xref: /netbsd-src/sys/netinet/tcp_input.c (revision 481fca6e59249d8ffcf24fef7cfbe7b131bfb080)
1 /*	$NetBSD: tcp_input.c,v 1.113 2000/07/09 12:49:08 itojun Exp $	*/
2 
3 /*
4 %%% portions-copyright-nrl-95
5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
7 Reserved. All rights under this copyright have been assigned to the US
8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
10 software.
11 You should have received a copy of the license with this software. If you
12 didn't get a copy, you may request one from <license@ipv6.nrl.navy.mil>.
13 
14 */
15 
16 /*
17  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
18  * All rights reserved.
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  * 1. Redistributions of source code must retain the above copyright
24  *    notice, this list of conditions and the following disclaimer.
25  * 2. Redistributions in binary form must reproduce the above copyright
26  *    notice, this list of conditions and the following disclaimer in the
27  *    documentation and/or other materials provided with the distribution.
28  * 3. Neither the name of the project nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  */
44 
45 /*-
46  * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
47  * All rights reserved.
48  *
49  * This code is derived from software contributed to The NetBSD Foundation
50  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
51  * Facility, NASA Ames Research Center.
52  *
53  * Redistribution and use in source and binary forms, with or without
54  * modification, are permitted provided that the following conditions
55  * are met:
56  * 1. Redistributions of source code must retain the above copyright
57  *    notice, this list of conditions and the following disclaimer.
58  * 2. Redistributions in binary form must reproduce the above copyright
59  *    notice, this list of conditions and the following disclaimer in the
60  *    documentation and/or other materials provided with the distribution.
61  * 3. All advertising materials mentioning features or use of this software
62  *    must display the following acknowledgement:
63  *	This product includes software developed by the NetBSD
64  *	Foundation, Inc. and its contributors.
65  * 4. Neither the name of The NetBSD Foundation nor the names of its
66  *    contributors may be used to endorse or promote products derived
67  *    from this software without specific prior written permission.
68  *
69  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
70  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
71  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
72  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
73  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
79  * POSSIBILITY OF SUCH DAMAGE.
80  */
81 
82 /*
83  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
84  *	The Regents of the University of California.  All rights reserved.
85  *
86  * Redistribution and use in source and binary forms, with or without
87  * modification, are permitted provided that the following conditions
88  * are met:
89  * 1. Redistributions of source code must retain the above copyright
90  *    notice, this list of conditions and the following disclaimer.
91  * 2. Redistributions in binary form must reproduce the above copyright
92  *    notice, this list of conditions and the following disclaimer in the
93  *    documentation and/or other materials provided with the distribution.
94  * 3. All advertising materials mentioning features or use of this software
95  *    must display the following acknowledgement:
96  *	This product includes software developed by the University of
97  *	California, Berkeley and its contributors.
98  * 4. Neither the name of the University nor the names of its contributors
99  *    may be used to endorse or promote products derived from this software
100  *    without specific prior written permission.
101  *
102  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
103  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
104  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
105  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
106  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
107  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
108  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
109  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
110  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
111  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
112  * SUCH DAMAGE.
113  *
114  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
115  */
116 
117 /*
118  *	TODO list for SYN cache stuff:
119  *
120  *	Find room for a "state" field, which is needed to keep a
121  *	compressed state for TIME_WAIT TCBs.  It's been noted already
122  *	that this is fairly important for very high-volume web and
123  *	mail servers, which use a large number of short-lived
124  *	connections.
125  */
126 
127 #include "opt_inet.h"
128 #include "opt_ipsec.h"
129 
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/malloc.h>
133 #include <sys/mbuf.h>
134 #include <sys/protosw.h>
135 #include <sys/socket.h>
136 #include <sys/socketvar.h>
137 #include <sys/errno.h>
138 #include <sys/syslog.h>
139 #include <sys/pool.h>
140 #include <sys/domain.h>
141 
142 #include <net/if.h>
143 #include <net/route.h>
144 #include <net/if_types.h>
145 
146 #include <netinet/in.h>
147 #include <netinet/in_systm.h>
148 #include <netinet/ip.h>
149 #include <netinet/in_pcb.h>
150 #include <netinet/ip_var.h>
151 
152 #ifdef INET6
153 #ifndef INET
154 #include <netinet/in.h>
155 #endif
156 #include <netinet/ip6.h>
157 #include <netinet6/ip6_var.h>
158 #include <netinet6/in6_pcb.h>
159 #include <netinet6/ip6_var.h>
160 #include <netinet6/in6_var.h>
161 #include <netinet/icmp6.h>
162 #include <netinet6/nd6.h>
163 #endif
164 
165 #ifdef PULLDOWN_TEST
166 #ifndef INET6
167 /* always need ip6.h for IP6_EXTHDR_GET */
168 #include <netinet/ip6.h>
169 #endif
170 #endif
171 
172 #include <netinet/tcp.h>
173 #include <netinet/tcp_fsm.h>
174 #include <netinet/tcp_seq.h>
175 #include <netinet/tcp_timer.h>
176 #include <netinet/tcp_var.h>
177 #include <netinet/tcpip.h>
178 #include <netinet/tcp_debug.h>
179 
180 #include <machine/stdarg.h>
181 
182 #ifdef IPSEC
183 #include <netinet6/ipsec.h>
184 #include <netkey/key.h>
185 #endif /*IPSEC*/
186 #ifdef INET6
187 #include "faith.h"
188 #endif
189 
190 int	tcprexmtthresh = 3;
191 int	tcp_log_refused;
192 
193 struct timeval tcp_rst_ratelim_last;
194 
195 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
196 
197 /* for modulo comparisons of timestamps */
198 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
199 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
200 
201 /*
202  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
203  */
204 #ifdef INET6
205 #define ND6_HINT(tp) \
206 do { \
207 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
208 	 && tp->t_in6pcb->in6p_route.ro_rt) { \
209 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
210 	} \
211 } while (0)
212 #else
213 #define ND6_HINT(tp)
214 #endif
215 
216 /*
217  * Macro to compute ACK transmission behavior.  Delay the ACK unless
218  * we have already delayed an ACK (must send an ACK every two segments).
219  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
220  * option is enabled.
221  */
222 #define	TCP_SETUP_ACK(tp, th) \
223 do { \
224 	if ((tp)->t_flags & TF_DELACK || \
225 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
226 		tp->t_flags |= TF_ACKNOW; \
227 	else \
228 		TCP_SET_DELACK(tp); \
229 } while (0)
230 
231 /*
232  * Convert TCP protocol fields to host order for easier processing.
233  */
234 #define	TCP_FIELDS_TO_HOST(th)						\
235 do {									\
236 	NTOHL((th)->th_seq);						\
237 	NTOHL((th)->th_ack);						\
238 	NTOHS((th)->th_win);						\
239 	NTOHS((th)->th_urp);						\
240 } while (0)
241 
242 int
243 tcp_reass(tp, th, m, tlen)
244 	struct tcpcb *tp;
245 	struct tcphdr *th;
246 	struct mbuf *m;
247 	int *tlen;
248 {
249 	struct ipqent *p, *q, *nq, *tiqe = NULL;
250 	struct socket *so = NULL;
251 	int pkt_flags;
252 	tcp_seq pkt_seq;
253 	unsigned pkt_len;
254 	u_long rcvpartdupbyte = 0;
255 	u_long rcvoobyte;
256 
257 	if (tp->t_inpcb)
258 		so = tp->t_inpcb->inp_socket;
259 #ifdef INET6
260 	else if (tp->t_in6pcb)
261 		so = tp->t_in6pcb->in6p_socket;
262 #endif
263 
264 	TCP_REASS_LOCK_CHECK(tp);
265 
266 	/*
267 	 * Call with th==0 after become established to
268 	 * force pre-ESTABLISHED data up to user socket.
269 	 */
270 	if (th == 0)
271 		goto present;
272 
273 	rcvoobyte = *tlen;
274 	/*
275 	 * Copy these to local variables because the tcpiphdr
276 	 * gets munged while we are collapsing mbufs.
277 	 */
278 	pkt_seq = th->th_seq;
279 	pkt_len = *tlen;
280 	pkt_flags = th->th_flags;
281 	/*
282 	 * Find a segment which begins after this one does.
283 	 */
284 	for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
285 		nq = q->ipqe_q.le_next;
286 		/*
287 		 * If the received segment is just right after this
288 		 * fragment, merge the two together and then check
289 		 * for further overlaps.
290 		 */
291 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
292 #ifdef TCPREASS_DEBUG
293 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
294 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
295 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
296 #endif
297 			pkt_len += q->ipqe_len;
298 			pkt_flags |= q->ipqe_flags;
299 			pkt_seq = q->ipqe_seq;
300 			m_cat(q->ipqe_m, m);
301 			m = q->ipqe_m;
302 			goto free_ipqe;
303 		}
304 		/*
305 		 * If the received segment is completely past this
306 		 * fragment, we need to go the next fragment.
307 		 */
308 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
309 			p = q;
310 			continue;
311 		}
312 		/*
313 		 * If the fragment is past the received segment,
314 		 * it (or any following) can't be concatenated.
315 		 */
316 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
317 			break;
318 		/*
319 		 * We've received all the data in this segment before.
320 		 * mark it as a duplicate and return.
321 		 */
322 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
323 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
324 			tcpstat.tcps_rcvduppack++;
325 			tcpstat.tcps_rcvdupbyte += pkt_len;
326 			m_freem(m);
327 			if (tiqe != NULL)
328 				pool_put(&ipqent_pool, tiqe);
329 			return (0);
330 		}
331 		/*
332 		 * Received segment completely overlaps this fragment
333 		 * so we drop the fragment (this keeps the temporal
334 		 * ordering of segments correct).
335 		 */
336 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
337 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
338 			rcvpartdupbyte += q->ipqe_len;
339 			m_freem(q->ipqe_m);
340 			goto free_ipqe;
341 		}
342 		/*
343 		 * RX'ed segment extends past the end of the
344 		 * fragment.  Drop the overlapping bytes.  Then
345 		 * merge the fragment and segment then treat as
346 		 * a longer received packet.
347 		 */
348 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
349 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
350 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
351 #ifdef TCPREASS_DEBUG
352 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
353 			       tp, overlap,
354 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
355 #endif
356 			m_adj(m, overlap);
357 			rcvpartdupbyte += overlap;
358 			m_cat(q->ipqe_m, m);
359 			m = q->ipqe_m;
360 			pkt_seq = q->ipqe_seq;
361 			pkt_len += q->ipqe_len - overlap;
362 			rcvoobyte -= overlap;
363 			goto free_ipqe;
364 		}
365 		/*
366 		 * RX'ed segment extends past the front of the
367 		 * fragment.  Drop the overlapping bytes on the
368 		 * received packet.  The packet will then be
369 		 * contatentated with this fragment a bit later.
370 		 */
371 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
372 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
373 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
374 #ifdef TCPREASS_DEBUG
375 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
376 			       tp, overlap,
377 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
378 #endif
379 			m_adj(m, -overlap);
380 			pkt_len -= overlap;
381 			rcvpartdupbyte += overlap;
382 			rcvoobyte -= overlap;
383 		}
384 		/*
385 		 * If the received segment immediates precedes this
386 		 * fragment then tack the fragment onto this segment
387 		 * and reinsert the data.
388 		 */
389 		if (q->ipqe_seq == pkt_seq + pkt_len) {
390 #ifdef TCPREASS_DEBUG
391 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
392 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
393 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
394 #endif
395 			pkt_len += q->ipqe_len;
396 			pkt_flags |= q->ipqe_flags;
397 			m_cat(m, q->ipqe_m);
398 			LIST_REMOVE(q, ipqe_q);
399 			LIST_REMOVE(q, ipqe_timeq);
400 			if (tiqe == NULL) {
401 			    tiqe = q;
402 			} else {
403 			    pool_put(&ipqent_pool, q);
404 			}
405 			break;
406 		}
407 		/*
408 		 * If the fragment is before the segment, remember it.
409 		 * When this loop is terminated, p will contain the
410 		 * pointer to fragment that is right before the received
411 		 * segment.
412 		 */
413 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
414 			p = q;
415 
416 		continue;
417 
418 		/*
419 		 * This is a common operation.  It also will allow
420 		 * to save doing a malloc/free in most instances.
421 		 */
422 	  free_ipqe:
423 		LIST_REMOVE(q, ipqe_q);
424 		LIST_REMOVE(q, ipqe_timeq);
425 		if (tiqe == NULL) {
426 		    tiqe = q;
427 		} else {
428 		    pool_put(&ipqent_pool, q);
429 		}
430 	}
431 
432 	/*
433 	 * Allocate a new queue entry since the received segment did not
434 	 * collapse onto any other out-of-order block; thus we are allocating
435 	 * a new block.  If it had collapsed, tiqe would not be NULL and
436 	 * we would be reusing it.
437 	 * XXX If we can't, just drop the packet.  XXX
438 	 */
439 	if (tiqe == NULL) {
440 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
441 		if (tiqe == NULL) {
442 			tcpstat.tcps_rcvmemdrop++;
443 			m_freem(m);
444 			return (0);
445 		}
446 	}
447 
448 	/*
449 	 * Update the counters.
450 	 */
451 	tcpstat.tcps_rcvoopack++;
452 	tcpstat.tcps_rcvoobyte += rcvoobyte;
453 	if (rcvpartdupbyte) {
454 	    tcpstat.tcps_rcvpartduppack++;
455 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
456 	}
457 
458 	/*
459 	 * Insert the new fragment queue entry into both queues.
460 	 */
461 	tiqe->ipqe_m = m;
462 	tiqe->ipqe_seq = pkt_seq;
463 	tiqe->ipqe_len = pkt_len;
464 	tiqe->ipqe_flags = pkt_flags;
465 	if (p == NULL) {
466 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
467 #ifdef TCPREASS_DEBUG
468 		if (tiqe->ipqe_seq != tp->rcv_nxt)
469 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
470 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
471 #endif
472 	} else {
473 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
474 #ifdef TCPREASS_DEBUG
475 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
476 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
477 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
478 #endif
479 	}
480 
481 	LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
482 
483 present:
484 	/*
485 	 * Present data to user, advancing rcv_nxt through
486 	 * completed sequence space.
487 	 */
488 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
489 		return (0);
490 	q = tp->segq.lh_first;
491 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
492 		return (0);
493 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
494 		return (0);
495 
496 	tp->rcv_nxt += q->ipqe_len;
497 	pkt_flags = q->ipqe_flags & TH_FIN;
498 	ND6_HINT(tp);
499 
500 	LIST_REMOVE(q, ipqe_q);
501 	LIST_REMOVE(q, ipqe_timeq);
502 	if (so->so_state & SS_CANTRCVMORE)
503 		m_freem(q->ipqe_m);
504 	else
505 		sbappend(&so->so_rcv, q->ipqe_m);
506 	pool_put(&ipqent_pool, q);
507 	sorwakeup(so);
508 	return (pkt_flags);
509 }
510 
511 #if defined(INET6) && !defined(TCP6)
512 int
513 tcp6_input(mp, offp, proto)
514 	struct mbuf **mp;
515 	int *offp, proto;
516 {
517 	struct mbuf *m = *mp;
518 
519 	/*
520 	 * draft-itojun-ipv6-tcp-to-anycast
521 	 * better place to put this in?
