xref: /netbsd-src/sys/netinet/tcp_input.c (revision 2a399c6883d870daece976daec6ffa7bb7f934ce)
1 /*	$NetBSD: tcp_input.c,v 1.39 1998/01/05 10:32:03 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
36  */
37 
38 /*
39  *	TODO list for SYN cache stuff:
40  *
41  *	(a) The definition of "struct syn_cache" says:
42  *
43  *		This structure should not exceeed 32 bytes.
44  *
45  *	    but it's 40 bytes on the Alpha.  Can reduce memory use one
46  *	    of two ways:
47  *
48  *		(1) Use a dynamically-sized hash table, and handle
49  *		    collisions by rehashing.  Then sc_next is unnecessary.
50  *
51  *		(2) Allocate syn_cache structures in pages (or some other
52  *		    large chunk).  This would probably be desirable for
53  *		    maintaining locality of reference anyway.
54  *
55  *		    If you do this, you can change sc_next to a page/index
56  *		    value, and make it a 32-bit (or maybe even 16-bit)
57  *		    integer, thus partly obviating the need for the previous
58  *		    hack.
59  *
60  *	    It's also worth noting this this is necessary for IPv6, as well,
61  *	    where we use 32 bytes just for the IP addresses, so eliminating
62  *	    wastage is going to become more important.  (BTW, has anyone
63  *	    integreated these changes with one fo the IPv6 status that are
64  *	    available?)
65  *
66  *	(b) Find room for a "state" field, which is needed to keep a
67  *	    compressed state for TIME_WAIT TCBs.  It's been noted already
68  *	    that this is fairly important for very high-volume web and
69  *	    mail servers, which use a large number of short-lived
70  *	    connections.
71  */
72 
73 #ifndef TUBA_INCLUDE
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/protosw.h>
79 #include <sys/socket.h>
80 #include <sys/socketvar.h>
81 #include <sys/errno.h>
82 
83 #include <net/if.h>
84 #include <net/route.h>
85 
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/ip.h>
89 #include <netinet/in_pcb.h>
90 #include <netinet/ip_var.h>
91 #include <netinet/tcp.h>
92 #include <netinet/tcp_fsm.h>
93 #include <netinet/tcp_seq.h>
94 #include <netinet/tcp_timer.h>
95 #include <netinet/tcp_var.h>
96 #include <netinet/tcpip.h>
97 #include <netinet/tcp_debug.h>
98 
99 #include <machine/stdarg.h>
100 
101 int	tcprexmtthresh = 3;
102 struct	tcpiphdr tcp_saveti;
103 
104 extern u_long sb_max;
105 
106 #endif /* TUBA_INCLUDE */
107 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
108 
109 /* for modulo comparisons of timestamps */
110 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
111 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
112 
113 /*
114  * Macro to compute ACK transmission behavior.  Delay the ACK unless
115  * the other side PUSH'd or we have already delayed an ACK (must send
116  * an ACK every two segments).
117  */
118 #define	TCP_SETUP_ACK(tp, ti) \
119 do { \
120 	if ((ti)->ti_flags & TH_PUSH || \
121 	    (tp)->t_flags & TF_DELACK) \
122 		tp->t_flags |= TF_ACKNOW; \
123 	else \
124 		TCP_SET_DELACK(tp); \
125 } while (0)
126 
127 /*
128  * Insert segment ti into reassembly queue of tcp with
129  * control block tp.  Return TH_FIN if reassembly now includes
130  * a segment with FIN.  The macro form does the common case inline
131  * (segment is the next to be received on an established connection,
132  * and the queue is empty), avoiding linkage into and removal
133  * from the queue and repetition of various conversions.
134  * Set DELACK for segments received in order, but ack immediately
135  * when segments are out of order (so fast retransmit can work).
136  */
137 #define	TCP_REASS(tp, ti, m, so, flags) { \
138 	if ((ti)->ti_seq == (tp)->rcv_nxt && \
139 	    (tp)->segq.lh_first == NULL && \
140 	    (tp)->t_state == TCPS_ESTABLISHED) { \
141 		TCP_SETUP_ACK(tp, ti); \
142 		(tp)->rcv_nxt += (ti)->ti_len; \
143 		flags = (ti)->ti_flags & TH_FIN; \
144 		tcpstat.tcps_rcvpack++;\
145 		tcpstat.tcps_rcvbyte += (ti)->ti_len;\
146 		sbappend(&(so)->so_rcv, (m)); \
147 		sorwakeup(so); \
148 	} else { \
149 		(flags) = tcp_reass((tp), (ti), (m)); \
150 		tp->t_flags |= TF_ACKNOW; \
151 	} \
152 }
153 #ifndef TUBA_INCLUDE
154 
155 int
156 tcp_reass(tp, ti, m)
157 	register struct tcpcb *tp;
158 	register struct tcpiphdr *ti;
159 	struct mbuf *m;
160 {
161 	register struct ipqent *p, *q, *nq, *tiqe;
162 	struct socket *so = tp->t_inpcb->inp_socket;
163 	int flags;
164 
165 	/*
166 	 * Call with ti==0 after become established to
167 	 * force pre-ESTABLISHED data up to user socket.
168 	 */
169 	if (ti == 0)
170 		goto present;
171 
172 	/*
173 	 * Allocate a new queue entry, before we throw away any data.
174 	 * If we can't, just drop the packet.  XXX
175 	 */
176 	MALLOC(tiqe, struct ipqent *, sizeof (struct ipqent), M_IPQ, M_NOWAIT);
177 	if (tiqe == NULL) {
178 		tcpstat.tcps_rcvmemdrop++;
179 		m_freem(m);
180 		return (0);
181 	}
182 
183 	/*
184 	 * Find a segment which begins after this one does.
185 	 */
186 	for (p = NULL, q = tp->segq.lh_first; q != NULL;
187 	    p = q, q = q->ipqe_q.le_next)
188 		if (SEQ_GT(q->ipqe_tcp->ti_seq, ti->ti_seq))
189 			break;
190 
191 	/*
192 	 * If there is a preceding segment, it may provide some of
193 	 * our data already.  If so, drop the data from the incoming
194 	 * segment.  If it provides all of our data, drop us.
