xref: /netbsd-src/sys/netinet/tcp_input.c (revision 69b6d498973bb4d7230c2d3c12bd9a032738ec8e)
1 /*	$NetBSD: tcp_input.c,v 1.231 2005/07/19 17:00:02 christos Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001, 2005 The NetBSD Foundation, Inc.
74  * All rights reserved.
75  *
76  * This code is derived from software contributed to The NetBSD Foundation
77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78  * Facility, NASA Ames Research Center.
79  * This code is derived from software contributed to The NetBSD Foundation
80  * by Charles M. Hannum.
81  *
82  * Redistribution and use in source and binary forms, with or without
83  * modification, are permitted provided that the following conditions
84  * are met:
85  * 1. Redistributions of source code must retain the above copyright
86  *    notice, this list of conditions and the following disclaimer.
87  * 2. Redistributions in binary form must reproduce the above copyright
88  *    notice, this list of conditions and the following disclaimer in the
89  *    documentation and/or other materials provided with the distribution.
90  * 3. All advertising materials mentioning features or use of this software
91  *    must display the following acknowledgement:
92  *	This product includes software developed by the NetBSD
93  *	Foundation, Inc. and its contributors.
94  * 4. Neither the name of The NetBSD Foundation nor the names of its
95  *    contributors may be used to endorse or promote products derived
96  *    from this software without specific prior written permission.
97  *
98  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
99  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
100  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
101  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
102  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
103  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
104  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
105  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
106  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
107  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
108  * POSSIBILITY OF SUCH DAMAGE.
109  */
110 
111 /*
112  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
113  *	The Regents of the University of California.  All rights reserved.
114  *
115  * Redistribution and use in source and binary forms, with or without
116  * modification, are permitted provided that the following conditions
117  * are met:
118  * 1. Redistributions of source code must retain the above copyright
119  *    notice, this list of conditions and the following disclaimer.
120  * 2. Redistributions in binary form must reproduce the above copyright
121  *    notice, this list of conditions and the following disclaimer in the
122  *    documentation and/or other materials provided with the distribution.
123  * 3. Neither the name of the University nor the names of its contributors
124  *    may be used to endorse or promote products derived from this software
125  *    without specific prior written permission.
126  *
127  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
128  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
129  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
130  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
131  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
132  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
133  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
134  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
135  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
136  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
137  * SUCH DAMAGE.
138  *
139  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
140  */
141 
142 /*
143  *	TODO list for SYN cache stuff:
144  *
145  *	Find room for a "state" field, which is needed to keep a
146  *	compressed state for TIME_WAIT TCBs.  It's been noted already
147  *	that this is fairly important for very high-volume web and
148  *	mail servers, which use a large number of short-lived
149  *	connections.
150  */
151 
152 #include <sys/cdefs.h>
153 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.231 2005/07/19 17:00:02 christos Exp $");
154 
155 #include "opt_inet.h"
156 #include "opt_ipsec.h"
157 #include "opt_inet_csum.h"
158 #include "opt_tcp_debug.h"
159 
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175 
176 #include <net/if.h>
177 #include <net/route.h>
178 #include <net/if_types.h>
179 
180 #include <netinet/in.h>
181 #include <netinet/in_systm.h>
182 #include <netinet/ip.h>
183 #include <netinet/in_pcb.h>
184 #include <netinet/in_var.h>
185 #include <netinet/ip_var.h>
186 
187 #ifdef INET6
188 #ifndef INET
189 #include <netinet/in.h>
190 #endif
191 #include <netinet/ip6.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_pcb.h>
194 #include <netinet6/ip6_var.h>
195 #include <netinet6/in6_var.h>
196 #include <netinet/icmp6.h>
197 #include <netinet6/nd6.h>
198 #endif
199 
200 #ifndef INET6
201 /* always need ip6.h for IP6_EXTHDR_GET */
202 #include <netinet/ip6.h>
203 #endif
204 
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcpip.h>
211 #include <netinet/tcp_debug.h>
212 
213 #include <machine/stdarg.h>
214 
215 #ifdef IPSEC
216 #include <netinet6/ipsec.h>
217 #include <netkey/key.h>
218 #endif /*IPSEC*/
219 #ifdef INET6
220 #include "faith.h"
221 #if defined(NFAITH) && NFAITH > 0
222 #include <net/if_faith.h>
223 #endif
224 #endif	/* IPSEC */
225 
226 #ifdef FAST_IPSEC
227 #include <netipsec/ipsec.h>
228 #include <netipsec/ipsec_var.h>			/* XXX ipsecstat namespace */
229 #include <netipsec/key.h>
230 #ifdef INET6
231 #include <netipsec/ipsec6.h>
232 #endif
233 #endif	/* FAST_IPSEC*/
234 
235 int	tcprexmtthresh = 3;
236 int	tcp_log_refused;
237 
238 static int tcp_rst_ppslim_count = 0;
239 static struct timeval tcp_rst_ppslim_last;
240 static int tcp_ackdrop_ppslim_count = 0;
241 static struct timeval tcp_ackdrop_ppslim_last;
242 
243 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
244 
245 /* for modulo comparisons of timestamps */
246 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
247 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
248 
249 /*
250  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
251  */
252 #ifdef INET6
253 #define ND6_HINT(tp) \
254 do { \
255 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
256 	    tp->t_in6pcb->in6p_route.ro_rt) { \
257 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
258 	} \
259 } while (/*CONSTCOND*/ 0)
260 #else
261 #define ND6_HINT(tp)
262 #endif
263 
264 /*
265  * Macro to compute ACK transmission behavior.  Delay the ACK unless
266  * we have already delayed an ACK (must send an ACK every two segments).
267  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
268  * option is enabled.
269  */
270 #define	TCP_SETUP_ACK(tp, th) \
271 do { \
272 	if ((tp)->t_flags & TF_DELACK || \
273 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
274 		tp->t_flags |= TF_ACKNOW; \
275 	else \
276 		TCP_SET_DELACK(tp); \
277 } while (/*CONSTCOND*/ 0)
278 
279 #define ICMP_CHECK(tp, th, acked) \
280 do { \
281 	/* \
282 	 * If we had a pending ICMP message that \
283 	 * refers to data that have just been  \
284 	 * acknowledged, disregard the recorded ICMP \
285 	 * message. \
286 	 */ \
287 	if (((tp)->t_flags & TF_PMTUD_PEND) && \
288 	    SEQ_GT((th)->th_ack, (tp)->t_pmtud_th_seq)) \
289 		(tp)->t_flags &= ~TF_PMTUD_PEND; \
290 \
291 	/* \
292 	 * Keep track of the largest chunk of data \
293 	 * acknowledged since last PMTU update \
294 	 */ \
295 	if ((tp)->t_pmtud_mss_acked < (acked)) \
296 		(tp)->t_pmtud_mss_acked = (acked); \
297 } while (/*CONSTCOND*/ 0)
298 
299 /*
300  * Convert TCP protocol fields to host order for easier processing.
301  */
302 #define	TCP_FIELDS_TO_HOST(th)						\
303 do {									\
304 	NTOHL((th)->th_seq);						\
305 	NTOHL((th)->th_ack);						\
306 	NTOHS((th)->th_win);						\
307 	NTOHS((th)->th_urp);						\
308 } while (/*CONSTCOND*/ 0)
309 
310 /*
311  * ... and reverse the above.
312  */
313 #define	TCP_FIELDS_TO_NET(th)						\
314 do {									\
315 	HTONL((th)->th_seq);						\
316 	HTONL((th)->th_ack);						\
317 	HTONS((th)->th_win);						\
318 	HTONS((th)->th_urp);						\
319 } while (/*CONSTCOND*/ 0)
320 
321 #ifdef TCP_CSUM_COUNTERS
322 #include <sys/device.h>
323 
324 extern struct evcnt tcp_hwcsum_ok;
325 extern struct evcnt tcp_hwcsum_bad;
326 extern struct evcnt tcp_hwcsum_data;
327 extern struct evcnt tcp_swcsum;
328 
329 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
330 
331 #else
332 
333 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
334 
335 #endif /* TCP_CSUM_COUNTERS */
336 
337 #ifdef TCP_REASS_COUNTERS
338 #include <sys/device.h>
339 
340 extern struct evcnt tcp_reass_;
341 extern struct evcnt tcp_reass_empty;
342 extern struct evcnt tcp_reass_iteration[8];
343 extern struct evcnt tcp_reass_prependfirst;
344 extern struct evcnt tcp_reass_prepend;
345 extern struct evcnt tcp_reass_insert;
346 extern struct evcnt tcp_reass_inserttail;
347 extern struct evcnt tcp_reass_append;
348 extern struct evcnt tcp_reass_appendtail;
349 extern struct evcnt tcp_reass_overlaptail;
350 extern struct evcnt tcp_reass_overlapfront;
351 extern struct evcnt tcp_reass_segdup;
352 extern struct evcnt tcp_reass_fragdup;
353 
354 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
355 
356 #else
357 
358 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
359 
360 #endif /* TCP_REASS_COUNTERS */
361 
362 #ifdef INET
363 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
364 #endif
365 #ifdef INET6
366 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
367 #endif
368 
369 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
370 
371 POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl", NULL);
372 
373 struct ipqent *
374 tcpipqent_alloc()
375 {
376 	struct ipqent *ipqe;
377 	int s;
378 
379 	s = splvm();
380 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
381 	splx(s);
382 
383 	return ipqe;
384 }
385 
386 void
387 tcpipqent_free(struct ipqent *ipqe)
388 {
389 	int s;
390 
391 	s = splvm();
392 	pool_put(&tcpipqent_pool, ipqe);
393 	splx(s);
394 }
395 
396 int
397 tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen)
398 {
399 	struct ipqent *p, *q, *nq, *tiqe = NULL;
400 	struct socket *so = NULL;
401 	int pkt_flags;
402 	tcp_seq pkt_seq;
403 	unsigned pkt_len;
404 	u_long rcvpartdupbyte = 0;
405 	u_long rcvoobyte;
406 #ifdef TCP_REASS_COUNTERS
407 	u_int count = 0;
408 #endif
409 
410 	if (tp->t_inpcb)
411 		so = tp->t_inpcb->inp_socket;
412 #ifdef INET6
413 	else if (tp->t_in6pcb)
414 		so = tp->t_in6pcb->in6p_socket;
415 #endif
416 
417 	TCP_REASS_LOCK_CHECK(tp);
418 
419 	/*
420 	 * Call with th==0 after become established to
421 	 * force pre-ESTABLISHED data up to user socket.
422 	 */
423 	if (th == 0)
424 		goto present;
425 
426 	rcvoobyte = *tlen;
427 	/*
428 	 * Copy these to local variables because the tcpiphdr
429 	 * gets munged while we are collapsing mbufs.
430 	 */
431 	pkt_seq = th->th_seq;
432 	pkt_len = *tlen;
433 	pkt_flags = th->th_flags;
434 
435 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
436 
437 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
438 		/*
439 		 * When we miss a packet, the vast majority of time we get
440 		 * packets that follow it in order.  So optimize for that.
441 		 */
442 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
443 			p->ipqe_len += pkt_len;
444 			p->ipqe_flags |= pkt_flags;
445 			m_cat(p->ipre_mlast, m);
446 			TRAVERSE(p->ipre_mlast);
447 			m = NULL;
448 			tiqe = p;
449 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
450 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
451 			goto skip_replacement;
452 		}
453 		/*
454 		 * While we're here, if the pkt is completely beyond
455 		 * anything we have, just insert it at the tail.
456 		 */
457 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
458 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
459 			goto insert_it;
460 		}
461 	}
462 
463 	q = TAILQ_FIRST(&tp->segq);
464 
465 	if (q != NULL) {
466 		/*
467 		 * If this segment immediately precedes the first out-of-order
468 		 * block, simply slap the segment in front of it and (mostly)
469 		 * skip the complicated logic.
470 		 */
471 		if (pkt_seq + pkt_len == q->ipqe_seq) {
472 			q->ipqe_seq = pkt_seq;
473 			q->ipqe_len += pkt_len;
474 			q->ipqe_flags |= pkt_flags;
475 			m_cat(m, q->ipqe_m);
476 			q->ipqe_m = m;
477 			q->ipre_mlast = m; /* last mbuf may have changed */
478 			TRAVERSE(q->ipre_mlast);
479 			tiqe = q;
480 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
481 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
482 			goto skip_replacement;
483 		}
484 	} else {
485 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
486 	}
487 
488 	/*
489 	 * Find a segment which begins after this one does.
490 	 */
491 	for (p = NULL; q != NULL; q = nq) {
492 		nq = TAILQ_NEXT(q, ipqe_q);
493 #ifdef TCP_REASS_COUNTERS
494 		count++;
495 #endif
496 		/*
497 		 * If the received segment is just right after this
498 		 * fragment, merge the two together and then check
499 		 * for further overlaps.
500 		 */
501 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
502 #ifdef TCPREASS_DEBUG
503 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
504 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
505 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
506 #endif
507 			pkt_len += q->ipqe_len;
508 			pkt_flags |= q->ipqe_flags;
509 			pkt_seq = q->ipqe_seq;
510 			m_cat(q->ipre_mlast, m);
511 			TRAVERSE(q->ipre_mlast);
512 			m = q->ipqe_m;
513 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
514 			goto free_ipqe;
515 		}
516 		/*
517 		 * If the received segment is completely past this
518 		 * fragment, we need to go the next fragment.
519 		 */
520 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
521 			p = q;
522 			continue;
523 		}
524 		/*
525 		 * If the fragment is past the received segment,
526 		 * it (or any following) can't be concatenated.
527 		 */
528 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
529 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
530 			break;
531 		}
532 
533 		/*
534 		 * We've received all the data in this segment before.
535 		 * mark it as a duplicate and return.
536 		 */
537 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
538 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
539 			tcpstat.tcps_rcvduppack++;
540 			tcpstat.tcps_rcvdupbyte += pkt_len;
541 			tcp_new_dsack(tp, pkt_seq, pkt_len);
542 			m_freem(m);
543 			if (tiqe != NULL) {
544 				tcpipqent_free(tiqe);
545 			}
546 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
547 			return (0);
548 		}
549 		/*
550 		 * Received segment completely overlaps this fragment
551 		 * so we drop the fragment (this keeps the temporal
552 		 * ordering of segments correct).
553 		 */
554 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
555 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
556 			rcvpartdupbyte += q->ipqe_len;
557 			m_freem(q->ipqe_m);
558 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
559 			goto free_ipqe;
560 		}
561 		/*
562 		 * RX'ed segment extends past the end of the
563 		 * fragment.  Drop the overlapping bytes.  Then
564 		 * merge the fragment and segment then treat as
565 		 * a longer received packet.
566 		 */
567 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
568 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
569 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
570 #ifdef TCPREASS_DEBUG
571 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
572 			       tp, overlap,
573 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
574 #endif
575 			m_adj(m, overlap);
576 			rcvpartdupbyte += overlap;
577 			m_cat(q->ipre_mlast, m);
578 			TRAVERSE(q->ipre_mlast);
579 			m = q->ipqe_m;
580 			pkt_seq = q->ipqe_seq;
581 			pkt_len += q->ipqe_len - overlap;
582 			rcvoobyte -= overlap;
583 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
584 			goto free_ipqe;
585 		}
586 		/*
587 		 * RX'ed segment extends past the front of the
588 		 * fragment.  Drop the overlapping bytes on the
589 		 * received packet.  The packet will then be
590 		 * contatentated with this fragment a bit later.
591 		 */
592 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
593 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
594 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
595 #ifdef TCPREASS_DEBUG
596 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
597 			       tp, overlap,
598 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
599 #endif
600 			m_adj(m, -overlap);
601 			pkt_len -= overlap;
602 			rcvpartdupbyte += overlap;
603 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
604 			rcvoobyte -= overlap;
605 		}
606 		/*
607 		 * If the received segment immediates precedes this
608 		 * fragment then tack the fragment onto this segment
609 		 * and reinsert the data.
610 		 */
611 		if (q->ipqe_seq == pkt_seq + pkt_len) {
612 #ifdef TCPREASS_DEBUG
613 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
614 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
615 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
616 #endif
617 			pkt_len += q->ipqe_len;
618 			pkt_flags |= q->ipqe_flags;
619 			m_cat(m, q->ipqe_m);
620 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
621 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
622 			tp->t_segqlen--;
623 			KASSERT(tp->t_segqlen >= 0);
624 			KASSERT(tp->t_segqlen != 0 ||
625 			    (TAILQ_EMPTY(&tp->segq) &&
626 			    TAILQ_EMPTY(&tp->timeq)));
627 			if (tiqe == NULL) {
628 				tiqe = q;
629 			} else {
630 				tcpipqent_free(q);
631 			}
632 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
633 			break;
634 		}
635 		/*
636 		 * If the fragment is before the segment, remember it.
637 		 * When this loop is terminated, p will contain the
638 		 * pointer to fragment that is right before the received
639 		 * segment.
640 		 */
641 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
642 			p = q;
643 
644 		continue;
645 
646 		/*
647 		 * This is a common operation.  It also will allow
648 		 * to save doing a malloc/free in most instances.
