xref: /netbsd-src/sys/netinet/tcp_input.c (revision 61f282557f0bc41c0b762c629a2f4c14be8b7591)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_input.c	7.25 (Berkeley) 6/30/90
34  */
35 
36 #include "param.h"
37 #include "systm.h"
38 #include "malloc.h"
39 #include "mbuf.h"
40 #include "protosw.h"
41 #include "socket.h"
42 #include "socketvar.h"
43 #include "errno.h"
44 
45 #include "../net/if.h"
46 #include "../net/route.h"
47 
48 #include "in.h"
49 #include "in_systm.h"
50 #include "ip.h"
51 #include "in_pcb.h"
52 #include "ip_var.h"
53 #include "tcp.h"
54 #include "tcp_fsm.h"
55 #include "tcp_seq.h"
56 #include "tcp_timer.h"
57 #include "tcp_var.h"
58 #include "tcpip.h"
59 #include "tcp_debug.h"
60 
61 int	tcprexmtthresh = 3;
62 int	tcppredack;	/* XXX debugging: times hdr predict ok for acks */
63 int	tcppreddat;	/* XXX # times header prediction ok for data packets */
64 int	tcppcbcachemiss;
65 struct	tcpiphdr tcp_saveti;
66 struct	inpcb *tcp_last_inpcb = &tcb;
67 
68 struct	tcpcb *tcp_newtcpcb();
69 
70 /*
71  * Insert segment ti into reassembly queue of tcp with
72  * control block tp.  Return TH_FIN if reassembly now includes
73  * a segment with FIN.  The macro form does the common case inline
74  * (segment is the next to be received on an established connection,
75  * and the queue is empty), avoiding linkage into and removal
76  * from the queue and repetition of various conversions.
77  * Set DELACK for segments received in order, but ack immediately
78  * when segments are out of order (so fast retransmit can work).
79  */
80 #define	TCP_REASS(tp, ti, m, so, flags) { \
81 	if ((ti)->ti_seq == (tp)->rcv_nxt && \
82 	    (tp)->seg_next == (struct tcpiphdr *)(tp) && \
83 	    (tp)->t_state == TCPS_ESTABLISHED) { \
84 		tp->t_flags |= TF_DELACK; \
85 		(tp)->rcv_nxt += (ti)->ti_len; \
86 		flags = (ti)->ti_flags & TH_FIN; \
87 		tcpstat.tcps_rcvpack++;\
88 		tcpstat.tcps_rcvbyte += (ti)->ti_len;\
89 		sbappend(&(so)->so_rcv, (m)); \
90 		sorwakeup(so); \
91 	} else { \
92 		(flags) = tcp_reass((tp), (ti), (m)); \
93 		tp->t_flags |= TF_ACKNOW; \
94 	} \
95 }
96 
97 tcp_reass(tp, ti, m)
98 	register struct tcpcb *tp;
99 	register struct tcpiphdr *ti;
100 	struct mbuf *m;
101 {
102 	register struct tcpiphdr *q;
103 	struct socket *so = tp->t_inpcb->inp_socket;
104 	int flags;
105 
106 	/*
107 	 * Call with ti==0 after become established to
108 	 * force pre-ESTABLISHED data up to user socket.
109 	 */
110 	if (ti == 0)
111 		goto present;
112 
113 	/*
114 	 * Find a segment which begins after this one does.
115 	 */
116 	for (q = tp->seg_next; q != (struct tcpiphdr *)tp;
117 	    q = (struct tcpiphdr *)q->ti_next)
118 		if (SEQ_GT(q->ti_seq, ti->ti_seq))
119 			break;
120 
121 	/*
122 	 * If there is a preceding segment, it may provide some of
123 	 * our data already.  If so, drop the data from the incoming
124 	 * segment.  If it provides all of our data, drop us.
125 	 */
126 	if ((struct tcpiphdr *)q->ti_prev != (struct tcpiphdr *)tp) {
127 		register int i;
128 		q = (struct tcpiphdr *)q->ti_prev;
129 		/* conversion to int (in i) handles seq wraparound */
130 		i = q->ti_seq + q->ti_len - ti->ti_seq;
131 		if (i > 0) {
132 			if (i >= ti->ti_len) {
133 				tcpstat.tcps_rcvduppack++;
134 				tcpstat.tcps_rcvdupbyte += ti->ti_len;
135 				m_freem(m);
136 				return (0);
137 			}
138 			m_adj(m, i);
139 			ti->ti_len -= i;
140 			ti->ti_seq += i;
141 		}
142 		q = (struct tcpiphdr *)(q->ti_next);
143 	}
144 	tcpstat.tcps_rcvoopack++;
145 	tcpstat.tcps_rcvoobyte += ti->ti_len;
146 	REASS_MBUF(ti) = m;		/* XXX */
147 
148 	/*
149 	 * While we overlap succeeding segments trim them or,
150 	 * if they are completely covered, dequeue them.
151 	 */
152 	while (q != (struct tcpiphdr *)tp) {
153 		register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq;
154 		if (i <= 0)
155 			break;
156 		if (i < q->ti_len) {
157 			q->ti_seq += i;
158 			q->ti_len -= i;
159 			m_adj(REASS_MBUF(q), i);
160 			break;
161 		}
162 		q = (struct tcpiphdr *)q->ti_next;
163 		m = REASS_MBUF((struct tcpiphdr *)q->ti_prev);
164 		remque(q->ti_prev);
165 		m_freem(m);
166 	}
167 
168 	/*
169 	 * Stick new segment in its place.
170 	 */
171 	insque(ti, q->ti_prev);
172 
173 present:
174 	/*
175 	 * Present data to user, advancing rcv_nxt through
176 	 * completed sequence space.
177 	 */
178 	if (TCPS_HAVERCVDSYN(tp->t_state) == 0)
179 		return (0);
180 	ti = tp->seg_next;
181 	if (ti == (struct tcpiphdr *)tp || ti->ti_seq != tp->rcv_nxt)
182 		return (0);
183 	if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len)
184 		return (0);
185 	do {
186 		tp->rcv_nxt += ti->ti_len;
187 		flags = ti->ti_flags & TH_FIN;
188 		remque(ti);
189 		m = REASS_MBUF(ti);
190 		ti = (struct tcpiphdr *)ti->ti_next;
191 		if (so->so_state & SS_CANTRCVMORE)
192 			m_freem(m);
193 		else
194 			sbappend(&so->so_rcv, m);
195 	} while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt);
196 	sorwakeup(so);
197 	return (flags);
198 }
199 
200 /*
201  * TCP input routine, follows pages 65-76 of the
202  * protocol specification dated September, 1981 very closely.
203  */
204 tcp_input(m, iphlen)
205 	register struct mbuf *m;
206 	int iphlen;
207 {
208 	register struct tcpiphdr *ti;
209 	register struct inpcb *inp;
210 	struct mbuf *om = 0;
211 	int len, tlen, off;
212 	register struct tcpcb *tp = 0;
213 	register int tiflags;
214 	struct socket *so;
215 	int todrop, acked, ourfinisacked, needoutput = 0;
216 	short ostate;
217 	struct in_addr laddr;
218 	int dropsocket = 0;
219 	int iss = 0;
220 
221 	tcpstat.tcps_rcvtotal++;
222 	/*
223 	 * Get IP and TCP header together in first mbuf.