195 	 */
196 	if (p != NULL) {
197 		register struct tcpiphdr *phdr = p->ipqe_tcp;
198 		register int i;
199 
200 		/* conversion to int (in i) handles seq wraparound */
201 		i = phdr->ti_seq + phdr->ti_len - ti->ti_seq;
202 		if (i > 0) {
203 			if (i >= ti->ti_len) {
204 				tcpstat.tcps_rcvduppack++;
205 				tcpstat.tcps_rcvdupbyte += ti->ti_len;
206 				m_freem(m);
207 				FREE(tiqe, M_IPQ);
208 				return (0);
209 			}
210 			m_adj(m, i);
211 			ti->ti_len -= i;
212 			ti->ti_seq += i;
213 		}
214 	}
215 	tcpstat.tcps_rcvoopack++;
216 	tcpstat.tcps_rcvoobyte += ti->ti_len;
217 
218 	/*
219 	 * While we overlap succeeding segments trim them or,
220 	 * if they are completely covered, dequeue them.
221 	 */
222 	for (; q != NULL; q = nq) {
223 		register struct tcpiphdr *qhdr = q->ipqe_tcp;
224 		register int i = (ti->ti_seq + ti->ti_len) - qhdr->ti_seq;
225 
226 		if (i <= 0)
227 			break;
228 		if (i < qhdr->ti_len) {
229 			qhdr->ti_seq += i;
230 			qhdr->ti_len -= i;
231 			m_adj(q->ipqe_m, i);
232 			break;
233 		}
234 		nq = q->ipqe_q.le_next;
235 		m_freem(q->ipqe_m);
236 		LIST_REMOVE(q, ipqe_q);
237 		FREE(q, M_IPQ);
238 	}
239 
240 	/* Insert the new fragment queue entry into place. */
241 	tiqe->ipqe_m = m;
242 	tiqe->ipqe_tcp = ti;
243 	if (p == NULL) {
244 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
245 	} else {
246 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
247 	}
248 
249 present:
250 	/*
251 	 * Present data to user, advancing rcv_nxt through
252 	 * completed sequence space.
253 	 */
254 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
255 		return (0);
256 	q = tp->segq.lh_first;
257 	if (q == NULL || q->ipqe_tcp->ti_seq != tp->rcv_nxt)
258 		return (0);
259 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_tcp->ti_len)
260 		return (0);
261 	do {
262 		tp->rcv_nxt += q->ipqe_tcp->ti_len;
263 		flags = q->ipqe_tcp->ti_flags & TH_FIN;
264 
265 		nq = q->ipqe_q.le_next;
266 		LIST_REMOVE(q, ipqe_q);
267 		if (so->so_state & SS_CANTRCVMORE)
268 			m_freem(q->ipqe_m);
269 		else
270 			sbappend(&so->so_rcv, q->ipqe_m);
271 		FREE(q, M_IPQ);
272 		q = nq;
273 	} while (q != NULL && q->ipqe_tcp->ti_seq == tp->rcv_nxt);
274 	sorwakeup(so);
275 	return (flags);
276 }
277 
278 /*
279  * TCP input routine, follows pages 65-76 of the
280  * protocol specification dated September, 1981 very closely.
281  */
282 void
283 #if __STDC__
284 tcp_input(struct mbuf *m, ...)
285 #else
286 tcp_input(m, va_alist)
287 	register struct mbuf *m;
288 #endif
289 {
290 	register struct tcpiphdr *ti;
291 	register struct inpcb *inp;
292 	caddr_t optp = NULL;
293 	int optlen = 0;
294 	int len, tlen, off, hdroptlen;
295 	register struct tcpcb *tp = 0;
296 	register int tiflags;
297 	struct socket *so = NULL;
298 	int todrop, acked, ourfinisacked, needoutput = 0;
299 	short ostate = 0;
300 	int iss = 0;
301 	u_long tiwin;
302 	struct tcp_opt_info opti;
303 	int iphlen;
304 	va_list ap;
305 
306 	va_start(ap, m);
307 	iphlen = va_arg(ap, int);
308 	va_end(ap);
309 
310 	tcpstat.tcps_rcvtotal++;
311 
312 	opti.ts_present = 0;
313 	opti.maxseg = 0;
314 
315 	/*
316 	 * Get IP and TCP header together in first mbuf.
317 	 * Note: IP leaves IP header in first mbuf.
318 	 */
319 	ti = mtod(m, struct tcpiphdr *);
320 	if (iphlen > sizeof (struct ip))
321 		ip_stripoptions(m, (struct mbuf *)0);
322 	if (m->m_len < sizeof (struct tcpiphdr)) {
323 		if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
324 			tcpstat.tcps_rcvshort++;
325 			return;
326 		}
327 		ti = mtod(m, struct tcpiphdr *);
328 	}
329 
330 	/*
331 	 * Checksum extended TCP header and data.
332 	 */
333 	tlen = ((struct ip *)ti)->ip_len;
334 	len = sizeof (struct ip) + tlen;
335 	bzero(ti->ti_x1, sizeof ti->ti_x1);
336 	ti->ti_len = (u_int16_t)tlen;
337 	HTONS(ti->ti_len);
338 	if ((ti->ti_sum = in_cksum(m, len)) != 0) {
339 		tcpstat.tcps_rcvbadsum++;
340 		goto drop;
341 	}
342 #endif /* TUBA_INCLUDE */
343 
344 	/*
345 	 * Check that TCP offset makes sense,
346 	 * pull out TCP options and adjust length.		XXX
347 	 */
348 	off = ti->ti_off << 2;
349 	if (off < sizeof (struct tcphdr) || off > tlen) {
350 		tcpstat.tcps_rcvbadoff++;
351 		goto drop;
352 	}
353 	tlen -= off;
354 	ti->ti_len = tlen;
355 	if (off > sizeof (struct tcphdr)) {
356 		if (m->m_len < sizeof(struct ip) + off) {
357 			if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
358 				tcpstat.tcps_rcvshort++;
359 				return;
360 			}
361 			ti = mtod(m, struct tcpiphdr *);
362 		}
363 		optlen = off - sizeof (struct tcphdr);
364 		optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
365 		/*
366 		 * Do quick retrieval of timestamp options ("options
367 		 * prediction?").  If timestamp is the only option and it's
368 		 * formatted as recommended in RFC 1323 appendix A, we
369 		 * quickly get the values now and not bother calling
370 		 * tcp_dooptions(), etc.
