xref: /netbsd-src/sys/netinet/tcp_input.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: tcp_input.c,v 1.127 2001/07/08 16:18:57 abs Exp $	*/
2 
3 /*
4 %%% portions-copyright-nrl-95
5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
7 Reserved. All rights under this copyright have been assigned to the US
8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
10 software.
11 You should have received a copy of the license with this software. If you
12 didn't get a copy, you may request one from <license@ipv6.nrl.navy.mil>.
13 
14 */
15 
16 /*
17  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
18  * All rights reserved.
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  * 1. Redistributions of source code must retain the above copyright
24  *    notice, this list of conditions and the following disclaimer.
25  * 2. Redistributions in binary form must reproduce the above copyright
26  *    notice, this list of conditions and the following disclaimer in the
27  *    documentation and/or other materials provided with the distribution.
28  * 3. Neither the name of the project nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  */
44 
45 /*-
46  * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
47  * All rights reserved.
48  *
49  * This code is derived from software contributed to The NetBSD Foundation
50  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
51  * Facility, NASA Ames Research Center.
52  *
53  * Redistribution and use in source and binary forms, with or without
54  * modification, are permitted provided that the following conditions
55  * are met:
56  * 1. Redistributions of source code must retain the above copyright
57  *    notice, this list of conditions and the following disclaimer.
58  * 2. Redistributions in binary form must reproduce the above copyright
59  *    notice, this list of conditions and the following disclaimer in the
60  *    documentation and/or other materials provided with the distribution.
61  * 3. All advertising materials mentioning features or use of this software
62  *    must display the following acknowledgement:
63  *	This product includes software developed by the NetBSD
64  *	Foundation, Inc. and its contributors.
65  * 4. Neither the name of The NetBSD Foundation nor the names of its
66  *    contributors may be used to endorse or promote products derived
67  *    from this software without specific prior written permission.
68  *
69  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
70  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
71  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
72  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
73  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
79  * POSSIBILITY OF SUCH DAMAGE.
80  */
81 
82 /*
83  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
84  *	The Regents of the University of California.  All rights reserved.
85  *
86  * Redistribution and use in source and binary forms, with or without
87  * modification, are permitted provided that the following conditions
88  * are met:
89  * 1. Redistributions of source code must retain the above copyright
90  *    notice, this list of conditions and the following disclaimer.
91  * 2. Redistributions in binary form must reproduce the above copyright
92  *    notice, this list of conditions and the following disclaimer in the
93  *    documentation and/or other materials provided with the distribution.
94  * 3. All advertising materials mentioning features or use of this software
95  *    must display the following acknowledgement:
96  *	This product includes software developed by the University of
97  *	California, Berkeley and its contributors.
98  * 4. Neither the name of the University nor the names of its contributors
99  *    may be used to endorse or promote products derived from this software
100  *    without specific prior written permission.
101  *
102  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
103  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
104  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
105  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
106  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
107  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
108  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
109  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
110  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
111  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
112  * SUCH DAMAGE.
113  *
114  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
115  */
116 
117 /*
118  *	TODO list for SYN cache stuff:
119  *
120  *	Find room for a "state" field, which is needed to keep a
121  *	compressed state for TIME_WAIT TCBs.  It's been noted already
122  *	that this is fairly important for very high-volume web and
123  *	mail servers, which use a large number of short-lived
124  *	connections.
125  */
126 
127 #include "opt_inet.h"
128 #include "opt_ipsec.h"
129 #include "opt_inet_csum.h"
130 #include "opt_tcp_debug.h"
131 
132 #include <sys/param.h>
133 #include <sys/systm.h>
134 #include <sys/malloc.h>
135 #include <sys/mbuf.h>
136 #include <sys/protosw.h>
137 #include <sys/socket.h>
138 #include <sys/socketvar.h>
139 #include <sys/errno.h>
140 #include <sys/syslog.h>
141 #include <sys/pool.h>
142 #include <sys/domain.h>
143 
144 #include <net/if.h>
145 #include <net/route.h>
146 #include <net/if_types.h>
147 
148 #include <netinet/in.h>
149 #include <netinet/in_systm.h>
150 #include <netinet/ip.h>
151 #include <netinet/in_pcb.h>
152 #include <netinet/ip_var.h>
153 
154 #ifdef INET6
155 #ifndef INET
156 #include <netinet/in.h>
157 #endif
158 #include <netinet/ip6.h>
159 #include <netinet6/ip6_var.h>
160 #include <netinet6/in6_pcb.h>
161 #include <netinet6/ip6_var.h>
162 #include <netinet6/in6_var.h>
163 #include <netinet/icmp6.h>
164 #include <netinet6/nd6.h>
165 #endif
166 
167 #ifdef PULLDOWN_TEST
168 #ifndef INET6
169 /* always need ip6.h for IP6_EXTHDR_GET */
170 #include <netinet/ip6.h>
171 #endif
172 #endif
173 
174 #include <netinet/tcp.h>
175 #include <netinet/tcp_fsm.h>
176 #include <netinet/tcp_seq.h>
177 #include <netinet/tcp_timer.h>
178 #include <netinet/tcp_var.h>
179 #include <netinet/tcpip.h>
180 #include <netinet/tcp_debug.h>
181 
182 #include <machine/stdarg.h>
183 
184 #ifdef IPSEC
185 #include <netinet6/ipsec.h>
186 #include <netkey/key.h>
187 #endif /*IPSEC*/
188 #ifdef INET6
189 #include "faith.h"
190 #if defined(NFAITH) && NFAITH > 0
191 #include <net/if_faith.h>
192 #endif
193 #endif
194 
195 int	tcprexmtthresh = 3;
196 int	tcp_log_refused;
197 
198 static int tcp_rst_ppslim_count = 0;
199 static struct timeval tcp_rst_ppslim_last;
200 
201 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
202 
203 /* for modulo comparisons of timestamps */
204 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
205 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
206 
207 /*
208  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
209  */
210 #ifdef INET6
211 #define ND6_HINT(tp) \
212 do { \
213 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
214 	 && tp->t_in6pcb->in6p_route.ro_rt) { \
215 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
216 	} \
217 } while (0)
218 #else
219 #define ND6_HINT(tp)
220 #endif
221 
222 /*
223  * Macro to compute ACK transmission behavior.  Delay the ACK unless
224  * we have already delayed an ACK (must send an ACK every two segments).
225  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
226  * option is enabled.
227  */
228 #define	TCP_SETUP_ACK(tp, th) \
229 do { \
230 	if ((tp)->t_flags & TF_DELACK || \
231 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
232 		tp->t_flags |= TF_ACKNOW; \
233 	else \
234 		TCP_SET_DELACK(tp); \
235 } while (0)
236 
237 /*
238  * Convert TCP protocol fields to host order for easier processing.
239  */
240 #define	TCP_FIELDS_TO_HOST(th)						\
241 do {									\
242 	NTOHL((th)->th_seq);						\
243 	NTOHL((th)->th_ack);						\
244 	NTOHS((th)->th_win);						\
245 	NTOHS((th)->th_urp);						\
246 } while (0)
247 
248 #ifdef TCP_CSUM_COUNTERS
249 #include <sys/device.h>
250 
251 extern struct evcnt tcp_hwcsum_ok;
252 extern struct evcnt tcp_hwcsum_bad;
253 extern struct evcnt tcp_hwcsum_data;
254 extern struct evcnt tcp_swcsum;
255 
256 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
257 
258 #else
259 
260 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
261 
262 #endif /* TCP_CSUM_COUNTERS */
263 
264 int
265 tcp_reass(tp, th, m, tlen)
266 	struct tcpcb *tp;
267 	struct tcphdr *th;
268 	struct mbuf *m;
269 	int *tlen;
270 {
271 	struct ipqent *p, *q, *nq, *tiqe = NULL;
272 	struct socket *so = NULL;
273 	int pkt_flags;
274 	tcp_seq pkt_seq;
275 	unsigned pkt_len;
276 	u_long rcvpartdupbyte = 0;
277 	u_long rcvoobyte;
278 
279 	if (tp->t_inpcb)
280 		so = tp->t_inpcb->inp_socket;
281 #ifdef INET6
282 	else if (tp->t_in6pcb)
283 		so = tp->t_in6pcb->in6p_socket;
284 #endif
285 
286 	TCP_REASS_LOCK_CHECK(tp);
287 
288 	/*
289 	 * Call with th==0 after become established to
290 	 * force pre-ESTABLISHED data up to user socket.
291 	 */
292 	if (th == 0)
293 		goto present;
294 
295 	rcvoobyte = *tlen;
296 	/*
297 	 * Copy these to local variables because the tcpiphdr
298 	 * gets munged while we are collapsing mbufs.
299 	 */
300 	pkt_seq = th->th_seq;
301 	pkt_len = *tlen;
302 	pkt_flags = th->th_flags;
303 	/*
304 	 * Find a segment which begins after this one does.
305 	 */
306 	for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
307 		nq = q->ipqe_q.le_next;
308 		/*
309 		 * If the received segment is just right after this
310 		 * fragment, merge the two together and then check
311 		 * for further overlaps.
312 		 */
313 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
314 #ifdef TCPREASS_DEBUG
315 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
316 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
317 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
318 #endif
319 			pkt_len += q->ipqe_len;
320 			pkt_flags |= q->ipqe_flags;
321 			pkt_seq = q->ipqe_seq;
322 			m_cat(q->ipqe_m, m);
323 			m = q->ipqe_m;
324 			goto free_ipqe;
325 		}
326 		/*
327 		 * If the received segment is completely past this
328 		 * fragment, we need to go the next fragment.
329 		 */
330 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
331 			p = q;
332 			continue;
333 		}
334 		/*
335 		 * If the fragment is past the received segment,
336 		 * it (or any following) can't be concatenated.
337 		 */
338 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
339 			break;
340 		/*
341 		 * We've received all the data in this segment before.
342 		 * mark it as a duplicate and return.
343 		 */
344 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
345 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
346 			tcpstat.tcps_rcvduppack++;
347 			tcpstat.tcps_rcvdupbyte += pkt_len;
348 			m_freem(m);
349 			if (tiqe != NULL)
350 				pool_put(&ipqent_pool, tiqe);
351 			return (0);
352 		}
353 		/*
354 		 * Received segment completely overlaps this fragment
355 		 * so we drop the fragment (this keeps the temporal
356 		 * ordering of segments correct).
357 		 */
358 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
359 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
360 			rcvpartdupbyte += q->ipqe_len;
361 			m_freem(q->ipqe_m);
362 			goto free_ipqe;
363 		}
364 		/*
365 		 * RX'ed segment extends past the end of the
366 		 * fragment.  Drop the overlapping bytes.  Then
367 		 * merge the fragment and segment then treat as
368 		 * a longer received packet.
369 		 */
370 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
371 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
372 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
373 #ifdef TCPREASS_DEBUG
374 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
375 			       tp, overlap,
376 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
377 #endif
378 			m_adj(m, overlap);
379 			rcvpartdupbyte += overlap;
380 			m_cat(q->ipqe_m, m);
381 			m = q->ipqe_m;
382 			pkt_seq = q->ipqe_seq;
383 			pkt_len += q->ipqe_len - overlap;
384 			rcvoobyte -= overlap;
385 			goto free_ipqe;
386 		}
387 		/*
388 		 * RX'ed segment extends past the front of the
389 		 * fragment.  Drop the overlapping bytes on the
390 		 * received packet.  The packet will then be
391 		 * contatentated with this fragment a bit later.
392 		 */
393 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
394 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
395 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
396 #ifdef TCPREASS_DEBUG
397 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
398 			       tp, overlap,
399 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
400 #endif
401 			m_adj(m, -overlap);
402 			pkt_len -= overlap;
403 			rcvpartdupbyte += overlap;
404 			rcvoobyte -= overlap;
405 		}
406 		/*
407 		 * If the received segment immediates precedes this
408 		 * fragment then tack the fragment onto this segment
409 		 * and reinsert the data.
410 		 */
411 		if (q->ipqe_seq == pkt_seq + pkt_len) {
412 #ifdef TCPREASS_DEBUG
413 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
414 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
415 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
416 #endif
417 			pkt_len += q->ipqe_len;
418 			pkt_flags |= q->ipqe_flags;
419 			m_cat(m, q->ipqe_m);
420 			LIST_REMOVE(q, ipqe_q);
421 			LIST_REMOVE(q, ipqe_timeq);
422 			if (tiqe == NULL) {
423 			    tiqe = q;
424 			} else {
425 			    pool_put(&ipqent_pool, q);
426 			}
427 			break;
428 		}
429 		/*
430 		 * If the fragment is before the segment, remember it.
431 		 * When this loop is terminated, p will contain the
432 		 * pointer to fragment that is right before the received
433 		 * segment.
434 		 */
435 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
436 			p = q;
437 
438 		continue;
439 
440 		/*
441 		 * This is a common operation.  It also will allow
442 		 * to save doing a malloc/free in most instances.
443 		 */
444 	  free_ipqe:
445 		LIST_REMOVE(q, ipqe_q);
446 		LIST_REMOVE(q, ipqe_timeq);
447 		if (tiqe == NULL) {
448 		    tiqe = q;
449 		} else {
450 		    pool_put(&ipqent_pool, q);
451 		}
452 	}
453 
454 	/*
455 	 * Allocate a new queue entry since the received segment did not
456 	 * collapse onto any other out-of-order block; thus we are allocating
457 	 * a new block.  If it had collapsed, tiqe would not be NULL and
458 	 * we would be reusing it.
459 	 * XXX If we can't, just drop the packet.  XXX
460 	 */
461 	if (tiqe == NULL) {
462 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
463 		if (tiqe == NULL) {
464 			tcpstat.tcps_rcvmemdrop++;
465 			m_freem(m);
466 			return (0);
467 		}
468 	}
469 
470 	/*
471 	 * Update the counters.
472 	 */
473 	tcpstat.tcps_rcvoopack++;
474 	tcpstat.tcps_rcvoobyte += rcvoobyte;
475 	if (rcvpartdupbyte) {
476 	    tcpstat.tcps_rcvpartduppack++;
477 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
478 	}
479 
480 	/*
481 	 * Insert the new fragment queue entry into both queues.
482 	 */
483 	tiqe->ipqe_m = m;
484 	tiqe->ipqe_seq = pkt_seq;
485 	tiqe->ipqe_len = pkt_len;
486 	tiqe->ipqe_flags = pkt_flags;
487 	if (p == NULL) {
488 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
489 #ifdef TCPREASS_DEBUG
490 		if (tiqe->ipqe_seq != tp->rcv_nxt)
491 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
492 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
493 #endif
494 	} else {
495 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
496 #ifdef TCPREASS_DEBUG
497 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
498 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
499 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
500 #endif
501 	}
502 
503 	LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
504 
505 present:
506 	/*
507 	 * Present data to user, advancing rcv_nxt through
508 	 * completed sequence space.
