xref: /netbsd-src/sys/netinet/tcp_input.c (revision 466a16a118933bd295a8a104f095714fadf9cf68)
1 /*	$NetBSD: tcp_input.c,v 1.291 2008/08/04 04:08:47 tls Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
74  * All rights reserved.
75  *
76  * This code is derived from software contributed to The NetBSD Foundation
77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78  * Facility, NASA Ames Research Center.
79  * This code is derived from software contributed to The NetBSD Foundation
80  * by Charles M. Hannum.
81  * This code is derived from software contributed to The NetBSD Foundation
82  * by Rui Paulo.
83  *
84  * Redistribution and use in source and binary forms, with or without
85  * modification, are permitted provided that the following conditions
86  * are met:
87  * 1. Redistributions of source code must retain the above copyright
88  *    notice, this list of conditions and the following disclaimer.
89  * 2. Redistributions in binary form must reproduce the above copyright
90  *    notice, this list of conditions and the following disclaimer in the
91  *    documentation and/or other materials provided with the distribution.
92  *
93  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
94  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
95  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
96  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
97  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
98  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
99  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
100  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
101  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
103  * POSSIBILITY OF SUCH DAMAGE.
104  */
105 
106 /*
107  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
108  *	The Regents of the University of California.  All rights reserved.
109  *
110  * Redistribution and use in source and binary forms, with or without
111  * modification, are permitted provided that the following conditions
112  * are met:
113  * 1. Redistributions of source code must retain the above copyright
114  *    notice, this list of conditions and the following disclaimer.
115  * 2. Redistributions in binary form must reproduce the above copyright
116  *    notice, this list of conditions and the following disclaimer in the
117  *    documentation and/or other materials provided with the distribution.
118  * 3. Neither the name of the University nor the names of its contributors
119  *    may be used to endorse or promote products derived from this software
120  *    without specific prior written permission.
121  *
122  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
123  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
124  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
125  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
126  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
127  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
128  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
129  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
130  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
131  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
132  * SUCH DAMAGE.
133  *
134  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
135  */
136 
137 /*
138  *	TODO list for SYN cache stuff:
139  *
140  *	Find room for a "state" field, which is needed to keep a
141  *	compressed state for TIME_WAIT TCBs.  It's been noted already
142  *	that this is fairly important for very high-volume web and
143  *	mail servers, which use a large number of short-lived
144  *	connections.
145  */
146 
147 #include <sys/cdefs.h>
148 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.291 2008/08/04 04:08:47 tls Exp $");
149 
150 #include "opt_inet.h"
151 #include "opt_ipsec.h"
152 #include "opt_inet_csum.h"
153 #include "opt_tcp_debug.h"
154 
155 #include <sys/param.h>
156 #include <sys/systm.h>
157 #include <sys/malloc.h>
158 #include <sys/mbuf.h>
159 #include <sys/protosw.h>
160 #include <sys/socket.h>
161 #include <sys/socketvar.h>
162 #include <sys/errno.h>
163 #include <sys/syslog.h>
164 #include <sys/pool.h>
165 #include <sys/domain.h>
166 #include <sys/kernel.h>
167 #ifdef TCP_SIGNATURE
168 #include <sys/md5.h>
169 #endif
170 #include <sys/lwp.h> /* for lwp0 */
171 
172 #include <net/if.h>
173 #include <net/route.h>
174 #include <net/if_types.h>
175 
176 #include <netinet/in.h>
177 #include <netinet/in_systm.h>
178 #include <netinet/ip.h>
179 #include <netinet/in_pcb.h>
180 #include <netinet/in_var.h>
181 #include <netinet/ip_var.h>
182 #include <netinet/in_offload.h>
183 
184 #ifdef INET6
185 #ifndef INET
186 #include <netinet/in.h>
187 #endif
188 #include <netinet/ip6.h>
189 #include <netinet6/ip6_var.h>
190 #include <netinet6/in6_pcb.h>
191 #include <netinet6/ip6_var.h>
192 #include <netinet6/in6_var.h>
193 #include <netinet/icmp6.h>
194 #include <netinet6/nd6.h>
195 #ifdef TCP_SIGNATURE
196 #include <netinet6/scope6_var.h>
197 #endif
198 #endif
199 
200 #ifndef INET6
201 /* always need ip6.h for IP6_EXTHDR_GET */
202 #include <netinet/ip6.h>
203 #endif
204 
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcp_private.h>
211 #include <netinet/tcpip.h>
212 #include <netinet/tcp_congctl.h>
213 #include <netinet/tcp_debug.h>
214 
215 #include <machine/stdarg.h>
216 
217 #ifdef IPSEC
218 #include <netinet6/ipsec.h>
219 #include <netinet6/ipsec_private.h>
220 #include <netkey/key.h>
221 #endif /*IPSEC*/
222 #ifdef INET6
223 #include "faith.h"
224 #if defined(NFAITH) && NFAITH > 0
225 #include <net/if_faith.h>
226 #endif
227 #endif	/* IPSEC */
228 
229 #ifdef FAST_IPSEC
230 #include <netipsec/ipsec.h>
231 #include <netipsec/ipsec_var.h>
232 #include <netipsec/ipsec_private.h>
233 #include <netipsec/key.h>
234 #ifdef INET6
235 #include <netipsec/ipsec6.h>
236 #endif
237 #endif	/* FAST_IPSEC*/
238 
239 int	tcprexmtthresh = 3;
240 int	tcp_log_refused;
241 
242 int	tcp_do_autorcvbuf = 0;
243 int	tcp_autorcvbuf_inc = 16 * 1024;
244 int	tcp_autorcvbuf_max = 256 * 1024;
245 
246 static int tcp_rst_ppslim_count = 0;
247 static struct timeval tcp_rst_ppslim_last;
248 static int tcp_ackdrop_ppslim_count = 0;
249 static struct timeval tcp_ackdrop_ppslim_last;
250 
251 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
252 
253 /* for modulo comparisons of timestamps */
254 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
255 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
256 
257 /*
258  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
259  */
260 #ifdef INET6
261 static inline void
262 nd6_hint(struct tcpcb *tp)
263 {
264 	struct rtentry *rt;
265 
266 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
267 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
268 		nd6_nud_hint(rt, NULL, 0);
269 }
270 #else
271 static inline void
272 nd6_hint(struct tcpcb *tp)
273 {
274 }
275 #endif
276 
277 /*
278  * Compute ACK transmission behavior.  Delay the ACK unless
279  * we have already delayed an ACK (must send an ACK every two segments).
280  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
281  * option is enabled.
282  */
283 static void
284 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
285 {
286 
287 	if (tp->t_flags & TF_DELACK ||
288 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
289 		tp->t_flags |= TF_ACKNOW;
290 	else
291 		TCP_SET_DELACK(tp);
292 }
293 
294 static void
295 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
296 {
297 
298 	/*
299 	 * If we had a pending ICMP message that refers to data that have
300 	 * just been acknowledged, disregard the recorded ICMP message.
301 	 */
302 	if ((tp->t_flags & TF_PMTUD_PEND) &&
303 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
304 		tp->t_flags &= ~TF_PMTUD_PEND;
305 
306 	/*
307 	 * Keep track of the largest chunk of data
308 	 * acknowledged since last PMTU update
309 	 */
310 	if (tp->t_pmtud_mss_acked < acked)
311 		tp->t_pmtud_mss_acked = acked;
312 }
313 
314 /*
315  * Convert TCP protocol fields to host order for easier processing.
316  */
317 static void
318 tcp_fields_to_host(struct tcphdr *th)
319 {
320 
321 	NTOHL(th->th_seq);
322 	NTOHL(th->th_ack);
323 	NTOHS(th->th_win);
324 	NTOHS(th->th_urp);
325 }
326 
327 /*
328  * ... and reverse the above.
329  */
330 static void
331 tcp_fields_to_net(struct tcphdr *th)
332 {
333 
334 	HTONL(th->th_seq);
335 	HTONL(th->th_ack);
336 	HTONS(th->th_win);
337 	HTONS(th->th_urp);
338 }
339 
340 #ifdef TCP_CSUM_COUNTERS
341 #include <sys/device.h>
342 
343 #if defined(INET)
344 extern struct evcnt tcp_hwcsum_ok;
345 extern struct evcnt tcp_hwcsum_bad;
346 extern struct evcnt tcp_hwcsum_data;
347 extern struct evcnt tcp_swcsum;
348 #endif /* defined(INET) */
349 #if defined(INET6)
350 extern struct evcnt tcp6_hwcsum_ok;
351 extern struct evcnt tcp6_hwcsum_bad;
352 extern struct evcnt tcp6_hwcsum_data;
353 extern struct evcnt tcp6_swcsum;
354 #endif /* defined(INET6) */
355 
356 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
357 
358 #else
359 
360 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
361 
362 #endif /* TCP_CSUM_COUNTERS */
363 
364 #ifdef TCP_REASS_COUNTERS
365 #include <sys/device.h>
366 
367 extern struct evcnt tcp_reass_;
368 extern struct evcnt tcp_reass_empty;
369 extern struct evcnt tcp_reass_iteration[8];
370 extern struct evcnt tcp_reass_prependfirst;
371 extern struct evcnt tcp_reass_prepend;
372 extern struct evcnt tcp_reass_insert;
373 extern struct evcnt tcp_reass_inserttail;
374 extern struct evcnt tcp_reass_append;
375 extern struct evcnt tcp_reass_appendtail;
376 extern struct evcnt tcp_reass_overlaptail;
377 extern struct evcnt tcp_reass_overlapfront;
378 extern struct evcnt tcp_reass_segdup;
379 extern struct evcnt tcp_reass_fragdup;
380 
381 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
382 
383 #else
384 
385 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
386 
387 #endif /* TCP_REASS_COUNTERS */
388 
389 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
390     int *);
391 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
392     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
393 
394 #ifdef INET
395 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
396 #endif
397 #ifdef INET6
398 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
399 #endif
400 
401 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
402 
403 #if defined(MBUFTRACE)
404 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
405 #endif /* defined(MBUFTRACE) */
406 
407 static POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
408     NULL, IPL_VM);
409 
410 struct ipqent *
411 tcpipqent_alloc(void)
412 {
413 	struct ipqent *ipqe;
414 	int s;
415 
416 	s = splvm();
417 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
418 	splx(s);
419 
420 	return ipqe;
421 }
422 
423 void
424 tcpipqent_free(struct ipqent *ipqe)
425 {
426 	int s;
427 
428 	s = splvm();
429 	pool_put(&tcpipqent_pool, ipqe);
430 	splx(s);
431 }
432 
433 static int
434 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
435 {
436 	struct ipqent *p, *q, *nq, *tiqe = NULL;
437 	struct socket *so = NULL;
438 	int pkt_flags;
439 	tcp_seq pkt_seq;
440 	unsigned pkt_len;
441 	u_long rcvpartdupbyte = 0;
442 	u_long rcvoobyte;
443 #ifdef TCP_REASS_COUNTERS
444 	u_int count = 0;
445 #endif
446 	uint64_t *tcps;
447 
448 	if (tp->t_inpcb)
449 		so = tp->t_inpcb->inp_socket;
450 #ifdef INET6
451 	else if (tp->t_in6pcb)
452 		so = tp->t_in6pcb->in6p_socket;
453 #endif
454 
455 	TCP_REASS_LOCK_CHECK(tp);
456 
457 	/*
458 	 * Call with th==0 after become established to
459 	 * force pre-ESTABLISHED data up to user socket.
460 	 */
461 	if (th == 0)
462 		goto present;
463 
464 	m_claimm(m, &tcp_reass_mowner);
465 
466 	rcvoobyte = *tlen;
467 	/*
468 	 * Copy these to local variables because the tcpiphdr
469 	 * gets munged while we are collapsing mbufs.
470 	 */
471 	pkt_seq = th->th_seq;
472 	pkt_len = *tlen;
473 	pkt_flags = th->th_flags;
474 
475 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
476 
477 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
478 		/*
479 		 * When we miss a packet, the vast majority of time we get
480 		 * packets that follow it in order.  So optimize for that.
481 		 */
482 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
483 			p->ipqe_len += pkt_len;
484 			p->ipqe_flags |= pkt_flags;
485 			m_cat(p->ipre_mlast, m);
486 			TRAVERSE(p->ipre_mlast);
487 			m = NULL;
488 			tiqe = p;
489 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
490 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
491 			goto skip_replacement;
492 		}
493 		/*
494 		 * While we're here, if the pkt is completely beyond
495 		 * anything we have, just insert it at the tail.
496 		 */
497 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
498 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
499 			goto insert_it;
500 		}
501 	}
502 
503 	q = TAILQ_FIRST(&tp->segq);
504 
505 	if (q != NULL) {
506 		/*
507 		 * If this segment immediately precedes the first out-of-order
508 		 * block, simply slap the segment in front of it and (mostly)
509 		 * skip the complicated logic.
510 		 */
511 		if (pkt_seq + pkt_len == q->ipqe_seq) {
512 			q->ipqe_seq = pkt_seq;
513 			q->ipqe_len += pkt_len;
514 			q->ipqe_flags |= pkt_flags;
515 			m_cat(m, q->ipqe_m);
516 			q->ipqe_m = m;
517 			q->ipre_mlast = m; /* last mbuf may have changed */
518 			TRAVERSE(q->ipre_mlast);
519 			tiqe = q;
520 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
521 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
522 			goto skip_replacement;
523 		}
524 	} else {
525 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
526 	}
527 
528 	/*
529 	 * Find a segment which begins after this one does.
530 	 */
531 	for (p = NULL; q != NULL; q = nq) {
532 		nq = TAILQ_NEXT(q, ipqe_q);
533 #ifdef TCP_REASS_COUNTERS
534 		count++;
535 #endif
536 		/*
537 		 * If the received segment is just right after this
538 		 * fragment, merge the two together and then check
539 		 * for further overlaps.
540 		 */
541 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
542 #ifdef TCPREASS_DEBUG
543 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
544 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
545 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
546 #endif
547 			pkt_len += q->ipqe_len;
548 			pkt_flags |= q->ipqe_flags;
549 			pkt_seq = q->ipqe_seq;
550 			m_cat(q->ipre_mlast, m);
551 			TRAVERSE(q->ipre_mlast);
552 			m = q->ipqe_m;
553 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
554 			goto free_ipqe;
555 		}
556 		/*
557 		 * If the received segment is completely past this
558 		 * fragment, we need to go the next fragment.
559 		 */
560 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
561 			p = q;
562 			continue;
563 		}
564 		/*
565 		 * If the fragment is past the received segment,
566 		 * it (or any following) can't be concatenated.
567 		 */
568 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
569 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
570 			break;
571 		}
572 
573 		/*
574 		 * We've received all the data in this segment before.
575 		 * mark it as a duplicate and return.
576 		 */
577 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
578 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
579 			tcps = TCP_STAT_GETREF();
580 			tcps[TCP_STAT_RCVDUPPACK]++;
581 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
582 			TCP_STAT_PUTREF();
583 			tcp_new_dsack(tp, pkt_seq, pkt_len);
584 			m_freem(m);
585 			if (tiqe != NULL) {
586 				tcpipqent_free(tiqe);
587 			}
588 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
589 			return (0);
590 		}
591 		/*
592 		 * Received segment completely overlaps this fragment
593 		 * so we drop the fragment (this keeps the temporal
594 		 * ordering of segments correct).
595 		 */
596 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
597 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
598 			rcvpartdupbyte += q->ipqe_len;
599 			m_freem(q->ipqe_m);
600 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
601 			goto free_ipqe;
602 		}
603 		/*
604 		 * RX'ed segment extends past the end of the
605 		 * fragment.  Drop the overlapping bytes.  Then
606 		 * merge the fragment and segment then treat as
607 		 * a longer received packet.
608 		 */
609 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
610 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
611 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
612 #ifdef TCPREASS_DEBUG
613 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
614 			       tp, overlap,
615 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
616 #endif
617 			m_adj(m, overlap);
618 			rcvpartdupbyte += overlap;
619 			m_cat(q->ipre_mlast, m);
620 			TRAVERSE(q->ipre_mlast);
621 			m = q->ipqe_m;
622 			pkt_seq = q->ipqe_seq;
623 			pkt_len += q->ipqe_len - overlap;
624 			rcvoobyte -= overlap;
625 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
626 			goto free_ipqe;
627 		}
628 		/*
629 		 * RX'ed segment extends past the front of the
630 		 * fragment.  Drop the overlapping bytes on the
631 		 * received packet.  The packet will then be
632 		 * contatentated with this fragment a bit later.
633 		 */
634 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
635 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
636 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
637 #ifdef TCPREASS_DEBUG
638 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
639 			       tp, overlap,
640 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
641 #endif
642 			m_adj(m, -overlap);
643 			pkt_len -= overlap;
644 			rcvpartdupbyte += overlap;
645 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
646 			rcvoobyte -= overlap;
647 		}
648 		/*
649 		 * If the received segment immediates precedes this
650 		 * fragment then tack the fragment onto this segment
651 		 * and reinsert the data.
652 		 */
653 		if (q->ipqe_seq == pkt_seq + pkt_len) {
654 #ifdef TCPREASS_DEBUG
655 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
656 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
657 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
658 #endif
659 			pkt_len += q->ipqe_len;
660 			pkt_flags |= q->ipqe_flags;
661 			m_cat(m, q->ipqe_m);
662 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
663 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
664 			tp->t_segqlen--;
665 			KASSERT(tp->t_segqlen >= 0);
666 			KASSERT(tp->t_segqlen != 0 ||
667 			    (TAILQ_EMPTY(&tp->segq) &&
668 			    TAILQ_EMPTY(&tp->timeq)));
669 			if (tiqe == NULL) {
670 				tiqe = q;
671 			} else {
672 				tcpipqent_free(q);
673 			}
674 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
675 			break;
676 		}
677 		/*
678 		 * If the fragment is before the segment, remember it.
679 		 * When this loop is terminated, p will contain the
680 		 * pointer to fragment that is right before the received
681 		 * segment.