522 	 */
523 	if (m->m_flags & M_ANYCAST6) {
524 		struct ip6_hdr *ip6;
525 		if (m->m_len < sizeof(struct ip6_hdr)) {
526 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
527 				tcpstat.tcps_rcvshort++;
528 				return IPPROTO_DONE;
529 			}
530 		}
531 		ip6 = mtod(m, struct ip6_hdr *);
532 		icmp6_error(m, ICMP6_DST_UNREACH,
533 			ICMP6_DST_UNREACH_ADDR,
534 			(caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
535 		return IPPROTO_DONE;
536 	}
537 
538 	tcp_input(m, *offp, proto);
539 	return IPPROTO_DONE;
540 }
541 #endif
542 
543 /*
544  * TCP input routine, follows pages 65-76 of the
545  * protocol specification dated September, 1981 very closely.
546  */
547 void
548 #if __STDC__
549 tcp_input(struct mbuf *m, ...)
550 #else
551 tcp_input(m, va_alist)
552 	struct mbuf *m;
553 #endif
554 {
555 	int proto;
556 	struct tcphdr *th;
557 	struct ip *ip;
558 	struct inpcb *inp;
559 #ifdef INET6
560 	struct ip6_hdr *ip6;
561 	struct in6pcb *in6p;
562 #endif
563 	caddr_t optp = NULL;
564 	int optlen = 0;
565 	int len, tlen, toff, hdroptlen = 0;
566 	struct tcpcb *tp = 0;
567 	int tiflags;
568 	struct socket *so = NULL;
569 	int todrop, acked, ourfinisacked, needoutput = 0;
570 	short ostate = 0;
571 	int iss = 0;
572 	u_long tiwin;
573 	struct tcp_opt_info opti;
574 	int off, iphlen;
575 	va_list ap;
576 	int af;		/* af on the wire */
577 	struct mbuf *tcp_saveti = NULL;
578 
579 	va_start(ap, m);
580 	toff = va_arg(ap, int);
581 	proto = va_arg(ap, int);
582 	va_end(ap);
583 
584 	tcpstat.tcps_rcvtotal++;
585 
586 	bzero(&opti, sizeof(opti));
587 	opti.ts_present = 0;
588 	opti.maxseg = 0;
589 
590 	/*
591 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
592 	 *
593 	 * TCP is, by definition, unicast, so we reject all
594 	 * multicast outright.
595 	 *
596 	 * Note, there are additional src/dst address checks in
597 	 * the AF-specific code below.
598 	 */
599 	if (m->m_flags & (M_BCAST|M_MCAST)) {
600 		/* XXX stat */
601 		goto drop;
602 	}
603 #ifdef INET6
604 	if (m->m_flags & M_ANYCAST6) {
605 		/* XXX stat */
606 		goto drop;
607 	}
608 #endif
609 
610 	/*
611 	 * Get IP and TCP header together in first mbuf.
612 	 * Note: IP leaves IP header in first mbuf.
613 	 */
614 	ip = mtod(m, struct ip *);
615 #ifdef INET6
616 	ip6 = NULL;
617 #endif
618 	switch (ip->ip_v) {
619 	case 4:
620 		af = AF_INET;
621 		iphlen = sizeof(struct ip);
622 #ifndef PULLDOWN_TEST
623 		/* would like to get rid of this... */
624 		if (toff > sizeof (struct ip)) {
625 			ip_stripoptions(m, (struct mbuf *)0);
626 			toff = sizeof(struct ip);
627 		}
628 		if (m->m_len < toff + sizeof (struct tcphdr)) {
629 			if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
630 				tcpstat.tcps_rcvshort++;
631 				return;
632 			}
633 		}
634 		ip = mtod(m, struct ip *);
635 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
636 #else
637 		ip = mtod(m, struct ip *);
638 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
639 			sizeof(struct tcphdr));
640 		if (th == NULL) {
641 			tcpstat.tcps_rcvshort++;
642 			return;
643 		}
644 #endif
645 
646 		/*
647 		 * Make sure destination address is not multicast.
648 		 * Source address checked in ip_input().
649 		 */
650 		if (IN_MULTICAST(ip->ip_dst.s_addr)) {
651 			/* XXX stat */
652 			goto drop;
653 		}
654 
655 		/* We do the checksum after PCB lookup... */
656 		len = ip->ip_len;
657 		tlen = len - toff;
658 		break;
659 #ifdef INET6
660 	case 6:
661 		ip = NULL;
662 		iphlen = sizeof(struct ip6_hdr);
663 		af = AF_INET6;
664 #ifndef PULLDOWN_TEST
665 		if (m->m_len < toff + sizeof(struct tcphdr)) {
666 			m = m_pullup(m, toff + sizeof(struct tcphdr));	/*XXX*/
667 			if (m == NULL) {
668 				tcpstat.tcps_rcvshort++;
669 				return;
670 			}
671 		}
672 		ip6 = mtod(m, struct ip6_hdr *);
673 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
674 #else
675 		ip6 = mtod(m, struct ip6_hdr *);
676 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
677 			sizeof(struct tcphdr));
678 		if (th == NULL) {
679 			tcpstat.tcps_rcvshort++;
680 			return;
681 		}
682 #endif
683 
684 		/* Be proactive about malicious use of IPv4 mapped address */
685 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
686 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
687 			/* XXX stat */
688 			goto drop;
689 		}
690 
691 		/*
692 		 * Make sure destination address is not multicast.
693 		 * Source address checked in ip6_input().
694 		 */
695 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
696 			/* XXX stat */
697 			goto drop;
698 		}
699 
700 		/* We do the checksum after PCB lookup... */
701 		len = m->m_pkthdr.len;
702 		tlen = len - toff;
703 		break;
704 #endif
705 	default:
706 		m_freem(m);
707 		return;
708 	}
709 
710 	/*
711 	 * Check that TCP offset makes sense,
712 	 * pull out TCP options and adjust length.		XXX
713 	 */
714 	off = th->th_off << 2;
715 	if (off < sizeof (struct tcphdr) || off > tlen) {
716 		tcpstat.tcps_rcvbadoff++;
717 		goto drop;
718 	}
719 	tlen -= off;
720 
721 	/*
722 	 * tcp_input() has been modified to use tlen to mean the TCP data
723 	 * length throughout the function.  Other functions can use
724 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
725 	 * rja
726 	 */
727 
728 	if (off > sizeof (struct tcphdr)) {
729 #ifndef PULLDOWN_TEST
730 		if (m->m_len < toff + off) {
731 			if ((m = m_pullup(m, toff + off)) == 0) {
732 				tcpstat.tcps_rcvshort++;
733 				return;
734 			}
735 			switch (af) {
736 			case AF_INET:
737 				ip = mtod(m, struct ip *);
738 				break;
739 #ifdef INET6
740 			case AF_INET6:
741 				ip6 = mtod(m, struct ip6_hdr *);
742 				break;
743 #endif
744 			}
745 			th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
746 		}
747 #else
748 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
749 		if (th == NULL) {
750 			tcpstat.tcps_rcvshort++;
751 			return;
752 		}
753 		/*
754 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
755 		 * (as they're before toff) and we don't need to update those.
756 		 */
757 #endif
758 		optlen = off - sizeof (struct tcphdr);
759 		optp = ((caddr_t)th) + sizeof(struct tcphdr);
760 		/*
761 		 * Do quick retrieval of timestamp options ("options
762 		 * prediction?").  If timestamp is the only option and it's
763 		 * formatted as recommended in RFC 1323 appendix A, we
764 		 * quickly get the values now and not bother calling
765 		 * tcp_dooptions(), etc.
766 		 */
767 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
768 		     (optlen > TCPOLEN_TSTAMP_APPA &&
769 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
770 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
771 		     (th->th_flags & TH_SYN) == 0) {
772 			opti.ts_present = 1;
773 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
774 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
775 			optp = NULL;	/* we've parsed the options */
776 		}
777 	}
778 	tiflags = th->th_flags;
779 
780 	/*
781 	 * Locate pcb for segment.
782 	 */
783 findpcb:
784 	inp = NULL;
785 #ifdef INET6
786 	in6p = NULL;
787 #endif
788 	switch (af) {
789 	case AF_INET:
790 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
791 		    ip->ip_dst, th->th_dport);
792 		if (inp == 0) {
793 			++tcpstat.tcps_pcbhashmiss;
794 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
795 		}
796 #if defined(INET6) && !defined(TCP6)
797 		if (inp == 0) {
798 			struct in6_addr s, d;
799 
800 			/* mapped addr case */
801 			bzero(&s, sizeof(s));
802 			s.s6_addr16[5] = htons(0xffff);
803 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
804 			bzero(&d, sizeof(d));
805 			d.s6_addr16[5] = htons(0xffff);
806 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
807 			in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
808 				&d, th->th_dport, 0);
809 			if (in6p == 0) {
810 				++tcpstat.tcps_pcbhashmiss;
811 				in6p = in6_pcblookup_bind(&tcb6, &d,
812 					th->th_dport, 0);
813 			}
814 		}
815 #endif
816 #ifndef INET6
817 		if (inp == 0)
818 #else
819 		if (inp == 0 && in6p == 0)
820 #endif
821 		{
822 			++tcpstat.tcps_noport;
823 			if (tcp_log_refused && (tiflags & TH_SYN)) {
824 #ifndef INET6
825 				char src[4*sizeof "123"];
826 				char dst[4*sizeof "123"];
827 #else
828 				char src[INET6_ADDRSTRLEN];
829 				char dst[INET6_ADDRSTRLEN];
830 #endif
831 				if (ip) {
832 					strcpy(src, inet_ntoa(ip->ip_src));
833 					strcpy(dst, inet_ntoa(ip->ip_dst));
834 				}
835 #ifdef INET6
836 				else if (ip6) {
837 					strcpy(src, ip6_sprintf(&ip6->ip6_src));
838 					strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
839 				}
840 #endif
841 				else {
842 					strcpy(src, "(unknown)");
843 					strcpy(dst, "(unknown)");
844 				}
845 				log(LOG_INFO,
846 				    "Connection attempt to TCP %s:%d from %s:%d\n",
847 				    dst, ntohs(th->th_dport),
848 				    src, ntohs(th->th_sport));
849 			}
850 			TCP_FIELDS_TO_HOST(th);
851 			goto dropwithreset_ratelim;
852 		}
853 #ifdef IPSEC
854 		if (inp && ipsec4_in_reject(m, inp)) {
855 			ipsecstat.in_polvio++;
856 			goto drop;
857 		}
858 #ifdef INET6
859 		else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
860 			ipsecstat.in_polvio++;
861 			goto drop;
862 		}
863 #endif
864 #endif /*IPSEC*/
865 		break;
866 #if defined(INET6) && !defined(TCP6)
867 	case AF_INET6:
868 	    {
869 		int faith;
870 
871 #if defined(NFAITH) && NFAITH > 0
872 		if (m->m_pkthdr.rcvif
873 		 && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
874 			faith = 1;
875 		} else
876 			faith = 0;
877 #else
878 		faith = 0;
879 #endif
880 		in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
881 			&ip6->ip6_dst, th->th_dport, faith);
882 		if (in6p == NULL) {
883 			++tcpstat.tcps_pcbhashmiss;
884 			in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
885 				th->th_dport, faith);
886 		}
887 		if (in6p == NULL) {
888 			++tcpstat.tcps_noport;
889 			TCP_FIELDS_TO_HOST(th);
890 			goto dropwithreset_ratelim;
891 		}
892 #ifdef IPSEC
893 		if (ipsec6_in_reject(m, in6p)) {
894 			ipsec6stat.in_polvio++;
895 			goto drop;
896 		}
897 #endif /*IPSEC*/
898 		break;
899 	    }
900 #endif
901 	}
902 
903 	/*
904 	 * If the state is CLOSED (i.e., TCB does not exist) then
905 	 * all data in the incoming segment is discarded.
906 	 * If the TCB exists but is in CLOSED state, it is embryonic,
907 	 * but should either do a listen or a connect soon.
908 	 */
909 	tp = NULL;
910 	so = NULL;
911 	if (inp) {
912 		tp = intotcpcb(inp);
913 		so = inp->inp_socket;
914 	}
915 #ifdef INET6
916 	else if (in6p) {
917 		tp = in6totcpcb(in6p);
918 		so = in6p->in6p_socket;
919 	}
920 #endif
921 	if (tp == 0) {
922 		TCP_FIELDS_TO_HOST(th);
923 		goto dropwithreset_ratelim;
924 	}
925 	if (tp->t_state == TCPS_CLOSED)
926 		goto drop;
927 
928 	/*
929 	 * Checksum extended TCP header and data.
930 	 */
931 	switch (af) {
932 	case AF_INET:
933 #ifndef PULLDOWN_TEST
934 	    {
935 		struct ipovly *ipov;
936 		ipov = (struct ipovly *)ip;
937 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
938 		ipov->ih_len = htons(tlen + off);
939 
940 		if (in_cksum(m, len) != 0) {
941 			tcpstat.tcps_rcvbadsum++;
942 			goto drop;
943 		}
944 	    }
945 #else
946 		if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0) {
947 			tcpstat.tcps_rcvbadsum++;
948 			goto drop;
949 		}
950 #endif
951 		break;
952 
953 #ifdef INET6
954 	case AF_INET6:
955 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0) {
956 			tcpstat.tcps_rcvbadsum++;
957 			goto drop;
958 		}
959 		break;
960 #endif
961 	}
962 
963 	TCP_FIELDS_TO_HOST(th);
964 
965 	/* Unscale the window into a 32-bit value. */
966 	if ((tiflags & TH_SYN) == 0)
967 		tiwin = th->th_win << tp->snd_scale;
968 	else
969 		tiwin = th->th_win;
970 
971 #ifdef INET6
972 	/* save packet options if user wanted */
973 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
974 		if (in6p->in6p_options) {
975 			m_freem(in6p->in6p_options);
976 			in6p->in6p_options = 0;
977 		}
978 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
979 	}
980 #endif
981 
982 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
983 		union syn_cache_sa src;
984 		union syn_cache_sa dst;
985 
986 		bzero(&src, sizeof(src));
987 		bzero(&dst, sizeof(dst));
988 		switch (af) {
989 		case AF_INET:
990 			src.sin.sin_len = sizeof(struct sockaddr_in);
991 			src.sin.sin_family = AF_INET;
992 			src.sin.sin_addr = ip->ip_src;
993 			src.sin.sin_port = th->th_sport;
994 
995 			dst.sin.sin_len = sizeof(struct sockaddr_in);
996 			dst.sin.sin_family = AF_INET;
997 			dst.sin.sin_addr = ip->ip_dst;
998 			dst.sin.sin_port = th->th_dport;
999 			break;
1000 #ifdef INET6
1001 		case AF_INET6:
1002 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1003 			src.sin6.sin6_family = AF_INET6;
1004 			src.sin6.sin6_addr = ip6->ip6_src;
1005 			src.sin6.sin6_port = th->th_sport;
1006 
1007 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1008 			dst.sin6.sin6_family = AF_INET6;
1009 			dst.sin6.sin6_addr = ip6->ip6_dst;
1010 			dst.sin6.sin6_port = th->th_dport;
1011 			break;
1012 #endif /* INET6 */
1013 		default:
1014 			goto badsyn;	/*sanity*/
1015 		}
1016 
1017 		if (so->so_options & SO_DEBUG) {
1018 			ostate = tp->t_state;
1019 
1020 			tcp_saveti = NULL;
1021 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1022 				goto nosave;
1023 
1024 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1025 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1026 				if (!tcp_saveti)
1027 					goto nosave;
1028 			} else {
1029 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1030 				if (!tcp_saveti)
1031 					goto nosave;
1032 				tcp_saveti->m_len = iphlen;
1033 				m_copydata(m, 0, iphlen,
1034 				    mtod(tcp_saveti, caddr_t));
1035 			}
1036 
1037 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1038 				m_freem(tcp_saveti);
1039 				tcp_saveti = NULL;
1040 			} else {
1041 				tcp_saveti->m_len += sizeof(struct tcphdr);
1042 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1043 				    sizeof(struct tcphdr));
1044 			}
1045 			if (tcp_saveti) {
1046 				/*
1047 				 * need to recover version # field, which was
1048 				 * overwritten on ip_cksum computation.