509 	 */
510 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
511 		return (0);
512 	q = tp->segq.lh_first;
513 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
514 		return (0);
515 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
516 		return (0);
517 
518 	tp->rcv_nxt += q->ipqe_len;
519 	pkt_flags = q->ipqe_flags & TH_FIN;
520 	ND6_HINT(tp);
521 
522 	LIST_REMOVE(q, ipqe_q);
523 	LIST_REMOVE(q, ipqe_timeq);
524 	if (so->so_state & SS_CANTRCVMORE)
525 		m_freem(q->ipqe_m);
526 	else
527 		sbappend(&so->so_rcv, q->ipqe_m);
528 	pool_put(&ipqent_pool, q);
529 	sorwakeup(so);
530 	return (pkt_flags);
531 }
532 
533 #ifdef INET6
534 int
535 tcp6_input(mp, offp, proto)
536 	struct mbuf **mp;
537 	int *offp, proto;
538 {
539 	struct mbuf *m = *mp;
540 
541 	/*
542 	 * draft-itojun-ipv6-tcp-to-anycast
543 	 * better place to put this in?
544 	 */
545 	if (m->m_flags & M_ANYCAST6) {
546 		struct ip6_hdr *ip6;
547 		if (m->m_len < sizeof(struct ip6_hdr)) {
548 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
549 				tcpstat.tcps_rcvshort++;
550 				return IPPROTO_DONE;
551 			}
552 		}
553 		ip6 = mtod(m, struct ip6_hdr *);
554 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
555 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
556 		return IPPROTO_DONE;
557 	}
558 
559 	tcp_input(m, *offp, proto);
560 	return IPPROTO_DONE;
561 }
562 #endif
563 
564 /*
565  * TCP input routine, follows pages 65-76 of the
566  * protocol specification dated September, 1981 very closely.
567  */
568 void
569 #if __STDC__
570 tcp_input(struct mbuf *m, ...)
571 #else
572 tcp_input(m, va_alist)
573 	struct mbuf *m;
574 #endif
575 {
576 	int proto;
577 	struct tcphdr *th;
578 	struct ip *ip;
579 	struct inpcb *inp;
580 #ifdef INET6
581 	struct ip6_hdr *ip6;
582 	struct in6pcb *in6p;
583 #endif
584 	caddr_t optp = NULL;
585 	int optlen = 0;
586 	int len, tlen, toff, hdroptlen = 0;
587 	struct tcpcb *tp = 0;
588 	int tiflags;
589 	struct socket *so = NULL;
590 	int todrop, acked, ourfinisacked, needoutput = 0;
591 	short ostate = 0;
592 	int iss = 0;
593 	u_long tiwin;
594 	struct tcp_opt_info opti;
595 	int off, iphlen;
596 	va_list ap;
597 	int af;		/* af on the wire */
598 	struct mbuf *tcp_saveti = NULL;
599 
600 	va_start(ap, m);
601 	toff = va_arg(ap, int);
602 	proto = va_arg(ap, int);
603 	va_end(ap);
604 
605 	tcpstat.tcps_rcvtotal++;
606 
607 	bzero(&opti, sizeof(opti));
608 	opti.ts_present = 0;
609 	opti.maxseg = 0;
610 
611 	/*
612 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
613 	 *
614 	 * TCP is, by definition, unicast, so we reject all
615 	 * multicast outright.
616 	 *
617 	 * Note, there are additional src/dst address checks in
618 	 * the AF-specific code below.
619 	 */
620 	if (m->m_flags & (M_BCAST|M_MCAST)) {
621 		/* XXX stat */
622 		goto drop;
623 	}
624 #ifdef INET6
625 	if (m->m_flags & M_ANYCAST6) {
626 		/* XXX stat */
627 		goto drop;
628 	}
629 #endif
630 
631 	/*
632 	 * Get IP and TCP header together in first mbuf.
633 	 * Note: IP leaves IP header in first mbuf.
634 	 */
635 	ip = mtod(m, struct ip *);
636 #ifdef INET6
637 	ip6 = NULL;
638 #endif
639 	switch (ip->ip_v) {
640 #ifdef INET
641 	case 4:
642 		af = AF_INET;
643 		iphlen = sizeof(struct ip);
644 #ifndef PULLDOWN_TEST
645 		/* would like to get rid of this... */
646 		if (toff > sizeof (struct ip)) {
647 			ip_stripoptions(m, (struct mbuf *)0);
648 			toff = sizeof(struct ip);
649 		}
650 		if (m->m_len < toff + sizeof (struct tcphdr)) {
651 			if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
652 				tcpstat.tcps_rcvshort++;
653 				return;
654 			}
655 		}
656 		ip = mtod(m, struct ip *);
657 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
658 #else
659 		ip = mtod(m, struct ip *);
660 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
661 			sizeof(struct tcphdr));
662 		if (th == NULL) {
663 			tcpstat.tcps_rcvshort++;
664 			return;
665 		}
666 #endif
667 
668 		/*
669 		 * Make sure destination address is not multicast.
670 		 * Source address checked in ip_input().
671 		 */
672 		if (IN_MULTICAST(ip->ip_dst.s_addr)) {
673 			/* XXX stat */
674 			goto drop;
675 		}
676 
677 		/* We do the checksum after PCB lookup... */
678 		len = ip->ip_len;
679 		tlen = len - toff;
680 		break;
681 #endif
682 #ifdef INET6
683 	case 6:
684 		ip = NULL;
685 		iphlen = sizeof(struct ip6_hdr);
686 		af = AF_INET6;
687 #ifndef PULLDOWN_TEST
688 		if (m->m_len < toff + sizeof(struct tcphdr)) {
689 			m = m_pullup(m, toff + sizeof(struct tcphdr));	/*XXX*/
690 			if (m == NULL) {
691 				tcpstat.tcps_rcvshort++;
692 				return;
693 			}
694 		}
695 		ip6 = mtod(m, struct ip6_hdr *);
696 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
697 #else
698 		ip6 = mtod(m, struct ip6_hdr *);
699 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
700 			sizeof(struct tcphdr));
701 		if (th == NULL) {
702 			tcpstat.tcps_rcvshort++;
703 			return;
704 		}
705 #endif
706 
707 		/* Be proactive about malicious use of IPv4 mapped address */
708 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
709 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
710 			/* XXX stat */
711 			goto drop;
712 		}
713 
714 		/*
715 		 * Be proactive about unspecified IPv6 address in source.
716 		 * As we use all-zero to indicate unbounded/unconnected pcb,
717 		 * unspecified IPv6 address can be used to confuse us.
718 		 *
719 		 * Note that packets with unspecified IPv6 destination is
720 		 * already dropped in ip6_input.
721 		 */
722 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
723 			/* XXX stat */
724 			goto drop;
725 		}
726 
727 		/*
728 		 * Make sure destination address is not multicast.
729 		 * Source address checked in ip6_input().
730 		 */
731 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
732 			/* XXX stat */
733 			goto drop;
734 		}
735 
736 		/* We do the checksum after PCB lookup... */
737 		len = m->m_pkthdr.len;
738 		tlen = len - toff;
739 		break;
740 #endif
741 	default:
742 		m_freem(m);
743 		return;
744 	}
745 
746 	/*
747 	 * Check that TCP offset makes sense,
748 	 * pull out TCP options and adjust length.		XXX
749 	 */
750 	off = th->th_off << 2;
751 	if (off < sizeof (struct tcphdr) || off > tlen) {
752 		tcpstat.tcps_rcvbadoff++;
753 		goto drop;
754 	}
755 	tlen -= off;
756 
757 	/*
758 	 * tcp_input() has been modified to use tlen to mean the TCP data
759 	 * length throughout the function.  Other functions can use
760 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
761 	 * rja
762 	 */
763 
764 	if (off > sizeof (struct tcphdr)) {
765 #ifndef PULLDOWN_TEST
766 		if (m->m_len < toff + off) {
767 			if ((m = m_pullup(m, toff + off)) == 0) {
768 				tcpstat.tcps_rcvshort++;
769 				return;
770 			}
771 			switch (af) {
772 #ifdef INET
773 			case AF_INET:
774 				ip = mtod(m, struct ip *);
775 				break;
776 #endif
777 #ifdef INET6
778 			case AF_INET6:
779 				ip6 = mtod(m, struct ip6_hdr *);
780 				break;
781 #endif
782 			}
783 			th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
784 		}
785 #else
786 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
787 		if (th == NULL) {
788 			tcpstat.tcps_rcvshort++;
789 			return;
790 		}
791 		/*
792 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
793 		 * (as they're before toff) and we don't need to update those.
794 		 */
795 #endif
796 		optlen = off - sizeof (struct tcphdr);
797 		optp = ((caddr_t)th) + sizeof(struct tcphdr);
798 		/*
799 		 * Do quick retrieval of timestamp options ("options
800 		 * prediction?").  If timestamp is the only option and it's
801 		 * formatted as recommended in RFC 1323 appendix A, we
802 		 * quickly get the values now and not bother calling
803 		 * tcp_dooptions(), etc.
804 		 */
805 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
806 		     (optlen > TCPOLEN_TSTAMP_APPA &&
807 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
808 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
809 		     (th->th_flags & TH_SYN) == 0) {
810 			opti.ts_present = 1;
811 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
812 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
813 			optp = NULL;	/* we've parsed the options */
814 		}
815 	}
816 	tiflags = th->th_flags;
817 
818 	/*
819 	 * Locate pcb for segment.
820 	 */
821 findpcb:
822 	inp = NULL;
823 #ifdef INET6
824 	in6p = NULL;
825 #endif
826 	switch (af) {
827 #ifdef INET
828 	case AF_INET:
829 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
830 		    ip->ip_dst, th->th_dport);
831 		if (inp == 0) {
832 			++tcpstat.tcps_pcbhashmiss;
833 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
834 		}
835 #ifdef INET6
836 		if (inp == 0) {
837 			struct in6_addr s, d;
838 
839 			/* mapped addr case */
840 			bzero(&s, sizeof(s));
841 			s.s6_addr16[5] = htons(0xffff);
842 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
843 			bzero(&d, sizeof(d));
844 			d.s6_addr16[5] = htons(0xffff);
845 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
846 			in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
847 				&d, th->th_dport, 0);
848 			if (in6p == 0) {
849 				++tcpstat.tcps_pcbhashmiss;
850 				in6p = in6_pcblookup_bind(&tcb6, &d,
851 					th->th_dport, 0);
852 			}
853 		}
854 #endif
855 #ifndef INET6
856 		if (inp == 0)
857 #else
858 		if (inp == 0 && in6p == 0)
859 #endif
860 		{
861 			++tcpstat.tcps_noport;
862 			if (tcp_log_refused && (tiflags & TH_SYN)) {
863 #ifndef INET6
864 				char src[4*sizeof "123"];
865 				char dst[4*sizeof "123"];
866 #else
867 				char src[INET6_ADDRSTRLEN];
868 				char dst[INET6_ADDRSTRLEN];
869 #endif
870 				if (ip) {
871 					strcpy(src, inet_ntoa(ip->ip_src));
872 					strcpy(dst, inet_ntoa(ip->ip_dst));
873 				}
874 #ifdef INET6
875 				else if (ip6) {
876 					strcpy(src, ip6_sprintf(&ip6->ip6_src));
877 					strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
878 				}
879 #endif
880 				else {
881 					strcpy(src, "(unknown)");
882 					strcpy(dst, "(unknown)");
883 				}
884 				log(LOG_INFO,
885 				    "Connection attempt to TCP %s:%d from %s:%d\n",
886 				    dst, ntohs(th->th_dport),
887 				    src, ntohs(th->th_sport));
888 			}
889 			TCP_FIELDS_TO_HOST(th);
890 			goto dropwithreset_ratelim;
891 		}
892 #ifdef IPSEC
893 		if (inp && ipsec4_in_reject(m, inp)) {
894 			ipsecstat.in_polvio++;
895 			goto drop;
896 		}
897 #ifdef INET6
898 		else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
899 			ipsecstat.in_polvio++;
900 			goto drop;
901 		}
902 #endif
903 #endif /*IPSEC*/
904 		break;
905 #endif /*INET*/
906 #ifdef INET6
907 	case AF_INET6:
908 	    {
909 		int faith;
910 
911 #if defined(NFAITH) && NFAITH > 0
912 		faith = faithprefix(&ip6->ip6_dst);
913 #else
914 		faith = 0;
915 #endif
916 		in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
917 			&ip6->ip6_dst, th->th_dport, faith);
918 		if (in6p == NULL) {
919 			++tcpstat.tcps_pcbhashmiss;
920 			in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
921 				th->th_dport, faith);
922 		}
923 		if (in6p == NULL) {
924 			++tcpstat.tcps_noport;
925 			TCP_FIELDS_TO_HOST(th);
926 			goto dropwithreset_ratelim;
927 		}
928 #ifdef IPSEC
929 		if (ipsec6_in_reject(m, in6p)) {
930 			ipsec6stat.in_polvio++;
931 			goto drop;
932 		}
933 #endif /*IPSEC*/
934 		break;
935 	    }
936 #endif
937 	}
938 
939 	/*
940 	 * If the state is CLOSED (i.e., TCB does not exist) then
941 	 * all data in the incoming segment is discarded.
942 	 * If the TCB exists but is in CLOSED state, it is embryonic,
943 	 * but should either do a listen or a connect soon.
944 	 */
945 	tp = NULL;
946 	so = NULL;
947 	if (inp) {
948 		tp = intotcpcb(inp);
949 		so = inp->inp_socket;
950 	}
951 #ifdef INET6
952 	else if (in6p) {
953 		tp = in6totcpcb(in6p);
954 		so = in6p->in6p_socket;
955 	}
956 #endif
957 	if (tp == 0) {
958 		TCP_FIELDS_TO_HOST(th);
959 		goto dropwithreset_ratelim;
960 	}
961 	if (tp->t_state == TCPS_CLOSED)
962 		goto drop;
963 
964 	/*
965 	 * Checksum extended TCP header and data.