224 	 * Note: IP leaves IP header in first mbuf.
225 	 */
226 	ti = mtod(m, struct tcpiphdr *);
227 	if (iphlen > sizeof (struct ip))
228 		ip_stripoptions(m, (struct mbuf *)0);
229 	if (m->m_len < sizeof (struct tcpiphdr)) {
230 		if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
231 			tcpstat.tcps_rcvshort++;
232 			return;
233 		}
234 		ti = mtod(m, struct tcpiphdr *);
235 	}
236 
237 	/*
238 	 * Checksum extended TCP header and data.
239 	 */
240 	tlen = ((struct ip *)ti)->ip_len;
241 	len = sizeof (struct ip) + tlen;
242 	ti->ti_next = ti->ti_prev = 0;
243 	ti->ti_x1 = 0;
244 	ti->ti_len = (u_short)tlen;
245 	HTONS(ti->ti_len);
246 	if (ti->ti_sum = in_cksum(m, len)) {
247 		tcpstat.tcps_rcvbadsum++;
248 		goto drop;
249 	}
250 
251 	/*
252 	 * Check that TCP offset makes sense,
253 	 * pull out TCP options and adjust length.		XXX
254 	 */
255 	off = ti->ti_off << 2;
256 	if (off < sizeof (struct tcphdr) || off > tlen) {
257 		tcpstat.tcps_rcvbadoff++;
258 		goto drop;
259 	}
260 	tlen -= off;
261 	ti->ti_len = tlen;
262 	if (off > sizeof (struct tcphdr)) {
263 		if (m->m_len < sizeof(struct ip) + off) {
264 			if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
265 				tcpstat.tcps_rcvshort++;
266 				return;
267 			}
268 			ti = mtod(m, struct tcpiphdr *);
269 		}
270 		om = m_get(M_DONTWAIT, MT_DATA);
271 		if (om == 0)
272 			goto drop;
273 		om->m_len = off - sizeof (struct tcphdr);
274 		{ caddr_t op = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
275 		  bcopy(op, mtod(om, caddr_t), (unsigned)om->m_len);
276 		  m->m_len -= om->m_len;
277 		  m->m_pkthdr.len -= om->m_len;
278 		  bcopy(op+om->m_len, op,
279 		   (unsigned)(m->m_len-sizeof (struct tcpiphdr)));
280 		}
281 	}
282 	tiflags = ti->ti_flags;
283 
284 	/*
285 	 * Convert TCP protocol specific fields to host format.
286 	 */
287 	NTOHL(ti->ti_seq);
288 	NTOHL(ti->ti_ack);
289 	NTOHS(ti->ti_win);
290 	NTOHS(ti->ti_urp);
291 
292 	/*
293 	 * Locate pcb for segment.
294 	 */
295 findpcb:
296 	inp = tcp_last_inpcb;
297 	if (inp->inp_lport != ti->ti_dport ||
298 	    inp->inp_fport != ti->ti_sport ||
299 	    inp->inp_faddr.s_addr != ti->ti_src.s_addr ||
300 	    inp->inp_laddr.s_addr != ti->ti_dst.s_addr) {
301 		inp = in_pcblookup(&tcb, ti->ti_src, ti->ti_sport,
302 		    ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD);
303 		if (inp)
304 			tcp_last_inpcb = inp;
305 		++tcppcbcachemiss;
306 	}
307 
308 	/*
309 	 * If the state is CLOSED (i.e., TCB does not exist) then
310 	 * all data in the incoming segment is discarded.
311 	 * If the TCB exists but is in CLOSED state, it is embryonic,
312 	 * but should either do a listen or a connect soon.
313 	 */
314 	if (inp == 0)
315 		goto dropwithreset;
316 	tp = intotcpcb(inp);
317 	if (tp == 0)
318 		goto dropwithreset;
319 	if (tp->t_state == TCPS_CLOSED)
320 		goto drop;
321 	so = inp->inp_socket;
322 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
323 		if (so->so_options & SO_DEBUG) {
324 			ostate = tp->t_state;
325 			tcp_saveti = *ti;
326 		}
327 		if (so->so_options & SO_ACCEPTCONN) {
328 			so = sonewconn(so, 0);
329 			if (so == 0)
330 				goto drop;
331 			/*
332 			 * This is ugly, but ....
333 			 *
334 			 * Mark socket as temporary until we're
335 			 * committed to keeping it.  The code at
336 			 * ``drop'' and ``dropwithreset'' check the
337 			 * flag dropsocket to see if the temporary
338 			 * socket created here should be discarded.
339 			 * We mark the socket as discardable until
340 			 * we're committed to it below in TCPS_LISTEN.
341 			 */
342 			dropsocket++;
343 			inp = (struct inpcb *)so->so_pcb;
344 			inp->inp_laddr = ti->ti_dst;
345 			inp->inp_lport = ti->ti_dport;
346 #if BSD>=43
347 			inp->inp_options = ip_srcroute();
348 #endif
349 			tp = intotcpcb(inp);
350 			tp->t_state = TCPS_LISTEN;
351 		}
352 	}
353 
354 	/*
355 	 * Segment received on connection.
356 	 * Reset idle time and keep-alive timer.
357 	 */
358 	tp->t_idle = 0;
359 	tp->t_timer[TCPT_KEEP] = tcp_keepidle;
360 
361 	/*
362 	 * Process options if not in LISTEN state,
363 	 * else do it below (after getting remote address).
364 	 */
365 	if (om && tp->t_state != TCPS_LISTEN) {
366 		tcp_dooptions(tp, om, ti);
367 		om = 0;
368 	}
369 	/*
370 	 * Header prediction: check for the two common cases
371 	 * of a uni-directional data xfer.  If the packet has
372 	 * no control flags, is in-sequence, the window didn't
373 	 * change and we're not retransmitting, it's a
374 	 * candidate.  If the length is zero and the ack moved
375 	 * forward, we're the sender side of the xfer.  Just
376 	 * free the data acked & wake any higher level process
377 	 * that was blocked waiting for space.  If the length
378 	 * is non-zero and the ack didn't move, we're the
379 	 * receiver side.  If we're getting packets in-order
380 	 * (the reassembly queue is empty), add the data to
381 	 * the socket buffer and note that we need a delayed ack.
382 	 */
383 	if (tp->t_state == TCPS_ESTABLISHED &&
384 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
385 	    ti->ti_seq == tp->rcv_nxt &&
386 	    ti->ti_win && ti->ti_win == tp->snd_wnd &&
387 	    tp->snd_nxt == tp->snd_max) {
388 		if (ti->ti_len == 0) {
389 			if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
390 			    SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
391 			    tp->snd_cwnd >= tp->snd_wnd) {
392 				/*
393 				 * this is a pure ack for outstanding data.