1049 				 */
1050 				struct ip *sip;
1051 				sip = mtod(tcp_saveti, struct ip *);
1052 				switch (af) {
1053 				case AF_INET:
1054 					sip->ip_v = 4;
1055 					break;
1056 #ifdef INET6
1057 				case AF_INET6:
1058 					sip->ip_v = 6;
1059 					break;
1060 #endif
1061 				}
1062 			}
1063 	nosave:;
1064 		}
1065 		if (so->so_options & SO_ACCEPTCONN) {
1066   			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1067 				if (tiflags & TH_RST) {
1068 					syn_cache_reset(&src.sa, &dst.sa, th);
1069 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1070 				    (TH_ACK|TH_SYN)) {
1071 					/*
1072 					 * Received a SYN,ACK.  This should
1073 					 * never happen while we are in
1074 					 * LISTEN.  Send an RST.
1075 					 */
1076 					goto badsyn;
1077 				} else if (tiflags & TH_ACK) {
1078 					so = syn_cache_get(&src.sa, &dst.sa,
1079 						th, toff, tlen, so, m);
1080 					if (so == NULL) {
1081 						/*
1082 						 * We don't have a SYN for
1083 						 * this ACK; send an RST.
1084 						 */
1085 						goto badsyn;
1086 					} else if (so ==
1087 					    (struct socket *)(-1)) {
1088 						/*
1089 						 * We were unable to create
1090 						 * the connection.  If the
1091 						 * 3-way handshake was
1092 						 * completed, and RST has
1093 						 * been sent to the peer.
1094 						 * Since the mbuf might be
1095 						 * in use for the reply,
1096 						 * do not free it.
1097 						 */
1098 						m = NULL;
1099 					} else {
1100 						/*
1101 						 * We have created a
1102 						 * full-blown connection.
1103 						 */
1104 						tp = NULL;
1105 						inp = NULL;
1106 #ifdef INET6
1107 						in6p = NULL;
1108 #endif
1109 						switch (so->so_proto->pr_domain->dom_family) {
1110 						case AF_INET:
1111 							inp = sotoinpcb(so);
1112 							tp = intotcpcb(inp);
1113 							break;
1114 #ifdef INET6
1115 						case AF_INET6:
1116 							in6p = sotoin6pcb(so);
1117 							tp = in6totcpcb(in6p);
1118 							break;
1119 #endif
1120 						}
1121 						if (tp == NULL)
1122 							goto badsyn;	/*XXX*/
1123 						tiwin <<= tp->snd_scale;
1124 						goto after_listen;
1125 					}
1126   				} else {
1127 					/*
1128 					 * None of RST, SYN or ACK was set.
1129 					 * This is an invalid packet for a
1130 					 * TCB in LISTEN state.  Send a RST.
1131 					 */
1132 					goto badsyn;
1133 				}
1134   			} else {
1135 				/*
1136 				 * Received a SYN.
1137 				 */
1138 
1139 				/*
1140 				 * LISTEN socket received a SYN
1141 				 * from itself?  This can't possibly
1142 				 * be valid; drop the packet.
1143 				 */
1144 				if (th->th_sport == th->th_dport) {
1145 					int i;
1146 
1147 					switch (af) {
1148 					case AF_INET:
1149 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1150 						break;
1151 #ifdef INET6
1152 					case AF_INET6:
1153 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1154 						break;
1155 #endif
1156 					default:
1157 						i = 1;
1158 					}
1159 					if (i) {
1160 						tcpstat.tcps_badsyn++;
1161 						goto drop;
1162 					}
1163 				}
1164 
1165 				/*
1166 				 * SYN looks ok; create compressed TCP
1167 				 * state for it.
1168 				 */
1169 				if (so->so_qlen <= so->so_qlimit &&
1170 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1171 						so, m, optp, optlen, &opti))
1172 					m = NULL;
1173 			}
1174 			goto drop;
1175 		}
1176 	}
1177 
1178 after_listen:
1179 #ifdef DIAGNOSTIC
1180 	/*
1181 	 * Should not happen now that all embryonic connections
1182 	 * are handled with compressed state.
1183 	 */
1184 	if (tp->t_state == TCPS_LISTEN)
1185 		panic("tcp_input: TCPS_LISTEN");
1186 #endif
1187 
1188 	/*
1189 	 * Segment received on connection.
1190 	 * Reset idle time and keep-alive timer.
1191 	 */
1192 	tp->t_idle = 0;
1193 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1194 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1195 
1196 	/*
1197 	 * Process options.
1198 	 */
1199 	if (optp)
1200 		tcp_dooptions(tp, optp, optlen, th, &opti);
1201 
1202 	/*
1203 	 * Header prediction: check for the two common cases
1204 	 * of a uni-directional data xfer.  If the packet has
1205 	 * no control flags, is in-sequence, the window didn't
1206 	 * change and we're not retransmitting, it's a
1207 	 * candidate.  If the length is zero and the ack moved
1208 	 * forward, we're the sender side of the xfer.  Just
1209 	 * free the data acked & wake any higher level process
1210 	 * that was blocked waiting for space.  If the length
1211 	 * is non-zero and the ack didn't move, we're the
1212 	 * receiver side.  If we're getting packets in-order
1213 	 * (the reassembly queue is empty), add the data to
1214 	 * the socket buffer and note that we need a delayed ack.
1215 	 */
1216 	if (tp->t_state == TCPS_ESTABLISHED &&
1217 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1218 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1219 	    th->th_seq == tp->rcv_nxt &&
1220 	    tiwin && tiwin == tp->snd_wnd &&
1221 	    tp->snd_nxt == tp->snd_max) {
1222 
1223 		/*
1224 		 * If last ACK falls within this segment's sequence numbers,
1225 		 *  record the timestamp.
1226 		 */
1227 		if (opti.ts_present &&
1228 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1229 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1230 			tp->ts_recent_age = tcp_now;
1231 			tp->ts_recent = opti.ts_val;
1232 		}
1233 
1234 		if (tlen == 0) {
1235 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1236 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1237 			    tp->snd_cwnd >= tp->snd_wnd &&
1238 			    tp->t_dupacks < tcprexmtthresh) {
1239 				/*
1240 				 * this is a pure ack for outstanding data.
1241 				 */
1242 				++tcpstat.tcps_predack;
1243 				if (opti.ts_present && opti.ts_ecr)
1244 					tcp_xmit_timer(tp,
1245 					    tcp_now - opti.ts_ecr + 1);
1246 				else if (tp->t_rtt &&
1247 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1248 					tcp_xmit_timer(tp, tp->t_rtt);
1249 				acked = th->th_ack - tp->snd_una;
1250 				tcpstat.tcps_rcvackpack++;
1251 				tcpstat.tcps_rcvackbyte += acked;
1252 				ND6_HINT(tp);
1253 				sbdrop(&so->so_snd, acked);
1254 				/*
1255 				 * We want snd_recover to track snd_una to
1256 				 * avoid sequence wraparound problems for
1257 				 * very large transfers.
1258 				 */
1259 				tp->snd_una = tp->snd_recover = th->th_ack;
1260 				m_freem(m);
1261 
1262 				/*
1263 				 * If all outstanding data are acked, stop
1264 				 * retransmit timer, otherwise restart timer
1265 				 * using current (possibly backed-off) value.
1266 				 * If process is waiting for space,
1267 				 * wakeup/selwakeup/signal.  If data
1268 				 * are ready to send, let tcp_output
1269 				 * decide between more output or persist.
1270 				 */
1271 				if (tp->snd_una == tp->snd_max)
1272 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1273 				else if (TCP_TIMER_ISARMED(tp,
1274 				    TCPT_PERSIST) == 0)
1275 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1276 					    tp->t_rxtcur);
1277 
1278 				sowwakeup(so);
1279 				if (so->so_snd.sb_cc)
1280 					(void) tcp_output(tp);
1281 				if (tcp_saveti)
1282 					m_freem(tcp_saveti);
1283 				return;
1284 			}
1285 		} else if (th->th_ack == tp->snd_una &&
1286 		    tp->segq.lh_first == NULL &&
1287 		    tlen <= sbspace(&so->so_rcv)) {
1288 			/*
1289 			 * this is a pure, in-sequence data packet
1290 			 * with nothing on the reassembly queue and
1291 			 * we have enough buffer space to take it.
1292 			 */
1293 			++tcpstat.tcps_preddat;
1294 			tp->rcv_nxt += tlen;
1295 			tcpstat.tcps_rcvpack++;
1296 			tcpstat.tcps_rcvbyte += tlen;
1297 			ND6_HINT(tp);
1298 			/*
1299 			 * Drop TCP, IP headers and TCP options then add data
1300 			 * to socket buffer.
1301 			 */
1302 			m_adj(m, toff + off);
1303 			sbappend(&so->so_rcv, m);
1304 			sorwakeup(so);
1305 			TCP_SETUP_ACK(tp, th);
1306 			if (tp->t_flags & TF_ACKNOW)
1307 				(void) tcp_output(tp);
1308 			if (tcp_saveti)
1309 				m_freem(tcp_saveti);
1310 			return;
1311 		}
1312 	}
1313 
1314 	/*
1315 	 * Compute mbuf offset to TCP data segment.
1316 	 */
1317 	hdroptlen = toff + off;
1318 
1319 	/*
1320 	 * Calculate amount of space in receive window,
1321 	 * and then do TCP input processing.
1322 	 * Receive window is amount of space in rcv queue,
1323 	 * but not less than advertised window.
1324 	 */
1325 	{ int win;
1326 
1327 	win = sbspace(&so->so_rcv);
1328 	if (win < 0)
1329 		win = 0;
1330 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1331 	}
1332 
1333 	switch (tp->t_state) {
1334 
1335 	/*
1336 	 * If the state is SYN_SENT:
1337 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1338 	 *	if seg contains a RST, then drop the connection.
1339 	 *	if seg does not contain SYN, then drop it.
1340 	 * Otherwise this is an acceptable SYN segment
1341 	 *	initialize tp->rcv_nxt and tp->irs
1342 	 *	if seg contains ack then advance tp->snd_una
1343 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1344 	 *	arrange for segment to be acked (eventually)
1345 	 *	continue processing rest of data/controls, beginning with URG
1346 	 */
1347 	case TCPS_SYN_SENT:
1348 		if ((tiflags & TH_ACK) &&
1349 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1350 		     SEQ_GT(th->th_ack, tp->snd_max)))
1351 			goto dropwithreset;
1352 		if (tiflags & TH_RST) {
1353 			if (tiflags & TH_ACK)
1354 				tp = tcp_drop(tp, ECONNREFUSED);
1355 			goto drop;
1356 		}
1357 		if ((tiflags & TH_SYN) == 0)
1358 			goto drop;
1359 		if (tiflags & TH_ACK) {
1360 			tp->snd_una = tp->snd_recover = th->th_ack;
1361 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1362 				tp->snd_nxt = tp->snd_una;
1363 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1364 		}
1365 		tp->irs = th->th_seq;
1366 		tcp_rcvseqinit(tp);
1367 		tp->t_flags |= TF_ACKNOW;
1368 		tcp_mss_from_peer(tp, opti.maxseg);
1369 
1370 		/*
1371 		 * Initialize the initial congestion window.  If we
1372 		 * had to retransmit the SYN, we must initialize cwnd
1373 		 * to 1 segment (i.e. the Loss Window).
1374 		 */
1375 		if (tp->t_flags & TF_SYN_REXMT)
1376 			tp->snd_cwnd = tp->t_peermss;
1377 		else
1378 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1379 			    tp->t_peermss);
1380 
1381 		tcp_rmx_rtt(tp);
1382 		if (tiflags & TH_ACK) {
1383 			tcpstat.tcps_connects++;
1384 			soisconnected(so);
1385 			tcp_established(tp);
1386 			/* Do window scaling on this connection? */
1387 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1388 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1389 				tp->snd_scale = tp->requested_s_scale;
1390 				tp->rcv_scale = tp->request_r_scale;
1391 			}
1392 			TCP_REASS_LOCK(tp);
1393 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1394 			TCP_REASS_UNLOCK(tp);
1395 			/*
1396 			 * if we didn't have to retransmit the SYN,
1397 			 * use its rtt as our initial srtt & rtt var.
1398 			 */
1399 			if (tp->t_rtt)
1400 				tcp_xmit_timer(tp, tp->t_rtt);
1401 		} else
1402 			tp->t_state = TCPS_SYN_RECEIVED;
1403 
1404 		/*
1405 		 * Advance th->th_seq to correspond to first data byte.
1406 		 * If data, trim to stay within window,
1407 		 * dropping FIN if necessary.
1408 		 */
1409 		th->th_seq++;
1410 		if (tlen > tp->rcv_wnd) {
1411 			todrop = tlen - tp->rcv_wnd;
1412 			m_adj(m, -todrop);
1413 			tlen = tp->rcv_wnd;
1414 			tiflags &= ~TH_FIN;
1415 			tcpstat.tcps_rcvpackafterwin++;
1416 			tcpstat.tcps_rcvbyteafterwin += todrop;
1417 		}
1418 		tp->snd_wl1 = th->th_seq - 1;
1419 		tp->rcv_up = th->th_seq;
1420 		goto step6;
1421 
1422 	/*
1423 	 * If the state is SYN_RECEIVED:
1424 	 *	If seg contains an ACK, but not for our SYN, drop the input
1425 	 *	and generate an RST.  See page 36, rfc793
1426 	 */
1427 	case TCPS_SYN_RECEIVED:
1428 		if ((tiflags & TH_ACK) &&
1429 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1430 		     SEQ_GT(th->th_ack, tp->snd_max)))
1431 			goto dropwithreset;
1432 		break;
1433 	}
1434 
1435 	/*
1436 	 * States other than LISTEN or SYN_SENT.
