 * possible value is 1/8 of t_srtt.  But if it does,
3338 		 * set srtt to some reasonable value, here chosen
3339 		 * as 1/8 tick.
3340 		 */
3341 		if ((tp->t_srtt += delta) <= 0)
3342 			tp->t_srtt = 1 << 2;
3343 		/*
3344 		 * RFC2988 requires that rttvar be updated first.
3345 		 * This code is compliant because "delta" is the old
3346 		 * srtt minus the new observation (scaled).
3347 		 *
3348 		 * RFC2988 says:
3349 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3350 		 *
3351 		 * delta is in units of 1/32 ticks, and has then been
3352 		 * divided by 8.  This is equivalent to being in 1/16s
3353 		 * units and divided by 4.  Subtract from it 1/4 of
3354 		 * the existing rttvar to form the (signed) amount to
3355 		 * adjust.
3356 		 */
3357 		if (delta < 0)
3358 			delta = -delta;
3359 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3360 		/*
3361 		 * As with srtt, this should never happen.  There is
3362 		 * no support in RFC2988 for this operation.  But 1/4s
3363 		 * as rttvar when faced with something arguably wrong
3364 		 * is ok.
3365 		 */
3366 		if ((tp->t_rttvar += delta) <= 0)
3367 			tp->t_rttvar = 1 << 2;
3368 
3369 		/*
3370 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3371 		 * Problem is: it doesn't work.  Disabled by defaulting
3372 		 * tcp_rttlocal to 0; see corresponding code in
3373 		 * tcp_subr that selects local vs remote in a different way.
3374 		 *
3375 		 * The static branch prediction hint here should be removed
3376 		 * when the rtt estimator is fixed and the rtt_enable code
3377 		 * is turned back on.
3378 		 */
3379 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3380 		    && tp->t_srtt > tcp_msl_remote_threshold
3381 		    && tp->t_msl  < tcp_msl_remote) {
3382 			tp->t_msl = MIN(tcp_msl_remote, TCP_MAXMSL);
3383 		}
3384 	} else {
3385 		/*
3386 		 * This is the first measurement.  Per RFC2988, 2.2,
3387 		 * set rtt=R and srtt=R/2.
3388 		 * For srtt, storage representation is 1/32 ticks,
3389 		 * so shift left by 5.
3390 		 * For rttvar, storage representation is 1/16 ticks,
3391 		 * So shift left by 4, but then right by 1 to halve.
3392 		 */
3393 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3394 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3395 	}
3396 	tp->t_rtttime = 0;
3397 	tp->t_rxtshift = 0;
3398 
3399 	/*
3400 	 * the retransmit should happen at rtt + 4 * rttvar.
3401 	 * Because of the way we do the smoothing, srtt and rttvar
3402 	 * will each average +1/2 tick of bias.  When we compute
3403 	 * the retransmit timer, we want 1/2 tick of rounding and
3404 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3405 	 * firing of the timer.  The bias will give us exactly the
3406 	 * 1.5 tick we need.  But, because the bias is
3407 	 * statistical, we have to test that we don't drop below
3408 	 * the minimum feasible timer (which is 2 ticks).
3409 	 */
3410 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3411 	    uimax(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3412 
3413 	/*
3414 	 * We received an ack for a packet that wasn't retransmitted;
3415 	 * it is probably safe to discard any error indications we've
3416 	 * received recently.  This isn't quite right, but close enough
3417 	 * for now (a route might have failed after we sent a segment,
3418 	 * and the return path might not be symmetrical).
3419 	 */
3420 	tp->t_softerror = 0;
3421 }
3422 
3423 
3424 /*
3425  * TCP compressed state engine.  Currently used to hold compressed
3426  * state for SYN_RECEIVED.
3427  */
3428 
3429 u_long	syn_cache_count;
3430 u_int32_t syn_hash1, syn_hash2;
3431 
3432 #define SYN_HASH(sa, sp, dp) \
3433 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3434 				     ((u_int32_t)(sp)))^syn_hash2)))
3435 #ifndef INET6
3436 #define	SYN_HASHALL(hash, src, dst) \
3437 do {									\
3438 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
3439 		((const struct sockaddr_in *)(src))->sin_port,		\
3440 		((const struct sockaddr_in *)(dst))->sin_port);		\
3441 } while (/*CONSTCOND*/ 0)
3442 #else
3443 #define SYN_HASH6(sa, sp, dp) \
3444 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3445 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3446 	 & 0x7fffffff)
3447 
3448 #define SYN_HASHALL(hash, src, dst) \
3449 do {									\
3450 	switch ((src)->sa_family) {					\
3451 	case AF_INET:							\
3452 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3453 			((const struct sockaddr_in *)(src))->sin_port,	\
3454 			((const struct sockaddr_in *)(dst))->sin_port);	\
3455 		break;							\
3456 	case AF_INET6:							\
3457 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3458 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
3459 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
3460 		break;							\
3461 	default:							\
3462 		hash = 0;						\
3463 	}								\
3464 } while (/*CONSTCOND*/0)
3465 #endif /* INET6 */
3466 
3467 static struct pool syn_cache_pool;
3468 
3469 /*
3470  * We don't estimate RTT with SYNs, so each packet starts with the default
3471  * RTT and each timer step has a fixed timeout value.
