1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)tcp_input.c 7.25 (Berkeley) 6/30/90 34 */ 35 36 #include "param.h" 37 #include "systm.h" 38 #include "malloc.h" 39 #include "mbuf.h" 40 #include "protosw.h" 41 #include "socket.h" 42 #include "socketvar.h" 43 #include "errno.h" 44 45 #include "../net/if.h" 46 #include "../net/route.h" 47 48 #include "in.h" 49 #include "in_systm.h" 50 #include "ip.h" 51 #include "in_pcb.h" 52 #include "ip_var.h" 53 #include "tcp.h" 54 #include "tcp_fsm.h" 55 #include "tcp_seq.h" 56 #include "tcp_timer.h" 57 #include "tcp_var.h" 58 #include "tcpip.h" 59 #include "tcp_debug.h" 60 61 int tcprexmtthresh = 3; 62 int tcppredack; /* XXX debugging: times hdr predict ok for acks */ 63 int tcppreddat; /* XXX # times header prediction ok for data packets */ 64 int tcppcbcachemiss; 65 struct tcpiphdr tcp_saveti; 66 struct inpcb *tcp_last_inpcb = &tcb; 67 68 struct tcpcb *tcp_newtcpcb(); 69 70 /* 71 * Insert segment ti into reassembly queue of tcp with 72 * control block tp. Return TH_FIN if reassembly now includes 73 * a segment with FIN. The macro form does the common case inline 74 * (segment is the next to be received on an established connection, 75 * and the queue is empty), avoiding linkage into and removal 76 * from the queue and repetition of various conversions. 77 * Set DELACK for segments received in order, but ack immediately 78 * when segments are out of order (so fast retransmit can work). 79 */ 80 #define TCP_REASS(tp, ti, m, so, flags) { \ 81 if ((ti)->ti_seq == (tp)->rcv_nxt && \ 82 (tp)->seg_next == (struct tcpiphdr *)(tp) && \ 83 (tp)->t_state == TCPS_ESTABLISHED) { \ 84 tp->t_flags |= TF_DELACK; \ 85 (tp)->rcv_nxt += (ti)->ti_len; \ 86 flags = (ti)->ti_flags & TH_FIN; \ 87 tcpstat.tcps_rcvpack++;\ 88 tcpstat.tcps_rcvbyte += (ti)->ti_len;\ 89 sbappend(&(so)->so_rcv, (m)); \ 90 sorwakeup(so); \ 91 } else { \ 92 (flags) = tcp_reass((tp), (ti), (m)); \ 93 tp->t_flags |= TF_ACKNOW; \ 94 } \ 95 } 96 97 tcp_reass(tp, ti, m) 98 register struct tcpcb *tp; 99 register struct tcpiphdr *ti; 100 struct mbuf *m; 101 { 102 register struct tcpiphdr *q; 103 struct socket *so = tp->t_inpcb->inp_socket; 104 int flags; 105 106 /* 107 * Call with ti==0 after become established to 108 * force pre-ESTABLISHED data up to user socket. 109 */ 110 if (ti == 0) 111 goto present; 112 113 /* 114 * Find a segment which begins after this one does. 115 */ 116 for (q = tp->seg_next; q != (struct tcpiphdr *)tp; 117 q = (struct tcpiphdr *)q->ti_next) 118 if (SEQ_GT(q->ti_seq, ti->ti_seq)) 119 break; 120 121 /* 122 * If there is a preceding segment, it may provide some of 123 * our data already. If so, drop the data from the incoming 124 * segment. If it provides all of our data, drop us. 125 */ 126 if ((struct tcpiphdr *)q->ti_prev != (struct tcpiphdr *)tp) { 127 register int i; 128 q = (struct tcpiphdr *)q->ti_prev; 129 /* conversion to int (in i) handles seq wraparound */ 130 i = q->ti_seq + q->ti_len - ti->ti_seq; 131 if (i > 0) { 132 if (i >= ti->ti_len) { 133 tcpstat.tcps_rcvduppack++; 134 tcpstat.tcps_rcvdupbyte += ti->ti_len; 135 m_freem(m); 136 return (0); 137 } 138 m_adj(m, i); 139 ti->ti_len -= i; 140 ti->ti_seq += i; 141 } 142 q = (struct tcpiphdr *)(q->ti_next); 143 } 144 tcpstat.tcps_rcvoopack++; 145 tcpstat.tcps_rcvoobyte += ti->ti_len; 146 REASS_MBUF(ti) = m; /* XXX */ 147 148 /* 149 * While we overlap succeeding segments trim them or, 150 * if they are completely covered, dequeue them. 151 */ 152 while (q != (struct tcpiphdr *)tp) { 153 register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq; 154 if (i <= 0) 155 break; 156 if (i < q->ti_len) { 157 q->ti_seq += i; 158 q->ti_len -= i; 159 m_adj(REASS_MBUF(q), i); 160 break; 161 } 162 q = (struct tcpiphdr *)q->ti_next; 163 m = REASS_MBUF((struct tcpiphdr *)q->ti_prev); 164 remque(q->ti_prev); 165 m_freem(m); 166 } 167 168 /* 169 * Stick new segment in its place. 170 */ 171 insque(ti, q->ti_prev); 172 173 present: 174 /* 175 * Present data to user, advancing rcv_nxt through 176 * completed sequence space. 177 */ 178 if (TCPS_HAVERCVDSYN(tp->t_state) == 0) 179 return (0); 180 ti = tp->seg_next; 181 if (ti == (struct tcpiphdr *)tp || ti->ti_seq != tp->rcv_nxt) 182 return (0); 183 if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len) 184 return (0); 185 do { 186 tp->rcv_nxt += ti->ti_len; 187 flags = ti->ti_flags & TH_FIN; 188 remque(ti); 189 m = REASS_MBUF(ti); 190 ti = (struct tcpiphdr *)ti->ti_next; 191 if (so->so_state & SS_CANTRCVMORE) 192 m_freem(m); 193 else 194 sbappend(&so->so_rcv, m); 195 } while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt); 196 sorwakeup(so); 197 return (flags); 198 } 199 200 /* 201 * TCP input routine, follows pages 65-76 of the 202 * protocol specification dated September, 1981 very closely. 