371 		 */
372 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
373 		     (optlen > TCPOLEN_TSTAMP_APPA &&
374 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
375 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
376 		     (ti->ti_flags & TH_SYN) == 0) {
377 			opti.ts_present = 1;
378 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
379 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
380 			optp = NULL;	/* we've parsed the options */
381 		}
382 	}
383 	tiflags = ti->ti_flags;
384 
385 	/*
386 	 * Convert TCP protocol specific fields to host format.
387 	 */
388 	NTOHL(ti->ti_seq);
389 	NTOHL(ti->ti_ack);
390 	NTOHS(ti->ti_win);
391 	NTOHS(ti->ti_urp);
392 
393 	/*
394 	 * Locate pcb for segment.
395 	 */
396 findpcb:
397 	inp = in_pcblookup_connect(&tcbtable, ti->ti_src, ti->ti_sport,
398 	    ti->ti_dst, ti->ti_dport);
399 	if (inp == 0) {
400 		++tcpstat.tcps_pcbhashmiss;
401 		inp = in_pcblookup_bind(&tcbtable, ti->ti_dst, ti->ti_dport);
402 		if (inp == 0) {
403 			++tcpstat.tcps_noport;
404 			goto dropwithreset;
405 		}
406 	}
407 
408 	/*
409 	 * If the state is CLOSED (i.e., TCB does not exist) then
410 	 * all data in the incoming segment is discarded.
411 	 * If the TCB exists but is in CLOSED state, it is embryonic,
412 	 * but should either do a listen or a connect soon.
413 	 */
414 	tp = intotcpcb(inp);
415 	if (tp == 0)
416 		goto dropwithreset;
417 	if (tp->t_state == TCPS_CLOSED)
418 		goto drop;
419 
420 	/* Unscale the window into a 32-bit value. */
421 	if ((tiflags & TH_SYN) == 0)
422 		tiwin = ti->ti_win << tp->snd_scale;
423 	else
424 		tiwin = ti->ti_win;
425 
426 	so = inp->inp_socket;
427 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
428 		if (so->so_options & SO_DEBUG) {
429 			ostate = tp->t_state;
430 			tcp_saveti = *ti;
431 		}
432 		if (so->so_options & SO_ACCEPTCONN) {
433   			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
434 				if (tiflags & TH_RST) {
435 					syn_cache_reset(ti);
436 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
437 				    (TH_ACK|TH_SYN)) {
438 					/*
439 					 * Received a SYN,ACK.  This should
440 					 * never happen while we are in
441 					 * LISTEN.  Send an RST.
442 					 */
443 					goto badsyn;
444 				} else if (tiflags & TH_ACK) {
445 					so = syn_cache_get(so, m);
446 					if (so == NULL) {
447 						/*
448 						 * We don't have a SYN for
449 						 * this ACK; send an RST.
450 						 */
451 						goto badsyn;
452 					} else if (so ==
453 					    (struct socket *)(-1)) {
454 						/*
455 						 * We were unable to create
456 						 * the connection.  If the
457 						 * 3-way handshake was
458 						 * completeed, and RST has
459 						 * been sent to the peer.
460 						 * Since the mbuf might be
461 						 * in use for the reply,
462 						 * do not free it.
463 						 */
464 						m = NULL;
465 					} else {
466 						/*
467 						 * We have created a
468 						 * full-blown connection.
469 						 */
470 						inp = sotoinpcb(so);
471 						tp = intotcpcb(inp);
472 						tiwin <<= tp->snd_scale;
473 						goto after_listen;
474 					}
475   				}
476   			} else {
477 				/*
478 				 * Received a SYN.
479 				 */
480 				if (in_hosteq(ti->ti_src, ti->ti_dst) &&
481 				    ti->ti_sport == ti->ti_dport) {
482 					/*
483 					 * LISTEN socket received a SYN
484 					 * from itself?  This can't possibly
485 					 * be valid; drop the packet.
486 					 */
487 					tcpstat.tcps_badsyn++;
488 					goto drop;
489 				}
490 				/*
491 				 * SYN looks ok; create compressed TCP
492 				 * state for it.
493 				 */
494 				if (so->so_qlen <= so->so_qlimit &&
495 				    syn_cache_add(so, m, optp, optlen, &opti))
496 					m = NULL;
497 			}
498 			goto drop;
499 		}
500 	}
501 
502 after_listen:
503 #ifdef DIAGNOSTIC
504 	/*
505 	 * Should not happen now that all embryonic connections
506 	 * are handled with compressed state.
507 	 */
508 	if (tp->t_state == TCPS_LISTEN)
509 		panic("tcp_input: TCPS_LISTEN");
510 #endif
511 
512 	/*
513 	 * Segment received on connection.
514 	 * Reset idle time and keep-alive timer.
515 	 */
516 	tp->t_idle = 0;
517 	if (TCPS_HAVEESTABLISHED(tp->t_state))
518 		tp->t_timer[TCPT_KEEP] = tcp_keepidle;
519 
520 	/*
521 	 * Process options.
522 	 */
523 	if (optp)
524 		tcp_dooptions(tp, optp, optlen, ti, &opti);
525 
526 	/*
527 	 * Header prediction: check for the two common cases
528 	 * of a uni-directional data xfer.  If the packet has
529 	 * no control flags, is in-sequence, the window didn't
530 	 * change and we're not retransmitting, it's a
531 	 * candidate.  If the length is zero and the ack moved
532 	 * forward, we're the sender side of the xfer.  Just
533 	 * free the data acked & wake any higher level process
534 	 * that was blocked waiting for space.  If the length
535 	 * is non-zero and the ack didn't move, we're the
536 	 * receiver side.  If we're getting packets in-order
537 	 * (the reassembly queue is empty), add the data to
538 	 * the socket buffer and note that we need a delayed ack.
539 	 */
540 	if (tp->t_state == TCPS_ESTABLISHED &&
541 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
542 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
543 	    ti->ti_seq == tp->rcv_nxt &&
544 	    tiwin && tiwin == tp->snd_wnd &&
545 	    tp->snd_nxt == tp->snd_max) {
546 
547 		/*
548 		 * If last ACK falls within this segment's sequence numbers,
549 		 *  record the timestamp.