966 	 */
967 	switch (af) {
968 #ifdef INET
969 	case AF_INET:
970 		switch (m->m_pkthdr.csum_flags &
971 			((m->m_pkthdr.rcvif->if_csum_flags & M_CSUM_TCPv4) |
972 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
973 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
974 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
975 			goto badcsum;
976 
977 		case M_CSUM_TCPv4|M_CSUM_DATA:
978 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
979 			if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
980 				goto badcsum;
981 			break;
982 
983 		case M_CSUM_TCPv4:
984 			/* Checksum was okay. */
985 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
986 			break;
987 
988 		default:
989 			/* Must compute it ourselves. */
990 			TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
991 #ifndef PULLDOWN_TEST
992 		    {
993 			struct ipovly *ipov;
994 			ipov = (struct ipovly *)ip;
995 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
996 			ipov->ih_len = htons(tlen + off);
997 
998 			if (in_cksum(m, len) != 0)
999 				goto badcsum;
1000 		    }
1001 #else
1002 			if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1003 				goto badcsum;
1004 #endif /* ! PULLDOWN_TEST */
1005 			break;
1006 		}
1007 		break;
1008 #endif /* INET4 */
1009 
1010 #ifdef INET6
1011 	case AF_INET6:
1012 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1013 			goto badcsum;
1014 		break;
1015 #endif /* INET6 */
1016 	}
1017 
1018 	TCP_FIELDS_TO_HOST(th);
1019 
1020 	/* Unscale the window into a 32-bit value. */
1021 	if ((tiflags & TH_SYN) == 0)
1022 		tiwin = th->th_win << tp->snd_scale;
1023 	else
1024 		tiwin = th->th_win;
1025 
1026 #ifdef INET6
1027 	/* save packet options if user wanted */
1028 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1029 		if (in6p->in6p_options) {
1030 			m_freem(in6p->in6p_options);
1031 			in6p->in6p_options = 0;
1032 		}
1033 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1034 	}
1035 #endif
1036 
1037 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1038 		union syn_cache_sa src;
1039 		union syn_cache_sa dst;
1040 
1041 		bzero(&src, sizeof(src));
1042 		bzero(&dst, sizeof(dst));
1043 		switch (af) {
1044 #ifdef INET
1045 		case AF_INET:
1046 			src.sin.sin_len = sizeof(struct sockaddr_in);
1047 			src.sin.sin_family = AF_INET;
1048 			src.sin.sin_addr = ip->ip_src;
1049 			src.sin.sin_port = th->th_sport;
1050 
1051 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1052 			dst.sin.sin_family = AF_INET;
1053 			dst.sin.sin_addr = ip->ip_dst;
1054 			dst.sin.sin_port = th->th_dport;
1055 			break;
1056 #endif
1057 #ifdef INET6
1058 		case AF_INET6:
1059 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1060 			src.sin6.sin6_family = AF_INET6;
1061 			src.sin6.sin6_addr = ip6->ip6_src;
1062 			src.sin6.sin6_port = th->th_sport;
1063 
1064 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1065 			dst.sin6.sin6_family = AF_INET6;
1066 			dst.sin6.sin6_addr = ip6->ip6_dst;
1067 			dst.sin6.sin6_port = th->th_dport;
1068 			break;
1069 #endif /* INET6 */
1070 		default:
1071 			goto badsyn;	/*sanity*/
1072 		}
1073 
1074 		if (so->so_options & SO_DEBUG) {
1075 			ostate = tp->t_state;
1076 
1077 			tcp_saveti = NULL;
1078 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1079 				goto nosave;
1080 
1081 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1082 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1083 				if (!tcp_saveti)
1084 					goto nosave;
1085 			} else {
1086 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1087 				if (!tcp_saveti)
1088 					goto nosave;
1089 				tcp_saveti->m_len = iphlen;
1090 				m_copydata(m, 0, iphlen,
1091 				    mtod(tcp_saveti, caddr_t));
1092 			}
1093 
1094 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1095 				m_freem(tcp_saveti);
1096 				tcp_saveti = NULL;
1097 			} else {
1098 				tcp_saveti->m_len += sizeof(struct tcphdr);
1099 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1100 				    sizeof(struct tcphdr));
1101 			}
1102 			if (tcp_saveti) {
1103 				/*
1104 				 * need to recover version # field, which was
1105 				 * overwritten on ip_cksum computation.
1106 				 */
1107 				struct ip *sip;
1108 				sip = mtod(tcp_saveti, struct ip *);
1109 				switch (af) {
1110 #ifdef INET
1111 				case AF_INET:
1112 					sip->ip_v = 4;
1113 					break;
1114 #endif
1115 #ifdef INET6
1116 				case AF_INET6:
1117 					sip->ip_v = 6;
1118 					break;
1119 #endif
1120 				}
1121 			}
1122 	nosave:;
1123 		}
1124 		if (so->so_options & SO_ACCEPTCONN) {
1125   			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1126 				if (tiflags & TH_RST) {
1127 					syn_cache_reset(&src.sa, &dst.sa, th);
1128 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1129 				    (TH_ACK|TH_SYN)) {
1130 					/*
1131 					 * Received a SYN,ACK.  This should
1132 					 * never happen while we are in
1133 					 * LISTEN.  Send an RST.
1134 					 */
1135 					goto badsyn;
1136 				} else if (tiflags & TH_ACK) {
1137 					so = syn_cache_get(&src.sa, &dst.sa,
1138 						th, toff, tlen, so, m);
1139 					if (so == NULL) {
1140 						/*
1141 						 * We don't have a SYN for
1142 						 * this ACK; send an RST.
1143 						 */
1144 						goto badsyn;
1145 					} else if (so ==
1146 					    (struct socket *)(-1)) {
1147 						/*
1148 						 * We were unable to create
1149 						 * the connection.  If the
1150 						 * 3-way handshake was
1151 						 * completed, and RST has
1152 						 * been sent to the peer.
1153 						 * Since the mbuf might be
1154 						 * in use for the reply,
1155 						 * do not free it.
1156 						 */
1157 						m = NULL;
1158 					} else {
1159 						/*
1160 						 * We have created a
1161 						 * full-blown connection.
1162 						 */
1163 						tp = NULL;
1164 						inp = NULL;
1165 #ifdef INET6
1166 						in6p = NULL;
1167 #endif
1168 						switch (so->so_proto->pr_domain->dom_family) {
1169 #ifdef INET
1170 						case AF_INET:
1171 							inp = sotoinpcb(so);
1172 							tp = intotcpcb(inp);
1173 							break;
1174 #endif
1175 #ifdef INET6
1176 						case AF_INET6:
1177 							in6p = sotoin6pcb(so);
1178 							tp = in6totcpcb(in6p);
1179 							break;
1180 #endif
1181 						}
1182 						if (tp == NULL)
1183 							goto badsyn;	/*XXX*/
1184 						tiwin <<= tp->snd_scale;
1185 						goto after_listen;
1186 					}
1187   				} else {
1188 					/*
1189 					 * None of RST, SYN or ACK was set.
1190 					 * This is an invalid packet for a
1191 					 * TCB in LISTEN state.  Send a RST.
1192 					 */
1193 					goto badsyn;
1194 				}
1195   			} else {
1196 				/*
1197 				 * Received a SYN.
1198 				 */
1199 
1200 				/*
1201 				 * LISTEN socket received a SYN
1202 				 * from itself?  This can't possibly
1203 				 * be valid; drop the packet.
1204 				 */
1205 				if (th->th_sport == th->th_dport) {
1206 					int i;
1207 
1208 					switch (af) {
1209 #ifdef INET
1210 					case AF_INET:
1211 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1212 						break;
1213 #endif
1214 #ifdef INET6
1215 					case AF_INET6:
1216 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1217 						break;
1218 #endif
1219 					default:
1220 						i = 1;
1221 					}
1222 					if (i) {
1223 						tcpstat.tcps_badsyn++;
1224 						goto drop;
1225 					}
1226 				}
1227 
1228 				/*
1229 				 * SYN looks ok; create compressed TCP
1230 				 * state for it.
1231 				 */
1232 				if (so->so_qlen <= so->so_qlimit &&
1233 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1234 						so, m, optp, optlen, &opti))
1235 					m = NULL;
1236 			}
1237 			goto drop;
1238 		}
1239 	}
1240 
1241 after_listen:
1242 #ifdef DIAGNOSTIC
1243 	/*
1244 	 * Should not happen now that all embryonic connections
1245 	 * are handled with compressed state.
1246 	 */
1247 	if (tp->t_state == TCPS_LISTEN)
1248 		panic("tcp_input: TCPS_LISTEN");
1249 #endif
1250 
1251 	/*
1252 	 * Segment received on connection.
1253 	 * Reset idle time and keep-alive timer.
1254 	 */
1255 	tp->t_idle = 0;
1256 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1257 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1258 
1259 	/*
1260 	 * Process options.
1261 	 */
1262 	if (optp)
1263 		tcp_dooptions(tp, optp, optlen, th, &opti);
1264 
1265 	/*
1266 	 * Header prediction: check for the two common cases
1267 	 * of a uni-directional data xfer.  If the packet has
1268 	 * no control flags, is in-sequence, the window didn't
1269 	 * change and we're not retransmitting, it's a
1270 	 * candidate.  If the length is zero and the ack moved
1271 	 * forward, we're the sender side of the xfer.  Just
1272 	 * free the data acked & wake any higher level process
1273 	 * that was blocked waiting for space.  If the length
1274 	 * is non-zero and the ack didn't move, we're the
1275 	 * receiver side.  If we're getting packets in-order
1276 	 * (the reassembly queue is empty), add the data to
1277 	 * the socket buffer and note that we need a delayed ack.
1278 	 */
1279 	if (tp->t_state == TCPS_ESTABLISHED &&
1280 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1281 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1282 	    th->th_seq == tp->rcv_nxt &&
1283 	    tiwin && tiwin == tp->snd_wnd &&
1284 	    tp->snd_nxt == tp->snd_max) {
1285 
1286 		/*
1287 		 * If last ACK falls within this segment's sequence numbers,
1288 		 *  record the timestamp.
1289 		 */
1290 		if (opti.ts_present &&
1291 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1292 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1293 			tp->ts_recent_age = TCP_TIMESTAMP(tp);
1294 			tp->ts_recent = opti.ts_val;
1295 		}
1296 
1297 		if (tlen == 0) {
1298 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1299 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1300 			    tp->snd_cwnd >= tp->snd_wnd &&
1301 			    tp->t_dupacks < tcprexmtthresh) {
1302 				/*
1303 				 * this is a pure ack for outstanding data.
1304 				 */
1305 				++tcpstat.tcps_predack;
1306 				if (opti.ts_present && opti.ts_ecr)
1307 					tcp_xmit_timer(tp,
1308 					  TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1309 				else if (tp->t_rtt &&
1310 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1311 					tcp_xmit_timer(tp, tp->t_rtt);
1312 				acked = th->th_ack - tp->snd_una;
1313 				tcpstat.tcps_rcvackpack++;
1314 				tcpstat.tcps_rcvackbyte += acked;
1315 				ND6_HINT(tp);
1316 				sbdrop(&so->so_snd, acked);
1317 				/*
1318 				 * We want snd_recover to track snd_una to
1319 				 * avoid sequence wraparound problems for
1320 				 * very large transfers.
1321 				 */
1322 				tp->snd_una = tp->snd_recover = th->th_ack;
1323 				m_freem(m);
1324 
1325 				/*
1326 				 * If all outstanding data are acked, stop
1327 				 * retransmit timer, otherwise restart timer
1328 				 * using current (possibly backed-off) value.
1329 				 * If process is waiting for space,
1330 				 * wakeup/selwakeup/signal.  If data
1331 				 * are ready to send, let tcp_output
1332 				 * decide between more output or persist.
1333 				 */
1334 				if (tp->snd_una == tp->snd_max)
1335 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1336 				else if (TCP_TIMER_ISARMED(tp,
1337 				    TCPT_PERSIST) == 0)
1338 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1339 					    tp->t_rxtcur);
1340 
1341 				sowwakeup(so);
1342 				if (so->so_snd.sb_cc)
1343 					(void) tcp_output(tp);
1344 				if (tcp_saveti)
1345 					m_freem(tcp_saveti);
1346 				return;
1347 			}
1348 		} else if (th->th_ack == tp->snd_una &&
1349 		    tp->segq.lh_first == NULL &&
1350 		    tlen <= sbspace(&so->so_rcv)) {
1351 			/*
1352 			 * this is a pure, in-sequence data packet
1353 			 * with nothing on the reassembly queue and
1354 			 * we have enough buffer space to take it.
1355 			 */
1356 			++tcpstat.tcps_preddat;
1357 			tp->rcv_nxt += tlen;
1358 			tcpstat.tcps_rcvpack++;
1359 			tcpstat.tcps_rcvbyte += tlen;
1360 			ND6_HINT(tp);
1361 			/*
1362 			 * Drop TCP, IP headers and TCP options then add data
1363 			 * to socket buffer.
1364 			 */
1365 			m_adj(m, toff + off);
1366 			sbappend(&so->so_rcv, m);
1367 			sorwakeup(so);
1368 			TCP_SETUP_ACK(tp, th);
1369 			if (tp->t_flags & TF_ACKNOW)
1370 				(void) tcp_output(tp);
1371 			if (tcp_saveti)
1372 				m_freem(tcp_saveti);
1373 			return;
1374 		}
1375 	}
1376 
1377 	/*
1378 	 * Compute mbuf offset to TCP data segment.
1379 	 */
1380 	hdroptlen = toff + off;
1381 
1382 	/*
1383 	 * Calculate amount of space in receive window,
1384 	 * and then do TCP input processing.
1385 	 * Receive window is amount of space in rcv queue,
1386 	 * but not less than advertised window.
1387 	 */
1388 	{ int win;
1389 
1390 	win = sbspace(&so->so_rcv);
1391 	if (win < 0)
1392 		win = 0;
1393 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1394 	}
1395 
1396 	switch (tp->t_state) {
1397 
1398 	/*
1399 	 * If the state is SYN_SENT:
1400 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1401 	 *	if seg contains a RST, then drop the connection.
1402 	 *	if seg does not contain SYN, then drop it.
1403 	 * Otherwise this is an acceptable SYN segment
1404 	 *	initialize tp->rcv_nxt and tp->irs
1405 	 *	if seg contains ack then advance tp->snd_una
1406 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1407 	 *	arrange for segment to be acked (eventually)
1408 	 *	continue processing rest of data/controls, beginning with URG
1409 	 */
1410 	case TCPS_SYN_SENT:
1411 		if ((tiflags & TH_ACK) &&
1412 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1413 		     SEQ_GT(th->th_ack, tp->snd_max)))
1414 			goto dropwithreset;
1415 		if (tiflags & TH_RST) {
1416 			if (tiflags & TH_ACK)
1417 				tp = tcp_drop(tp, ECONNREFUSED);
1418 			goto drop;
1419 		}
1420 		if ((tiflags & TH_SYN) == 0)
1421 			goto drop;
1422 		if (tiflags & TH_ACK) {
1423 			tp->snd_una = tp->snd_recover = th->th_ack;
1424 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1425 				tp->snd_nxt = tp->snd_una;
1426 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1427 		}
1428 		tp->irs = th->th_seq;
1429 		tcp_rcvseqinit(tp);
1430 		tp->t_flags |= TF_ACKNOW;
1431 		tcp_mss_from_peer(tp, opti.maxseg);
1432 
1433 		/*
1434 		 * Initialize the initial congestion window.  If we
1435 		 * had to retransmit the SYN, we must initialize cwnd
1436 		 * to 1 segment (i.e. the Loss Window).
1437 		 */
1438 		if (tp->t_flags & TF_SYN_REXMT)
1439 			tp->snd_cwnd = tp->t_peermss;
1440 		else
1441 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1442 			    tp->t_peermss);
1443 
1444 		tcp_rmx_rtt(tp);
1445 		if (tiflags & TH_ACK) {
1446 			tcpstat.tcps_connects++;
1447 			soisconnected(so);
1448 			tcp_established(tp);
1449 			/* Do window scaling on this connection? */
1450 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1451 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1452 				tp->snd_scale = tp->requested_s_scale;
1453 				tp->rcv_scale = tp->request_r_scale;
1454 			}
1455 			TCP_REASS_LOCK(tp);
1456 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1457 			TCP_REASS_UNLOCK(tp);
1458 			/*
1459 			 * if we didn't have to retransmit the SYN,
1460 			 * use its rtt as our initial srtt & rtt var.
1461 			 */
1462 			if (tp->t_rtt)
1463 				tcp_xmit_timer(tp, tp->t_rtt);
1464 		} else
1465 			tp->t_state = TCPS_SYN_RECEIVED;
1466 
1467 		/*
1468 		 * Advance th->th_seq to correspond to first data byte.