1437 	 * First check timestamp, if present.
1438 	 * Then check that at least some bytes of segment are within
1439 	 * receive window.  If segment begins before rcv_nxt,
1440 	 * drop leading data (and SYN); if nothing left, just ack.
1441 	 *
1442 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1443 	 * and it's less than ts_recent, drop it.
1444 	 */
1445 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1446 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1447 
1448 		/* Check to see if ts_recent is over 24 days old.  */
1449 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1450 			/*
1451 			 * Invalidate ts_recent.  If this segment updates
1452 			 * ts_recent, the age will be reset later and ts_recent
1453 			 * will get a valid value.  If it does not, setting
1454 			 * ts_recent to zero will at least satisfy the
1455 			 * requirement that zero be placed in the timestamp
1456 			 * echo reply when ts_recent isn't valid.  The
1457 			 * age isn't reset until we get a valid ts_recent
1458 			 * because we don't want out-of-order segments to be
1459 			 * dropped when ts_recent is old.
1460 			 */
1461 			tp->ts_recent = 0;
1462 		} else {
1463 			tcpstat.tcps_rcvduppack++;
1464 			tcpstat.tcps_rcvdupbyte += tlen;
1465 			tcpstat.tcps_pawsdrop++;
1466 			goto dropafterack;
1467 		}
1468 	}
1469 
1470 	todrop = tp->rcv_nxt - th->th_seq;
1471 	if (todrop > 0) {
1472 		if (tiflags & TH_SYN) {
1473 			tiflags &= ~TH_SYN;
1474 			th->th_seq++;
1475 			if (th->th_urp > 1)
1476 				th->th_urp--;
1477 			else {
1478 				tiflags &= ~TH_URG;
1479 				th->th_urp = 0;
1480 			}
1481 			todrop--;
1482 		}
1483 		if (todrop > tlen ||
1484 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1485 			/*
1486 			 * Any valid FIN must be to the left of the window.
1487 			 * At this point the FIN must be a duplicate or
1488 			 * out of sequence; drop it.
1489 			 */
1490 			tiflags &= ~TH_FIN;
1491 			/*
1492 			 * Send an ACK to resynchronize and drop any data.
1493 			 * But keep on processing for RST or ACK.
1494 			 */
1495 			tp->t_flags |= TF_ACKNOW;
1496 			todrop = tlen;
1497 			tcpstat.tcps_rcvdupbyte += todrop;
1498 			tcpstat.tcps_rcvduppack++;
1499 		} else {
1500 			tcpstat.tcps_rcvpartduppack++;
1501 			tcpstat.tcps_rcvpartdupbyte += todrop;
1502 		}
1503 		hdroptlen += todrop;	/*drop from head afterwards*/
1504 		th->th_seq += todrop;
1505 		tlen -= todrop;
1506 		if (th->th_urp > todrop)
1507 			th->th_urp -= todrop;
1508 		else {
1509 			tiflags &= ~TH_URG;
1510 			th->th_urp = 0;
1511 		}
1512 	}
1513 
1514 	/*
1515 	 * If new data are received on a connection after the
1516 	 * user processes are gone, then RST the other end.
1517 	 */
1518 	if ((so->so_state & SS_NOFDREF) &&
1519 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1520 		tp = tcp_close(tp);
1521 		tcpstat.tcps_rcvafterclose++;
1522 		goto dropwithreset;
1523 	}
1524 
1525 	/*
1526 	 * If segment ends after window, drop trailing data
1527 	 * (and PUSH and FIN); if nothing left, just ACK.
1528 	 */
1529 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1530 	if (todrop > 0) {
1531 		tcpstat.tcps_rcvpackafterwin++;
1532 		if (todrop >= tlen) {
1533 			tcpstat.tcps_rcvbyteafterwin += tlen;
1534 			/*
1535 			 * If a new connection request is received
1536 			 * while in TIME_WAIT, drop the old connection
1537 			 * and start over if the sequence numbers
1538 			 * are above the previous ones.
1539 			 */
1540 			if (tiflags & TH_SYN &&
1541 			    tp->t_state == TCPS_TIME_WAIT &&
1542 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1543 				iss = tcp_new_iss(tp, sizeof(struct tcpcb),
1544 						  tp->snd_nxt);
1545 				tp = tcp_close(tp);
1546 				goto findpcb;
1547 			}
1548 			/*
1549 			 * If window is closed can only take segments at
1550 			 * window edge, and have to drop data and PUSH from
1551 			 * incoming segments.  Continue processing, but
1552 			 * remember to ack.  Otherwise, drop segment
1553 			 * and ack.
1554 			 */
1555 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1556 				tp->t_flags |= TF_ACKNOW;
1557 				tcpstat.tcps_rcvwinprobe++;
1558 			} else
1559 				goto dropafterack;
1560 		} else
1561 			tcpstat.tcps_rcvbyteafterwin += todrop;
1562 		m_adj(m, -todrop);
1563 		tlen -= todrop;
1564 		tiflags &= ~(TH_PUSH|TH_FIN);
1565 	}
1566 
1567 	/*
1568 	 * If last ACK falls within this segment's sequence numbers,
1569 	 * and the timestamp is newer, record it.
1570 	 */
1571 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1572 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1573 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1574 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1575 		tp->ts_recent_age = tcp_now;
1576 		tp->ts_recent = opti.ts_val;
1577 	}
1578 
1579 	/*
1580 	 * If the RST bit is set examine the state:
1581 	 *    SYN_RECEIVED STATE:
1582 	 *	If passive open, return to LISTEN state.
1583 	 *	If active open, inform user that connection was refused.
1584 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1585 	 *	Inform user that connection was reset, and close tcb.
1586 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1587 	 *	Close the tcb.
1588 	 */
1589 	if (tiflags&TH_RST) switch (tp->t_state) {
1590 
1591 	case TCPS_SYN_RECEIVED:
1592 		so->so_error = ECONNREFUSED;
1593 		goto close;
1594 
1595 	case TCPS_ESTABLISHED:
1596 	case TCPS_FIN_WAIT_1:
1597 	case TCPS_FIN_WAIT_2:
1598 	case TCPS_CLOSE_WAIT:
1599 		so->so_error = ECONNRESET;
1600 	close:
1601 		tp->t_state = TCPS_CLOSED;
1602 		tcpstat.tcps_drops++;
1603 		tp = tcp_close(tp);
1604 		goto drop;
1605 
1606 	case TCPS_CLOSING:
1607 	case TCPS_LAST_ACK:
1608 	case TCPS_TIME_WAIT:
1609 		tp = tcp_close(tp);
1610 		goto drop;
1611 	}
1612 
1613 	/*
1614 	 * If a SYN is in the window, then this is an
1615 	 * error and we send an RST and drop the connection.
1616 	 */
1617 	if (tiflags & TH_SYN) {
1618 		tp = tcp_drop(tp, ECONNRESET);
1619 		goto dropwithreset;
1620 	}
1621 
1622 	/*
1623 	 * If the ACK bit is off we drop the segment and return.
1624 	 */
1625 	if ((tiflags & TH_ACK) == 0) {
1626 		if (tp->t_flags & TF_ACKNOW)
1627 			goto dropafterack;
1628 		else
1629 			goto drop;
1630 	}
1631 
1632 	/*
1633 	 * Ack processing.
1634 	 */
1635 	switch (tp->t_state) {
1636 
1637 	/*
1638 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1639 	 * ESTABLISHED state and continue processing, otherwise
1640 	 * send an RST.
1641 	 */
1642 	case TCPS_SYN_RECEIVED:
1643 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
1644 		    SEQ_GT(th->th_ack, tp->snd_max))
1645 			goto dropwithreset;
1646 		tcpstat.tcps_connects++;
1647 		soisconnected(so);
1648 		tcp_established(tp);
1649 		/* Do window scaling? */
1650 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1651 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1652 			tp->snd_scale = tp->requested_s_scale;
1653 			tp->rcv_scale = tp->request_r_scale;
1654 		}
1655 		TCP_REASS_LOCK(tp);
1656 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1657 		TCP_REASS_UNLOCK(tp);
1658 		tp->snd_wl1 = th->th_seq - 1;
1659 		/* fall into ... */
1660 
1661 	/*
1662 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1663 	 * ACKs.  If the ack is in the range
1664 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1665 	 * then advance tp->snd_una to th->th_ack and drop
1666 	 * data from the retransmission queue.  If this ACK reflects
1667 	 * more up to date window information we update our window information.
1668 	 */
1669 	case TCPS_ESTABLISHED:
1670 	case TCPS_FIN_WAIT_1:
1671 	case TCPS_FIN_WAIT_2:
1672 	case TCPS_CLOSE_WAIT:
1673 	case TCPS_CLOSING:
1674 	case TCPS_LAST_ACK:
1675 	case TCPS_TIME_WAIT:
1676 
1677 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1678 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1679 				tcpstat.tcps_rcvdupack++;
1680 				/*
1681 				 * If we have outstanding data (other than
1682 				 * a window probe), this is a completely
1683 				 * duplicate ack (ie, window info didn't
1684 				 * change), the ack is the biggest we've
1685 				 * seen and we've seen exactly our rexmt
1686 				 * threshhold of them, assume a packet
1687 				 * has been dropped and retransmit it.
1688 				 * Kludge snd_nxt & the congestion
1689 				 * window so we send only this one
1690 				 * packet.
1691 				 *
1692 				 * We know we're losing at the current
1693 				 * window size so do congestion avoidance
1694 				 * (set ssthresh to half the current window
1695 				 * and pull our congestion window back to
1696 				 * the new ssthresh).
1697 				 *
1698 				 * Dup acks mean that packets have left the
1699 				 * network (they're now cached at the receiver)
1700 				 * so bump cwnd by the amount in the receiver
1701 				 * to keep a constant cwnd packets in the
1702 				 * network.
1703 				 */
1704 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1705 				    th->th_ack != tp->snd_una)
1706 					tp->t_dupacks = 0;
1707 				else if (++tp->t_dupacks == tcprexmtthresh) {
1708 					tcp_seq onxt = tp->snd_nxt;
1709 					u_int win =
1710 					    min(tp->snd_wnd, tp->snd_cwnd) /
1711 					    2 /	tp->t_segsz;
1712 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
1713 					    tp->snd_recover)) {
1714 						/*
1715 						 * False fast retransmit after
1716 						 * timeout.  Do not cut window.
1717 						 */
1718 						tp->snd_cwnd += tp->t_segsz;
1719 						tp->t_dupacks = 0;
1720 						(void) tcp_output(tp);
1721 						goto drop;
1722 					}
1723 
1724 					if (win < 2)
1725 						win = 2;
1726 					tp->snd_ssthresh = win * tp->t_segsz;
1727 					tp->snd_recover = tp->snd_max;
1728 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1729 					tp->t_rtt = 0;
1730 					tp->snd_nxt = th->th_ack;
1731 					tp->snd_cwnd = tp->t_segsz;
1732 					(void) tcp_output(tp);
1733 					tp->snd_cwnd = tp->snd_ssthresh +
1734 					       tp->t_segsz * tp->t_dupacks;
1735 					if (SEQ_GT(onxt, tp->snd_nxt))
1736 						tp->snd_nxt = onxt;
1737 					goto drop;
1738 				} else if (tp->t_dupacks > tcprexmtthresh) {
1739 					tp->snd_cwnd += tp->t_segsz;
1740 					(void) tcp_output(tp);
1741 					goto drop;
1742 				}
1743 			} else
1744 				tp->t_dupacks = 0;
1745 			break;
1746 		}
1747 		/*
1748 		 * If the congestion window was inflated to account
1749 		 * for the other side's cached packets, retract it.
1750 		 */
1751 		if (tcp_do_newreno == 0) {
1752 			if (tp->t_dupacks >= tcprexmtthresh &&
1753 			    tp->snd_cwnd > tp->snd_ssthresh)
1754 				tp->snd_cwnd = tp->snd_ssthresh;
1755 			tp->t_dupacks = 0;
1756 		} else if (tp->t_dupacks >= tcprexmtthresh &&
1757 			   tcp_newreno(tp, th) == 0) {
1758 			tp->snd_cwnd = tp->snd_ssthresh;
1759 			/*
1760 			 * Window inflation should have left us with approx.
1761 			 * snd_ssthresh outstanding data.  But in case we
1762 			 * would be inclined to send a burst, better to do
1763 			 * it via the slow start mechanism.
1764 			 */
1765 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1766 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1767 				    + tp->t_segsz;
1768 			tp->t_dupacks = 0;
1769 		}
1770 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1771 			tcpstat.tcps_rcvacktoomuch++;
1772 			goto dropafterack;
1773 		}
1774 		acked = th->th_ack - tp->snd_una;
1775 		tcpstat.tcps_rcvackpack++;
1776 		tcpstat.tcps_rcvackbyte += acked;
1777 
1778 		/*
1779 		 * If we have a timestamp reply, update smoothed
1780 		 * round trip time.  If no timestamp is present but
1781 		 * transmit timer is running and timed sequence
1782 		 * number was acked, update smoothed round trip time.
1783 		 * Since we now have an rtt measurement, cancel the
1784 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1785 		 * Recompute the initial retransmit timer.
1786 		 */
1787 		if (opti.ts_present && opti.ts_ecr)
1788 			tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
1789 		else if (tp->t_rtt && SEQ_GT(th->th_ack, tp->t_rtseq))
1790 			tcp_xmit_timer(tp,tp->t_rtt);
1791 
1792 		/*
1793 		 * If all outstanding data is acked, stop retransmit
1794 		 * timer and remember to restart (more output or persist).
1795 		 * If there is more data to be acked, restart retransmit
1796 		 * timer, using current (possibly backed-off) value.
1797 		 */
1798 		if (th->th_ack == tp->snd_max) {
1799 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1800 			needoutput = 1;
1801 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1802 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1803 		/*
1804 		 * When new data is acked, open the congestion window.
1805 		 * If the window gives us less than ssthresh packets
1806 		 * in flight, open exponentially (segsz per packet).
1807 		 * Otherwise open linearly: segsz per window
1808 		 * (segsz^2 / cwnd per packet), plus a constant
1809 		 * fraction of a packet (segsz/8) to help larger windows
1810 		 * open quickly enough.
1811 		 */
1812 		{
1813 		u_int cw = tp->snd_cwnd;
1814 		u_int incr = tp->t_segsz;
1815 
1816 		if (cw > tp->snd_ssthresh)
1817 			incr = incr * incr / cw;
1818 		if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
1819 			tp->snd_cwnd = min(cw + incr,
1820 			    TCP_MAXWIN << tp->snd_scale);
1821 		}
1822 		ND6_HINT(tp);
1823 		if (acked > so->so_snd.sb_cc) {
1824 			tp->snd_wnd -= so->so_snd.sb_cc;
1825 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1826 			ourfinisacked = 1;
1827 		} else {
1828 			sbdrop(&so->so_snd, acked);
1829 			tp->snd_wnd -= acked;
1830 			ourfinisacked = 0;
1831 		}
1832 		sowwakeup(so);
1833 		/*
1834 		 * We want snd_recover to track snd_una to
1835 		 * avoid sequence wraparound problems for
1836 		 * very large transfers.