203 */ 204 tcp_input(m, iphlen) 205 register struct mbuf *m; 206 int iphlen; 207 { 208 register struct tcpiphdr *ti; 209 register struct inpcb *inp; 210 struct mbuf *om = 0; 211 int len, tlen, off; 212 register struct tcpcb *tp = 0; 213 register int tiflags; 214 struct socket *so; 215 int todrop, acked, ourfinisacked, needoutput = 0; 216 short ostate; 217 struct in_addr laddr; 218 int dropsocket = 0; 219 int iss = 0; 220 221 tcpstat.tcps_rcvtotal++; 222 /* 223 * Get IP and TCP header together in first mbuf. 224 * Note: IP leaves IP header in first mbuf. 225 */ 226 ti = mtod(m, struct tcpiphdr *); 227 if (iphlen > sizeof (struct ip)) 228 ip_stripoptions(m, (struct mbuf *)0); 229 if (m->m_len < sizeof (struct tcpiphdr)) { 230 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) { 231 tcpstat.tcps_rcvshort++; 232 return; 233 } 234 ti = mtod(m, struct tcpiphdr *); 235 } 236 237 /* 238 * Checksum extended TCP header and data. 239 */ 240 tlen = ((struct ip *)ti)->ip_len; 241 len = sizeof (struct ip) + tlen; 242 ti->ti_next = ti->ti_prev = 0; 243 ti->ti_x1 = 0; 244 ti->ti_len = (u_short)tlen; 245 HTONS(ti->ti_len); 246 if (ti->ti_sum = in_cksum(m, len)) { 247 tcpstat.tcps_rcvbadsum++; 248 goto drop; 249 } 250 251 /* 252 * Check that TCP offset makes sense, 253 * pull out TCP options and adjust length. XXX 254 */ 255 off = ti->ti_off << 2; 256 if (off < sizeof (struct tcphdr) || off > tlen) { 257 tcpstat.tcps_rcvbadoff++; 258 goto drop; 259 } 260 tlen -= off; 261 ti->ti_len = tlen; 262 if (off > sizeof (struct tcphdr)) { 263 if (m->m_len < sizeof(struct ip) + off) { 264 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) { 265 tcpstat.tcps_rcvshort++; 266 return; 267 } 268 ti = mtod(m, struct tcpiphdr *); 269 } 270 om = m_get(M_DONTWAIT, MT_DATA); 271 if (om == 0) 272 goto drop; 273 om->m_len = off - sizeof (struct tcphdr); 274 { caddr_t op = mtod(m, caddr_t) + sizeof (struct tcpiphdr); 275 bcopy(op, mtod(om, caddr_t), (unsigned)om->m_len); 276 m->m_len -= om->m_len; 277 m->m_pkthdr.len -= om->m_len; 278 bcopy(op+om->m_len, op, 279 (unsigned)(m->m_len-sizeof (struct tcpiphdr))); 280 } 281 } 282 tiflags = ti->ti_flags; 283 284 /* 285 * Convert TCP protocol specific fields to host format. 286 */ 287 NTOHL(ti->ti_seq); 288 NTOHL(ti->ti_ack); 289 NTOHS(ti->ti_win); 290 NTOHS(ti->ti_urp); 291 292 /* 293 * Locate pcb for segment. 294 */ 295 findpcb: 296 inp = tcp_last_inpcb; 297 if (inp->inp_lport != ti->ti_dport || 298 inp->inp_fport != ti->ti_sport || 299 inp->inp_faddr.s_addr != ti->ti_src.s_addr || 300 inp->inp_laddr.s_addr != ti->ti_dst.s_addr) { 301 inp = in_pcblookup(&tcb, ti->ti_src, ti->ti_sport, 302 ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD); 303 if (inp) 304 tcp_last_inpcb = inp; 305 ++tcppcbcachemiss; 306 } 307 308 /* 309 * If the state is CLOSED (i.e., TCB does not exist) then 310 * all data in the incoming segment is discarded. 311 * If the TCB exists but is in CLOSED state, it is embryonic, 312 * but should either do a listen or a connect soon. 313 */ 314 if (inp == 0) 315 goto dropwithreset; 316 tp = intotcpcb(inp); 317 if (tp == 0) 318 goto dropwithreset; 319 if (tp->t_state == TCPS_CLOSED) 320 goto drop; 321 so = inp->inp_socket; 322 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) { 323 if (so->so_options & SO_DEBUG) { 324 ostate = tp->t_state; 325 tcp_saveti = *ti; 326 } 327 if (so->so_options & SO_ACCEPTCONN) { 328 so = sonewconn(so, 0); 329 if (so == 0) 330 goto drop; 331 /* 332 * This is ugly, but .... 333 * 334 * Mark socket as temporary until we're 335 * committed to keeping it. The code at 336 * ``drop'' and ``dropwithreset'' check the 337 * flag dropsocket to see if the temporary 338 * socket created here should be discarded. 339 * We mark the socket as discardable until 340 * we're committed to it below in TCPS_LISTEN. 341 */ 342 dropsocket++; 343 inp = (struct inpcb *)so->so_pcb; 344 inp->inp_laddr = ti->ti_dst; 345 inp->inp_lport = ti->ti_dport; 346 #if BSD>=43 347 inp->inp_options = ip_srcroute(); 348 #endif 349 tp = intotcpcb(inp); 350 tp->t_state = TCPS_LISTEN; 351 } 352 } 353 354 /* 355 * Segment received on connection. 356 * Reset idle time and keep-alive timer. 357 */ 358 tp->t_idle = 0; 359 tp->t_timer[TCPT_KEEP] = tcp_keepidle; 360 361 /* 362 * Process options if not in LISTEN state, 363 * else do it below (after getting remote address). 364 */ 365 if (om && tp->t_state != TCPS_LISTEN) { 366 tcp_dooptions(tp, om, ti); 367 om = 0; 368 } 369 /* 370 * Header prediction: check for the two common cases 371 * of a uni-directional data xfer. If the packet has 372 * no control flags, is in-sequence, the window didn't 373 * change and we're not retransmitting, it's a 374 * candidate. If the length is zero and the ack moved 375 * forward, we're the sender side of the xfer. Just 376 * free the data acked & wake any higher level process 377 * that was blocked waiting for space. If the length 378 * is non-zero and the ack didn't move, we're the 379 * receiver side. If we're getting packets in-order 380 * (the reassembly queue is empty), add the data to 381 * the socket buffer and note that we need a delayed ack. 382 */ 383 if (tp->t_state == TCPS_ESTABLISHED && 384 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK && 385 ti->ti_seq == tp->rcv_nxt && 386 ti->ti_win && ti->ti_win == tp->snd_wnd && 387 tp->snd_nxt == tp->snd_max) { 388 if (ti->ti_len == 0) { 389 if (SEQ_GT(ti->ti_ack, tp->snd_una) && 390 SEQ_LEQ(ti->ti_ack, tp->snd_max) && 391 tp->snd_cwnd >= tp->snd_wnd) { 392 /* 393 * this is a pure ack for outstanding data. 394 */ 395 ++tcppredack; 396 if (tp->t_rtt && SEQ_GT(ti->ti_ack,tp->t_rtseq)) 397 tcp_xmit_timer(tp); 398 acked = ti->ti_ack - tp->snd_una; 399 tcpstat.tcps_rcvackpack++; 400 tcpstat.tcps_rcvackbyte += acked; 401 sbdrop(&so->so_snd, acked); 402 tp->snd_una = ti->ti_ack; 403 m_freem(m); 404 405 /* 406 * If all outstanding data are acked, stop 407 * retransmit timer, otherwise restart timer 408 * using current (possibly backed-off) value. 409 * If process is waiting for space, 410 * wakeup/selwakeup/signal. If data 411 * are ready to send, let tcp_output 412 * decide between more output or persist. 