394 				 */
395 				++tcppredack;
396 				if (tp->t_rtt && SEQ_GT(ti->ti_ack,tp->t_rtseq))
397 					tcp_xmit_timer(tp);
398 				acked = ti->ti_ack - tp->snd_una;
399 				tcpstat.tcps_rcvackpack++;
400 				tcpstat.tcps_rcvackbyte += acked;
401 				sbdrop(&so->so_snd, acked);
402 				tp->snd_una = ti->ti_ack;
403 				m_freem(m);
404 
405 				/*
406 				 * If all outstanding data are acked, stop
407 				 * retransmit timer, otherwise restart timer
408 				 * using current (possibly backed-off) value.
409 				 * If process is waiting for space,
410 				 * wakeup/selwakeup/signal.  If data
411 				 * are ready to send, let tcp_output
412 				 * decide between more output or persist.
413 				 */
414 				if (tp->snd_una == tp->snd_max)
415 					tp->t_timer[TCPT_REXMT] = 0;
416 				else if (tp->t_timer[TCPT_PERSIST] == 0)
417 					tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
418 
419 				if (so->so_snd.sb_flags & SB_NOTIFY)
420 					sowwakeup(so);
421 				if (so->so_snd.sb_cc)
422 					(void) tcp_output(tp);
423 				return;
424 			}
425 		} else if (ti->ti_ack == tp->snd_una &&
426 		    tp->seg_next == (struct tcpiphdr *)tp &&
427 		    ti->ti_len <= sbspace(&so->so_rcv)) {
428 			/*
429 			 * this is a pure, in-sequence data packet
430 			 * with nothing on the reassembly queue and
431 			 * we have enough buffer space to take it.
432 			 */
433 			++tcppreddat;
434 			tp->rcv_nxt += ti->ti_len;
435 			tcpstat.tcps_rcvpack++;
436 			tcpstat.tcps_rcvbyte += ti->ti_len;
437 			/*
438 			 * Drop TCP and IP headers then add data
439 			 * to socket buffer
440 			 */
441 			m->m_data += sizeof(struct tcpiphdr);
442 			m->m_len -= sizeof(struct tcpiphdr);
443 			sbappend(&so->so_rcv, m);
444 			sorwakeup(so);
445 			tp->t_flags |= TF_DELACK;
446 			return;
447 		}
448 	}
449 
450 	/*
451 	 * Drop TCP and IP headers; TCP options were dropped above.
452 	 */
453 	m->m_data += sizeof(struct tcpiphdr);
454 	m->m_len -= sizeof(struct tcpiphdr);
455 
456 	/*
457 	 * Calculate amount of space in receive window,
458 	 * and then do TCP input processing.
459 	 * Receive window is amount of space in rcv queue,
460 	 * but not less than advertised window.
461 	 */
462 	{ int win;
463 
464 	win = sbspace(&so->so_rcv);
465 	if (win < 0)
466 		win = 0;
467 	tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
468 	}
469 
470 	switch (tp->t_state) {
471 
472 	/*
473 	 * If the state is LISTEN then ignore segment if it contains an RST.
474 	 * If the segment contains an ACK then it is bad and send a RST.
475 	 * If it does not contain a SYN then it is not interesting; drop it.
476 	 * Don't bother responding if the destination was a broadcast.
477 	 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
478 	 * tp->iss, and send a segment:
479 	 *     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
480 	 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
481 	 * Fill in remote peer address fields if not previously specified.
482 	 * Enter SYN_RECEIVED state, and process any other fields of this
483 	 * segment in this state.
484 	 */
485 	case TCPS_LISTEN: {
486 		struct mbuf *am;
487 		register struct sockaddr_in *sin;
488 
489 		if (tiflags & TH_RST)
490 			goto drop;
491 		if (tiflags & TH_ACK)
492 			goto dropwithreset;
493 		if ((tiflags & TH_SYN) == 0)
494 			goto drop;
495 		if (m->m_flags & M_BCAST)
496 			goto drop;
497 		am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
498 		if (am == NULL)
499 			goto drop;
500 		am->m_len = sizeof (struct sockaddr_in);
501 		sin = mtod(am, struct sockaddr_in *);
502 		sin->sin_family = AF_INET;
503 		sin->sin_len = sizeof(*sin);
504 		sin->sin_addr = ti->ti_src;
505 		sin->sin_port = ti->ti_sport;
506 		laddr = inp->inp_laddr;
507 		if (inp->inp_laddr.s_addr == INADDR_ANY)
508 			inp->inp_laddr = ti->ti_dst;
509 		if (in_pcbconnect(inp, am)) {
510 			inp->inp_laddr = laddr;
511 			(void) m_free(am);
512 			goto drop;
513 		}
514 		(void) m_free(am);
515 		tp->t_template = tcp_template(tp);
516 		if (tp->t_template == 0) {
517 			tp = tcp_drop(tp, ENOBUFS);
518 			dropsocket = 0;		/* socket is already gone */
519 			goto drop;
520 		}
521 		if (om) {
522 			tcp_dooptions(tp, om, ti);
523 			om = 0;
524 		}
525 		if (iss)
526 			tp->iss = iss;
527 		else
528 			tp->iss = tcp_iss;
529 		tcp_iss += TCP_ISSINCR/2;
530 		tp->irs = ti->ti_seq;
531 		tcp_sendseqinit(tp);
532 		tcp_rcvseqinit(tp);
533 		tp->t_flags |= TF_ACKNOW;
534 		tp->t_state = TCPS_SYN_RECEIVED;
535 		tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
536 		dropsocket = 0;		/* committed to socket */
537 		tcpstat.tcps_accepts++;
538 		goto trimthenstep6;
539 		}
540 
541 	/*
542 	 * If the state is SYN_SENT:
543 	 *	if seg contains an ACK, but not for our SYN, drop the input.
544 	 *	if seg contains a RST, then drop the connection.
545 	 *	if seg does not contain SYN, then drop it.
546 	 * Otherwise this is an acceptable SYN segment
547 	 *	initialize tp->rcv_nxt and tp->irs
548 	 *	if seg contains ack then advance tp->snd_una
549 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
550 	 *	arrange for segment to be acked (eventually)
551 	 *	continue processing rest of data/controls, beginning with URG
552 	 */
553 	case TCPS_SYN_SENT:
554 		if ((tiflags & TH_ACK) &&
555 		    (SEQ_LEQ(ti->ti_ack, tp->iss) ||
556 		     SEQ_GT(ti->ti_ack, tp->snd_max)))
557 			goto dropwithreset;
558 		if (tiflags & TH_RST) {
559 			if (tiflags & TH_ACK)
560 				tp = tcp_drop(tp, ECONNREFUSED);
561 			goto drop;
562 		}
563 		if ((tiflags & TH_SYN) == 0)
564 			goto drop;
565 		if (tiflags & TH_ACK) {
566 			tp->snd_una = ti->ti_ack;
567 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
568 				tp->snd_nxt = tp->snd_una;
569 		}
570 		tp->t_timer[TCPT_REXMT] = 0;
571 		tp->irs = ti->ti_seq;
572 		tcp_rcvseqinit(tp);
573 		tp->t_flags |= TF_ACKNOW;
574 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
575 			tcpstat.tcps_connects++;
576 			soisconnected(so);
577 			tp->t_state = TCPS_ESTABLISHED;
578 			(void) tcp_reass(tp, (struct tcpiphdr *)0,
579 				(struct mbuf *)0);
580 			/*
581 			 * if we didn't have to retransmit the SYN,
582 			 * use its rtt as our initial srtt & rtt var.