1837 		 */
1838 		tp->snd_una = tp->snd_recover = th->th_ack;
1839 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1840 			tp->snd_nxt = tp->snd_una;
1841 
1842 		switch (tp->t_state) {
1843 
1844 		/*
1845 		 * In FIN_WAIT_1 STATE in addition to the processing
1846 		 * for the ESTABLISHED state if our FIN is now acknowledged
1847 		 * then enter FIN_WAIT_2.
1848 		 */
1849 		case TCPS_FIN_WAIT_1:
1850 			if (ourfinisacked) {
1851 				/*
1852 				 * If we can't receive any more
1853 				 * data, then closing user can proceed.
1854 				 * Starting the timer is contrary to the
1855 				 * specification, but if we don't get a FIN
1856 				 * we'll hang forever.
1857 				 */
1858 				if (so->so_state & SS_CANTRCVMORE) {
1859 					soisdisconnected(so);
1860 					if (tcp_maxidle > 0)
1861 						TCP_TIMER_ARM(tp, TCPT_2MSL,
1862 						    tcp_maxidle);
1863 				}
1864 				tp->t_state = TCPS_FIN_WAIT_2;
1865 			}
1866 			break;
1867 
1868 	 	/*
1869 		 * In CLOSING STATE in addition to the processing for
1870 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1871 		 * then enter the TIME-WAIT state, otherwise ignore
1872 		 * the segment.
1873 		 */
1874 		case TCPS_CLOSING:
1875 			if (ourfinisacked) {
1876 				tp->t_state = TCPS_TIME_WAIT;
1877 				tcp_canceltimers(tp);
1878 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1879 				soisdisconnected(so);
1880 			}
1881 			break;
1882 
1883 		/*
1884 		 * In LAST_ACK, we may still be waiting for data to drain
1885 		 * and/or to be acked, as well as for the ack of our FIN.
1886 		 * If our FIN is now acknowledged, delete the TCB,
1887 		 * enter the closed state and return.
1888 		 */
1889 		case TCPS_LAST_ACK:
1890 			if (ourfinisacked) {
1891 				tp = tcp_close(tp);
1892 				goto drop;
1893 			}
1894 			break;
1895 
1896 		/*
1897 		 * In TIME_WAIT state the only thing that should arrive
1898 		 * is a retransmission of the remote FIN.  Acknowledge
1899 		 * it and restart the finack timer.
1900 		 */
1901 		case TCPS_TIME_WAIT:
1902 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1903 			goto dropafterack;
1904 		}
1905 	}
1906 
1907 step6:
1908 	/*
1909 	 * Update window information.
1910 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1911 	 */
1912 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1913 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
1914 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
1915 		/* keep track of pure window updates */
1916 		if (tlen == 0 &&
1917 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1918 			tcpstat.tcps_rcvwinupd++;
1919 		tp->snd_wnd = tiwin;
1920 		tp->snd_wl1 = th->th_seq;
1921 		tp->snd_wl2 = th->th_ack;
1922 		if (tp->snd_wnd > tp->max_sndwnd)
1923 			tp->max_sndwnd = tp->snd_wnd;
1924 		needoutput = 1;
1925 	}
1926 
1927 	/*
1928 	 * Process segments with URG.
1929 	 */
1930 	if ((tiflags & TH_URG) && th->th_urp &&
1931 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1932 		/*
1933 		 * This is a kludge, but if we receive and accept
1934 		 * random urgent pointers, we'll crash in
1935 		 * soreceive.  It's hard to imagine someone
1936 		 * actually wanting to send this much urgent data.
1937 		 */
1938 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
1939 			th->th_urp = 0;			/* XXX */
1940 			tiflags &= ~TH_URG;		/* XXX */
1941 			goto dodata;			/* XXX */
1942 		}
1943 		/*
1944 		 * If this segment advances the known urgent pointer,
1945 		 * then mark the data stream.  This should not happen
1946 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1947 		 * a FIN has been received from the remote side.
1948 		 * In these states we ignore the URG.
1949 		 *
1950 		 * According to RFC961 (Assigned Protocols),
1951 		 * the urgent pointer points to the last octet
1952 		 * of urgent data.  We continue, however,
1953 		 * to consider it to indicate the first octet
1954 		 * of data past the urgent section as the original
1955 		 * spec states (in one of two places).
1956 		 */
1957 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
1958 			tp->rcv_up = th->th_seq + th->th_urp;
1959 			so->so_oobmark = so->so_rcv.sb_cc +
1960 			    (tp->rcv_up - tp->rcv_nxt) - 1;
1961 			if (so->so_oobmark == 0)
1962 				so->so_state |= SS_RCVATMARK;
1963 			sohasoutofband(so);
1964 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1965 		}
1966 		/*
1967 		 * Remove out of band data so doesn't get presented to user.
1968 		 * This can happen independent of advancing the URG pointer,
1969 		 * but if two URG's are pending at once, some out-of-band
1970 		 * data may creep in... ick.
1971 		 */
1972 		if (th->th_urp <= (u_int16_t) tlen
1973 #ifdef SO_OOBINLINE
1974 		     && (so->so_options & SO_OOBINLINE) == 0
1975 #endif
1976 		     )
1977 			tcp_pulloutofband(so, th, m, hdroptlen);
1978 	} else
1979 		/*
1980 		 * If no out of band data is expected,
1981 		 * pull receive urgent pointer along
1982 		 * with the receive window.
1983 		 */
1984 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1985 			tp->rcv_up = tp->rcv_nxt;
1986 dodata:							/* XXX */
1987 
1988 	/*
1989 	 * Process the segment text, merging it into the TCP sequencing queue,
1990 	 * and arranging for acknowledgement of receipt if necessary.
1991 	 * This process logically involves adjusting tp->rcv_wnd as data
1992 	 * is presented to the user (this happens in tcp_usrreq.c,
1993 	 * case PRU_RCVD).  If a FIN has already been received on this
1994 	 * connection then we just ignore the text.
1995 	 */
1996 	if ((tlen || (tiflags & TH_FIN)) &&
1997 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1998 		/*
1999 		 * Insert segment ti into reassembly queue of tcp with
2000 		 * control block tp.  Return TH_FIN if reassembly now includes
2001 		 * a segment with FIN.  The macro form does the common case
2002 		 * inline (segment is the next to be received on an
2003 		 * established connection, and the queue is empty),
2004 		 * avoiding linkage into and removal from the queue and
2005 		 * repetition of various conversions.
2006 		 * Set DELACK for segments received in order, but ack
2007 		 * immediately when segments are out of order
2008 		 * (so fast retransmit can work).
2009 		 */
2010 		/* NOTE: this was TCP_REASS() macro, but used only once */
2011 		TCP_REASS_LOCK(tp);
2012 		if (th->th_seq == tp->rcv_nxt &&
2013 		    tp->segq.lh_first == NULL &&
2014 		    tp->t_state == TCPS_ESTABLISHED) {
2015 			TCP_SETUP_ACK(tp, th);
2016 			tp->rcv_nxt += tlen;
2017 			tiflags = th->th_flags & TH_FIN;
2018 			tcpstat.tcps_rcvpack++;
2019 			tcpstat.tcps_rcvbyte += tlen;
2020 			ND6_HINT(tp);
2021 			m_adj(m, hdroptlen);
2022 			sbappend(&(so)->so_rcv, m);
2023 			sorwakeup(so);
2024 		} else {
2025 			m_adj(m, hdroptlen);
2026 			tiflags = tcp_reass(tp, th, m, &tlen);
2027 			tp->t_flags |= TF_ACKNOW;
2028 		}
2029 		TCP_REASS_UNLOCK(tp);
2030 
2031 		/*
2032 		 * Note the amount of data that peer has sent into
2033 		 * our window, in order to estimate the sender's
2034 		 * buffer size.
2035 		 */
2036 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2037 	} else {
2038 		m_freem(m);
2039 		m = NULL;
2040 		tiflags &= ~TH_FIN;
2041 	}
2042 
2043 	/*
2044 	 * If FIN is received ACK the FIN and let the user know
2045 	 * that the connection is closing.  Ignore a FIN received before
2046 	 * the connection is fully established.
2047 	 */
2048 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2049 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2050 			socantrcvmore(so);
2051 			tp->t_flags |= TF_ACKNOW;
2052 			tp->rcv_nxt++;
2053 		}
2054 		switch (tp->t_state) {
2055 
2056 	 	/*
2057 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2058 		 */
2059 		case TCPS_ESTABLISHED:
2060 			tp->t_state = TCPS_CLOSE_WAIT;
2061 			break;
2062 
2063 	 	/*
2064 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2065 		 * enter the CLOSING state.
2066 		 */
2067 		case TCPS_FIN_WAIT_1:
2068 			tp->t_state = TCPS_CLOSING;
2069 			break;
2070 
2071 	 	/*
2072 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2073 		 * starting the time-wait timer, turning off the other
2074 		 * standard timers.
2075 		 */
2076 		case TCPS_FIN_WAIT_2:
2077 			tp->t_state = TCPS_TIME_WAIT;
2078 			tcp_canceltimers(tp);
2079 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2080 			soisdisconnected(so);
2081 			break;
2082 
2083 		/*
2084 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2085 		 */
2086 		case TCPS_TIME_WAIT:
2087 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2088 			break;
2089 		}
2090 	}
2091 	if (so->so_options & SO_DEBUG) {
2092 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2093 	}
2094 
2095 	/*
2096 	 * Return any desired output.
2097 	 */
2098 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2099 		(void) tcp_output(tp);
2100 	if (tcp_saveti)
2101 		m_freem(tcp_saveti);
2102 	return;
2103 
2104 badsyn:
2105 	/*
2106 	 * Received a bad SYN.  Increment counters and dropwithreset.
2107 	 */
2108 	tcpstat.tcps_badsyn++;
2109 	tp = NULL;
2110 	goto dropwithreset;
2111 
2112 dropafterack:
2113 	/*
2114 	 * Generate an ACK dropping incoming segment if it occupies
2115 	 * sequence space, where the ACK reflects our state.
2116 	 */
2117 	if (tiflags & TH_RST)
2118 		goto drop;
2119 	m_freem(m);
2120 	tp->t_flags |= TF_ACKNOW;
2121 	(void) tcp_output(tp);
2122 	if (tcp_saveti)
2123 		m_freem(tcp_saveti);
2124 	return;
2125 
2126 dropwithreset_ratelim:
2127 	/*
2128 	 * We may want to rate-limit RSTs in certain situations,
2129 	 * particularly if we are sending an RST in response to
2130 	 * an attempt to connect to or otherwise communicate with
2131 	 * a port for which we have no socket.
2132 	 */
2133 	if (ratecheck(&tcp_rst_ratelim_last, &tcp_rst_ratelim) == 0) {
2134 		/* XXX stat */
2135 		goto drop;
2136 	}
2137 	/* ...fall into dropwithreset... */
2138 
2139 dropwithreset:
2140 	/*
2141 	 * Generate a RST, dropping incoming segment.
2142 	 * Make ACK acceptable to originator of segment.
2143 	 */
2144 	if (tiflags & TH_RST)
2145 		goto drop;
2146     {
2147 	/*
2148 	 * need to recover version # field, which was overwritten on
2149 	 * ip_cksum computation.
2150 	 */
2151 	struct ip *sip;
2152 	sip = mtod(m, struct ip *);
2153 	switch (af) {
2154 	case AF_INET:
2155 		sip->ip_v = 4;
2156 		break;
2157 #ifdef INET6
2158 	case AF_INET6:
2159 		sip->ip_v = 6;
2160 		break;
2161 #endif
2162 	}
2163     }
2164 	if (tiflags & TH_ACK)
2165 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2166 	else {
2167 		if (tiflags & TH_SYN)
2168 			tlen++;
2169 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2170 		    TH_RST|TH_ACK);
2171 	}
2172 	if (tcp_saveti)
2173 		m_freem(tcp_saveti);
2174 	return;
2175 
2176 drop:
2177 	/*
2178 	 * Drop space held by incoming segment and return.
2179 	 */
2180 	if (tp) {
2181 		if (tp->t_inpcb)
2182 			so = tp->t_inpcb->inp_socket;
2183 #ifdef INET6
2184 		else if (tp->t_in6pcb)
2185 			so = tp->t_in6pcb->in6p_socket;
2186 #endif
2187 		else
2188 			so = NULL;
2189 		if (so && (so->so_options & SO_DEBUG) != 0)
2190 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2191 	}
2192 	if (tcp_saveti)
2193 		m_freem(tcp_saveti);
2194 	m_freem(m);
2195 	return;
2196 }
2197 
2198 void
2199 tcp_dooptions(tp, cp, cnt, th, oi)
2200 	struct tcpcb *tp;
2201 	u_char *cp;
2202 	int cnt;
2203 	struct tcphdr *th;
2204 	struct tcp_opt_info *oi;
2205 {
2206 	u_int16_t mss;
2207 	int opt, optlen;
2208 
2209 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2210 		opt = cp[0];
2211 		if (opt == TCPOPT_EOL)
2212 			break;
2213 		if (opt == TCPOPT_NOP)
2214 			optlen = 1;
2215 		else {
2216 			if (cnt < 2)
2217 				break;
2218 			optlen = cp[1];
2219 			if (optlen < 2 || optlen > cnt)
2220 				break;
2221 		}
2222 		switch (opt) {
2223 
2224 		default:
2225 			continue;
2226 
2227 		case TCPOPT_MAXSEG:
2228 			if (optlen != TCPOLEN_MAXSEG)
2229 				continue;
2230 			if (!(th->th_flags & TH_SYN))
2231 				continue;
2232 			bcopy(cp + 2, &mss, sizeof(mss));
2233 			oi->maxseg = ntohs(mss);
2234 			break;
2235 
2236 		case TCPOPT_WINDOW:
2237 			if (optlen != TCPOLEN_WINDOW)
2238 				continue;
2239 			if (!(th->th_flags & TH_SYN))
2240 				continue;
2241 			tp->t_flags |= TF_RCVD_SCALE;
2242 			tp->requested_s_scale = cp[2];
2243 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2244 #if 0	/*XXX*/
2245 				char *p;
2246 
2247 				if (ip)
2248 					p = ntohl(ip->ip_src);
2249 #ifdef INET6
2250 				else if (ip6)
2251 					p = ip6_sprintf(&ip6->ip6_src);
2252 #endif
2253 				else
2254 					p = "(unknown)";
2255 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2256 				    "assuming %d\n",
2257 				    tp->requested_s_scale, p,
2258 				    TCP_MAX_WINSHIFT);
2259 #else
2260 				log(LOG_ERR, "TCP: invalid wscale %d, "
2261 				    "assuming %d\n",
2262 				    tp->requested_s_scale,
2263 				    TCP_MAX_WINSHIFT);
2264 #endif
2265 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
2266 			}
2267 			break;
2268 
2269 		case TCPOPT_TIMESTAMP:
2270 			if (optlen != TCPOLEN_TIMESTAMP)
2271 				continue;
2272 			oi->ts_present = 1;
2273 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2274 			NTOHL(oi->ts_val);
2275 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2276 			NTOHL(oi->ts_ecr);
2277 
2278 			/*
2279 			 * A timestamp received in a SYN makes
2280 			 * it ok to send timestamp requests and replies.