550 		 */
551 		if (opti.ts_present &&
552 		    SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
553 		    SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
554 			tp->ts_recent_age = tcp_now;
555 			tp->ts_recent = opti.ts_val;
556 		}
557 
558 		if (ti->ti_len == 0) {
559 			if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
560 			    SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
561 			    tp->snd_cwnd >= tp->snd_wnd &&
562 			    tp->t_dupacks < tcprexmtthresh) {
563 				/*
564 				 * this is a pure ack for outstanding data.
565 				 */
566 				++tcpstat.tcps_predack;
567 				if (opti.ts_present)
568 					tcp_xmit_timer(tp,
569 					    tcp_now-opti.ts_ecr+1);
570 				else if (tp->t_rtt &&
571 				    SEQ_GT(ti->ti_ack, tp->t_rtseq))
572 					tcp_xmit_timer(tp, tp->t_rtt);
573 				acked = ti->ti_ack - tp->snd_una;
574 				tcpstat.tcps_rcvackpack++;
575 				tcpstat.tcps_rcvackbyte += acked;
576 				sbdrop(&so->so_snd, acked);
577 				tp->snd_una = ti->ti_ack;
578 				m_freem(m);
579 
580 				/*
581 				 * If all outstanding data are acked, stop
582 				 * retransmit timer, otherwise restart timer
583 				 * using current (possibly backed-off) value.
584 				 * If process is waiting for space,
585 				 * wakeup/selwakeup/signal.  If data
586 				 * are ready to send, let tcp_output
587 				 * decide between more output or persist.
588 				 */
589 				if (tp->snd_una == tp->snd_max)
590 					tp->t_timer[TCPT_REXMT] = 0;
591 				else if (tp->t_timer[TCPT_PERSIST] == 0)
592 					tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
593 
594 				if (sb_notify(&so->so_snd))
595 					sowwakeup(so);
596 				if (so->so_snd.sb_cc)
597 					(void) tcp_output(tp);
598 				return;
599 			}
600 		} else if (ti->ti_ack == tp->snd_una &&
601 		    tp->segq.lh_first == NULL &&
602 		    ti->ti_len <= sbspace(&so->so_rcv)) {
603 			/*
604 			 * this is a pure, in-sequence data packet
605 			 * with nothing on the reassembly queue and
606 			 * we have enough buffer space to take it.
607 			 */
608 			++tcpstat.tcps_preddat;
609 			tp->rcv_nxt += ti->ti_len;
610 			tcpstat.tcps_rcvpack++;
611 			tcpstat.tcps_rcvbyte += ti->ti_len;
612 			/*
613 			 * Drop TCP, IP headers and TCP options then add data
614 			 * to socket buffer.
615 			 */
616 			m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
617 			m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
618 			sbappend(&so->so_rcv, m);
619 			sorwakeup(so);
620 			TCP_SETUP_ACK(tp, ti);
621 			if (tp->t_flags & TF_ACKNOW)
622 				(void) tcp_output(tp);
623 			return;
624 		}
625 	}
626 
627 	/*
628 	 * Drop TCP, IP headers and TCP options.
629 	 */
630 	hdroptlen  = sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);
631 	m->m_data += hdroptlen;
632 	m->m_len  -= hdroptlen;
633 
634 	/*
635 	 * Calculate amount of space in receive window,
636 	 * and then do TCP input processing.
637 	 * Receive window is amount of space in rcv queue,
638 	 * but not less than advertised window.
639 	 */
640 	{ int win;
641 
642 	win = sbspace(&so->so_rcv);
643 	if (win < 0)
644 		win = 0;
645 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
646 	}
647 
648 	switch (tp->t_state) {
649 
650 	/*
651 	 * If the state is SYN_SENT:
652 	 *	if seg contains an ACK, but not for our SYN, drop the input.
653 	 *	if seg contains a RST, then drop the connection.
654 	 *	if seg does not contain SYN, then drop it.
655 	 * Otherwise this is an acceptable SYN segment
656 	 *	initialize tp->rcv_nxt and tp->irs
657 	 *	if seg contains ack then advance tp->snd_una
658 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
659 	 *	arrange for segment to be acked (eventually)
660 	 *	continue processing rest of data/controls, beginning with URG
661 	 */
662 	case TCPS_SYN_SENT:
663 		if ((tiflags & TH_ACK) &&
664 		    (SEQ_LEQ(ti->ti_ack, tp->iss) ||
665 		     SEQ_GT(ti->ti_ack, tp->snd_max)))
666 			goto dropwithreset;
667 		if (tiflags & TH_RST) {
668 			if (tiflags & TH_ACK)
669 				tp = tcp_drop(tp, ECONNREFUSED);
670 			goto drop;
671 		}
672 		if ((tiflags & TH_SYN) == 0)
673 			goto drop;
674 		if (tiflags & TH_ACK) {
675 			tp->snd_una = ti->ti_ack;
676 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
677 				tp->snd_nxt = tp->snd_una;
678 		}
679 		tp->t_timer[TCPT_REXMT] = 0;
680 		tp->irs = ti->ti_seq;
681 		tcp_rcvseqinit(tp);
682 		tp->t_flags |= TF_ACKNOW;
683 		tcp_mss_from_peer(tp, opti.maxseg);
684 		tcp_rmx_rtt(tp);
685 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
686 			tcpstat.tcps_connects++;
687 			soisconnected(so);
688 			tcp_established(tp);
689 			/* Do window scaling on this connection? */
690 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
691 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
692 				tp->snd_scale = tp->requested_s_scale;
693 				tp->rcv_scale = tp->request_r_scale;
694 			}
695 			(void) tcp_reass(tp, (struct tcpiphdr *)0,
696 				(struct mbuf *)0);
697 			/*
698 			 * if we didn't have to retransmit the SYN,
699 			 * use its rtt as our initial srtt & rtt var.
700 			 */
701 			if (tp->t_rtt)
702 				tcp_xmit_timer(tp, tp->t_rtt);
703 		} else
704 			tp->t_state = TCPS_SYN_RECEIVED;
705 
706 		/*
707 		 * Advance ti->ti_seq to correspond to first data byte.