3472  */
3473 static inline void
3474 syn_cache_timer_arm(struct syn_cache *sc)
3475 {
3476 
3477 	TCPT_RANGESET(sc->sc_rxtcur,
3478 	    TCPTV_SRTTDFLT * tcp_backoff[sc->sc_rxtshift], TCPTV_MIN,
3479 	    TCPTV_REXMTMAX);
3480 	callout_reset(&sc->sc_timer,
3481 	    sc->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, sc);
3482 }
3483 
3484 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
3485 
3486 static inline void
3487 syn_cache_rm(struct syn_cache *sc)
3488 {
3489 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3490 	    sc, sc_bucketq);
3491 	sc->sc_tp = NULL;
3492 	LIST_REMOVE(sc, sc_tpq);
3493 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3494 	callout_stop(&sc->sc_timer);
3495 	syn_cache_count--;
3496 }
3497 
3498 static inline void
3499 syn_cache_put(struct syn_cache *sc)
3500 {
3501 	if (sc->sc_ipopts)
3502 		(void) m_free(sc->sc_ipopts);
3503 	rtcache_free(&sc->sc_route);
3504 	sc->sc_flags |= SCF_DEAD;
3505 	if (!callout_invoking(&sc->sc_timer))
3506 		callout_schedule(&(sc)->sc_timer, 1);
3507 }
3508 
3509 void
3510 syn_cache_init(void)
3511 {
3512 	int i;
3513 
3514 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3515 	    "synpl", NULL, IPL_SOFTNET);
3516 
3517 	/* Initialize the hash buckets. */
3518 	for (i = 0; i < tcp_syn_cache_size; i++)
3519 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3520 }
3521 
3522 void
3523 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3524 {
3525 	struct syn_cache_head *scp;
3526 	struct syn_cache *sc2;
3527 	int s;
3528 
3529 	/*
3530 	 * If there are no entries in the hash table, reinitialize
3531 	 * the hash secrets.
3532 	 */
3533 	if (syn_cache_count == 0) {
3534 		syn_hash1 = cprng_fast32();
3535 		syn_hash2 = cprng_fast32();
3536 	}
3537 
3538 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3539 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3540 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3541 
3542 	/*
3543 	 * Make sure that we don't overflow the per-bucket
3544 	 * limit or the total cache size limit.
3545 	 */
3546 	s = splsoftnet();
3547 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3548 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3549 		/*
3550 		 * The bucket is full.  Toss the oldest element in the
3551 		 * bucket.  This will be the first entry in the bucket.
3552 		 */
3553 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3554 #ifdef DIAGNOSTIC
3555 		/*
3556 		 * This should never happen; we should always find an
3557 		 * entry in our bucket.
3558 		 */
3559 		if (sc2 == NULL)
3560 			panic("syn_cache_insert: bucketoverflow: impossible");
3561 #endif
3562 		syn_cache_rm(sc2);
3563 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3564 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3565 		struct syn_cache_head *scp2, *sce;
3566 
3567 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3568 		/*
3569 		 * The cache is full.  Toss the oldest entry in the
3570 		 * first non-empty bucket we can find.
3571 		 *
3572 		 * XXX We would really like to toss the oldest
3573 		 * entry in the cache, but we hope that this
3574 		 * condition doesn't happen very often.
3575 		 */
3576 		scp2 = scp;
3577 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3578 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3579 			for (++scp2; scp2 != scp; scp2++) {
3580 				if (scp2 >= sce)
3581 					scp2 = &tcp_syn_cache[0];
3582 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3583 					break;
3584 			}
3585 #ifdef DIAGNOSTIC
3586 			/*
3587 			 * This should never happen; we should always find a
3588 			 * non-empty bucket.
3589 			 */
3590 			if (scp2 == scp)
3591 				panic("syn_cache_insert: cacheoverflow: "
3592 				    "impossible");
3593 #endif
3594 		}
3595 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3596 		syn_cache_rm(sc2);
3597 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3598 	}
3599 
3600 	/*
3601 	 * Initialize the entry's timer.
3602 	 */
3603 	sc->sc_rxttot = 0;
3604 	sc->sc_rxtshift = 0;
3605 	syn_cache_timer_arm(sc);
3606 
3607 	/* Link it from tcpcb entry */
3608 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3609 
3610 	/* Put it into the bucket. */
3611 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3612 	scp->sch_length++;
3613 	syn_cache_count++;
3614 
3615 	TCP_STATINC(TCP_STAT_SC_ADDED);
3616 	splx(s);
3617 }
3618 
3619 /*
3620  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3621  * If we have retransmitted an entry the maximum number of times, expire
3622  * that entry.
3623  */
3624 static void
3625 syn_cache_timer(void *arg)
3626 {
3627 	struct syn_cache *sc = arg;
3628 
3629 	mutex_enter(softnet_lock);
3630 	KERNEL_LOCK(1, NULL);
3631 
3632 	callout_ack(&sc->sc_timer);
3633 
3634 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3635 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3636 		goto free;
3637 	}
3638 
3639 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3640 		/* Drop it -- too many retransmissions. */
3641 		goto dropit;
3642 	}
3643 
3644 	/*
3645 	 * Compute the total amount of time this entry has
3646 	 * been on a queue.  If this entry has been on longer
3647 	 * than the keep alive timer would allow, expire it.