2281 			 */
2282 			if (th->th_flags & TH_SYN) {
2283 				tp->t_flags |= TF_RCVD_TSTMP;
2284 				tp->ts_recent = oi->ts_val;
2285 				tp->ts_recent_age = tcp_now;
2286 			}
2287 			break;
2288 		case TCPOPT_SACK_PERMITTED:
2289 			if (optlen != TCPOLEN_SACK_PERMITTED)
2290 				continue;
2291 			if (!(th->th_flags & TH_SYN))
2292 				continue;
2293 			tp->t_flags &= ~TF_CANT_TXSACK;
2294 			break;
2295 
2296 		case TCPOPT_SACK:
2297 			if (tp->t_flags & TF_IGNR_RXSACK)
2298 				continue;
2299 			if (optlen % 8 != 2 || optlen < 10)
2300 				continue;
2301 			cp += 2;
2302 			optlen -= 2;
2303 			for (; optlen > 0; cp -= 8, optlen -= 8) {
2304 				tcp_seq lwe, rwe;
2305 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2306 				NTOHL(lwe);
2307 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2308 				NTOHL(rwe);
2309 				/* tcp_mark_sacked(tp, lwe, rwe); */
2310 			}
2311 			break;
2312 		}
2313 	}
2314 }
2315 
2316 /*
2317  * Pull out of band byte out of a segment so
2318  * it doesn't appear in the user's data queue.
2319  * It is still reflected in the segment length for
2320  * sequencing purposes.
2321  */
2322 void
2323 tcp_pulloutofband(so, th, m, off)
2324 	struct socket *so;
2325 	struct tcphdr *th;
2326 	struct mbuf *m;
2327 	int off;
2328 {
2329 	int cnt = off + th->th_urp - 1;
2330 
2331 	while (cnt >= 0) {
2332 		if (m->m_len > cnt) {
2333 			char *cp = mtod(m, caddr_t) + cnt;
2334 			struct tcpcb *tp = sototcpcb(so);
2335 
2336 			tp->t_iobc = *cp;
2337 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2338 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2339 			m->m_len--;
2340 			return;
2341 		}
2342 		cnt -= m->m_len;
2343 		m = m->m_next;
2344 		if (m == 0)
2345 			break;
2346 	}
2347 	panic("tcp_pulloutofband");
2348 }
2349 
2350 /*
2351  * Collect new round-trip time estimate
2352  * and update averages and current timeout.
2353  */
2354 void
2355 tcp_xmit_timer(tp, rtt)
2356 	struct tcpcb *tp;
2357 	short rtt;
2358 {
2359 	short delta;
2360 	short rttmin;
2361 
2362 	tcpstat.tcps_rttupdated++;
2363 	--rtt;
2364 	if (tp->t_srtt != 0) {
2365 		/*
2366 		 * srtt is stored as fixed point with 3 bits after the
2367 		 * binary point (i.e., scaled by 8).  The following magic
2368 		 * is equivalent to the smoothing algorithm in rfc793 with
2369 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2370 		 * point).  Adjust rtt to origin 0.
2371 		 */
2372 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2373 		if ((tp->t_srtt += delta) <= 0)
2374 			tp->t_srtt = 1 << 2;
2375 		/*
2376 		 * We accumulate a smoothed rtt variance (actually, a
2377 		 * smoothed mean difference), then set the retransmit
2378 		 * timer to smoothed rtt + 4 times the smoothed variance.
2379 		 * rttvar is stored as fixed point with 2 bits after the
2380 		 * binary point (scaled by 4).  The following is
2381 		 * equivalent to rfc793 smoothing with an alpha of .75
2382 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2383 		 * rfc793's wired-in beta.
2384 		 */
2385 		if (delta < 0)
2386 			delta = -delta;
2387 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2388 		if ((tp->t_rttvar += delta) <= 0)
2389 			tp->t_rttvar = 1 << 2;
2390 	} else {
2391 		/*
2392 		 * No rtt measurement yet - use the unsmoothed rtt.
2393 		 * Set the variance to half the rtt (so our first
2394 		 * retransmit happens at 3*rtt).
2395 		 */
2396 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2397 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2398 	}
2399 	tp->t_rtt = 0;
2400 	tp->t_rxtshift = 0;
2401 
2402 	/*
2403 	 * the retransmit should happen at rtt + 4 * rttvar.
2404 	 * Because of the way we do the smoothing, srtt and rttvar
2405 	 * will each average +1/2 tick of bias.  When we compute
2406 	 * the retransmit timer, we want 1/2 tick of rounding and
2407 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2408 	 * firing of the timer.  The bias will give us exactly the
2409 	 * 1.5 tick we need.  But, because the bias is
2410 	 * statistical, we have to test that we don't drop below
2411 	 * the minimum feasible timer (which is 2 ticks).
2412 	 */
2413 	if (tp->t_rttmin > rtt + 2)
2414 		rttmin = tp->t_rttmin;
2415 	else
2416 		rttmin = rtt + 2;
2417 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2418 
2419 	/*
2420 	 * We received an ack for a packet that wasn't retransmitted;
2421 	 * it is probably safe to discard any error indications we've
2422 	 * received recently.  This isn't quite right, but close enough
2423 	 * for now (a route might have failed after we sent a segment,
2424 	 * and the return path might not be symmetrical).
2425 	 */
2426 	tp->t_softerror = 0;
2427 }
2428 
2429 /*
2430  * Checks for partial ack.  If partial ack arrives, force the retransmission
2431  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2432  * 1.  By setting snd_nxt to th_ack, this forces retransmission timer to
2433  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
2434  */
2435 int
2436 tcp_newreno(tp, th)
2437 	struct tcpcb *tp;
2438 	struct tcphdr *th;
2439 {
2440 	tcp_seq onxt = tp->snd_nxt;
2441 	u_long ocwnd = tp->snd_cwnd;
2442 
2443 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2444 		/*
2445 		 * snd_una has not yet been updated and the socket's send
2446 		 * buffer has not yet drained off the ACK'd data, so we
2447 		 * have to leave snd_una as it was to get the correct data
2448 		 * offset in tcp_output().
2449 		 */
2450 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
2451 	        tp->t_rtt = 0;
2452 	        tp->snd_nxt = th->th_ack;
2453 		/*
2454 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
2455 		 * is not yet updated when we're called.
2456 		 */
2457 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2458 	        (void) tcp_output(tp);
2459 	        tp->snd_cwnd = ocwnd;
2460 	        if (SEQ_GT(onxt, tp->snd_nxt))
2461 	                tp->snd_nxt = onxt;
2462 	        /*
2463 	         * Partial window deflation.  Relies on fact that tp->snd_una
2464 	         * not updated yet.
2465 	         */
2466 	        tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2467 	        return 1;
2468 	}
2469 	return 0;
2470 }
2471 
2472 
2473 /*
2474  * TCP compressed state engine.  Currently used to hold compressed
2475  * state for SYN_RECEIVED.
2476  */
2477 
2478 u_long	syn_cache_count;
2479 u_int32_t syn_hash1, syn_hash2;
2480 
2481 #define SYN_HASH(sa, sp, dp) \
2482 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2483 				     ((u_int32_t)(sp)))^syn_hash2)))
2484 #ifndef INET6
2485 #define	SYN_HASHALL(hash, src, dst) \
2486 do {									\
2487 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
2488 		((struct sockaddr_in *)(src))->sin_port,		\
2489 		((struct sockaddr_in *)(dst))->sin_port);		\
2490 } while (0)
2491 #else
2492 #define SYN_HASH6(sa, sp, dp) \
2493 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2494 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2495 	 & 0x7fffffff)
2496 
2497 #define SYN_HASHALL(hash, src, dst) \
2498 do {									\
2499 	switch ((src)->sa_family) {					\
2500 	case AF_INET:							\
2501 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2502 			((struct sockaddr_in *)(src))->sin_port,	\
2503 			((struct sockaddr_in *)(dst))->sin_port);	\
2504 		break;							\
2505 	case AF_INET6:							\
2506 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2507 			((struct sockaddr_in6 *)(src))->sin6_port,	\
2508 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
2509 		break;							\
2510 	default:							\
2511 		hash = 0;						\
2512 	}								\
2513 } while (0)
2514 #endif /* INET6 */
2515 
2516 #define	SYN_CACHE_RM(sc)						\
2517 do {									\
2518 	LIST_REMOVE((sc), sc_bucketq);					\
2519 	(sc)->sc_tp = NULL;						\
2520 	LIST_REMOVE((sc), sc_tpq);					\
2521 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
2522 	TAILQ_REMOVE(&tcp_syn_cache_timeq[(sc)->sc_rxtshift], (sc), sc_timeq); \
2523 	syn_cache_count--;						\
2524 } while (0)
2525 
2526 #define	SYN_CACHE_PUT(sc)						\
2527 do {									\
2528 	if ((sc)->sc_ipopts)						\
2529 		(void) m_free((sc)->sc_ipopts);				\
2530 	if ((sc)->sc_route4.ro_rt != NULL)				\
2531 		RTFREE((sc)->sc_route4.ro_rt);				\
2532 	pool_put(&syn_cache_pool, (sc));				\
2533 } while (0)
2534 
2535 struct pool syn_cache_pool;
2536 
2537 /*
2538  * We don't estimate RTT with SYNs, so each packet starts with the default
2539  * RTT and each timer queue has a fixed timeout value.  This allows us to
2540  * optimize the timer queues somewhat.
2541  */
2542 #define	SYN_CACHE_TIMER_ARM(sc)						\
2543 do {									\
2544 	TCPT_RANGESET((sc)->sc_rxtcur,					\
2545 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
2546 	    TCPTV_REXMTMAX);						\
2547 	PRT_SLOW_ARM((sc)->sc_rexmt, (sc)->sc_rxtcur);			\
2548 } while (0)
2549 
2550 TAILQ_HEAD(, syn_cache) tcp_syn_cache_timeq[TCP_MAXRXTSHIFT + 1];
2551 
2552 void
2553 syn_cache_init()
2554 {
2555 	int i;
2556 
2557 	/* Initialize the hash buckets. */
2558 	for (i = 0; i < tcp_syn_cache_size; i++)
2559 		LIST_INIT(&tcp_syn_cache[i].sch_bucket);
2560 
2561 	/* Initialize the timer queues. */
2562 	for (i = 0; i <= TCP_MAXRXTSHIFT; i++)
2563 		TAILQ_INIT(&tcp_syn_cache_timeq[i]);
2564 
2565 	/* Initialize the syn cache pool. */
2566 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2567 	    "synpl", 0, NULL, NULL, M_PCB);
2568 }
2569 
2570 void
2571 syn_cache_insert(sc, tp)
2572 	struct syn_cache *sc;
2573 	struct tcpcb *tp;
2574 {
2575 	struct syn_cache_head *scp;
2576 	struct syn_cache *sc2;
2577 	int s, i;
2578 
2579 	/*
2580 	 * If there are no entries in the hash table, reinitialize
2581 	 * the hash secrets.
2582 	 */
2583 	if (syn_cache_count == 0) {
2584 		struct timeval tv;
2585 		microtime(&tv);
2586 		syn_hash1 = random() ^ (u_long)&sc;
2587 		syn_hash2 = random() ^ tv.tv_usec;
2588 	}
2589 
2590 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2591 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2592 	scp = &tcp_syn_cache[sc->sc_bucketidx];
2593 
2594 	/*
2595 	 * Make sure that we don't overflow the per-bucket
2596 	 * limit or the total cache size limit.
2597 	 */
2598 	s = splsoftnet();
2599 	if (scp->sch_length >= tcp_syn_bucket_limit) {
2600 		tcpstat.tcps_sc_bucketoverflow++;
2601 		/*
2602 		 * The bucket is full.  Toss the oldest element in the
2603 		 * bucket.  This will be the entry with our bucket
2604 		 * index closest to the front of the timer queue with
2605 		 * the largest timeout value.
2606 		 *
2607 		 * Note: This timer queue traversal may be expensive, so
2608 		 * we hope that this doesn't happen very often.  It is
2609 		 * much more likely that we'll overflow the entire
2610 		 * cache, which is much easier to handle; see below.
2611 		 */
2612 		for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2613 			for (sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2614 			     sc2 != NULL;
2615 			     sc2 = TAILQ_NEXT(sc2, sc_timeq)) {
2616 				if (sc2->sc_bucketidx == sc->sc_bucketidx) {
2617 					SYN_CACHE_RM(sc2);
2618 					SYN_CACHE_PUT(sc2);
2619 					goto insert;	/* 2 level break */
2620 				}
2621 			}
2622 		}
2623 #ifdef DIAGNOSTIC
2624 		/*
2625 		 * This should never happen; we should always find an
2626 		 * entry in our bucket.
2627 		 */
2628 		panic("syn_cache_insert: bucketoverflow: impossible");
2629 #endif
2630 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
2631 		tcpstat.tcps_sc_overflowed++;
2632 		/*
2633 		 * The cache is full.  Toss the oldest entry in the
2634 		 * entire cache.  This is the front entry in the
2635 		 * first non-empty timer queue with the largest
2636 		 * timeout value.
2637 		 */
2638 		for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2639 			sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2640 			if (sc2 == NULL)
2641 				continue;
2642 			SYN_CACHE_RM(sc2);
2643 			SYN_CACHE_PUT(sc2);
2644 			goto insert;		/* symmetry with above */
2645 		}
2646 #ifdef DIAGNOSTIC
2647 		/*
2648 		 * This should never happen; we should always find an
2649 		 * entry in the cache.
2650 		 */
2651 		panic("syn_cache_insert: cache overflow: impossible");
2652 #endif
2653 	}
2654 
2655  insert:
2656 	/*
2657 	 * Initialize the entry's timer.
2658 	 */
2659 	sc->sc_rxttot = 0;
2660 	sc->sc_rxtshift = 0;
2661 	SYN_CACHE_TIMER_ARM(sc);
2662 	TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift], sc, sc_timeq);
2663 
2664 	/* Link it from tcpcb entry */
2665 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2666 
2667 	/* Put it into the bucket. */
2668 	LIST_INSERT_HEAD(&scp->sch_bucket, sc, sc_bucketq);
2669 	scp->sch_length++;
2670 	syn_cache_count++;
2671 
2672 	tcpstat.tcps_sc_added++;
2673 	splx(s);
2674 }
2675 
2676 /*
2677  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2678  * If we have retransmitted an entry the maximum number of times, expire
2679  * that entry.