708 		 * If data, trim to stay within window,
709 		 * dropping FIN if necessary.
710 		 */
711 		ti->ti_seq++;
712 		if (ti->ti_len > tp->rcv_wnd) {
713 			todrop = ti->ti_len - tp->rcv_wnd;
714 			m_adj(m, -todrop);
715 			ti->ti_len = tp->rcv_wnd;
716 			tiflags &= ~TH_FIN;
717 			tcpstat.tcps_rcvpackafterwin++;
718 			tcpstat.tcps_rcvbyteafterwin += todrop;
719 		}
720 		tp->snd_wl1 = ti->ti_seq - 1;
721 		tp->rcv_up = ti->ti_seq;
722 		goto step6;
723 
724 	/*
725 	 * If the state is SYN_RECEIVED:
726 	 *	If seg contains an ACK, but not for our SYN, drop the input
727 	 *	and generate an RST.  See page 36, rfc793
728 	 */
729 	case TCPS_SYN_RECEIVED:
730 		if ((tiflags & TH_ACK) &&
731 		    (SEQ_LEQ(ti->ti_ack, tp->iss) ||
732 		     SEQ_GT(ti->ti_ack, tp->snd_max)))
733 			goto dropwithreset;
734 		break;
735 	}
736 
737 	/*
738 	 * States other than LISTEN or SYN_SENT.
739 	 * First check timestamp, if present.
740 	 * Then check that at least some bytes of segment are within
741 	 * receive window.  If segment begins before rcv_nxt,
742 	 * drop leading data (and SYN); if nothing left, just ack.
743 	 *
744 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
745 	 * and it's less than ts_recent, drop it.
746 	 */
747 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
748 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
749 
750 		/* Check to see if ts_recent is over 24 days old.  */
751 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
752 			/*
753 			 * Invalidate ts_recent.  If this segment updates
754 			 * ts_recent, the age will be reset later and ts_recent
755 			 * will get a valid value.  If it does not, setting
756 			 * ts_recent to zero will at least satisfy the
757 			 * requirement that zero be placed in the timestamp
758 			 * echo reply when ts_recent isn't valid.  The
759 			 * age isn't reset until we get a valid ts_recent
760 			 * because we don't want out-of-order segments to be
761 			 * dropped when ts_recent is old.
762 			 */
763 			tp->ts_recent = 0;
764 		} else {
765 			tcpstat.tcps_rcvduppack++;
766 			tcpstat.tcps_rcvdupbyte += ti->ti_len;
767 			tcpstat.tcps_pawsdrop++;
768 			goto dropafterack;
769 		}
770 	}
771 
772 	todrop = tp->rcv_nxt - ti->ti_seq;
773 	if (todrop > 0) {
774 		if (tiflags & TH_SYN) {
775 			tiflags &= ~TH_SYN;
776 			ti->ti_seq++;
777 			if (ti->ti_urp > 1)
778 				ti->ti_urp--;
779 			else {
780 				tiflags &= ~TH_URG;
781 				ti->ti_urp = 0;
782 			}
783 			todrop--;
784 		}
785 		if (todrop >= ti->ti_len) {
786 			/*
787 			 * Any valid FIN must be to the left of the
788 			 * window.  At this point, FIN must be a
789 			 * duplicate or out-of-sequence, so drop it.
790 			 */
791 			tiflags &= ~TH_FIN;
792 			/*
793 			 * Send ACK to resynchronize, and drop any data,
794 			 * but keep on processing for RST or ACK.
795 			 */
796 			tp->t_flags |= TF_ACKNOW;
797 			tcpstat.tcps_rcvdupbyte += todrop = ti->ti_len;
798 			tcpstat.tcps_rcvduppack++;
799 		} else {
800 			tcpstat.tcps_rcvpartduppack++;
801 			tcpstat.tcps_rcvpartdupbyte += todrop;
802 		}
803 		m_adj(m, todrop);
804 		ti->ti_seq += todrop;
805 		ti->ti_len -= todrop;
806 		if (ti->ti_urp > todrop)
807 			ti->ti_urp -= todrop;
808 		else {
809 			tiflags &= ~TH_URG;
810 			ti->ti_urp = 0;
811 		}
812 	}
813 
814 	/*
815 	 * If new data are received on a connection after the
816 	 * user processes are gone, then RST the other end.
817 	 */
818 	if ((so->so_state & SS_NOFDREF) &&
819 	    tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
820 		tp = tcp_close(tp);
821 		tcpstat.tcps_rcvafterclose++;
822 		goto dropwithreset;
823 	}
824 
825 	/*
826 	 * If segment ends after window, drop trailing data
827 	 * (and PUSH and FIN); if nothing left, just ACK.
828 	 */
829 	todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
830 	if (todrop > 0) {
831 		tcpstat.tcps_rcvpackafterwin++;
832 		if (todrop >= ti->ti_len) {
833 			tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
834 			/*
835 			 * If a new connection request is received
836 			 * while in TIME_WAIT, drop the old connection
837 			 * and start over if the sequence numbers
838 			 * are above the previous ones.
839 			 */
840 			if (tiflags & TH_SYN &&
841 			    tp->t_state == TCPS_TIME_WAIT &&
842 			    SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
843 				iss = tcp_new_iss(tp, sizeof(struct tcpcb),
844 						  tp->rcv_nxt);
845 				tp = tcp_close(tp);
846 				/*
847 				 * We have already advanced the mbuf
848 				 * pointers past the IP+TCP headers and
849 				 * options.  Restore those pointers before
850 				 * attempting to use the TCP header again.
851 				 */
852 				m->m_data -= hdroptlen;
853 				m->m_len  += hdroptlen;
854 				goto findpcb;
855 			}
856 			/*
857 			 * If window is closed can only take segments at
858 			 * window edge, and have to drop data and PUSH from
859 			 * incoming segments.  Continue processing, but
860 			 * remember to ack.  Otherwise, drop segment
861 			 * and ack.