413 */ 414 if (tp->snd_una == tp->snd_max) 415 tp->t_timer[TCPT_REXMT] = 0; 416 else if (tp->t_timer[TCPT_PERSIST] == 0) 417 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur; 418 419 if (so->so_snd.sb_flags & SB_NOTIFY) 420 sowwakeup(so); 421 if (so->so_snd.sb_cc) 422 (void) tcp_output(tp); 423 return; 424 } 425 } else if (ti->ti_ack == tp->snd_una && 426 tp->seg_next == (struct tcpiphdr *)tp && 427 ti->ti_len <= sbspace(&so->so_rcv)) { 428 /* 429 * this is a pure, in-sequence data packet 430 * with nothing on the reassembly queue and 431 * we have enough buffer space to take it. 432 */ 433 ++tcppreddat; 434 tp->rcv_nxt += ti->ti_len; 435 tcpstat.tcps_rcvpack++; 436 tcpstat.tcps_rcvbyte += ti->ti_len; 437 /* 438 * Drop TCP and IP headers then add data 439 * to socket buffer 440 */ 441 m->m_data += sizeof(struct tcpiphdr); 442 m->m_len -= sizeof(struct tcpiphdr); 443 sbappend(&so->so_rcv, m); 444 sorwakeup(so); 445 tp->t_flags |= TF_DELACK; 446 return; 447 } 448 } 449 450 /* 451 * Drop TCP and IP headers; TCP options were dropped above. 452 */ 453 m->m_data += sizeof(struct tcpiphdr); 454 m->m_len -= sizeof(struct tcpiphdr); 455 456 /* 457 * Calculate amount of space in receive window, 458 * and then do TCP input processing. 459 * Receive window is amount of space in rcv queue, 460 * but not less than advertised window. 461 */ 462 { int win; 463 464 win = sbspace(&so->so_rcv); 465 if (win < 0) 466 win = 0; 467 tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt)); 468 } 469 470 switch (tp->t_state) { 471 472 /* 473 * If the state is LISTEN then ignore segment if it contains an RST. 474 * If the segment contains an ACK then it is bad and send a RST. 475 * If it does not contain a SYN then it is not interesting; drop it. 476 * Don't bother responding if the destination was a broadcast. 477 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial 478 * tp->iss, and send a segment: 479 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK> 480 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss. 481 * Fill in remote peer address fields if not previously specified. 482 * Enter SYN_RECEIVED state, and process any other fields of this 483 * segment in this state. 484 */ 485 case TCPS_LISTEN: { 486 struct mbuf *am; 487 register struct sockaddr_in *sin; 488 489 if (tiflags & TH_RST) 490 goto drop; 491 if (tiflags & TH_ACK) 492 goto dropwithreset; 493 if ((tiflags & TH_SYN) == 0) 494 goto drop; 495 if (m->m_flags & M_BCAST) 496 goto drop; 497 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */ 498 if (am == NULL) 499 goto drop; 500 am->m_len = sizeof (struct sockaddr_in); 501 sin = mtod(am, struct sockaddr_in *); 502 sin->sin_family = AF_INET; 503 sin->sin_len = sizeof(*sin); 504 sin->sin_addr = ti->ti_src; 505 sin->sin_port = ti->ti_sport; 506 laddr = inp->inp_laddr; 507 if (inp->inp_laddr.s_addr == INADDR_ANY) 508 inp->inp_laddr = ti->ti_dst; 509 if (in_pcbconnect(inp, am)) { 510 inp->inp_laddr = laddr; 511 (void) m_free(am); 512 goto drop; 513 } 514 (void) m_free(am); 515 tp->t_template = tcp_template(tp); 516 if (tp->t_template == 0) { 517 tp = tcp_drop(tp, ENOBUFS); 518 dropsocket = 0; /* socket is already gone */ 519 goto drop; 520 } 521 if (om) { 522 tcp_dooptions(tp, om, ti); 523 om = 0; 524 } 525 if (iss) 526 tp->iss = iss; 527 else 528 tp->iss = tcp_iss; 529 tcp_iss += TCP_ISSINCR/2; 530 tp->irs = ti->ti_seq; 531 tcp_sendseqinit(tp); 532 tcp_rcvseqinit(tp); 533 tp->t_flags |= TF_ACKNOW; 534 tp->t_state = TCPS_SYN_RECEIVED; 535 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT; 536 dropsocket = 0; /* committed to socket */ 537 tcpstat.tcps_accepts++; 538 goto trimthenstep6; 539 } 540 541 /* 542 * If the state is SYN_SENT: 543 * if seg contains an ACK, but not for our SYN, drop the input. 544 * if seg contains a RST, then drop the connection. 545 * if seg does not contain SYN, then drop it. 546 * Otherwise this is an acceptable SYN segment 547 * initialize tp->rcv_nxt and tp->irs 548 * if seg contains ack then advance tp->snd_una 549 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state 550 * arrange for segment to be acked (eventually) 551 * continue processing rest of data/controls, beginning with URG 552 */ 553 case TCPS_SYN_SENT: 554 if ((tiflags & TH_ACK) && 555 (SEQ_LEQ(ti->ti_ack, tp->iss) || 556 SEQ_GT(ti->ti_ack, tp->snd_max))) 557 goto dropwithreset; 558 if (tiflags & TH_RST) { 559 if (tiflags & TH_ACK) 560 tp = tcp_drop(tp, ECONNREFUSED); 561 goto drop; 562 } 563 if ((tiflags & TH_SYN) == 0) 564 goto drop; 565 if (tiflags & TH_ACK) { 566 tp->snd_una = ti->ti_ack; 567 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) 568 tp->snd_nxt = tp->snd_una; 569 } 570 tp->t_timer[TCPT_REXMT] = 0; 571 tp->irs = ti->ti_seq; 572 tcp_rcvseqinit(tp); 573 tp->t_flags |= TF_ACKNOW; 574 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) { 575 tcpstat.tcps_connects++; 576 soisconnected(so); 577 tp->t_state = TCPS_ESTABLISHED; 578 (void) tcp_reass(tp, (struct tcpiphdr *)0, 579 (struct mbuf *)0); 580 /* 581 * if we didn't have to retransmit the SYN, 582 * use its rtt as our initial srtt & rtt var. 583 */ 584 if (tp->t_rtt) 585 tcp_xmit_timer(tp); 586 } else 587 tp->t_state = TCPS_SYN_RECEIVED; 588 589 trimthenstep6: 590 /* 591 * Advance ti->ti_seq to correspond to first data byte. 592 * If data, trim to stay within window, 593 * dropping FIN if necessary. 