1469 		 * If data, trim to stay within window,
1470 		 * dropping FIN if necessary.
1471 		 */
1472 		th->th_seq++;
1473 		if (tlen > tp->rcv_wnd) {
1474 			todrop = tlen - tp->rcv_wnd;
1475 			m_adj(m, -todrop);
1476 			tlen = tp->rcv_wnd;
1477 			tiflags &= ~TH_FIN;
1478 			tcpstat.tcps_rcvpackafterwin++;
1479 			tcpstat.tcps_rcvbyteafterwin += todrop;
1480 		}
1481 		tp->snd_wl1 = th->th_seq - 1;
1482 		tp->rcv_up = th->th_seq;
1483 		goto step6;
1484 
1485 	/*
1486 	 * If the state is SYN_RECEIVED:
1487 	 *	If seg contains an ACK, but not for our SYN, drop the input
1488 	 *	and generate an RST.  See page 36, rfc793
1489 	 */
1490 	case TCPS_SYN_RECEIVED:
1491 		if ((tiflags & TH_ACK) &&
1492 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1493 		     SEQ_GT(th->th_ack, tp->snd_max)))
1494 			goto dropwithreset;
1495 		break;
1496 	}
1497 
1498 	/*
1499 	 * States other than LISTEN or SYN_SENT.
1500 	 * First check timestamp, if present.
1501 	 * Then check that at least some bytes of segment are within
1502 	 * receive window.  If segment begins before rcv_nxt,
1503 	 * drop leading data (and SYN); if nothing left, just ack.
1504 	 *
1505 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1506 	 * and it's less than ts_recent, drop it.
1507 	 */
1508 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1509 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1510 
1511 		/* Check to see if ts_recent is over 24 days old.  */
1512 		if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1513 		    TCP_PAWS_IDLE) {
1514 			/*
1515 			 * Invalidate ts_recent.  If this segment updates
1516 			 * ts_recent, the age will be reset later and ts_recent
1517 			 * will get a valid value.  If it does not, setting
1518 			 * ts_recent to zero will at least satisfy the
1519 			 * requirement that zero be placed in the timestamp
1520 			 * echo reply when ts_recent isn't valid.  The
1521 			 * age isn't reset until we get a valid ts_recent
1522 			 * because we don't want out-of-order segments to be
1523 			 * dropped when ts_recent is old.
1524 			 */
1525 			tp->ts_recent = 0;
1526 		} else {
1527 			tcpstat.tcps_rcvduppack++;
1528 			tcpstat.tcps_rcvdupbyte += tlen;
1529 			tcpstat.tcps_pawsdrop++;
1530 			goto dropafterack;
1531 		}
1532 	}
1533 
1534 	todrop = tp->rcv_nxt - th->th_seq;
1535 	if (todrop > 0) {
1536 		if (tiflags & TH_SYN) {
1537 			tiflags &= ~TH_SYN;
1538 			th->th_seq++;
1539 			if (th->th_urp > 1)
1540 				th->th_urp--;
1541 			else {
1542 				tiflags &= ~TH_URG;
1543 				th->th_urp = 0;
1544 			}
1545 			todrop--;
1546 		}
1547 		if (todrop > tlen ||
1548 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1549 			/*
1550 			 * Any valid FIN must be to the left of the window.
1551 			 * At this point the FIN must be a duplicate or
1552 			 * out of sequence; drop it.
1553 			 */
1554 			tiflags &= ~TH_FIN;
1555 			/*
1556 			 * Send an ACK to resynchronize and drop any data.
1557 			 * But keep on processing for RST or ACK.
1558 			 */
1559 			tp->t_flags |= TF_ACKNOW;
1560 			todrop = tlen;
1561 			tcpstat.tcps_rcvdupbyte += todrop;
1562 			tcpstat.tcps_rcvduppack++;
1563 		} else {
1564 			tcpstat.tcps_rcvpartduppack++;
1565 			tcpstat.tcps_rcvpartdupbyte += todrop;
1566 		}
1567 		hdroptlen += todrop;	/*drop from head afterwards*/
1568 		th->th_seq += todrop;
1569 		tlen -= todrop;
1570 		if (th->th_urp > todrop)
1571 			th->th_urp -= todrop;
1572 		else {
1573 			tiflags &= ~TH_URG;
1574 			th->th_urp = 0;
1575 		}
1576 	}
1577 
1578 	/*
1579 	 * If new data are received on a connection after the
1580 	 * user processes are gone, then RST the other end.
1581 	 */
1582 	if ((so->so_state & SS_NOFDREF) &&
1583 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1584 		tp = tcp_close(tp);
1585 		tcpstat.tcps_rcvafterclose++;
1586 		goto dropwithreset;
1587 	}
1588 
1589 	/*
1590 	 * If segment ends after window, drop trailing data
1591 	 * (and PUSH and FIN); if nothing left, just ACK.
1592 	 */
1593 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1594 	if (todrop > 0) {
1595 		tcpstat.tcps_rcvpackafterwin++;
1596 		if (todrop >= tlen) {
1597 			tcpstat.tcps_rcvbyteafterwin += tlen;
1598 			/*
1599 			 * If a new connection request is received
1600 			 * while in TIME_WAIT, drop the old connection
1601 			 * and start over if the sequence numbers
1602 			 * are above the previous ones.
1603 			 */
1604 			if (tiflags & TH_SYN &&
1605 			    tp->t_state == TCPS_TIME_WAIT &&
1606 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1607 				iss = tcp_new_iss(tp, tp->snd_nxt);
1608 				tp = tcp_close(tp);
1609 				goto findpcb;
1610 			}
1611 			/*
1612 			 * If window is closed can only take segments at
1613 			 * window edge, and have to drop data and PUSH from
1614 			 * incoming segments.  Continue processing, but
1615 			 * remember to ack.  Otherwise, drop segment
1616 			 * and ack.
1617 			 */
1618 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1619 				tp->t_flags |= TF_ACKNOW;
1620 				tcpstat.tcps_rcvwinprobe++;
1621 			} else
1622 				goto dropafterack;
1623 		} else
1624 			tcpstat.tcps_rcvbyteafterwin += todrop;
1625 		m_adj(m, -todrop);
1626 		tlen -= todrop;
1627 		tiflags &= ~(TH_PUSH|TH_FIN);
1628 	}
1629 
1630 	/*
1631 	 * If last ACK falls within this segment's sequence numbers,
1632 	 * and the timestamp is newer, record it.
1633 	 */
1634 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1635 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1636 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1637 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1638 		tp->ts_recent_age = TCP_TIMESTAMP(tp);
1639 		tp->ts_recent = opti.ts_val;
1640 	}
1641 
1642 	/*
1643 	 * If the RST bit is set examine the state:
1644 	 *    SYN_RECEIVED STATE:
1645 	 *	If passive open, return to LISTEN state.
1646 	 *	If active open, inform user that connection was refused.
1647 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1648 	 *	Inform user that connection was reset, and close tcb.
1649 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1650 	 *	Close the tcb.
1651 	 */
1652 	if (tiflags&TH_RST) switch (tp->t_state) {
1653 
1654 	case TCPS_SYN_RECEIVED:
1655 		so->so_error = ECONNREFUSED;
1656 		goto close;
1657 
1658 	case TCPS_ESTABLISHED:
1659 	case TCPS_FIN_WAIT_1:
1660 	case TCPS_FIN_WAIT_2:
1661 	case TCPS_CLOSE_WAIT:
1662 		so->so_error = ECONNRESET;
1663 	close:
1664 		tp->t_state = TCPS_CLOSED;
1665 		tcpstat.tcps_drops++;
1666 		tp = tcp_close(tp);
1667 		goto drop;
1668 
1669 	case TCPS_CLOSING:
1670 	case TCPS_LAST_ACK:
1671 	case TCPS_TIME_WAIT:
1672 		tp = tcp_close(tp);
1673 		goto drop;
1674 	}
1675 
1676 	/*
1677 	 * If a SYN is in the window, then this is an
1678 	 * error and we send an RST and drop the connection.
1679 	 */
1680 	if (tiflags & TH_SYN) {
1681 		tp = tcp_drop(tp, ECONNRESET);
1682 		goto dropwithreset;
1683 	}
1684 
1685 	/*
1686 	 * If the ACK bit is off we drop the segment and return.
1687 	 */
1688 	if ((tiflags & TH_ACK) == 0) {
1689 		if (tp->t_flags & TF_ACKNOW)
1690 			goto dropafterack;
1691 		else
1692 			goto drop;
1693 	}
1694 
1695 	/*
1696 	 * Ack processing.
1697 	 */
1698 	switch (tp->t_state) {
1699 
1700 	/*
1701 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1702 	 * ESTABLISHED state and continue processing, otherwise
1703 	 * send an RST.
1704 	 */
1705 	case TCPS_SYN_RECEIVED:
1706 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
1707 		    SEQ_GT(th->th_ack, tp->snd_max))
1708 			goto dropwithreset;
1709 		tcpstat.tcps_connects++;
1710 		soisconnected(so);
1711 		tcp_established(tp);
1712 		/* Do window scaling? */
1713 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1714 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1715 			tp->snd_scale = tp->requested_s_scale;
1716 			tp->rcv_scale = tp->request_r_scale;
1717 		}
1718 		TCP_REASS_LOCK(tp);
1719 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1720 		TCP_REASS_UNLOCK(tp);
1721 		tp->snd_wl1 = th->th_seq - 1;
1722 		/* fall into ... */
1723 
1724 	/*
1725 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1726 	 * ACKs.  If the ack is in the range
1727 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1728 	 * then advance tp->snd_una to th->th_ack and drop
1729 	 * data from the retransmission queue.  If this ACK reflects
1730 	 * more up to date window information we update our window information.
1731 	 */
1732 	case TCPS_ESTABLISHED:
1733 	case TCPS_FIN_WAIT_1:
1734 	case TCPS_FIN_WAIT_2:
1735 	case TCPS_CLOSE_WAIT:
1736 	case TCPS_CLOSING:
1737 	case TCPS_LAST_ACK:
1738 	case TCPS_TIME_WAIT:
1739 
1740 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1741 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1742 				tcpstat.tcps_rcvdupack++;
1743 				/*
1744 				 * If we have outstanding data (other than
1745 				 * a window probe), this is a completely
1746 				 * duplicate ack (ie, window info didn't
1747 				 * change), the ack is the biggest we've
1748 				 * seen and we've seen exactly our rexmt
1749 				 * threshhold of them, assume a packet
1750 				 * has been dropped and retransmit it.
1751 				 * Kludge snd_nxt & the congestion
1752 				 * window so we send only this one
1753 				 * packet.
1754 				 *
1755 				 * We know we're losing at the current
1756 				 * window size so do congestion avoidance
1757 				 * (set ssthresh to half the current window
1758 				 * and pull our congestion window back to
1759 				 * the new ssthresh).
1760 				 *
1761 				 * Dup acks mean that packets have left the
1762 				 * network (they're now cached at the receiver)
1763 				 * so bump cwnd by the amount in the receiver
1764 				 * to keep a constant cwnd packets in the
1765 				 * network.
1766 				 */
1767 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1768 				    th->th_ack != tp->snd_una)
1769 					tp->t_dupacks = 0;
1770 				else if (++tp->t_dupacks == tcprexmtthresh) {
1771 					tcp_seq onxt = tp->snd_nxt;
1772 					u_int win =
1773 					    min(tp->snd_wnd, tp->snd_cwnd) /
1774 					    2 /	tp->t_segsz;
1775 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
1776 					    tp->snd_recover)) {
1777 						/*
1778 						 * False fast retransmit after
1779 						 * timeout.  Do not cut window.
1780 						 */
1781 						tp->snd_cwnd += tp->t_segsz;
1782 						tp->t_dupacks = 0;
1783 						(void) tcp_output(tp);
1784 						goto drop;
1785 					}
1786 
1787 					if (win < 2)
1788 						win = 2;
1789 					tp->snd_ssthresh = win * tp->t_segsz;
1790 					tp->snd_recover = tp->snd_max;
1791 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1792 					tp->t_rtt = 0;
1793 					tp->snd_nxt = th->th_ack;
1794 					tp->snd_cwnd = tp->t_segsz;
1795 					(void) tcp_output(tp);
1796 					tp->snd_cwnd = tp->snd_ssthresh +
1797 					       tp->t_segsz * tp->t_dupacks;
1798 					if (SEQ_GT(onxt, tp->snd_nxt))
1799 						tp->snd_nxt = onxt;
1800 					goto drop;
1801 				} else if (tp->t_dupacks > tcprexmtthresh) {
1802 					tp->snd_cwnd += tp->t_segsz;
1803 					(void) tcp_output(tp);
1804 					goto drop;
1805 				}
1806 			} else
1807 				tp->t_dupacks = 0;
1808 			break;
1809 		}
1810 		/*
1811 		 * If the congestion window was inflated to account
1812 		 * for the other side's cached packets, retract it.
1813 		 */
1814 		if (tcp_do_newreno == 0) {
1815 			if (tp->t_dupacks >= tcprexmtthresh &&
1816 			    tp->snd_cwnd > tp->snd_ssthresh)
1817 				tp->snd_cwnd = tp->snd_ssthresh;
1818 			tp->t_dupacks = 0;
1819 		} else if (tp->t_dupacks >= tcprexmtthresh &&
1820 			   tcp_newreno(tp, th) == 0) {
1821 			tp->snd_cwnd = tp->snd_ssthresh;
1822 			/*
1823 			 * Window inflation should have left us with approx.
1824 			 * snd_ssthresh outstanding data.  But in case we
1825 			 * would be inclined to send a burst, better to do
1826 			 * it via the slow start mechanism.
1827 			 */
1828 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1829 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1830 				    + tp->t_segsz;
1831 			tp->t_dupacks = 0;
1832 		}
1833 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1834 			tcpstat.tcps_rcvacktoomuch++;
1835 			goto dropafterack;
1836 		}
1837 		acked = th->th_ack - tp->snd_una;
1838 		tcpstat.tcps_rcvackpack++;
1839 		tcpstat.tcps_rcvackbyte += acked;
1840 
1841 		/*
1842 		 * If we have a timestamp reply, update smoothed
1843 		 * round trip time.  If no timestamp is present but
1844 		 * transmit timer is running and timed sequence
1845 		 * number was acked, update smoothed round trip time.
1846 		 * Since we now have an rtt measurement, cancel the
1847 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1848 		 * Recompute the initial retransmit timer.
1849 		 */
1850 		if (opti.ts_present && opti.ts_ecr)
1851 			tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1852 		else if (tp->t_rtt && SEQ_GT(th->th_ack, tp->t_rtseq))
1853 			tcp_xmit_timer(tp,tp->t_rtt);
1854 
1855 		/*
1856 		 * If all outstanding data is acked, stop retransmit
1857 		 * timer and remember to restart (more output or persist).
1858 		 * If there is more data to be acked, restart retransmit
1859 		 * timer, using current (possibly backed-off) value.
1860 		 */
1861 		if (th->th_ack == tp->snd_max) {
1862 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1863 			needoutput = 1;
1864 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1865 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1866 		/*
1867 		 * When new data is acked, open the congestion window.