583 			 */
584 			if (tp->t_rtt)
585 				tcp_xmit_timer(tp);
586 		} else
587 			tp->t_state = TCPS_SYN_RECEIVED;
588 
589 trimthenstep6:
590 		/*
591 		 * Advance ti->ti_seq to correspond to first data byte.
592 		 * If data, trim to stay within window,
593 		 * dropping FIN if necessary.
594 		 */
595 		ti->ti_seq++;
596 		if (ti->ti_len > tp->rcv_wnd) {
597 			todrop = ti->ti_len - tp->rcv_wnd;
598 			m_adj(m, -todrop);
599 			ti->ti_len = tp->rcv_wnd;
600 			tiflags &= ~TH_FIN;
601 			tcpstat.tcps_rcvpackafterwin++;
602 			tcpstat.tcps_rcvbyteafterwin += todrop;
603 		}
604 		tp->snd_wl1 = ti->ti_seq - 1;
605 		tp->rcv_up = ti->ti_seq;
606 		goto step6;
607 	}
608 
609 	/*
610 	 * States other than LISTEN or SYN_SENT.
611 	 * First check that at least some bytes of segment are within
612 	 * receive window.  If segment begins before rcv_nxt,
613 	 * drop leading data (and SYN); if nothing left, just ack.
614 	 */
615 	todrop = tp->rcv_nxt - ti->ti_seq;
616 	if (todrop > 0) {
617 		if (tiflags & TH_SYN) {
618 			tiflags &= ~TH_SYN;
619 			ti->ti_seq++;
620 			if (ti->ti_urp > 1)
621 				ti->ti_urp--;
622 			else
623 				tiflags &= ~TH_URG;
624 			todrop--;
625 		}
626 		if (todrop > ti->ti_len ||
627 		    todrop == ti->ti_len && (tiflags&TH_FIN) == 0) {
628 			tcpstat.tcps_rcvduppack++;
629 			tcpstat.tcps_rcvdupbyte += ti->ti_len;
630 			/*
631 			 * If segment is just one to the left of the window,
632 			 * check two special cases:
633 			 * 1. Don't toss RST in response to 4.2-style keepalive.
634 			 * 2. If the only thing to drop is a FIN, we can drop
635 			 *    it, but check the ACK or we will get into FIN
636 			 *    wars if our FINs crossed (both CLOSING).
637 			 * In either case, send ACK to resynchronize,
638 			 * but keep on processing for RST or ACK.
639 			 */
640 			if ((tiflags & TH_FIN && todrop == ti->ti_len + 1)
641 #ifdef TCP_COMPAT_42
642 			  || (tiflags & TH_RST && ti->ti_seq == tp->rcv_nxt - 1)
643 #endif
644 			   ) {
645 				todrop = ti->ti_len;
646 				tiflags &= ~TH_FIN;
647 				tp->t_flags |= TF_ACKNOW;
648 			} else
649 				goto dropafterack;
650 		} else {
651 			tcpstat.tcps_rcvpartduppack++;
652 			tcpstat.tcps_rcvpartdupbyte += todrop;
653 		}
654 		m_adj(m, todrop);
655 		ti->ti_seq += todrop;
656 		ti->ti_len -= todrop;
657 		if (ti->ti_urp > todrop)
658 			ti->ti_urp -= todrop;
659 		else {
660 			tiflags &= ~TH_URG;
661 			ti->ti_urp = 0;
662 		}
663 	}
664 
665 	/*
666 	 * If new data are received on a connection after the
667 	 * user processes are gone, then RST the other end.
668 	 */
669 	if ((so->so_state & SS_NOFDREF) &&
670 	    tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
671 		tp = tcp_close(tp);
672 		tcpstat.tcps_rcvafterclose++;
673 		goto dropwithreset;
674 	}
675 
676 	/*
677 	 * If segment ends after window, drop trailing data
678 	 * (and PUSH and FIN); if nothing left, just ACK.
679 	 */
680 	todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
681 	if (todrop > 0) {
682 		tcpstat.tcps_rcvpackafterwin++;
683 		if (todrop >= ti->ti_len) {
684 			tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
685 			/*
686 			 * If a new connection request is received
687 			 * while in TIME_WAIT, drop the old connection
688 			 * and start over if the sequence numbers
689 			 * are above the previous ones.
690 			 */
691 			if (tiflags & TH_SYN &&
692 			    tp->t_state == TCPS_TIME_WAIT &&
693 			    SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
694 				iss = tp->rcv_nxt + TCP_ISSINCR;
695 				tp = tcp_close(tp);
696 				goto findpcb;
697 			}
698 			/*
699 			 * If window is closed can only take segments at
700 			 * window edge, and have to drop data and PUSH from
701 			 * incoming segments.  Continue processing, but
702 			 * remember to ack.  Otherwise, drop segment
703 			 * and ack.
704 			 */
705 			if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
706 				tp->t_flags |= TF_ACKNOW;
707 				tcpstat.tcps_rcvwinprobe++;
708 			} else
709 				goto dropafterack;
710 		} else
711 			tcpstat.tcps_rcvbyteafterwin += todrop;
712 		m_adj(m, -todrop);
713 		ti->ti_len -= todrop;
714 		tiflags &= ~(TH_PUSH|TH_FIN);
715 	}
716 
717 	/*
718 	 * If the RST bit is set examine the state:
719 	 *    SYN_RECEIVED STATE:
720 	 *	If passive open, return to LISTEN state.
721 	 *	If active open, inform user that connection was refused.
722 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
723 	 *	Inform user that connection was reset, and close tcb.
724 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
725 	 *	Close the tcb.
726 	 */
727 	if (tiflags&TH_RST) switch (tp->t_state) {
728 
729 	case TCPS_SYN_RECEIVED:
730 		so->so_error = ECONNREFUSED;
731 		goto close;
732 
733 	case TCPS_ESTABLISHED:
734 	case TCPS_FIN_WAIT_1:
735 	case TCPS_FIN_WAIT_2:
736 	case TCPS_CLOSE_WAIT:
737 		so->so_error = ECONNRESET;
738 	close:
739 		tp->t_state = TCPS_CLOSED;
740 		tcpstat.tcps_drops++;
741 		tp = tcp_close(tp);
742 		goto drop;
743 
744 	case TCPS_CLOSING:
745 	case TCPS_LAST_ACK:
746 	case TCPS_TIME_WAIT:
747 		tp = tcp_close(tp);
748 		goto drop;
749 	}
750 
751 	/*
752 	 * If a SYN is in the window, then this is an
753 	 * error and we send an RST and drop the connection.