682 		 */
683 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
684 			p = q;
685 
686 		continue;
687 
688 		/*
689 		 * This is a common operation.  It also will allow
690 		 * to save doing a malloc/free in most instances.
691 		 */
692 	  free_ipqe:
693 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
694 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
695 		tp->t_segqlen--;
696 		KASSERT(tp->t_segqlen >= 0);
697 		KASSERT(tp->t_segqlen != 0 ||
698 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
699 		if (tiqe == NULL) {
700 			tiqe = q;
701 		} else {
702 			tcpipqent_free(q);
703 		}
704 	}
705 
706 #ifdef TCP_REASS_COUNTERS
707 	if (count > 7)
708 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
709 	else if (count > 0)
710 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
711 #endif
712 
713     insert_it:
714 
715 	/*
716 	 * Allocate a new queue entry since the received segment did not
717 	 * collapse onto any other out-of-order block; thus we are allocating
718 	 * a new block.  If it had collapsed, tiqe would not be NULL and
719 	 * we would be reusing it.
720 	 * XXX If we can't, just drop the packet.  XXX
721 	 */
722 	if (tiqe == NULL) {
723 		tiqe = tcpipqent_alloc();
724 		if (tiqe == NULL) {
725 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
726 			m_freem(m);
727 			return (0);
728 		}
729 	}
730 
731 	/*
732 	 * Update the counters.
733 	 */
734 	tcps = TCP_STAT_GETREF();
735 	tcps[TCP_STAT_RCVOOPACK]++;
736 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
737 	if (rcvpartdupbyte) {
738 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
739 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
740 	}
741 	TCP_STAT_PUTREF();
742 
743 	/*
744 	 * Insert the new fragment queue entry into both queues.
745 	 */
746 	tiqe->ipqe_m = m;
747 	tiqe->ipre_mlast = m;
748 	tiqe->ipqe_seq = pkt_seq;
749 	tiqe->ipqe_len = pkt_len;
750 	tiqe->ipqe_flags = pkt_flags;
751 	if (p == NULL) {
752 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
753 #ifdef TCPREASS_DEBUG
754 		if (tiqe->ipqe_seq != tp->rcv_nxt)
755 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
756 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
757 #endif
758 	} else {
759 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
760 #ifdef TCPREASS_DEBUG
761 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
762 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
763 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
764 #endif
765 	}
766 	tp->t_segqlen++;
767 
768 skip_replacement:
769 
770 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
771 
772 present:
773 	/*
774 	 * Present data to user, advancing rcv_nxt through
775 	 * completed sequence space.
776 	 */
777 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
778 		return (0);
779 	q = TAILQ_FIRST(&tp->segq);
780 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
781 		return (0);
782 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
783 		return (0);
784 
785 	tp->rcv_nxt += q->ipqe_len;
786 	pkt_flags = q->ipqe_flags & TH_FIN;
787 	nd6_hint(tp);
788 
789 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
790 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
791 	tp->t_segqlen--;
792 	KASSERT(tp->t_segqlen >= 0);
793 	KASSERT(tp->t_segqlen != 0 ||
794 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
795 	if (so->so_state & SS_CANTRCVMORE)
796 		m_freem(q->ipqe_m);
797 	else
798 		sbappendstream(&so->so_rcv, q->ipqe_m);
799 	tcpipqent_free(q);
800 	sorwakeup(so);
801 	return (pkt_flags);
802 }
803 
804 #ifdef INET6
805 int
806 tcp6_input(struct mbuf **mp, int *offp, int proto)
807 {
808 	struct mbuf *m = *mp;
809 
810 	/*
811 	 * draft-itojun-ipv6-tcp-to-anycast
812 	 * better place to put this in?
813 	 */
814 	if (m->m_flags & M_ANYCAST6) {
815 		struct ip6_hdr *ip6;
816 		if (m->m_len < sizeof(struct ip6_hdr)) {
817 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
818 				TCP_STATINC(TCP_STAT_RCVSHORT);
819 				return IPPROTO_DONE;
820 			}
821 		}
822 		ip6 = mtod(m, struct ip6_hdr *);
823 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
824 		    (char *)&ip6->ip6_dst - (char *)ip6);
825 		return IPPROTO_DONE;
826 	}
827 
828 	tcp_input(m, *offp, proto);
829 	return IPPROTO_DONE;
830 }
831 #endif
832 
833 #ifdef INET
834 static void
835 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
836 {
837 	char src[4*sizeof "123"];
838 	char dst[4*sizeof "123"];
839 
840 	if (ip) {
841 		strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
842 		strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
843 	}
844 	else {
845 		strlcpy(src, "(unknown)", sizeof(src));
846 		strlcpy(dst, "(unknown)", sizeof(dst));
847 	}
848 	log(LOG_INFO,
849 	    "Connection attempt to TCP %s:%d from %s:%d\n",
850 	    dst, ntohs(th->th_dport),
851 	    src, ntohs(th->th_sport));
852 }
853 #endif
854 
855 #ifdef INET6
856 static void
857 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
858 {
859 	char src[INET6_ADDRSTRLEN];
860 	char dst[INET6_ADDRSTRLEN];
861 
862 	if (ip6) {
863 		strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
864 		strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
865 	}
866 	else {
867 		strlcpy(src, "(unknown v6)", sizeof(src));
868 		strlcpy(dst, "(unknown v6)", sizeof(dst));
869 	}
870 	log(LOG_INFO,
871 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
872 	    dst, ntohs(th->th_dport),
873 	    src, ntohs(th->th_sport));
874 }
875 #endif
876 
877 /*
878  * Checksum extended TCP header and data.
879  */
880 int
881 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
882     int toff, int off, int tlen)
883 {
884 
885 	/*
886 	 * XXX it's better to record and check if this mbuf is
887 	 * already checked.
888 	 */
889 
890 	switch (af) {
891 #ifdef INET
892 	case AF_INET:
893 		switch (m->m_pkthdr.csum_flags &
894 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
895 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
896 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
897 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
898 			goto badcsum;
899 
900 		case M_CSUM_TCPv4|M_CSUM_DATA: {
901 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
902 
903 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
904 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
905 				const struct ip *ip =
906 				    mtod(m, const struct ip *);
907 
908 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
909 				    ip->ip_dst.s_addr,
910 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
911 			}
912 			if ((hw_csum ^ 0xffff) != 0)
913 				goto badcsum;
914 			break;
915 		}
916 
917 		case M_CSUM_TCPv4:
918 			/* Checksum was okay. */
919 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
920 			break;
921 
922 		default:
923 			/*
924 			 * Must compute it ourselves.  Maybe skip checksum
925 			 * on loopback interfaces.
926 			 */
927 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
928 					     IFF_LOOPBACK) ||
929 					   tcp_do_loopback_cksum)) {
930 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
931 				if (in4_cksum(m, IPPROTO_TCP, toff,
932 					      tlen + off) != 0)
933 					goto badcsum;
934 			}
935 			break;
936 		}
937 		break;
938 #endif /* INET4 */
939 
940 #ifdef INET6
941 	case AF_INET6:
942 		switch (m->m_pkthdr.csum_flags &
943 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
944 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
945 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
946 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
947 			goto badcsum;
948 
949 #if 0 /* notyet */
950 		case M_CSUM_TCPv6|M_CSUM_DATA:
951 #endif
952 
953 		case M_CSUM_TCPv6:
954 			/* Checksum was okay. */
955 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
956 			break;
957 
958 		default:
959 			/*
960 			 * Must compute it ourselves.  Maybe skip checksum
961 			 * on loopback interfaces.
962 			 */
963 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
964 			    tcp_do_loopback_cksum)) {
965 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
966 				if (in6_cksum(m, IPPROTO_TCP, toff,
967 				    tlen + off) != 0)
968 					goto badcsum;
969 			}
970 		}
971 		break;
972 #endif /* INET6 */
973 	}
974 
975 	return 0;
976 
977 badcsum:
978 	TCP_STATINC(TCP_STAT_RCVBADSUM);
979 	return -1;
980 }
981 
982 /*
983  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
984  */
985 void
986 tcp_input(struct mbuf *m, ...)
987 {
988 	struct tcphdr *th;
989 	struct ip *ip;
990 	struct inpcb *inp;
991 #ifdef INET6
992 	struct ip6_hdr *ip6;
993 	struct in6pcb *in6p;
994 #endif
995 	u_int8_t *optp = NULL;
996 	int optlen = 0;
997 	int len, tlen, toff, hdroptlen = 0;
998 	struct tcpcb *tp = 0;
999 	int tiflags;
1000 	struct socket *so = NULL;
1001 	int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
1002 #ifdef TCP_DEBUG
1003 	short ostate = 0;
1004 #endif
1005 	u_long tiwin;
1006 	struct tcp_opt_info opti;
1007 	int off, iphlen;
1008 	va_list ap;
1009 	int af;		/* af on the wire */
1010 	struct mbuf *tcp_saveti = NULL;
1011 	uint32_t ts_rtt;
1012 	uint8_t iptos;
1013 	uint64_t *tcps;
1014 
1015 	MCLAIM(m, &tcp_rx_mowner);
1016 	va_start(ap, m);
1017 	toff = va_arg(ap, int);
1018 	(void)va_arg(ap, int);		/* ignore value, advance ap */
1019 	va_end(ap);
1020 
1021 	TCP_STATINC(TCP_STAT_RCVTOTAL);
1022 
1023 	bzero(&opti, sizeof(opti));
1024 	opti.ts_present = 0;
1025 	opti.maxseg = 0;
1026 
1027 	/*
1028 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1029 	 *
1030 	 * TCP is, by definition, unicast, so we reject all
1031 	 * multicast outright.
1032 	 *
1033 	 * Note, there are additional src/dst address checks in
1034 	 * the AF-specific code below.
1035 	 */
1036 	if (m->m_flags & (M_BCAST|M_MCAST)) {
1037 		/* XXX stat */
1038 		goto drop;
1039 	}
1040 #ifdef INET6
1041 	if (m->m_flags & M_ANYCAST6) {
1042 		/* XXX stat */
1043 		goto drop;
1044 	}
1045 #endif
1046 
1047 	/*
1048 	 * Get IP and TCP header.
1049 	 * Note: IP leaves IP header in first mbuf.
1050 	 */
1051 	ip = mtod(m, struct ip *);
1052 #ifdef INET6
1053 	ip6 = NULL;
1054 #endif
1055 	switch (ip->ip_v) {
1056 #ifdef INET
1057 	case 4:
1058 		af = AF_INET;
1059 		iphlen = sizeof(struct ip);
1060 		ip = mtod(m, struct ip *);
1061 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1062 			sizeof(struct tcphdr));
1063 		if (th == NULL) {
1064 			TCP_STATINC(TCP_STAT_RCVSHORT);
1065 			return;
1066 		}
1067 		/* We do the checksum after PCB lookup... */
1068 		len = ntohs(ip->ip_len);
1069 		tlen = len - toff;
1070 		iptos = ip->ip_tos;
1071 		break;
1072 #endif
1073 #ifdef INET6
1074 	case 6:
1075 		ip = NULL;
1076 		iphlen = sizeof(struct ip6_hdr);
1077 		af = AF_INET6;
1078 		ip6 = mtod(m, struct ip6_hdr *);
1079 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1080 			sizeof(struct tcphdr));
1081 		if (th == NULL) {
1082 			TCP_STATINC(TCP_STAT_RCVSHORT);
1083 			return;
1084 		}
1085 
1086 		/* Be proactive about malicious use of IPv4 mapped address */
1087 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1088 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1089 			/* XXX stat */
1090 			goto drop;
1091 		}
1092 
1093 		/*
1094 		 * Be proactive about unspecified IPv6 address in source.
1095 		 * As we use all-zero to indicate unbounded/unconnected pcb,
1096 		 * unspecified IPv6 address can be used to confuse us.
1097 		 *
1098 		 * Note that packets with unspecified IPv6 destination is
1099 		 * already dropped in ip6_input.
1100 		 */
1101 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1102 			/* XXX stat */
1103 			goto drop;
1104 		}
1105 
1106 		/*
1107 		 * Make sure destination address is not multicast.
1108 		 * Source address checked in ip6_input().
1109 		 */
1110 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1111 			/* XXX stat */
1112 			goto drop;
1113 		}
1114 
1115 		/* We do the checksum after PCB lookup... */
1116 		len = m->m_pkthdr.len;
1117 		tlen = len - toff;
1118 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1119 		break;
1120 #endif
1121 	default:
1122 		m_freem(m);
1123 		return;
1124 	}
1125 
1126 	KASSERT(TCP_HDR_ALIGNED_P(th));
1127 
1128 	/*
1129 	 * Check that TCP offset makes sense,
1130 	 * pull out TCP options and adjust length.		XXX
1131 	 */
1132 	off = th->th_off << 2;
1133 	if (off < sizeof (struct tcphdr) || off > tlen) {
1134 		TCP_STATINC(TCP_STAT_RCVBADOFF);
1135 		goto drop;
1136 	}
1137 	tlen -= off;
1138 
1139 	/*
1140 	 * tcp_input() has been modified to use tlen to mean the TCP data
1141 	 * length throughout the function.  Other functions can use
1142 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1143 	 * rja
1144 	 */
1145 
1146 	if (off > sizeof (struct tcphdr)) {
1147 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1148 		if (th == NULL) {
1149 			TCP_STATINC(TCP_STAT_RCVSHORT);
1150 			return;
1151 		}
1152 		/*
1153 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
1154 		 * (as they're before toff) and we don't need to update those.
1155 		 */
1156 		KASSERT(TCP_HDR_ALIGNED_P(th));
1157 		optlen = off - sizeof (struct tcphdr);
1158 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1159 		/*
1160 		 * Do quick retrieval of timestamp options ("options
1161 		 * prediction?").  If timestamp is the only option and it's
1162 		 * formatted as recommended in RFC 1323 appendix A, we
1163 		 * quickly get the values now and not bother calling
1164 		 * tcp_dooptions(), etc.
1165 		 */
1166 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1167 		     (optlen > TCPOLEN_TSTAMP_APPA &&
1168 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1169 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1170 		     (th->th_flags & TH_SYN) == 0) {
1171 			opti.ts_present = 1;
1172 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1173 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1174 			optp = NULL;	/* we've parsed the options */
1175 		}
1176 	}
1177 	tiflags = th->th_flags;
1178 
1179 	/*
1180 	 * Locate pcb for segment.
1181 	 */
1182 findpcb:
1183 	inp = NULL;
1184 #ifdef INET6
1185 	in6p = NULL;
1186 #endif
1187 	switch (af) {
1188 #ifdef INET
1189 	case AF_INET:
1190 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1191 		    ip->ip_dst, th->th_dport);
1192 		if (inp == 0) {
1193 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1194 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1195 		}
1196 #ifdef INET6
1197 		if (inp == 0) {
1198 			struct in6_addr s, d;
1199 
1200 			/* mapped addr case */
1201 			bzero(&s, sizeof(s));
1202 			s.s6_addr16[5] = htons(0xffff);
1203 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1204 			bzero(&d, sizeof(d));
1205 			d.s6_addr16[5] = htons(0xffff);
1206 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1207 			in6p = in6_pcblookup_connect(&tcbtable, &s,
1208 			    th->th_sport, &d, th->th_dport, 0);
1209 			if (in6p == 0) {
1210 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
1211 				in6p = in6_pcblookup_bind(&tcbtable, &d,
1212 				    th->th_dport, 0);
1213 			}
1214 		}
1215 #endif
1216 #ifndef INET6
1217 		if (inp == 0)
1218 #else
1219 		if (inp == 0 && in6p == 0)
1220 #endif
1221 		{
1222 			TCP_STATINC(TCP_STAT_NOPORT);
1223 			if (tcp_log_refused &&
1224 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1225 				tcp4_log_refused(ip, th);
1226 			}
1227 			tcp_fields_to_host(th);
1228 			goto dropwithreset_ratelim;
1229 		}
1230 #if defined(IPSEC) || defined(FAST_IPSEC)
1231 		if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1232 		    ipsec4_in_reject(m, inp)) {
1233 			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1234 			goto drop;
1235 		}
1236 #ifdef INET6
1237 		else if (in6p &&
1238 		    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1239 		    ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1240 			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1241 			goto drop;
1242 		}
1243 #endif
1244 #endif /*IPSEC*/
1245 		break;
1246 #endif /*INET*/
1247 #ifdef INET6
1248 	case AF_INET6:
1249 	    {
1250 		int faith;
1251 
1252 #if defined(NFAITH) && NFAITH > 0
1253 		faith = faithprefix(&ip6->ip6_dst);
1254 #else
1255 		faith = 0;
1256 #endif
1257 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1258 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1259 		if (in6p == NULL) {
1260 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
1261 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1262 				th->th_dport, faith);
1263 		}
1264 		if (in6p == NULL) {
1265 			TCP_STATINC(TCP_STAT_NOPORT);
1266 			if (tcp_log_refused &&
1267 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1268 				tcp6_log_refused(ip6, th);
1269 			}
1270 			tcp_fields_to_host(th);
1271 			goto dropwithreset_ratelim;
1272 		}
1273 #if defined(IPSEC) || defined(FAST_IPSEC)
1274 		if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1275 		    ipsec6_in_reject(m, in6p)) {
1276 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1277 			goto drop;
1278 		}
1279 #endif /*IPSEC*/
1280 		break;
1281 	    }
1282 #endif
1283 	}
1284 
1285 	/*
1286 	 * If the state is CLOSED (i.e., TCB does not exist) then
1287 	 * all data in the incoming segment is discarded.
1288 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1289 	 * but should either do a listen or a connect soon.
1290 	 */
1291 	tp = NULL;
1292 	so = NULL;
1293 	if (inp) {
1294 		tp = intotcpcb(inp);
1295 		so = inp->inp_socket;
1296 	}
1297 #ifdef INET6
1298 	else if (in6p) {
1299 		tp = in6totcpcb(in6p);
1300 		so = in6p->in6p_socket;
1301 	}
1302 #endif
1303 	if (tp == 0) {
1304 		tcp_fields_to_host(th);
1305 		goto dropwithreset_ratelim;
1306 	}
1307 	if (tp->t_state == TCPS_CLOSED)
1308 		goto drop;
1309 
1310 	KASSERT(so->so_lock == softnet_lock);
1311 	KASSERT(solocked(so));
1312 
1313 	/*
1314 	 * Checksum extended TCP header and data.