3648 	 */
3649 	sc->sc_rxttot += sc->sc_rxtcur;
3650 	if (sc->sc_rxttot >= MIN(tcp_keepinit, TCP_TIMER_MAXTICKS))
3651 		goto dropit;
3652 
3653 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3654 	(void)syn_cache_respond(sc);
3655 
3656 	/* Advance the timer back-off. */
3657 	sc->sc_rxtshift++;
3658 	syn_cache_timer_arm(sc);
3659 
3660 	goto out;
3661 
3662  dropit:
3663 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3664 	syn_cache_rm(sc);
3665 	if (sc->sc_ipopts)
3666 		(void) m_free(sc->sc_ipopts);
3667 	rtcache_free(&sc->sc_route);
3668 
3669  free:
3670 	callout_destroy(&sc->sc_timer);
3671 	pool_put(&syn_cache_pool, sc);
3672 
3673  out:
3674 	KERNEL_UNLOCK_ONE(NULL);
3675 	mutex_exit(softnet_lock);
3676 }
3677 
3678 /*
3679  * Remove syn cache created by the specified tcb entry,
3680  * because this does not make sense to keep them
3681  * (if there's no tcb entry, syn cache entry will never be used)
3682  */
3683 void
3684 syn_cache_cleanup(struct tcpcb *tp)
3685 {
3686 	struct syn_cache *sc, *nsc;
3687 	int s;
3688 
3689 	s = splsoftnet();
3690 
3691 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3692 		nsc = LIST_NEXT(sc, sc_tpq);
3693 
3694 #ifdef DIAGNOSTIC
3695 		if (sc->sc_tp != tp)
3696 			panic("invalid sc_tp in syn_cache_cleanup");
3697 #endif
3698 		syn_cache_rm(sc);
3699 		syn_cache_put(sc);	/* calls pool_put but see spl above */
3700 	}
3701 	/* just for safety */
3702 	LIST_INIT(&tp->t_sc);
3703 
3704 	splx(s);
3705 }
3706 
3707 /*
3708  * Find an entry in the syn cache.
3709  */
3710 struct syn_cache *
3711 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3712     struct syn_cache_head **headp)
3713 {
3714 	struct syn_cache *sc;
3715 	struct syn_cache_head *scp;
3716 	u_int32_t hash;
3717 	int s;
3718 
3719 	SYN_HASHALL(hash, src, dst);
3720 
3721 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3722 	*headp = scp;
3723 	s = splsoftnet();
3724 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3725 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3726 		if (sc->sc_hash != hash)
3727 			continue;
3728 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3729 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3730 			splx(s);
3731 			return (sc);
3732 		}
3733 	}
3734 	splx(s);
3735 	return (NULL);
3736 }
3737 
3738 /*
3739  * This function gets called when we receive an ACK for a socket in the
3740  * LISTEN state. We look up the connection in the syn cache, and if it's
3741  * there, we pull it out of the cache and turn it into a full-blown
3742  * connection in the SYN-RECEIVED state.
3743  *
3744  * The return values may not be immediately obvious, and their effects
3745  * can be subtle, so here they are:
3746  *
3747  *	NULL	SYN was not found in cache; caller should drop the
3748  *		packet and send an RST.
3749  *
3750  *	-1	We were unable to create the new connection, and are
3751  *		aborting it.  An ACK,RST is being sent to the peer
3752  *		(unless we got screwey sequence numbers; see below),
3753  *		because the 3-way handshake has been completed.  Caller
3754  *		should not free the mbuf, since we may be using it.  If
3755  *		we are not, we will free it.
3756  *
3757  *	Otherwise, the return value is a pointer to the new socket
3758  *	associated with the connection.
3759  */
3760 struct socket *
3761 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3762     struct tcphdr *th, struct socket *so, struct mbuf *m)
3763 {
3764 	struct syn_cache *sc;
3765 	struct syn_cache_head *scp;
3766 	struct inpcb *inp = NULL;
3767 #ifdef INET6
3768 	struct in6pcb *in6p = NULL;
3769 #endif
3770 	struct tcpcb *tp;
3771 	int s;
3772 	struct socket *oso;
3773 
3774 	s = splsoftnet();
3775 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3776 		splx(s);
3777 		return NULL;
3778 	}
3779 
3780 	/*
3781 	 * Verify the sequence and ack numbers.  Try getting the correct
3782 	 * response again.
3783 	 */
3784 	if ((th->th_ack != sc->sc_iss + 1) ||
3785 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3786 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3787 		m_freem(m);
3788 		(void)syn_cache_respond(sc);
3789 		splx(s);
3790 		return ((struct socket *)(-1));
3791 	}
3792 
3793 	/* Remove this cache entry */
3794 	syn_cache_rm(sc);
3795 	splx(s);
3796 
3797 	/*
3798 	 * Ok, create the full blown connection, and set things up
3799 	 * as they would have been set up if we had created the
3800 	 * connection when the SYN arrived.  If we can't create
3801 	 * the connection, abort it.
3802 	 */
3803 	/*
3804 	 * inp still has the OLD in_pcb stuff, set the
3805 	 * v6-related flags on the new guy, too.   This is
3806 	 * done particularly for the case where an AF_INET6
3807 	 * socket is bound only to a port, and a v4 connection
3808 	 * comes in on that port.
3809 	 * we also copy the flowinfo from the original pcb
3810 	 * to the new one.