754 	 */
755 	if (tiflags & TH_SYN) {
756 		tp = tcp_drop(tp, ECONNRESET);
757 		goto dropwithreset;
758 	}
759 
760 	/*
761 	 * If the ACK bit is off we drop the segment and return.
762 	 */
763 	if ((tiflags & TH_ACK) == 0)
764 		goto drop;
765 
766 	/*
767 	 * Ack processing.
768 	 */
769 	switch (tp->t_state) {
770 
771 	/*
772 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
773 	 * ESTABLISHED state and continue processing, otherwise
774 	 * send an RST.
775 	 */
776 	case TCPS_SYN_RECEIVED:
777 		if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
778 		    SEQ_GT(ti->ti_ack, tp->snd_max))
779 			goto dropwithreset;
780 		tcpstat.tcps_connects++;
781 		soisconnected(so);
782 		tp->t_state = TCPS_ESTABLISHED;
783 		(void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
784 		tp->snd_wl1 = ti->ti_seq - 1;
785 		/* fall into ... */
786 
787 	/*
788 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
789 	 * ACKs.  If the ack is in the range
790 	 *	tp->snd_una < ti->ti_ack <= tp->snd_max
791 	 * then advance tp->snd_una to ti->ti_ack and drop
792 	 * data from the retransmission queue.  If this ACK reflects
793 	 * more up to date window information we update our window information.
794 	 */
795 	case TCPS_ESTABLISHED:
796 	case TCPS_FIN_WAIT_1:
797 	case TCPS_FIN_WAIT_2:
798 	case TCPS_CLOSE_WAIT:
799 	case TCPS_CLOSING:
800 	case TCPS_LAST_ACK:
801 	case TCPS_TIME_WAIT:
802 
803 		if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
804 			if (ti->ti_len == 0 && ti->ti_win == tp->snd_wnd) {
805 				tcpstat.tcps_rcvdupack++;
806 				/*
807 				 * If we have outstanding data (other than
808 				 * a window probe), this is a completely
809 				 * duplicate ack (ie, window info didn't
810 				 * change), the ack is the biggest we've
811 				 * seen and we've seen exactly our rexmt
812 				 * threshhold of them, assume a packet
813 				 * has been dropped and retransmit it.
814 				 * Kludge snd_nxt & the congestion
815 				 * window so we send only this one
816 				 * packet.
817 				 *
818 				 * We know we're losing at the current
819 				 * window size so do congestion avoidance
820 				 * (set ssthresh to half the current window
821 				 * and pull our congestion window back to
822 				 * the new ssthresh).
823 				 *
824 				 * Dup acks mean that packets have left the
825 				 * network (they're now cached at the receiver)
826 				 * so bump cwnd by the amount in the receiver
827 				 * to keep a constant cwnd packets in the
828 				 * network.
829 				 */
830 				if (tp->t_timer[TCPT_REXMT] == 0 ||
831 				    ti->ti_ack != tp->snd_una)
832 					tp->t_dupacks = 0;
833 				else if (++tp->t_dupacks == tcprexmtthresh) {
834 					tcp_seq onxt = tp->snd_nxt;
835 					u_int win =
836 					    min(tp->snd_wnd, tp->snd_cwnd) / 2 /
837 						tp->t_maxseg;
838 
839 					if (win < 2)
840 						win = 2;
841 					tp->snd_ssthresh = win * tp->t_maxseg;
842 					tp->t_timer[TCPT_REXMT] = 0;
843 					tp->t_rtt = 0;
844 					tp->snd_nxt = ti->ti_ack;
845 					tp->snd_cwnd = tp->t_maxseg;
846 					(void) tcp_output(tp);
847 					tp->snd_cwnd = tp->snd_ssthresh +
848 					       tp->t_maxseg * tp->t_dupacks;
849 					if (SEQ_GT(onxt, tp->snd_nxt))
850 						tp->snd_nxt = onxt;
851 					goto drop;
852 				} else if (tp->t_dupacks > tcprexmtthresh) {
853 					tp->snd_cwnd += tp->t_maxseg;
854 					(void) tcp_output(tp);
855 					goto drop;
856 				}
857 			} else
858 				tp->t_dupacks = 0;
859 			break;
860 		}
861 		/*
862 		 * If the congestion window was inflated to account
863 		 * for the other side's cached packets, retract it.
864 		 */
865 		if (tp->t_dupacks > tcprexmtthresh &&
866 		    tp->snd_cwnd > tp->snd_ssthresh)
867 			tp->snd_cwnd = tp->snd_ssthresh;
868 		tp->t_dupacks = 0;
869 		if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
870 			tcpstat.tcps_rcvacktoomuch++;
871 			goto dropafterack;
872 		}
873 		acked = ti->ti_ack - tp->snd_una;
874 		tcpstat.tcps_rcvackpack++;
875 		tcpstat.tcps_rcvackbyte += acked;
876 
877 		/*
878 		 * If transmit timer is running and timed sequence
879 		 * number was acked, update smoothed round trip time.
880 		 * Since we now have an rtt measurement, cancel the
881 		 * timer backoff (cf., Phil Karn's retransmit alg.).
882 		 * Recompute the initial retransmit timer.
883 		 */
884 		if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
885 			tcp_xmit_timer(tp);
886 
887 		/*
888 		 * If all outstanding data is acked, stop retransmit
889 		 * timer and remember to restart (more output or persist).
890 		 * If there is more data to be acked, restart retransmit
891 		 * timer, using current (possibly backed-off) value.
892 		 */
893 		if (ti->ti_ack == tp->snd_max) {
894 			tp->t_timer[TCPT_REXMT] = 0;
895 			needoutput = 1;
896 		} else if (tp->t_timer[TCPT_PERSIST] == 0)
897 			tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
898 		/*
899 		 * When new data is acked, open the congestion window.
900 		 * If the window gives us less than ssthresh packets
901 		 * in flight, open exponentially (maxseg per packet).
902 		 * Otherwise open linearly: maxseg per window
903 		 * (maxseg^2 / cwnd per packet), plus a constant
904 		 * fraction of a packet (maxseg/8) to help larger windows
905 		 * open quickly enough.
906 		 */
907 		{
908 		register u_int cw = tp->snd_cwnd;
909 		register u_int incr = tp->t_maxseg;
910 
911 		if (cw > tp->snd_ssthresh)
912 			incr = incr * incr / cw + incr / 8;
913 		tp->snd_cwnd = min(cw + incr, TCP_MAXWIN);
914 		}
915 		if (acked > so->so_snd.sb_cc) {
916 			tp->snd_wnd -= so->so_snd.sb_cc;
917 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
918 			ourfinisacked = 1;
919 		} else {
920 			sbdrop(&so->so_snd, acked);
921 			tp->snd_wnd -= acked;
922 			ourfinisacked = 0;
923 		}
924 		if (so->so_snd.sb_flags & SB_NOTIFY)
925 			sowwakeup(so);
926 		tp->snd_una = ti->ti_ack;
927 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
928 			tp->snd_nxt = tp->snd_una;
929 
930 		switch (tp->t_state) {
931 
932 		/*
933 		 * In FIN_WAIT_1 STATE in addition to the processing
934 		 * for the ESTABLISHED state if our FIN is now acknowledged
935 		 * then enter FIN_WAIT_2.