594 */ 595 ti->ti_seq++; 596 if (ti->ti_len > tp->rcv_wnd) { 597 todrop = ti->ti_len - tp->rcv_wnd; 598 m_adj(m, -todrop); 599 ti->ti_len = tp->rcv_wnd; 600 tiflags &= ~TH_FIN; 601 tcpstat.tcps_rcvpackafterwin++; 602 tcpstat.tcps_rcvbyteafterwin += todrop; 603 } 604 tp->snd_wl1 = ti->ti_seq - 1; 605 tp->rcv_up = ti->ti_seq; 606 goto step6; 607 } 608 609 /* 610 * States other than LISTEN or SYN_SENT. 611 * First check that at least some bytes of segment are within 612 * receive window. If segment begins before rcv_nxt, 613 * drop leading data (and SYN); if nothing left, just ack. 614 */ 615 todrop = tp->rcv_nxt - ti->ti_seq; 616 if (todrop > 0) { 617 if (tiflags & TH_SYN) { 618 tiflags &= ~TH_SYN; 619 ti->ti_seq++; 620 if (ti->ti_urp > 1) 621 ti->ti_urp--; 622 else 623 tiflags &= ~TH_URG; 624 todrop--; 625 } 626 if (todrop > ti->ti_len || 627 todrop == ti->ti_len && (tiflags&TH_FIN) == 0) { 628 tcpstat.tcps_rcvduppack++; 629 tcpstat.tcps_rcvdupbyte += ti->ti_len; 630 /* 631 * If segment is just one to the left of the window, 632 * check two special cases: 633 * 1. Don't toss RST in response to 4.2-style keepalive. 634 * 2. If the only thing to drop is a FIN, we can drop 635 * it, but check the ACK or we will get into FIN 636 * wars if our FINs crossed (both CLOSING). 637 * In either case, send ACK to resynchronize, 638 * but keep on processing for RST or ACK. 639 */ 640 if ((tiflags & TH_FIN && todrop == ti->ti_len + 1) 641 #ifdef TCP_COMPAT_42 642 || (tiflags & TH_RST && ti->ti_seq == tp->rcv_nxt - 1) 643 #endif 644 ) { 645 todrop = ti->ti_len; 646 tiflags &= ~TH_FIN; 647 tp->t_flags |= TF_ACKNOW; 648 } else 649 goto dropafterack; 650 } else { 651 tcpstat.tcps_rcvpartduppack++; 652 tcpstat.tcps_rcvpartdupbyte += todrop; 653 } 654 m_adj(m, todrop); 655 ti->ti_seq += todrop; 656 ti->ti_len -= todrop; 657 if (ti->ti_urp > todrop) 658 ti->ti_urp -= todrop; 659 else { 660 tiflags &= ~TH_URG; 661 ti->ti_urp = 0; 662 } 663 } 664 665 /* 666 * If new data are received on a connection after the 667 * user processes are gone, then RST the other end. 668 */ 669 if ((so->so_state & SS_NOFDREF) && 670 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) { 671 tp = tcp_close(tp); 672 tcpstat.tcps_rcvafterclose++; 673 goto dropwithreset; 674 } 675 676 /* 677 * If segment ends after window, drop trailing data 678 * (and PUSH and FIN); if nothing left, just ACK. 679 */ 680 todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd); 681 if (todrop > 0) { 682 tcpstat.tcps_rcvpackafterwin++; 683 if (todrop >= ti->ti_len) { 684 tcpstat.tcps_rcvbyteafterwin += ti->ti_len; 685 /* 686 * If a new connection request is received 687 * while in TIME_WAIT, drop the old connection 688 * and start over if the sequence numbers 689 * are above the previous ones. 690 */ 691 if (tiflags & TH_SYN && 692 tp->t_state == TCPS_TIME_WAIT && 693 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) { 694 iss = tp->rcv_nxt + TCP_ISSINCR; 695 tp = tcp_close(tp); 696 goto findpcb; 697 } 698 /* 699 * If window is closed can only take segments at 700 * window edge, and have to drop data and PUSH from 701 * incoming segments. Continue processing, but 702 * remember to ack. Otherwise, drop segment 703 * and ack. 704 */ 705 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) { 706 tp->t_flags |= TF_ACKNOW; 707 tcpstat.tcps_rcvwinprobe++; 708 } else 709 goto dropafterack; 710 } else 711 tcpstat.tcps_rcvbyteafterwin += todrop; 712 m_adj(m, -todrop); 713 ti->ti_len -= todrop; 714 tiflags &= ~(TH_PUSH|TH_FIN); 715 } 716 717 /* 718 * If the RST bit is set examine the state: 719 * SYN_RECEIVED STATE: 720 * If passive open, return to LISTEN state. 721 * If active open, inform user that connection was refused. 722 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES: 723 * Inform user that connection was reset, and close tcb. 724 * CLOSING, LAST_ACK, TIME_WAIT STATES 725 * Close the tcb. 726 */ 727 if (tiflags&TH_RST) switch (tp->t_state) { 728 729 case TCPS_SYN_RECEIVED: 730 so->so_error = ECONNREFUSED; 731 goto close; 732 733 case TCPS_ESTABLISHED: 734 case TCPS_FIN_WAIT_1: 735 case TCPS_FIN_WAIT_2: 736 case TCPS_CLOSE_WAIT: 737 so->so_error = ECONNRESET; 738 close: 739 tp->t_state = TCPS_CLOSED; 740 tcpstat.tcps_drops++; 741 tp = tcp_close(tp); 742 goto drop; 743 744 case TCPS_CLOSING: 745 case TCPS_LAST_ACK: 746 case TCPS_TIME_WAIT: 747 tp = tcp_close(tp); 748 goto drop; 749 } 750 751 /* 752 * If a SYN is in the window, then this is an 753 * error and we send an RST and drop the connection. 754 */ 755 if (tiflags & TH_SYN) { 756 tp = tcp_drop(tp, ECONNRESET); 757 goto dropwithreset; 758 } 759 760 /* 761 * If the ACK bit is off we drop the segment and return. 762 */ 763 if ((tiflags & TH_ACK) == 0) 764 goto drop; 765 766 /* 767 * Ack processing. 768 */ 769 switch (tp->t_state) { 770 771 /* 772 * In SYN_RECEIVED state if the ack ACKs our SYN then enter 773 * ESTABLISHED state and continue processing, otherwise 774 * send an RST. 775 */ 776 case TCPS_SYN_RECEIVED: 777 if (SEQ_GT(tp->snd_una, ti->ti_ack) || 778 SEQ_GT(ti->ti_ack, tp->snd_max)) 779 goto dropwithreset; 780 tcpstat.tcps_connects++; 781 soisconnected(so); 782 tp->t_state = TCPS_ESTABLISHED; 783 (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0); 784 tp->snd_wl1 = ti->ti_seq - 1; 785 /* fall into ... */ 786 787 /* 788 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range 789 * ACKs. If the ack is in the range 790 * tp->snd_una < ti->ti_ack <= tp->snd_max 791 * then advance tp->snd_una to ti->ti_ack and drop 792 * data from the retransmission queue. If this ACK reflects 793 * more up to date window information we update our window information. 