862 			 */
863 			if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
864 				tp->t_flags |= TF_ACKNOW;
865 				tcpstat.tcps_rcvwinprobe++;
866 			} else
867 				goto dropafterack;
868 		} else
869 			tcpstat.tcps_rcvbyteafterwin += todrop;
870 		m_adj(m, -todrop);
871 		ti->ti_len -= todrop;
872 		tiflags &= ~(TH_PUSH|TH_FIN);
873 	}
874 
875 	/*
876 	 * If last ACK falls within this segment's sequence numbers,
877 	 * record its timestamp.
878 	 */
879 	if (opti.ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
880 	    SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
881 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
882 		tp->ts_recent_age = tcp_now;
883 		tp->ts_recent = opti.ts_val;
884 	}
885 
886 	/*
887 	 * If the RST bit is set examine the state:
888 	 *    SYN_RECEIVED STATE:
889 	 *	If passive open, return to LISTEN state.
890 	 *	If active open, inform user that connection was refused.
891 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
892 	 *	Inform user that connection was reset, and close tcb.
893 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
894 	 *	Close the tcb.
895 	 */
896 	if (tiflags&TH_RST) switch (tp->t_state) {
897 
898 	case TCPS_SYN_RECEIVED:
899 		so->so_error = ECONNREFUSED;
900 		goto close;
901 
902 	case TCPS_ESTABLISHED:
903 	case TCPS_FIN_WAIT_1:
904 	case TCPS_FIN_WAIT_2:
905 	case TCPS_CLOSE_WAIT:
906 		so->so_error = ECONNRESET;
907 	close:
908 		tp->t_state = TCPS_CLOSED;
909 		tcpstat.tcps_drops++;
910 		tp = tcp_close(tp);
911 		goto drop;
912 
913 	case TCPS_CLOSING:
914 	case TCPS_LAST_ACK:
915 	case TCPS_TIME_WAIT:
916 		tp = tcp_close(tp);
917 		goto drop;
918 	}
919 
920 	/*
921 	 * If a SYN is in the window, then this is an
922 	 * error and we send an RST and drop the connection.
923 	 */
924 	if (tiflags & TH_SYN) {
925 		tp = tcp_drop(tp, ECONNRESET);
926 		goto dropwithreset;
927 	}
928 
929 	/*
930 	 * If the ACK bit is off we drop the segment and return.
931 	 */
932 	if ((tiflags & TH_ACK) == 0)
933 		goto drop;
934 
935 	/*
936 	 * Ack processing.
937 	 */
938 	switch (tp->t_state) {
939 
940 	/*
941 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
942 	 * ESTABLISHED state and continue processing, otherwise
943 	 * send an RST.
944 	 */
945 	case TCPS_SYN_RECEIVED:
946 		if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
947 		    SEQ_GT(ti->ti_ack, tp->snd_max))
948 			goto dropwithreset;
949 		tcpstat.tcps_connects++;
950 		soisconnected(so);
951 		tcp_established(tp);
952 		/* Do window scaling? */
953 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
954 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
955 			tp->snd_scale = tp->requested_s_scale;
956 			tp->rcv_scale = tp->request_r_scale;
957 		}
958 		(void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
959 		tp->snd_wl1 = ti->ti_seq - 1;
960 		/* fall into ... */
961 
962 	/*
963 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
964 	 * ACKs.  If the ack is in the range
965 	 *	tp->snd_una < ti->ti_ack <= tp->snd_max
966 	 * then advance tp->snd_una to ti->ti_ack and drop
967 	 * data from the retransmission queue.  If this ACK reflects
968 	 * more up to date window information we update our window information.
969 	 */
970 	case TCPS_ESTABLISHED:
971 	case TCPS_FIN_WAIT_1:
972 	case TCPS_FIN_WAIT_2:
973 	case TCPS_CLOSE_WAIT:
974 	case TCPS_CLOSING:
975 	case TCPS_LAST_ACK:
976 	case TCPS_TIME_WAIT:
977 
978 		if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
979 			if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
980 				tcpstat.tcps_rcvdupack++;
981 				/*
982 				 * If we have outstanding data (other than
983 				 * a window probe), this is a completely
984 				 * duplicate ack (ie, window info didn't
985 				 * change), the ack is the biggest we've
986 				 * seen and we've seen exactly our rexmt
987 				 * threshhold of them, assume a packet
988 				 * has been dropped and retransmit it.
989 				 * Kludge snd_nxt & the congestion
990 				 * window so we send only this one
991 				 * packet.
992 				 *
993 				 * We know we're losing at the current
994 				 * window size so do congestion avoidance
995 				 * (set ssthresh to half the current window
996 				 * and pull our congestion window back to
997 				 * the new ssthresh).
998 				 *
999 				 * Dup acks mean that packets have left the
1000 				 * network (they're now cached at the receiver)
1001 				 * so bump cwnd by the amount in the receiver
1002 				 * to keep a constant cwnd packets in the
1003 				 * network.
1004 				 */
1005 				if (tp->t_timer[TCPT_REXMT] == 0 ||
1006 				    ti->ti_ack != tp->snd_una)
1007 					tp->t_dupacks = 0;
1008 				else if (++tp->t_dupacks == tcprexmtthresh) {
1009 					tcp_seq onxt = tp->snd_nxt;
1010 					u_int win =
1011 					    min(tp->snd_wnd, tp->snd_cwnd) /
1012 					    2 /	tp->t_segsz;
1013 
1014 					if (win < 2)
1015 						win = 2;
1016 					tp->snd_ssthresh = win * tp->t_segsz;
1017 					tp->t_timer[TCPT_REXMT] = 0;
1018 					tp->t_rtt = 0;
1019 					tp->snd_nxt = ti->ti_ack;
1020 					tp->snd_cwnd = tp->t_segsz;
1021 					(void) tcp_output(tp);
1022 					tp->snd_cwnd = tp->snd_ssthresh +
1023 					       tp->t_segsz * tp->t_dupacks;
1024 					if (SEQ_GT(onxt, tp->snd_nxt))
1025 						tp->snd_nxt = onxt;
1026 					goto drop;
1027 				} else if (tp->t_dupacks > tcprexmtthresh) {
1028 					tp->snd_cwnd += tp->t_segsz;
1029 					(void) tcp_output(tp);
1030 					goto drop;
1031 				}
1032 			} else
1033 				tp->t_dupacks = 0;
1034 			break;
1035 		}
1036 		/*
1037 		 * If the congestion window was inflated to account
1038 		 * for the other side's cached packets, retract it.