936 		 */
937 		case TCPS_FIN_WAIT_1:
938 			if (ourfinisacked) {
939 				/*
940 				 * If we can't receive any more
941 				 * data, then closing user can proceed.
942 				 * Starting the timer is contrary to the
943 				 * specification, but if we don't get a FIN
944 				 * we'll hang forever.
945 				 */
946 				if (so->so_state & SS_CANTRCVMORE) {
947 					soisdisconnected(so);
948 					tp->t_timer[TCPT_2MSL] = tcp_maxidle;
949 				}
950 				tp->t_state = TCPS_FIN_WAIT_2;
951 			}
952 			break;
953 
954 	 	/*
955 		 * In CLOSING STATE in addition to the processing for
956 		 * the ESTABLISHED state if the ACK acknowledges our FIN
957 		 * then enter the TIME-WAIT state, otherwise ignore
958 		 * the segment.
959 		 */
960 		case TCPS_CLOSING:
961 			if (ourfinisacked) {
962 				tp->t_state = TCPS_TIME_WAIT;
963 				tcp_canceltimers(tp);
964 				tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
965 				soisdisconnected(so);
966 			}
967 			break;
968 
969 		/*
970 		 * In LAST_ACK, we may still be waiting for data to drain
971 		 * and/or to be acked, as well as for the ack of our FIN.
972 		 * If our FIN is now acknowledged, delete the TCB,
973 		 * enter the closed state and return.
974 		 */
975 		case TCPS_LAST_ACK:
976 			if (ourfinisacked) {
977 				tp = tcp_close(tp);
978 				goto drop;
979 			}
980 			break;
981 
982 		/*
983 		 * In TIME_WAIT state the only thing that should arrive
984 		 * is a retransmission of the remote FIN.  Acknowledge
985 		 * it and restart the finack timer.
986 		 */
987 		case TCPS_TIME_WAIT:
988 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
989 			goto dropafterack;
990 		}
991 	}
992 
993 step6:
994 	/*
995 	 * Update window information.
996 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
997 	 */
998 	if ((tiflags & TH_ACK) &&
999 	    (SEQ_LT(tp->snd_wl1, ti->ti_seq) || tp->snd_wl1 == ti->ti_seq &&
1000 	    (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
1001 	     tp->snd_wl2 == ti->ti_ack && ti->ti_win > tp->snd_wnd))) {
1002 		/* keep track of pure window updates */
1003 		if (ti->ti_len == 0 &&
1004 		    tp->snd_wl2 == ti->ti_ack && ti->ti_win > tp->snd_wnd)
1005 			tcpstat.tcps_rcvwinupd++;
1006 		tp->snd_wnd = ti->ti_win;
1007 		tp->snd_wl1 = ti->ti_seq;
1008 		tp->snd_wl2 = ti->ti_ack;
1009 		if (tp->snd_wnd > tp->max_sndwnd)
1010 			tp->max_sndwnd = tp->snd_wnd;
1011 		needoutput = 1;
1012 	}
1013 
1014 	/*
1015 	 * Process segments with URG.
1016 	 */
1017 	if ((tiflags & TH_URG) && ti->ti_urp &&
1018 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1019 		/*
1020 		 * This is a kludge, but if we receive and accept
1021 		 * random urgent pointers, we'll crash in
1022 		 * soreceive.  It's hard to imagine someone
1023 		 * actually wanting to send this much urgent data.
1024 		 */
1025 		if (ti->ti_urp + so->so_rcv.sb_cc > SB_MAX) {
1026 			ti->ti_urp = 0;			/* XXX */
1027 			tiflags &= ~TH_URG;		/* XXX */
1028 			goto dodata;			/* XXX */
1029 		}
1030 		/*
1031 		 * If this segment advances the known urgent pointer,
1032 		 * then mark the data stream.  This should not happen
1033 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1034 		 * a FIN has been received from the remote side.
1035 		 * In these states we ignore the URG.
1036 		 *
1037 		 * According to RFC961 (Assigned Protocols),
1038 		 * the urgent pointer points to the last octet
1039 		 * of urgent data.  We continue, however,
1040 		 * to consider it to indicate the first octet
1041 		 * of data past the urgent section as the original
1042 		 * spec states (in one of two places).
1043 		 */
1044 		if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1045 			tp->rcv_up = ti->ti_seq + ti->ti_urp;
1046 			so->so_oobmark = so->so_rcv.sb_cc +
1047 			    (tp->rcv_up - tp->rcv_nxt) - 1;
1048 			if (so->so_oobmark == 0)
1049 				so->so_state |= SS_RCVATMARK;
1050 			sohasoutofband(so);
1051 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1052 		}
1053 		/*
1054 		 * Remove out of band data so doesn't get presented to user.
1055 		 * This can happen independent of advancing the URG pointer,
1056 		 * but if two URG's are pending at once, some out-of-band
1057 		 * data may creep in... ick.
1058 		 */
1059 		if (ti->ti_urp <= ti->ti_len
1060 #ifdef SO_OOBINLINE
1061 		     && (so->so_options & SO_OOBINLINE) == 0
1062 #endif
1063 		     )
1064 			tcp_pulloutofband(so, ti, m);
1065 	} else
1066 		/*
1067 		 * If no out of band data is expected,
1068 		 * pull receive urgent pointer along
1069 		 * with the receive window.
1070 		 */
1071 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1072 			tp->rcv_up = tp->rcv_nxt;
1073 dodata:							/* XXX */
1074 
1075 	/*
1076 	 * Process the segment text, merging it into the TCP sequencing queue,
1077 	 * and arranging for acknowledgment of receipt if necessary.
1078 	 * This process logically involves adjusting tp->rcv_wnd as data
1079 	 * is presented to the user (this happens in tcp_usrreq.c,
1080 	 * case PRU_RCVD).  If a FIN has already been received on this
1081 	 * connection then we just ignore the text.
1082 	 */
1083 	if ((ti->ti_len || (tiflags&TH_FIN)) &&
1084 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1085 		TCP_REASS(tp, ti, m, so, tiflags);
1086 		/*
1087 		 * Note the amount of data that peer has sent into
1088 		 * our window, in order to estimate the sender's
1089 		 * buffer size.
1090 		 */
1091 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1092 	} else {
1093 		m_freem(m);
1094 		tiflags &= ~TH_FIN;
1095 	}
1096 
1097 	/*
1098 	 * If FIN is received ACK the FIN and let the user know
1099 	 * that the connection is closing.
1100 	 */
1101 	if (tiflags & TH_FIN) {
1102 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1103 			socantrcvmore(so);
1104 			tp->t_flags |= TF_ACKNOW;
1105 			tp->rcv_nxt++;
1106 		}
1107 		switch (tp->t_state) {
1108 
1109 	 	/*
1110 		 * In SYN_RECEIVED and ESTABLISHED STATES
1111 		 * enter the CLOSE_WAIT state.