649 		 */
650 	  free_ipqe:
651 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
652 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
653 		tp->t_segqlen--;
654 		KASSERT(tp->t_segqlen >= 0);
655 		KASSERT(tp->t_segqlen != 0 ||
656 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
657 		if (tiqe == NULL) {
658 			tiqe = q;
659 		} else {
660 			tcpipqent_free(q);
661 		}
662 	}
663 
664 #ifdef TCP_REASS_COUNTERS
665 	if (count > 7)
666 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
667 	else if (count > 0)
668 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
669 #endif
670 
671     insert_it:
672 
673 	/*
674 	 * Allocate a new queue entry since the received segment did not
675 	 * collapse onto any other out-of-order block; thus we are allocating
676 	 * a new block.  If it had collapsed, tiqe would not be NULL and
677 	 * we would be reusing it.
678 	 * XXX If we can't, just drop the packet.  XXX
679 	 */
680 	if (tiqe == NULL) {
681 		tiqe = tcpipqent_alloc();
682 		if (tiqe == NULL) {
683 			tcpstat.tcps_rcvmemdrop++;
684 			m_freem(m);
685 			return (0);
686 		}
687 	}
688 
689 	/*
690 	 * Update the counters.
691 	 */
692 	tcpstat.tcps_rcvoopack++;
693 	tcpstat.tcps_rcvoobyte += rcvoobyte;
694 	if (rcvpartdupbyte) {
695 	    tcpstat.tcps_rcvpartduppack++;
696 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
697 	}
698 
699 	/*
700 	 * Insert the new fragment queue entry into both queues.
701 	 */
702 	tiqe->ipqe_m = m;
703 	tiqe->ipre_mlast = m;
704 	tiqe->ipqe_seq = pkt_seq;
705 	tiqe->ipqe_len = pkt_len;
706 	tiqe->ipqe_flags = pkt_flags;
707 	if (p == NULL) {
708 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
709 #ifdef TCPREASS_DEBUG
710 		if (tiqe->ipqe_seq != tp->rcv_nxt)
711 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
712 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
713 #endif
714 	} else {
715 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
716 #ifdef TCPREASS_DEBUG
717 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
718 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
719 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
720 #endif
721 	}
722 	tp->t_segqlen++;
723 
724 skip_replacement:
725 
726 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
727 
728 present:
729 	/*
730 	 * Present data to user, advancing rcv_nxt through
731 	 * completed sequence space.
732 	 */
733 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
734 		return (0);
735 	q = TAILQ_FIRST(&tp->segq);
736 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
737 		return (0);
738 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
739 		return (0);
740 
741 	tp->rcv_nxt += q->ipqe_len;
742 	pkt_flags = q->ipqe_flags & TH_FIN;
743 	ND6_HINT(tp);
744 
745 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
746 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
747 	tp->t_segqlen--;
748 	KASSERT(tp->t_segqlen >= 0);
749 	KASSERT(tp->t_segqlen != 0 ||
750 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
751 	if (so->so_state & SS_CANTRCVMORE)
752 		m_freem(q->ipqe_m);
753 	else
754 		sbappendstream(&so->so_rcv, q->ipqe_m);
755 	tcpipqent_free(q);
756 	sorwakeup(so);
757 	return (pkt_flags);
758 }
759 
760 #ifdef INET6
761 int
762 tcp6_input(struct mbuf **mp, int *offp, int proto)
763 {
764 	struct mbuf *m = *mp;
765 
766 	/*
767 	 * draft-itojun-ipv6-tcp-to-anycast
768 	 * better place to put this in?
769 	 */
770 	if (m->m_flags & M_ANYCAST6) {
771 		struct ip6_hdr *ip6;
772 		if (m->m_len < sizeof(struct ip6_hdr)) {
773 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
774 				tcpstat.tcps_rcvshort++;
775 				return IPPROTO_DONE;
776 			}
777 		}
778 		ip6 = mtod(m, struct ip6_hdr *);
779 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
780 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
781 		return IPPROTO_DONE;
782 	}
783 
784 	tcp_input(m, *offp, proto);
785 	return IPPROTO_DONE;
786 }
787 #endif
788 
789 #ifdef INET
790 static void
791 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
792 {
793 	char src[4*sizeof "123"];
794 	char dst[4*sizeof "123"];
795 
796 	if (ip) {
797 		strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
798 		strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
799 	}
800 	else {
801 		strlcpy(src, "(unknown)", sizeof(src));
802 		strlcpy(dst, "(unknown)", sizeof(dst));
803 	}
804 	log(LOG_INFO,
805 	    "Connection attempt to TCP %s:%d from %s:%d\n",
806 	    dst, ntohs(th->th_dport),
807 	    src, ntohs(th->th_sport));
808 }
809 #endif
810 
811 #ifdef INET6
812 static void
813 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
814 {
815 	char src[INET6_ADDRSTRLEN];
816 	char dst[INET6_ADDRSTRLEN];
817 
818 	if (ip6) {
819 		strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
820 		strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
821 	}
822 	else {
823 		strlcpy(src, "(unknown v6)", sizeof(src));
824 		strlcpy(dst, "(unknown v6)", sizeof(dst));
825 	}
826 	log(LOG_INFO,
827 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
828 	    dst, ntohs(th->th_dport),
829 	    src, ntohs(th->th_sport));
830 }
831 #endif
832 
833 /*
834  * Checksum extended TCP header and data.
835  */
836 int
837 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th, int toff,
838     int off, int tlen)
839 {
840 
841 	/*
842 	 * XXX it's better to record and check if this mbuf is
843 	 * already checked.
844 	 */
845 
846 	switch (af) {
847 #ifdef INET
848 	case AF_INET:
849 		switch (m->m_pkthdr.csum_flags &
850 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
851 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
852 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
853 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
854 			goto badcsum;
855 
856 		case M_CSUM_TCPv4|M_CSUM_DATA: {
857 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
858 
859 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
860 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
861 				const struct ip *ip =
862 				    mtod(m, const struct ip *);
863 
864 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
865 				    ip->ip_dst.s_addr,
866 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
867 			}
868 			if ((hw_csum ^ 0xffff) != 0)
869 				goto badcsum;
870 			break;
871 		}
872 
873 		case M_CSUM_TCPv4:
874 			/* Checksum was okay. */
875 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
876 			break;
877 
878 		default:
879 			/*
880 			 * Must compute it ourselves.  Maybe skip checksum
881 			 * on loopback interfaces.
882 			 */
883 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
884 					     IFF_LOOPBACK) ||
885 					   tcp_do_loopback_cksum)) {
886 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
887 				if (in4_cksum(m, IPPROTO_TCP, toff,
888 					      tlen + off) != 0)
889 					goto badcsum;
890 			}
891 			break;
892 		}
893 		break;
894 #endif /* INET4 */
895 
896 #ifdef INET6
897 	case AF_INET6:
898 		if (__predict_true((m->m_flags & M_LOOP) == 0 ||
899 		    tcp_do_loopback_cksum)) {
900 			if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
901 				goto badcsum;
902 		}
903 		break;
904 #endif /* INET6 */
905 	}
906 
907 	return 0;
908 
909 badcsum:
910 	tcpstat.tcps_rcvbadsum++;
911 	return -1;
912 }
913 
914 /*
915  * TCP input routine, follows pages 65-76 of the
916  * protocol specification dated September, 1981 very closely.
917  */
918 void
919 tcp_input(struct mbuf *m, ...)
920 {
921 	struct tcphdr *th;
922 	struct ip *ip;
923 	struct inpcb *inp;
924 #ifdef INET6
925 	struct ip6_hdr *ip6;
926 	struct in6pcb *in6p;
927 #endif
928 	u_int8_t *optp = NULL;
929 	int optlen = 0;
930 	int len, tlen, toff, hdroptlen = 0;
931 	struct tcpcb *tp = 0;
932 	int tiflags;
933 	struct socket *so = NULL;
934 	int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
935 #ifdef TCP_DEBUG
936 	short ostate = 0;
937 #endif
938 	int iss = 0;
939 	u_long tiwin;
940 	struct tcp_opt_info opti;
941 	int off, iphlen;
942 	va_list ap;
943 	int af;		/* af on the wire */
944 	struct mbuf *tcp_saveti = NULL;
945 	uint32_t ts_rtt;
946 
947 	MCLAIM(m, &tcp_rx_mowner);
948 	va_start(ap, m);
949 	toff = va_arg(ap, int);
950 	(void)va_arg(ap, int);		/* ignore value, advance ap */
951 	va_end(ap);
952 
953 	tcpstat.tcps_rcvtotal++;
954 
955 	bzero(&opti, sizeof(opti));
956 	opti.ts_present = 0;
957 	opti.maxseg = 0;
958 
959 	/*
960 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
961 	 *
962 	 * TCP is, by definition, unicast, so we reject all
963 	 * multicast outright.
964 	 *
965 	 * Note, there are additional src/dst address checks in
966 	 * the AF-specific code below.
967 	 */
968 	if (m->m_flags & (M_BCAST|M_MCAST)) {
969 		/* XXX stat */
970 		goto drop;
971 	}
972 #ifdef INET6
973 	if (m->m_flags & M_ANYCAST6) {
974 		/* XXX stat */
975 		goto drop;
976 	}
977 #endif
978 
979 	/*
980 	 * Get IP and TCP header.
981 	 * Note: IP leaves IP header in first mbuf.
982 	 */
983 	ip = mtod(m, struct ip *);
984 #ifdef INET6
985 	ip6 = NULL;
986 #endif
987 	switch (ip->ip_v) {
988 #ifdef INET
989 	case 4:
990 		af = AF_INET;
991 		iphlen = sizeof(struct ip);
992 		ip = mtod(m, struct ip *);
993 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
994 			sizeof(struct tcphdr));
995 		if (th == NULL) {
996 			tcpstat.tcps_rcvshort++;
997 			return;
998 		}
999 		/* We do the checksum after PCB lookup... */
1000 		len = ntohs(ip->ip_len);
1001 		tlen = len - toff;
1002 		break;
1003 #endif
1004 #ifdef INET6
1005 	case 6:
1006 		ip = NULL;
1007 		iphlen = sizeof(struct ip6_hdr);
1008 		af = AF_INET6;
1009 		ip6 = mtod(m, struct ip6_hdr *);
1010 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1011 			sizeof(struct tcphdr));
1012 		if (th == NULL) {
1013 			tcpstat.tcps_rcvshort++;
1014 			return;
1015 		}
1016 
1017 		/* Be proactive about malicious use of IPv4 mapped address */
1018 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1019 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1020 			/* XXX stat */
1021 			goto drop;
1022 		}
1023 
1024 		/*
1025 		 * Be proactive about unspecified IPv6 address in source.
1026 		 * As we use all-zero to indicate unbounded/unconnected pcb,
1027 		 * unspecified IPv6 address can be used to confuse us.
1028 		 *
1029 		 * Note that packets with unspecified IPv6 destination is
1030 		 * already dropped in ip6_input.
1031 		 */
1032 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1033 			/* XXX stat */
1034 			goto drop;
1035 		}
1036 
1037 		/*
1038 		 * Make sure destination address is not multicast.
1039 		 * Source address checked in ip6_input().
1040 		 */
1041 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1042 			/* XXX stat */
1043 			goto drop;
1044 		}
1045 
1046 		/* We do the checksum after PCB lookup... */
1047 		len = m->m_pkthdr.len;
1048 		tlen = len - toff;
1049 		break;
1050 #endif
1051 	default:
1052 		m_freem(m);
1053 		return;
1054 	}
1055 
1056 	KASSERT(TCP_HDR_ALIGNED_P(th));
1057 
1058 	/*
1059 	 * Check that TCP offset makes sense,
1060 	 * pull out TCP options and adjust length.		XXX
1061 	 */
1062 	off = th->th_off << 2;
1063 	if (off < sizeof (struct tcphdr) || off > tlen) {
1064 		tcpstat.tcps_rcvbadoff++;
1065 		goto drop;
1066 	}
1067 	tlen -= off;
1068 
1069 	/*
1070 	 * tcp_input() has been modified to use tlen to mean the TCP data
1071 	 * length throughout the function.  Other functions can use
1072 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1073 	 * rja
1074 	 */
1075 
1076 	if (off > sizeof (struct tcphdr)) {
1077 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1078 		if (th == NULL) {
1079 			tcpstat.tcps_rcvshort++;
1080 			return;
1081 		}
1082 		/*
1083 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
1084 		 * (as they're before toff) and we don't need to update those.
1085 		 */
1086 		KASSERT(TCP_HDR_ALIGNED_P(th));
1087 		optlen = off - sizeof (struct tcphdr);
1088 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1089 		/*
1090 		 * Do quick retrieval of timestamp options ("options
1091 		 * prediction?").  If timestamp is the only option and it's
1092 		 * formatted as recommended in RFC 1323 appendix A, we
1093 		 * quickly get the values now and not bother calling
1094 		 * tcp_dooptions(), etc.
1095 		 */
1096 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1097 		     (optlen > TCPOLEN_TSTAMP_APPA &&
1098 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1099 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1100 		     (th->th_flags & TH_SYN) == 0) {
1101 			opti.ts_present = 1;
1102 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1103 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1104 			optp = NULL;	/* we've parsed the options */
1105 		}
1106 	}
1107 	tiflags = th->th_flags;
1108 
1109 	/*
1110 	 * Locate pcb for segment.
1111 	 */
1112 findpcb:
1113 	inp = NULL;
1114 #ifdef INET6
1115 	in6p = NULL;
1116 #endif
1117 	switch (af) {
1118 #ifdef INET
1119 	case AF_INET:
1120 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1121 		    ip->ip_dst, th->th_dport);
1122 		if (inp == 0) {
1123 			++tcpstat.tcps_pcbhashmiss;
1124 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1125 		}
1126 #ifdef INET6
1127 		if (inp == 0) {
1128 			struct in6_addr s, d;
1129 
1130 			/* mapped addr case */
1131 			bzero(&s, sizeof(s));
1132 			s.s6_addr16[5] = htons(0xffff);
1133 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1134 			bzero(&d, sizeof(d));
1135 			d.s6_addr16[5] = htons(0xffff);
1136 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1137 			in6p = in6_pcblookup_connect(&tcbtable, &s,
1138 			    th->th_sport, &d, th->th_dport, 0);
1139 			if (in6p == 0) {
1140 				++tcpstat.tcps_pcbhashmiss;
1141 				in6p = in6_pcblookup_bind(&tcbtable, &d,
1142 				    th->th_dport, 0);
1143 			}
1144 		}
1145 #endif
1146 #ifndef INET6
1147 		if (inp == 0)
1148 #else
1149 		if (inp == 0 && in6p == 0)
1150 #endif
1151 		{
1152 			++tcpstat.tcps_noport;
1153 			if (tcp_log_refused &&
1154 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1155 				tcp4_log_refused(ip, th);
1156 			}
1157 			TCP_FIELDS_TO_HOST(th);
1158 			goto dropwithreset_ratelim;
1159 		}
1160 #if defined(IPSEC) || defined(FAST_IPSEC)
1161 		if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1162 		    ipsec4_in_reject(m, inp)) {
1163 			ipsecstat.in_polvio++;
1164 			goto drop;
1165 		}
1166 #ifdef INET6
1167 		else if (in6p &&
1168 		    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1169 		    ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1170 			ipsecstat.in_polvio++;
1171 			goto drop;
1172 		}
1173 #endif
1174 #endif /*IPSEC*/
1175 		break;
1176 #endif /*INET*/
1177 #ifdef INET6
1178 	case AF_INET6:
1179 	    {
1180 		int faith;
1181 
1182 #if defined(NFAITH) && NFAITH > 0
1183 		faith = faithprefix(&ip6->ip6_dst);
1184 #else
1185 		faith = 0;
1186 #endif
1187 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1188 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1189 		if (in6p == NULL) {
1190 			++tcpstat.tcps_pcbhashmiss;
1191 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1192 				th->th_dport, faith);
1193 		}
1194 		if (in6p == NULL) {
1195 			++tcpstat.tcps_noport;
1196 			if (tcp_log_refused &&
1197 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1198 				tcp6_log_refused(ip6, th);
1199 			}
1200 			TCP_FIELDS_TO_HOST(th);
1201 			goto dropwithreset_ratelim;
1202 		}
1203 #if defined(IPSEC) || defined(FAST_IPSEC)
1204 		if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1205 		    ipsec6_in_reject(m, in6p)) {
1206 			ipsec6stat.in_polvio++;
1207 			goto drop;
1208 		}
1209 #endif /*IPSEC*/
1210 		break;
1211 	    }
1212 #endif
1213 	}
1214 
1215 	/*
1216 	 * If the state is CLOSED (i.e., TCB does not exist) then
1217 	 * all data in the incoming segment is discarded.
1218 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1219 	 * but should either do a listen or a connect soon.
1220 	 */
1221 	tp = NULL;
1222 	so = NULL;
1223 	if (inp) {
1224 		tp = intotcpcb(inp);
1225 		so = inp->inp_socket;
1226 	}
1227 #ifdef INET6
1228 	else if (in6p) {
1229 		tp = in6totcpcb(in6p);
1230 		so = in6p->in6p_socket;
1231 	}
1232 #endif
1233 	if (tp == 0) {
1234 		TCP_FIELDS_TO_HOST(th);
1235 		goto dropwithreset_ratelim;
1236 	}
1237 	if (tp->t_state == TCPS_CLOSED)
1238 		goto drop;
1239 
1240 	/*
1241 	 * Checksum extended TCP header and data.