3811 	 */
3812 	oso = so;
3813 	so = sonewconn(so, true);
3814 	if (so == NULL)
3815 		goto resetandabort;
3816 
3817 	switch (so->so_proto->pr_domain->dom_family) {
3818 	case AF_INET:
3819 		inp = sotoinpcb(so);
3820 		break;
3821 #ifdef INET6
3822 	case AF_INET6:
3823 		in6p = sotoin6pcb(so);
3824 		break;
3825 #endif
3826 	}
3827 
3828 	switch (src->sa_family) {
3829 	case AF_INET:
3830 		if (inp) {
3831 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3832 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3833 			inp->inp_options = ip_srcroute(m);
3834 			in_pcbstate(inp, INP_BOUND);
3835 			if (inp->inp_options == NULL) {
3836 				inp->inp_options = sc->sc_ipopts;
3837 				sc->sc_ipopts = NULL;
3838 			}
3839 		}
3840 #ifdef INET6
3841 		else if (in6p) {
3842 			/* IPv4 packet to AF_INET6 socket */
3843 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
3844 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3845 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3846 				&in6p->in6p_laddr.s6_addr32[3],
3847 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
3848 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3849 			in6totcpcb(in6p)->t_family = AF_INET;
3850 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3851 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3852 			else
3853 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3854 			in6_pcbstate(in6p, IN6P_BOUND);
3855 		}
3856 #endif
3857 		break;
3858 #ifdef INET6
3859 	case AF_INET6:
3860 		if (in6p) {
3861 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3862 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3863 			in6_pcbstate(in6p, IN6P_BOUND);
3864 		}
3865 		break;
3866 #endif
3867 	}
3868 
3869 #ifdef INET6
3870 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3871 		struct in6pcb *oin6p = sotoin6pcb(oso);
3872 		/* inherit socket options from the listening socket */
3873 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3874 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3875 			m_freem(in6p->in6p_options);
3876 			in6p->in6p_options = NULL;
3877 		}
3878 		ip6_savecontrol(in6p, &in6p->in6p_options,
3879 		    mtod(m, struct ip6_hdr *), m);
3880 	}
3881 #endif
3882 
3883 	/*
3884 	 * Give the new socket our cached route reference.
3885 	 */
3886 	if (inp) {
3887 		rtcache_copy(&inp->inp_route, &sc->sc_route);
3888 		rtcache_free(&sc->sc_route);
3889 	}
3890 #ifdef INET6
3891 	else {
3892 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3893 		rtcache_free(&sc->sc_route);
3894 	}
3895 #endif
3896 
3897 	if (inp) {
3898 		struct sockaddr_in sin;
3899 		memcpy(&sin, src, src->sa_len);
3900 		if (in_pcbconnect(inp, &sin, &lwp0)) {
3901 			goto resetandabort;
3902 		}
3903 	}
3904 #ifdef INET6
3905 	else if (in6p) {
3906 		struct sockaddr_in6 sin6;
3907 		memcpy(&sin6, src, src->sa_len);
3908 		if (src->sa_family == AF_INET) {
3909 			/* IPv4 packet to AF_INET6 socket */
3910 			in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
3911 		}
3912 		if (in6_pcbconnect(in6p, &sin6, NULL)) {
3913 			goto resetandabort;
3914 		}
3915 	}
3916 #endif
3917 	else {
3918 		goto resetandabort;
3919 	}
3920 
3921 	if (inp)
3922 		tp = intotcpcb(inp);
3923 #ifdef INET6
3924 	else if (in6p)
3925 		tp = in6totcpcb(in6p);
3926 #endif
3927 	else
3928 		tp = NULL;
3929 
3930 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3931 	if (sc->sc_request_r_scale != 15) {
3932 		tp->requested_s_scale = sc->sc_requested_s_scale;
3933 		tp->request_r_scale = sc->sc_request_r_scale;
3934 		tp->snd_scale = sc->sc_requested_s_scale;
3935 		tp->rcv_scale = sc->sc_request_r_scale;
3936 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3937 	}
3938 	if (sc->sc_flags & SCF_TIMESTAMP)
3939 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3940 	tp->ts_timebase = sc->sc_timebase;
3941 
3942 	tp->t_template = tcp_template(tp);
3943 	if (tp->t_template == 0) {
3944 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3945 		so = NULL;
3946 		m_freem(m);
3947 		goto abort;
3948 	}
3949 
3950 	tp->iss = sc->sc_iss;
3951 	tp->irs = sc->sc_irs;
3952 	tcp_sendseqinit(tp);
3953 	tcp_rcvseqinit(tp);
3954 	tp->t_state = TCPS_SYN_RECEIVED;
3955 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3956 	TCP_STATINC(TCP_STAT_ACCEPTS);
3957 
3958 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3959 		tp->t_flags |= TF_WILL_SACK;
3960 
3961 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
3962 		tp->t_flags |= TF_ECN_PERMIT;
3963 
3964 #ifdef TCP_SIGNATURE
3965 	if (sc->sc_flags & SCF_SIGNATURE)
3966 		tp->t_flags |= TF_SIGNATURE;
3967 #endif
3968 
3969 	/* Initialize tp->t_ourmss before we deal with the peer's! */
3970 	tp->t_ourmss = sc->sc_ourmaxseg;
3971 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3972 
3973 	/*
3974 	 * Initialize the initial congestion window.  If we
3975 	 * had to retransmit the SYN,ACK, we must initialize cwnd
3976 	 * to 1 segment (i.e. the Loss Window).
3977 	 */
3978 	if (sc->sc_rxtshift)
3979 		tp->snd_cwnd = tp->t_peermss;
3980 	else {
3981 		int ss = tcp_init_win;
3982 		if (inp != NULL && in_localaddr(inp->inp_faddr))
3983 			ss = tcp_init_win_local;
3984 #ifdef INET6
3985 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3986 			ss = tcp_init_win_local;
3987 #endif
3988 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3989 	}
3990 
3991 	tcp_rmx_rtt(tp);
3992 	tp->snd_wl1 = sc->sc_irs;
3993 	tp->rcv_up = sc->sc_irs + 1;
3994 
3995 	/*
3996 	 * This is what whould have happened in tcp_output() when
3997 	 * the SYN,ACK was sent.