1112 		 */
1113 		case TCPS_SYN_RECEIVED:
1114 		case TCPS_ESTABLISHED:
1115 			tp->t_state = TCPS_CLOSE_WAIT;
1116 			break;
1117 
1118 	 	/*
1119 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1120 		 * enter the CLOSING state.
1121 		 */
1122 		case TCPS_FIN_WAIT_1:
1123 			tp->t_state = TCPS_CLOSING;
1124 			break;
1125 
1126 	 	/*
1127 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1128 		 * starting the time-wait timer, turning off the other
1129 		 * standard timers.
1130 		 */
1131 		case TCPS_FIN_WAIT_2:
1132 			tp->t_state = TCPS_TIME_WAIT;
1133 			tcp_canceltimers(tp);
1134 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1135 			soisdisconnected(so);
1136 			break;
1137 
1138 		/*
1139 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1140 		 */
1141 		case TCPS_TIME_WAIT:
1142 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1143 			break;
1144 		}
1145 	}
1146 	if (so->so_options & SO_DEBUG)
1147 		tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1148 
1149 	/*
1150 	 * Return any desired output.
1151 	 */
1152 	if (needoutput || (tp->t_flags & TF_ACKNOW))
1153 		(void) tcp_output(tp);
1154 	return;
1155 
1156 dropafterack:
1157 	/*
1158 	 * Generate an ACK dropping incoming segment if it occupies
1159 	 * sequence space, where the ACK reflects our state.
1160 	 */
1161 	if (tiflags & TH_RST)
1162 		goto drop;
1163 	m_freem(m);
1164 	tp->t_flags |= TF_ACKNOW;
1165 	(void) tcp_output(tp);
1166 	return;
1167 
1168 dropwithreset:
1169 	if (om) {
1170 		(void) m_free(om);
1171 		om = 0;
1172 	}
1173 	/*
1174 	 * Generate a RST, dropping incoming segment.
1175 	 * Make ACK acceptable to originator of segment.
1176 	 * Don't bother to respond if destination was broadcast.
1177 	 */
1178 	if ((tiflags & TH_RST) || m->m_flags & M_BCAST)
1179 		goto drop;
1180 	if (tiflags & TH_ACK)
1181 		tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1182 	else {
1183 		if (tiflags & TH_SYN)
1184 			ti->ti_len++;
1185 		tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1186 		    TH_RST|TH_ACK);
1187 	}
1188 	/* destroy temporarily created socket */
1189 	if (dropsocket)
1190 		(void) soabort(so);
1191 	return;
1192 
1193 drop:
1194 	if (om)
1195 		(void) m_free(om);
1196 	/*
1197 	 * Drop space held by incoming segment and return.
1198 	 */
1199 	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1200 		tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1201 	m_freem(m);
1202 	/* destroy temporarily created socket */
1203 	if (dropsocket)
1204 		(void) soabort(so);
1205 	return;
1206 }
1207 
1208 tcp_dooptions(tp, om, ti)
1209 	struct tcpcb *tp;
1210 	struct mbuf *om;
1211 	struct tcpiphdr *ti;
1212 {
1213 	register u_char *cp;
1214 	u_short mss;
1215 	int opt, optlen, cnt;
1216 
1217 	cp = mtod(om, u_char *);
1218 	cnt = om->m_len;
1219 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1220 		opt = cp[0];
1221 		if (opt == TCPOPT_EOL)
1222 			break;
1223 		if (opt == TCPOPT_NOP)
1224 			optlen = 1;
1225 		else {
1226 			optlen = cp[1];
1227 			if (optlen <= 0)
1228 				break;
1229 		}
1230 		switch (opt) {
1231 
1232 		default:
1233 			continue;
1234 
1235 		case TCPOPT_MAXSEG:
1236 			if (optlen != 4)
1237 				continue;
1238 			if (!(ti->ti_flags & TH_SYN))
1239 				continue;
1240 			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
1241 			NTOHS(mss);
1242 			(void) tcp_mss(tp, mss);	/* sets t_maxseg */
1243 			break;
1244 		}
1245 	}
1246 	(void) m_free(om);
1247 }
1248 
1249 /*
1250  * Pull out of band byte out of a segment so
1251  * it doesn't appear in the user's data queue.
1252  * It is still reflected in the segment length for
1253  * sequencing purposes.
1254  */
1255 tcp_pulloutofband(so, ti, m)
1256 	struct socket *so;
1257 	struct tcpiphdr *ti;
1258 	register struct mbuf *m;
1259 {
1260 	int cnt = ti->ti_urp - 1;
1261 
1262 	while (cnt >= 0) {
1263 		if (m->m_len > cnt) {
1264 			char *cp = mtod(m, caddr_t) + cnt;
1265 			struct tcpcb *tp = sototcpcb(so);
1266 
1267 			tp->t_iobc = *cp;
1268 			tp->t_oobflags |= TCPOOB_HAVEDATA;
1269 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1270 			m->m_len--;
1271 			return;
1272 		}
1273 		cnt -= m->m_len;
1274 		m = m->m_next;
1275 		if (m == 0)
1276 			break;
1277 	}
1278 	panic("tcp_pulloutofband");
1279 }
1280 
1281 /*
1282  * Collect new round-trip time estimate
1283  * and update averages and current timeout.
1284  */
1285 tcp_xmit_timer(tp)
1286 	register struct tcpcb *tp;
1287 {
1288 	register short delta;
1289 
1290 	tcpstat.tcps_rttupdated++;
1291 	if (tp->t_srtt != 0) {
1292 		/*
1293 		 * srtt is stored as fixed point with 3 bits after the
1294 		 * binary point (i.e., scaled by 8).  The following magic
1295 		 * is equivalent to the smoothing algorithm in rfc793 with
1296 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1297 		 * point).  Adjust t_rtt to origin 0.
1298 		 */
1299 		delta = tp->t_rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT);
1300 		if ((tp->t_srtt += delta) <= 0)
1301 			tp->t_srtt = 1;
1302 		/*
1303 		 * We accumulate a smoothed rtt variance (actually, a
1304 		 * smoothed mean difference), then set the retransmit
1305 		 * timer to smoothed rtt + 4 times the smoothed variance.
1306 		 * rttvar is stored as fixed point with 2 bits after the
1307 		 * binary point (scaled by 4).  The following is
1308 		 * equivalent to rfc793 smoothing with an alpha of .75
1309 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
1310 		 * rfc793's wired-in beta.
1311 		 */
1312 		if (delta < 0)
1313 			delta = -delta;
1314 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1315 		if ((tp->t_rttvar += delta) <= 0)
1316 			tp->t_rttvar = 1;
1317 	} else {
1318 		/*
1319 		 * No rtt measurement yet - use the unsmoothed rtt.