1039 		 */
1040 		if (tp->t_dupacks >= tcprexmtthresh &&
1041 		    tp->snd_cwnd > tp->snd_ssthresh)
1042 			tp->snd_cwnd = tp->snd_ssthresh;
1043 		tp->t_dupacks = 0;
1044 		if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
1045 			tcpstat.tcps_rcvacktoomuch++;
1046 			goto dropafterack;
1047 		}
1048 		acked = ti->ti_ack - tp->snd_una;
1049 		tcpstat.tcps_rcvackpack++;
1050 		tcpstat.tcps_rcvackbyte += acked;
1051 
1052 		/*
1053 		 * If we have a timestamp reply, update smoothed
1054 		 * round trip time.  If no timestamp is present but
1055 		 * transmit timer is running and timed sequence
1056 		 * number was acked, update smoothed round trip time.
1057 		 * Since we now have an rtt measurement, cancel the
1058 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1059 		 * Recompute the initial retransmit timer.
1060 		 */
1061 		if (opti.ts_present)
1062 			tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
1063 		else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
1064 			tcp_xmit_timer(tp,tp->t_rtt);
1065 
1066 		/*
1067 		 * If all outstanding data is acked, stop retransmit
1068 		 * timer and remember to restart (more output or persist).
1069 		 * If there is more data to be acked, restart retransmit
1070 		 * timer, using current (possibly backed-off) value.
1071 		 */
1072 		if (ti->ti_ack == tp->snd_max) {
1073 			tp->t_timer[TCPT_REXMT] = 0;
1074 			needoutput = 1;
1075 		} else if (tp->t_timer[TCPT_PERSIST] == 0)
1076 			tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1077 		/*
1078 		 * When new data is acked, open the congestion window.
1079 		 * If the window gives us less than ssthresh packets
1080 		 * in flight, open exponentially (segsz per packet).
1081 		 * Otherwise open linearly: segsz per window
1082 		 * (segsz^2 / cwnd per packet), plus a constant
1083 		 * fraction of a packet (segsz/8) to help larger windows
1084 		 * open quickly enough.
1085 		 */
1086 		{
1087 		register u_int cw = tp->snd_cwnd;
1088 		register u_int incr = tp->t_segsz;
1089 
1090 		if (cw > tp->snd_ssthresh)
1091 			incr = incr * incr / cw;
1092 		tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1093 		}
1094 		if (acked > so->so_snd.sb_cc) {
1095 			tp->snd_wnd -= so->so_snd.sb_cc;
1096 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1097 			ourfinisacked = 1;
1098 		} else {
1099 			sbdrop(&so->so_snd, acked);
1100 			tp->snd_wnd -= acked;
1101 			ourfinisacked = 0;
1102 		}
1103 		if (sb_notify(&so->so_snd))
1104 			sowwakeup(so);
1105 		tp->snd_una = ti->ti_ack;
1106 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1107 			tp->snd_nxt = tp->snd_una;
1108 
1109 		switch (tp->t_state) {
1110 
1111 		/*
1112 		 * In FIN_WAIT_1 STATE in addition to the processing
1113 		 * for the ESTABLISHED state if our FIN is now acknowledged
1114 		 * then enter FIN_WAIT_2.
1115 		 */
1116 		case TCPS_FIN_WAIT_1:
1117 			if (ourfinisacked) {
1118 				/*
1119 				 * If we can't receive any more
1120 				 * data, then closing user can proceed.
1121 				 * Starting the timer is contrary to the
1122 				 * specification, but if we don't get a FIN
1123 				 * we'll hang forever.
1124 				 */
1125 				if (so->so_state & SS_CANTRCVMORE) {
1126 					soisdisconnected(so);
1127 					tp->t_timer[TCPT_2MSL] = tcp_maxidle;
1128 				}
1129 				tp->t_state = TCPS_FIN_WAIT_2;
1130 			}
1131 			break;
1132 
1133 	 	/*
1134 		 * In CLOSING STATE in addition to the processing for
1135 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1136 		 * then enter the TIME-WAIT state, otherwise ignore
1137 		 * the segment.
1138 		 */
1139 		case TCPS_CLOSING:
1140 			if (ourfinisacked) {
1141 				tp->t_state = TCPS_TIME_WAIT;
1142 				tcp_canceltimers(tp);
1143 				tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1144 				soisdisconnected(so);
1145 			}
1146 			break;
1147 
1148 		/*
1149 		 * In LAST_ACK, we may still be waiting for data to drain
1150 		 * and/or to be acked, as well as for the ack of our FIN.
1151 		 * If our FIN is now acknowledged, delete the TCB,
1152 		 * enter the closed state and return.
1153 		 */
1154 		case TCPS_LAST_ACK:
1155 			if (ourfinisacked) {
1156 				tp = tcp_close(tp);
1157 				goto drop;
1158 			}
1159 			break;
1160 
1161 		/*
1162 		 * In TIME_WAIT state the only thing that should arrive
1163 		 * is a retransmission of the remote FIN.  Acknowledge
1164 		 * it and restart the finack timer.
1165 		 */
1166 		case TCPS_TIME_WAIT:
1167 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1168 			goto dropafterack;
1169 		}
1170 	}
1171 
1172 step6:
1173 	/*
1174 	 * Update window information.
1175 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1176 	 */
1177 	if (((tiflags & TH_ACK) && SEQ_LT(tp->snd_wl1, ti->ti_seq)) ||
1178 	    (tp->snd_wl1 == ti->ti_seq && SEQ_LT(tp->snd_wl2, ti->ti_ack)) ||
1179 	    (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)) {
1180 		/* keep track of pure window updates */
1181 		if (ti->ti_len == 0 &&
1182 		    tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
1183 			tcpstat.tcps_rcvwinupd++;
1184 		tp->snd_wnd = tiwin;
1185 		tp->snd_wl1 = ti->ti_seq;
1186 		tp->snd_wl2 = ti->ti_ack;
1187 		if (tp->snd_wnd > tp->max_sndwnd)
1188 			tp->max_sndwnd = tp->snd_wnd;
1189 		needoutput = 1;
1190 	}
1191 
1192 	/*
1193 	 * Process segments with URG.