3998 	 */
3999 	tp->snd_up = tp->snd_una;
4000 	tp->snd_max = tp->snd_nxt = tp->iss+1;
4001 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4002 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4003 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4004 	tp->last_ack_sent = tp->rcv_nxt;
4005 	tp->t_partialacks = -1;
4006 	tp->t_dupacks = 0;
4007 
4008 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
4009 	s = splsoftnet();
4010 	syn_cache_put(sc);
4011 	splx(s);
4012 	return so;
4013 
4014 resetandabort:
4015 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4016 abort:
4017 	if (so != NULL) {
4018 		(void) soqremque(so, 1);
4019 		(void) soabort(so);
4020 		mutex_enter(softnet_lock);
4021 	}
4022 	s = splsoftnet();
4023 	syn_cache_put(sc);
4024 	splx(s);
4025 	TCP_STATINC(TCP_STAT_SC_ABORTED);
4026 	return ((struct socket *)(-1));
4027 }
4028 
4029 /*
4030  * This function is called when we get a RST for a
4031  * non-existent connection, so that we can see if the
4032  * connection is in the syn cache.  If it is, zap it.
4033  */
4034 
4035 void
4036 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4037 {
4038 	struct syn_cache *sc;
4039 	struct syn_cache_head *scp;
4040 	int s = splsoftnet();
4041 
4042 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4043 		splx(s);
4044 		return;
4045 	}
4046 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4047 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4048 		splx(s);
4049 		return;
4050 	}
4051 	syn_cache_rm(sc);
4052 	TCP_STATINC(TCP_STAT_SC_RESET);
4053 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4054 	splx(s);
4055 }
4056 
4057 void
4058 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4059     struct tcphdr *th)
4060 {
4061 	struct syn_cache *sc;
4062 	struct syn_cache_head *scp;
4063 	int s;
4064 
4065 	s = splsoftnet();
4066 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4067 		splx(s);
4068 		return;
4069 	}
4070 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4071 	if (ntohl(th->th_seq) != sc->sc_iss) {
4072 		splx(s);
4073 		return;
4074 	}
4075 
4076 	/*
4077 	 * If we've retransmitted 3 times and this is our second error,
4078 	 * we remove the entry.  Otherwise, we allow it to continue on.
4079 	 * This prevents us from incorrectly nuking an entry during a
4080 	 * spurious network outage.
4081 	 *
4082 	 * See tcp_notify().
4083 	 */
4084 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4085 		sc->sc_flags |= SCF_UNREACH;
4086 		splx(s);
4087 		return;
4088 	}
4089 
4090 	syn_cache_rm(sc);
4091 	TCP_STATINC(TCP_STAT_SC_UNREACH);
4092 	syn_cache_put(sc);	/* calls pool_put but see spl above */
4093 	splx(s);
4094 }
4095 
4096 /*
4097  * Given a LISTEN socket and an inbound SYN request, add this to the syn
4098  * cache, and send back a segment:
4099  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4100  * to the source.
4101  *
4102  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4103  * Doing so would require that we hold onto the data and deliver it
4104  * to the application.  However, if we are the target of a SYN-flood
4105  * DoS attack, an attacker could send data which would eventually
4106  * consume all available buffer space if it were ACKed.  By not ACKing
4107  * the data, we avoid this DoS scenario.
4108  */
4109 int
4110 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4111     unsigned int toff, struct socket *so, struct mbuf *m, u_char *optp,
4112     int optlen, struct tcp_opt_info *oi)
4113 {
4114 	struct tcpcb tb, *tp;
4115 	long win;
4116 	struct syn_cache *sc;
4117 	struct syn_cache_head *scp;
4118 	struct mbuf *ipopts;
4119 	int s;
4120 
4121 	tp = sototcpcb(so);
4122 
4123 	/*
4124 	 * Initialize some local state.
4125 	 */
4126 	win = sbspace(&so->so_rcv);
4127 	if (win > TCP_MAXWIN)
4128 		win = TCP_MAXWIN;
4129 
4130 #ifdef TCP_SIGNATURE
4131 	if (optp || (tp->t_flags & TF_SIGNATURE))
4132 #else
4133 	if (optp)
4134 #endif
4135 	{
4136 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4137 #ifdef TCP_SIGNATURE
4138 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4139 #endif
4140 		tb.t_state = TCPS_LISTEN;
4141 		if (tcp_dooptions(&tb, optp, optlen, th, m, toff, oi) < 0)
4142 			return 0;
4143 	} else
4144 		tb.t_flags = 0;
4145 
4146 	switch (src->sa_family) {
4147 	case AF_INET:
4148 		/* Remember the IP options, if any. */
4149 		ipopts = ip_srcroute(m);
4150 		break;
4151 	default:
4152 		ipopts = NULL;
4153 	}
4154 
4155 	/*
4156 	 * See if we already have an entry for this connection.
4157 	 * If we do, resend the SYN,ACK.  We do not count this
4158 	 * as a retransmission (XXX though maybe we should).
4159 	 */
4160 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4161 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
4162 		if (ipopts) {
4163 			/*
4164 			 * If we were remembering a previous source route,
4165 			 * forget it and use the new one we've been given.