1315 	 */
1316 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
1317 		goto badcsum;
1318 
1319 	tcp_fields_to_host(th);
1320 
1321 	/* Unscale the window into a 32-bit value. */
1322 	if ((tiflags & TH_SYN) == 0)
1323 		tiwin = th->th_win << tp->snd_scale;
1324 	else
1325 		tiwin = th->th_win;
1326 
1327 #ifdef INET6
1328 	/* save packet options if user wanted */
1329 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1330 		if (in6p->in6p_options) {
1331 			m_freem(in6p->in6p_options);
1332 			in6p->in6p_options = 0;
1333 		}
1334 		KASSERT(ip6 != NULL);
1335 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1336 	}
1337 #endif
1338 
1339 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1340 		union syn_cache_sa src;
1341 		union syn_cache_sa dst;
1342 
1343 		bzero(&src, sizeof(src));
1344 		bzero(&dst, sizeof(dst));
1345 		switch (af) {
1346 #ifdef INET
1347 		case AF_INET:
1348 			src.sin.sin_len = sizeof(struct sockaddr_in);
1349 			src.sin.sin_family = AF_INET;
1350 			src.sin.sin_addr = ip->ip_src;
1351 			src.sin.sin_port = th->th_sport;
1352 
1353 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1354 			dst.sin.sin_family = AF_INET;
1355 			dst.sin.sin_addr = ip->ip_dst;
1356 			dst.sin.sin_port = th->th_dport;
1357 			break;
1358 #endif
1359 #ifdef INET6
1360 		case AF_INET6:
1361 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1362 			src.sin6.sin6_family = AF_INET6;
1363 			src.sin6.sin6_addr = ip6->ip6_src;
1364 			src.sin6.sin6_port = th->th_sport;
1365 
1366 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1367 			dst.sin6.sin6_family = AF_INET6;
1368 			dst.sin6.sin6_addr = ip6->ip6_dst;
1369 			dst.sin6.sin6_port = th->th_dport;
1370 			break;
1371 #endif /* INET6 */
1372 		default:
1373 			goto badsyn;	/*sanity*/
1374 		}
1375 
1376 		if (so->so_options & SO_DEBUG) {
1377 #ifdef TCP_DEBUG
1378 			ostate = tp->t_state;
1379 #endif
1380 
1381 			tcp_saveti = NULL;
1382 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1383 				goto nosave;
1384 
1385 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1386 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1387 				if (!tcp_saveti)
1388 					goto nosave;
1389 			} else {
1390 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1391 				if (!tcp_saveti)
1392 					goto nosave;
1393 				MCLAIM(m, &tcp_mowner);
1394 				tcp_saveti->m_len = iphlen;
1395 				m_copydata(m, 0, iphlen,
1396 				    mtod(tcp_saveti, void *));
1397 			}
1398 
1399 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1400 				m_freem(tcp_saveti);
1401 				tcp_saveti = NULL;
1402 			} else {
1403 				tcp_saveti->m_len += sizeof(struct tcphdr);
1404 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1405 				    sizeof(struct tcphdr));
1406 			}
1407 	nosave:;
1408 		}
1409 		if (so->so_options & SO_ACCEPTCONN) {
1410 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1411 				if (tiflags & TH_RST) {
1412 					syn_cache_reset(&src.sa, &dst.sa, th);
1413 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1414 				    (TH_ACK|TH_SYN)) {
1415 					/*
1416 					 * Received a SYN,ACK.  This should
1417 					 * never happen while we are in
1418 					 * LISTEN.  Send an RST.
1419 					 */
1420 					goto badsyn;
1421 				} else if (tiflags & TH_ACK) {
1422 					so = syn_cache_get(&src.sa, &dst.sa,
1423 						th, toff, tlen, so, m);
1424 					if (so == NULL) {
1425 						/*
1426 						 * We don't have a SYN for
1427 						 * this ACK; send an RST.
1428 						 */
1429 						goto badsyn;
1430 					} else if (so ==
1431 					    (struct socket *)(-1)) {
1432 						/*
1433 						 * We were unable to create
1434 						 * the connection.  If the
1435 						 * 3-way handshake was
1436 						 * completed, and RST has
1437 						 * been sent to the peer.
1438 						 * Since the mbuf might be
1439 						 * in use for the reply,
1440 						 * do not free it.
1441 						 */
1442 						m = NULL;
1443 					} else {
1444 						/*
1445 						 * We have created a
1446 						 * full-blown connection.
1447 						 */
1448 						tp = NULL;
1449 						inp = NULL;
1450 #ifdef INET6
1451 						in6p = NULL;
1452 #endif
1453 						switch (so->so_proto->pr_domain->dom_family) {
1454 #ifdef INET
1455 						case AF_INET:
1456 							inp = sotoinpcb(so);
1457 							tp = intotcpcb(inp);
1458 							break;
1459 #endif
1460 #ifdef INET6
1461 						case AF_INET6:
1462 							in6p = sotoin6pcb(so);
1463 							tp = in6totcpcb(in6p);
1464 							break;
1465 #endif
1466 						}
1467 						if (tp == NULL)
1468 							goto badsyn;	/*XXX*/
1469 						tiwin <<= tp->snd_scale;
1470 						goto after_listen;
1471 					}
1472 				} else {
1473 					/*
1474 					 * None of RST, SYN or ACK was set.
1475 					 * This is an invalid packet for a
1476 					 * TCB in LISTEN state.  Send a RST.
1477 					 */
1478 					goto badsyn;
1479 				}
1480 			} else {
1481 				/*
1482 				 * Received a SYN.
1483 				 *
1484 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1485 				 */
1486 				if (m->m_flags & (M_BCAST|M_MCAST))
1487 					goto drop;
1488 
1489 				switch (af) {
1490 #ifdef INET6
1491 				case AF_INET6:
1492 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1493 						goto drop;
1494 					break;
1495 #endif /* INET6 */
1496 				case AF_INET:
1497 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1498 					    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1499 						goto drop;
1500 				break;
1501 				}
1502 
1503 #ifdef INET6
1504 				/*
1505 				 * If deprecated address is forbidden, we do
1506 				 * not accept SYN to deprecated interface
1507 				 * address to prevent any new inbound
1508 				 * connection from getting established.
1509 				 * When we do not accept SYN, we send a TCP
1510 				 * RST, with deprecated source address (instead
1511 				 * of dropping it).  We compromise it as it is
1512 				 * much better for peer to send a RST, and
1513 				 * RST will be the final packet for the
1514 				 * exchange.
1515 				 *
1516 				 * If we do not forbid deprecated addresses, we
1517 				 * accept the SYN packet.  RFC2462 does not
1518 				 * suggest dropping SYN in this case.
1519 				 * If we decipher RFC2462 5.5.4, it says like
1520 				 * this:
1521 				 * 1. use of deprecated addr with existing
1522 				 *    communication is okay - "SHOULD continue
1523 				 *    to be used"
1524 				 * 2. use of it with new communication:
1525 				 *   (2a) "SHOULD NOT be used if alternate
1526 				 *        address with sufficient scope is
1527 				 *        available"
1528 				 *   (2b) nothing mentioned otherwise.
1529 				 * Here we fall into (2b) case as we have no
1530 				 * choice in our source address selection - we
1531 				 * must obey the peer.
1532 				 *
1533 				 * The wording in RFC2462 is confusing, and
1534 				 * there are multiple description text for
1535 				 * deprecated address handling - worse, they
1536 				 * are not exactly the same.  I believe 5.5.4
1537 				 * is the best one, so we follow 5.5.4.
1538 				 */
1539 				if (af == AF_INET6 && !ip6_use_deprecated) {
1540 					struct in6_ifaddr *ia6;
1541 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1542 					    &ip6->ip6_dst)) &&
1543 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1544 						tp = NULL;
1545 						goto dropwithreset;
1546 					}
1547 				}
1548 #endif
1549 
1550 #if defined(IPSEC) || defined(FAST_IPSEC)
1551 				switch (af) {
1552 #ifdef INET
1553 				case AF_INET:
1554 					if (ipsec4_in_reject_so(m, so)) {
1555 						IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1556 						tp = NULL;
1557 						goto dropwithreset;
1558 					}
1559 					break;
1560 #endif
1561 #ifdef INET6
1562 				case AF_INET6:
1563 					if (ipsec6_in_reject_so(m, so)) {
1564 						IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1565 						tp = NULL;
1566 						goto dropwithreset;
1567 					}
1568 					break;
1569 #endif /*INET6*/
1570 				}
1571 #endif /*IPSEC*/
1572 
1573 				/*
1574 				 * LISTEN socket received a SYN
1575 				 * from itself?  This can't possibly
1576 				 * be valid; drop the packet.
1577 				 */
1578 				if (th->th_sport == th->th_dport) {
1579 					int i;
1580 
1581 					switch (af) {
1582 #ifdef INET
1583 					case AF_INET:
1584 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1585 						break;
1586 #endif
1587 #ifdef INET6
1588 					case AF_INET6:
1589 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1590 						break;
1591 #endif
1592 					default:
1593 						i = 1;
1594 					}
1595 					if (i) {
1596 						TCP_STATINC(TCP_STAT_BADSYN);
1597 						goto drop;
1598 					}
1599 				}
1600 
1601 				/*
1602 				 * SYN looks ok; create compressed TCP
1603 				 * state for it.
1604 				 */
1605 				if (so->so_qlen <= so->so_qlimit &&
1606 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1607 						so, m, optp, optlen, &opti))
1608 					m = NULL;
1609 			}
1610 			goto drop;
1611 		}
1612 	}
1613 
1614 after_listen:
1615 #ifdef DIAGNOSTIC
1616 	/*
1617 	 * Should not happen now that all embryonic connections
1618 	 * are handled with compressed state.
1619 	 */
1620 	if (tp->t_state == TCPS_LISTEN)
1621 		panic("tcp_input: TCPS_LISTEN");
1622 #endif
1623 
1624 	/*
1625 	 * Segment received on connection.
1626 	 * Reset idle time and keep-alive timer.
1627 	 */
1628 	tp->t_rcvtime = tcp_now;
1629 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1630 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1631 
1632 	/*
1633 	 * Process options.
1634 	 */
1635 #ifdef TCP_SIGNATURE
1636 	if (optp || (tp->t_flags & TF_SIGNATURE))
1637 #else
1638 	if (optp)
1639 #endif
1640 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1641 			goto drop;
1642 
1643 	if (TCP_SACK_ENABLED(tp)) {
1644 		tcp_del_sackholes(tp, th);
1645 	}
1646 
1647 	if (TCP_ECN_ALLOWED(tp)) {
1648 		switch (iptos & IPTOS_ECN_MASK) {
1649 		case IPTOS_ECN_CE:
1650 			tp->t_flags |= TF_ECN_SND_ECE;
1651 			TCP_STATINC(TCP_STAT_ECN_CE);
1652 			break;
1653 		case IPTOS_ECN_ECT0:
1654 			TCP_STATINC(TCP_STAT_ECN_ECT);
1655 			break;
1656 		case IPTOS_ECN_ECT1:
1657 			/* XXX: ignore for now -- rpaulo */
1658 			break;
1659 		}
1660 
1661 		if (tiflags & TH_CWR)
1662 			tp->t_flags &= ~TF_ECN_SND_ECE;
1663 
1664 		/*
1665 		 * Congestion experienced.
1666 		 * Ignore if we are already trying to recover.
1667 		 */
1668 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1669 			tp->t_congctl->cong_exp(tp);
1670 	}
1671 
1672 	if (opti.ts_present && opti.ts_ecr) {
1673 		/*
1674 		 * Calculate the RTT from the returned time stamp and the
1675 		 * connection's time base.  If the time stamp is later than
1676 		 * the current time, or is extremely old, fall back to non-1323
1677 		 * RTT calculation.  Since ts_ecr is unsigned, we can test both
1678 		 * at the same time.
1679 		 */
1680 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1681 		if (ts_rtt > TCP_PAWS_IDLE)
1682 			ts_rtt = 0;
1683 	} else {
1684 		ts_rtt = 0;
1685 	}
1686 
1687 	/*
1688 	 * Header prediction: check for the two common cases
1689 	 * of a uni-directional data xfer.  If the packet has
1690 	 * no control flags, is in-sequence, the window didn't
1691 	 * change and we're not retransmitting, it's a
1692 	 * candidate.  If the length is zero and the ack moved
1693 	 * forward, we're the sender side of the xfer.  Just
1694 	 * free the data acked & wake any higher level process
1695 	 * that was blocked waiting for space.  If the length
1696 	 * is non-zero and the ack didn't move, we're the
1697 	 * receiver side.  If we're getting packets in-order
1698 	 * (the reassembly queue is empty), add the data to
1699 	 * the socket buffer and note that we need a delayed ack.
1700 	 */
1701 	if (tp->t_state == TCPS_ESTABLISHED &&
1702 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1703 	        == TH_ACK &&
1704 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1705 	    th->th_seq == tp->rcv_nxt &&
1706 	    tiwin && tiwin == tp->snd_wnd &&
1707 	    tp->snd_nxt == tp->snd_max) {
1708 
1709 		/*
1710 		 * If last ACK falls within this segment's sequence numbers,
1711 		 * record the timestamp.
1712 		 * NOTE that the test is modified according to the latest
1713 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1714 		 *
1715 		 * note that we already know
1716 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1717 		 */
1718 		if (opti.ts_present &&
1719 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1720 			tp->ts_recent_age = tcp_now;
1721 			tp->ts_recent = opti.ts_val;
1722 		}
1723 
1724 		if (tlen == 0) {
1725 			/* Ack prediction. */
1726 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1727 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1728 			    tp->snd_cwnd >= tp->snd_wnd &&
1729 			    tp->t_partialacks < 0) {
1730 				/*
1731 				 * this is a pure ack for outstanding data.
1732 				 */
1733 				if (ts_rtt)
1734 					tcp_xmit_timer(tp, ts_rtt);
1735 				else if (tp->t_rtttime &&
1736 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1737 					tcp_xmit_timer(tp,
1738 					  tcp_now - tp->t_rtttime);
1739 				acked = th->th_ack - tp->snd_una;
1740 				tcps = TCP_STAT_GETREF();
1741 				tcps[TCP_STAT_PREDACK]++;
1742 				tcps[TCP_STAT_RCVACKPACK]++;
1743 				tcps[TCP_STAT_RCVACKBYTE] += acked;
1744 				TCP_STAT_PUTREF();
1745 				nd6_hint(tp);
1746 
1747 				if (acked > (tp->t_lastoff - tp->t_inoff))
1748 					tp->t_lastm = NULL;
1749 				sbdrop(&so->so_snd, acked);
1750 				tp->t_lastoff -= acked;
1751 
1752 				icmp_check(tp, th, acked);
1753 
1754 				tp->snd_una = th->th_ack;
1755 				tp->snd_fack = tp->snd_una;
1756 				if (SEQ_LT(tp->snd_high, tp->snd_una))
1757 					tp->snd_high = tp->snd_una;
1758 				m_freem(m);
1759 
1760 				/*
1761 				 * If all outstanding data are acked, stop
1762 				 * retransmit timer, otherwise restart timer
1763 				 * using current (possibly backed-off) value.
1764 				 * If process is waiting for space,
1765 				 * wakeup/selnotify/signal.  If data
1766 				 * are ready to send, let tcp_output
1767 				 * decide between more output or persist.
1768 				 */
1769 				if (tp->snd_una == tp->snd_max)
1770 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1771 				else if (TCP_TIMER_ISARMED(tp,
1772 				    TCPT_PERSIST) == 0)
1773 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1774 					    tp->t_rxtcur);
1775 
1776 				sowwakeup(so);
1777 				if (so->so_snd.sb_cc)
1778 					(void) tcp_output(tp);
1779 				if (tcp_saveti)
1780 					m_freem(tcp_saveti);
1781 				return;
1782 			}
1783 		} else if (th->th_ack == tp->snd_una &&
1784 		    TAILQ_FIRST(&tp->segq) == NULL &&
1785 		    tlen <= sbspace(&so->so_rcv)) {
1786 			int newsize = 0;	/* automatic sockbuf scaling */
1787 
1788 			/*
1789 			 * this is a pure, in-sequence data packet
1790 			 * with nothing on the reassembly queue and
1791 			 * we have enough buffer space to take it.
1792 			 */
1793 			tp->rcv_nxt += tlen;
1794 			tcps = TCP_STAT_GETREF();
1795 			tcps[TCP_STAT_PREDDAT]++;
1796 			tcps[TCP_STAT_RCVPACK]++;
1797 			tcps[TCP_STAT_RCVBYTE] += tlen;
1798 			TCP_STAT_PUTREF();
1799 			nd6_hint(tp);
1800 
1801 		/*
1802 		 * Automatic sizing enables the performance of large buffers
1803 		 * and most of the efficiency of small ones by only allocating
1804 		 * space when it is needed.
1805 		 *
1806 		 * On the receive side the socket buffer memory is only rarely
1807 		 * used to any significant extent.  This allows us to be much
1808 		 * more aggressive in scaling the receive socket buffer.  For
1809 		 * the case that the buffer space is actually used to a large
1810 		 * extent and we run out of kernel memory we can simply drop
1811 		 * the new segments; TCP on the sender will just retransmit it
1812 		 * later.  Setting the buffer size too big may only consume too
1813 		 * much kernel memory if the application doesn't read() from
1814 		 * the socket or packet loss or reordering makes use of the
1815 		 * reassembly queue.
1816 		 *
1817 		 * The criteria to step up the receive buffer one notch are:
1818 		 *  1. the number of bytes received during the time it takes
1819 		 *     one timestamp to be reflected back to us (the RTT);
1820 		 *  2. received bytes per RTT is within seven eighth of the
1821 		 *     current socket buffer size;
1822 		 *  3. receive buffer size has not hit maximal automatic size;
1823 		 *
1824 		 * This algorithm does one step per RTT at most and only if
1825 		 * we receive a bulk stream w/o packet losses or reorderings.