2680  */
2681 void
2682 syn_cache_timer()
2683 {
2684 	struct syn_cache *sc, *nsc;
2685 	int i, s;
2686 
2687 	s = splsoftnet();
2688 
2689 	/*
2690 	 * First, get all the entries that need to be retransmitted, or
2691 	 * must be expired due to exceeding the initial keepalive time.
2692 	 */
2693 	for (i = 0; i < TCP_MAXRXTSHIFT; i++) {
2694 		for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2695 		     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2696 		     sc = nsc) {
2697 			nsc = TAILQ_NEXT(sc, sc_timeq);
2698 
2699 			/*
2700 			 * Compute the total amount of time this entry has
2701 			 * been on a queue.  If this entry has been on longer
2702 			 * than the keep alive timer would allow, expire it.
2703 			 */
2704 			sc->sc_rxttot += sc->sc_rxtcur;
2705 			if (sc->sc_rxttot >= TCPTV_KEEP_INIT) {
2706 				tcpstat.tcps_sc_timed_out++;
2707 				SYN_CACHE_RM(sc);
2708 				SYN_CACHE_PUT(sc);
2709 				continue;
2710 			}
2711 
2712 			tcpstat.tcps_sc_retransmitted++;
2713 			(void) syn_cache_respond(sc, NULL);
2714 
2715 			/* Advance this entry onto the next timer queue. */
2716 			TAILQ_REMOVE(&tcp_syn_cache_timeq[i], sc, sc_timeq);
2717 			sc->sc_rxtshift = i + 1;
2718 			SYN_CACHE_TIMER_ARM(sc);
2719 			TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift],
2720 			    sc, sc_timeq);
2721 		}
2722 	}
2723 
2724 	/*
2725 	 * Now get all the entries that are expired due to too many
2726 	 * retransmissions.
2727 	 */
2728 	for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[TCP_MAXRXTSHIFT]);
2729 	     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2730 	     sc = nsc) {
2731 		nsc = TAILQ_NEXT(sc, sc_timeq);
2732 		tcpstat.tcps_sc_timed_out++;
2733 		SYN_CACHE_RM(sc);
2734 		SYN_CACHE_PUT(sc);
2735 	}
2736 	splx(s);
2737 }
2738 
2739 /*
2740  * Remove syn cache created by the specified tcb entry,
2741  * because this does not make sense to keep them
2742  * (if there's no tcb entry, syn cache entry will never be used)
2743  */
2744 void
2745 syn_cache_cleanup(tp)
2746 	struct tcpcb *tp;
2747 {
2748 	struct syn_cache *sc, *nsc;
2749 	int s;
2750 
2751 	s = splsoftnet();
2752 
2753 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2754 		nsc = LIST_NEXT(sc, sc_tpq);
2755 
2756 #ifdef DIAGNOSTIC
2757 		if (sc->sc_tp != tp)
2758 			panic("invalid sc_tp in syn_cache_cleanup");
2759 #endif
2760 		SYN_CACHE_RM(sc);
2761 		SYN_CACHE_PUT(sc);
2762 	}
2763 	/* just for safety */
2764 	LIST_INIT(&tp->t_sc);
2765 
2766 	splx(s);
2767 }
2768 
2769 /*
2770  * Find an entry in the syn cache.
2771  */
2772 struct syn_cache *
2773 syn_cache_lookup(src, dst, headp)
2774 	struct sockaddr *src;
2775 	struct sockaddr *dst;
2776 	struct syn_cache_head **headp;
2777 {
2778 	struct syn_cache *sc;
2779 	struct syn_cache_head *scp;
2780 	u_int32_t hash;
2781 	int s;
2782 
2783 	SYN_HASHALL(hash, src, dst);
2784 
2785 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2786 	*headp = scp;
2787 	s = splsoftnet();
2788 	for (sc = LIST_FIRST(&scp->sch_bucket); sc != NULL;
2789 	     sc = LIST_NEXT(sc, sc_bucketq)) {
2790 		if (sc->sc_hash != hash)
2791 			continue;
2792 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2793 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2794 			splx(s);
2795 			return (sc);
2796 		}
2797 	}
2798 	splx(s);
2799 	return (NULL);
2800 }
2801 
2802 /*
2803  * This function gets called when we receive an ACK for a
2804  * socket in the LISTEN state.  We look up the connection
2805  * in the syn cache, and if its there, we pull it out of
2806  * the cache and turn it into a full-blown connection in
2807  * the SYN-RECEIVED state.
2808  *
2809  * The return values may not be immediately obvious, and their effects
2810  * can be subtle, so here they are:
2811  *
2812  *	NULL	SYN was not found in cache; caller should drop the
2813  *		packet and send an RST.
2814  *
2815  *	-1	We were unable to create the new connection, and are
2816  *		aborting it.  An ACK,RST is being sent to the peer
2817  *		(unless we got screwey sequence numbners; see below),
2818  *		because the 3-way handshake has been completed.  Caller
2819  *		should not free the mbuf, since we may be using it.  If
2820  *		we are not, we will free it.
2821  *
2822  *	Otherwise, the return value is a pointer to the new socket
2823  *	associated with the connection.
2824  */
2825 struct socket *
2826 syn_cache_get(src, dst, th, hlen, tlen, so, m)
2827 	struct sockaddr *src;
2828 	struct sockaddr *dst;
2829 	struct tcphdr *th;
2830 	unsigned int hlen, tlen;
2831 	struct socket *so;
2832 	struct mbuf *m;
2833 {
2834 	struct syn_cache *sc;
2835 	struct syn_cache_head *scp;
2836 	struct inpcb *inp = NULL;
2837 #ifdef INET6
2838 	struct in6pcb *in6p = NULL;
2839 #endif
2840 	struct tcpcb *tp = 0;
2841 	struct mbuf *am;
2842 	int s;
2843 	struct socket *oso;
2844 
2845 	s = splsoftnet();
2846 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
2847 		splx(s);
2848 		return (NULL);
2849 	}
2850 
2851 	/*
2852 	 * Verify the sequence and ack numbers.  Try getting the correct
2853 	 * response again.
2854 	 */
2855 	if ((th->th_ack != sc->sc_iss + 1) ||
2856 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
2857 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
2858 		(void) syn_cache_respond(sc, m);
2859 		splx(s);
2860 		return ((struct socket *)(-1));
2861 	}
2862 
2863 	/* Remove this cache entry */
2864 	SYN_CACHE_RM(sc);
2865 	splx(s);
2866 
2867 	/*
2868 	 * Ok, create the full blown connection, and set things up
2869 	 * as they would have been set up if we had created the
2870 	 * connection when the SYN arrived.  If we can't create
2871 	 * the connection, abort it.
2872 	 */
2873 	/*
2874 	 * inp still has the OLD in_pcb stuff, set the
2875 	 * v6-related flags on the new guy, too.   This is
2876 	 * done particularly for the case where an AF_INET6
2877 	 * socket is bound only to a port, and a v4 connection
2878 	 * comes in on that port.
2879 	 * we also copy the flowinfo from the original pcb
2880 	 * to the new one.
2881 	 */
2882     {
2883 	struct inpcb *parentinpcb;
2884 
2885 	parentinpcb = (struct inpcb *)so->so_pcb;
2886 
2887 	oso = so;
2888 	so = sonewconn(so, SS_ISCONNECTED);
2889 	if (so == NULL)
2890 		goto resetandabort;
2891 
2892 	switch (so->so_proto->pr_domain->dom_family) {
2893 	case AF_INET:
2894 		inp = sotoinpcb(so);
2895 		break;
2896 #ifdef INET6
2897 	case AF_INET6:
2898 		in6p = sotoin6pcb(so);
2899 #if 0 /*def INET6*/
2900 		inp->inp_flags |= (parentinpcb->inp_flags &
2901 			(INP_IPV6 | INP_IPV6_UNDEC | INP_IPV6_MAPPED));
2902 		if ((inp->inp_flags & INP_IPV6) &&
2903 		   !(inp->inp_flags & INP_IPV6_MAPPED)) {
2904 			inp->inp_ipv6.ip6_hlim = parentinpcb->inp_ipv6.ip6_hlim;
2905 			inp->inp_ipv6.ip6_vfc = parentinpcb->inp_ipv6.ip6_vfc;
2906 		}
2907 #endif
2908 		break;
2909 #endif
2910 	}
2911     }
2912 	switch (src->sa_family) {
2913 	case AF_INET:
2914 		if (inp) {
2915 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
2916 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
2917 			inp->inp_options = ip_srcroute();
2918 			in_pcbstate(inp, INP_BOUND);
2919 			if (inp->inp_options == NULL) {
2920 				inp->inp_options = sc->sc_ipopts;
2921 				sc->sc_ipopts = NULL;
2922 			}
2923 		}
2924 #ifdef INET6
2925 		else if (in6p) {
2926 			/* IPv4 packet to AF_INET6 socket */
2927 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
2928 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
2929 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
2930 				&in6p->in6p_laddr.s6_addr32[3],
2931 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
2932 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
2933 			in6totcpcb(in6p)->t_family = AF_INET;
2934 		}
2935 #endif
2936 		break;
2937 #ifdef INET6
2938 	case AF_INET6:
2939 		if (in6p) {
2940 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
2941 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
2942 #if 0
2943 			in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
2944 			/*inp->inp_options = ip6_srcroute();*/ /* soon. */
2945 #endif
2946 		}
2947 		break;
2948 #endif
2949 	}
2950 #ifdef INET6
2951 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
2952 		struct in6pcb *oin6p = sotoin6pcb(oso);
2953 		/* inherit socket options from the listening socket */
2954 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
2955 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
2956 			m_freem(in6p->in6p_options);
2957 			in6p->in6p_options = 0;
2958 		}
2959 		ip6_savecontrol(in6p, &in6p->in6p_options,
2960 			mtod(m, struct ip6_hdr *), m);
2961 	}
2962 #endif
2963 
2964 #ifdef IPSEC
2965 	/*
2966 	 * we make a copy of policy, instead of sharing the policy,
2967 	 * for better behavior in terms of SA lookup and dead SA removal.
2968 	 */
2969 	if (inp) {
2970 		/* copy old policy into new socket's */
2971 		if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
2972 			printf("tcp_input: could not copy policy\n");
2973 	}
2974 #ifdef INET6
2975 	else if (in6p) {
2976 		/* copy old policy into new socket's */
2977 		if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
2978 			printf("tcp_input: could not copy policy\n");
2979 	}
2980 #endif
2981 #endif
2982 
2983 	/*
2984 	 * Give the new socket our cached route reference.
2985 	 */
2986 	if (inp)
2987 		inp->inp_route = sc->sc_route4;		/* struct assignment */
2988 #ifdef INET6
2989 	else
2990 		in6p->in6p_route = sc->sc_route6;
2991 #endif
2992 	sc->sc_route4.ro_rt = NULL;
2993 
2994 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
2995 	if (am == NULL)
2996 		goto resetandabort;
2997 	am->m_len = src->sa_len;
2998 	bcopy(src, mtod(am, caddr_t), src->sa_len);
2999 	if (inp) {
3000 		if (in_pcbconnect(inp, am)) {
3001 			(void) m_free(am);
3002 			goto resetandabort;
3003 		}
3004 	}
3005 #ifdef INET6
3006 	else if (in6p) {
3007 		if (src->sa_family == AF_INET) {
3008 			/* IPv4 packet to AF_INET6 socket */
3009 			struct sockaddr_in6 *sin6;
3010 			sin6 = mtod(am, struct sockaddr_in6 *);
3011 			am->m_len = sizeof(*sin6);
3012 			bzero(sin6, sizeof(*sin6));
3013 			sin6->sin6_family = AF_INET6;
3014 			sin6->sin6_len = sizeof(*sin6);
3015 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3016 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3017 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
3018 				&sin6->sin6_addr.s6_addr32[3],
3019 				sizeof(sin6->sin6_addr.s6_addr32[3]));
3020 		}
3021 		if (in6_pcbconnect(in6p, am)) {
3022 			(void) m_free(am);
3023 			goto resetandabort;
3024 		}
3025 	}
3026 #endif
3027 	else {
3028 		(void) m_free(am);
3029 		goto resetandabort;
3030 	}
3031 	(void) m_free(am);
3032 
3033 	if (inp)
3034 		tp = intotcpcb(inp);
3035 #ifdef INET6
3036 	else if (in6p)
3037 		tp = in6totcpcb(in6p);
3038 #endif
3039 	else
3040 		tp = NULL;
3041 	if (sc->sc_request_r_scale != 15) {
3042 		tp->requested_s_scale = sc->sc_requested_s_scale;
3043 		tp->request_r_scale = sc->sc_request_r_scale;
3044 		tp->snd_scale = sc->sc_requested_s_scale;
3045 		tp->rcv_scale = sc->sc_request_r_scale;
3046 		tp->t_flags |= TF_RCVD_SCALE;
3047 	}
3048 	if (sc->sc_flags & SCF_TIMESTAMP)
3049 		tp->t_flags |= TF_RCVD_TSTMP;
3050 
3051 	tp->t_template = tcp_template(tp);
3052 	if (tp->t_template == 0) {
3053 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3054 		so = NULL;
3055 		m_freem(m);
3056 		goto abort;
3057 	}
3058 
3059 	tp->iss = sc->sc_iss;
3060 	tp->irs = sc->sc_irs;
3061 	tcp_sendseqinit(tp);
3062 	tcp_rcvseqinit(tp);
3063 	tp->t_state = TCPS_SYN_RECEIVED;
3064 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3065 	tcpstat.tcps_accepts++;
3066 
3067 	/* Initialize tp->t_ourmss before we deal with the peer's! */
3068 	tp->t_ourmss = sc->sc_ourmaxseg;
3069 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3070 
3071 	/*
3072 	 * Initialize the initial congestion window.  If we
3073 	 * had to retransmit the SYN,ACK, we must initialize cwnd
3074 	 * to 1 segment (i.e. the Loss Window).
3075 	 */
3076 	if (sc->sc_rxtshift)
3077 		tp->snd_cwnd = tp->t_peermss;
3078 	else
3079 		tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3080 
3081 	tcp_rmx_rtt(tp);
3082 	tp->snd_wl1 = sc->sc_irs;
3083 	tp->rcv_up = sc->sc_irs + 1;
3084 
3085 	/*
3086 	 * This is what whould have happened in tcp_ouput() when
3087 	 * the SYN,ACK was sent.
3088 	 */
3089 	tp->snd_up = tp->snd_una;
3090 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3091 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3092 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3093 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3094 	tp->last_ack_sent = tp->rcv_nxt;
3095 
3096 	tcpstat.tcps_sc_completed++;
3097 	SYN_CACHE_PUT(sc);
3098 	return (so);
3099 
3100 resetandabort:
3101 	(void) tcp_respond(NULL, m, m, th,
3102 			   th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3103 abort:
3104 	if (so != NULL)
3105 		(void) soabort(so);
3106 	SYN_CACHE_PUT(sc);
3107 	tcpstat.tcps_sc_aborted++;
3108 	return ((struct socket *)(-1));
3109 }
3110 
3111 /*
3112  * This function is called when we get a RST for a
3113  * non-existant connection, so that we can see if the
3114  * connection is in the syn cache.  If it is, zap it.