4166 			 */
4167 			if (sc->sc_ipopts)
4168 				(void)m_free(sc->sc_ipopts);
4169 			sc->sc_ipopts = ipopts;
4170 		}
4171 		sc->sc_timestamp = tb.ts_recent;
4172 		m_freem(m);
4173 		if (syn_cache_respond(sc) == 0) {
4174 			uint64_t *tcps = TCP_STAT_GETREF();
4175 			tcps[TCP_STAT_SNDACKS]++;
4176 			tcps[TCP_STAT_SNDTOTAL]++;
4177 			TCP_STAT_PUTREF();
4178 		}
4179 		return 1;
4180 	}
4181 
4182 	s = splsoftnet();
4183 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4184 	splx(s);
4185 	if (sc == NULL) {
4186 		if (ipopts)
4187 			(void)m_free(ipopts);
4188 		return 0;
4189 	}
4190 
4191 	/*
4192 	 * Fill in the cache, and put the necessary IP and TCP
4193 	 * options into the reply.
4194 	 */
4195 	memset(sc, 0, sizeof(struct syn_cache));
4196 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4197 	memcpy(&sc->sc_src, src, src->sa_len);
4198 	memcpy(&sc->sc_dst, dst, dst->sa_len);
4199 	sc->sc_flags = 0;
4200 	sc->sc_ipopts = ipopts;
4201 	sc->sc_irs = th->th_seq;
4202 	switch (src->sa_family) {
4203 	case AF_INET:
4204 	    {
4205 		struct sockaddr_in *srcin = (void *)src;
4206 		struct sockaddr_in *dstin = (void *)dst;
4207 
4208 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4209 		    &srcin->sin_addr, dstin->sin_port,
4210 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
4211 		break;
4212 	    }
4213 #ifdef INET6
4214 	case AF_INET6:
4215 	    {
4216 		struct sockaddr_in6 *srcin6 = (void *)src;
4217 		struct sockaddr_in6 *dstin6 = (void *)dst;
4218 
4219 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4220 		    &srcin6->sin6_addr, dstin6->sin6_port,
4221 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4222 		break;
4223 	    }
4224 #endif
4225 	}
4226 	sc->sc_peermaxseg = oi->maxseg;
4227 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4228 	    m_get_rcvif_NOMPSAFE(m) : NULL, sc->sc_src.sa.sa_family);
4229 	sc->sc_win = win;
4230 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
4231 	sc->sc_timestamp = tb.ts_recent;
4232 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4233 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4234 		sc->sc_flags |= SCF_TIMESTAMP;
4235 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4236 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4237 		sc->sc_requested_s_scale = tb.requested_s_scale;
4238 		sc->sc_request_r_scale = 0;
4239 		/*
4240 		 * Pick the smallest possible scaling factor that
4241 		 * will still allow us to scale up to sb_max.
4242 		 *
4243 		 * We do this because there are broken firewalls that
4244 		 * will corrupt the window scale option, leading to
4245 		 * the other endpoint believing that our advertised
4246 		 * window is unscaled.  At scale factors larger than
4247 		 * 5 the unscaled window will drop below 1500 bytes,
4248 		 * leading to serious problems when traversing these
4249 		 * broken firewalls.
4250 		 *
4251 		 * With the default sbmax of 256K, a scale factor
4252 		 * of 3 will be chosen by this algorithm.  Those who
4253 		 * choose a larger sbmax should watch out
4254 		 * for the compatiblity problems mentioned above.
4255 		 *
4256 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4257 		 * or <SYN,ACK>) segment itself is never scaled.
4258 		 */
4259 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4260 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4261 			sc->sc_request_r_scale++;
4262 	} else {
4263 		sc->sc_requested_s_scale = 15;
4264 		sc->sc_request_r_scale = 15;
4265 	}
4266 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4267 		sc->sc_flags |= SCF_SACK_PERMIT;
4268 
4269 	/*
4270 	 * ECN setup packet received.
4271 	 */
4272 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4273 		sc->sc_flags |= SCF_ECN_PERMIT;
4274 
4275 #ifdef TCP_SIGNATURE
4276 	if (tb.t_flags & TF_SIGNATURE)
4277 		sc->sc_flags |= SCF_SIGNATURE;
4278 #endif
4279 	sc->sc_tp = tp;
4280 	m_freem(m);
4281 	if (syn_cache_respond(sc) == 0) {
4282 		uint64_t *tcps = TCP_STAT_GETREF();
4283 		tcps[TCP_STAT_SNDACKS]++;
4284 		tcps[TCP_STAT_SNDTOTAL]++;
4285 		TCP_STAT_PUTREF();
4286 		syn_cache_insert(sc, tp);
4287 	} else {
4288 		s = splsoftnet();
4289 		/*
4290 		 * syn_cache_put() will try to schedule the timer, so
4291 		 * we need to initialize it
4292 		 */
4293 		syn_cache_timer_arm(sc);
4294 		syn_cache_put(sc);
4295 		splx(s);
4296 		TCP_STATINC(TCP_STAT_SC_DROPPED);
4297 	}
4298 	return 1;
4299 }
4300 
4301 /*
4302  * syn_cache_respond: (re)send SYN+ACK.
4303  *
4304  * Returns 0 on success.