1826 		 * Shrinking the buffer during idle times is not necessary as
1827 		 * it doesn't consume any memory when idle.
1828 		 *
1829 		 * TODO: Only step up if the application is actually serving
1830 		 * the buffer to better manage the socket buffer resources.
1831 		 */
1832 			if (tcp_do_autorcvbuf &&
1833 			    opti.ts_ecr &&
1834 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1835 				if (opti.ts_ecr > tp->rfbuf_ts &&
1836 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1837 					if (tp->rfbuf_cnt >
1838 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1839 					    so->so_rcv.sb_hiwat <
1840 					    tcp_autorcvbuf_max) {
1841 						newsize =
1842 						    min(so->so_rcv.sb_hiwat +
1843 						    tcp_autorcvbuf_inc,
1844 						    tcp_autorcvbuf_max);
1845 					}
1846 					/* Start over with next RTT. */
1847 					tp->rfbuf_ts = 0;
1848 					tp->rfbuf_cnt = 0;
1849 				} else
1850 					tp->rfbuf_cnt += tlen;	/* add up */
1851 			}
1852 
1853 			/*
1854 			 * Drop TCP, IP headers and TCP options then add data
1855 			 * to socket buffer.
1856 			 */
1857 			if (so->so_state & SS_CANTRCVMORE)
1858 				m_freem(m);
1859 			else {
1860 				/*
1861 				 * Set new socket buffer size.
1862 				 * Give up when limit is reached.
1863 				 */
1864 				if (newsize)
1865 					if (!sbreserve(&so->so_rcv,
1866 					    newsize, so))
1867 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1868 				m_adj(m, toff + off);
1869 				sbappendstream(&so->so_rcv, m);
1870 			}
1871 			sorwakeup(so);
1872 			tcp_setup_ack(tp, th);
1873 			if (tp->t_flags & TF_ACKNOW)
1874 				(void) tcp_output(tp);
1875 			if (tcp_saveti)
1876 				m_freem(tcp_saveti);
1877 			return;
1878 		}
1879 	}
1880 
1881 	/*
1882 	 * Compute mbuf offset to TCP data segment.
1883 	 */
1884 	hdroptlen = toff + off;
1885 
1886 	/*
1887 	 * Calculate amount of space in receive window,
1888 	 * and then do TCP input processing.
1889 	 * Receive window is amount of space in rcv queue,
1890 	 * but not less than advertised window.
1891 	 */
1892 	{ int win;
1893 
1894 	win = sbspace(&so->so_rcv);
1895 	if (win < 0)
1896 		win = 0;
1897 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1898 	}
1899 
1900 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1901 	tp->rfbuf_ts = 0;
1902 	tp->rfbuf_cnt = 0;
1903 
1904 	switch (tp->t_state) {
1905 	/*
1906 	 * If the state is SYN_SENT:
1907 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1908 	 *	if seg contains a RST, then drop the connection.
1909 	 *	if seg does not contain SYN, then drop it.
1910 	 * Otherwise this is an acceptable SYN segment
1911 	 *	initialize tp->rcv_nxt and tp->irs
1912 	 *	if seg contains ack then advance tp->snd_una
1913 	 *	if seg contains a ECE and ECN support is enabled, the stream
1914 	 *	    is ECN capable.
1915 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1916 	 *	arrange for segment to be acked (eventually)
1917 	 *	continue processing rest of data/controls, beginning with URG
1918 	 */
1919 	case TCPS_SYN_SENT:
1920 		if ((tiflags & TH_ACK) &&
1921 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1922 		     SEQ_GT(th->th_ack, tp->snd_max)))
1923 			goto dropwithreset;
1924 		if (tiflags & TH_RST) {
1925 			if (tiflags & TH_ACK)
1926 				tp = tcp_drop(tp, ECONNREFUSED);
1927 			goto drop;
1928 		}
1929 		if ((tiflags & TH_SYN) == 0)
1930 			goto drop;
1931 		if (tiflags & TH_ACK) {
1932 			tp->snd_una = th->th_ack;
1933 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1934 				tp->snd_nxt = tp->snd_una;
1935 			if (SEQ_LT(tp->snd_high, tp->snd_una))
1936 				tp->snd_high = tp->snd_una;
1937 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1938 
1939 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
1940 				tp->t_flags |= TF_ECN_PERMIT;
1941 				TCP_STATINC(TCP_STAT_ECN_SHS);
1942 			}
1943 
1944 		}
1945 		tp->irs = th->th_seq;
1946 		tcp_rcvseqinit(tp);
1947 		tp->t_flags |= TF_ACKNOW;
1948 		tcp_mss_from_peer(tp, opti.maxseg);
1949 
1950 		/*
1951 		 * Initialize the initial congestion window.  If we
1952 		 * had to retransmit the SYN, we must initialize cwnd
1953 		 * to 1 segment (i.e. the Loss Window).
1954 		 */
1955 		if (tp->t_flags & TF_SYN_REXMT)
1956 			tp->snd_cwnd = tp->t_peermss;
1957 		else {
1958 			int ss = tcp_init_win;
1959 #ifdef INET
1960 			if (inp != NULL && in_localaddr(inp->inp_faddr))
1961 				ss = tcp_init_win_local;
1962 #endif
1963 #ifdef INET6
1964 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1965 				ss = tcp_init_win_local;
1966 #endif
1967 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1968 		}
1969 
1970 		tcp_rmx_rtt(tp);
1971 		if (tiflags & TH_ACK) {
1972 			TCP_STATINC(TCP_STAT_CONNECTS);
1973 			soisconnected(so);
1974 			tcp_established(tp);
1975 			/* Do window scaling on this connection? */
1976 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1977 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1978 				tp->snd_scale = tp->requested_s_scale;
1979 				tp->rcv_scale = tp->request_r_scale;
1980 			}
1981 			TCP_REASS_LOCK(tp);
1982 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1983 			TCP_REASS_UNLOCK(tp);
1984 			/*
1985 			 * if we didn't have to retransmit the SYN,
1986 			 * use its rtt as our initial srtt & rtt var.
1987 			 */
1988 			if (tp->t_rtttime)
1989 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1990 		} else
1991 			tp->t_state = TCPS_SYN_RECEIVED;
1992 
1993 		/*
1994 		 * Advance th->th_seq to correspond to first data byte.
1995 		 * If data, trim to stay within window,
1996 		 * dropping FIN if necessary.
1997 		 */
1998 		th->th_seq++;
1999 		if (tlen > tp->rcv_wnd) {
2000 			todrop = tlen - tp->rcv_wnd;
2001 			m_adj(m, -todrop);
2002 			tlen = tp->rcv_wnd;
2003 			tiflags &= ~TH_FIN;
2004 			tcps = TCP_STAT_GETREF();
2005 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2006 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2007 			TCP_STAT_PUTREF();
2008 		}
2009 		tp->snd_wl1 = th->th_seq - 1;
2010 		tp->rcv_up = th->th_seq;
2011 		goto step6;
2012 
2013 	/*
2014 	 * If the state is SYN_RECEIVED:
2015 	 *	If seg contains an ACK, but not for our SYN, drop the input
2016 	 *	and generate an RST.  See page 36, rfc793
2017 	 */
2018 	case TCPS_SYN_RECEIVED:
2019 		if ((tiflags & TH_ACK) &&
2020 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2021 		     SEQ_GT(th->th_ack, tp->snd_max)))
2022 			goto dropwithreset;
2023 		break;
2024 	}
2025 
2026 	/*
2027 	 * States other than LISTEN or SYN_SENT.
2028 	 * First check timestamp, if present.
2029 	 * Then check that at least some bytes of segment are within
2030 	 * receive window.  If segment begins before rcv_nxt,
2031 	 * drop leading data (and SYN); if nothing left, just ack.
2032 	 *
2033 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2034 	 * and it's less than ts_recent, drop it.
2035 	 */
2036 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2037 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2038 
2039 		/* Check to see if ts_recent is over 24 days old.  */
2040 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2041 			/*
2042 			 * Invalidate ts_recent.  If this segment updates
2043 			 * ts_recent, the age will be reset later and ts_recent
2044 			 * will get a valid value.  If it does not, setting
2045 			 * ts_recent to zero will at least satisfy the
2046 			 * requirement that zero be placed in the timestamp
2047 			 * echo reply when ts_recent isn't valid.  The
2048 			 * age isn't reset until we get a valid ts_recent
2049 			 * because we don't want out-of-order segments to be
2050 			 * dropped when ts_recent is old.
2051 			 */
2052 			tp->ts_recent = 0;
2053 		} else {
2054 			tcps = TCP_STAT_GETREF();
2055 			tcps[TCP_STAT_RCVDUPPACK]++;
2056 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2057 			tcps[TCP_STAT_PAWSDROP]++;
2058 			TCP_STAT_PUTREF();
2059 			tcp_new_dsack(tp, th->th_seq, tlen);
2060 			goto dropafterack;
2061 		}
2062 	}
2063 
2064 	todrop = tp->rcv_nxt - th->th_seq;
2065 	dupseg = false;
2066 	if (todrop > 0) {
2067 		if (tiflags & TH_SYN) {
2068 			tiflags &= ~TH_SYN;
2069 			th->th_seq++;
2070 			if (th->th_urp > 1)
2071 				th->th_urp--;
2072 			else {
2073 				tiflags &= ~TH_URG;
2074 				th->th_urp = 0;
2075 			}
2076 			todrop--;
2077 		}
2078 		if (todrop > tlen ||
2079 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2080 			/*
2081 			 * Any valid FIN or RST must be to the left of the
2082 			 * window.  At this point the FIN or RST must be a
2083 			 * duplicate or out of sequence; drop it.
2084 			 */
2085 			if (tiflags & TH_RST)
2086 				goto drop;
2087 			tiflags &= ~(TH_FIN|TH_RST);
2088 			/*
2089 			 * Send an ACK to resynchronize and drop any data.
2090 			 * But keep on processing for RST or ACK.
2091 			 */
2092 			tp->t_flags |= TF_ACKNOW;
2093 			todrop = tlen;
2094 			dupseg = true;
2095 			tcps = TCP_STAT_GETREF();
2096 			tcps[TCP_STAT_RCVDUPPACK]++;
2097 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2098 			TCP_STAT_PUTREF();
2099 		} else if ((tiflags & TH_RST) &&
2100 			   th->th_seq != tp->last_ack_sent) {
2101 			/*
2102 			 * Test for reset before adjusting the sequence
2103 			 * number for overlapping data.
2104 			 */
2105 			goto dropafterack_ratelim;
2106 		} else {
2107 			tcps = TCP_STAT_GETREF();
2108 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
2109 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2110 			TCP_STAT_PUTREF();
2111 		}
2112 		tcp_new_dsack(tp, th->th_seq, todrop);
2113 		hdroptlen += todrop;	/*drop from head afterwards*/
2114 		th->th_seq += todrop;
2115 		tlen -= todrop;
2116 		if (th->th_urp > todrop)
2117 			th->th_urp -= todrop;
2118 		else {
2119 			tiflags &= ~TH_URG;
2120 			th->th_urp = 0;
2121 		}
2122 	}
2123 
2124 	/*
2125 	 * If new data are received on a connection after the
2126 	 * user processes are gone, then RST the other end.
2127 	 */
2128 	if ((so->so_state & SS_NOFDREF) &&
2129 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2130 		tp = tcp_close(tp);
2131 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2132 		goto dropwithreset;
2133 	}
2134 
2135 	/*
2136 	 * If segment ends after window, drop trailing data
2137 	 * (and PUSH and FIN); if nothing left, just ACK.
2138 	 */
2139 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2140 	if (todrop > 0) {
2141 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2142 		if (todrop >= tlen) {
2143 			/*
2144 			 * The segment actually starts after the window.
2145 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2146 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2147 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2148 			 */
2149 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2150 			/*
2151 			 * If a new connection request is received
2152 			 * while in TIME_WAIT, drop the old connection
2153 			 * and start over if the sequence numbers
2154 			 * are above the previous ones.
2155 			 *
2156 			 * NOTE: We will checksum the packet again, and
2157 			 * so we need to put the header fields back into
2158 			 * network order!
2159 			 * XXX This kind of sucks, but we don't expect
2160 			 * XXX this to happen very often, so maybe it
2161 			 * XXX doesn't matter so much.
2162 			 */
2163 			if (tiflags & TH_SYN &&
2164 			    tp->t_state == TCPS_TIME_WAIT &&
2165 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2166 				tp = tcp_close(tp);
2167 				tcp_fields_to_net(th);
2168 				goto findpcb;
2169 			}
2170 			/*
2171 			 * If window is closed can only take segments at
2172 			 * window edge, and have to drop data and PUSH from
2173 			 * incoming segments.  Continue processing, but
2174 			 * remember to ack.  Otherwise, drop segment
2175 			 * and (if not RST) ack.
2176 			 */
2177 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2178 				tp->t_flags |= TF_ACKNOW;
2179 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
2180 			} else
2181 				goto dropafterack;
2182 		} else
2183 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2184 		m_adj(m, -todrop);
2185 		tlen -= todrop;
2186 		tiflags &= ~(TH_PUSH|TH_FIN);
2187 	}
2188 
2189 	/*
2190 	 * If last ACK falls within this segment's sequence numbers,
2191 	 *  record the timestamp.
2192 	 * NOTE:
2193 	 * 1) That the test incorporates suggestions from the latest
2194 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2195 	 * 2) That updating only on newer timestamps interferes with
2196 	 *    our earlier PAWS tests, so this check should be solely
2197 	 *    predicated on the sequence space of this segment.
2198 	 * 3) That we modify the segment boundary check to be
2199 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2200 	 *    instead of RFC1323's
2201 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2202 	 *    This modified check allows us to overcome RFC1323's
2203 	 *    limitations as described in Stevens TCP/IP Illustrated
2204 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2205 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2206 	 */
2207 	if (opti.ts_present &&
2208 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2209 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2210 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2211 		tp->ts_recent_age = tcp_now;
2212 		tp->ts_recent = opti.ts_val;
2213 	}
2214 
2215 	/*
2216 	 * If the RST bit is set examine the state:
2217 	 *    SYN_RECEIVED STATE:
2218 	 *	If passive open, return to LISTEN state.
2219 	 *	If active open, inform user that connection was refused.
2220 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2221 	 *	Inform user that connection was reset, and close tcb.
2222 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
2223 	 *	Close the tcb.
2224 	 */
2225 	if (tiflags & TH_RST) {
2226 		if (th->th_seq != tp->last_ack_sent)
2227 			goto dropafterack_ratelim;
2228 
2229 		switch (tp->t_state) {
2230 		case TCPS_SYN_RECEIVED:
2231 			so->so_error = ECONNREFUSED;
2232 			goto close;
2233 
2234 		case TCPS_ESTABLISHED:
2235 		case TCPS_FIN_WAIT_1:
2236 		case TCPS_FIN_WAIT_2:
2237 		case TCPS_CLOSE_WAIT:
2238 			so->so_error = ECONNRESET;
2239 		close:
2240 			tp->t_state = TCPS_CLOSED;
2241 			TCP_STATINC(TCP_STAT_DROPS);
2242 			tp = tcp_close(tp);
2243 			goto drop;
2244 
2245 		case TCPS_CLOSING:
2246 		case TCPS_LAST_ACK:
2247 		case TCPS_TIME_WAIT:
2248 			tp = tcp_close(tp);
2249 			goto drop;
2250 		}
2251 	}
2252 
2253 	/*
2254 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2255 	 * we must be in a synchronized state.  RFC791 states (under RST
2256 	 * generation) that any unacceptable segment (an out-of-order SYN
2257 	 * qualifies) received in a synchronized state must elicit only an
2258 	 * empty acknowledgment segment ... and the connection remains in
2259 	 * the same state.
2260 	 */
2261 	if (tiflags & TH_SYN) {
2262 		if (tp->rcv_nxt == th->th_seq) {
2263 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2264 			    TH_ACK);
2265 			if (tcp_saveti)
2266 				m_freem(tcp_saveti);
2267 			return;
2268 		}
2269 
2270 		goto dropafterack_ratelim;
2271 	}
2272 
2273 	/*
2274 	 * If the ACK bit is off we drop the segment and return.
2275 	 */
2276 	if ((tiflags & TH_ACK) == 0) {
2277 		if (tp->t_flags & TF_ACKNOW)
2278 			goto dropafterack;
2279 		else
2280 			goto drop;
2281 	}
2282 
2283 	/*
2284 	 * Ack processing.
2285 	 */
2286 	switch (tp->t_state) {
2287 
2288 	/*
2289 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2290 	 * ESTABLISHED state and continue processing, otherwise
2291 	 * send an RST.
2292 	 */
2293 	case TCPS_SYN_RECEIVED:
2294 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
2295 		    SEQ_GT(th->th_ack, tp->snd_max))
2296 			goto dropwithreset;
2297 		TCP_STATINC(TCP_STAT_CONNECTS);
2298 		soisconnected(so);
2299 		tcp_established(tp);
2300 		/* Do window scaling? */
2301 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2302 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2303 			tp->snd_scale = tp->requested_s_scale;
2304 			tp->rcv_scale = tp->request_r_scale;
2305 		}
2306 		TCP_REASS_LOCK(tp);
2307 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2308 		TCP_REASS_UNLOCK(tp);
2309 		tp->snd_wl1 = th->th_seq - 1;
2310 		/* fall into ... */
2311 
2312 	/*
2313 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2314 	 * ACKs.  If the ack is in the range
2315 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2316 	 * then advance tp->snd_una to th->th_ack and drop
2317 	 * data from the retransmission queue.  If this ACK reflects
2318 	 * more up to date window information we update our window information.