1868 		 * If the window gives us less than ssthresh packets
1869 		 * in flight, open exponentially (segsz per packet).
1870 		 * Otherwise open linearly: segsz per window
1871 		 * (segsz^2 / cwnd per packet), plus a constant
1872 		 * fraction of a packet (segsz/8) to help larger windows
1873 		 * open quickly enough.
1874 		 */
1875 		{
1876 		u_int cw = tp->snd_cwnd;
1877 		u_int incr = tp->t_segsz;
1878 
1879 		if (cw > tp->snd_ssthresh)
1880 			incr = incr * incr / cw;
1881 		if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
1882 			tp->snd_cwnd = min(cw + incr,
1883 			    TCP_MAXWIN << tp->snd_scale);
1884 		}
1885 		ND6_HINT(tp);
1886 		if (acked > so->so_snd.sb_cc) {
1887 			tp->snd_wnd -= so->so_snd.sb_cc;
1888 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1889 			ourfinisacked = 1;
1890 		} else {
1891 			sbdrop(&so->so_snd, acked);
1892 			tp->snd_wnd -= acked;
1893 			ourfinisacked = 0;
1894 		}
1895 		sowwakeup(so);
1896 		/*
1897 		 * We want snd_recover to track snd_una to
1898 		 * avoid sequence wraparound problems for
1899 		 * very large transfers.
1900 		 */
1901 		tp->snd_una = tp->snd_recover = th->th_ack;
1902 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1903 			tp->snd_nxt = tp->snd_una;
1904 
1905 		switch (tp->t_state) {
1906 
1907 		/*
1908 		 * In FIN_WAIT_1 STATE in addition to the processing
1909 		 * for the ESTABLISHED state if our FIN is now acknowledged
1910 		 * then enter FIN_WAIT_2.
1911 		 */
1912 		case TCPS_FIN_WAIT_1:
1913 			if (ourfinisacked) {
1914 				/*
1915 				 * If we can't receive any more
1916 				 * data, then closing user can proceed.
1917 				 * Starting the timer is contrary to the
1918 				 * specification, but if we don't get a FIN
1919 				 * we'll hang forever.
1920 				 */
1921 				if (so->so_state & SS_CANTRCVMORE) {
1922 					soisdisconnected(so);
1923 					if (tcp_maxidle > 0)
1924 						TCP_TIMER_ARM(tp, TCPT_2MSL,
1925 						    tcp_maxidle);
1926 				}
1927 				tp->t_state = TCPS_FIN_WAIT_2;
1928 			}
1929 			break;
1930 
1931 	 	/*
1932 		 * In CLOSING STATE in addition to the processing for
1933 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1934 		 * then enter the TIME-WAIT state, otherwise ignore
1935 		 * the segment.
1936 		 */
1937 		case TCPS_CLOSING:
1938 			if (ourfinisacked) {
1939 				tp->t_state = TCPS_TIME_WAIT;
1940 				tcp_canceltimers(tp);
1941 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1942 				soisdisconnected(so);
1943 			}
1944 			break;
1945 
1946 		/*
1947 		 * In LAST_ACK, we may still be waiting for data to drain
1948 		 * and/or to be acked, as well as for the ack of our FIN.
1949 		 * If our FIN is now acknowledged, delete the TCB,
1950 		 * enter the closed state and return.
1951 		 */
1952 		case TCPS_LAST_ACK:
1953 			if (ourfinisacked) {
1954 				tp = tcp_close(tp);
1955 				goto drop;
1956 			}
1957 			break;
1958 
1959 		/*
1960 		 * In TIME_WAIT state the only thing that should arrive
1961 		 * is a retransmission of the remote FIN.  Acknowledge
1962 		 * it and restart the finack timer.
1963 		 */
1964 		case TCPS_TIME_WAIT:
1965 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1966 			goto dropafterack;
1967 		}
1968 	}
1969 
1970 step6:
1971 	/*
1972 	 * Update window information.
1973 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1974 	 */
1975 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1976 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
1977 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
1978 		/* keep track of pure window updates */
1979 		if (tlen == 0 &&
1980 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1981 			tcpstat.tcps_rcvwinupd++;
1982 		tp->snd_wnd = tiwin;
1983 		tp->snd_wl1 = th->th_seq;
1984 		tp->snd_wl2 = th->th_ack;
1985 		if (tp->snd_wnd > tp->max_sndwnd)
1986 			tp->max_sndwnd = tp->snd_wnd;
1987 		needoutput = 1;
1988 	}
1989 
1990 	/*
1991 	 * Process segments with URG.
1992 	 */
1993 	if ((tiflags & TH_URG) && th->th_urp &&
1994 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1995 		/*
1996 		 * This is a kludge, but if we receive and accept
1997 		 * random urgent pointers, we'll crash in
1998 		 * soreceive.  It's hard to imagine someone
1999 		 * actually wanting to send this much urgent data.
2000 		 */
2001 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2002 			th->th_urp = 0;			/* XXX */
2003 			tiflags &= ~TH_URG;		/* XXX */
2004 			goto dodata;			/* XXX */
2005 		}
2006 		/*
2007 		 * If this segment advances the known urgent pointer,
2008 		 * then mark the data stream.  This should not happen
2009 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2010 		 * a FIN has been received from the remote side.
2011 		 * In these states we ignore the URG.
2012 		 *
2013 		 * According to RFC961 (Assigned Protocols),
2014 		 * the urgent pointer points to the last octet
2015 		 * of urgent data.  We continue, however,
2016 		 * to consider it to indicate the first octet
2017 		 * of data past the urgent section as the original
2018 		 * spec states (in one of two places).
2019 		 */
2020 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2021 			tp->rcv_up = th->th_seq + th->th_urp;
2022 			so->so_oobmark = so->so_rcv.sb_cc +
2023 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2024 			if (so->so_oobmark == 0)
2025 				so->so_state |= SS_RCVATMARK;
2026 			sohasoutofband(so);
2027 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2028 		}
2029 		/*
2030 		 * Remove out of band data so doesn't get presented to user.
2031 		 * This can happen independent of advancing the URG pointer,
2032 		 * but if two URG's are pending at once, some out-of-band
2033 		 * data may creep in... ick.
2034 		 */
2035 		if (th->th_urp <= (u_int16_t) tlen
2036 #ifdef SO_OOBINLINE
2037 		     && (so->so_options & SO_OOBINLINE) == 0
2038 #endif
2039 		     )
2040 			tcp_pulloutofband(so, th, m, hdroptlen);
2041 	} else
2042 		/*
2043 		 * If no out of band data is expected,
2044 		 * pull receive urgent pointer along
2045 		 * with the receive window.
2046 		 */
2047 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2048 			tp->rcv_up = tp->rcv_nxt;
2049 dodata:							/* XXX */
2050 
2051 	/*
2052 	 * Process the segment text, merging it into the TCP sequencing queue,
2053 	 * and arranging for acknowledgement of receipt if necessary.
2054 	 * This process logically involves adjusting tp->rcv_wnd as data
2055 	 * is presented to the user (this happens in tcp_usrreq.c,
2056 	 * case PRU_RCVD).  If a FIN has already been received on this
2057 	 * connection then we just ignore the text.
2058 	 */
2059 	if ((tlen || (tiflags & TH_FIN)) &&
2060 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2061 		/*
2062 		 * Insert segment ti into reassembly queue of tcp with
2063 		 * control block tp.  Return TH_FIN if reassembly now includes
2064 		 * a segment with FIN.  The macro form does the common case
2065 		 * inline (segment is the next to be received on an
2066 		 * established connection, and the queue is empty),
2067 		 * avoiding linkage into and removal from the queue and
2068 		 * repetition of various conversions.
2069 		 * Set DELACK for segments received in order, but ack
2070 		 * immediately when segments are out of order
2071 		 * (so fast retransmit can work).
2072 		 */
2073 		/* NOTE: this was TCP_REASS() macro, but used only once */
2074 		TCP_REASS_LOCK(tp);
2075 		if (th->th_seq == tp->rcv_nxt &&
2076 		    tp->segq.lh_first == NULL &&
2077 		    tp->t_state == TCPS_ESTABLISHED) {
2078 			TCP_SETUP_ACK(tp, th);
2079 			tp->rcv_nxt += tlen;
2080 			tiflags = th->th_flags & TH_FIN;
2081 			tcpstat.tcps_rcvpack++;
2082 			tcpstat.tcps_rcvbyte += tlen;
2083 			ND6_HINT(tp);
2084 			m_adj(m, hdroptlen);
2085 			sbappend(&(so)->so_rcv, m);
2086 			sorwakeup(so);
2087 		} else {
2088 			m_adj(m, hdroptlen);
2089 			tiflags = tcp_reass(tp, th, m, &tlen);
2090 			tp->t_flags |= TF_ACKNOW;
2091 		}
2092 		TCP_REASS_UNLOCK(tp);
2093 
2094 		/*
2095 		 * Note the amount of data that peer has sent into
2096 		 * our window, in order to estimate the sender's
2097 		 * buffer size.
2098 		 */
2099 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2100 	} else {
2101 		m_freem(m);
2102 		m = NULL;
2103 		tiflags &= ~TH_FIN;
2104 	}
2105 
2106 	/*
2107 	 * If FIN is received ACK the FIN and let the user know
2108 	 * that the connection is closing.  Ignore a FIN received before
2109 	 * the connection is fully established.
2110 	 */
2111 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2112 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2113 			socantrcvmore(so);
2114 			tp->t_flags |= TF_ACKNOW;
2115 			tp->rcv_nxt++;
2116 		}
2117 		switch (tp->t_state) {
2118 
2119 	 	/*
2120 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2121 		 */
2122 		case TCPS_ESTABLISHED:
2123 			tp->t_state = TCPS_CLOSE_WAIT;
2124 			break;
2125 
2126 	 	/*
2127 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2128 		 * enter the CLOSING state.
2129 		 */
2130 		case TCPS_FIN_WAIT_1:
2131 			tp->t_state = TCPS_CLOSING;
2132 			break;
2133 
2134 	 	/*
2135 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2136 		 * starting the time-wait timer, turning off the other
2137 		 * standard timers.
2138 		 */
2139 		case TCPS_FIN_WAIT_2:
2140 			tp->t_state = TCPS_TIME_WAIT;
2141 			tcp_canceltimers(tp);
2142 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2143 			soisdisconnected(so);
2144 			break;
2145 
2146 		/*
2147 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2148 		 */
2149 		case TCPS_TIME_WAIT:
2150 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2151 			break;
2152 		}
2153 	}
2154 #ifdef TCP_DEBUG
2155 	if (so->so_options & SO_DEBUG)
2156 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2157 #endif
2158 
2159 	/*
2160 	 * Return any desired output.
2161 	 */
2162 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2163 		(void) tcp_output(tp);
2164 	if (tcp_saveti)
2165 		m_freem(tcp_saveti);
2166 	return;
2167 
2168 badsyn:
2169 	/*
2170 	 * Received a bad SYN.  Increment counters and dropwithreset.
2171 	 */
2172 	tcpstat.tcps_badsyn++;
2173 	tp = NULL;
2174 	goto dropwithreset;
2175 
2176 dropafterack:
2177 	/*
2178 	 * Generate an ACK dropping incoming segment if it occupies
2179 	 * sequence space, where the ACK reflects our state.
2180 	 */
2181 	if (tiflags & TH_RST)
2182 		goto drop;
2183 	m_freem(m);
2184 	tp->t_flags |= TF_ACKNOW;
2185 	(void) tcp_output(tp);
2186 	if (tcp_saveti)
2187 		m_freem(tcp_saveti);
2188 	return;
2189 
2190 dropwithreset_ratelim:
2191 	/*
2192 	 * We may want to rate-limit RSTs in certain situations,
2193 	 * particularly if we are sending an RST in response to
2194 	 * an attempt to connect to or otherwise communicate with
2195 	 * a port for which we have no socket.
2196 	 */
2197 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2198 	    tcp_rst_ppslim) == 0) {
2199 		/* XXX stat */
2200 		goto drop;
2201 	}
2202 	/* ...fall into dropwithreset... */
2203 
2204 dropwithreset:
2205 	/*
2206 	 * Generate a RST, dropping incoming segment.
2207 	 * Make ACK acceptable to originator of segment.
2208 	 */
2209 	if (tiflags & TH_RST)
2210 		goto drop;
2211     {
2212 	/*
2213 	 * need to recover version # field, which was overwritten on
2214 	 * ip_cksum computation.
2215 	 */
2216 	struct ip *sip;
2217 	sip = mtod(m, struct ip *);
2218 	switch (af) {
2219 #ifdef INET
2220 	case AF_INET:
2221 		sip->ip_v = 4;
2222 		break;
2223 #endif
2224 #ifdef INET6
2225 	case AF_INET6:
2226 		sip->ip_v = 6;
2227 		break;
2228 #endif
2229 	}
2230     }
2231 	if (tiflags & TH_ACK)
2232 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2233 	else {
2234 		if (tiflags & TH_SYN)
2235 			tlen++;
2236 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2237 		    TH_RST|TH_ACK);
2238 	}
2239 	if (tcp_saveti)
2240 		m_freem(tcp_saveti);
2241 	return;
2242 
2243 badcsum:
2244 	tcpstat.tcps_rcvbadsum++;
2245 drop:
2246 	/*
2247 	 * Drop space held by incoming segment and return.
2248 	 */
2249 	if (tp) {
2250 		if (tp->t_inpcb)
2251 			so = tp->t_inpcb->inp_socket;
2252 #ifdef INET6
2253 		else if (tp->t_in6pcb)
2254 			so = tp->t_in6pcb->in6p_socket;
2255 #endif
2256 		else
2257 			so = NULL;
2258 #ifdef TCP_DEBUG
2259 		if (so && (so->so_options & SO_DEBUG) != 0)
2260 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2261 #endif
2262 	}
2263 	if (tcp_saveti)
2264 		m_freem(tcp_saveti);
2265 	m_freem(m);
2266 	return;
2267 }
2268 
2269 void
2270 tcp_dooptions(tp, cp, cnt, th, oi)
2271 	struct tcpcb *tp;
2272 	u_char *cp;
2273 	int cnt;
2274 	struct tcphdr *th;
2275 	struct tcp_opt_info *oi;
2276 {
2277 	u_int16_t mss;
2278 	int opt, optlen;
2279 
2280 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2281 		opt = cp[0];
2282 		if (opt == TCPOPT_EOL)
2283 			break;
2284 		if (opt == TCPOPT_NOP)
2285 			optlen = 1;
2286 		else {
2287 			if (cnt < 2)
2288 				break;
2289 			optlen = cp[1];
2290 			if (optlen < 2 || optlen > cnt)
2291 				break;
2292 		}
2293 		switch (opt) {
2294 
2295 		default:
2296 			continue;
2297 
2298 		case TCPOPT_MAXSEG:
2299 			if (optlen != TCPOLEN_MAXSEG)
2300 				continue;
2301 			if (!(th->th_flags & TH_SYN))
2302 				continue;
2303 			bcopy(cp + 2, &mss, sizeof(mss));
2304 			oi->maxseg = ntohs(mss);
2305 			break;
2306 
2307 		case TCPOPT_WINDOW:
2308 			if (optlen != TCPOLEN_WINDOW)
2309 				continue;
2310 			if (!(th->th_flags & TH_SYN))
2311 				continue;
2312 			tp->t_flags |= TF_RCVD_SCALE;
2313 			tp->requested_s_scale = cp[2];
2314 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2315 #if 0	/*XXX*/
2316 				char *p;
2317 
2318 				if (ip)
2319 					p = ntohl(ip->ip_src);
2320 #ifdef INET6
2321 				else if (ip6)
2322 					p = ip6_sprintf(&ip6->ip6_src);
2323 #endif
2324 				else
2325 					p = "(unknown)";
2326 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2327 				    "assuming %d\n",
2328 				    tp->requested_s_scale, p,
2329 				    TCP_MAX_WINSHIFT);
2330 #else
2331 				log(LOG_ERR, "TCP: invalid wscale %d, "
2332 				    "assuming %d\n",
2333 				    tp->requested_s_scale,
2334 				    TCP_MAX_WINSHIFT);
2335 #endif
2336 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
2337 			}
2338 			break;
2339 
2340 		case TCPOPT_TIMESTAMP:
2341 			if (optlen != TCPOLEN_TIMESTAMP)
2342 				continue;
2343 			oi->ts_present = 1;
2344 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2345 			NTOHL(oi->ts_val);
2346 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2347 			NTOHL(oi->ts_ecr);
2348 
2349 			/*
2350 			 * A timestamp received in a SYN makes
2351 			 * it ok to send timestamp requests and replies.