1242 	 */
1243 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
1244 		goto badcsum;
1245 
1246 	TCP_FIELDS_TO_HOST(th);
1247 
1248 	/* Unscale the window into a 32-bit value. */
1249 	if ((tiflags & TH_SYN) == 0)
1250 		tiwin = th->th_win << tp->snd_scale;
1251 	else
1252 		tiwin = th->th_win;
1253 
1254 #ifdef INET6
1255 	/* save packet options if user wanted */
1256 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1257 		if (in6p->in6p_options) {
1258 			m_freem(in6p->in6p_options);
1259 			in6p->in6p_options = 0;
1260 		}
1261 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1262 	}
1263 #endif
1264 
1265 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1266 		union syn_cache_sa src;
1267 		union syn_cache_sa dst;
1268 
1269 		bzero(&src, sizeof(src));
1270 		bzero(&dst, sizeof(dst));
1271 		switch (af) {
1272 #ifdef INET
1273 		case AF_INET:
1274 			src.sin.sin_len = sizeof(struct sockaddr_in);
1275 			src.sin.sin_family = AF_INET;
1276 			src.sin.sin_addr = ip->ip_src;
1277 			src.sin.sin_port = th->th_sport;
1278 
1279 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1280 			dst.sin.sin_family = AF_INET;
1281 			dst.sin.sin_addr = ip->ip_dst;
1282 			dst.sin.sin_port = th->th_dport;
1283 			break;
1284 #endif
1285 #ifdef INET6
1286 		case AF_INET6:
1287 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1288 			src.sin6.sin6_family = AF_INET6;
1289 			src.sin6.sin6_addr = ip6->ip6_src;
1290 			src.sin6.sin6_port = th->th_sport;
1291 
1292 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1293 			dst.sin6.sin6_family = AF_INET6;
1294 			dst.sin6.sin6_addr = ip6->ip6_dst;
1295 			dst.sin6.sin6_port = th->th_dport;
1296 			break;
1297 #endif /* INET6 */
1298 		default:
1299 			goto badsyn;	/*sanity*/
1300 		}
1301 
1302 		if (so->so_options & SO_DEBUG) {
1303 #ifdef TCP_DEBUG
1304 			ostate = tp->t_state;
1305 #endif
1306 
1307 			tcp_saveti = NULL;
1308 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1309 				goto nosave;
1310 
1311 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1312 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1313 				if (!tcp_saveti)
1314 					goto nosave;
1315 			} else {
1316 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1317 				if (!tcp_saveti)
1318 					goto nosave;
1319 				MCLAIM(m, &tcp_mowner);
1320 				tcp_saveti->m_len = iphlen;
1321 				m_copydata(m, 0, iphlen,
1322 				    mtod(tcp_saveti, caddr_t));
1323 			}
1324 
1325 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1326 				m_freem(tcp_saveti);
1327 				tcp_saveti = NULL;
1328 			} else {
1329 				tcp_saveti->m_len += sizeof(struct tcphdr);
1330 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1331 				    sizeof(struct tcphdr));
1332 			}
1333 	nosave:;
1334 		}
1335 		if (so->so_options & SO_ACCEPTCONN) {
1336 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1337 				if (tiflags & TH_RST) {
1338 					syn_cache_reset(&src.sa, &dst.sa, th);
1339 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1340 				    (TH_ACK|TH_SYN)) {
1341 					/*
1342 					 * Received a SYN,ACK.  This should
1343 					 * never happen while we are in
1344 					 * LISTEN.  Send an RST.
1345 					 */
1346 					goto badsyn;
1347 				} else if (tiflags & TH_ACK) {
1348 					so = syn_cache_get(&src.sa, &dst.sa,
1349 						th, toff, tlen, so, m);
1350 					if (so == NULL) {
1351 						/*
1352 						 * We don't have a SYN for
1353 						 * this ACK; send an RST.
1354 						 */
1355 						goto badsyn;
1356 					} else if (so ==
1357 					    (struct socket *)(-1)) {
1358 						/*
1359 						 * We were unable to create
1360 						 * the connection.  If the
1361 						 * 3-way handshake was
1362 						 * completed, and RST has
1363 						 * been sent to the peer.
1364 						 * Since the mbuf might be
1365 						 * in use for the reply,
1366 						 * do not free it.
1367 						 */
1368 						m = NULL;
1369 					} else {
1370 						/*
1371 						 * We have created a
1372 						 * full-blown connection.
1373 						 */
1374 						tp = NULL;
1375 						inp = NULL;
1376 #ifdef INET6
1377 						in6p = NULL;
1378 #endif
1379 						switch (so->so_proto->pr_domain->dom_family) {
1380 #ifdef INET
1381 						case AF_INET:
1382 							inp = sotoinpcb(so);
1383 							tp = intotcpcb(inp);
1384 							break;
1385 #endif
1386 #ifdef INET6
1387 						case AF_INET6:
1388 							in6p = sotoin6pcb(so);
1389 							tp = in6totcpcb(in6p);
1390 							break;
1391 #endif
1392 						}
1393 						if (tp == NULL)
1394 							goto badsyn;	/*XXX*/
1395 						tiwin <<= tp->snd_scale;
1396 						goto after_listen;
1397 					}
1398 				} else {
1399 					/*
1400 					 * None of RST, SYN or ACK was set.
1401 					 * This is an invalid packet for a
1402 					 * TCB in LISTEN state.  Send a RST.
1403 					 */
1404 					goto badsyn;
1405 				}
1406 			} else {
1407 				/*
1408 				 * Received a SYN.
1409 				 */
1410 
1411 #ifdef INET6
1412 				/*
1413 				 * If deprecated address is forbidden, we do
1414 				 * not accept SYN to deprecated interface
1415 				 * address to prevent any new inbound
1416 				 * connection from getting established.
1417 				 * When we do not accept SYN, we send a TCP
1418 				 * RST, with deprecated source address (instead
1419 				 * of dropping it).  We compromise it as it is
1420 				 * much better for peer to send a RST, and
1421 				 * RST will be the final packet for the
1422 				 * exchange.
1423 				 *
1424 				 * If we do not forbid deprecated addresses, we
1425 				 * accept the SYN packet.  RFC2462 does not
1426 				 * suggest dropping SYN in this case.
1427 				 * If we decipher RFC2462 5.5.4, it says like
1428 				 * this:
1429 				 * 1. use of deprecated addr with existing
1430 				 *    communication is okay - "SHOULD continue
1431 				 *    to be used"
1432 				 * 2. use of it with new communication:
1433 				 *   (2a) "SHOULD NOT be used if alternate
1434 				 *        address with sufficient scope is
1435 				 *        available"
1436 				 *   (2b) nothing mentioned otherwise.
1437 				 * Here we fall into (2b) case as we have no
1438 				 * choice in our source address selection - we
1439 				 * must obey the peer.
1440 				 *
1441 				 * The wording in RFC2462 is confusing, and
1442 				 * there are multiple description text for
1443 				 * deprecated address handling - worse, they
1444 				 * are not exactly the same.  I believe 5.5.4
1445 				 * is the best one, so we follow 5.5.4.
1446 				 */
1447 				if (af == AF_INET6 && !ip6_use_deprecated) {
1448 					struct in6_ifaddr *ia6;
1449 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1450 					    &ip6->ip6_dst)) &&
1451 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1452 						tp = NULL;
1453 						goto dropwithreset;
1454 					}
1455 				}
1456 #endif
1457 
1458 #ifdef IPSEC
1459 				switch (af) {
1460 #ifdef INET
1461 				case AF_INET:
1462 					if (ipsec4_in_reject_so(m, so)) {
1463 						ipsecstat.in_polvio++;
1464 						tp = NULL;
1465 						goto dropwithreset;
1466 					}
1467 					break;
1468 #endif
1469 #ifdef INET6
1470 				case AF_INET6:
1471 					if (ipsec6_in_reject_so(m, so)) {
1472 						ipsec6stat.in_polvio++;
1473 						tp = NULL;
1474 						goto dropwithreset;
1475 					}
1476 					break;
1477 #endif
1478 				}
1479 #endif
1480 
1481 				/*
1482 				 * LISTEN socket received a SYN
1483 				 * from itself?  This can't possibly
1484 				 * be valid; drop the packet.
1485 				 */
1486 				if (th->th_sport == th->th_dport) {
1487 					int i;
1488 
1489 					switch (af) {
1490 #ifdef INET
1491 					case AF_INET:
1492 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1493 						break;
1494 #endif
1495 #ifdef INET6
1496 					case AF_INET6:
1497 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1498 						break;
1499 #endif
1500 					default:
1501 						i = 1;
1502 					}
1503 					if (i) {
1504 						tcpstat.tcps_badsyn++;
1505 						goto drop;
1506 					}
1507 				}
1508 
1509 				/*
1510 				 * SYN looks ok; create compressed TCP
1511 				 * state for it.
1512 				 */
1513 				if (so->so_qlen <= so->so_qlimit &&
1514 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1515 						so, m, optp, optlen, &opti))
1516 					m = NULL;
1517 			}
1518 			goto drop;
1519 		}
1520 	}
1521 
1522 after_listen:
1523 #ifdef DIAGNOSTIC
1524 	/*
1525 	 * Should not happen now that all embryonic connections
1526 	 * are handled with compressed state.
1527 	 */
1528 	if (tp->t_state == TCPS_LISTEN)
1529 		panic("tcp_input: TCPS_LISTEN");
1530 #endif
1531 
1532 	/*
1533 	 * Segment received on connection.
1534 	 * Reset idle time and keep-alive timer.
1535 	 */
1536 	tp->t_rcvtime = tcp_now;
1537 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1538 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1539 
1540 	/*
1541 	 * Process options.
1542 	 */
1543 #ifdef TCP_SIGNATURE
1544 	if (optp || (tp->t_flags & TF_SIGNATURE))
1545 #else
1546 	if (optp)
1547 #endif
1548 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1549 			goto drop;
1550 
1551 	if (TCP_SACK_ENABLED(tp)) {
1552 		tcp_del_sackholes(tp, th);
1553 	}
1554 
1555 	if (opti.ts_present && opti.ts_ecr) {
1556 		/*
1557 		 * Calculate the RTT from the returned time stamp and the
1558 		 * connection's time base.  If the time stamp is later than
1559 		 * the current time, or is extremely old, fall back to non-1323
1560 		 * RTT calculation.  Since ts_ecr is unsigned, we can test both
1561 		 * at the same time.
1562 		 */
1563 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1564 		if (ts_rtt > TCP_PAWS_IDLE)
1565 			ts_rtt = 0;
1566 	} else {
1567 		ts_rtt = 0;
1568 	}
1569 
1570 	/*
1571 	 * Header prediction: check for the two common cases
1572 	 * of a uni-directional data xfer.  If the packet has
1573 	 * no control flags, is in-sequence, the window didn't
1574 	 * change and we're not retransmitting, it's a
1575 	 * candidate.  If the length is zero and the ack moved
1576 	 * forward, we're the sender side of the xfer.  Just
1577 	 * free the data acked & wake any higher level process
1578 	 * that was blocked waiting for space.  If the length
1579 	 * is non-zero and the ack didn't move, we're the
1580 	 * receiver side.  If we're getting packets in-order
1581 	 * (the reassembly queue is empty), add the data to
1582 	 * the socket buffer and note that we need a delayed ack.
1583 	 */
1584 	if (tp->t_state == TCPS_ESTABLISHED &&
1585 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1586 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1587 	    th->th_seq == tp->rcv_nxt &&
1588 	    tiwin && tiwin == tp->snd_wnd &&
1589 	    tp->snd_nxt == tp->snd_max) {
1590 
1591 		/*
1592 		 * If last ACK falls within this segment's sequence numbers,
1593 		 *  record the timestamp.
1594 		 * NOTE:
1595 		 * 1) That the test incorporates suggestions from the latest
1596 		 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1597 		 * 2) That updating only on newer timestamps interferes with
1598 		 *    our earlier PAWS tests, so this check should be solely
1599 		 *    predicated on the sequence space of this segment.
1600 		 * 3) That we modify the segment boundary check to be
1601 		 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
1602 		 *    instead of RFC1323's
1603 		 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
1604 		 *    This modified check allows us to overcome RFC1323's
1605 		 *    limitations as described in Stevens TCP/IP Illustrated
1606 		 *    Vol. 2 p.869. In such cases, we can still calculate the
1607 		 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1608 		 */
1609 		if (opti.ts_present &&
1610 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1611 		    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1612 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1613 			tp->ts_recent_age = tcp_now;
1614 			tp->ts_recent = opti.ts_val;
1615 		}
1616 
1617 		if (tlen == 0) {
1618 			/* Ack prediction. */
1619 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1620 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1621 			    tp->snd_cwnd >= tp->snd_wnd &&
1622 			    tp->t_partialacks < 0) {
1623 				/*
1624 				 * this is a pure ack for outstanding data.
1625 				 */
1626 				++tcpstat.tcps_predack;
1627 				if (ts_rtt)
1628 					tcp_xmit_timer(tp, ts_rtt);
1629 				else if (tp->t_rtttime &&
1630 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1631 					tcp_xmit_timer(tp,
1632 					  tcp_now - tp->t_rtttime);
1633 				acked = th->th_ack - tp->snd_una;
1634 				tcpstat.tcps_rcvackpack++;
1635 				tcpstat.tcps_rcvackbyte += acked;
1636 				ND6_HINT(tp);
1637 
1638 				if (acked > (tp->t_lastoff - tp->t_inoff))
1639 					tp->t_lastm = NULL;
1640 				sbdrop(&so->so_snd, acked);
1641 				tp->t_lastoff -= acked;
1642 
1643 				ICMP_CHECK(tp, th, acked);
1644 
1645 				tp->snd_una = th->th_ack;
1646 				tp->snd_fack = tp->snd_una;
1647 				if (SEQ_LT(tp->snd_high, tp->snd_una))
1648 					tp->snd_high = tp->snd_una;
1649 				m_freem(m);
1650 
1651 				/*
1652 				 * If all outstanding data are acked, stop
1653 				 * retransmit timer, otherwise restart timer
1654 				 * using current (possibly backed-off) value.
1655 				 * If process is waiting for space,
1656 				 * wakeup/selwakeup/signal.  If data
1657 				 * are ready to send, let tcp_output
1658 				 * decide between more output or persist.
1659 				 */
1660 				if (tp->snd_una == tp->snd_max)
1661 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1662 				else if (TCP_TIMER_ISARMED(tp,
1663 				    TCPT_PERSIST) == 0)
1664 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1665 					    tp->t_rxtcur);
1666 
1667 				sowwakeup(so);
1668 				if (so->so_snd.sb_cc)
1669 					(void) tcp_output(tp);
1670 				if (tcp_saveti)
1671 					m_freem(tcp_saveti);
1672 				return;
1673 			}
1674 		} else if (th->th_ack == tp->snd_una &&
1675 		    TAILQ_FIRST(&tp->segq) == NULL &&
1676 		    tlen <= sbspace(&so->so_rcv)) {
1677 			/*
1678 			 * this is a pure, in-sequence data packet
1679 			 * with nothing on the reassembly queue and
1680 			 * we have enough buffer space to take it.
1681 			 */
1682 			++tcpstat.tcps_preddat;
1683 			tp->rcv_nxt += tlen;
1684 			tcpstat.tcps_rcvpack++;
1685 			tcpstat.tcps_rcvbyte += tlen;
1686 			ND6_HINT(tp);
1687 			/*
1688 			 * Drop TCP, IP headers and TCP options then add data
1689 			 * to socket buffer.
1690 			 */
1691 			if (so->so_state & SS_CANTRCVMORE)
1692 				m_freem(m);
1693 			else {
1694 				m_adj(m, toff + off);
1695 				sbappendstream(&so->so_rcv, m);
1696 			}
1697 			sorwakeup(so);
1698 			TCP_SETUP_ACK(tp, th);
1699 			if (tp->t_flags & TF_ACKNOW)
1700 				(void) tcp_output(tp);
1701 			if (tcp_saveti)
1702 				m_freem(tcp_saveti);
1703 			return;
1704 		}
1705 	}
1706 
1707 	/*
1708 	 * Compute mbuf offset to TCP data segment.
1709 	 */
1710 	hdroptlen = toff + off;
1711 
1712 	/*
1713 	 * Calculate amount of space in receive window,
1714 	 * and then do TCP input processing.
1715 	 * Receive window is amount of space in rcv queue,
1716 	 * but not less than advertised window.
1717 	 */
1718 	{ int win;
1719 
1720 	win = sbspace(&so->so_rcv);
1721 	if (win < 0)
1722 		win = 0;
1723 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1724 	}
1725 
1726 	switch (tp->t_state) {
1727 	case TCPS_LISTEN:
1728 		/*
1729 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1730 		 */
1731 		if (m->m_flags & (M_BCAST|M_MCAST))
1732 			goto drop;
1733 		switch (af) {
1734 #ifdef INET6
1735 		case AF_INET6:
1736 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1737 				goto drop;
1738 			break;
1739 #endif /* INET6 */
1740 		case AF_INET:
1741 			if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1742 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1743 				goto drop;
1744 			break;
1745 		}
1746 		break;
1747 
1748 	/*
1749 	 * If the state is SYN_SENT:
1750 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1751 	 *	if seg contains a RST, then drop the connection.
1752 	 *	if seg does not contain SYN, then drop it.