794 */ 795 case TCPS_ESTABLISHED: 796 case TCPS_FIN_WAIT_1: 797 case TCPS_FIN_WAIT_2: 798 case TCPS_CLOSE_WAIT: 799 case TCPS_CLOSING: 800 case TCPS_LAST_ACK: 801 case TCPS_TIME_WAIT: 802 803 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) { 804 if (ti->ti_len == 0 && ti->ti_win == tp->snd_wnd) { 805 tcpstat.tcps_rcvdupack++; 806 /* 807 * If we have outstanding data (other than 808 * a window probe), this is a completely 809 * duplicate ack (ie, window info didn't 810 * change), the ack is the biggest we've 811 * seen and we've seen exactly our rexmt 812 * threshhold of them, assume a packet 813 * has been dropped and retransmit it. 814 * Kludge snd_nxt & the congestion 815 * window so we send only this one 816 * packet. 817 * 818 * We know we're losing at the current 819 * window size so do congestion avoidance 820 * (set ssthresh to half the current window 821 * and pull our congestion window back to 822 * the new ssthresh). 823 * 824 * Dup acks mean that packets have left the 825 * network (they're now cached at the receiver) 826 * so bump cwnd by the amount in the receiver 827 * to keep a constant cwnd packets in the 828 * network. 829 */ 830 if (tp->t_timer[TCPT_REXMT] == 0 || 831 ti->ti_ack != tp->snd_una) 832 tp->t_dupacks = 0; 833 else if (++tp->t_dupacks == tcprexmtthresh) { 834 tcp_seq onxt = tp->snd_nxt; 835 u_int win = 836 min(tp->snd_wnd, tp->snd_cwnd) / 2 / 837 tp->t_maxseg; 838 839 if (win < 2) 840 win = 2; 841 tp->snd_ssthresh = win * tp->t_maxseg; 842 tp->t_timer[TCPT_REXMT] = 0; 843 tp->t_rtt = 0; 844 tp->snd_nxt = ti->ti_ack; 845 tp->snd_cwnd = tp->t_maxseg; 846 (void) tcp_output(tp); 847 tp->snd_cwnd = tp->snd_ssthresh + 848 tp->t_maxseg * tp->t_dupacks; 849 if (SEQ_GT(onxt, tp->snd_nxt)) 850 tp->snd_nxt = onxt; 851 goto drop; 852 } else if (tp->t_dupacks > tcprexmtthresh) { 853 tp->snd_cwnd += tp->t_maxseg; 854 (void) tcp_output(tp); 855 goto drop; 856 } 857 } else 858 tp->t_dupacks = 0; 859 break; 860 } 861 /* 862 * If the congestion window was inflated to account 863 * for the other side's cached packets, retract it. 864 */ 865 if (tp->t_dupacks > tcprexmtthresh && 866 tp->snd_cwnd > tp->snd_ssthresh) 867 tp->snd_cwnd = tp->snd_ssthresh; 868 tp->t_dupacks = 0; 869 if (SEQ_GT(ti->ti_ack, tp->snd_max)) { 870 tcpstat.tcps_rcvacktoomuch++; 871 goto dropafterack; 872 } 873 acked = ti->ti_ack - tp->snd_una; 874 tcpstat.tcps_rcvackpack++; 875 tcpstat.tcps_rcvackbyte += acked; 876 877 /* 878 * If transmit timer is running and timed sequence 879 * number was acked, update smoothed round trip time. 880 * Since we now have an rtt measurement, cancel the 881 * timer backoff (cf., Phil Karn's retransmit alg.). 882 * Recompute the initial retransmit timer. 883 */ 884 if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq)) 885 tcp_xmit_timer(tp); 886 887 /* 888 * If all outstanding data is acked, stop retransmit 889 * timer and remember to restart (more output or persist). 890 * If there is more data to be acked, restart retransmit 891 * timer, using current (possibly backed-off) value. 892 */ 893 if (ti->ti_ack == tp->snd_max) { 894 tp->t_timer[TCPT_REXMT] = 0; 895 needoutput = 1; 896 } else if (tp->t_timer[TCPT_PERSIST] == 0) 897 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur; 898 /* 899 * When new data is acked, open the congestion window. 900 * If the window gives us less than ssthresh packets 901 * in flight, open exponentially (maxseg per packet). 902 * Otherwise open linearly: maxseg per window 903 * (maxseg^2 / cwnd per packet), plus a constant 904 * fraction of a packet (maxseg/8) to help larger windows 905 * open quickly enough. 906 */ 907 { 908 register u_int cw = tp->snd_cwnd; 909 register u_int incr = tp->t_maxseg; 910 911 if (cw > tp->snd_ssthresh) 912 incr = incr * incr / cw + incr / 8; 913 tp->snd_cwnd = min(cw + incr, TCP_MAXWIN); 914 } 915 if (acked > so->so_snd.sb_cc) { 916 tp->snd_wnd -= so->so_snd.sb_cc; 917 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc); 918 ourfinisacked = 1; 919 } else { 920 sbdrop(&so->so_snd, acked); 921 tp->snd_wnd -= acked; 922 ourfinisacked = 0; 923 } 924 if (so->so_snd.sb_flags & SB_NOTIFY) 925 sowwakeup(so); 926 tp->snd_una = ti->ti_ack; 927 if (SEQ_LT(tp->snd_nxt, tp->snd_una)) 928 tp->snd_nxt = tp->snd_una; 929 930 switch (tp->t_state) { 931 932 /* 933 * In FIN_WAIT_1 STATE in addition to the processing 934 * for the ESTABLISHED state if our FIN is now acknowledged 935 * then enter FIN_WAIT_2. 936 */ 937 case TCPS_FIN_WAIT_1: 938 if (ourfinisacked) { 939 /* 940 * If we can't receive any more 941 * data, then closing user can proceed. 942 * Starting the timer is contrary to the 943 * specification, but if we don't get a FIN 944 * we'll hang forever. 945 */ 946 if (so->so_state & SS_CANTRCVMORE) { 947 soisdisconnected(so); 948 tp->t_timer[TCPT_2MSL] = tcp_maxidle; 949 } 950 tp->t_state = TCPS_FIN_WAIT_2; 951 } 952 break; 953 954 /* 955 * In CLOSING STATE in addition to the processing for 956 * the ESTABLISHED state if the ACK acknowledges our FIN 957 * then enter the TIME-WAIT state, otherwise ignore 958 * the segment. 