2319 	 */
2320 	case TCPS_ESTABLISHED:
2321 	case TCPS_FIN_WAIT_1:
2322 	case TCPS_FIN_WAIT_2:
2323 	case TCPS_CLOSE_WAIT:
2324 	case TCPS_CLOSING:
2325 	case TCPS_LAST_ACK:
2326 	case TCPS_TIME_WAIT:
2327 
2328 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2329 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2330 				TCP_STATINC(TCP_STAT_RCVDUPPACK);
2331 				/*
2332 				 * If we have outstanding data (other than
2333 				 * a window probe), this is a completely
2334 				 * duplicate ack (ie, window info didn't
2335 				 * change), the ack is the biggest we've
2336 				 * seen and we've seen exactly our rexmt
2337 				 * threshhold of them, assume a packet
2338 				 * has been dropped and retransmit it.
2339 				 * Kludge snd_nxt & the congestion
2340 				 * window so we send only this one
2341 				 * packet.
2342 				 */
2343 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2344 				    th->th_ack != tp->snd_una)
2345 					tp->t_dupacks = 0;
2346 				else if (tp->t_partialacks < 0 &&
2347 					 (++tp->t_dupacks == tcprexmtthresh ||
2348 					 TCP_FACK_FASTRECOV(tp))) {
2349 					/*
2350 					 * Do the fast retransmit, and adjust
2351 					 * congestion control paramenters.
2352 					 */
2353 					if (tp->t_congctl->fast_retransmit(tp, th)) {
2354 						/* False fast retransmit */
2355 						break;
2356 					} else
2357 						goto drop;
2358 				} else if (tp->t_dupacks > tcprexmtthresh) {
2359 					tp->snd_cwnd += tp->t_segsz;
2360 					(void) tcp_output(tp);
2361 					goto drop;
2362 				}
2363 			} else {
2364 				/*
2365 				 * If the ack appears to be very old, only
2366 				 * allow data that is in-sequence.  This
2367 				 * makes it somewhat more difficult to insert
2368 				 * forged data by guessing sequence numbers.
2369 				 * Sent an ack to try to update the send
2370 				 * sequence number on the other side.
2371 				 */
2372 				if (tlen && th->th_seq != tp->rcv_nxt &&
2373 				    SEQ_LT(th->th_ack,
2374 				    tp->snd_una - tp->max_sndwnd))
2375 					goto dropafterack;
2376 			}
2377 			break;
2378 		}
2379 		/*
2380 		 * If the congestion window was inflated to account
2381 		 * for the other side's cached packets, retract it.
2382 		 */
2383 		/* XXX: make SACK have his own congestion control
2384 		 * struct -- rpaulo */
2385 		if (TCP_SACK_ENABLED(tp))
2386 			tcp_sack_newack(tp, th);
2387 		else
2388 			tp->t_congctl->fast_retransmit_newack(tp, th);
2389 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2390 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2391 			goto dropafterack;
2392 		}
2393 		acked = th->th_ack - tp->snd_una;
2394 		tcps = TCP_STAT_GETREF();
2395 		tcps[TCP_STAT_RCVACKPACK]++;
2396 		tcps[TCP_STAT_RCVACKBYTE] += acked;
2397 		TCP_STAT_PUTREF();
2398 
2399 		/*
2400 		 * If we have a timestamp reply, update smoothed
2401 		 * round trip time.  If no timestamp is present but
2402 		 * transmit timer is running and timed sequence
2403 		 * number was acked, update smoothed round trip time.
2404 		 * Since we now have an rtt measurement, cancel the
2405 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2406 		 * Recompute the initial retransmit timer.
2407 		 */
2408 		if (ts_rtt)
2409 			tcp_xmit_timer(tp, ts_rtt);
2410 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2411 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2412 
2413 		/*
2414 		 * If all outstanding data is acked, stop retransmit
2415 		 * timer and remember to restart (more output or persist).
2416 		 * If there is more data to be acked, restart retransmit
2417 		 * timer, using current (possibly backed-off) value.
2418 		 */
2419 		if (th->th_ack == tp->snd_max) {
2420 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2421 			needoutput = 1;
2422 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2423 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2424 
2425 		/*
2426 		 * New data has been acked, adjust the congestion window.
2427 		 */
2428 		tp->t_congctl->newack(tp, th);
2429 
2430 		nd6_hint(tp);
2431 		if (acked > so->so_snd.sb_cc) {
2432 			tp->snd_wnd -= so->so_snd.sb_cc;
2433 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2434 			ourfinisacked = 1;
2435 		} else {
2436 			if (acked > (tp->t_lastoff - tp->t_inoff))
2437 				tp->t_lastm = NULL;
2438 			sbdrop(&so->so_snd, acked);
2439 			tp->t_lastoff -= acked;
2440 			tp->snd_wnd -= acked;
2441 			ourfinisacked = 0;
2442 		}
2443 		sowwakeup(so);
2444 
2445 		icmp_check(tp, th, acked);
2446 
2447 		tp->snd_una = th->th_ack;
2448 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
2449 			tp->snd_fack = tp->snd_una;
2450 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2451 			tp->snd_nxt = tp->snd_una;
2452 		if (SEQ_LT(tp->snd_high, tp->snd_una))
2453 			tp->snd_high = tp->snd_una;
2454 
2455 		switch (tp->t_state) {
2456 
2457 		/*
2458 		 * In FIN_WAIT_1 STATE in addition to the processing
2459 		 * for the ESTABLISHED state if our FIN is now acknowledged
2460 		 * then enter FIN_WAIT_2.
2461 		 */
2462 		case TCPS_FIN_WAIT_1:
2463 			if (ourfinisacked) {
2464 				/*
2465 				 * If we can't receive any more
2466 				 * data, then closing user can proceed.
2467 				 * Starting the timer is contrary to the
2468 				 * specification, but if we don't get a FIN
2469 				 * we'll hang forever.
2470 				 */
2471 				if (so->so_state & SS_CANTRCVMORE) {
2472 					soisdisconnected(so);
2473 					if (tp->t_maxidle > 0)
2474 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2475 						    tp->t_maxidle);
2476 				}
2477 				tp->t_state = TCPS_FIN_WAIT_2;
2478 			}
2479 			break;
2480 
2481 	 	/*
2482 		 * In CLOSING STATE in addition to the processing for
2483 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2484 		 * then enter the TIME-WAIT state, otherwise ignore
2485 		 * the segment.
2486 		 */
2487 		case TCPS_CLOSING:
2488 			if (ourfinisacked) {
2489 				tp->t_state = TCPS_TIME_WAIT;
2490 				tcp_canceltimers(tp);
2491 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2492 				soisdisconnected(so);
2493 			}
2494 			break;
2495 
2496 		/*
2497 		 * In LAST_ACK, we may still be waiting for data to drain
2498 		 * and/or to be acked, as well as for the ack of our FIN.
2499 		 * If our FIN is now acknowledged, delete the TCB,
2500 		 * enter the closed state and return.
2501 		 */
2502 		case TCPS_LAST_ACK:
2503 			if (ourfinisacked) {
2504 				tp = tcp_close(tp);
2505 				goto drop;
2506 			}
2507 			break;
2508 
2509 		/*
2510 		 * In TIME_WAIT state the only thing that should arrive
2511 		 * is a retransmission of the remote FIN.  Acknowledge
2512 		 * it and restart the finack timer.
2513 		 */
2514 		case TCPS_TIME_WAIT:
2515 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2516 			goto dropafterack;
2517 		}
2518 	}
2519 
2520 step6:
2521 	/*
2522 	 * Update window information.
2523 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2524 	 */
2525 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2526 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2527 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2528 		/* keep track of pure window updates */
2529 		if (tlen == 0 &&
2530 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2531 			TCP_STATINC(TCP_STAT_RCVWINUPD);
2532 		tp->snd_wnd = tiwin;
2533 		tp->snd_wl1 = th->th_seq;
2534 		tp->snd_wl2 = th->th_ack;
2535 		if (tp->snd_wnd > tp->max_sndwnd)
2536 			tp->max_sndwnd = tp->snd_wnd;
2537 		needoutput = 1;
2538 	}
2539 
2540 	/*
2541 	 * Process segments with URG.
2542 	 */
2543 	if ((tiflags & TH_URG) && th->th_urp &&
2544 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2545 		/*
2546 		 * This is a kludge, but if we receive and accept
2547 		 * random urgent pointers, we'll crash in
2548 		 * soreceive.  It's hard to imagine someone
2549 		 * actually wanting to send this much urgent data.
2550 		 */
2551 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2552 			th->th_urp = 0;			/* XXX */
2553 			tiflags &= ~TH_URG;		/* XXX */
2554 			goto dodata;			/* XXX */
2555 		}
2556 		/*
2557 		 * If this segment advances the known urgent pointer,
2558 		 * then mark the data stream.  This should not happen
2559 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2560 		 * a FIN has been received from the remote side.
2561 		 * In these states we ignore the URG.
2562 		 *
2563 		 * According to RFC961 (Assigned Protocols),
2564 		 * the urgent pointer points to the last octet
2565 		 * of urgent data.  We continue, however,
2566 		 * to consider it to indicate the first octet
2567 		 * of data past the urgent section as the original
2568 		 * spec states (in one of two places).
2569 		 */
2570 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2571 			tp->rcv_up = th->th_seq + th->th_urp;
2572 			so->so_oobmark = so->so_rcv.sb_cc +
2573 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2574 			if (so->so_oobmark == 0)
2575 				so->so_state |= SS_RCVATMARK;
2576 			sohasoutofband(so);
2577 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2578 		}
2579 		/*
2580 		 * Remove out of band data so doesn't get presented to user.
2581 		 * This can happen independent of advancing the URG pointer,
2582 		 * but if two URG's are pending at once, some out-of-band
2583 		 * data may creep in... ick.
2584 		 */
2585 		if (th->th_urp <= (u_int16_t) tlen
2586 #ifdef SO_OOBINLINE
2587 		     && (so->so_options & SO_OOBINLINE) == 0
2588 #endif
2589 		     )
2590 			tcp_pulloutofband(so, th, m, hdroptlen);
2591 	} else
2592 		/*
2593 		 * If no out of band data is expected,
2594 		 * pull receive urgent pointer along
2595 		 * with the receive window.
2596 		 */
2597 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2598 			tp->rcv_up = tp->rcv_nxt;
2599 dodata:							/* XXX */
2600 
2601 	/*
2602 	 * Process the segment text, merging it into the TCP sequencing queue,
2603 	 * and arranging for acknowledgement of receipt if necessary.
2604 	 * This process logically involves adjusting tp->rcv_wnd as data
2605 	 * is presented to the user (this happens in tcp_usrreq.c,
2606 	 * case PRU_RCVD).  If a FIN has already been received on this
2607 	 * connection then we just ignore the text.
2608 	 */
2609 	if ((tlen || (tiflags & TH_FIN)) &&
2610 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2611 		/*
2612 		 * Insert segment ti into reassembly queue of tcp with
2613 		 * control block tp.  Return TH_FIN if reassembly now includes
2614 		 * a segment with FIN.  The macro form does the common case
2615 		 * inline (segment is the next to be received on an
2616 		 * established connection, and the queue is empty),
2617 		 * avoiding linkage into and removal from the queue and
2618 		 * repetition of various conversions.
2619 		 * Set DELACK for segments received in order, but ack
2620 		 * immediately when segments are out of order
2621 		 * (so fast retransmit can work).
2622 		 */
2623 		/* NOTE: this was TCP_REASS() macro, but used only once */
2624 		TCP_REASS_LOCK(tp);
2625 		if (th->th_seq == tp->rcv_nxt &&
2626 		    TAILQ_FIRST(&tp->segq) == NULL &&
2627 		    tp->t_state == TCPS_ESTABLISHED) {
2628 			tcp_setup_ack(tp, th);
2629 			tp->rcv_nxt += tlen;
2630 			tiflags = th->th_flags & TH_FIN;
2631 			tcps = TCP_STAT_GETREF();
2632 			tcps[TCP_STAT_RCVPACK]++;
2633 			tcps[TCP_STAT_RCVBYTE] += tlen;
2634 			TCP_STAT_PUTREF();
2635 			nd6_hint(tp);
2636 			if (so->so_state & SS_CANTRCVMORE)
2637 				m_freem(m);
2638 			else {
2639 				m_adj(m, hdroptlen);
2640 				sbappendstream(&(so)->so_rcv, m);
2641 			}
2642 			TCP_REASS_UNLOCK(tp);
2643 			sorwakeup(so);
2644 		} else {
2645 			m_adj(m, hdroptlen);
2646 			tiflags = tcp_reass(tp, th, m, &tlen);
2647 			tp->t_flags |= TF_ACKNOW;
2648 			TCP_REASS_UNLOCK(tp);
2649 		}
2650 
2651 		/*
2652 		 * Note the amount of data that peer has sent into
2653 		 * our window, in order to estimate the sender's
2654 		 * buffer size.
2655 		 */
2656 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2657 	} else {
2658 		m_freem(m);
2659 		m = NULL;
2660 		tiflags &= ~TH_FIN;
2661 	}
2662 
2663 	/*
2664 	 * If FIN is received ACK the FIN and let the user know
2665 	 * that the connection is closing.  Ignore a FIN received before
2666 	 * the connection is fully established.
2667 	 */
2668 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2669 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2670 			socantrcvmore(so);
2671 			tp->t_flags |= TF_ACKNOW;
2672 			tp->rcv_nxt++;
2673 		}
2674 		switch (tp->t_state) {
2675 
2676 	 	/*
2677 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2678 		 */
2679 		case TCPS_ESTABLISHED:
2680 			tp->t_state = TCPS_CLOSE_WAIT;
2681 			break;
2682 
2683 	 	/*
2684 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2685 		 * enter the CLOSING state.
2686 		 */
2687 		case TCPS_FIN_WAIT_1:
2688 			tp->t_state = TCPS_CLOSING;
2689 			break;
2690 
2691 	 	/*
2692 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2693 		 * starting the time-wait timer, turning off the other
2694 		 * standard timers.
2695 		 */
2696 		case TCPS_FIN_WAIT_2:
2697 			tp->t_state = TCPS_TIME_WAIT;
2698 			tcp_canceltimers(tp);
2699 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2700 			soisdisconnected(so);
2701 			break;
2702 
2703 		/*
2704 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2705 		 */
2706 		case TCPS_TIME_WAIT:
2707 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2708 			break;
2709 		}
2710 	}
2711 #ifdef TCP_DEBUG
2712 	if (so->so_options & SO_DEBUG)
2713 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2714 #endif
2715 
2716 	/*
2717 	 * Return any desired output.
2718 	 */
2719 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2720 		(void) tcp_output(tp);
2721 	}
2722 	if (tcp_saveti)
2723 		m_freem(tcp_saveti);
2724 	return;
2725 
2726 badsyn:
2727 	/*
2728 	 * Received a bad SYN.  Increment counters and dropwithreset.
2729 	 */
2730 	TCP_STATINC(TCP_STAT_BADSYN);
2731 	tp = NULL;
2732 	goto dropwithreset;
2733 
2734 dropafterack:
2735 	/*
2736 	 * Generate an ACK dropping incoming segment if it occupies
2737 	 * sequence space, where the ACK reflects our state.
2738 	 */
2739 	if (tiflags & TH_RST)
2740 		goto drop;
2741 	goto dropafterack2;
2742 
2743 dropafterack_ratelim:
2744 	/*
2745 	 * We may want to rate-limit ACKs against SYN/RST attack.
2746 	 */
2747 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2748 	    tcp_ackdrop_ppslim) == 0) {
2749 		/* XXX stat */
2750 		goto drop;
2751 	}
2752 	/* ...fall into dropafterack2... */
2753 
2754 dropafterack2:
2755 	m_freem(m);
2756 	tp->t_flags |= TF_ACKNOW;
2757 	(void) tcp_output(tp);
2758 	if (tcp_saveti)
2759 		m_freem(tcp_saveti);
2760 	return;
2761 
2762 dropwithreset_ratelim:
2763 	/*
2764 	 * We may want to rate-limit RSTs in certain situations,
2765 	 * particularly if we are sending an RST in response to
2766 	 * an attempt to connect to or otherwise communicate with
2767 	 * a port for which we have no socket.
2768 	 */
2769 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2770 	    tcp_rst_ppslim) == 0) {
2771 		/* XXX stat */
2772 		goto drop;
2773 	}
2774 	/* ...fall into dropwithreset... */
2775 
2776 dropwithreset:
2777 	/*
2778 	 * Generate a RST, dropping incoming segment.
2779 	 * Make ACK acceptable to originator of segment.
2780 	 */
2781 	if (tiflags & TH_RST)
2782 		goto drop;
2783 
2784 	switch (af) {
2785 #ifdef INET6
2786 	case AF_INET6:
2787 		/* For following calls to tcp_respond */
2788 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2789 			goto drop;
2790 		break;
2791 #endif /* INET6 */
2792 	case AF_INET:
2793 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2794 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2795 			goto drop;
2796 	}
2797 
2798 	if (tiflags & TH_ACK)
2799 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2800 	else {
2801 		if (tiflags & TH_SYN)
2802 			tlen++;
2803 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2804 		    TH_RST|TH_ACK);
2805 	}
2806 	if (tcp_saveti)
2807 		m_freem(tcp_saveti);
2808 	return;
2809 
2810 badcsum:
2811 drop:
2812 	/*
2813 	 * Drop space held by incoming segment and return.