1753 	 * Otherwise this is an acceptable SYN segment
1754 	 *	initialize tp->rcv_nxt and tp->irs
1755 	 *	if seg contains ack then advance tp->snd_una
1756 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1757 	 *	arrange for segment to be acked (eventually)
1758 	 *	continue processing rest of data/controls, beginning with URG
1759 	 */
1760 	case TCPS_SYN_SENT:
1761 		if ((tiflags & TH_ACK) &&
1762 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1763 		     SEQ_GT(th->th_ack, tp->snd_max)))
1764 			goto dropwithreset;
1765 		if (tiflags & TH_RST) {
1766 			if (tiflags & TH_ACK)
1767 				tp = tcp_drop(tp, ECONNREFUSED);
1768 			goto drop;
1769 		}
1770 		if ((tiflags & TH_SYN) == 0)
1771 			goto drop;
1772 		if (tiflags & TH_ACK) {
1773 			tp->snd_una = th->th_ack;
1774 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1775 				tp->snd_nxt = tp->snd_una;
1776 			if (SEQ_LT(tp->snd_high, tp->snd_una))
1777 				tp->snd_high = tp->snd_una;
1778 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1779 		}
1780 		tp->irs = th->th_seq;
1781 		tcp_rcvseqinit(tp);
1782 		tp->t_flags |= TF_ACKNOW;
1783 		tcp_mss_from_peer(tp, opti.maxseg);
1784 
1785 		/*
1786 		 * Initialize the initial congestion window.  If we
1787 		 * had to retransmit the SYN, we must initialize cwnd
1788 		 * to 1 segment (i.e. the Loss Window).
1789 		 */
1790 		if (tp->t_flags & TF_SYN_REXMT)
1791 			tp->snd_cwnd = tp->t_peermss;
1792 		else {
1793 			int ss = tcp_init_win;
1794 #ifdef INET
1795 			if (inp != NULL && in_localaddr(inp->inp_faddr))
1796 				ss = tcp_init_win_local;
1797 #endif
1798 #ifdef INET6
1799 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1800 				ss = tcp_init_win_local;
1801 #endif
1802 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1803 		}
1804 
1805 		tcp_rmx_rtt(tp);
1806 		if (tiflags & TH_ACK) {
1807 			tcpstat.tcps_connects++;
1808 			soisconnected(so);
1809 			tcp_established(tp);
1810 			/* Do window scaling on this connection? */
1811 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1812 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1813 				tp->snd_scale = tp->requested_s_scale;
1814 				tp->rcv_scale = tp->request_r_scale;
1815 			}
1816 			TCP_REASS_LOCK(tp);
1817 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1818 			TCP_REASS_UNLOCK(tp);
1819 			/*
1820 			 * if we didn't have to retransmit the SYN,
1821 			 * use its rtt as our initial srtt & rtt var.
1822 			 */
1823 			if (tp->t_rtttime)
1824 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1825 		} else
1826 			tp->t_state = TCPS_SYN_RECEIVED;
1827 
1828 		/*
1829 		 * Advance th->th_seq to correspond to first data byte.
1830 		 * If data, trim to stay within window,
1831 		 * dropping FIN if necessary.
1832 		 */
1833 		th->th_seq++;
1834 		if (tlen > tp->rcv_wnd) {
1835 			todrop = tlen - tp->rcv_wnd;
1836 			m_adj(m, -todrop);
1837 			tlen = tp->rcv_wnd;
1838 			tiflags &= ~TH_FIN;
1839 			tcpstat.tcps_rcvpackafterwin++;
1840 			tcpstat.tcps_rcvbyteafterwin += todrop;
1841 		}
1842 		tp->snd_wl1 = th->th_seq - 1;
1843 		tp->rcv_up = th->th_seq;
1844 		goto step6;
1845 
1846 	/*
1847 	 * If the state is SYN_RECEIVED:
1848 	 *	If seg contains an ACK, but not for our SYN, drop the input
1849 	 *	and generate an RST.  See page 36, rfc793
1850 	 */
1851 	case TCPS_SYN_RECEIVED:
1852 		if ((tiflags & TH_ACK) &&
1853 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1854 		     SEQ_GT(th->th_ack, tp->snd_max)))
1855 			goto dropwithreset;
1856 		break;
1857 	}
1858 
1859 	/*
1860 	 * States other than LISTEN or SYN_SENT.
1861 	 * First check timestamp, if present.
1862 	 * Then check that at least some bytes of segment are within
1863 	 * receive window.  If segment begins before rcv_nxt,
1864 	 * drop leading data (and SYN); if nothing left, just ack.
1865 	 *
1866 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1867 	 * and it's less than ts_recent, drop it.
1868 	 */
1869 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1870 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1871 
1872 		/* Check to see if ts_recent is over 24 days old.  */
1873 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
1874 			/*
1875 			 * Invalidate ts_recent.  If this segment updates
1876 			 * ts_recent, the age will be reset later and ts_recent
1877 			 * will get a valid value.  If it does not, setting
1878 			 * ts_recent to zero will at least satisfy the
1879 			 * requirement that zero be placed in the timestamp
1880 			 * echo reply when ts_recent isn't valid.  The
1881 			 * age isn't reset until we get a valid ts_recent
1882 			 * because we don't want out-of-order segments to be
1883 			 * dropped when ts_recent is old.
1884 			 */
1885 			tp->ts_recent = 0;
1886 		} else {
1887 			tcpstat.tcps_rcvduppack++;
1888 			tcpstat.tcps_rcvdupbyte += tlen;
1889 			tcpstat.tcps_pawsdrop++;
1890 			tcp_new_dsack(tp, th->th_seq, tlen);
1891 			goto dropafterack;
1892 		}
1893 	}
1894 
1895 	todrop = tp->rcv_nxt - th->th_seq;
1896 	dupseg = FALSE;
1897 	if (todrop > 0) {
1898 		if (tiflags & TH_SYN) {
1899 			tiflags &= ~TH_SYN;
1900 			th->th_seq++;
1901 			if (th->th_urp > 1)
1902 				th->th_urp--;
1903 			else {
1904 				tiflags &= ~TH_URG;
1905 				th->th_urp = 0;
1906 			}
1907 			todrop--;
1908 		}
1909 		if (todrop > tlen ||
1910 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1911 			/*
1912 			 * Any valid FIN or RST must be to the left of the
1913 			 * window.  At this point the FIN or RST must be a
1914 			 * duplicate or out of sequence; drop it.
1915 			 */
1916 			if (tiflags & TH_RST)
1917 				goto drop;
1918 			tiflags &= ~(TH_FIN|TH_RST);
1919 			/*
1920 			 * Send an ACK to resynchronize and drop any data.
1921 			 * But keep on processing for RST or ACK.
1922 			 */
1923 			tp->t_flags |= TF_ACKNOW;
1924 			todrop = tlen;
1925 			dupseg = TRUE;
1926 			tcpstat.tcps_rcvdupbyte += todrop;
1927 			tcpstat.tcps_rcvduppack++;
1928 		} else if ((tiflags & TH_RST) &&
1929 			   th->th_seq != tp->last_ack_sent) {
1930 			/*
1931 			 * Test for reset before adjusting the sequence
1932 			 * number for overlapping data.
1933 			 */
1934 			goto dropafterack_ratelim;
1935 		} else {
1936 			tcpstat.tcps_rcvpartduppack++;
1937 			tcpstat.tcps_rcvpartdupbyte += todrop;
1938 		}
1939 		tcp_new_dsack(tp, th->th_seq, todrop);
1940 		hdroptlen += todrop;	/*drop from head afterwards*/
1941 		th->th_seq += todrop;
1942 		tlen -= todrop;
1943 		if (th->th_urp > todrop)
1944 			th->th_urp -= todrop;
1945 		else {
1946 			tiflags &= ~TH_URG;
1947 			th->th_urp = 0;
1948 		}
1949 	}
1950 
1951 	/*
1952 	 * If new data are received on a connection after the
1953 	 * user processes are gone, then RST the other end.
1954 	 */
1955 	if ((so->so_state & SS_NOFDREF) &&
1956 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1957 		tp = tcp_close(tp);
1958 		tcpstat.tcps_rcvafterclose++;
1959 		goto dropwithreset;
1960 	}
1961 
1962 	/*
1963 	 * If segment ends after window, drop trailing data
1964 	 * (and PUSH and FIN); if nothing left, just ACK.
1965 	 */
1966 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1967 	if (todrop > 0) {
1968 		tcpstat.tcps_rcvpackafterwin++;
1969 		if (todrop >= tlen) {
1970 			/*
1971 			 * The segment actually starts after the window.
1972 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
1973 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
1974 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
1975 			 */
1976 			tcpstat.tcps_rcvbyteafterwin += tlen;
1977 			/*
1978 			 * If a new connection request is received
1979 			 * while in TIME_WAIT, drop the old connection
1980 			 * and start over if the sequence numbers
1981 			 * are above the previous ones.
1982 			 *
1983 			 * NOTE: We will checksum the packet again, and
1984 			 * so we need to put the header fields back into
1985 			 * network order!
1986 			 * XXX This kind of sucks, but we don't expect
1987 			 * XXX this to happen very often, so maybe it
1988 			 * XXX doesn't matter so much.
1989 			 */
1990 			if (tiflags & TH_SYN &&
1991 			    tp->t_state == TCPS_TIME_WAIT &&
1992 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1993 				iss = tcp_new_iss(tp, tp->snd_nxt);
1994 				tp = tcp_close(tp);
1995 				TCP_FIELDS_TO_NET(th);
1996 				goto findpcb;
1997 			}
1998 			/*
1999 			 * If window is closed can only take segments at
2000 			 * window edge, and have to drop data and PUSH from
2001 			 * incoming segments.  Continue processing, but
2002 			 * remember to ack.  Otherwise, drop segment
2003 			 * and (if not RST) ack.
2004 			 */
2005 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2006 				tp->t_flags |= TF_ACKNOW;
2007 				tcpstat.tcps_rcvwinprobe++;
2008 			} else
2009 				goto dropafterack;
2010 		} else
2011 			tcpstat.tcps_rcvbyteafterwin += todrop;
2012 		m_adj(m, -todrop);
2013 		tlen -= todrop;
2014 		tiflags &= ~(TH_PUSH|TH_FIN);
2015 	}
2016 
2017 	/*
2018 	 * If last ACK falls within this segment's sequence numbers,
2019 	 * and the timestamp is newer, record it.
2020 	 */
2021 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
2022 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2023 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
2024 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2025 		tp->ts_recent_age = tcp_now;
2026 		tp->ts_recent = opti.ts_val;
2027 	}
2028 
2029 	/*
2030 	 * If the RST bit is set examine the state:
2031 	 *    SYN_RECEIVED STATE:
2032 	 *	If passive open, return to LISTEN state.
2033 	 *	If active open, inform user that connection was refused.
2034 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2035 	 *	Inform user that connection was reset, and close tcb.
2036 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
2037 	 *	Close the tcb.
2038 	 */
2039 	if (tiflags & TH_RST) {
2040 		if (th->th_seq != tp->last_ack_sent)
2041 			goto dropafterack_ratelim;
2042 
2043 		switch (tp->t_state) {
2044 		case TCPS_SYN_RECEIVED:
2045 			so->so_error = ECONNREFUSED;
2046 			goto close;
2047 
2048 		case TCPS_ESTABLISHED:
2049 		case TCPS_FIN_WAIT_1:
2050 		case TCPS_FIN_WAIT_2:
2051 		case TCPS_CLOSE_WAIT:
2052 			so->so_error = ECONNRESET;
2053 		close:
2054 			tp->t_state = TCPS_CLOSED;
2055 			tcpstat.tcps_drops++;
2056 			tp = tcp_close(tp);
2057 			goto drop;
2058 
2059 		case TCPS_CLOSING:
2060 		case TCPS_LAST_ACK:
2061 		case TCPS_TIME_WAIT:
2062 			tp = tcp_close(tp);
2063 			goto drop;
2064 		}
2065 	}
2066 
2067 	/*
2068 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2069 	 * we must be in a synchronized state.  RFC791 states (under RST
2070 	 * generation) that any unacceptable segment (an out-of-order SYN
2071 	 * qualifies) received in a synchronized state must elicit only an
2072 	 * empty acknowledgment segment ... and the connection remains in
2073 	 * the same state.
2074 	 */
2075 	if (tiflags & TH_SYN) {
2076 		if (tp->rcv_nxt == th->th_seq) {
2077 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2078 			    TH_ACK);
2079 			if (tcp_saveti)
2080 				m_freem(tcp_saveti);
2081 			return;
2082 		}
2083 
2084 		goto dropafterack_ratelim;
2085 	}
2086 
2087 	/*
2088 	 * If the ACK bit is off we drop the segment and return.
2089 	 */
2090 	if ((tiflags & TH_ACK) == 0) {
2091 		if (tp->t_flags & TF_ACKNOW)
2092 			goto dropafterack;
2093 		else
2094 			goto drop;
2095 	}
2096 
2097 	/*
2098 	 * Ack processing.
2099 	 */
2100 	switch (tp->t_state) {
2101 
2102 	/*
2103 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2104 	 * ESTABLISHED state and continue processing, otherwise
2105 	 * send an RST.
2106 	 */
2107 	case TCPS_SYN_RECEIVED:
2108 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
2109 		    SEQ_GT(th->th_ack, tp->snd_max))
2110 			goto dropwithreset;
2111 		tcpstat.tcps_connects++;
2112 		soisconnected(so);
2113 		tcp_established(tp);
2114 		/* Do window scaling? */
2115 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2116 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2117 			tp->snd_scale = tp->requested_s_scale;
2118 			tp->rcv_scale = tp->request_r_scale;
2119 		}
2120 		TCP_REASS_LOCK(tp);
2121 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2122 		TCP_REASS_UNLOCK(tp);
2123 		tp->snd_wl1 = th->th_seq - 1;
2124 		/* fall into ... */
2125 
2126 	/*
2127 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2128 	 * ACKs.  If the ack is in the range
2129 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2130 	 * then advance tp->snd_una to th->th_ack and drop
2131 	 * data from the retransmission queue.  If this ACK reflects
2132 	 * more up to date window information we update our window information.
2133 	 */
2134 	case TCPS_ESTABLISHED:
2135 	case TCPS_FIN_WAIT_1:
2136 	case TCPS_FIN_WAIT_2:
2137 	case TCPS_CLOSE_WAIT:
2138 	case TCPS_CLOSING:
2139 	case TCPS_LAST_ACK:
2140 	case TCPS_TIME_WAIT:
2141 
2142 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2143 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2144 				tcpstat.tcps_rcvdupack++;
2145 				/*
2146 				 * If we have outstanding data (other than
2147 				 * a window probe), this is a completely
2148 				 * duplicate ack (ie, window info didn't
2149 				 * change), the ack is the biggest we've
2150 				 * seen and we've seen exactly our rexmt
2151 				 * threshhold of them, assume a packet
2152 				 * has been dropped and retransmit it.
2153 				 * Kludge snd_nxt & the congestion
2154 				 * window so we send only this one
2155 				 * packet.
2156 				 *
2157 				 * We know we're losing at the current
2158 				 * window size so do congestion avoidance
2159 				 * (set ssthresh to half the current window
2160 				 * and pull our congestion window back to
2161 				 * the new ssthresh).
2162 				 *
2163 				 * Dup acks mean that packets have left the
2164 				 * network (they're now cached at the receiver)
2165 				 * so bump cwnd by the amount in the receiver
2166 				 * to keep a constant cwnd packets in the
2167 				 * network.
2168 				 *
2169 				 * If we are using TCP/SACK, then enter
2170 				 * Fast Recovery if the receiver SACKs
2171 				 * data that is tcprexmtthresh * MSS
2172 				 * bytes past the last ACKed segment,
2173 				 * irrespective of the number of DupAcks.
2174 				 */
2175 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2176 				    th->th_ack != tp->snd_una)
2177 					tp->t_dupacks = 0;
2178 				else if (tp->t_partialacks < 0 &&
2179 					 (++tp->t_dupacks == tcprexmtthresh ||
2180 					 TCP_FACK_FASTRECOV(tp))) {
2181 					tcp_seq onxt;
2182 					u_int win;
2183 
2184 					if (tcp_do_newreno &&
2185 					    SEQ_LT(th->th_ack, tp->snd_high)) {
2186 						/*
2187 						 * False fast retransmit after
2188 						 * timeout.  Do not enter fast
2189 						 * recovery.
2190 						 */
2191 						tp->t_dupacks = 0;
2192 						break;
2193 					}
2194 
2195 					onxt = tp->snd_nxt;
2196 					win = min(tp->snd_wnd, tp->snd_cwnd) /
2197 					    2 /	tp->t_segsz;
2198 					if (win < 2)
2199 						win = 2;
2200 					tp->snd_ssthresh = win * tp->t_segsz;
2201 					tp->snd_recover = tp->snd_max;
2202 					tp->t_partialacks = 0;
2203 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
2204 					tp->t_rtttime = 0;
2205 					if (TCP_SACK_ENABLED(tp)) {
2206 						tp->t_dupacks = tcprexmtthresh;
2207 						tp->sack_newdata = tp->snd_nxt;
2208 						tp->snd_cwnd = tp->t_segsz;
2209 						(void) tcp_output(tp);
2210 						goto drop;
2211 					}
2212 					tp->snd_nxt = th->th_ack;
2213 					tp->snd_cwnd = tp->t_segsz;
2214 					(void) tcp_output(tp);
2215 					tp->snd_cwnd = tp->snd_ssthresh +
2216 					       tp->t_segsz * tp->t_dupacks;
2217 					if (SEQ_GT(onxt, tp->snd_nxt))
2218 						tp->snd_nxt = onxt;
2219 					goto drop;
2220 				} else if (tp->t_dupacks > tcprexmtthresh) {
2221 					tp->snd_cwnd += tp->t_segsz;
2222 					(void) tcp_output(tp);
2223 					goto drop;
2224 				}
2225 			} else {
2226 				/*
2227 				 * If the ack appears to be very old, only
2228 				 * allow data that is in-sequence.  This
2229 				 * makes it somewhat more difficult to insert
2230 				 * forged data by guessing sequence numbers.