959 */ 960 case TCPS_CLOSING: 961 if (ourfinisacked) { 962 tp->t_state = TCPS_TIME_WAIT; 963 tcp_canceltimers(tp); 964 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; 965 soisdisconnected(so); 966 } 967 break; 968 969 /* 970 * In LAST_ACK, we may still be waiting for data to drain 971 * and/or to be acked, as well as for the ack of our FIN. 972 * If our FIN is now acknowledged, delete the TCB, 973 * enter the closed state and return. 974 */ 975 case TCPS_LAST_ACK: 976 if (ourfinisacked) { 977 tp = tcp_close(tp); 978 goto drop; 979 } 980 break; 981 982 /* 983 * In TIME_WAIT state the only thing that should arrive 984 * is a retransmission of the remote FIN. Acknowledge 985 * it and restart the finack timer. 986 */ 987 case TCPS_TIME_WAIT: 988 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; 989 goto dropafterack; 990 } 991 } 992 993 step6: 994 /* 995 * Update window information. 996 * Don't look at window if no ACK: TAC's send garbage on first SYN. 997 */ 998 if ((tiflags & TH_ACK) && 999 (SEQ_LT(tp->snd_wl1, ti->ti_seq) || tp->snd_wl1 == ti->ti_seq && 1000 (SEQ_LT(tp->snd_wl2, ti->ti_ack) || 1001 tp->snd_wl2 == ti->ti_ack && ti->ti_win > tp->snd_wnd))) { 1002 /* keep track of pure window updates */ 1003 if (ti->ti_len == 0 && 1004 tp->snd_wl2 == ti->ti_ack && ti->ti_win > tp->snd_wnd) 1005 tcpstat.tcps_rcvwinupd++; 1006 tp->snd_wnd = ti->ti_win; 1007 tp->snd_wl1 = ti->ti_seq; 1008 tp->snd_wl2 = ti->ti_ack; 1009 if (tp->snd_wnd > tp->max_sndwnd) 1010 tp->max_sndwnd = tp->snd_wnd; 1011 needoutput = 1; 1012 } 1013 1014 /* 1015 * Process segments with URG. 1016 */ 1017 if ((tiflags & TH_URG) && ti->ti_urp && 1018 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 1019 /* 1020 * This is a kludge, but if we receive and accept 1021 * random urgent pointers, we'll crash in 1022 * soreceive. It's hard to imagine someone 1023 * actually wanting to send this much urgent data. 1024 */ 1025 if (ti->ti_urp + so->so_rcv.sb_cc > SB_MAX) { 1026 ti->ti_urp = 0; /* XXX */ 1027 tiflags &= ~TH_URG; /* XXX */ 1028 goto dodata; /* XXX */ 1029 } 1030 /* 1031 * If this segment advances the known urgent pointer, 1032 * then mark the data stream. This should not happen 1033 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since 1034 * a FIN has been received from the remote side. 1035 * In these states we ignore the URG. 1036 * 1037 * According to RFC961 (Assigned Protocols), 1038 * the urgent pointer points to the last octet 1039 * of urgent data. We continue, however, 1040 * to consider it to indicate the first octet 1041 * of data past the urgent section as the original 1042 * spec states (in one of two places). 1043 */ 1044 if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) { 1045 tp->rcv_up = ti->ti_seq + ti->ti_urp; 1046 so->so_oobmark = so->so_rcv.sb_cc + 1047 (tp->rcv_up - tp->rcv_nxt) - 1; 1048 if (so->so_oobmark == 0) 1049 so->so_state |= SS_RCVATMARK; 1050 sohasoutofband(so); 1051 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA); 1052 } 1053 /* 1054 * Remove out of band data so doesn't get presented to user. 1055 * This can happen independent of advancing the URG pointer, 1056 * but if two URG's are pending at once, some out-of-band 1057 * data may creep in... ick. 1058 */ 1059 if (ti->ti_urp <= ti->ti_len 1060 #ifdef SO_OOBINLINE 1061 && (so->so_options & SO_OOBINLINE) == 0 1062 #endif 1063 ) 1064 tcp_pulloutofband(so, ti, m); 1065 } else 1066 /* 1067 * If no out of band data is expected, 1068 * pull receive urgent pointer along 1069 * with the receive window. 1070 */ 1071 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) 1072 tp->rcv_up = tp->rcv_nxt; 1073 dodata: /* XXX */ 1074 1075 /* 1076 * Process the segment text, merging it into the TCP sequencing queue, 1077 * and arranging for acknowledgment of receipt if necessary. 1078 * This process logically involves adjusting tp->rcv_wnd as data 1079 * is presented to the user (this happens in tcp_usrreq.c, 1080 * case PRU_RCVD). If a FIN has already been received on this 1081 * connection then we just ignore the text. 1082 */ 1083 if ((ti->ti_len || (tiflags&TH_FIN)) && 1084 TCPS_HAVERCVDFIN(tp->t_state) == 0) { 1085 TCP_REASS(tp, ti, m, so, tiflags); 1086 /* 1087 * Note the amount of data that peer has sent into 1088 * our window, in order to estimate the sender's 1089 * buffer size. 1090 */ 1091 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt); 1092 } else { 1093 m_freem(m); 1094 tiflags &= ~TH_FIN; 1095 } 1096 1097 /* 1098 * If FIN is received ACK the FIN and let the user know 1099 * that the connection is closing. 1100 */ 1101 if (tiflags & TH_FIN) { 1102 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { 1103 socantrcvmore(so); 1104 tp->t_flags |= TF_ACKNOW; 1105 tp->rcv_nxt++; 1106 } 1107 switch (tp->t_state) { 1108 1109 /* 1110 * In SYN_RECEIVED and ESTABLISHED STATES 1111 * enter the CLOSE_WAIT state. 1112 */ 1113 case TCPS_SYN_RECEIVED: 1114 case TCPS_ESTABLISHED: 1115 tp->t_state = TCPS_CLOSE_WAIT; 1116 break; 1117 1118 /* 1119 * If still in FIN_WAIT_1 STATE FIN has not been acked so 1120 * enter the CLOSING state. 1121 */ 1122 case TCPS_FIN_WAIT_1: 1123 tp->t_state = TCPS_CLOSING; 1124 break; 1125 1126 /* 1127 * In FIN_WAIT_2 state enter the TIME_WAIT state, 1128 * starting the time-wait timer, turning off the other 1129 * standard timers. 1130 */ 1131 case TCPS_FIN_WAIT_2: 1132 tp->t_state = TCPS_TIME_WAIT; 1133 tcp_canceltimers(tp); 1134 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; 1135 soisdisconnected(so); 1136 break; 1137 1138 /* 1139 * In TIME_WAIT state restart the 2 MSL time_wait timer. 