2352 			 */
2353 			if (th->th_flags & TH_SYN) {
2354 				tp->t_flags |= TF_RCVD_TSTMP;
2355 				tp->ts_recent = oi->ts_val;
2356 				tp->ts_recent_age = TCP_TIMESTAMP(tp);
2357 			}
2358 			break;
2359 		case TCPOPT_SACK_PERMITTED:
2360 			if (optlen != TCPOLEN_SACK_PERMITTED)
2361 				continue;
2362 			if (!(th->th_flags & TH_SYN))
2363 				continue;
2364 			tp->t_flags &= ~TF_CANT_TXSACK;
2365 			break;
2366 
2367 		case TCPOPT_SACK:
2368 			if (tp->t_flags & TF_IGNR_RXSACK)
2369 				continue;
2370 			if (optlen % 8 != 2 || optlen < 10)
2371 				continue;
2372 			cp += 2;
2373 			optlen -= 2;
2374 			for (; optlen > 0; cp -= 8, optlen -= 8) {
2375 				tcp_seq lwe, rwe;
2376 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2377 				NTOHL(lwe);
2378 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2379 				NTOHL(rwe);
2380 				/* tcp_mark_sacked(tp, lwe, rwe); */
2381 			}
2382 			break;
2383 		}
2384 	}
2385 }
2386 
2387 /*
2388  * Pull out of band byte out of a segment so
2389  * it doesn't appear in the user's data queue.
2390  * It is still reflected in the segment length for
2391  * sequencing purposes.
2392  */
2393 void
2394 tcp_pulloutofband(so, th, m, off)
2395 	struct socket *so;
2396 	struct tcphdr *th;
2397 	struct mbuf *m;
2398 	int off;
2399 {
2400 	int cnt = off + th->th_urp - 1;
2401 
2402 	while (cnt >= 0) {
2403 		if (m->m_len > cnt) {
2404 			char *cp = mtod(m, caddr_t) + cnt;
2405 			struct tcpcb *tp = sototcpcb(so);
2406 
2407 			tp->t_iobc = *cp;
2408 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2409 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2410 			m->m_len--;
2411 			return;
2412 		}
2413 		cnt -= m->m_len;
2414 		m = m->m_next;
2415 		if (m == 0)
2416 			break;
2417 	}
2418 	panic("tcp_pulloutofband");
2419 }
2420 
2421 /*
2422  * Collect new round-trip time estimate
2423  * and update averages and current timeout.
2424  */
2425 void
2426 tcp_xmit_timer(tp, rtt)
2427 	struct tcpcb *tp;
2428 	short rtt;
2429 {
2430 	short delta;
2431 	short rttmin;
2432 
2433 	tcpstat.tcps_rttupdated++;
2434 	--rtt;
2435 	if (tp->t_srtt != 0) {
2436 		/*
2437 		 * srtt is stored as fixed point with 3 bits after the
2438 		 * binary point (i.e., scaled by 8).  The following magic
2439 		 * is equivalent to the smoothing algorithm in rfc793 with
2440 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2441 		 * point).  Adjust rtt to origin 0.
2442 		 */
2443 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2444 		if ((tp->t_srtt += delta) <= 0)
2445 			tp->t_srtt = 1 << 2;
2446 		/*
2447 		 * We accumulate a smoothed rtt variance (actually, a
2448 		 * smoothed mean difference), then set the retransmit
2449 		 * timer to smoothed rtt + 4 times the smoothed variance.
2450 		 * rttvar is stored as fixed point with 2 bits after the
2451 		 * binary point (scaled by 4).  The following is
2452 		 * equivalent to rfc793 smoothing with an alpha of .75
2453 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2454 		 * rfc793's wired-in beta.
2455 		 */
2456 		if (delta < 0)
2457 			delta = -delta;
2458 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2459 		if ((tp->t_rttvar += delta) <= 0)
2460 			tp->t_rttvar = 1 << 2;
2461 	} else {
2462 		/*
2463 		 * No rtt measurement yet - use the unsmoothed rtt.
2464 		 * Set the variance to half the rtt (so our first
2465 		 * retransmit happens at 3*rtt).
2466 		 */
2467 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2468 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2469 	}
2470 	tp->t_rtt = 0;
2471 	tp->t_rxtshift = 0;
2472 
2473 	/*
2474 	 * the retransmit should happen at rtt + 4 * rttvar.
2475 	 * Because of the way we do the smoothing, srtt and rttvar
2476 	 * will each average +1/2 tick of bias.  When we compute
2477 	 * the retransmit timer, we want 1/2 tick of rounding and
2478 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2479 	 * firing of the timer.  The bias will give us exactly the
2480 	 * 1.5 tick we need.  But, because the bias is
2481 	 * statistical, we have to test that we don't drop below
2482 	 * the minimum feasible timer (which is 2 ticks).
2483 	 */
2484 	if (tp->t_rttmin > rtt + 2)
2485 		rttmin = tp->t_rttmin;
2486 	else
2487 		rttmin = rtt + 2;
2488 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2489 
2490 	/*
2491 	 * We received an ack for a packet that wasn't retransmitted;
2492 	 * it is probably safe to discard any error indications we've
2493 	 * received recently.  This isn't quite right, but close enough
2494 	 * for now (a route might have failed after we sent a segment,
2495 	 * and the return path might not be symmetrical).
2496 	 */
2497 	tp->t_softerror = 0;
2498 }
2499 
2500 /*
2501  * Checks for partial ack.  If partial ack arrives, force the retransmission
2502  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2503  * 1.  By setting snd_nxt to th_ack, this forces retransmission timer to
2504  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
2505  */
2506 int
2507 tcp_newreno(tp, th)
2508 	struct tcpcb *tp;
2509 	struct tcphdr *th;
2510 {
2511 	tcp_seq onxt = tp->snd_nxt;
2512 	u_long ocwnd = tp->snd_cwnd;
2513 
2514 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2515 		/*
2516 		 * snd_una has not yet been updated and the socket's send
2517 		 * buffer has not yet drained off the ACK'd data, so we
2518 		 * have to leave snd_una as it was to get the correct data
2519 		 * offset in tcp_output().
2520 		 */
2521 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
2522 	        tp->t_rtt = 0;
2523 	        tp->snd_nxt = th->th_ack;
2524 		/*
2525 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
2526 		 * is not yet updated when we're called.
2527 		 */
2528 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2529 	        (void) tcp_output(tp);
2530 	        tp->snd_cwnd = ocwnd;
2531 	        if (SEQ_GT(onxt, tp->snd_nxt))
2532 	                tp->snd_nxt = onxt;
2533 	        /*
2534 	         * Partial window deflation.  Relies on fact that tp->snd_una
2535 	         * not updated yet.
2536 	         */
2537 	        tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2538 	        return 1;
2539 	}
2540 	return 0;
2541 }
2542 
2543 
2544 /*
2545  * TCP compressed state engine.  Currently used to hold compressed
2546  * state for SYN_RECEIVED.
2547  */
2548 
2549 u_long	syn_cache_count;
2550 u_int32_t syn_hash1, syn_hash2;
2551 
2552 #define SYN_HASH(sa, sp, dp) \
2553 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2554 				     ((u_int32_t)(sp)))^syn_hash2)))
2555 #ifndef INET6
2556 #define	SYN_HASHALL(hash, src, dst) \
2557 do {									\
2558 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
2559 		((struct sockaddr_in *)(src))->sin_port,		\
2560 		((struct sockaddr_in *)(dst))->sin_port);		\
2561 } while (0)
2562 #else
2563 #define SYN_HASH6(sa, sp, dp) \
2564 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2565 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2566 	 & 0x7fffffff)
2567 
2568 #define SYN_HASHALL(hash, src, dst) \
2569 do {									\
2570 	switch ((src)->sa_family) {					\
2571 	case AF_INET:							\
2572 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2573 			((struct sockaddr_in *)(src))->sin_port,	\
2574 			((struct sockaddr_in *)(dst))->sin_port);	\
2575 		break;							\
2576 	case AF_INET6:							\
2577 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2578 			((struct sockaddr_in6 *)(src))->sin6_port,	\
2579 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
2580 		break;							\
2581 	default:							\
2582 		hash = 0;						\
2583 	}								\
2584 } while (0)
2585 #endif /* INET6 */
2586 
2587 #define	SYN_CACHE_RM(sc)						\
2588 do {									\
2589 	LIST_REMOVE((sc), sc_bucketq);					\
2590 	(sc)->sc_tp = NULL;						\
2591 	LIST_REMOVE((sc), sc_tpq);					\
2592 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
2593 	TAILQ_REMOVE(&tcp_syn_cache_timeq[(sc)->sc_rxtshift], (sc), sc_timeq); \
2594 	syn_cache_count--;						\
2595 } while (0)
2596 
2597 #define	SYN_CACHE_PUT(sc)						\
2598 do {									\
2599 	if ((sc)->sc_ipopts)						\
2600 		(void) m_free((sc)->sc_ipopts);				\
2601 	if ((sc)->sc_route4.ro_rt != NULL)				\
2602 		RTFREE((sc)->sc_route4.ro_rt);				\
2603 	pool_put(&syn_cache_pool, (sc));				\
2604 } while (0)
2605 
2606 struct pool syn_cache_pool;
2607 
2608 /*
2609  * We don't estimate RTT with SYNs, so each packet starts with the default
2610  * RTT and each timer queue has a fixed timeout value.  This allows us to
2611  * optimize the timer queues somewhat.
2612  */
2613 #define	SYN_CACHE_TIMER_ARM(sc)						\
2614 do {									\
2615 	TCPT_RANGESET((sc)->sc_rxtcur,					\
2616 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
2617 	    TCPTV_REXMTMAX);						\
2618 	PRT_SLOW_ARM((sc)->sc_rexmt, (sc)->sc_rxtcur);			\
2619 } while (0)
2620 
2621 TAILQ_HEAD(, syn_cache) tcp_syn_cache_timeq[TCP_MAXRXTSHIFT + 1];
2622 
2623 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
2624 
2625 void
2626 syn_cache_init()
2627 {
2628 	int i;
2629 
2630 	/* Initialize the hash buckets. */
2631 	for (i = 0; i < tcp_syn_cache_size; i++)
2632 		LIST_INIT(&tcp_syn_cache[i].sch_bucket);
2633 
2634 	/* Initialize the timer queues. */
2635 	for (i = 0; i <= TCP_MAXRXTSHIFT; i++)
2636 		TAILQ_INIT(&tcp_syn_cache_timeq[i]);
2637 
2638 	/* Initialize the syn cache pool. */
2639 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2640 	    "synpl", 0, NULL, NULL, M_PCB);
2641 }
2642 
2643 void
2644 syn_cache_insert(sc, tp)
2645 	struct syn_cache *sc;
2646 	struct tcpcb *tp;
2647 {
2648 	struct syn_cache_head *scp;
2649 	struct syn_cache *sc2;
2650 	int s, i;
2651 
2652 	/*
2653 	 * If there are no entries in the hash table, reinitialize
2654 	 * the hash secrets.
2655 	 */
2656 	if (syn_cache_count == 0) {
2657 		struct timeval tv;
2658 		microtime(&tv);
2659 		syn_hash1 = random() ^ (u_long)&sc;
2660 		syn_hash2 = random() ^ tv.tv_usec;
2661 	}
2662 
2663 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2664 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2665 	scp = &tcp_syn_cache[sc->sc_bucketidx];
2666 
2667 	/*
2668 	 * Make sure that we don't overflow the per-bucket
2669 	 * limit or the total cache size limit.
2670 	 */
2671 	s = splsoftnet();
2672 	if (scp->sch_length >= tcp_syn_bucket_limit) {
2673 		tcpstat.tcps_sc_bucketoverflow++;
2674 		/*
2675 		 * The bucket is full.  Toss the oldest element in the
2676 		 * bucket.  This will be the entry with our bucket
2677 		 * index closest to the front of the timer queue with
2678 		 * the largest timeout value.
2679 		 *
2680 		 * Note: This timer queue traversal may be expensive, so
2681 		 * we hope that this doesn't happen very often.  It is
2682 		 * much more likely that we'll overflow the entire
2683 		 * cache, which is much easier to handle; see below.
2684 		 */
2685 		for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2686 			for (sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2687 			     sc2 != NULL;
2688 			     sc2 = TAILQ_NEXT(sc2, sc_timeq)) {
2689 				if (sc2->sc_bucketidx == sc->sc_bucketidx) {
2690 					SYN_CACHE_RM(sc2);
2691 					SYN_CACHE_PUT(sc2);
2692 					goto insert;	/* 2 level break */
2693 				}
2694 			}
2695 		}
2696 #ifdef DIAGNOSTIC
2697 		/*
2698 		 * This should never happen; we should always find an
2699 		 * entry in our bucket.
2700 		 */
2701 		panic("syn_cache_insert: bucketoverflow: impossible");
2702 #endif
2703 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
2704 		tcpstat.tcps_sc_overflowed++;
2705 		/*
2706 		 * The cache is full.  Toss the oldest entry in the
2707 		 * entire cache.  This is the front entry in the
2708 		 * first non-empty timer queue with the largest
2709 		 * timeout value.
2710 		 */
2711 		for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2712 			sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2713 			if (sc2 == NULL)
2714 				continue;
2715 			SYN_CACHE_RM(sc2);
2716 			SYN_CACHE_PUT(sc2);
2717 			goto insert;		/* symmetry with above */
2718 		}
2719 #ifdef DIAGNOSTIC
2720 		/*
2721 		 * This should never happen; we should always find an
2722 		 * entry in the cache.