2231 				 * Sent an ack to try to update the send
2232 				 * sequence number on the other side.
2233 				 */
2234 				if (tlen && th->th_seq != tp->rcv_nxt &&
2235 				    SEQ_LT(th->th_ack,
2236 				    tp->snd_una - tp->max_sndwnd))
2237 					goto dropafterack;
2238 			}
2239 			break;
2240 		}
2241 		/*
2242 		 * If the congestion window was inflated to account
2243 		 * for the other side's cached packets, retract it.
2244 		 */
2245 		if (TCP_SACK_ENABLED(tp))
2246 			tcp_sack_newack(tp, th);
2247 		else if (tcp_do_newreno)
2248 			tcp_newreno_newack(tp, th);
2249 		else
2250 			tcp_reno_newack(tp, th);
2251 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2252 			tcpstat.tcps_rcvacktoomuch++;
2253 			goto dropafterack;
2254 		}
2255 		acked = th->th_ack - tp->snd_una;
2256 		tcpstat.tcps_rcvackpack++;
2257 		tcpstat.tcps_rcvackbyte += acked;
2258 
2259 		/*
2260 		 * If we have a timestamp reply, update smoothed
2261 		 * round trip time.  If no timestamp is present but
2262 		 * transmit timer is running and timed sequence
2263 		 * number was acked, update smoothed round trip time.
2264 		 * Since we now have an rtt measurement, cancel the
2265 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2266 		 * Recompute the initial retransmit timer.
2267 		 */
2268 		if (ts_rtt)
2269 			tcp_xmit_timer(tp, ts_rtt);
2270 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2271 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2272 
2273 		/*
2274 		 * If all outstanding data is acked, stop retransmit
2275 		 * timer and remember to restart (more output or persist).
2276 		 * If there is more data to be acked, restart retransmit
2277 		 * timer, using current (possibly backed-off) value.
2278 		 */
2279 		if (th->th_ack == tp->snd_max) {
2280 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2281 			needoutput = 1;
2282 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2283 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2284 		/*
2285 		 * When new data is acked, open the congestion window.
2286 		 * If the window gives us less than ssthresh packets
2287 		 * in flight, open exponentially (segsz per packet).
2288 		 * Otherwise open linearly: segsz per window
2289 		 * (segsz^2 / cwnd per packet).
2290 		 *
2291 		 * If we are still in fast recovery (meaning we are using
2292 		 * NewReno and we have only received partial acks), do not
2293 		 * inflate the window yet.
2294 		 */
2295 		if (tp->t_partialacks < 0) {
2296 			u_int cw = tp->snd_cwnd;
2297 			u_int incr = tp->t_segsz;
2298 
2299 			if (cw >= tp->snd_ssthresh)
2300 				incr = incr * incr / cw;
2301 			tp->snd_cwnd = min(cw + incr,
2302 			    TCP_MAXWIN << tp->snd_scale);
2303 		}
2304 		ND6_HINT(tp);
2305 		if (acked > so->so_snd.sb_cc) {
2306 			tp->snd_wnd -= so->so_snd.sb_cc;
2307 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2308 			ourfinisacked = 1;
2309 		} else {
2310 			if (acked > (tp->t_lastoff - tp->t_inoff))
2311 				tp->t_lastm = NULL;
2312 			sbdrop(&so->so_snd, acked);
2313 			tp->t_lastoff -= acked;
2314 			tp->snd_wnd -= acked;
2315 			ourfinisacked = 0;
2316 		}
2317 		sowwakeup(so);
2318 
2319 		ICMP_CHECK(tp, th, acked);
2320 
2321 		tp->snd_una = th->th_ack;
2322 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
2323 			tp->snd_fack = tp->snd_una;
2324 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2325 			tp->snd_nxt = tp->snd_una;
2326 		if (SEQ_LT(tp->snd_high, tp->snd_una))
2327 			tp->snd_high = tp->snd_una;
2328 
2329 		switch (tp->t_state) {
2330 
2331 		/*
2332 		 * In FIN_WAIT_1 STATE in addition to the processing
2333 		 * for the ESTABLISHED state if our FIN is now acknowledged
2334 		 * then enter FIN_WAIT_2.
2335 		 */
2336 		case TCPS_FIN_WAIT_1:
2337 			if (ourfinisacked) {
2338 				/*
2339 				 * If we can't receive any more
2340 				 * data, then closing user can proceed.
2341 				 * Starting the timer is contrary to the
2342 				 * specification, but if we don't get a FIN
2343 				 * we'll hang forever.
2344 				 */
2345 				if (so->so_state & SS_CANTRCVMORE) {
2346 					soisdisconnected(so);
2347 					if (tcp_maxidle > 0)
2348 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2349 						    tcp_maxidle);
2350 				}
2351 				tp->t_state = TCPS_FIN_WAIT_2;
2352 			}
2353 			break;
2354 
2355 	 	/*
2356 		 * In CLOSING STATE in addition to the processing for
2357 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2358 		 * then enter the TIME-WAIT state, otherwise ignore
2359 		 * the segment.
2360 		 */
2361 		case TCPS_CLOSING:
2362 			if (ourfinisacked) {
2363 				tp->t_state = TCPS_TIME_WAIT;
2364 				tcp_canceltimers(tp);
2365 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2366 				soisdisconnected(so);
2367 			}
2368 			break;
2369 
2370 		/*
2371 		 * In LAST_ACK, we may still be waiting for data to drain
2372 		 * and/or to be acked, as well as for the ack of our FIN.
2373 		 * If our FIN is now acknowledged, delete the TCB,
2374 		 * enter the closed state and return.
2375 		 */
2376 		case TCPS_LAST_ACK:
2377 			if (ourfinisacked) {
2378 				tp = tcp_close(tp);
2379 				goto drop;
2380 			}
2381 			break;
2382 
2383 		/*
2384 		 * In TIME_WAIT state the only thing that should arrive
2385 		 * is a retransmission of the remote FIN.  Acknowledge
2386 		 * it and restart the finack timer.
2387 		 */
2388 		case TCPS_TIME_WAIT:
2389 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2390 			goto dropafterack;
2391 		}
2392 	}
2393 
2394 step6:
2395 	/*
2396 	 * Update window information.
2397 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2398 	 */
2399 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2400 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2401 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2402 		/* keep track of pure window updates */
2403 		if (tlen == 0 &&
2404 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2405 			tcpstat.tcps_rcvwinupd++;
2406 		tp->snd_wnd = tiwin;
2407 		tp->snd_wl1 = th->th_seq;
2408 		tp->snd_wl2 = th->th_ack;
2409 		if (tp->snd_wnd > tp->max_sndwnd)
2410 			tp->max_sndwnd = tp->snd_wnd;
2411 		needoutput = 1;
2412 	}
2413 
2414 	/*
2415 	 * Process segments with URG.
2416 	 */
2417 	if ((tiflags & TH_URG) && th->th_urp &&
2418 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2419 		/*
2420 		 * This is a kludge, but if we receive and accept
2421 		 * random urgent pointers, we'll crash in
2422 		 * soreceive.  It's hard to imagine someone
2423 		 * actually wanting to send this much urgent data.
2424 		 */
2425 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2426 			th->th_urp = 0;			/* XXX */
2427 			tiflags &= ~TH_URG;		/* XXX */
2428 			goto dodata;			/* XXX */
2429 		}
2430 		/*
2431 		 * If this segment advances the known urgent pointer,
2432 		 * then mark the data stream.  This should not happen
2433 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2434 		 * a FIN has been received from the remote side.
2435 		 * In these states we ignore the URG.
2436 		 *
2437 		 * According to RFC961 (Assigned Protocols),
2438 		 * the urgent pointer points to the last octet
2439 		 * of urgent data.  We continue, however,
2440 		 * to consider it to indicate the first octet
2441 		 * of data past the urgent section as the original
2442 		 * spec states (in one of two places).
2443 		 */
2444 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2445 			tp->rcv_up = th->th_seq + th->th_urp;
2446 			so->so_oobmark = so->so_rcv.sb_cc +
2447 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2448 			if (so->so_oobmark == 0)
2449 				so->so_state |= SS_RCVATMARK;
2450 			sohasoutofband(so);
2451 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2452 		}
2453 		/*
2454 		 * Remove out of band data so doesn't get presented to user.
2455 		 * This can happen independent of advancing the URG pointer,
2456 		 * but if two URG's are pending at once, some out-of-band
2457 		 * data may creep in... ick.
2458 		 */
2459 		if (th->th_urp <= (u_int16_t) tlen
2460 #ifdef SO_OOBINLINE
2461 		     && (so->so_options & SO_OOBINLINE) == 0
2462 #endif
2463 		     )
2464 			tcp_pulloutofband(so, th, m, hdroptlen);
2465 	} else
2466 		/*
2467 		 * If no out of band data is expected,
2468 		 * pull receive urgent pointer along
2469 		 * with the receive window.
2470 		 */
2471 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2472 			tp->rcv_up = tp->rcv_nxt;
2473 dodata:							/* XXX */
2474 
2475 	/*
2476 	 * Process the segment text, merging it into the TCP sequencing queue,
2477 	 * and arranging for acknowledgement of receipt if necessary.
2478 	 * This process logically involves adjusting tp->rcv_wnd as data
2479 	 * is presented to the user (this happens in tcp_usrreq.c,
2480 	 * case PRU_RCVD).  If a FIN has already been received on this
2481 	 * connection then we just ignore the text.
2482 	 */
2483 	if ((tlen || (tiflags & TH_FIN)) &&
2484 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2485 		/*
2486 		 * Insert segment ti into reassembly queue of tcp with
2487 		 * control block tp.  Return TH_FIN if reassembly now includes
2488 		 * a segment with FIN.  The macro form does the common case
2489 		 * inline (segment is the next to be received on an
2490 		 * established connection, and the queue is empty),
2491 		 * avoiding linkage into and removal from the queue and
2492 		 * repetition of various conversions.
2493 		 * Set DELACK for segments received in order, but ack
2494 		 * immediately when segments are out of order
2495 		 * (so fast retransmit can work).
2496 		 */
2497 		/* NOTE: this was TCP_REASS() macro, but used only once */
2498 		TCP_REASS_LOCK(tp);
2499 		if (th->th_seq == tp->rcv_nxt &&
2500 		    TAILQ_FIRST(&tp->segq) == NULL &&
2501 		    tp->t_state == TCPS_ESTABLISHED) {
2502 			TCP_SETUP_ACK(tp, th);
2503 			tp->rcv_nxt += tlen;
2504 			tiflags = th->th_flags & TH_FIN;
2505 			tcpstat.tcps_rcvpack++;
2506 			tcpstat.tcps_rcvbyte += tlen;
2507 			ND6_HINT(tp);
2508 			if (so->so_state & SS_CANTRCVMORE)
2509 				m_freem(m);
2510 			else {
2511 				m_adj(m, hdroptlen);
2512 				sbappendstream(&(so)->so_rcv, m);
2513 			}
2514 			sorwakeup(so);
2515 		} else {
2516 			m_adj(m, hdroptlen);
2517 			tiflags = tcp_reass(tp, th, m, &tlen);
2518 			tp->t_flags |= TF_ACKNOW;
2519 		}
2520 		TCP_REASS_UNLOCK(tp);
2521 
2522 		/*
2523 		 * Note the amount of data that peer has sent into
2524 		 * our window, in order to estimate the sender's
2525 		 * buffer size.
2526 		 */
2527 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2528 	} else {
2529 		m_freem(m);
2530 		m = NULL;
2531 		tiflags &= ~TH_FIN;
2532 	}
2533 
2534 	/*
2535 	 * If FIN is received ACK the FIN and let the user know
2536 	 * that the connection is closing.  Ignore a FIN received before
2537 	 * the connection is fully established.
2538 	 */
2539 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2540 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2541 			socantrcvmore(so);
2542 			tp->t_flags |= TF_ACKNOW;
2543 			tp->rcv_nxt++;
2544 		}
2545 		switch (tp->t_state) {
2546 
2547 	 	/*
2548 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2549 		 */
2550 		case TCPS_ESTABLISHED:
2551 			tp->t_state = TCPS_CLOSE_WAIT;
2552 			break;
2553 
2554 	 	/*
2555 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2556 		 * enter the CLOSING state.
2557 		 */
2558 		case TCPS_FIN_WAIT_1:
2559 			tp->t_state = TCPS_CLOSING;
2560 			break;
2561 
2562 	 	/*
2563 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2564 		 * starting the time-wait timer, turning off the other
2565 		 * standard timers.
2566 		 */
2567 		case TCPS_FIN_WAIT_2:
2568 			tp->t_state = TCPS_TIME_WAIT;
2569 			tcp_canceltimers(tp);
2570 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2571 			soisdisconnected(so);
2572 			break;
2573 
2574 		/*
2575 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2576 		 */
2577 		case TCPS_TIME_WAIT:
2578 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2579 			break;
2580 		}
2581 	}
2582 #ifdef TCP_DEBUG
2583 	if (so->so_options & SO_DEBUG)
2584 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2585 #endif
2586 
2587 	/*
2588 	 * Return any desired output.
2589 	 */
2590 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2591 		(void) tcp_output(tp);
2592 	}
2593 	if (tcp_saveti)
2594 		m_freem(tcp_saveti);
2595 	return;
2596 
2597 badsyn:
2598 	/*
2599 	 * Received a bad SYN.  Increment counters and dropwithreset.
2600 	 */
2601 	tcpstat.tcps_badsyn++;
2602 	tp = NULL;
2603 	goto dropwithreset;
2604 
2605 dropafterack:
2606 	/*
2607 	 * Generate an ACK dropping incoming segment if it occupies
2608 	 * sequence space, where the ACK reflects our state.
2609 	 */
2610 	if (tiflags & TH_RST)
2611 		goto drop;
2612 	goto dropafterack2;
2613 
2614 dropafterack_ratelim:
2615 	/*
2616 	 * We may want to rate-limit ACKs against SYN/RST attack.
2617 	 */
2618 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2619 	    tcp_ackdrop_ppslim) == 0) {
2620 		/* XXX stat */
2621 		goto drop;
2622 	}
2623 	/* ...fall into dropafterack2... */
2624 
2625 dropafterack2:
2626 	m_freem(m);
2627 	tp->t_flags |= TF_ACKNOW;
2628 	(void) tcp_output(tp);
2629 	if (tcp_saveti)
2630 		m_freem(tcp_saveti);
2631 	return;
2632 
2633 dropwithreset_ratelim:
2634 	/*
2635 	 * We may want to rate-limit RSTs in certain situations,
2636 	 * particularly if we are sending an RST in response to
2637 	 * an attempt to connect to or otherwise communicate with
2638 	 * a port for which we have no socket.
2639 	 */
2640 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2641 	    tcp_rst_ppslim) == 0) {
2642 		/* XXX stat */
2643 		goto drop;
2644 	}
2645 	/* ...fall into dropwithreset... */
2646 
2647 dropwithreset:
2648 	/*
2649 	 * Generate a RST, dropping incoming segment.
2650 	 * Make ACK acceptable to originator of segment.
2651 	 */
2652 	if (tiflags & TH_RST)
2653 		goto drop;
2654 
2655 	switch (af) {
2656 #ifdef INET6
2657 	case AF_INET6:
2658 		/* For following calls to tcp_respond */
2659 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2660 			goto drop;
2661 		break;
2662 #endif /* INET6 */
2663 	case AF_INET:
2664 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2665 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2666 			goto drop;
2667 	}
2668 
2669 	if (tiflags & TH_ACK)
2670 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2671 	else {
2672 		if (tiflags & TH_SYN)
2673 			tlen++;
2674 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2675 		    TH_RST|TH_ACK);
2676 	}
2677 	if (tcp_saveti)
2678 		m_freem(tcp_saveti);
2679 	return;
2680 
2681 badcsum:
2682 drop:
2683 	/*
2684 	 * Drop space held by incoming segment and return.
2685 	 */
2686 	if (tp) {
2687 		if (tp->t_inpcb)
2688 			so = tp->t_inpcb->inp_socket;
2689 #ifdef INET6
2690 		else if (tp->t_in6pcb)
2691 			so = tp->t_in6pcb->in6p_socket;
2692 #endif
2693 		else
2694 			so = NULL;
2695 #ifdef TCP_DEBUG
2696 		if (so && (so->so_options & SO_DEBUG) != 0)
2697 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2698 #endif
2699 	}
2700 	if (tcp_saveti)
2701 		m_freem(tcp_saveti);
2702 	m_freem(m);
2703 	return;
2704 }
2705 
2706 #ifdef TCP_SIGNATURE
2707 int
2708 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
2709 {
2710 
2711 	MD5Update(fstate, (u_char *)data, len);
2712 	return (0);
2713 }
2714 
2715 struct secasvar *
2716 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2717 {
2718 	struct secasvar *sav;
2719 #ifdef FAST_IPSEC
2720 	union sockaddr_union dst;
2721 #endif
2722 	struct ip *ip;
2723 	struct ip6_hdr *ip6;
2724 
2725 	ip = mtod(m, struct ip *);
2726 	switch (ip->ip_v) {
2727 	case 4:
2728 		ip = mtod(m, struct ip *);
2729 		ip6 = NULL;
2730 		break;
2731 	case 6:
2732 		ip = NULL;
2733 		ip6 = mtod(m, struct ip6_hdr *);
2734 		break;
2735 	default:
2736 		return (NULL);
2737 	}
2738 
2739 #ifdef FAST_IPSEC
2740 	/* Extract the destination from the IP header in the mbuf. */
2741 	bzero(&dst, sizeof(union sockaddr_union));
2742 	dst.sa.sa_len = sizeof(struct sockaddr_in);
2743 	dst.sa.sa_family = AF_INET;
2744 	dst.sin.sin_addr = ip->ip_dst;
2745 
2746 	/*
2747 	 * Look up an SADB entry which matches the address of the peer.