2814 	 */
2815 	if (tp) {
2816 		if (tp->t_inpcb)
2817 			so = tp->t_inpcb->inp_socket;
2818 #ifdef INET6
2819 		else if (tp->t_in6pcb)
2820 			so = tp->t_in6pcb->in6p_socket;
2821 #endif
2822 		else
2823 			so = NULL;
2824 #ifdef TCP_DEBUG
2825 		if (so && (so->so_options & SO_DEBUG) != 0)
2826 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2827 #endif
2828 	}
2829 	if (tcp_saveti)
2830 		m_freem(tcp_saveti);
2831 	m_freem(m);
2832 	return;
2833 }
2834 
2835 #ifdef TCP_SIGNATURE
2836 int
2837 tcp_signature_apply(void *fstate, void *data, u_int len)
2838 {
2839 
2840 	MD5Update(fstate, (u_char *)data, len);
2841 	return (0);
2842 }
2843 
2844 struct secasvar *
2845 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2846 {
2847 	struct secasvar *sav;
2848 #ifdef FAST_IPSEC
2849 	union sockaddr_union dst;
2850 #endif
2851 	struct ip *ip;
2852 	struct ip6_hdr *ip6;
2853 
2854 	ip = mtod(m, struct ip *);
2855 	switch (ip->ip_v) {
2856 	case 4:
2857 		ip = mtod(m, struct ip *);
2858 		ip6 = NULL;
2859 		break;
2860 	case 6:
2861 		ip = NULL;
2862 		ip6 = mtod(m, struct ip6_hdr *);
2863 		break;
2864 	default:
2865 		return (NULL);
2866 	}
2867 
2868 #ifdef FAST_IPSEC
2869 	/* Extract the destination from the IP header in the mbuf. */
2870 	bzero(&dst, sizeof(union sockaddr_union));
2871 	if (ip !=NULL) {
2872 		dst.sa.sa_len = sizeof(struct sockaddr_in);
2873 		dst.sa.sa_family = AF_INET;
2874 		dst.sin.sin_addr = ip->ip_dst;
2875 	} else {
2876 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2877 		dst.sa.sa_family = AF_INET6;
2878 		dst.sin6.sin6_addr = ip6->ip6_dst;
2879 	}
2880 
2881 	/*
2882 	 * Look up an SADB entry which matches the address of the peer.
2883 	 */
2884 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2885 #else
2886 	if (ip)
2887 		sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
2888 		    (void *)&ip->ip_dst, IPPROTO_TCP,
2889 		    htonl(TCP_SIG_SPI), 0, 0);
2890 	else
2891 		sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
2892 		    (void *)&ip6->ip6_dst, IPPROTO_TCP,
2893 		    htonl(TCP_SIG_SPI), 0, 0);
2894 #endif
2895 
2896 	return (sav);	/* freesav must be performed by caller */
2897 }
2898 
2899 int
2900 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2901     struct secasvar *sav, char *sig)
2902 {
2903 	MD5_CTX ctx;
2904 	struct ip *ip;
2905 	struct ipovly *ipovly;
2906 	struct ip6_hdr *ip6;
2907 	struct ippseudo ippseudo;
2908 	struct ip6_hdr_pseudo ip6pseudo;
2909 	struct tcphdr th0;
2910 	int l, tcphdrlen;
2911 
2912 	if (sav == NULL)
2913 		return (-1);
2914 
2915 	tcphdrlen = th->th_off * 4;
2916 
2917 	switch (mtod(m, struct ip *)->ip_v) {
2918 	case 4:
2919 		ip = mtod(m, struct ip *);
2920 		ip6 = NULL;
2921 		break;
2922 	case 6:
2923 		ip = NULL;
2924 		ip6 = mtod(m, struct ip6_hdr *);
2925 		break;
2926 	default:
2927 		return (-1);
2928 	}
2929 
2930 	MD5Init(&ctx);
2931 
2932 	if (ip) {
2933 		memset(&ippseudo, 0, sizeof(ippseudo));
2934 		ipovly = (struct ipovly *)ip;
2935 		ippseudo.ippseudo_src = ipovly->ih_src;
2936 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2937 		ippseudo.ippseudo_pad = 0;
2938 		ippseudo.ippseudo_p = IPPROTO_TCP;
2939 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2940 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2941 	} else {
2942 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2943 		ip6pseudo.ip6ph_src = ip6->ip6_src;
2944 		in6_clearscope(&ip6pseudo.ip6ph_src);
2945 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2946 		in6_clearscope(&ip6pseudo.ip6ph_dst);
2947 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2948 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2949 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2950 	}
2951 
2952 	th0 = *th;
2953 	th0.th_sum = 0;
2954 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
2955 
2956 	l = m->m_pkthdr.len - thoff - tcphdrlen;
2957 	if (l > 0)
2958 		m_apply(m, thoff + tcphdrlen,
2959 		    m->m_pkthdr.len - thoff - tcphdrlen,
2960 		    tcp_signature_apply, &ctx);
2961 
2962 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2963 	MD5Final(sig, &ctx);
2964 
2965 	return (0);
2966 }
2967 #endif
2968 
2969 static int
2970 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
2971     struct tcphdr *th,
2972     struct mbuf *m, int toff, struct tcp_opt_info *oi)
2973 {
2974 	u_int16_t mss;
2975 	int opt, optlen = 0;
2976 #ifdef TCP_SIGNATURE
2977 	void *sigp = NULL;
2978 	char sigbuf[TCP_SIGLEN];
2979 	struct secasvar *sav = NULL;
2980 #endif
2981 
2982 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2983 		opt = cp[0];
2984 		if (opt == TCPOPT_EOL)
2985 			break;
2986 		if (opt == TCPOPT_NOP)
2987 			optlen = 1;
2988 		else {
2989 			if (cnt < 2)
2990 				break;
2991 			optlen = cp[1];
2992 			if (optlen < 2 || optlen > cnt)
2993 				break;
2994 		}
2995 		switch (opt) {
2996 
2997 		default:
2998 			continue;
2999 
3000 		case TCPOPT_MAXSEG:
3001 			if (optlen != TCPOLEN_MAXSEG)
3002 				continue;
3003 			if (!(th->th_flags & TH_SYN))
3004 				continue;
3005 			if (TCPS_HAVERCVDSYN(tp->t_state))
3006 				continue;
3007 			bcopy(cp + 2, &mss, sizeof(mss));
3008 			oi->maxseg = ntohs(mss);
3009 			break;
3010 
3011 		case TCPOPT_WINDOW:
3012 			if (optlen != TCPOLEN_WINDOW)
3013 				continue;
3014 			if (!(th->th_flags & TH_SYN))
3015 				continue;
3016 			if (TCPS_HAVERCVDSYN(tp->t_state))
3017 				continue;
3018 			tp->t_flags |= TF_RCVD_SCALE;
3019 			tp->requested_s_scale = cp[2];
3020 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3021 #if 0	/*XXX*/
3022 				char *p;
3023 
3024 				if (ip)
3025 					p = ntohl(ip->ip_src);
3026 #ifdef INET6
3027 				else if (ip6)
3028 					p = ip6_sprintf(&ip6->ip6_src);
3029 #endif
3030 				else
3031 					p = "(unknown)";
3032 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3033 				    "assuming %d\n",
3034 				    tp->requested_s_scale, p,
3035 				    TCP_MAX_WINSHIFT);
3036 #else
3037 				log(LOG_ERR, "TCP: invalid wscale %d, "
3038 				    "assuming %d\n",
3039 				    tp->requested_s_scale,
3040 				    TCP_MAX_WINSHIFT);
3041 #endif
3042 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
3043 			}
3044 			break;
3045 
3046 		case TCPOPT_TIMESTAMP:
3047 			if (optlen != TCPOLEN_TIMESTAMP)
3048 				continue;
3049 			oi->ts_present = 1;
3050 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3051 			NTOHL(oi->ts_val);
3052 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3053 			NTOHL(oi->ts_ecr);
3054 
3055 			if (!(th->th_flags & TH_SYN))
3056 				continue;
3057 			if (TCPS_HAVERCVDSYN(tp->t_state))
3058 				continue;
3059 			/*
3060 			 * A timestamp received in a SYN makes
3061 			 * it ok to send timestamp requests and replies.
3062 			 */
3063 			tp->t_flags |= TF_RCVD_TSTMP;
3064 			tp->ts_recent = oi->ts_val;
3065 			tp->ts_recent_age = tcp_now;
3066                         break;
3067 
3068 		case TCPOPT_SACK_PERMITTED:
3069 			if (optlen != TCPOLEN_SACK_PERMITTED)
3070 				continue;
3071 			if (!(th->th_flags & TH_SYN))
3072 				continue;
3073 			if (TCPS_HAVERCVDSYN(tp->t_state))
3074 				continue;
3075 			if (tcp_do_sack) {
3076 				tp->t_flags |= TF_SACK_PERMIT;
3077 				tp->t_flags |= TF_WILL_SACK;
3078 			}
3079 			break;
3080 
3081 		case TCPOPT_SACK:
3082 			tcp_sack_option(tp, th, cp, optlen);
3083 			break;
3084 #ifdef TCP_SIGNATURE
3085 		case TCPOPT_SIGNATURE:
3086 			if (optlen != TCPOLEN_SIGNATURE)
3087 				continue;
3088 			if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
3089 				return (-1);
3090 
3091 			sigp = sigbuf;
3092 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3093 			tp->t_flags |= TF_SIGNATURE;
3094 			break;
3095 #endif
3096 		}
3097 	}
3098 
3099 #ifdef TCP_SIGNATURE
3100 	if (tp->t_flags & TF_SIGNATURE) {
3101 
3102 		sav = tcp_signature_getsav(m, th);
3103 
3104 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
3105 			return (-1);
3106 	}
3107 
3108 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
3109 		if (sav == NULL)
3110 			return (-1);
3111 #ifdef FAST_IPSEC
3112 		KEY_FREESAV(&sav);
3113 #else
3114 		key_freesav(sav);
3115 #endif
3116 		return (-1);
3117 	}
3118 
3119 	if (sigp) {
3120 		char sig[TCP_SIGLEN];
3121 
3122 		tcp_fields_to_net(th);
3123 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
3124 			tcp_fields_to_host(th);
3125 			if (sav == NULL)
3126 				return (-1);
3127 #ifdef FAST_IPSEC
3128 			KEY_FREESAV(&sav);
3129 #else
3130 			key_freesav(sav);
3131 #endif
3132 			return (-1);
3133 		}
3134 		tcp_fields_to_host(th);
3135 
3136 		if (bcmp(sig, sigp, TCP_SIGLEN)) {
3137 			TCP_STATINC(TCP_STAT_BADSIG);
3138 			if (sav == NULL)
3139 				return (-1);
3140 #ifdef FAST_IPSEC
3141 			KEY_FREESAV(&sav);
3142 #else
3143 			key_freesav(sav);
3144 #endif
3145 			return (-1);
3146 		} else
3147 			TCP_STATINC(TCP_STAT_GOODSIG);
3148 
3149 		key_sa_recordxfer(sav, m);
3150 #ifdef FAST_IPSEC
3151 		KEY_FREESAV(&sav);
3152 #else
3153 		key_freesav(sav);
3154 #endif
3155 	}
3156 #endif
3157 
3158 	return (0);
3159 }
3160 
3161 /*
3162  * Pull out of band byte out of a segment so
3163  * it doesn't appear in the user's data queue.
3164  * It is still reflected in the segment length for
3165  * sequencing purposes.
3166  */
3167 void
3168 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3169     struct mbuf *m, int off)
3170 {
3171 	int cnt = off + th->th_urp - 1;
3172 
3173 	while (cnt >= 0) {
3174 		if (m->m_len > cnt) {
3175 			char *cp = mtod(m, char *) + cnt;
3176 			struct tcpcb *tp = sototcpcb(so);
3177 
3178 			tp->t_iobc = *cp;
3179 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3180 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3181 			m->m_len--;
3182 			return;
3183 		}
3184 		cnt -= m->m_len;
3185 		m = m->m_next;
3186 		if (m == 0)
3187 			break;
3188 	}
3189 	panic("tcp_pulloutofband");
3190 }
3191 
3192 /*
3193  * Collect new round-trip time estimate
3194  * and update averages and current timeout.
3195  */
3196 void
3197 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3198 {
3199 	int32_t delta;
3200 
3201 	TCP_STATINC(TCP_STAT_RTTUPDATED);
3202 	if (tp->t_srtt != 0) {
3203 		/*
3204 		 * srtt is stored as fixed point with 3 bits after the
3205 		 * binary point (i.e., scaled by 8).  The following magic
3206 		 * is equivalent to the smoothing algorithm in rfc793 with
3207 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3208 		 * point).  Adjust rtt to origin 0.
3209 		 */
3210 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3211 		if ((tp->t_srtt += delta) <= 0)
3212 			tp->t_srtt = 1 << 2;
3213 		/*
3214 		 * We accumulate a smoothed rtt variance (actually, a
3215 		 * smoothed mean difference), then set the retransmit
3216 		 * timer to smoothed rtt + 4 times the smoothed variance.
3217 		 * rttvar is stored as fixed point with 2 bits after the
3218 		 * binary point (scaled by 4).  The following is
3219 		 * equivalent to rfc793 smoothing with an alpha of .75
3220 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3221 		 * rfc793's wired-in beta.
3222 		 */
3223 		if (delta < 0)
3224 			delta = -delta;
3225 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3226 		if ((tp->t_rttvar += delta) <= 0)
3227 			tp->t_rttvar = 1 << 2;
3228 	} else {
3229 		/*
3230 		 * No rtt measurement yet - use the unsmoothed rtt.
3231 		 * Set the variance to half the rtt (so our first
3232 		 * retransmit happens at 3*rtt).
3233 		 */
3234 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3235 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3236 	}
3237 	tp->t_rtttime = 0;
3238 	tp->t_rxtshift = 0;
3239 
3240 	/*
3241 	 * the retransmit should happen at rtt + 4 * rttvar.
3242 	 * Because of the way we do the smoothing, srtt and rttvar
3243 	 * will each average +1/2 tick of bias.  When we compute
3244 	 * the retransmit timer, we want 1/2 tick of rounding and
3245 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3246 	 * firing of the timer.  The bias will give us exactly the
3247 	 * 1.5 tick we need.  But, because the bias is
3248 	 * statistical, we have to test that we don't drop below
3249 	 * the minimum feasible timer (which is 2 ticks).
3250 	 */
3251 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3252 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3253 
3254 	/*
3255 	 * We received an ack for a packet that wasn't retransmitted;
3256 	 * it is probably safe to discard any error indications we've
3257 	 * received recently.  This isn't quite right, but close enough
3258 	 * for now (a route might have failed after we sent a segment,
3259 	 * and the return path might not be symmetrical).
3260 	 */
3261 	tp->t_softerror = 0;
3262 }
3263 
3264 
3265 /*
3266  * TCP compressed state engine.  Currently used to hold compressed
3267  * state for SYN_RECEIVED.
3268  */
3269 
3270 u_long	syn_cache_count;
3271 u_int32_t syn_hash1, syn_hash2;
3272 
3273 #define SYN_HASH(sa, sp, dp) \
3274 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3275 				     ((u_int32_t)(sp)))^syn_hash2)))
3276 #ifndef INET6
3277 #define	SYN_HASHALL(hash, src, dst) \
3278 do {									\
3279 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
3280 		((const struct sockaddr_in *)(src))->sin_port,		\
3281 		((const struct sockaddr_in *)(dst))->sin_port);		\
3282 } while (/*CONSTCOND*/ 0)
3283 #else
3284 #define SYN_HASH6(sa, sp, dp) \
3285 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3286 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3287 	 & 0x7fffffff)
3288 
3289 #define SYN_HASHALL(hash, src, dst) \
3290 do {									\
3291 	switch ((src)->sa_family) {					\
3292 	case AF_INET:							\
3293 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3294 			((const struct sockaddr_in *)(src))->sin_port,	\
3295 			((const struct sockaddr_in *)(dst))->sin_port);	\
3296 		break;							\
3297 	case AF_INET6:							\
3298 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3299 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
3300 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
3301 		break;							\
3302 	default:							\
3303 		hash = 0;						\
3304 	}								\
3305 } while (/*CONSTCOND*/0)
3306 #endif /* INET6 */
3307 
3308 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL,
3309     IPL_SOFTNET);
3310 
3311 /*
3312  * We don't estimate RTT with SYNs, so each packet starts with the default
3313  * RTT and each timer step has a fixed timeout value.
3314  */
3315 #define	SYN_CACHE_TIMER_ARM(sc)						\
3316 do {									\
3317 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3318 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3319 	    TCPTV_REXMTMAX);						\
3320 	callout_reset(&(sc)->sc_timer,					\
3321 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
3322 } while (/*CONSTCOND*/0)
3323 
3324 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
3325 
3326 static inline void
3327 syn_cache_rm(struct syn_cache *sc)
3328 {
3329 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3330 	    sc, sc_bucketq);
3331 	sc->sc_tp = NULL;
3332 	LIST_REMOVE(sc, sc_tpq);
3333 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3334 	callout_stop(&sc->sc_timer);
3335 	syn_cache_count--;
3336 }
3337 
3338 static inline void
3339 syn_cache_put(struct syn_cache *sc)
3340 {
3341 	if (sc->sc_ipopts)
3342 		(void) m_free(sc->sc_ipopts);
3343 	rtcache_free(&sc->sc_route);
3344 	if (callout_invoking(&sc->sc_timer))
3345 		sc->sc_flags |= SCF_DEAD;
3346 	else {
3347 		callout_destroy(&sc->sc_timer);
3348 		pool_put(&syn_cache_pool, sc);
3349 	}
3350 }
3351 
3352 void
3353 syn_cache_init(void)
3354 {
3355 	int i;
3356 
3357 	/* Initialize the hash buckets. */
3358 	for (i = 0; i < tcp_syn_cache_size; i++)
3359 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3360 }
3361 
3362 void
3363 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3364 {
3365 	struct syn_cache_head *scp;
3366 	struct syn_cache *sc2;
3367 	int s;
3368 
3369 	/*
3370 	 * If there are no entries in the hash table, reinitialize
3371 	 * the hash secrets.
3372 	 */
3373 	if (syn_cache_count == 0) {
3374 		syn_hash1 = arc4random();
3375 		syn_hash2 = arc4random();
3376 	}
3377 
3378 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3379 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3380 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3381 
3382 	/*
3383 	 * Make sure that we don't overflow the per-bucket
3384 	 * limit or the total cache size limit.
3385 	 */
3386 	s = splsoftnet();
3387 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3388 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3389 		/*
3390 		 * The bucket is full.  Toss the oldest element in the
3391 		 * bucket.  This will be the first entry in the bucket.