1320 		 * Set the variance to half the rtt (so our first
1321 		 * retransmit happens at 2*rtt)
1322 		 */
1323 		tp->t_srtt = tp->t_rtt << TCP_RTT_SHIFT;
1324 		tp->t_rttvar = tp->t_rtt << (TCP_RTTVAR_SHIFT - 1);
1325 	}
1326 	tp->t_rtt = 0;
1327 	tp->t_rxtshift = 0;
1328 
1329 	/*
1330 	 * the retransmit should happen at rtt + 4 * rttvar.
1331 	 * Because of the way we do the smoothing, srtt and rttvar
1332 	 * will each average +1/2 tick of bias.  When we compute
1333 	 * the retransmit timer, we want 1/2 tick of rounding and
1334 	 * 1 extra tick because of +-1/2 tick uncertainty in the
1335 	 * firing of the timer.  The bias will give us exactly the
1336 	 * 1.5 tick we need.  But, because the bias is
1337 	 * statistical, we have to test that we don't drop below
1338 	 * the minimum feasible timer (which is 2 ticks).
1339 	 */
1340 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1341 	    tp->t_rttmin, TCPTV_REXMTMAX);
1342 
1343 	/*
1344 	 * We received an ack for a packet that wasn't retransmitted;
1345 	 * it is probably safe to discard any error indications we've
1346 	 * received recently.  This isn't quite right, but close enough
1347 	 * for now (a route might have failed after we sent a segment,
1348 	 * and the return path might not be symmetrical).
1349 	 */
1350 	tp->t_softerror = 0;
1351 }
1352 
1353 /*
1354  * Determine a reasonable value for maxseg size.
1355  * If the route is known, check route for mtu.
1356  * If none, use an mss that can be handled on the outgoing
1357  * interface without forcing IP to fragment; if bigger than
1358  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
1359  * to utilize large mbufs.  If no route is found, route has no mtu,
1360  * or the destination isn't local, use a default, hopefully conservative
1361  * size (usually 512 or the default IP max size, but no more than the mtu
1362  * of the interface), as we can't discover anything about intervening
1363  * gateways or networks.  We also initialize the congestion/slow start
1364  * window to be a single segment if the destination isn't local.
1365  * While looking at the routing entry, we also initialize other path-dependent
1366  * parameters from pre-set or cached values in the routing entry.
1367  */
1368 
1369 tcp_mss(tp, offer)
1370 	register struct tcpcb *tp;
1371 	u_short offer;
1372 {
1373 	struct route *ro;
1374 	register struct rtentry *rt;
1375 	struct ifnet *ifp;
1376 	register int rtt, mss;
1377 	u_long bufsize;
1378 	struct inpcb *inp;
1379 	struct socket *so;
1380 	extern int tcp_mssdflt, tcp_rttdflt;
1381 
1382 	inp = tp->t_inpcb;
1383 	ro = &inp->inp_route;
1384 
1385 	if ((rt = ro->ro_rt) == (struct rtentry *)0) {
1386 		/* No route yet, so try to acquire one */
1387 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1388 			ro->ro_dst.sa_family = AF_INET;
1389 			ro->ro_dst.sa_len = sizeof(ro->ro_dst);
1390 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1391 				inp->inp_faddr;
1392 			rtalloc(ro);
1393 		}
1394 		if ((rt = ro->ro_rt) == (struct rtentry *)0)
1395 			return (tcp_mssdflt);
1396 	}
1397 	ifp = rt->rt_ifp;
1398 	so = inp->inp_socket;
1399 
1400 #ifdef RTV_MTU	/* if route characteristics exist ... */
1401 	/*
1402 	 * While we're here, check if there's an initial rtt
1403 	 * or rttvar.  Convert from the route-table units
1404 	 * to scaled multiples of the slow timeout timer.
1405 	 */
1406 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1407 		if (rt->rt_rmx.rmx_locks & RTV_MTU)
1408 			tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);
1409 		tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
1410 		if (rt->rt_rmx.rmx_rttvar)
1411 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1412 			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
1413 		else
1414 			/* default variation is +- 1 rtt */
1415 			tp->t_rttvar =
1416 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
1417 		TCPT_RANGESET(tp->t_rxtcur,
1418 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
1419 		    tp->t_rttmin, TCPTV_REXMTMAX);
1420 	}
1421 	/*
1422 	 * if there's an mtu associated with the route, use it
1423 	 */
1424 	if (rt->rt_rmx.rmx_mtu)
1425 		mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
1426 	else
1427 #endif /* RTV_MTU */
1428 	{
1429 		mss = ifp->if_mtu - sizeof(struct tcpiphdr);
1430 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1431 		if (mss > MCLBYTES)
1432 			mss &= ~(MCLBYTES-1);
1433 #else
1434 		if (mss > MCLBYTES)
1435 			mss = mss / MCLBYTES * MCLBYTES;
1436 #endif
1437 		if (!in_localaddr(inp->inp_faddr))
1438 			mss = min(mss, tcp_mssdflt);
1439 	}
1440 	/*
1441 	 * The current mss, t_maxseg, is initialized to the default value.
1442 	 * If we compute a smaller value, reduce the current mss.
1443 	 * If we compute a larger value, return it for use in sending
1444 	 * a max seg size option, but don't store it for use
1445 	 * unless we received an offer at least that large from peer.
1446 	 * However, do not accept offers under 32 bytes.
1447 	 */
1448 	if (offer)
1449 		mss = min(mss, offer);
1450 	mss = max(mss, 32);		/* sanity */
1451 	if (mss < tp->t_maxseg || offer != 0) {
1452 		/*
1453 		 * If there's a pipesize, change the socket buffer
1454 		 * to that size.  Make the socket buffers an integral
1455 		 * number of mss units; if the mss is larger than
1456 		 * the socket buffer, decrease the mss.
1457 		 */
1458 #ifdef RTV_SPIPE
1459 		if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
1460 #endif
1461 			bufsize = so->so_snd.sb_hiwat;
1462 		if (bufsize < mss)
1463 			mss = bufsize;
1464 		else {
1465 			bufsize = min(bufsize, SB_MAX) / mss * mss;
1466 			(void) sbreserve(&so->so_snd, bufsize);
1467 		}
1468 		tp->t_maxseg = mss;
1469 
1470 #ifdef RTV_RPIPE
1471 		if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
1472 #endif
1473 			bufsize = so->so_rcv.sb_hiwat;
1474 		if (bufsize > mss) {
1475 			bufsize = min(bufsize, SB_MAX) / mss * mss;
1476 			(void) sbreserve(&so->so_rcv, bufsize);
1477 		}
1478 	}
1479 	tp->snd_cwnd = mss;
1480 
1481 #ifdef RTV_SSTHRESH
1482 	if (rt->rt_rmx.rmx_ssthresh) {
1483 		/*
1484 		 * There's some sort of gateway or interface
1485 		 * buffer limit on the path.  Use this to set
1486 		 * the slow start threshhold, but set the
1487 		 * threshold to no less than 2*mss.
1488 		 */
1489 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1490 	}
1491 #endif /* RTV_MTU */
1492 	return (mss);
1493 }
1494