2748 	 */
2749 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2750 #else
2751 	if (ip)
2752 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
2753 		    (caddr_t)&ip->ip_dst, IPPROTO_TCP,
2754 		    htonl(TCP_SIG_SPI), 0, 0);
2755 	else
2756 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
2757 		    (caddr_t)&ip6->ip6_dst, IPPROTO_TCP,
2758 		    htonl(TCP_SIG_SPI), 0, 0);
2759 #endif
2760 
2761 	return (sav);	/* freesav must be performed by caller */
2762 }
2763 
2764 int
2765 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2766     struct secasvar *sav, char *sig)
2767 {
2768 	MD5_CTX ctx;
2769 	struct ip *ip;
2770 	struct ipovly *ipovly;
2771 	struct ip6_hdr *ip6;
2772 	struct ippseudo ippseudo;
2773 	struct ip6_hdr_pseudo ip6pseudo;
2774 	struct tcphdr th0;
2775 	int l, tcphdrlen;
2776 
2777 	if (sav == NULL)
2778 		return (-1);
2779 
2780 	tcphdrlen = th->th_off * 4;
2781 
2782 	switch (mtod(m, struct ip *)->ip_v) {
2783 	case 4:
2784 		ip = mtod(m, struct ip *);
2785 		ip6 = NULL;
2786 		break;
2787 	case 6:
2788 		ip = NULL;
2789 		ip6 = mtod(m, struct ip6_hdr *);
2790 		break;
2791 	default:
2792 		return (-1);
2793 	}
2794 
2795 	MD5Init(&ctx);
2796 
2797 	if (ip) {
2798 		memset(&ippseudo, 0, sizeof(ippseudo));
2799 		ipovly = (struct ipovly *)ip;
2800 		ippseudo.ippseudo_src = ipovly->ih_src;
2801 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2802 		ippseudo.ippseudo_pad = 0;
2803 		ippseudo.ippseudo_p = IPPROTO_TCP;
2804 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2805 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2806 	} else {
2807 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2808 		ip6pseudo.ip6ph_src = ip6->ip6_src;
2809 		in6_clearscope(&ip6pseudo.ip6ph_src);
2810 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2811 		in6_clearscope(&ip6pseudo.ip6ph_dst);
2812 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2813 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2814 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2815 	}
2816 
2817 	th0 = *th;
2818 	th0.th_sum = 0;
2819 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
2820 
2821 	l = m->m_pkthdr.len - thoff - tcphdrlen;
2822 	if (l > 0)
2823 		m_apply(m, thoff + tcphdrlen,
2824 		    m->m_pkthdr.len - thoff - tcphdrlen,
2825 		    tcp_signature_apply, &ctx);
2826 
2827 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2828 	MD5Final(sig, &ctx);
2829 
2830 	return (0);
2831 }
2832 #endif
2833 
2834 int
2835 tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
2836     struct mbuf *m, int toff, struct tcp_opt_info *oi)
2837 {
2838 	u_int16_t mss;
2839 	int opt, optlen = 0;
2840 #ifdef TCP_SIGNATURE
2841 	caddr_t sigp = NULL;
2842 	char sigbuf[TCP_SIGLEN];
2843 	struct secasvar *sav = NULL;
2844 #endif
2845 
2846 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2847 		opt = cp[0];
2848 		if (opt == TCPOPT_EOL)
2849 			break;
2850 		if (opt == TCPOPT_NOP)
2851 			optlen = 1;
2852 		else {
2853 			if (cnt < 2)
2854 				break;
2855 			optlen = cp[1];
2856 			if (optlen < 2 || optlen > cnt)
2857 				break;
2858 		}
2859 		switch (opt) {
2860 
2861 		default:
2862 			continue;
2863 
2864 		case TCPOPT_MAXSEG:
2865 			if (optlen != TCPOLEN_MAXSEG)
2866 				continue;
2867 			if (!(th->th_flags & TH_SYN))
2868 				continue;
2869 			bcopy(cp + 2, &mss, sizeof(mss));
2870 			oi->maxseg = ntohs(mss);
2871 			break;
2872 
2873 		case TCPOPT_WINDOW:
2874 			if (optlen != TCPOLEN_WINDOW)
2875 				continue;
2876 			if (!(th->th_flags & TH_SYN))
2877 				continue;
2878 			tp->t_flags |= TF_RCVD_SCALE;
2879 			tp->requested_s_scale = cp[2];
2880 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2881 #if 0	/*XXX*/
2882 				char *p;
2883 
2884 				if (ip)
2885 					p = ntohl(ip->ip_src);
2886 #ifdef INET6
2887 				else if (ip6)
2888 					p = ip6_sprintf(&ip6->ip6_src);
2889 #endif
2890 				else
2891 					p = "(unknown)";
2892 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2893 				    "assuming %d\n",
2894 				    tp->requested_s_scale, p,
2895 				    TCP_MAX_WINSHIFT);
2896 #else
2897 				log(LOG_ERR, "TCP: invalid wscale %d, "
2898 				    "assuming %d\n",
2899 				    tp->requested_s_scale,
2900 				    TCP_MAX_WINSHIFT);
2901 #endif
2902 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
2903 			}
2904 			break;
2905 
2906 		case TCPOPT_TIMESTAMP:
2907 			if (optlen != TCPOLEN_TIMESTAMP)
2908 				continue;
2909 			oi->ts_present = 1;
2910 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2911 			NTOHL(oi->ts_val);
2912 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2913 			NTOHL(oi->ts_ecr);
2914 
2915 			/*
2916 			 * A timestamp received in a SYN makes
2917 			 * it ok to send timestamp requests and replies.
2918 			 */
2919 			if (th->th_flags & TH_SYN) {
2920 				tp->t_flags |= TF_RCVD_TSTMP;
2921 				tp->ts_recent = oi->ts_val;
2922 				tp->ts_recent_age = tcp_now;
2923 			}
2924                         break;
2925 
2926 		case TCPOPT_SACK_PERMITTED:
2927 			if (optlen != TCPOLEN_SACK_PERMITTED)
2928 				continue;
2929 			if (!(th->th_flags & TH_SYN))
2930 				continue;
2931 			if (tcp_do_sack) {
2932 				tp->t_flags |= TF_SACK_PERMIT;
2933 				tp->t_flags |= TF_WILL_SACK;
2934 			}
2935 			break;
2936 
2937 		case TCPOPT_SACK:
2938 			tcp_sack_option(tp, th, cp, optlen);
2939 			break;
2940 #ifdef TCP_SIGNATURE
2941 		case TCPOPT_SIGNATURE:
2942 			if (optlen != TCPOLEN_SIGNATURE)
2943 				continue;
2944 			if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
2945 				return (-1);
2946 
2947 			sigp = sigbuf;
2948 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
2949 			memset(cp + 2, 0, TCP_SIGLEN);
2950 			tp->t_flags |= TF_SIGNATURE;
2951 			break;
2952 #endif
2953 		}
2954 	}
2955 
2956 #ifdef TCP_SIGNATURE
2957 	if (tp->t_flags & TF_SIGNATURE) {
2958 
2959 		sav = tcp_signature_getsav(m, th);
2960 
2961 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
2962 			return (-1);
2963 	}
2964 
2965 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2966 		if (sav == NULL)
2967 			return (-1);
2968 #ifdef FAST_IPSEC
2969 		KEY_FREESAV(&sav);
2970 #else
2971 		key_freesav(sav);
2972 #endif
2973 		return (-1);
2974 	}
2975 
2976 	if (sigp) {
2977 		char sig[TCP_SIGLEN];
2978 
2979 		TCP_FIELDS_TO_NET(th);
2980 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
2981 			TCP_FIELDS_TO_HOST(th);
2982 			if (sav == NULL)
2983 				return (-1);
2984 #ifdef FAST_IPSEC
2985 			KEY_FREESAV(&sav);
2986 #else
2987 			key_freesav(sav);
2988 #endif
2989 			return (-1);
2990 		}
2991 		TCP_FIELDS_TO_HOST(th);
2992 
2993 		if (bcmp(sig, sigp, TCP_SIGLEN)) {
2994 			tcpstat.tcps_badsig++;
2995 			if (sav == NULL)
2996 				return (-1);
2997 #ifdef FAST_IPSEC
2998 			KEY_FREESAV(&sav);
2999 #else
3000 			key_freesav(sav);
3001 #endif
3002 			return (-1);
3003 		} else
3004 			tcpstat.tcps_goodsig++;
3005 
3006 		key_sa_recordxfer(sav, m);
3007 #ifdef FAST_IPSEC
3008 		KEY_FREESAV(&sav);
3009 #else
3010 		key_freesav(sav);
3011 #endif
3012 	}
3013 #endif
3014 
3015 	return (0);
3016 }
3017 
3018 /*
3019  * Pull out of band byte out of a segment so
3020  * it doesn't appear in the user's data queue.
3021  * It is still reflected in the segment length for
3022  * sequencing purposes.
3023  */
3024 void
3025 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3026     struct mbuf *m, int off)
3027 {
3028 	int cnt = off + th->th_urp - 1;
3029 
3030 	while (cnt >= 0) {
3031 		if (m->m_len > cnt) {
3032 			char *cp = mtod(m, caddr_t) + cnt;
3033 			struct tcpcb *tp = sototcpcb(so);
3034 
3035 			tp->t_iobc = *cp;
3036 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3037 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3038 			m->m_len--;
3039 			return;
3040 		}
3041 		cnt -= m->m_len;
3042 		m = m->m_next;
3043 		if (m == 0)
3044 			break;
3045 	}
3046 	panic("tcp_pulloutofband");
3047 }
3048 
3049 /*
3050  * Collect new round-trip time estimate
3051  * and update averages and current timeout.
3052  */
3053 void
3054 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3055 {
3056 	int32_t delta;
3057 
3058 	tcpstat.tcps_rttupdated++;
3059 	if (tp->t_srtt != 0) {
3060 		/*
3061 		 * srtt is stored as fixed point with 3 bits after the
3062 		 * binary point (i.e., scaled by 8).  The following magic
3063 		 * is equivalent to the smoothing algorithm in rfc793 with
3064 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3065 		 * point).  Adjust rtt to origin 0.
3066 		 */
3067 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3068 		if ((tp->t_srtt += delta) <= 0)
3069 			tp->t_srtt = 1 << 2;
3070 		/*
3071 		 * We accumulate a smoothed rtt variance (actually, a
3072 		 * smoothed mean difference), then set the retransmit
3073 		 * timer to smoothed rtt + 4 times the smoothed variance.
3074 		 * rttvar is stored as fixed point with 2 bits after the
3075 		 * binary point (scaled by 4).  The following is
3076 		 * equivalent to rfc793 smoothing with an alpha of .75
3077 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3078 		 * rfc793's wired-in beta.
3079 		 */
3080 		if (delta < 0)
3081 			delta = -delta;
3082 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3083 		if ((tp->t_rttvar += delta) <= 0)
3084 			tp->t_rttvar = 1 << 2;
3085 	} else {
3086 		/*
3087 		 * No rtt measurement yet - use the unsmoothed rtt.
3088 		 * Set the variance to half the rtt (so our first
3089 		 * retransmit happens at 3*rtt).
3090 		 */
3091 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3092 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3093 	}
3094 	tp->t_rtttime = 0;
3095 	tp->t_rxtshift = 0;
3096 
3097 	/*
3098 	 * the retransmit should happen at rtt + 4 * rttvar.
3099 	 * Because of the way we do the smoothing, srtt and rttvar
3100 	 * will each average +1/2 tick of bias.  When we compute
3101 	 * the retransmit timer, we want 1/2 tick of rounding and
3102 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3103 	 * firing of the timer.  The bias will give us exactly the
3104 	 * 1.5 tick we need.  But, because the bias is
3105 	 * statistical, we have to test that we don't drop below
3106 	 * the minimum feasible timer (which is 2 ticks).
3107 	 */
3108 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3109 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3110 
3111 	/*
3112 	 * We received an ack for a packet that wasn't retransmitted;
3113 	 * it is probably safe to discard any error indications we've
3114 	 * received recently.  This isn't quite right, but close enough
3115 	 * for now (a route might have failed after we sent a segment,
3116 	 * and the return path might not be symmetrical).
3117 	 */
3118 	tp->t_softerror = 0;
3119 }
3120 
3121 void
3122 tcp_reno_newack(struct tcpcb *tp, struct tcphdr *th)
3123 {
3124 	if (tp->t_partialacks < 0) {
3125 		/*
3126 		 * We were not in fast recovery.  Reset the duplicate ack
3127 		 * counter.
3128 		 */
3129 		tp->t_dupacks = 0;
3130 	} else {
3131 		/*
3132 		 * Clamp the congestion window to the crossover point and
3133 		 * exit fast recovery.
3134 		 */
3135 		if (tp->snd_cwnd > tp->snd_ssthresh)
3136 			tp->snd_cwnd = tp->snd_ssthresh;
3137 		tp->t_partialacks = -1;
3138 		tp->t_dupacks = 0;
3139 	}
3140 }
3141 
3142 /*
3143  * Implement the NewReno response to a new ack, checking for partial acks in
3144  * fast recovery.
3145  */
3146 void
3147 tcp_newreno_newack(struct tcpcb *tp, struct tcphdr *th)
3148 {
3149 	if (tp->t_partialacks < 0) {
3150 		/*
3151 		 * We were not in fast recovery.  Reset the duplicate ack
3152 		 * counter.
3153 		 */
3154 		tp->t_dupacks = 0;
3155 	} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
3156 		/*
3157 		 * This is a partial ack.  Retransmit the first unacknowledged
3158 		 * segment and deflate the congestion window by the amount of
3159 		 * acknowledged data.  Do not exit fast recovery.
3160 		 */
3161 		tcp_seq onxt = tp->snd_nxt;
3162 		u_long ocwnd = tp->snd_cwnd;
3163 
3164 		/*
3165 		 * snd_una has not yet been updated and the socket's send
3166 		 * buffer has not yet drained off the ACK'd data, so we
3167 		 * have to leave snd_una as it was to get the correct data
3168 		 * offset in tcp_output().
3169 		 */
3170 		if (++tp->t_partialacks == 1)
3171 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
3172 		tp->t_rtttime = 0;
3173 		tp->snd_nxt = th->th_ack;
3174 		/*
3175 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
3176 		 * is not yet updated when we're called.
3177 		 */
3178 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
3179 		(void) tcp_output(tp);
3180 		tp->snd_cwnd = ocwnd;
3181 		if (SEQ_GT(onxt, tp->snd_nxt))
3182 			tp->snd_nxt = onxt;
3183 		/*
3184 		 * Partial window deflation.  Relies on fact that tp->snd_una
3185 		 * not updated yet.
3186 		 */
3187 		tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
3188 	} else {
3189 		/*
3190 		 * Complete ack.  Inflate the congestion window to ssthresh
3191 		 * and exit fast recovery.
3192 		 *
3193 		 * Window inflation should have left us with approx.
3194 		 * snd_ssthresh outstanding data.  But in case we
3195 		 * would be inclined to send a burst, better to do
3196 		 * it via the slow start mechanism.
3197 		 */
3198 		if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
3199 			tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
3200 			    + tp->t_segsz;
3201 		else
3202 			tp->snd_cwnd = tp->snd_ssthresh;
3203 		tp->t_partialacks = -1;
3204 		tp->t_dupacks = 0;
3205 	}
3206 }
3207 
3208 
3209 /*
3210  * TCP compressed state engine.  Currently used to hold compressed
3211  * state for SYN_RECEIVED.
3212  */
3213 
3214 u_long	syn_cache_count;
3215 u_int32_t syn_hash1, syn_hash2;
3216 
3217 #define SYN_HASH(sa, sp, dp) \
3218 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3219 				     ((u_int32_t)(sp)))^syn_hash2)))
3220 #ifndef INET6
3221 #define	SYN_HASHALL(hash, src, dst) \
3222 do {									\
3223 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
3224 		((const struct sockaddr_in *)(src))->sin_port,		\
3225 		((const struct sockaddr_in *)(dst))->sin_port);		\
3226 } while (/*CONSTCOND*/ 0)
3227 #else
3228 #define SYN_HASH6(sa, sp, dp) \
3229 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3230 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3231 	 & 0x7fffffff)
3232 
3233 #define SYN_HASHALL(hash, src, dst) \
3234 do {									\
3235 	switch ((src)->sa_family) {					\
3236 	case AF_INET:							\
3237 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3238 			((const struct sockaddr_in *)(src))->sin_port,	\
3239 			((const struct sockaddr_in *)(dst))->sin_port);	\
3240 		break;							\
3241 	case AF_INET6:							\
3242 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3243 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
3244 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
3245 		break;							\
3246 	default:							\
3247 		hash = 0;						\
3248 	}								\
3249 } while (/*CONSTCOND*/0)
3250 #endif /* INET6 */
3251 
3252 #define	SYN_CACHE_RM(sc)						\
3253 do {									\
3254 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
3255 	    (sc), sc_bucketq);						\
3256 	(sc)->sc_tp = NULL;						\
3257 	LIST_REMOVE((sc), sc_tpq);					\
3258 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
3259 	callout_stop(&(sc)->sc_timer);					\
3260 	syn_cache_count--;						\
3261 } while (/*CONSTCOND*/0)
3262 
3263 #define	SYN_CACHE_PUT(sc)						\
3264 do {									\
3265 	if ((sc)->sc_ipopts)						\
3266 		(void) m_free((sc)->sc_ipopts);				\
3267 	if ((sc)->sc_route4.ro_rt != NULL)				\
3268 		RTFREE((sc)->sc_route4.ro_rt);				\
3269 	if (callout_invoking(&(sc)->sc_timer))				\
3270 		(sc)->sc_flags |= SCF_DEAD;				\
3271 	else								\
3272 		pool_put(&syn_cache_pool, (sc));			\
3273 } while (/*CONSTCOND*/0)
3274 
3275 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL);
3276 
3277 /*
3278  * We don't estimate RTT with SYNs, so each packet starts with the default
3279  * RTT and each timer step has a fixed timeout value.