1140 */ 1141 case TCPS_TIME_WAIT: 1142 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL; 1143 break; 1144 } 1145 } 1146 if (so->so_options & SO_DEBUG) 1147 tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0); 1148 1149 /* 1150 * Return any desired output. 1151 */ 1152 if (needoutput || (tp->t_flags & TF_ACKNOW)) 1153 (void) tcp_output(tp); 1154 return; 1155 1156 dropafterack: 1157 /* 1158 * Generate an ACK dropping incoming segment if it occupies 1159 * sequence space, where the ACK reflects our state. 1160 */ 1161 if (tiflags & TH_RST) 1162 goto drop; 1163 m_freem(m); 1164 tp->t_flags |= TF_ACKNOW; 1165 (void) tcp_output(tp); 1166 return; 1167 1168 dropwithreset: 1169 if (om) { 1170 (void) m_free(om); 1171 om = 0; 1172 } 1173 /* 1174 * Generate a RST, dropping incoming segment. 1175 * Make ACK acceptable to originator of segment. 1176 * Don't bother to respond if destination was broadcast. 1177 */ 1178 if ((tiflags & TH_RST) || m->m_flags & M_BCAST) 1179 goto drop; 1180 if (tiflags & TH_ACK) 1181 tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST); 1182 else { 1183 if (tiflags & TH_SYN) 1184 ti->ti_len++; 1185 tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0, 1186 TH_RST|TH_ACK); 1187 } 1188 /* destroy temporarily created socket */ 1189 if (dropsocket) 1190 (void) soabort(so); 1191 return; 1192 1193 drop: 1194 if (om) 1195 (void) m_free(om); 1196 /* 1197 * Drop space held by incoming segment and return. 1198 */ 1199 if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) 1200 tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0); 1201 m_freem(m); 1202 /* destroy temporarily created socket */ 1203 if (dropsocket) 1204 (void) soabort(so); 1205 return; 1206 } 1207 1208 tcp_dooptions(tp, om, ti) 1209 struct tcpcb *tp; 1210 struct mbuf *om; 1211 struct tcpiphdr *ti; 1212 { 1213 register u_char *cp; 1214 u_short mss; 1215 int opt, optlen, cnt; 1216 1217 cp = mtod(om, u_char *); 1218 cnt = om->m_len; 1219 for (; cnt > 0; cnt -= optlen, cp += optlen) { 1220 opt = cp[0]; 1221 if (opt == TCPOPT_EOL) 1222 break; 1223 if (opt == TCPOPT_NOP) 1224 optlen = 1; 1225 else { 1226 optlen = cp[1]; 1227 if (optlen <= 0) 1228 break; 1229 } 1230 switch (opt) { 1231 1232 default: 1233 continue; 1234 1235 case TCPOPT_MAXSEG: 1236 if (optlen != 4) 1237 continue; 1238 if (!(ti->ti_flags & TH_SYN)) 1239 continue; 1240 bcopy((char *) cp + 2, (char *) &mss, sizeof(mss)); 1241 NTOHS(mss); 1242 (void) tcp_mss(tp, mss); /* sets t_maxseg */ 1243 break; 1244 } 1245 } 1246 (void) m_free(om); 1247 } 1248 1249 /* 1250 * Pull out of band byte out of a segment so 1251 * it doesn't appear in the user's data queue. 1252 * It is still reflected in the segment length for 1253 * sequencing purposes. 1254 */ 1255 tcp_pulloutofband(so, ti, m) 1256 struct socket *so; 1257 struct tcpiphdr *ti; 1258 register struct mbuf *m; 1259 { 1260 int cnt = ti->ti_urp - 1; 1261 1262 while (cnt >= 0) { 1263 if (m->m_len > cnt) { 1264 char *cp = mtod(m, caddr_t) + cnt; 1265 struct tcpcb *tp = sototcpcb(so); 1266 1267 tp->t_iobc = *cp; 1268 tp->t_oobflags |= TCPOOB_HAVEDATA; 1269 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1)); 1270 m->m_len--; 1271 return; 1272 } 1273 cnt -= m->m_len; 1274 m = m->m_next; 1275 if (m == 0) 1276 break; 1277 } 1278 panic("tcp_pulloutofband"); 1279 } 1280 1281 /* 1282 * Collect new round-trip time estimate 1283 * and update averages and current timeout. 1284 */ 1285 tcp_xmit_timer(tp) 1286 register struct tcpcb *tp; 1287 { 1288 register short delta; 1289 1290 tcpstat.tcps_rttupdated++; 1291 if (tp->t_srtt != 0) { 1292 /* 1293 * srtt is stored as fixed point with 3 bits after the 1294 * binary point (i.e., scaled by 8). The following magic 1295 * is equivalent to the smoothing algorithm in rfc793 with 1296 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed 1297 * point). Adjust t_rtt to origin 0. 1298 */ 1299 delta = tp->t_rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT); 1300 if ((tp->t_srtt += delta) <= 0) 1301 tp->t_srtt = 1; 1302 /* 1303 * We accumulate a smoothed rtt variance (actually, a 1304 * smoothed mean difference), then set the retransmit 1305 * timer to smoothed rtt + 4 times the smoothed variance. 1306 * rttvar is stored as fixed point with 2 bits after the 1307 * binary point (scaled by 4). The following is 1308 * equivalent to rfc793 smoothing with an alpha of .75 1309 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces 1310 * rfc793's wired-in beta. 1311 */ 1312 if (delta < 0) 1313 delta = -delta; 1314 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT); 1315 if ((tp->t_rttvar += delta) <= 0) 1316 tp->t_rttvar = 1; 1317 } else { 1318 /* 1319 * No rtt measurement yet - use the unsmoothed rtt. 1320 * Set the variance to half the rtt (so our first 1321 * retransmit happens at 2*rtt) 1322 */ 1323 tp->t_srtt = tp->t_rtt << TCP_RTT_SHIFT; 1324 tp->t_rttvar = tp->t_rtt << (TCP_RTTVAR_SHIFT - 1); 1325 } 1326 tp->t_rtt = 0; 1327 tp->t_rxtshift = 0; 1328 1329 /* 1330 * the retransmit should happen at rtt + 4 * rttvar. 1331 * Because of the way we do the smoothing, srtt and rttvar 1332 * will each average +1/2 tick of bias. When we compute 1333 * the retransmit timer, we want 1/2 tick of rounding and 1334 * 1 extra tick because of +-1/2 tick uncertainty in the 1335 * firing of the timer. The bias will give us exactly the 1336 * 1.5 tick we need. But, because the bias is 1337 * statistical, we have to test that we don't drop below 1338 * the minimum feasible timer (which is 2 ticks). 