3392 		 */
3393 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3394 #ifdef DIAGNOSTIC
3395 		/*
3396 		 * This should never happen; we should always find an
3397 		 * entry in our bucket.
3398 		 */
3399 		if (sc2 == NULL)
3400 			panic("syn_cache_insert: bucketoverflow: impossible");
3401 #endif
3402 		syn_cache_rm(sc2);
3403 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3404 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3405 		struct syn_cache_head *scp2, *sce;
3406 
3407 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3408 		/*
3409 		 * The cache is full.  Toss the oldest entry in the
3410 		 * first non-empty bucket we can find.
3411 		 *
3412 		 * XXX We would really like to toss the oldest
3413 		 * entry in the cache, but we hope that this
3414 		 * condition doesn't happen very often.
3415 		 */
3416 		scp2 = scp;
3417 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3418 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3419 			for (++scp2; scp2 != scp; scp2++) {
3420 				if (scp2 >= sce)
3421 					scp2 = &tcp_syn_cache[0];
3422 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3423 					break;
3424 			}
3425 #ifdef DIAGNOSTIC
3426 			/*
3427 			 * This should never happen; we should always find a
3428 			 * non-empty bucket.
3429 			 */
3430 			if (scp2 == scp)
3431 				panic("syn_cache_insert: cacheoverflow: "
3432 				    "impossible");
3433 #endif
3434 		}
3435 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3436 		syn_cache_rm(sc2);
3437 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
3438 	}
3439 
3440 	/*
3441 	 * Initialize the entry's timer.
3442 	 */
3443 	sc->sc_rxttot = 0;
3444 	sc->sc_rxtshift = 0;
3445 	SYN_CACHE_TIMER_ARM(sc);
3446 
3447 	/* Link it from tcpcb entry */
3448 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3449 
3450 	/* Put it into the bucket. */
3451 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3452 	scp->sch_length++;
3453 	syn_cache_count++;
3454 
3455 	TCP_STATINC(TCP_STAT_SC_ADDED);
3456 	splx(s);
3457 }
3458 
3459 /*
3460  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3461  * If we have retransmitted an entry the maximum number of times, expire
3462  * that entry.
3463  */
3464 void
3465 syn_cache_timer(void *arg)
3466 {
3467 	struct syn_cache *sc = arg;
3468 
3469 	mutex_enter(softnet_lock);
3470 	KERNEL_LOCK(1, NULL);
3471 	callout_ack(&sc->sc_timer);
3472 
3473 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3474 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3475 		callout_destroy(&sc->sc_timer);
3476 		pool_put(&syn_cache_pool, sc);
3477 		KERNEL_UNLOCK_ONE(NULL);
3478 		mutex_exit(softnet_lock);
3479 		return;
3480 	}
3481 
3482 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3483 		/* Drop it -- too many retransmissions. */
3484 		goto dropit;
3485 	}
3486 
3487 	/*
3488 	 * Compute the total amount of time this entry has
3489 	 * been on a queue.  If this entry has been on longer
3490 	 * than the keep alive timer would allow, expire it.
3491 	 */
3492 	sc->sc_rxttot += sc->sc_rxtcur;
3493 	if (sc->sc_rxttot >= tcp_keepinit)
3494 		goto dropit;
3495 
3496 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3497 	(void) syn_cache_respond(sc, NULL);
3498 
3499 	/* Advance the timer back-off. */
3500 	sc->sc_rxtshift++;
3501 	SYN_CACHE_TIMER_ARM(sc);
3502 
3503 	KERNEL_UNLOCK_ONE(NULL);
3504 	mutex_exit(softnet_lock);
3505 	return;
3506 
3507  dropit:
3508 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3509 	syn_cache_rm(sc);
3510 	syn_cache_put(sc);	/* calls pool_put but see spl above */
3511 	KERNEL_UNLOCK_ONE(NULL);
3512 	mutex_exit(softnet_lock);
3513 }
3514 
3515 /*
3516  * Remove syn cache created by the specified tcb entry,
3517  * because this does not make sense to keep them
3518  * (if there's no tcb entry, syn cache entry will never be used)
3519  */
3520 void
3521 syn_cache_cleanup(struct tcpcb *tp)
3522 {
3523 	struct syn_cache *sc, *nsc;
3524 	int s;
3525 
3526 	s = splsoftnet();
3527 
3528 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3529 		nsc = LIST_NEXT(sc, sc_tpq);
3530 
3531 #ifdef DIAGNOSTIC
3532 		if (sc->sc_tp != tp)
3533 			panic("invalid sc_tp in syn_cache_cleanup");
3534 #endif
3535 		syn_cache_rm(sc);
3536 		syn_cache_put(sc);	/* calls pool_put but see spl above */
3537 	}
3538 	/* just for safety */
3539 	LIST_INIT(&tp->t_sc);
3540 
3541 	splx(s);
3542 }
3543 
3544 /*
3545  * Find an entry in the syn cache.
3546  */
3547 struct syn_cache *
3548 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3549     struct syn_cache_head **headp)
3550 {
3551 	struct syn_cache *sc;
3552 	struct syn_cache_head *scp;
3553 	u_int32_t hash;
3554 	int s;
3555 
3556 	SYN_HASHALL(hash, src, dst);
3557 
3558 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3559 	*headp = scp;
3560 	s = splsoftnet();
3561 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3562 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3563 		if (sc->sc_hash != hash)
3564 			continue;
3565 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3566 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3567 			splx(s);
3568 			return (sc);
3569 		}
3570 	}
3571 	splx(s);
3572 	return (NULL);
3573 }
3574 
3575 /*
3576  * This function gets called when we receive an ACK for a
3577  * socket in the LISTEN state.  We look up the connection
3578  * in the syn cache, and if its there, we pull it out of
3579  * the cache and turn it into a full-blown connection in
3580  * the SYN-RECEIVED state.
3581  *
3582  * The return values may not be immediately obvious, and their effects
3583  * can be subtle, so here they are:
3584  *
3585  *	NULL	SYN was not found in cache; caller should drop the
3586  *		packet and send an RST.
3587  *
3588  *	-1	We were unable to create the new connection, and are
3589  *		aborting it.  An ACK,RST is being sent to the peer
3590  *		(unless we got screwey sequence numbners; see below),
3591  *		because the 3-way handshake has been completed.  Caller
3592  *		should not free the mbuf, since we may be using it.  If
3593  *		we are not, we will free it.
3594  *
3595  *	Otherwise, the return value is a pointer to the new socket
3596  *	associated with the connection.
3597  */
3598 struct socket *
3599 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3600     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3601     struct socket *so, struct mbuf *m)
3602 {
3603 	struct syn_cache *sc;
3604 	struct syn_cache_head *scp;
3605 	struct inpcb *inp = NULL;
3606 #ifdef INET6
3607 	struct in6pcb *in6p = NULL;
3608 #endif
3609 	struct tcpcb *tp = 0;
3610 	struct mbuf *am;
3611 	int s;
3612 	struct socket *oso;
3613 
3614 	s = splsoftnet();
3615 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3616 		splx(s);
3617 		return (NULL);
3618 	}
3619 
3620 	/*
3621 	 * Verify the sequence and ack numbers.  Try getting the correct
3622 	 * response again.
3623 	 */
3624 	if ((th->th_ack != sc->sc_iss + 1) ||
3625 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3626 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3627 		(void) syn_cache_respond(sc, m);
3628 		splx(s);
3629 		return ((struct socket *)(-1));
3630 	}
3631 
3632 	/* Remove this cache entry */
3633 	syn_cache_rm(sc);
3634 	splx(s);
3635 
3636 	/*
3637 	 * Ok, create the full blown connection, and set things up
3638 	 * as they would have been set up if we had created the
3639 	 * connection when the SYN arrived.  If we can't create
3640 	 * the connection, abort it.
3641 	 */
3642 	/*
3643 	 * inp still has the OLD in_pcb stuff, set the
3644 	 * v6-related flags on the new guy, too.   This is
3645 	 * done particularly for the case where an AF_INET6
3646 	 * socket is bound only to a port, and a v4 connection
3647 	 * comes in on that port.
3648 	 * we also copy the flowinfo from the original pcb
3649 	 * to the new one.
3650 	 */
3651 	oso = so;
3652 	so = sonewconn(so, SS_ISCONNECTED);
3653 	if (so == NULL)
3654 		goto resetandabort;
3655 
3656 	switch (so->so_proto->pr_domain->dom_family) {
3657 #ifdef INET
3658 	case AF_INET:
3659 		inp = sotoinpcb(so);
3660 		break;
3661 #endif
3662 #ifdef INET6
3663 	case AF_INET6:
3664 		in6p = sotoin6pcb(so);
3665 		break;
3666 #endif
3667 	}
3668 	switch (src->sa_family) {
3669 #ifdef INET
3670 	case AF_INET:
3671 		if (inp) {
3672 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3673 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3674 			inp->inp_options = ip_srcroute();
3675 			in_pcbstate(inp, INP_BOUND);
3676 			if (inp->inp_options == NULL) {
3677 				inp->inp_options = sc->sc_ipopts;
3678 				sc->sc_ipopts = NULL;
3679 			}
3680 		}
3681 #ifdef INET6
3682 		else if (in6p) {
3683 			/* IPv4 packet to AF_INET6 socket */
3684 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3685 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3686 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3687 				&in6p->in6p_laddr.s6_addr32[3],
3688 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
3689 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3690 			in6totcpcb(in6p)->t_family = AF_INET;
3691 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3692 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3693 			else
3694 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3695 			in6_pcbstate(in6p, IN6P_BOUND);
3696 		}
3697 #endif
3698 		break;
3699 #endif
3700 #ifdef INET6
3701 	case AF_INET6:
3702 		if (in6p) {
3703 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3704 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3705 			in6_pcbstate(in6p, IN6P_BOUND);
3706 		}
3707 		break;
3708 #endif
3709 	}
3710 #ifdef INET6
3711 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3712 		struct in6pcb *oin6p = sotoin6pcb(oso);
3713 		/* inherit socket options from the listening socket */
3714 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3715 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3716 			m_freem(in6p->in6p_options);
3717 			in6p->in6p_options = 0;
3718 		}
3719 		ip6_savecontrol(in6p, &in6p->in6p_options,
3720 			mtod(m, struct ip6_hdr *), m);
3721 	}
3722 #endif
3723 
3724 #if defined(IPSEC) || defined(FAST_IPSEC)
3725 	/*
3726 	 * we make a copy of policy, instead of sharing the policy,
3727 	 * for better behavior in terms of SA lookup and dead SA removal.
3728 	 */
3729 	if (inp) {
3730 		/* copy old policy into new socket's */
3731 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3732 			printf("tcp_input: could not copy policy\n");
3733 	}
3734 #ifdef INET6
3735 	else if (in6p) {
3736 		/* copy old policy into new socket's */
3737 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3738 		    in6p->in6p_sp))
3739 			printf("tcp_input: could not copy policy\n");
3740 	}
3741 #endif
3742 #endif
3743 
3744 	/*
3745 	 * Give the new socket our cached route reference.
3746 	 */
3747 	if (inp) {
3748 		rtcache_copy(&inp->inp_route, &sc->sc_route);
3749 		rtcache_free(&sc->sc_route);
3750 	}
3751 #ifdef INET6
3752 	else {
3753 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3754 		rtcache_free(&sc->sc_route);
3755 	}
3756 #endif
3757 
3758 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3759 	if (am == NULL)
3760 		goto resetandabort;
3761 	MCLAIM(am, &tcp_mowner);
3762 	am->m_len = src->sa_len;
3763 	bcopy(src, mtod(am, void *), src->sa_len);
3764 	if (inp) {
3765 		if (in_pcbconnect(inp, am, &lwp0)) {
3766 			(void) m_free(am);
3767 			goto resetandabort;
3768 		}
3769 	}
3770 #ifdef INET6
3771 	else if (in6p) {
3772 		if (src->sa_family == AF_INET) {
3773 			/* IPv4 packet to AF_INET6 socket */
3774 			struct sockaddr_in6 *sin6;
3775 			sin6 = mtod(am, struct sockaddr_in6 *);
3776 			am->m_len = sizeof(*sin6);
3777 			bzero(sin6, sizeof(*sin6));
3778 			sin6->sin6_family = AF_INET6;
3779 			sin6->sin6_len = sizeof(*sin6);
3780 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3781 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3782 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
3783 				&sin6->sin6_addr.s6_addr32[3],
3784 				sizeof(sin6->sin6_addr.s6_addr32[3]));
3785 		}
3786 		if (in6_pcbconnect(in6p, am, NULL)) {
3787 			(void) m_free(am);
3788 			goto resetandabort;
3789 		}
3790 	}
3791 #endif
3792 	else {
3793 		(void) m_free(am);
3794 		goto resetandabort;
3795 	}
3796 	(void) m_free(am);
3797 
3798 	if (inp)
3799 		tp = intotcpcb(inp);
3800 #ifdef INET6
3801 	else if (in6p)
3802 		tp = in6totcpcb(in6p);
3803 #endif
3804 	else
3805 		tp = NULL;
3806 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3807 	if (sc->sc_request_r_scale != 15) {
3808 		tp->requested_s_scale = sc->sc_requested_s_scale;
3809 		tp->request_r_scale = sc->sc_request_r_scale;
3810 		tp->snd_scale = sc->sc_requested_s_scale;
3811 		tp->rcv_scale = sc->sc_request_r_scale;
3812 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3813 	}
3814 	if (sc->sc_flags & SCF_TIMESTAMP)
3815 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3816 	tp->ts_timebase = sc->sc_timebase;
3817 
3818 	tp->t_template = tcp_template(tp);
3819 	if (tp->t_template == 0) {
3820 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3821 		so = NULL;
3822 		m_freem(m);
3823 		goto abort;
3824 	}
3825 
3826 	tp->iss = sc->sc_iss;
3827 	tp->irs = sc->sc_irs;
3828 	tcp_sendseqinit(tp);
3829 	tcp_rcvseqinit(tp);
3830 	tp->t_state = TCPS_SYN_RECEIVED;
3831 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3832 	TCP_STATINC(TCP_STAT_ACCEPTS);
3833 
3834 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3835 		tp->t_flags |= TF_WILL_SACK;
3836 
3837 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
3838 		tp->t_flags |= TF_ECN_PERMIT;
3839 
3840 #ifdef TCP_SIGNATURE
3841 	if (sc->sc_flags & SCF_SIGNATURE)
3842 		tp->t_flags |= TF_SIGNATURE;
3843 #endif
3844 
3845 	/* Initialize tp->t_ourmss before we deal with the peer's! */
3846 	tp->t_ourmss = sc->sc_ourmaxseg;
3847 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3848 
3849 	/*
3850 	 * Initialize the initial congestion window.  If we
3851 	 * had to retransmit the SYN,ACK, we must initialize cwnd
3852 	 * to 1 segment (i.e. the Loss Window).
3853 	 */
3854 	if (sc->sc_rxtshift)
3855 		tp->snd_cwnd = tp->t_peermss;
3856 	else {
3857 		int ss = tcp_init_win;
3858 #ifdef INET
3859 		if (inp != NULL && in_localaddr(inp->inp_faddr))
3860 			ss = tcp_init_win_local;
3861 #endif
3862 #ifdef INET6
3863 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3864 			ss = tcp_init_win_local;
3865 #endif
3866 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3867 	}
3868 
3869 	tcp_rmx_rtt(tp);
3870 	tp->snd_wl1 = sc->sc_irs;
3871 	tp->rcv_up = sc->sc_irs + 1;
3872 
3873 	/*
3874 	 * This is what whould have happened in tcp_output() when
3875 	 * the SYN,ACK was sent.
3876 	 */
3877 	tp->snd_up = tp->snd_una;
3878 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3879 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3880 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3881 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3882 	tp->last_ack_sent = tp->rcv_nxt;
3883 	tp->t_partialacks = -1;
3884 	tp->t_dupacks = 0;
3885 
3886 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
3887 	s = splsoftnet();
3888 	syn_cache_put(sc);
3889 	splx(s);
3890 	return (so);
3891 
3892 resetandabort:
3893 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3894 abort:
3895 	if (so != NULL) {
3896 		(void) soqremque(so, 1);
3897 		(void) soabort(so);
3898 		mutex_enter(softnet_lock);
3899 	}
3900 	s = splsoftnet();
3901 	syn_cache_put(sc);
3902 	splx(s);
3903 	TCP_STATINC(TCP_STAT_SC_ABORTED);
3904 	return ((struct socket *)(-1));
3905 }
3906 
3907 /*
3908  * This function is called when we get a RST for a
3909  * non-existent connection, so that we can see if the
3910  * connection is in the syn cache.  If it is, zap it.
3911  */
3912 
3913 void
3914 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3915 {
3916 	struct syn_cache *sc;
3917 	struct syn_cache_head *scp;
3918 	int s = splsoftnet();
3919 
3920 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3921 		splx(s);
3922 		return;
3923 	}
3924 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3925 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3926 		splx(s);
3927 		return;
3928 	}
3929 	syn_cache_rm(sc);
3930 	TCP_STATINC(TCP_STAT_SC_RESET);
3931 	syn_cache_put(sc);	/* calls pool_put but see spl above */
3932 	splx(s);
3933 }
3934 
3935 void
3936 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
3937     struct tcphdr *th)
3938 {
3939 	struct syn_cache *sc;
3940 	struct syn_cache_head *scp;
3941 	int s;
3942 
3943 	s = splsoftnet();
3944 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3945 		splx(s);
3946 		return;
3947 	}
3948 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3949 	if (ntohl (th->th_seq) != sc->sc_iss) {
3950 		splx(s);
3951 		return;
3952 	}
3953 
3954 	/*
3955 	 * If we've retransmitted 3 times and this is our second error,
3956 	 * we remove the entry.  Otherwise, we allow it to continue on.
3957 	 * This prevents us from incorrectly nuking an entry during a
3958 	 * spurious network outage.
3959 	 *
3960 	 * See tcp_notify().