3280  */
3281 #define	SYN_CACHE_TIMER_ARM(sc)						\
3282 do {									\
3283 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3284 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3285 	    TCPTV_REXMTMAX);						\
3286 	callout_reset(&(sc)->sc_timer,					\
3287 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
3288 } while (/*CONSTCOND*/0)
3289 
3290 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
3291 
3292 void
3293 syn_cache_init(void)
3294 {
3295 	int i;
3296 
3297 	/* Initialize the hash buckets. */
3298 	for (i = 0; i < tcp_syn_cache_size; i++)
3299 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3300 }
3301 
3302 void
3303 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3304 {
3305 	struct syn_cache_head *scp;
3306 	struct syn_cache *sc2;
3307 	int s;
3308 
3309 	/*
3310 	 * If there are no entries in the hash table, reinitialize
3311 	 * the hash secrets.
3312 	 */
3313 	if (syn_cache_count == 0) {
3314 		syn_hash1 = arc4random();
3315 		syn_hash2 = arc4random();
3316 	}
3317 
3318 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3319 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3320 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3321 
3322 	/*
3323 	 * Make sure that we don't overflow the per-bucket
3324 	 * limit or the total cache size limit.
3325 	 */
3326 	s = splsoftnet();
3327 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3328 		tcpstat.tcps_sc_bucketoverflow++;
3329 		/*
3330 		 * The bucket is full.  Toss the oldest element in the
3331 		 * bucket.  This will be the first entry in the bucket.
3332 		 */
3333 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3334 #ifdef DIAGNOSTIC
3335 		/*
3336 		 * This should never happen; we should always find an
3337 		 * entry in our bucket.
3338 		 */
3339 		if (sc2 == NULL)
3340 			panic("syn_cache_insert: bucketoverflow: impossible");
3341 #endif
3342 		SYN_CACHE_RM(sc2);
3343 		SYN_CACHE_PUT(sc2);
3344 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3345 		struct syn_cache_head *scp2, *sce;
3346 
3347 		tcpstat.tcps_sc_overflowed++;
3348 		/*
3349 		 * The cache is full.  Toss the oldest entry in the
3350 		 * first non-empty bucket we can find.
3351 		 *
3352 		 * XXX We would really like to toss the oldest
3353 		 * entry in the cache, but we hope that this
3354 		 * condition doesn't happen very often.
3355 		 */
3356 		scp2 = scp;
3357 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3358 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3359 			for (++scp2; scp2 != scp; scp2++) {
3360 				if (scp2 >= sce)
3361 					scp2 = &tcp_syn_cache[0];
3362 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3363 					break;
3364 			}
3365 #ifdef DIAGNOSTIC
3366 			/*
3367 			 * This should never happen; we should always find a
3368 			 * non-empty bucket.
3369 			 */
3370 			if (scp2 == scp)
3371 				panic("syn_cache_insert: cacheoverflow: "
3372 				    "impossible");
3373 #endif
3374 		}
3375 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3376 		SYN_CACHE_RM(sc2);
3377 		SYN_CACHE_PUT(sc2);
3378 	}
3379 
3380 	/*
3381 	 * Initialize the entry's timer.
3382 	 */
3383 	sc->sc_rxttot = 0;
3384 	sc->sc_rxtshift = 0;
3385 	SYN_CACHE_TIMER_ARM(sc);
3386 
3387 	/* Link it from tcpcb entry */
3388 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3389 
3390 	/* Put it into the bucket. */
3391 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3392 	scp->sch_length++;
3393 	syn_cache_count++;
3394 
3395 	tcpstat.tcps_sc_added++;
3396 	splx(s);
3397 }
3398 
3399 /*
3400  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3401  * If we have retransmitted an entry the maximum number of times, expire
3402  * that entry.
3403  */
3404 void
3405 syn_cache_timer(void *arg)
3406 {
3407 	struct syn_cache *sc = arg;
3408 	int s;
3409 
3410 	s = splsoftnet();
3411 	callout_ack(&sc->sc_timer);
3412 
3413 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3414 		tcpstat.tcps_sc_delayed_free++;
3415 		pool_put(&syn_cache_pool, sc);
3416 		splx(s);
3417 		return;
3418 	}
3419 
3420 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3421 		/* Drop it -- too many retransmissions. */
3422 		goto dropit;
3423 	}
3424 
3425 	/*
3426 	 * Compute the total amount of time this entry has
3427 	 * been on a queue.  If this entry has been on longer
3428 	 * than the keep alive timer would allow, expire it.
3429 	 */
3430 	sc->sc_rxttot += sc->sc_rxtcur;
3431 	if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3432 		goto dropit;
3433 
3434 	tcpstat.tcps_sc_retransmitted++;
3435 	(void) syn_cache_respond(sc, NULL);
3436 
3437 	/* Advance the timer back-off. */
3438 	sc->sc_rxtshift++;
3439 	SYN_CACHE_TIMER_ARM(sc);
3440 
3441 	splx(s);
3442 	return;
3443 
3444  dropit:
3445 	tcpstat.tcps_sc_timed_out++;
3446 	SYN_CACHE_RM(sc);
3447 	SYN_CACHE_PUT(sc);
3448 	splx(s);
3449 }
3450 
3451 /*
3452  * Remove syn cache created by the specified tcb entry,
3453  * because this does not make sense to keep them
3454  * (if there's no tcb entry, syn cache entry will never be used)
3455  */
3456 void
3457 syn_cache_cleanup(struct tcpcb *tp)
3458 {
3459 	struct syn_cache *sc, *nsc;
3460 	int s;
3461 
3462 	s = splsoftnet();
3463 
3464 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3465 		nsc = LIST_NEXT(sc, sc_tpq);
3466 
3467 #ifdef DIAGNOSTIC
3468 		if (sc->sc_tp != tp)
3469 			panic("invalid sc_tp in syn_cache_cleanup");
3470 #endif
3471 		SYN_CACHE_RM(sc);
3472 		SYN_CACHE_PUT(sc);
3473 	}
3474 	/* just for safety */
3475 	LIST_INIT(&tp->t_sc);
3476 
3477 	splx(s);
3478 }
3479 
3480 /*
3481  * Find an entry in the syn cache.
3482  */
3483 struct syn_cache *
3484 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3485     struct syn_cache_head **headp)
3486 {
3487 	struct syn_cache *sc;
3488 	struct syn_cache_head *scp;
3489 	u_int32_t hash;
3490 	int s;
3491 
3492 	SYN_HASHALL(hash, src, dst);
3493 
3494 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3495 	*headp = scp;
3496 	s = splsoftnet();
3497 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3498 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3499 		if (sc->sc_hash != hash)
3500 			continue;
3501 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3502 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3503 			splx(s);
3504 			return (sc);
3505 		}
3506 	}
3507 	splx(s);
3508 	return (NULL);
3509 }
3510 
3511 /*
3512  * This function gets called when we receive an ACK for a
3513  * socket in the LISTEN state.  We look up the connection
3514  * in the syn cache, and if its there, we pull it out of
3515  * the cache and turn it into a full-blown connection in
3516  * the SYN-RECEIVED state.
3517  *
3518  * The return values may not be immediately obvious, and their effects
3519  * can be subtle, so here they are:
3520  *
3521  *	NULL	SYN was not found in cache; caller should drop the
3522  *		packet and send an RST.
3523  *
3524  *	-1	We were unable to create the new connection, and are
3525  *		aborting it.  An ACK,RST is being sent to the peer
3526  *		(unless we got screwey sequence numbners; see below),
3527  *		because the 3-way handshake has been completed.  Caller
3528  *		should not free the mbuf, since we may be using it.  If
3529  *		we are not, we will free it.
3530  *
3531  *	Otherwise, the return value is a pointer to the new socket
3532  *	associated with the connection.
3533  */
3534 struct socket *
3535 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3536     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3537     struct socket *so, struct mbuf *m)
3538 {
3539 	struct syn_cache *sc;
3540 	struct syn_cache_head *scp;
3541 	struct inpcb *inp = NULL;
3542 #ifdef INET6
3543 	struct in6pcb *in6p = NULL;
3544 #endif
3545 	struct tcpcb *tp = 0;
3546 	struct mbuf *am;
3547 	int s;
3548 	struct socket *oso;
3549 
3550 	s = splsoftnet();
3551 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3552 		splx(s);
3553 		return (NULL);
3554 	}
3555 
3556 	/*
3557 	 * Verify the sequence and ack numbers.  Try getting the correct
3558 	 * response again.
3559 	 */
3560 	if ((th->th_ack != sc->sc_iss + 1) ||
3561 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3562 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3563 		(void) syn_cache_respond(sc, m);
3564 		splx(s);
3565 		return ((struct socket *)(-1));
3566 	}
3567 
3568 	/* Remove this cache entry */
3569 	SYN_CACHE_RM(sc);
3570 	splx(s);
3571 
3572 	/*
3573 	 * Ok, create the full blown connection, and set things up
3574 	 * as they would have been set up if we had created the
3575 	 * connection when the SYN arrived.  If we can't create
3576 	 * the connection, abort it.
3577 	 */
3578 	/*
3579 	 * inp still has the OLD in_pcb stuff, set the
3580 	 * v6-related flags on the new guy, too.   This is
3581 	 * done particularly for the case where an AF_INET6
3582 	 * socket is bound only to a port, and a v4 connection
3583 	 * comes in on that port.
3584 	 * we also copy the flowinfo from the original pcb
3585 	 * to the new one.
3586 	 */
3587 	oso = so;
3588 	so = sonewconn(so, SS_ISCONNECTED);
3589 	if (so == NULL)
3590 		goto resetandabort;
3591 
3592 	switch (so->so_proto->pr_domain->dom_family) {
3593 #ifdef INET
3594 	case AF_INET:
3595 		inp = sotoinpcb(so);
3596 		break;
3597 #endif
3598 #ifdef INET6
3599 	case AF_INET6:
3600 		in6p = sotoin6pcb(so);
3601 		break;
3602 #endif
3603 	}
3604 	switch (src->sa_family) {
3605 #ifdef INET
3606 	case AF_INET:
3607 		if (inp) {
3608 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3609 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3610 			inp->inp_options = ip_srcroute();
3611 			in_pcbstate(inp, INP_BOUND);
3612 			if (inp->inp_options == NULL) {
3613 				inp->inp_options = sc->sc_ipopts;
3614 				sc->sc_ipopts = NULL;
3615 			}
3616 		}
3617 #ifdef INET6
3618 		else if (in6p) {
3619 			/* IPv4 packet to AF_INET6 socket */
3620 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3621 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3622 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3623 				&in6p->in6p_laddr.s6_addr32[3],
3624 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
3625 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3626 			in6totcpcb(in6p)->t_family = AF_INET;
3627 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3628 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3629 			else
3630 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3631 			in6_pcbstate(in6p, IN6P_BOUND);
3632 		}
3633 #endif
3634 		break;
3635 #endif
3636 #ifdef INET6
3637 	case AF_INET6:
3638 		if (in6p) {
3639 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3640 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3641 			in6_pcbstate(in6p, IN6P_BOUND);
3642 		}
3643 		break;
3644 #endif
3645 	}
3646 #ifdef INET6
3647 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3648 		struct in6pcb *oin6p = sotoin6pcb(oso);
3649 		/* inherit socket options from the listening socket */
3650 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3651 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3652 			m_freem(in6p->in6p_options);
3653 			in6p->in6p_options = 0;
3654 		}
3655 		ip6_savecontrol(in6p, &in6p->in6p_options,
3656 			mtod(m, struct ip6_hdr *), m);
3657 	}
3658 #endif
3659 
3660 #if defined(IPSEC) || defined(FAST_IPSEC)
3661 	/*
3662 	 * we make a copy of policy, instead of sharing the policy,
3663 	 * for better behavior in terms of SA lookup and dead SA removal.
3664 	 */
3665 	if (inp) {
3666 		/* copy old policy into new socket's */
3667 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3668 			printf("tcp_input: could not copy policy\n");
3669 	}
3670 #ifdef INET6
3671 	else if (in6p) {
3672 		/* copy old policy into new socket's */
3673 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3674 		    in6p->in6p_sp))
3675 			printf("tcp_input: could not copy policy\n");
3676 	}
3677 #endif
3678 #endif
3679 
3680 	/*
3681 	 * Give the new socket our cached route reference.
3682 	 */
3683 	if (inp)
3684 		inp->inp_route = sc->sc_route4;		/* struct assignment */
3685 #ifdef INET6
3686 	else
3687 		in6p->in6p_route = sc->sc_route6;
3688 #endif
3689 	sc->sc_route4.ro_rt = NULL;
3690 
3691 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3692 	if (am == NULL)
3693 		goto resetandabort;
3694 	MCLAIM(am, &tcp_mowner);
3695 	am->m_len = src->sa_len;
3696 	bcopy(src, mtod(am, caddr_t), src->sa_len);
3697 	if (inp) {
3698 		if (in_pcbconnect(inp, am)) {
3699 			(void) m_free(am);
3700 			goto resetandabort;
3701 		}
3702 	}
3703 #ifdef INET6
3704 	else if (in6p) {
3705 		if (src->sa_family == AF_INET) {
3706 			/* IPv4 packet to AF_INET6 socket */
3707 			struct sockaddr_in6 *sin6;
3708 			sin6 = mtod(am, struct sockaddr_in6 *);
3709 			am->m_len = sizeof(*sin6);
3710 			bzero(sin6, sizeof(*sin6));
3711 			sin6->sin6_family = AF_INET6;
3712 			sin6->sin6_len = sizeof(*sin6);
3713 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3714 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3715 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
3716 				&sin6->sin6_addr.s6_addr32[3],
3717 				sizeof(sin6->sin6_addr.s6_addr32[3]));
3718 		}
3719 		if (in6_pcbconnect(in6p, am)) {
3720 			(void) m_free(am);
3721 			goto resetandabort;
3722 		}
3723 	}
3724 #endif
3725 	else {
3726 		(void) m_free(am);
3727 		goto resetandabort;
3728 	}
3729 	(void) m_free(am);
3730 
3731 	if (inp)
3732 		tp = intotcpcb(inp);
3733 #ifdef INET6
3734 	else if (in6p)
3735 		tp = in6totcpcb(in6p);
3736 #endif
3737 	else
3738 		tp = NULL;
3739 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3740 	if (sc->sc_request_r_scale != 15) {
3741 		tp->requested_s_scale = sc->sc_requested_s_scale;
3742 		tp->request_r_scale = sc->sc_request_r_scale;
3743 		tp->snd_scale = sc->sc_requested_s_scale;
3744 		tp->rcv_scale = sc->sc_request_r_scale;
3745 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3746 	}
3747 	if (sc->sc_flags & SCF_TIMESTAMP)
3748 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3749 	tp->ts_timebase = sc->sc_timebase;
3750 
3751 	tp->t_template = tcp_template(tp);
3752 	if (tp->t_template == 0) {
3753 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3754 		so = NULL;
3755 		m_freem(m);
3756 		goto abort;
3757 	}
3758 
3759 	tp->iss = sc->sc_iss;
3760 	tp->irs = sc->sc_irs;
3761 	tcp_sendseqinit(tp);
3762 	tcp_rcvseqinit(tp);
3763 	tp->t_state = TCPS_SYN_RECEIVED;
3764 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3765 	tcpstat.tcps_accepts++;
3766 
3767 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3768 		tp->t_flags |= TF_WILL_SACK;
3769 
3770 #ifdef TCP_SIGNATURE
3771 	if (sc->sc_flags & SCF_SIGNATURE)
3772 		tp->t_flags |= TF_SIGNATURE;
3773 #endif
3774 
3775 	/* Initialize tp->t_ourmss before we deal with the peer's! */
3776 	tp->t_ourmss = sc->sc_ourmaxseg;
3777 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3778 
3779 	/*
3780 	 * Initialize the initial congestion window.  If we
3781 	 * had to retransmit the SYN,ACK, we must initialize cwnd
3782 	 * to 1 segment (i.e. the Loss Window).