4305  */
4306 
4307 int
4308 syn_cache_respond(struct syn_cache *sc)
4309 {
4310 #ifdef INET6
4311 	struct rtentry *rt = NULL;
4312 #endif
4313 	struct route *ro;
4314 	u_int8_t *optp;
4315 	int optlen, error;
4316 	u_int16_t tlen;
4317 	struct ip *ip = NULL;
4318 #ifdef INET6
4319 	struct ip6_hdr *ip6 = NULL;
4320 #endif
4321 	struct tcpcb *tp;
4322 	struct tcphdr *th;
4323 	struct mbuf *m;
4324 	u_int hlen;
4325 #ifdef TCP_SIGNATURE
4326 	struct secasvar *sav = NULL;
4327 	u_int8_t *sigp = NULL;
4328 #endif
4329 
4330 	ro = &sc->sc_route;
4331 	switch (sc->sc_src.sa.sa_family) {
4332 	case AF_INET:
4333 		hlen = sizeof(struct ip);
4334 		break;
4335 #ifdef INET6
4336 	case AF_INET6:
4337 		hlen = sizeof(struct ip6_hdr);
4338 		break;
4339 #endif
4340 	default:
4341 		return EAFNOSUPPORT;
4342 	}
4343 
4344 	/* Worst case scanario, since we don't know the option size yet. */
4345 	tlen = hlen + sizeof(struct tcphdr) + MAX_TCPOPTLEN;
4346 	KASSERT(max_linkhdr + tlen <= MCLBYTES);
4347 
4348 	/*
4349 	 * Create the IP+TCP header from scratch.
4350 	 */
4351 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4352 	if (m && (max_linkhdr + tlen) > MHLEN) {
4353 		MCLGET(m, M_DONTWAIT);
4354 		if ((m->m_flags & M_EXT) == 0) {
4355 			m_freem(m);
4356 			m = NULL;
4357 		}
4358 	}
4359 	if (m == NULL)
4360 		return ENOBUFS;
4361 	MCLAIM(m, &tcp_tx_mowner);
4362 
4363 	tp = sc->sc_tp;
4364 
4365 	/* Fixup the mbuf. */
4366 	m->m_data += max_linkhdr;
4367 	m_reset_rcvif(m);
4368 	memset(mtod(m, void *), 0, tlen);
4369 
4370 	switch (sc->sc_src.sa.sa_family) {
4371 	case AF_INET:
4372 		ip = mtod(m, struct ip *);
4373 		ip->ip_v = 4;
4374 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4375 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4376 		ip->ip_p = IPPROTO_TCP;
4377 		th = (struct tcphdr *)(ip + 1);
4378 		th->th_dport = sc->sc_src.sin.sin_port;
4379 		th->th_sport = sc->sc_dst.sin.sin_port;
4380 		break;
4381 #ifdef INET6
4382 	case AF_INET6:
4383 		ip6 = mtod(m, struct ip6_hdr *);
4384 		ip6->ip6_vfc = IPV6_VERSION;
4385 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4386 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4387 		ip6->ip6_nxt = IPPROTO_TCP;
4388 		/* ip6_plen will be updated in ip6_output() */
4389 		th = (struct tcphdr *)(ip6 + 1);
4390 		th->th_dport = sc->sc_src.sin6.sin6_port;
4391 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4392 		break;
4393 #endif
4394 	default:
4395 		panic("%s: impossible (1)", __func__);
4396 	}
4397 
4398 	th->th_seq = htonl(sc->sc_iss);
4399 	th->th_ack = htonl(sc->sc_irs + 1);
4400 	th->th_flags = TH_SYN|TH_ACK;
4401 	th->th_win = htons(sc->sc_win);
4402 	/* th_x2, th_sum, th_urp already 0 from memset */
4403 
4404 	/* Tack on the TCP options. */
4405 	optp = (u_int8_t *)(th + 1);
4406 	optlen = 0;
4407 	*optp++ = TCPOPT_MAXSEG;
4408 	*optp++ = TCPOLEN_MAXSEG;
4409 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4410 	*optp++ = sc->sc_ourmaxseg & 0xff;
4411 	optlen += TCPOLEN_MAXSEG;
4412 
4413 	if (sc->sc_request_r_scale != 15) {
4414 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4415 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4416 		    sc->sc_request_r_scale);
4417 		optp += TCPOLEN_WINDOW + TCPOLEN_NOP;
4418 		optlen += TCPOLEN_WINDOW + TCPOLEN_NOP;
4419 	}
4420 
4421 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4422 		/* Let the peer know that we will SACK. */
4423 		*optp++ = TCPOPT_SACK_PERMITTED;
4424 		*optp++ = TCPOLEN_SACK_PERMITTED;
4425 		optlen += TCPOLEN_SACK_PERMITTED;
4426 	}
4427 
4428 	if (sc->sc_flags & SCF_TIMESTAMP) {
4429 		while (optlen % 4 != 2) {
4430 			optlen += TCPOLEN_NOP;
4431 			*optp++ = TCPOPT_NOP;
4432 		}
4433 		*optp++ = TCPOPT_TIMESTAMP;
4434 		*optp++ = TCPOLEN_TIMESTAMP;
4435 		u_int32_t *lp = (u_int32_t *)(optp);
4436 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4437 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4438 		*lp   = htonl(sc->sc_timestamp);
4439 		optp += TCPOLEN_TIMESTAMP - 2;
4440 		optlen += TCPOLEN_TIMESTAMP;
4441 	}
4442 
4443 #ifdef TCP_SIGNATURE
4444 	if (sc->sc_flags & SCF_SIGNATURE) {
4445 		sav = tcp_signature_getsav(m);
4446 		if (sav == NULL) {
4447 			m_freem(m);
4448 			return EPERM;
4449 		}
4450 
4451 		*optp++ = TCPOPT_SIGNATURE;
4452 		*optp++ = TCPOLEN_SIGNATURE;
4453 		sigp = optp;
4454 		memset(optp, 0, TCP_SIGLEN);
4455 		optp += TCP_SIGLEN;
4456 		optlen += TCPOLEN_SIGNATURE;
4457 	}
4458 #endif
4459 
4460 	/*
4461 	 * Terminate and pad TCP options to a 4 byte boundary.