3115  */
3116 
3117 void
3118 syn_cache_reset(src, dst, th)
3119 	struct sockaddr *src;
3120 	struct sockaddr *dst;
3121 	struct tcphdr *th;
3122 {
3123 	struct syn_cache *sc;
3124 	struct syn_cache_head *scp;
3125 	int s = splsoftnet();
3126 
3127 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3128 		splx(s);
3129 		return;
3130 	}
3131 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3132 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3133 		splx(s);
3134 		return;
3135 	}
3136 	SYN_CACHE_RM(sc);
3137 	splx(s);
3138 	tcpstat.tcps_sc_reset++;
3139 	SYN_CACHE_PUT(sc);
3140 }
3141 
3142 void
3143 syn_cache_unreach(src, dst, th)
3144 	struct sockaddr *src;
3145 	struct sockaddr *dst;
3146 	struct tcphdr *th;
3147 {
3148 	struct syn_cache *sc;
3149 	struct syn_cache_head *scp;
3150 	int s;
3151 
3152 	s = splsoftnet();
3153 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3154 		splx(s);
3155 		return;
3156 	}
3157 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3158 	if (ntohl (th->th_seq) != sc->sc_iss) {
3159 		splx(s);
3160 		return;
3161 	}
3162 
3163 	/*
3164 	 * If we've rertransmitted 3 times and this is our second error,
3165 	 * we remove the entry.  Otherwise, we allow it to continue on.
3166 	 * This prevents us from incorrectly nuking an entry during a
3167 	 * spurious network outage.
3168 	 *
3169 	 * See tcp_notify().
3170 	 */
3171 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3172 		sc->sc_flags |= SCF_UNREACH;
3173 		splx(s);
3174 		return;
3175 	}
3176 
3177 	SYN_CACHE_RM(sc);
3178 	splx(s);
3179 	tcpstat.tcps_sc_unreach++;
3180 	SYN_CACHE_PUT(sc);
3181 }
3182 
3183 /*
3184  * Given a LISTEN socket and an inbound SYN request, add
3185  * this to the syn cache, and send back a segment:
3186  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3187  * to the source.
3188  *
3189  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3190  * Doing so would require that we hold onto the data and deliver it
3191  * to the application.  However, if we are the target of a SYN-flood
3192  * DoS attack, an attacker could send data which would eventually
3193  * consume all available buffer space if it were ACKed.  By not ACKing
3194  * the data, we avoid this DoS scenario.
3195  */
3196 
3197 int
3198 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3199 	struct sockaddr *src;
3200 	struct sockaddr *dst;
3201 	struct tcphdr *th;
3202 	unsigned int hlen;
3203 	struct socket *so;
3204 	struct mbuf *m;
3205 	u_char *optp;
3206 	int optlen;
3207 	struct tcp_opt_info *oi;
3208 {
3209 	struct tcpcb tb, *tp;
3210 	long win;
3211 	struct syn_cache *sc;
3212 	struct syn_cache_head *scp;
3213 	struct mbuf *ipopts;
3214 
3215 	tp = sototcpcb(so);
3216 
3217 	/*
3218 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3219 	 *
3220 	 * Note this check is performed in tcp_input() very early on.
3221 	 */
3222 
3223 	/*
3224 	 * Initialize some local state.
3225 	 */
3226 	win = sbspace(&so->so_rcv);
3227 	if (win > TCP_MAXWIN)
3228 		win = TCP_MAXWIN;
3229 
3230 	if (src->sa_family == AF_INET) {
3231 		/*
3232 		 * Remember the IP options, if any.
3233 		 */
3234 		ipopts = ip_srcroute();
3235 	} else
3236 		ipopts = NULL;
3237 
3238 	if (optp) {
3239 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3240 		tcp_dooptions(&tb, optp, optlen, th, oi);
3241 	} else
3242 		tb.t_flags = 0;
3243 
3244 	/*
3245 	 * See if we already have an entry for this connection.
3246 	 * If we do, resend the SYN,ACK.  We do not count this
3247 	 * as a retransmission (XXX though maybe we should).
3248 	 */
3249 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3250 		tcpstat.tcps_sc_dupesyn++;
3251 		if (ipopts) {
3252 			/*
3253 			 * If we were remembering a previous source route,
3254 			 * forget it and use the new one we've been given.
3255 			 */
3256 			if (sc->sc_ipopts)
3257 				(void) m_free(sc->sc_ipopts);
3258 			sc->sc_ipopts = ipopts;
3259 		}
3260 		sc->sc_timestamp = tb.ts_recent;
3261 		if (syn_cache_respond(sc, m) == 0) {
3262 			tcpstat.tcps_sndacks++;
3263 			tcpstat.tcps_sndtotal++;
3264 		}
3265 		return (1);
3266 	}
3267 
3268 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3269 	if (sc == NULL) {
3270 		if (ipopts)
3271 			(void) m_free(ipopts);
3272 		return (0);
3273 	}
3274 
3275 	/*
3276 	 * Fill in the cache, and put the necessary IP and TCP
3277 	 * options into the reply.
3278 	 */
3279 	bzero(sc, sizeof(struct syn_cache));
3280 	bcopy(src, &sc->sc_src, src->sa_len);
3281 	bcopy(dst, &sc->sc_dst, dst->sa_len);
3282 	sc->sc_flags = 0;
3283 	sc->sc_ipopts = ipopts;
3284 	sc->sc_irs = th->th_seq;
3285 	sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
3286 	sc->sc_peermaxseg = oi->maxseg;
3287 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3288 						m->m_pkthdr.rcvif : NULL,
3289 						sc->sc_src.sa.sa_family);
3290 	sc->sc_win = win;
3291 	sc->sc_timestamp = tb.ts_recent;
3292 	if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3293 		sc->sc_flags |= SCF_TIMESTAMP;
3294 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3295 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3296 		sc->sc_requested_s_scale = tb.requested_s_scale;
3297 		sc->sc_request_r_scale = 0;
3298 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3299 		    TCP_MAXWIN << sc->sc_request_r_scale <
3300 		    so->so_rcv.sb_hiwat)
3301 			sc->sc_request_r_scale++;
3302 	} else {
3303 		sc->sc_requested_s_scale = 15;
3304 		sc->sc_request_r_scale = 15;
3305 	}
3306 	sc->sc_tp = tp;
3307 	if (syn_cache_respond(sc, m) == 0) {
3308 		syn_cache_insert(sc, tp);
3309 		tcpstat.tcps_sndacks++;
3310 		tcpstat.tcps_sndtotal++;
3311 	} else {
3312 		SYN_CACHE_PUT(sc);
3313 		tcpstat.tcps_sc_dropped++;
3314 	}
3315 	return (1);
3316 }
3317 
3318 int
3319 syn_cache_respond(sc, m)
3320 	struct syn_cache *sc;
3321 	struct mbuf *m;
3322 {
3323 	struct route *ro;
3324 	struct rtentry *rt;
3325 	u_int8_t *optp;
3326 	int optlen, error;
3327 	u_int16_t tlen;
3328 	struct ip *ip = NULL;
3329 #ifdef INET6
3330 	struct ip6_hdr *ip6 = NULL;
3331 #endif
3332 	struct tcphdr *th;
3333 	u_int hlen;
3334 
3335 	switch (sc->sc_src.sa.sa_family) {
3336 	case AF_INET:
3337 		hlen = sizeof(struct ip);
3338 		ro = &sc->sc_route4;
3339 		break;
3340 #ifdef INET6
3341 	case AF_INET6:
3342 		hlen = sizeof(struct ip6_hdr);
3343 		ro = (struct route *)&sc->sc_route6;
3344 		break;
3345 #endif
3346 	default:
3347 		if (m)
3348 			m_freem(m);
3349 		return EAFNOSUPPORT;
3350 	}
3351 
3352 	/* Compute the size of the TCP options. */
3353 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3354 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3355 
3356 	tlen = hlen + sizeof(struct tcphdr) + optlen;
3357 
3358 	/*
3359 	 * Create the IP+TCP header from scratch.
3360 	 */
3361 	if (m)
3362 		m_freem(m);
3363 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3364 	if (m && tlen > MHLEN) {
3365 		MCLGET(m, M_DONTWAIT);
3366 		if ((m->m_flags & M_EXT) == 0) {
3367 			m_freem(m);
3368 			m = NULL;
3369 		}
3370 	}
3371 	if (m == NULL)
3372 		return (ENOBUFS);
3373 
3374 	/* Fixup the mbuf. */
3375 	m->m_data += max_linkhdr;
3376 	m->m_len = m->m_pkthdr.len = tlen;
3377 #ifdef IPSEC
3378 	if (sc->sc_tp) {
3379 		struct tcpcb *tp;
3380 		struct socket *so;
3381 
3382 		tp = sc->sc_tp;
3383 		if (tp->t_inpcb)
3384 			so = tp->t_inpcb->inp_socket;
3385 #ifdef INET6
3386 		else if (tp->t_in6pcb)
3387 			so = tp->t_in6pcb->in6p_socket;
3388 #endif
3389 		else
3390 			so = NULL;
3391 		/* use IPsec policy on listening socket, on SYN ACK */
3392 		ipsec_setsocket(m, so);
3393 	}
3394 #endif
3395 	m->m_pkthdr.rcvif = NULL;
3396 	memset(mtod(m, u_char *), 0, tlen);
3397 
3398 	switch (sc->sc_src.sa.sa_family) {
3399 	case AF_INET:
3400 		ip = mtod(m, struct ip *);
3401 		ip->ip_dst = sc->sc_src.sin.sin_addr;
3402 		ip->ip_src = sc->sc_dst.sin.sin_addr;
3403 		ip->ip_p = IPPROTO_TCP;
3404 		th = (struct tcphdr *)(ip + 1);
3405 		th->th_dport = sc->sc_src.sin.sin_port;
3406 		th->th_sport = sc->sc_dst.sin.sin_port;
3407 		break;
3408 #ifdef INET6
3409 	case AF_INET6:
3410 		ip6 = mtod(m, struct ip6_hdr *);
3411 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3412 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3413 		ip6->ip6_nxt = IPPROTO_TCP;
3414 		/* ip6_plen will be updated in ip6_output() */
3415 		th = (struct tcphdr *)(ip6 + 1);
3416 		th->th_dport = sc->sc_src.sin6.sin6_port;
3417 		th->th_sport = sc->sc_dst.sin6.sin6_port;
3418 		break;
3419 #endif
3420 	default:
3421 		th = NULL;
3422 	}
3423 
3424 	th->th_seq = htonl(sc->sc_iss);
3425 	th->th_ack = htonl(sc->sc_irs + 1);
3426 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3427 	th->th_flags = TH_SYN|TH_ACK;
3428 	th->th_win = htons(sc->sc_win);
3429 	/* th_sum already 0 */
3430 	/* th_urp already 0 */
3431 
3432 	/* Tack on the TCP options. */
3433 	optp = (u_int8_t *)(th + 1);
3434 	*optp++ = TCPOPT_MAXSEG;
3435 	*optp++ = 4;
3436 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3437 	*optp++ = sc->sc_ourmaxseg & 0xff;
3438 
3439 	if (sc->sc_request_r_scale != 15) {
3440 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3441 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3442 		    sc->sc_request_r_scale);
3443 		optp += 4;
3444 	}
3445 
3446 	if (sc->sc_flags & SCF_TIMESTAMP) {
3447 		u_int32_t *lp = (u_int32_t *)(optp);
3448 		/* Form timestamp option as shown in appendix A of RFC 1323. */
3449 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
3450 		*lp++ = htonl(tcp_now);
3451 		*lp   = htonl(sc->sc_timestamp);
3452 		optp += TCPOLEN_TSTAMP_APPA;
3453 	}
3454 
3455 	/* Compute the packet's checksum. */
3456 	switch (sc->sc_src.sa.sa_family) {
3457 	case AF_INET:
3458 		ip->ip_len = htons(tlen - hlen);
3459 		th->th_sum = 0;
3460 		th->th_sum = in_cksum(m, tlen);
3461 		break;
3462 #ifdef INET6
3463 	case AF_INET6:
3464 		ip6->ip6_plen = htons(tlen - hlen);
3465 		th->th_sum = 0;
3466 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3467 		break;
3468 #endif
3469 	}
3470 
3471 	/*
3472 	 * Fill in some straggling IP bits.  Note the stack expects
3473 	 * ip_len to be in host order, for convenience.
3474 	 */
3475 	switch (sc->sc_src.sa.sa_family) {
3476 	case AF_INET:
3477 		ip->ip_len = tlen;
3478 		ip->ip_ttl = ip_defttl;
3479 		/* XXX tos? */
3480 		break;
3481 #ifdef INET6
3482 	case AF_INET6:
3483 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3484 		ip6->ip6_vfc |= IPV6_VERSION;
3485 		ip6->ip6_plen = htons(tlen - hlen);
3486 		/* ip6_hlim will be initialized afterwards */
3487 		/* XXX flowlabel? */
3488 		break;
3489 #endif
3490 	}
3491 
3492 	/*
3493 	 * If we're doing Path MTU discovery, we need to set DF unless
3494 	 * the route's MTU is locked.  If we don't yet know the route,
3495 	 * look it up now.  We will copy this reference to the inpcb
3496 	 * when we finish creating the connection.
3497 	 */
3498 	if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
3499 		if (ro->ro_rt != NULL) {
3500 			RTFREE(ro->ro_rt);
3501 			ro->ro_rt = NULL;
3502 		}
3503 		bcopy(&sc->sc_src, &ro->ro_dst, sc->sc_src.sa.sa_len);
3504 		rtalloc(ro);
3505 		if ((rt = ro->ro_rt) == NULL) {
3506 			m_freem(m);
3507 			switch (sc->sc_src.sa.sa_family) {
3508 			case AF_INET:
3509 				ipstat.ips_noroute++;
3510 				break;
3511 #ifdef INET6
3512 			case AF_INET6:
3513 				ip6stat.ip6s_noroute++;
3514 				break;
3515 #endif
3516 			}
3517 			return (EHOSTUNREACH);
3518 		}
3519 	}
3520 
3521 	switch (sc->sc_src.sa.sa_family) {
3522 	case AF_INET:
3523 		if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
3524 			ip->ip_off |= IP_DF;
3525 
3526 		/* ...and send it off! */
3527 		error = ip_output(m, sc->sc_ipopts, ro, 0, NULL);
3528 		break;
3529 #ifdef INET6
3530 	case AF_INET6:
3531 		ip6->ip6_hlim = in6_selecthlim(NULL,
3532 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3533 
3534 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3535 			0, NULL, NULL);
3536 		break;
3537 #endif
3538 	default:
3539 		error = EAFNOSUPPORT;
3540 		break;
3541 	}
3542 	return (error);
3543 }
3544