1339 */ 1340 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), 1341 tp->t_rttmin, TCPTV_REXMTMAX); 1342 1343 /* 1344 * We received an ack for a packet that wasn't retransmitted; 1345 * it is probably safe to discard any error indications we've 1346 * received recently. This isn't quite right, but close enough 1347 * for now (a route might have failed after we sent a segment, 1348 * and the return path might not be symmetrical). 1349 */ 1350 tp->t_softerror = 0; 1351 } 1352 1353 /* 1354 * Determine a reasonable value for maxseg size. 1355 * If the route is known, check route for mtu. 1356 * If none, use an mss that can be handled on the outgoing 1357 * interface without forcing IP to fragment; if bigger than 1358 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES 1359 * to utilize large mbufs. If no route is found, route has no mtu, 1360 * or the destination isn't local, use a default, hopefully conservative 1361 * size (usually 512 or the default IP max size, but no more than the mtu 1362 * of the interface), as we can't discover anything about intervening 1363 * gateways or networks. We also initialize the congestion/slow start 1364 * window to be a single segment if the destination isn't local. 1365 * While looking at the routing entry, we also initialize other path-dependent 1366 * parameters from pre-set or cached values in the routing entry. 1367 */ 1368 1369 tcp_mss(tp, offer) 1370 register struct tcpcb *tp; 1371 u_short offer; 1372 { 1373 struct route *ro; 1374 register struct rtentry *rt; 1375 struct ifnet *ifp; 1376 register int rtt, mss; 1377 u_long bufsize; 1378 struct inpcb *inp; 1379 struct socket *so; 1380 extern int tcp_mssdflt, tcp_rttdflt; 1381 1382 inp = tp->t_inpcb; 1383 ro = &inp->inp_route; 1384 1385 if ((rt = ro->ro_rt) == (struct rtentry *)0) { 1386 /* No route yet, so try to acquire one */ 1387 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1388 ro->ro_dst.sa_family = AF_INET; 1389 ro->ro_dst.sa_len = sizeof(ro->ro_dst); 1390 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr = 1391 inp->inp_faddr; 1392 rtalloc(ro); 1393 } 1394 if ((rt = ro->ro_rt) == (struct rtentry *)0) 1395 return (tcp_mssdflt); 1396 } 1397 ifp = rt->rt_ifp; 1398 so = inp->inp_socket; 1399 1400 #ifdef RTV_MTU /* if route characteristics exist ... */ 1401 /* 1402 * While we're here, check if there's an initial rtt 1403 * or rttvar. Convert from the route-table units 1404 * to scaled multiples of the slow timeout timer. 1405 */ 1406 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) { 1407 if (rt->rt_rmx.rmx_locks & RTV_MTU) 1408 tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ); 1409 tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE)); 1410 if (rt->rt_rmx.rmx_rttvar) 1411 tp->t_rttvar = rt->rt_rmx.rmx_rttvar / 1412 (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE)); 1413 else 1414 /* default variation is +- 1 rtt */ 1415 tp->t_rttvar = 1416 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE; 1417 TCPT_RANGESET(tp->t_rxtcur, 1418 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1, 1419 tp->t_rttmin, TCPTV_REXMTMAX); 1420 } 1421 /* 1422 * if there's an mtu associated with the route, use it 1423 */ 1424 if (rt->rt_rmx.rmx_mtu) 1425 mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr); 1426 else 1427 #endif /* RTV_MTU */ 1428 { 1429 mss = ifp->if_mtu - sizeof(struct tcpiphdr); 1430 #if (MCLBYTES & (MCLBYTES - 1)) == 0 1431 if (mss > MCLBYTES) 1432 mss &= ~(MCLBYTES-1); 1433 #else 1434 if (mss > MCLBYTES) 1435 mss = mss / MCLBYTES * MCLBYTES; 1436 #endif 1437 if (!in_localaddr(inp->inp_faddr)) 1438 mss = min(mss, tcp_mssdflt); 1439 } 1440 /* 1441 * The current mss, t_maxseg, is initialized to the default value. 1442 * If we compute a smaller value, reduce the current mss. 1443 * If we compute a larger value, return it for use in sending 1444 * a max seg size option, but don't store it for use 1445 * unless we received an offer at least that large from peer. 1446 * However, do not accept offers under 32 bytes. 1447 */ 1448 if (offer) 1449 mss = min(mss, offer); 1450 mss = max(mss, 32); /* sanity */ 1451 if (mss < tp->t_maxseg || offer != 0) { 1452 /* 1453 * If there's a pipesize, change the socket buffer 1454 * to that size. Make the socket buffers an integral 1455 * number of mss units; if the mss is larger than 1456 * the socket buffer, decrease the mss. 1457 */ 1458 #ifdef RTV_SPIPE 1459 if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0) 1460 #endif 1461 bufsize = so->so_snd.sb_hiwat; 1462 if (bufsize < mss) 1463 mss = bufsize; 1464 else { 1465 bufsize = min(bufsize, SB_MAX) / mss * mss; 1466 (void) sbreserve(&so->so_snd, bufsize); 1467 } 1468 tp->t_maxseg = mss; 1469 1470 #ifdef RTV_RPIPE 1471 if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0) 1472 #endif 1473 bufsize = so->so_rcv.sb_hiwat; 1474 if (bufsize > mss) { 1475 bufsize = min(bufsize, SB_MAX) / mss * mss; 1476 (void) sbreserve(&so->so_rcv, bufsize); 1477 } 1478 } 1479 tp->snd_cwnd = mss; 1480 1481 #ifdef RTV_SSTHRESH 1482 if (rt->rt_rmx.rmx_ssthresh) { 1483 /* 1484 * There's some sort of gateway or interface 1485 * buffer limit on the path. Use this to set 1486 * the slow start threshhold, but set the 1487 * threshold to no less than 2*mss. 1488 */ 1489 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh); 1490 } 1491 #endif /* RTV_MTU */ 1492 return (mss); 1493 } 1494