2723 		 */
2724 		panic("syn_cache_insert: cache overflow: impossible");
2725 #endif
2726 	}
2727 
2728  insert:
2729 	/*
2730 	 * Initialize the entry's timer.
2731 	 */
2732 	sc->sc_rxttot = 0;
2733 	sc->sc_rxtshift = 0;
2734 	SYN_CACHE_TIMER_ARM(sc);
2735 	TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift], sc, sc_timeq);
2736 
2737 	/* Link it from tcpcb entry */
2738 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2739 
2740 	/* Put it into the bucket. */
2741 	LIST_INSERT_HEAD(&scp->sch_bucket, sc, sc_bucketq);
2742 	scp->sch_length++;
2743 	syn_cache_count++;
2744 
2745 	tcpstat.tcps_sc_added++;
2746 	splx(s);
2747 }
2748 
2749 /*
2750  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2751  * If we have retransmitted an entry the maximum number of times, expire
2752  * that entry.
2753  */
2754 void
2755 syn_cache_timer()
2756 {
2757 	struct syn_cache *sc, *nsc;
2758 	int i, s;
2759 
2760 	s = splsoftnet();
2761 
2762 	/*
2763 	 * First, get all the entries that need to be retransmitted, or
2764 	 * must be expired due to exceeding the initial keepalive time.
2765 	 */
2766 	for (i = 0; i < TCP_MAXRXTSHIFT; i++) {
2767 		for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2768 		     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2769 		     sc = nsc) {
2770 			nsc = TAILQ_NEXT(sc, sc_timeq);
2771 
2772 			/*
2773 			 * Compute the total amount of time this entry has
2774 			 * been on a queue.  If this entry has been on longer
2775 			 * than the keep alive timer would allow, expire it.
2776 			 */
2777 			sc->sc_rxttot += sc->sc_rxtcur;
2778 			if (sc->sc_rxttot >= TCPTV_KEEP_INIT) {
2779 				tcpstat.tcps_sc_timed_out++;
2780 				SYN_CACHE_RM(sc);
2781 				SYN_CACHE_PUT(sc);
2782 				continue;
2783 			}
2784 
2785 			tcpstat.tcps_sc_retransmitted++;
2786 			(void) syn_cache_respond(sc, NULL);
2787 
2788 			/* Advance this entry onto the next timer queue. */
2789 			TAILQ_REMOVE(&tcp_syn_cache_timeq[i], sc, sc_timeq);
2790 			sc->sc_rxtshift = i + 1;
2791 			SYN_CACHE_TIMER_ARM(sc);
2792 			TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift],
2793 			    sc, sc_timeq);
2794 		}
2795 	}
2796 
2797 	/*
2798 	 * Now get all the entries that are expired due to too many
2799 	 * retransmissions.
2800 	 */
2801 	for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[TCP_MAXRXTSHIFT]);
2802 	     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2803 	     sc = nsc) {
2804 		nsc = TAILQ_NEXT(sc, sc_timeq);
2805 		tcpstat.tcps_sc_timed_out++;
2806 		SYN_CACHE_RM(sc);
2807 		SYN_CACHE_PUT(sc);
2808 	}
2809 	splx(s);
2810 }
2811 
2812 /*
2813  * Remove syn cache created by the specified tcb entry,
2814  * because this does not make sense to keep them
2815  * (if there's no tcb entry, syn cache entry will never be used)
2816  */
2817 void
2818 syn_cache_cleanup(tp)
2819 	struct tcpcb *tp;
2820 {
2821 	struct syn_cache *sc, *nsc;
2822 	int s;
2823 
2824 	s = splsoftnet();
2825 
2826 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2827 		nsc = LIST_NEXT(sc, sc_tpq);
2828 
2829 #ifdef DIAGNOSTIC
2830 		if (sc->sc_tp != tp)
2831 			panic("invalid sc_tp in syn_cache_cleanup");
2832 #endif
2833 		SYN_CACHE_RM(sc);
2834 		SYN_CACHE_PUT(sc);
2835 	}
2836 	/* just for safety */
2837 	LIST_INIT(&tp->t_sc);
2838 
2839 	splx(s);
2840 }
2841 
2842 /*
2843  * Find an entry in the syn cache.
2844  */
2845 struct syn_cache *
2846 syn_cache_lookup(src, dst, headp)
2847 	struct sockaddr *src;
2848 	struct sockaddr *dst;
2849 	struct syn_cache_head **headp;
2850 {
2851 	struct syn_cache *sc;
2852 	struct syn_cache_head *scp;
2853 	u_int32_t hash;
2854 	int s;
2855 
2856 	SYN_HASHALL(hash, src, dst);
2857 
2858 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2859 	*headp = scp;
2860 	s = splsoftnet();
2861 	for (sc = LIST_FIRST(&scp->sch_bucket); sc != NULL;
2862 	     sc = LIST_NEXT(sc, sc_bucketq)) {
2863 		if (sc->sc_hash != hash)
2864 			continue;
2865 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2866 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2867 			splx(s);
2868 			return (sc);
2869 		}
2870 	}
2871 	splx(s);
2872 	return (NULL);
2873 }
2874 
2875 /*
2876  * This function gets called when we receive an ACK for a
2877  * socket in the LISTEN state.  We look up the connection
2878  * in the syn cache, and if its there, we pull it out of
2879  * the cache and turn it into a full-blown connection in
2880  * the SYN-RECEIVED state.
2881  *
2882  * The return values may not be immediately obvious, and their effects
2883  * can be subtle, so here they are:
2884  *
2885  *	NULL	SYN was not found in cache; caller should drop the
2886  *		packet and send an RST.
2887  *
2888  *	-1	We were unable to create the new connection, and are
2889  *		aborting it.  An ACK,RST is being sent to the peer
2890  *		(unless we got screwey sequence numbners; see below),
2891  *		because the 3-way handshake has been completed.  Caller
2892  *		should not free the mbuf, since we may be using it.  If
2893  *		we are not, we will free it.
2894  *
2895  *	Otherwise, the return value is a pointer to the new socket
2896  *	associated with the connection.
2897  */
2898 struct socket *
2899 syn_cache_get(src, dst, th, hlen, tlen, so, m)
2900 	struct sockaddr *src;
2901 	struct sockaddr *dst;
2902 	struct tcphdr *th;
2903 	unsigned int hlen, tlen;
2904 	struct socket *so;
2905 	struct mbuf *m;
2906 {
2907 	struct syn_cache *sc;
2908 	struct syn_cache_head *scp;
2909 	struct inpcb *inp = NULL;
2910 #ifdef INET6
2911 	struct in6pcb *in6p = NULL;
2912 #endif
2913 	struct tcpcb *tp = 0;
2914 	struct mbuf *am;
2915 	int s;
2916 	struct socket *oso;
2917 
2918 	s = splsoftnet();
2919 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
2920 		splx(s);
2921 		return (NULL);
2922 	}
2923 
2924 	/*
2925 	 * Verify the sequence and ack numbers.  Try getting the correct
2926 	 * response again.
2927 	 */
2928 	if ((th->th_ack != sc->sc_iss + 1) ||
2929 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
2930 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
2931 		(void) syn_cache_respond(sc, m);
2932 		splx(s);
2933 		return ((struct socket *)(-1));
2934 	}
2935 
2936 	/* Remove this cache entry */
2937 	SYN_CACHE_RM(sc);
2938 	splx(s);
2939 
2940 	/*
2941 	 * Ok, create the full blown connection, and set things up
2942 	 * as they would have been set up if we had created the
2943 	 * connection when the SYN arrived.  If we can't create
2944 	 * the connection, abort it.
2945 	 */
2946 	/*
2947 	 * inp still has the OLD in_pcb stuff, set the
2948 	 * v6-related flags on the new guy, too.   This is
2949 	 * done particularly for the case where an AF_INET6
2950 	 * socket is bound only to a port, and a v4 connection
2951 	 * comes in on that port.
2952 	 * we also copy the flowinfo from the original pcb
2953 	 * to the new one.
2954 	 */
2955     {
2956 	struct inpcb *parentinpcb;
2957 
2958 	parentinpcb = (struct inpcb *)so->so_pcb;
2959 
2960 	oso = so;
2961 	so = sonewconn(so, SS_ISCONNECTED);
2962 	if (so == NULL)
2963 		goto resetandabort;
2964 
2965 	switch (so->so_proto->pr_domain->dom_family) {
2966 #ifdef INET
2967 	case AF_INET:
2968 		inp = sotoinpcb(so);
2969 		break;
2970 #endif
2971 #ifdef INET6
2972 	case AF_INET6:
2973 		in6p = sotoin6pcb(so);
2974 		break;
2975 #endif
2976 	}
2977     }
2978 	switch (src->sa_family) {
2979 #ifdef INET
2980 	case AF_INET:
2981 		if (inp) {
2982 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
2983 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
2984 			inp->inp_options = ip_srcroute();
2985 			in_pcbstate(inp, INP_BOUND);
2986 			if (inp->inp_options == NULL) {
2987 				inp->inp_options = sc->sc_ipopts;
2988 				sc->sc_ipopts = NULL;
2989 			}
2990 		}
2991 #ifdef INET6
2992 		else if (in6p) {
2993 			/* IPv4 packet to AF_INET6 socket */
2994 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
2995 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
2996 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
2997 				&in6p->in6p_laddr.s6_addr32[3],
2998 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
2999 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3000 			in6totcpcb(in6p)->t_family = AF_INET;
3001 		}
3002 #endif
3003 		break;
3004 #endif
3005 #ifdef INET6
3006 	case AF_INET6:
3007 		if (in6p) {
3008 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3009 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3010 #if 0
3011 			in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
3012 			/*inp->inp_options = ip6_srcroute();*/ /* soon. */
3013 #endif
3014 		}
3015 		break;
3016 #endif
3017 	}
3018 #ifdef INET6
3019 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3020 		struct in6pcb *oin6p = sotoin6pcb(oso);
3021 		/* inherit socket options from the listening socket */
3022 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3023 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3024 			m_freem(in6p->in6p_options);
3025 			in6p->in6p_options = 0;
3026 		}
3027 		ip6_savecontrol(in6p, &in6p->in6p_options,
3028 			mtod(m, struct ip6_hdr *), m);
3029 	}
3030 #endif
3031 
3032 #ifdef IPSEC
3033 	/*
3034 	 * we make a copy of policy, instead of sharing the policy,
3035 	 * for better behavior in terms of SA lookup and dead SA removal.
3036 	 */
3037 	if (inp) {
3038 		/* copy old policy into new socket's */
3039 		if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3040 			printf("tcp_input: could not copy policy\n");
3041 	}
3042 #ifdef INET6
3043 	else if (in6p) {
3044 		/* copy old policy into new socket's */
3045 		if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
3046 			printf("tcp_input: could not copy policy\n");
3047 	}
3048 #endif
3049 #endif
3050 
3051 	/*
3052 	 * Give the new socket our cached route reference.
3053 	 */
3054 	if (inp)
3055 		inp->inp_route = sc->sc_route4;		/* struct assignment */
3056 #ifdef INET6
3057 	else
3058 		in6p->in6p_route = sc->sc_route6;
3059 #endif
3060 	sc->sc_route4.ro_rt = NULL;
3061 
3062 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3063 	if (am == NULL)
3064 		goto resetandabort;
3065 	am->m_len = src->sa_len;
3066 	bcopy(src, mtod(am, caddr_t), src->sa_len);
3067 	if (inp) {
3068 		if (in_pcbconnect(inp, am)) {
3069 			(void) m_free(am);
3070 			goto resetandabort;
3071 		}
3072 	}
3073 #ifdef INET6
3074 	else if (in6p) {
3075 		if (src->sa_family == AF_INET) {
3076 			/* IPv4 packet to AF_INET6 socket */
3077 			struct sockaddr_in6 *sin6;
3078 			sin6 = mtod(am, struct sockaddr_in6 *);
3079 			am->m_len = sizeof(*sin6);
3080 			bzero(sin6, sizeof(*sin6));
3081 			sin6->sin6_family = AF_INET6;
3082 			sin6->sin6_len = sizeof(*sin6);
3083 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3084 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3085 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
3086 				&sin6->sin6_addr.s6_addr32[3],
3087 				sizeof(sin6->sin6_addr.s6_addr32[3]));
3088 		}
3089 		if (in6_pcbconnect(in6p, am)) {
3090 			(void) m_free(am);
3091 			goto resetandabort;
3092 		}
3093 	}
3094 #endif
3095 	else {
3096 		(void) m_free(am);
3097 		goto resetandabort;
3098 	}
3099 	(void) m_free(am);
3100 
3101 	if (inp)
3102 		tp = intotcpcb(inp);
3103 #ifdef INET6
3104 	else if (in6p)
3105 		tp = in6totcpcb(in6p);
3106 #endif
3107 	else
3108 		tp = NULL;
3109 	if (sc->sc_request_r_scale != 15) {
3110 		tp->requested_s_scale = sc->sc_requested_s_scale;
3111 		tp->request_r_scale = sc->sc_request_r_scale;
3112 		tp->snd_scale = sc->sc_requested_s_scale;
3113 		tp->rcv_scale = sc->sc_request_r_scale;
3114 		tp->t_flags |= TF_RCVD_SCALE;
3115 	}
3116 	if (sc->sc_flags & SCF_TIMESTAMP)
3117 		tp->t_flags |= TF_RCVD_TSTMP;
3118 	tp->ts_timebase = sc->sc_timebase;
3119 
3120 	tp->t_template = tcp_template(tp);
3121 	if (tp->t_template == 0) {
3122 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3123 		so = NULL;
3124 		m_freem(m);
3125 		goto abort;
3126 	}
3127 
3128 	tp->iss = sc->sc_iss;
3129 	tp->irs = sc->sc_irs;
3130 	tcp_sendseqinit(tp);
3131 	tcp_rcvseqinit(tp);
3132 	tp->t_state = TCPS_SYN_RECEIVED;
3133 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3134 	tcpstat.tcps_accepts++;
3135 
3136 	/* Initialize tp->t_ourmss before we deal with the peer's! */
3137 	tp->t_ourmss = sc->sc_ourmaxseg;
3138 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3139 
3140 	/*
3141 	 * Initialize the initial congestion window.  If we
3142 	 * had to retransmit the SYN,ACK, we must initialize cwnd
3143 	 * to 1 segment (i.e. the Loss Window).
3144 	 */
3145 	if (sc->sc_rxtshift)
3146 		tp->snd_cwnd = tp->t_peermss;
3147 	else
3148 		tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3149 
3150 	tcp_rmx_rtt(tp);
3151 	tp->snd_wl1 = sc->sc_irs;
3152 	tp->rcv_up = sc->sc_irs + 1;
3153 
3154 	/*
3155 	 * This is what whould have happened in tcp_ouput() when
3156 	 * the SYN,ACK was sent.
3157 	 */
3158 	tp->snd_up = tp->snd_una;
3159 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3160 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3161 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3162 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3163 	tp->last_ack_sent = tp->rcv_nxt;
3164 
3165 	tcpstat.tcps_sc_completed++;
3166 	SYN_CACHE_PUT(sc);
3167 	return (so);
3168 
3169 resetandabort:
3170 	(void) tcp_respond(NULL, m, m, th,
3171 			   th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3172 abort:
3173 	if (so != NULL)
3174 		(void) soabort(so);
3175 	SYN_CACHE_PUT(sc);
3176 	tcpstat.tcps_sc_aborted++;
3177 	return ((struct socket *)(-1));
3178 }
3179 
3180 /*
3181  * This function is called when we get a RST for a
3182  * non-existent connection, so that we can see if the
3183  * connection is in the syn cache.  If it is, zap it.