3783 	 */
3784 	if (sc->sc_rxtshift)
3785 		tp->snd_cwnd = tp->t_peermss;
3786 	else {
3787 		int ss = tcp_init_win;
3788 #ifdef INET
3789 		if (inp != NULL && in_localaddr(inp->inp_faddr))
3790 			ss = tcp_init_win_local;
3791 #endif
3792 #ifdef INET6
3793 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3794 			ss = tcp_init_win_local;
3795 #endif
3796 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3797 	}
3798 
3799 	tcp_rmx_rtt(tp);
3800 	tp->snd_wl1 = sc->sc_irs;
3801 	tp->rcv_up = sc->sc_irs + 1;
3802 
3803 	/*
3804 	 * This is what whould have happened in tcp_output() when
3805 	 * the SYN,ACK was sent.
3806 	 */
3807 	tp->snd_up = tp->snd_una;
3808 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3809 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3810 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3811 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3812 	tp->last_ack_sent = tp->rcv_nxt;
3813 	tp->t_partialacks = -1;
3814 	tp->t_dupacks = 0;
3815 
3816 	tcpstat.tcps_sc_completed++;
3817 	SYN_CACHE_PUT(sc);
3818 	return (so);
3819 
3820 resetandabort:
3821 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3822 abort:
3823 	if (so != NULL)
3824 		(void) soabort(so);
3825 	SYN_CACHE_PUT(sc);
3826 	tcpstat.tcps_sc_aborted++;
3827 	return ((struct socket *)(-1));
3828 }
3829 
3830 /*
3831  * This function is called when we get a RST for a
3832  * non-existent connection, so that we can see if the
3833  * connection is in the syn cache.  If it is, zap it.
3834  */
3835 
3836 void
3837 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3838 {
3839 	struct syn_cache *sc;
3840 	struct syn_cache_head *scp;
3841 	int s = splsoftnet();
3842 
3843 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3844 		splx(s);
3845 		return;
3846 	}
3847 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3848 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3849 		splx(s);
3850 		return;
3851 	}
3852 	SYN_CACHE_RM(sc);
3853 	splx(s);
3854 	tcpstat.tcps_sc_reset++;
3855 	SYN_CACHE_PUT(sc);
3856 }
3857 
3858 void
3859 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
3860     struct tcphdr *th)
3861 {
3862 	struct syn_cache *sc;
3863 	struct syn_cache_head *scp;
3864 	int s;
3865 
3866 	s = splsoftnet();
3867 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3868 		splx(s);
3869 		return;
3870 	}
3871 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3872 	if (ntohl (th->th_seq) != sc->sc_iss) {
3873 		splx(s);
3874 		return;
3875 	}
3876 
3877 	/*
3878 	 * If we've retransmitted 3 times and this is our second error,
3879 	 * we remove the entry.  Otherwise, we allow it to continue on.
3880 	 * This prevents us from incorrectly nuking an entry during a
3881 	 * spurious network outage.
3882 	 *
3883 	 * See tcp_notify().
3884 	 */
3885 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3886 		sc->sc_flags |= SCF_UNREACH;
3887 		splx(s);
3888 		return;
3889 	}
3890 
3891 	SYN_CACHE_RM(sc);
3892 	splx(s);
3893 	tcpstat.tcps_sc_unreach++;
3894 	SYN_CACHE_PUT(sc);
3895 }
3896 
3897 /*
3898  * Given a LISTEN socket and an inbound SYN request, add
3899  * this to the syn cache, and send back a segment:
3900  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3901  * to the source.
3902  *
3903  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3904  * Doing so would require that we hold onto the data and deliver it
3905  * to the application.  However, if we are the target of a SYN-flood
3906  * DoS attack, an attacker could send data which would eventually
3907  * consume all available buffer space if it were ACKed.  By not ACKing
3908  * the data, we avoid this DoS scenario.
3909  */
3910 
3911 int
3912 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3913     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
3914     int optlen, struct tcp_opt_info *oi)
3915 {
3916 	struct tcpcb tb, *tp;
3917 	long win;
3918 	struct syn_cache *sc;
3919 	struct syn_cache_head *scp;
3920 	struct mbuf *ipopts;
3921 	struct tcp_opt_info opti;
3922 
3923 	tp = sototcpcb(so);
3924 
3925 	bzero(&opti, sizeof(opti));
3926 
3927 	/*
3928 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3929 	 *
3930 	 * Note this check is performed in tcp_input() very early on.
3931 	 */
3932 
3933 	/*
3934 	 * Initialize some local state.
3935 	 */
3936 	win = sbspace(&so->so_rcv);
3937 	if (win > TCP_MAXWIN)
3938 		win = TCP_MAXWIN;
3939 
3940 	switch (src->sa_family) {
3941 #ifdef INET
3942 	case AF_INET:
3943 		/*
3944 		 * Remember the IP options, if any.
3945 		 */
3946 		ipopts = ip_srcroute();
3947 		break;
3948 #endif
3949 	default:
3950 		ipopts = NULL;
3951 	}
3952 
3953 #ifdef TCP_SIGNATURE
3954 	if (optp || (tp->t_flags & TF_SIGNATURE))
3955 #else
3956 	if (optp)
3957 #endif
3958 	{
3959 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3960 #ifdef TCP_SIGNATURE
3961 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
3962 #endif
3963 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
3964 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
3965 			return (0);
3966 	} else
3967 		tb.t_flags = 0;
3968 
3969 	/*
3970 	 * See if we already have an entry for this connection.
3971 	 * If we do, resend the SYN,ACK.  We do not count this
3972 	 * as a retransmission (XXX though maybe we should).
3973 	 */
3974 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3975 		tcpstat.tcps_sc_dupesyn++;
3976 		if (ipopts) {
3977 			/*
3978 			 * If we were remembering a previous source route,
3979 			 * forget it and use the new one we've been given.
3980 			 */
3981 			if (sc->sc_ipopts)
3982 				(void) m_free(sc->sc_ipopts);
3983 			sc->sc_ipopts = ipopts;
3984 		}
3985 		sc->sc_timestamp = tb.ts_recent;
3986 		if (syn_cache_respond(sc, m) == 0) {
3987 			tcpstat.tcps_sndacks++;
3988 			tcpstat.tcps_sndtotal++;
3989 		}
3990 		return (1);
3991 	}
3992 
3993 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3994 	if (sc == NULL) {
3995 		if (ipopts)
3996 			(void) m_free(ipopts);
3997 		return (0);
3998 	}
3999 
4000 	/*
4001 	 * Fill in the cache, and put the necessary IP and TCP
4002 	 * options into the reply.
4003 	 */
4004 	bzero(sc, sizeof(struct syn_cache));
4005 	callout_init(&sc->sc_timer);
4006 	bcopy(src, &sc->sc_src, src->sa_len);
4007 	bcopy(dst, &sc->sc_dst, dst->sa_len);
4008 	sc->sc_flags = 0;
4009 	sc->sc_ipopts = ipopts;
4010 	sc->sc_irs = th->th_seq;
4011 	switch (src->sa_family) {
4012 #ifdef INET
4013 	case AF_INET:
4014 	    {
4015 		struct sockaddr_in *srcin = (void *) src;
4016 		struct sockaddr_in *dstin = (void *) dst;
4017 
4018 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4019 		    &srcin->sin_addr, dstin->sin_port,
4020 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
4021 		break;
4022 	    }
4023 #endif /* INET */
4024 #ifdef INET6
4025 	case AF_INET6:
4026 	    {
4027 		struct sockaddr_in6 *srcin6 = (void *) src;
4028 		struct sockaddr_in6 *dstin6 = (void *) dst;
4029 
4030 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4031 		    &srcin6->sin6_addr, dstin6->sin6_port,
4032 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4033 		break;
4034 	    }
4035 #endif /* INET6 */
4036 	}
4037 	sc->sc_peermaxseg = oi->maxseg;
4038 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4039 						m->m_pkthdr.rcvif : NULL,
4040 						sc->sc_src.sa.sa_family);
4041 	sc->sc_win = win;
4042 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
4043 	sc->sc_timestamp = tb.ts_recent;
4044 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4045 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4046 		sc->sc_flags |= SCF_TIMESTAMP;
4047 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4048 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4049 		sc->sc_requested_s_scale = tb.requested_s_scale;
4050 		sc->sc_request_r_scale = 0;
4051 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4052 		    TCP_MAXWIN << sc->sc_request_r_scale <
4053 		    so->so_rcv.sb_hiwat)
4054 			sc->sc_request_r_scale++;
4055 	} else {
4056 		sc->sc_requested_s_scale = 15;
4057 		sc->sc_request_r_scale = 15;
4058 	}
4059 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4060 		sc->sc_flags |= SCF_SACK_PERMIT;
4061 #ifdef TCP_SIGNATURE
4062 	if (tb.t_flags & TF_SIGNATURE)
4063 		sc->sc_flags |= SCF_SIGNATURE;
4064 #endif
4065 	sc->sc_tp = tp;
4066 	if (syn_cache_respond(sc, m) == 0) {
4067 		syn_cache_insert(sc, tp);
4068 		tcpstat.tcps_sndacks++;
4069 		tcpstat.tcps_sndtotal++;
4070 	} else {
4071 		SYN_CACHE_PUT(sc);
4072 		tcpstat.tcps_sc_dropped++;
4073 	}
4074 	return (1);
4075 }
4076 
4077 int
4078 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4079 {
4080 	struct route *ro;
4081 	u_int8_t *optp;
4082 	int optlen, error;
4083 	u_int16_t tlen;
4084 	struct ip *ip = NULL;
4085 #ifdef INET6
4086 	struct ip6_hdr *ip6 = NULL;
4087 #endif
4088 	struct tcpcb *tp;
4089 	struct tcphdr *th;
4090 	u_int hlen;
4091 	struct socket *so;
4092 
4093 	switch (sc->sc_src.sa.sa_family) {
4094 	case AF_INET:
4095 		hlen = sizeof(struct ip);
4096 		ro = &sc->sc_route4;
4097 		break;
4098 #ifdef INET6
4099 	case AF_INET6:
4100 		hlen = sizeof(struct ip6_hdr);
4101 		ro = (struct route *)&sc->sc_route6;
4102 		break;
4103 #endif
4104 	default:
4105 		if (m)
4106 			m_freem(m);
4107 		return (EAFNOSUPPORT);
4108 	}
4109 
4110 	/* Compute the size of the TCP options. */
4111 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4112 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4113 #ifdef TCP_SIGNATURE
4114 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4115 #endif
4116 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4117 
4118 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4119 
4120 	/*
4121 	 * Create the IP+TCP header from scratch.
4122 	 */
4123 	if (m)
4124 		m_freem(m);
4125 #ifdef DIAGNOSTIC
4126 	if (max_linkhdr + tlen > MCLBYTES)
4127 		return (ENOBUFS);
4128 #endif
4129 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4130 	if (m && tlen > MHLEN) {
4131 		MCLGET(m, M_DONTWAIT);
4132 		if ((m->m_flags & M_EXT) == 0) {
4133 			m_freem(m);
4134 			m = NULL;
4135 		}
4136 	}
4137 	if (m == NULL)
4138 		return (ENOBUFS);
4139 	MCLAIM(m, &tcp_tx_mowner);
4140 
4141 	/* Fixup the mbuf. */
4142 	m->m_data += max_linkhdr;
4143 	m->m_len = m->m_pkthdr.len = tlen;
4144 	if (sc->sc_tp) {
4145 		tp = sc->sc_tp;
4146 		if (tp->t_inpcb)
4147 			so = tp->t_inpcb->inp_socket;
4148 #ifdef INET6
4149 		else if (tp->t_in6pcb)
4150 			so = tp->t_in6pcb->in6p_socket;
4151 #endif
4152 		else
4153 			so = NULL;
4154 	} else
4155 		so = NULL;
4156 	m->m_pkthdr.rcvif = NULL;
4157 	memset(mtod(m, u_char *), 0, tlen);
4158 
4159 	switch (sc->sc_src.sa.sa_family) {
4160 	case AF_INET:
4161 		ip = mtod(m, struct ip *);
4162 		ip->ip_v = 4;
4163 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4164 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4165 		ip->ip_p = IPPROTO_TCP;
4166 		th = (struct tcphdr *)(ip + 1);
4167 		th->th_dport = sc->sc_src.sin.sin_port;
4168 		th->th_sport = sc->sc_dst.sin.sin_port;
4169 		break;
4170 #ifdef INET6
4171 	case AF_INET6:
4172 		ip6 = mtod(m, struct ip6_hdr *);
4173 		ip6->ip6_vfc = IPV6_VERSION;
4174 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4175 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4176 		ip6->ip6_nxt = IPPROTO_TCP;
4177 		/* ip6_plen will be updated in ip6_output() */
4178 		th = (struct tcphdr *)(ip6 + 1);
4179 		th->th_dport = sc->sc_src.sin6.sin6_port;
4180 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4181 		break;
4182 #endif
4183 	default:
4184 		th = NULL;
4185 	}
4186 
4187 	th->th_seq = htonl(sc->sc_iss);
4188 	th->th_ack = htonl(sc->sc_irs + 1);
4189 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4190 	th->th_flags = TH_SYN|TH_ACK;
4191 	th->th_win = htons(sc->sc_win);
4192 	/* th_sum already 0 */
4193 	/* th_urp already 0 */
4194 
4195 	/* Tack on the TCP options. */
4196 	optp = (u_int8_t *)(th + 1);
4197 	*optp++ = TCPOPT_MAXSEG;
4198 	*optp++ = 4;
4199 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4200 	*optp++ = sc->sc_ourmaxseg & 0xff;
4201 
4202 	if (sc->sc_request_r_scale != 15) {
4203 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4204 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4205 		    sc->sc_request_r_scale);
4206 		optp += 4;
4207 	}
4208 
4209 	if (sc->sc_flags & SCF_TIMESTAMP) {
4210 		u_int32_t *lp = (u_int32_t *)(optp);
4211 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4212 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
4213 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4214 		*lp   = htonl(sc->sc_timestamp);
4215 		optp += TCPOLEN_TSTAMP_APPA;
4216 	}
4217 
4218 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4219 		u_int8_t *p = optp;
4220 
4221 		/* Let the peer know that we will SACK. */
4222 		p[0] = TCPOPT_SACK_PERMITTED;
4223 		p[1] = 2;
4224 		p[2] = TCPOPT_NOP;
4225 		p[3] = TCPOPT_NOP;
4226 		optp += 4;
4227 	}
4228 
4229 #ifdef TCP_SIGNATURE
4230 	if (sc->sc_flags & SCF_SIGNATURE) {
4231 		struct secasvar *sav;
4232 		u_int8_t *sigp;
4233 
4234 		sav = tcp_signature_getsav(m, th);
4235 
4236 		if (sav == NULL) {
4237 			if (m)
4238 				m_freem(m);
4239 			return (EPERM);
4240 		}
4241 
4242 		*optp++ = TCPOPT_SIGNATURE;
4243 		*optp++ = TCPOLEN_SIGNATURE;
4244 		sigp = optp;
4245 		bzero(optp, TCP_SIGLEN);
4246 		optp += TCP_SIGLEN;
4247 		*optp++ = TCPOPT_NOP;
4248 		*optp++ = TCPOPT_EOL;
4249 
4250 		(void)tcp_signature(m, th, hlen, sav, sigp);
4251 
4252 		key_sa_recordxfer(sav, m);
4253 #ifdef FAST_IPSEC
4254 		KEY_FREESAV(&sav);
4255 #else
4256 		key_freesav(sav);
4257 #endif
4258 	}
4259 #endif
4260 
4261 	/* Compute the packet's checksum. */
4262 	switch (sc->sc_src.sa.sa_family) {
4263 	case AF_INET:
4264 		ip->ip_len = htons(tlen - hlen);
4265 		th->th_sum = 0;
4266 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4267 		break;
4268 #ifdef INET6
4269 	case AF_INET6:
4270 		ip6->ip6_plen = htons(tlen - hlen);
4271 		th->th_sum = 0;
4272 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4273 		break;
4274 #endif
4275 	}
4276 
4277 	/*
4278 	 * Fill in some straggling IP bits.  Note the stack expects
4279 	 * ip_len to be in host order, for convenience.
4280 	 */
4281 	switch (sc->sc_src.sa.sa_family) {
4282 #ifdef INET
4283 	case AF_INET:
4284 		ip->ip_len = htons(tlen);
4285 		ip->ip_ttl = ip_defttl;
4286 		/* XXX tos? */
4287 		break;
4288 #endif
4289 #ifdef INET6
4290 	case AF_INET6:
4291 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4292 		ip6->ip6_vfc |= IPV6_VERSION;
4293 		ip6->ip6_plen = htons(tlen - hlen);
4294 		/* ip6_hlim will be initialized afterwards */
4295 		/* XXX flowlabel? */
4296 		break;
4297 #endif
4298 	}
4299 
4300 	/* XXX use IPsec policy on listening socket, on SYN ACK */
4301 	tp = sc->sc_tp;
4302 
4303 	switch (sc->sc_src.sa.sa_family) {
4304 #ifdef INET
4305 	case AF_INET:
4306 		error = ip_output(m, sc->sc_ipopts, ro,
4307 		    (ip_mtudisc ? IP_MTUDISC : 0),
4308 		    (struct ip_moptions *)NULL, so);
4309 		break;
4310 #endif
4311 #ifdef INET6
4312 	case AF_INET6:
4313 		ip6->ip6_hlim = in6_selecthlim(NULL,
4314 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4315 
4316 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4317 			(struct ip6_moptions *)0, so, NULL);
4318 		break;
4319 #endif
4320 	default:
4321 		error = EAFNOSUPPORT;
4322 		break;
4323 	}
4324 	return (error);
4325 }
4326