4462 	 *
4463 	 * According to RFC793: "The content of the header beyond the
4464 	 * End-of-Option option must be header padding (i.e., zero)."
4465 	 * And later: "The padding is composed of zeros."
4466 	 */
4467 	if (optlen % 4) {
4468 		optlen += TCPOLEN_EOL;
4469 		*optp++ = TCPOPT_EOL;
4470 	}
4471 	while (optlen % 4) {
4472 		optlen += TCPOLEN_PAD;
4473 		*optp++ = TCPOPT_PAD;
4474 	}
4475 
4476 	/* Compute the actual values now that we've added the options. */
4477 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4478 	m->m_len = m->m_pkthdr.len = tlen;
4479 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4480 
4481 #ifdef TCP_SIGNATURE
4482 	if (sav) {
4483 		(void)tcp_signature(m, th, hlen, sav, sigp);
4484 		key_sa_recordxfer(sav, m);
4485 		KEY_SA_UNREF(&sav);
4486 	}
4487 #endif
4488 
4489 	/*
4490 	 * Send ECN SYN-ACK setup packet.
4491 	 * Routes can be asymetric, so, even if we receive a packet
4492 	 * with ECE and CWR set, we must not assume no one will block
4493 	 * the ECE packet we are about to send.
4494 	 */
4495 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4496 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4497 		th->th_flags |= TH_ECE;
4498 		TCP_STATINC(TCP_STAT_ECN_SHS);
4499 
4500 		/*
4501 		 * draft-ietf-tcpm-ecnsyn-00.txt
4502 		 *
4503 		 * "[...] a TCP node MAY respond to an ECN-setup
4504 		 * SYN packet by setting ECT in the responding
4505 		 * ECN-setup SYN/ACK packet, indicating to routers
4506 		 * that the SYN/ACK packet is ECN-Capable.
4507 		 * This allows a congested router along the path
4508 		 * to mark the packet instead of dropping the
4509 		 * packet as an indication of congestion."
4510 		 *
4511 		 * "[...] There can be a great benefit in setting
4512 		 * an ECN-capable codepoint in SYN/ACK packets [...]
4513 		 * Congestion is  most likely to occur in
4514 		 * the server-to-client direction.  As a result,
4515 		 * setting an ECN-capable codepoint in SYN/ACK
4516 		 * packets can reduce the occurence of three-second
4517 		 * retransmit timeouts resulting from the drop
4518 		 * of SYN/ACK packets."
4519 		 *
4520 		 * Page 4 and 6, January 2006.
4521 		 */
4522 
4523 		switch (sc->sc_src.sa.sa_family) {
4524 		case AF_INET:
4525 			ip->ip_tos |= IPTOS_ECN_ECT0;
4526 			break;
4527 #ifdef INET6
4528 		case AF_INET6:
4529 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4530 			break;
4531 #endif
4532 		}
4533 		TCP_STATINC(TCP_STAT_ECN_ECT);
4534 	}
4535 
4536 
4537 	/*
4538 	 * Compute the packet's checksum.
4539 	 *
4540 	 * Fill in some straggling IP bits.  Note the stack expects
4541 	 * ip_len to be in host order, for convenience.
4542 	 */
4543 	switch (sc->sc_src.sa.sa_family) {
4544 	case AF_INET:
4545 		ip->ip_len = htons(tlen - hlen);
4546 		th->th_sum = 0;
4547 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4548 		ip->ip_len = htons(tlen);
4549 		ip->ip_ttl = ip_defttl;
4550 		/* XXX tos? */
4551 		break;
4552 #ifdef INET6
4553 	case AF_INET6:
4554 		ip6->ip6_plen = htons(tlen - hlen);
4555 		th->th_sum = 0;
4556 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4557 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4558 		ip6->ip6_vfc |= IPV6_VERSION;
4559 		ip6->ip6_plen = htons(tlen - hlen);
4560 		/* ip6_hlim will be initialized afterwards */
4561 		/* XXX flowlabel? */
4562 		break;
4563 #endif
4564 	}
4565 
4566 	/* XXX use IPsec policy on listening socket, on SYN ACK */
4567 	tp = sc->sc_tp;
4568 
4569 	switch (sc->sc_src.sa.sa_family) {
4570 	case AF_INET:
4571 		error = ip_output(m, sc->sc_ipopts, ro,
4572 		    (ip_mtudisc ? IP_MTUDISC : 0),
4573 		    NULL, tp ? tp->t_inpcb : NULL);
4574 		break;
4575 #ifdef INET6
4576 	case AF_INET6:
4577 		ip6->ip6_hlim = in6_selecthlim(NULL,
4578 		    (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
4579 		rtcache_unref(rt, ro);
4580 
4581 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL,
4582 		    tp ? tp->t_in6pcb : NULL, NULL);
4583 		break;
4584 #endif
4585 	default:
4586 		panic("%s: impossible (2)", __func__);
4587 	}
4588 
4589 	return error;
4590 }
4591