3184  */
3185 
3186 void
3187 syn_cache_reset(src, dst, th)
3188 	struct sockaddr *src;
3189 	struct sockaddr *dst;
3190 	struct tcphdr *th;
3191 {
3192 	struct syn_cache *sc;
3193 	struct syn_cache_head *scp;
3194 	int s = splsoftnet();
3195 
3196 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3197 		splx(s);
3198 		return;
3199 	}
3200 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3201 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3202 		splx(s);
3203 		return;
3204 	}
3205 	SYN_CACHE_RM(sc);
3206 	splx(s);
3207 	tcpstat.tcps_sc_reset++;
3208 	SYN_CACHE_PUT(sc);
3209 }
3210 
3211 void
3212 syn_cache_unreach(src, dst, th)
3213 	struct sockaddr *src;
3214 	struct sockaddr *dst;
3215 	struct tcphdr *th;
3216 {
3217 	struct syn_cache *sc;
3218 	struct syn_cache_head *scp;
3219 	int s;
3220 
3221 	s = splsoftnet();
3222 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3223 		splx(s);
3224 		return;
3225 	}
3226 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3227 	if (ntohl (th->th_seq) != sc->sc_iss) {
3228 		splx(s);
3229 		return;
3230 	}
3231 
3232 	/*
3233 	 * If we've rertransmitted 3 times and this is our second error,
3234 	 * we remove the entry.  Otherwise, we allow it to continue on.
3235 	 * This prevents us from incorrectly nuking an entry during a
3236 	 * spurious network outage.
3237 	 *
3238 	 * See tcp_notify().
3239 	 */
3240 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3241 		sc->sc_flags |= SCF_UNREACH;
3242 		splx(s);
3243 		return;
3244 	}
3245 
3246 	SYN_CACHE_RM(sc);
3247 	splx(s);
3248 	tcpstat.tcps_sc_unreach++;
3249 	SYN_CACHE_PUT(sc);
3250 }
3251 
3252 /*
3253  * Given a LISTEN socket and an inbound SYN request, add
3254  * this to the syn cache, and send back a segment:
3255  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3256  * to the source.
3257  *
3258  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3259  * Doing so would require that we hold onto the data and deliver it
3260  * to the application.  However, if we are the target of a SYN-flood
3261  * DoS attack, an attacker could send data which would eventually
3262  * consume all available buffer space if it were ACKed.  By not ACKing
3263  * the data, we avoid this DoS scenario.
3264  */
3265 
3266 int
3267 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3268 	struct sockaddr *src;
3269 	struct sockaddr *dst;
3270 	struct tcphdr *th;
3271 	unsigned int hlen;
3272 	struct socket *so;
3273 	struct mbuf *m;
3274 	u_char *optp;
3275 	int optlen;
3276 	struct tcp_opt_info *oi;
3277 {
3278 	struct tcpcb tb, *tp;
3279 	long win;
3280 	struct syn_cache *sc;
3281 	struct syn_cache_head *scp;
3282 	struct mbuf *ipopts;
3283 
3284 	tp = sototcpcb(so);
3285 
3286 	/*
3287 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3288 	 *
3289 	 * Note this check is performed in tcp_input() very early on.
3290 	 */
3291 
3292 	/*
3293 	 * Initialize some local state.
3294 	 */
3295 	win = sbspace(&so->so_rcv);
3296 	if (win > TCP_MAXWIN)
3297 		win = TCP_MAXWIN;
3298 
3299 	switch (src->sa_family) {
3300 #ifdef INET
3301 	case AF_INET:
3302 		/*
3303 		 * Remember the IP options, if any.
3304 		 */
3305 		ipopts = ip_srcroute();
3306 		break;
3307 #endif
3308 	default:
3309 		ipopts = NULL;
3310 	}
3311 
3312 	if (optp) {
3313 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3314 		tcp_dooptions(&tb, optp, optlen, th, oi);
3315 	} else
3316 		tb.t_flags = 0;
3317 
3318 	/*
3319 	 * See if we already have an entry for this connection.
3320 	 * If we do, resend the SYN,ACK.  We do not count this
3321 	 * as a retransmission (XXX though maybe we should).
3322 	 */
3323 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3324 		tcpstat.tcps_sc_dupesyn++;
3325 		if (ipopts) {
3326 			/*
3327 			 * If we were remembering a previous source route,
3328 			 * forget it and use the new one we've been given.
3329 			 */
3330 			if (sc->sc_ipopts)
3331 				(void) m_free(sc->sc_ipopts);
3332 			sc->sc_ipopts = ipopts;
3333 		}
3334 		sc->sc_timestamp = tb.ts_recent;
3335 		if (syn_cache_respond(sc, m) == 0) {
3336 			tcpstat.tcps_sndacks++;
3337 			tcpstat.tcps_sndtotal++;
3338 		}
3339 		return (1);
3340 	}
3341 
3342 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3343 	if (sc == NULL) {
3344 		if (ipopts)
3345 			(void) m_free(ipopts);
3346 		return (0);
3347 	}
3348 
3349 	/*
3350 	 * Fill in the cache, and put the necessary IP and TCP
3351 	 * options into the reply.
3352 	 */
3353 	bzero(sc, sizeof(struct syn_cache));
3354 	bcopy(src, &sc->sc_src, src->sa_len);
3355 	bcopy(dst, &sc->sc_dst, dst->sa_len);
3356 	sc->sc_flags = 0;
3357 	sc->sc_ipopts = ipopts;
3358 	sc->sc_irs = th->th_seq;
3359 	switch (src->sa_family) {
3360 #ifdef INET
3361 	case AF_INET:
3362 	    {
3363 		struct sockaddr_in *srcin = (void *) src;
3364 		struct sockaddr_in *dstin = (void *) dst;
3365 
3366 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3367 		    &srcin->sin_addr, dstin->sin_port,
3368 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
3369 		break;
3370 	    }
3371 #endif /* INET */
3372 #ifdef INET6
3373 	case AF_INET6:
3374 	    {
3375 		struct sockaddr_in6 *srcin6 = (void *) src;
3376 		struct sockaddr_in6 *dstin6 = (void *) dst;
3377 
3378 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3379 		    &srcin6->sin6_addr, dstin6->sin6_port,
3380 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3381 		break;
3382 	    }
3383 #endif /* INET6 */
3384 	}
3385 	sc->sc_peermaxseg = oi->maxseg;
3386 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3387 						m->m_pkthdr.rcvif : NULL,
3388 						sc->sc_src.sa.sa_family);
3389 	sc->sc_win = win;
3390 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
3391 	sc->sc_timestamp = tb.ts_recent;
3392 	if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3393 		sc->sc_flags |= SCF_TIMESTAMP;
3394 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3395 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3396 		sc->sc_requested_s_scale = tb.requested_s_scale;
3397 		sc->sc_request_r_scale = 0;
3398 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3399 		    TCP_MAXWIN << sc->sc_request_r_scale <
3400 		    so->so_rcv.sb_hiwat)
3401 			sc->sc_request_r_scale++;
3402 	} else {
3403 		sc->sc_requested_s_scale = 15;
3404 		sc->sc_request_r_scale = 15;
3405 	}
3406 	sc->sc_tp = tp;
3407 	if (syn_cache_respond(sc, m) == 0) {
3408 		syn_cache_insert(sc, tp);
3409 		tcpstat.tcps_sndacks++;
3410 		tcpstat.tcps_sndtotal++;
3411 	} else {
3412 		SYN_CACHE_PUT(sc);
3413 		tcpstat.tcps_sc_dropped++;
3414 	}
3415 	return (1);
3416 }
3417 
3418 int
3419 syn_cache_respond(sc, m)
3420 	struct syn_cache *sc;
3421 	struct mbuf *m;
3422 {
3423 	struct route *ro;
3424 	u_int8_t *optp;
3425 	int optlen, error;
3426 	u_int16_t tlen;
3427 	struct ip *ip = NULL;
3428 #ifdef INET6
3429 	struct ip6_hdr *ip6 = NULL;
3430 #endif
3431 	struct tcphdr *th;
3432 	u_int hlen;
3433 
3434 	switch (sc->sc_src.sa.sa_family) {
3435 	case AF_INET:
3436 		hlen = sizeof(struct ip);
3437 		ro = &sc->sc_route4;
3438 		break;
3439 #ifdef INET6
3440 	case AF_INET6:
3441 		hlen = sizeof(struct ip6_hdr);
3442 		ro = (struct route *)&sc->sc_route6;
3443 		break;
3444 #endif
3445 	default:
3446 		if (m)
3447 			m_freem(m);
3448 		return EAFNOSUPPORT;
3449 	}
3450 
3451 	/* Compute the size of the TCP options. */
3452 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3453 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3454 
3455 	tlen = hlen + sizeof(struct tcphdr) + optlen;
3456 
3457 	/*
3458 	 * Create the IP+TCP header from scratch.
3459 	 */
3460 	if (m)
3461 		m_freem(m);
3462 #ifdef DIAGNOSTIC
3463 	if (max_linkhdr + tlen > MCLBYTES)
3464 		return (ENOBUFS);
3465 #endif
3466 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3467 	if (m && tlen > MHLEN) {
3468 		MCLGET(m, M_DONTWAIT);
3469 		if ((m->m_flags & M_EXT) == 0) {
3470 			m_freem(m);
3471 			m = NULL;
3472 		}
3473 	}
3474 	if (m == NULL)
3475 		return (ENOBUFS);
3476 
3477 	/* Fixup the mbuf. */
3478 	m->m_data += max_linkhdr;
3479 	m->m_len = m->m_pkthdr.len = tlen;
3480 #ifdef IPSEC
3481 	if (sc->sc_tp) {
3482 		struct tcpcb *tp;
3483 		struct socket *so;
3484 
3485 		tp = sc->sc_tp;
3486 		if (tp->t_inpcb)
3487 			so = tp->t_inpcb->inp_socket;
3488 #ifdef INET6
3489 		else if (tp->t_in6pcb)
3490 			so = tp->t_in6pcb->in6p_socket;
3491 #endif
3492 		else
3493 			so = NULL;
3494 		/* use IPsec policy on listening socket, on SYN ACK */
3495 		if (ipsec_setsocket(m, so) != 0) {
3496 			m_freem(m);
3497 			return ENOBUFS;
3498 		}
3499 	}
3500 #endif
3501 	m->m_pkthdr.rcvif = NULL;
3502 	memset(mtod(m, u_char *), 0, tlen);
3503 
3504 	switch (sc->sc_src.sa.sa_family) {
3505 	case AF_INET:
3506 		ip = mtod(m, struct ip *);
3507 		ip->ip_dst = sc->sc_src.sin.sin_addr;
3508 		ip->ip_src = sc->sc_dst.sin.sin_addr;
3509 		ip->ip_p = IPPROTO_TCP;
3510 		th = (struct tcphdr *)(ip + 1);
3511 		th->th_dport = sc->sc_src.sin.sin_port;
3512 		th->th_sport = sc->sc_dst.sin.sin_port;
3513 		break;
3514 #ifdef INET6
3515 	case AF_INET6:
3516 		ip6 = mtod(m, struct ip6_hdr *);
3517 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3518 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3519 		ip6->ip6_nxt = IPPROTO_TCP;
3520 		/* ip6_plen will be updated in ip6_output() */
3521 		th = (struct tcphdr *)(ip6 + 1);
3522 		th->th_dport = sc->sc_src.sin6.sin6_port;
3523 		th->th_sport = sc->sc_dst.sin6.sin6_port;
3524 		break;
3525 #endif
3526 	default:
3527 		th = NULL;
3528 	}
3529 
3530 	th->th_seq = htonl(sc->sc_iss);
3531 	th->th_ack = htonl(sc->sc_irs + 1);
3532 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3533 	th->th_flags = TH_SYN|TH_ACK;
3534 	th->th_win = htons(sc->sc_win);
3535 	/* th_sum already 0 */
3536 	/* th_urp already 0 */
3537 
3538 	/* Tack on the TCP options. */
3539 	optp = (u_int8_t *)(th + 1);
3540 	*optp++ = TCPOPT_MAXSEG;
3541 	*optp++ = 4;
3542 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3543 	*optp++ = sc->sc_ourmaxseg & 0xff;
3544 
3545 	if (sc->sc_request_r_scale != 15) {
3546 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3547 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3548 		    sc->sc_request_r_scale);
3549 		optp += 4;
3550 	}
3551 
3552 	if (sc->sc_flags & SCF_TIMESTAMP) {
3553 		u_int32_t *lp = (u_int32_t *)(optp);
3554 		/* Form timestamp option as shown in appendix A of RFC 1323. */
3555 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
3556 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3557 		*lp   = htonl(sc->sc_timestamp);
3558 		optp += TCPOLEN_TSTAMP_APPA;
3559 	}
3560 
3561 	/* Compute the packet's checksum. */
3562 	switch (sc->sc_src.sa.sa_family) {
3563 	case AF_INET:
3564 		ip->ip_len = htons(tlen - hlen);
3565 		th->th_sum = 0;
3566 		th->th_sum = in_cksum(m, tlen);
3567 		break;
3568 #ifdef INET6
3569 	case AF_INET6:
3570 		ip6->ip6_plen = htons(tlen - hlen);
3571 		th->th_sum = 0;
3572 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3573 		break;
3574 #endif
3575 	}
3576 
3577 	/*
3578 	 * Fill in some straggling IP bits.  Note the stack expects
3579 	 * ip_len to be in host order, for convenience.
3580 	 */
3581 	switch (sc->sc_src.sa.sa_family) {
3582 #ifdef INET
3583 	case AF_INET:
3584 		ip->ip_len = tlen;
3585 		ip->ip_ttl = ip_defttl;
3586 		/* XXX tos? */
3587 		break;
3588 #endif
3589 #ifdef INET6
3590 	case AF_INET6:
3591 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3592 		ip6->ip6_vfc |= IPV6_VERSION;
3593 		ip6->ip6_plen = htons(tlen - hlen);
3594 		/* ip6_hlim will be initialized afterwards */
3595 		/* XXX flowlabel? */
3596 		break;
3597 #endif
3598 	}
3599 
3600 	switch (sc->sc_src.sa.sa_family) {
3601 #ifdef INET
3602 	case AF_INET:
3603 		error = ip_output(m, sc->sc_ipopts, ro,
3604 		    (ip_mtudisc ? IP_MTUDISC : 0),
3605 		    NULL);
3606 		break;
3607 #endif
3608 #ifdef INET6
3609 	case AF_INET6:
3610 		ip6->ip6_hlim = in6_selecthlim(NULL,
3611 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3612 
3613 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3614 			0, NULL, NULL);
3615 		break;
3616 #endif
3617 	default:
3618 		error = EAFNOSUPPORT;
3619 		break;
3620 	}
3621 	return (error);
3622 }
3623