3961 	 */
3962 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3963 		sc->sc_flags |= SCF_UNREACH;
3964 		splx(s);
3965 		return;
3966 	}
3967 
3968 	syn_cache_rm(sc);
3969 	TCP_STATINC(TCP_STAT_SC_UNREACH);
3970 	syn_cache_put(sc);	/* calls pool_put but see spl above */
3971 	splx(s);
3972 }
3973 
3974 /*
3975  * Given a LISTEN socket and an inbound SYN request, add
3976  * this to the syn cache, and send back a segment:
3977  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3978  * to the source.
3979  *
3980  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3981  * Doing so would require that we hold onto the data and deliver it
3982  * to the application.  However, if we are the target of a SYN-flood
3983  * DoS attack, an attacker could send data which would eventually
3984  * consume all available buffer space if it were ACKed.  By not ACKing
3985  * the data, we avoid this DoS scenario.
3986  */
3987 
3988 int
3989 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3990     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
3991     int optlen, struct tcp_opt_info *oi)
3992 {
3993 	struct tcpcb tb, *tp;
3994 	long win;
3995 	struct syn_cache *sc;
3996 	struct syn_cache_head *scp;
3997 	struct mbuf *ipopts;
3998 	struct tcp_opt_info opti;
3999 	int s;
4000 
4001 	tp = sototcpcb(so);
4002 
4003 	bzero(&opti, sizeof(opti));
4004 
4005 	/*
4006 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4007 	 *
4008 	 * Note this check is performed in tcp_input() very early on.
4009 	 */
4010 
4011 	/*
4012 	 * Initialize some local state.
4013 	 */
4014 	win = sbspace(&so->so_rcv);
4015 	if (win > TCP_MAXWIN)
4016 		win = TCP_MAXWIN;
4017 
4018 	switch (src->sa_family) {
4019 #ifdef INET
4020 	case AF_INET:
4021 		/*
4022 		 * Remember the IP options, if any.
4023 		 */
4024 		ipopts = ip_srcroute();
4025 		break;
4026 #endif
4027 	default:
4028 		ipopts = NULL;
4029 	}
4030 
4031 #ifdef TCP_SIGNATURE
4032 	if (optp || (tp->t_flags & TF_SIGNATURE))
4033 #else
4034 	if (optp)
4035 #endif
4036 	{
4037 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4038 #ifdef TCP_SIGNATURE
4039 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4040 #endif
4041 		tb.t_state = TCPS_LISTEN;
4042 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4043 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4044 			return (0);
4045 	} else
4046 		tb.t_flags = 0;
4047 
4048 	/*
4049 	 * See if we already have an entry for this connection.
4050 	 * If we do, resend the SYN,ACK.  We do not count this
4051 	 * as a retransmission (XXX though maybe we should).
4052 	 */
4053 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4054 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
4055 		if (ipopts) {
4056 			/*
4057 			 * If we were remembering a previous source route,
4058 			 * forget it and use the new one we've been given.
4059 			 */
4060 			if (sc->sc_ipopts)
4061 				(void) m_free(sc->sc_ipopts);
4062 			sc->sc_ipopts = ipopts;
4063 		}
4064 		sc->sc_timestamp = tb.ts_recent;
4065 		if (syn_cache_respond(sc, m) == 0) {
4066 			uint64_t *tcps = TCP_STAT_GETREF();
4067 			tcps[TCP_STAT_SNDACKS]++;
4068 			tcps[TCP_STAT_SNDTOTAL]++;
4069 			TCP_STAT_PUTREF();
4070 		}
4071 		return (1);
4072 	}
4073 
4074 	s = splsoftnet();
4075 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4076 	splx(s);
4077 	if (sc == NULL) {
4078 		if (ipopts)
4079 			(void) m_free(ipopts);
4080 		return (0);
4081 	}
4082 
4083 	/*
4084 	 * Fill in the cache, and put the necessary IP and TCP
4085 	 * options into the reply.
4086 	 */
4087 	bzero(sc, sizeof(struct syn_cache));
4088 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4089 	bcopy(src, &sc->sc_src, src->sa_len);
4090 	bcopy(dst, &sc->sc_dst, dst->sa_len);
4091 	sc->sc_flags = 0;
4092 	sc->sc_ipopts = ipopts;
4093 	sc->sc_irs = th->th_seq;
4094 	switch (src->sa_family) {
4095 #ifdef INET
4096 	case AF_INET:
4097 	    {
4098 		struct sockaddr_in *srcin = (void *) src;
4099 		struct sockaddr_in *dstin = (void *) dst;
4100 
4101 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4102 		    &srcin->sin_addr, dstin->sin_port,
4103 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
4104 		break;
4105 	    }
4106 #endif /* INET */
4107 #ifdef INET6
4108 	case AF_INET6:
4109 	    {
4110 		struct sockaddr_in6 *srcin6 = (void *) src;
4111 		struct sockaddr_in6 *dstin6 = (void *) dst;
4112 
4113 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4114 		    &srcin6->sin6_addr, dstin6->sin6_port,
4115 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4116 		break;
4117 	    }
4118 #endif /* INET6 */
4119 	}
4120 	sc->sc_peermaxseg = oi->maxseg;
4121 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4122 						m->m_pkthdr.rcvif : NULL,
4123 						sc->sc_src.sa.sa_family);
4124 	sc->sc_win = win;
4125 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
4126 	sc->sc_timestamp = tb.ts_recent;
4127 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4128 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4129 		sc->sc_flags |= SCF_TIMESTAMP;
4130 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4131 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4132 		sc->sc_requested_s_scale = tb.requested_s_scale;
4133 		sc->sc_request_r_scale = 0;
4134 		/*
4135 		 * Pick the smallest possible scaling factor that
4136 		 * will still allow us to scale up to sb_max.
4137 		 *
4138 		 * We do this because there are broken firewalls that
4139 		 * will corrupt the window scale option, leading to
4140 		 * the other endpoint believing that our advertised
4141 		 * window is unscaled.  At scale factors larger than
4142 		 * 5 the unscaled window will drop below 1500 bytes,
4143 		 * leading to serious problems when traversing these
4144 		 * broken firewalls.
4145 		 *
4146 		 * With the default sbmax of 256K, a scale factor
4147 		 * of 3 will be chosen by this algorithm.  Those who
4148 		 * choose a larger sbmax should watch out
4149 		 * for the compatiblity problems mentioned above.
4150 		 *
4151 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4152 		 * or <SYN,ACK>) segment itself is never scaled.
4153 		 */
4154 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4155 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4156 			sc->sc_request_r_scale++;
4157 	} else {
4158 		sc->sc_requested_s_scale = 15;
4159 		sc->sc_request_r_scale = 15;
4160 	}
4161 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4162 		sc->sc_flags |= SCF_SACK_PERMIT;
4163 
4164 	/*
4165 	 * ECN setup packet recieved.
4166 	 */
4167 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4168 		sc->sc_flags |= SCF_ECN_PERMIT;
4169 
4170 #ifdef TCP_SIGNATURE
4171 	if (tb.t_flags & TF_SIGNATURE)
4172 		sc->sc_flags |= SCF_SIGNATURE;
4173 #endif
4174 	sc->sc_tp = tp;
4175 	if (syn_cache_respond(sc, m) == 0) {
4176 		uint64_t *tcps = TCP_STAT_GETREF();
4177 		tcps[TCP_STAT_SNDACKS]++;
4178 		tcps[TCP_STAT_SNDTOTAL]++;
4179 		TCP_STAT_PUTREF();
4180 		syn_cache_insert(sc, tp);
4181 	} else {
4182 		s = splsoftnet();
4183 		syn_cache_put(sc);
4184 		splx(s);
4185 		TCP_STATINC(TCP_STAT_SC_DROPPED);
4186 	}
4187 	return (1);
4188 }
4189 
4190 int
4191 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4192 {
4193 #ifdef INET6
4194 	struct rtentry *rt;
4195 #endif
4196 	struct route *ro;
4197 	u_int8_t *optp;
4198 	int optlen, error;
4199 	u_int16_t tlen;
4200 	struct ip *ip = NULL;
4201 #ifdef INET6
4202 	struct ip6_hdr *ip6 = NULL;
4203 #endif
4204 	struct tcpcb *tp = NULL;
4205 	struct tcphdr *th;
4206 	u_int hlen;
4207 	struct socket *so;
4208 
4209 	ro = &sc->sc_route;
4210 	switch (sc->sc_src.sa.sa_family) {
4211 	case AF_INET:
4212 		hlen = sizeof(struct ip);
4213 		break;
4214 #ifdef INET6
4215 	case AF_INET6:
4216 		hlen = sizeof(struct ip6_hdr);
4217 		break;
4218 #endif
4219 	default:
4220 		if (m)
4221 			m_freem(m);
4222 		return (EAFNOSUPPORT);
4223 	}
4224 
4225 	/* Compute the size of the TCP options. */
4226 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4227 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4228 #ifdef TCP_SIGNATURE
4229 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4230 #endif
4231 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4232 
4233 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4234 
4235 	/*
4236 	 * Create the IP+TCP header from scratch.
4237 	 */
4238 	if (m)
4239 		m_freem(m);
4240 #ifdef DIAGNOSTIC
4241 	if (max_linkhdr + tlen > MCLBYTES)
4242 		return (ENOBUFS);
4243 #endif
4244 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4245 	if (m && tlen > MHLEN) {
4246 		MCLGET(m, M_DONTWAIT);
4247 		if ((m->m_flags & M_EXT) == 0) {
4248 			m_freem(m);
4249 			m = NULL;
4250 		}
4251 	}
4252 	if (m == NULL)
4253 		return (ENOBUFS);
4254 	MCLAIM(m, &tcp_tx_mowner);
4255 
4256 	/* Fixup the mbuf. */
4257 	m->m_data += max_linkhdr;
4258 	m->m_len = m->m_pkthdr.len = tlen;
4259 	if (sc->sc_tp) {
4260 		tp = sc->sc_tp;
4261 		if (tp->t_inpcb)
4262 			so = tp->t_inpcb->inp_socket;
4263 #ifdef INET6
4264 		else if (tp->t_in6pcb)
4265 			so = tp->t_in6pcb->in6p_socket;
4266 #endif
4267 		else
4268 			so = NULL;
4269 	} else
4270 		so = NULL;
4271 	m->m_pkthdr.rcvif = NULL;
4272 	memset(mtod(m, u_char *), 0, tlen);
4273 
4274 	switch (sc->sc_src.sa.sa_family) {
4275 	case AF_INET:
4276 		ip = mtod(m, struct ip *);
4277 		ip->ip_v = 4;
4278 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4279 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4280 		ip->ip_p = IPPROTO_TCP;
4281 		th = (struct tcphdr *)(ip + 1);
4282 		th->th_dport = sc->sc_src.sin.sin_port;
4283 		th->th_sport = sc->sc_dst.sin.sin_port;
4284 		break;
4285 #ifdef INET6
4286 	case AF_INET6:
4287 		ip6 = mtod(m, struct ip6_hdr *);
4288 		ip6->ip6_vfc = IPV6_VERSION;
4289 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4290 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4291 		ip6->ip6_nxt = IPPROTO_TCP;
4292 		/* ip6_plen will be updated in ip6_output() */
4293 		th = (struct tcphdr *)(ip6 + 1);
4294 		th->th_dport = sc->sc_src.sin6.sin6_port;
4295 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4296 		break;
4297 #endif
4298 	default:
4299 		th = NULL;
4300 	}
4301 
4302 	th->th_seq = htonl(sc->sc_iss);
4303 	th->th_ack = htonl(sc->sc_irs + 1);
4304 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4305 	th->th_flags = TH_SYN|TH_ACK;
4306 	th->th_win = htons(sc->sc_win);
4307 	/* th_sum already 0 */
4308 	/* th_urp already 0 */
4309 
4310 	/* Tack on the TCP options. */
4311 	optp = (u_int8_t *)(th + 1);
4312 	*optp++ = TCPOPT_MAXSEG;
4313 	*optp++ = 4;
4314 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4315 	*optp++ = sc->sc_ourmaxseg & 0xff;
4316 
4317 	if (sc->sc_request_r_scale != 15) {
4318 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4319 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4320 		    sc->sc_request_r_scale);
4321 		optp += 4;
4322 	}
4323 
4324 	if (sc->sc_flags & SCF_TIMESTAMP) {
4325 		u_int32_t *lp = (u_int32_t *)(optp);
4326 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4327 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
4328 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4329 		*lp   = htonl(sc->sc_timestamp);
4330 		optp += TCPOLEN_TSTAMP_APPA;
4331 	}
4332 
4333 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4334 		u_int8_t *p = optp;
4335 
4336 		/* Let the peer know that we will SACK. */
4337 		p[0] = TCPOPT_SACK_PERMITTED;
4338 		p[1] = 2;
4339 		p[2] = TCPOPT_NOP;
4340 		p[3] = TCPOPT_NOP;
4341 		optp += 4;
4342 	}
4343 
4344 	/*
4345 	 * Send ECN SYN-ACK setup packet.
4346 	 * Routes can be asymetric, so, even if we receive a packet
4347 	 * with ECE and CWR set, we must not assume no one will block
4348 	 * the ECE packet we are about to send.
4349 	 */
4350 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4351 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4352 		th->th_flags |= TH_ECE;
4353 		TCP_STATINC(TCP_STAT_ECN_SHS);
4354 
4355 		/*
4356 		 * draft-ietf-tcpm-ecnsyn-00.txt
4357 		 *
4358 		 * "[...] a TCP node MAY respond to an ECN-setup
4359 		 * SYN packet by setting ECT in the responding
4360 		 * ECN-setup SYN/ACK packet, indicating to routers
4361 		 * that the SYN/ACK packet is ECN-Capable.
4362 		 * This allows a congested router along the path
4363 		 * to mark the packet instead of dropping the
4364 		 * packet as an indication of congestion."
4365 		 *
4366 		 * "[...] There can be a great benefit in setting
4367 		 * an ECN-capable codepoint in SYN/ACK packets [...]
4368 		 * Congestion is  most likely to occur in
4369 		 * the server-to-client direction.  As a result,
4370 		 * setting an ECN-capable codepoint in SYN/ACK
4371 		 * packets can reduce the occurence of three-second
4372 		 * retransmit timeouts resulting from the drop
4373 		 * of SYN/ACK packets."
4374 		 *
4375 		 * Page 4 and 6, January 2006.
4376 		 */
4377 
4378 		switch (sc->sc_src.sa.sa_family) {
4379 #ifdef INET
4380 		case AF_INET:
4381 			ip->ip_tos |= IPTOS_ECN_ECT0;
4382 			break;
4383 #endif
4384 #ifdef INET6
4385 		case AF_INET6:
4386 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4387 			break;
4388 #endif
4389 		}
4390 		TCP_STATINC(TCP_STAT_ECN_ECT);
4391 	}
4392 
4393 #ifdef TCP_SIGNATURE
4394 	if (sc->sc_flags & SCF_SIGNATURE) {
4395 		struct secasvar *sav;
4396 		u_int8_t *sigp;
4397 
4398 		sav = tcp_signature_getsav(m, th);
4399 
4400 		if (sav == NULL) {
4401 			if (m)
4402 				m_freem(m);
4403 			return (EPERM);
4404 		}
4405 
4406 		*optp++ = TCPOPT_SIGNATURE;
4407 		*optp++ = TCPOLEN_SIGNATURE;
4408 		sigp = optp;
4409 		bzero(optp, TCP_SIGLEN);
4410 		optp += TCP_SIGLEN;
4411 		*optp++ = TCPOPT_NOP;
4412 		*optp++ = TCPOPT_EOL;
4413 
4414 		(void)tcp_signature(m, th, hlen, sav, sigp);
4415 
4416 		key_sa_recordxfer(sav, m);
4417 #ifdef FAST_IPSEC
4418 		KEY_FREESAV(&sav);
4419 #else
4420 		key_freesav(sav);
4421 #endif
4422 	}
4423 #endif
4424 
4425 	/* Compute the packet's checksum. */
4426 	switch (sc->sc_src.sa.sa_family) {
4427 	case AF_INET:
4428 		ip->ip_len = htons(tlen - hlen);
4429 		th->th_sum = 0;
4430 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4431 		break;
4432 #ifdef INET6
4433 	case AF_INET6:
4434 		ip6->ip6_plen = htons(tlen - hlen);
4435 		th->th_sum = 0;
4436 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4437 		break;
4438 #endif
4439 	}
4440 
4441 	/*
4442 	 * Fill in some straggling IP bits.  Note the stack expects
4443 	 * ip_len to be in host order, for convenience.
4444 	 */
4445 	switch (sc->sc_src.sa.sa_family) {
4446 #ifdef INET
4447 	case AF_INET:
4448 		ip->ip_len = htons(tlen);
4449 		ip->ip_ttl = ip_defttl;
4450 		/* XXX tos? */
4451 		break;
4452 #endif
4453 #ifdef INET6
4454 	case AF_INET6:
4455 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4456 		ip6->ip6_vfc |= IPV6_VERSION;
4457 		ip6->ip6_plen = htons(tlen - hlen);
4458 		/* ip6_hlim will be initialized afterwards */
4459 		/* XXX flowlabel? */
4460 		break;
4461 #endif
4462 	}
4463 
4464 	/* XXX use IPsec policy on listening socket, on SYN ACK */
4465 	tp = sc->sc_tp;
4466 
4467 	switch (sc->sc_src.sa.sa_family) {
4468 #ifdef INET
4469 	case AF_INET:
4470 		error = ip_output(m, sc->sc_ipopts, ro,
4471 		    (ip_mtudisc ? IP_MTUDISC : 0),
4472 		    (struct ip_moptions *)NULL, so);
4473 		break;
4474 #endif
4475 #ifdef INET6
4476 	case AF_INET6:
4477 		ip6->ip6_hlim = in6_selecthlim(NULL,
4478 				(rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
4479 				                                    : NULL);
4480 
4481 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4482 		break;
4483 #endif
4484 	default:
4485 		error = EAFNOSUPPORT;
4486 		break;
4487 	}
4488 	return (error);
4489 }
4490