1194 	 */
1195 	if ((tiflags & TH_URG) && ti->ti_urp &&
1196 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1197 		/*
1198 		 * This is a kludge, but if we receive and accept
1199 		 * random urgent pointers, we'll crash in
1200 		 * soreceive.  It's hard to imagine someone
1201 		 * actually wanting to send this much urgent data.
1202 		 */
1203 		if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
1204 			ti->ti_urp = 0;			/* XXX */
1205 			tiflags &= ~TH_URG;		/* XXX */
1206 			goto dodata;			/* XXX */
1207 		}
1208 		/*
1209 		 * If this segment advances the known urgent pointer,
1210 		 * then mark the data stream.  This should not happen
1211 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1212 		 * a FIN has been received from the remote side.
1213 		 * In these states we ignore the URG.
1214 		 *
1215 		 * According to RFC961 (Assigned Protocols),
1216 		 * the urgent pointer points to the last octet
1217 		 * of urgent data.  We continue, however,
1218 		 * to consider it to indicate the first octet
1219 		 * of data past the urgent section as the original
1220 		 * spec states (in one of two places).
1221 		 */
1222 		if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1223 			tp->rcv_up = ti->ti_seq + ti->ti_urp;
1224 			so->so_oobmark = so->so_rcv.sb_cc +
1225 			    (tp->rcv_up - tp->rcv_nxt) - 1;
1226 			if (so->so_oobmark == 0)
1227 				so->so_state |= SS_RCVATMARK;
1228 			sohasoutofband(so);
1229 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1230 		}
1231 		/*
1232 		 * Remove out of band data so doesn't get presented to user.
1233 		 * This can happen independent of advancing the URG pointer,
1234 		 * but if two URG's are pending at once, some out-of-band
1235 		 * data may creep in... ick.
1236 		 */
1237 		if (ti->ti_urp <= (u_int16_t) ti->ti_len
1238 #ifdef SO_OOBINLINE
1239 		     && (so->so_options & SO_OOBINLINE) == 0
1240 #endif
1241 		     )
1242 			tcp_pulloutofband(so, ti, m);
1243 	} else
1244 		/*
1245 		 * If no out of band data is expected,
1246 		 * pull receive urgent pointer along
1247 		 * with the receive window.
1248 		 */
1249 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1250 			tp->rcv_up = tp->rcv_nxt;
1251 dodata:							/* XXX */
1252 
1253 	/*
1254 	 * Process the segment text, merging it into the TCP sequencing queue,
1255 	 * and arranging for acknowledgment of receipt if necessary.
1256 	 * This process logically involves adjusting tp->rcv_wnd as data
1257 	 * is presented to the user (this happens in tcp_usrreq.c,
1258 	 * case PRU_RCVD).  If a FIN has already been received on this
1259 	 * connection then we just ignore the text.
1260 	 */
1261 	if ((ti->ti_len || (tiflags & TH_FIN)) &&
1262 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1263 		TCP_REASS(tp, ti, m, so, tiflags);
1264 		/*
1265 		 * Note the amount of data that peer has sent into
1266 		 * our window, in order to estimate the sender's
1267 		 * buffer size.
1268 		 */
1269 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1270 	} else {
1271 		m_freem(m);
1272 		tiflags &= ~TH_FIN;
1273 	}
1274 
1275 	/*
1276 	 * If FIN is received ACK the FIN and let the user know
1277 	 * that the connection is closing.  Ignore a FIN received before
1278 	 * the connection is fully established.
1279 	 */
1280 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
1281 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1282 			socantrcvmore(so);
1283 			tp->t_flags |= TF_ACKNOW;
1284 			tp->rcv_nxt++;
1285 		}
1286 		switch (tp->t_state) {
1287 
1288 	 	/*
1289 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
1290 		 */
1291 		case TCPS_ESTABLISHED:
1292 			tp->t_state = TCPS_CLOSE_WAIT;
1293 			break;
1294 
1295 	 	/*
1296 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1297 		 * enter the CLOSING state.
1298 		 */
1299 		case TCPS_FIN_WAIT_1:
1300 			tp->t_state = TCPS_CLOSING;
1301 			break;
1302 
1303 	 	/*
1304 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1305 		 * starting the time-wait timer, turning off the other
1306 		 * standard timers.
1307 		 */
1308 		case TCPS_FIN_WAIT_2:
1309 			tp->t_state = TCPS_TIME_WAIT;
1310 			tcp_canceltimers(tp);
1311 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1312 			soisdisconnected(so);
1313 			break;
1314 
1315 		/*
1316 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1317 		 */
1318 		case TCPS_TIME_WAIT:
1319 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1320 			break;
1321 		}
1322 	}
1323 	if (so->so_options & SO_DEBUG)
1324 		tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1325 
1326 	/*
1327 	 * Return any desired output.
1328 	 */
1329 	if (needoutput || (tp->t_flags & TF_ACKNOW))
1330 		(void) tcp_output(tp);
1331 	return;
1332 
1333 badsyn:
1334 	/*
1335 	 * Received a bad SYN.  Increment counters and dropwithreset.
1336 	 */
1337 	tcpstat.tcps_badsyn++;
1338 	tp = NULL;
1339 	goto dropwithreset;
1340 
1341 dropafterack:
1342 	/*
1343 	 * Generate an ACK dropping incoming segment if it occupies
1344 	 * sequence space, where the ACK reflects our state.
1345 	 */
1346 	if (tiflags & TH_RST)
1347 		goto drop;
1348 	m_freem(m);
1349 	tp->t_flags |= TF_ACKNOW;
1350 	(void) tcp_output(tp);
1351 	return;
1352 
1353 dropwithreset:
1354 	/*
1355 	 * Generate a RST, dropping incoming segment.
1356 	 * Make ACK acceptable to originator of segment.
1357 	 * Don't bother to respond if destination was broadcast/multicast.
1358 	 */
1359 	if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
1360 	    IN_MULTICAST(ti->ti_dst.s_addr))
1361 		goto drop;
1362 	if (tiflags & TH_ACK)
1363 		(void)tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1364 	else {
1365 		if (tiflags & TH_SYN)
1366 			ti->ti_len++;
1367 		(void)tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1368 		    TH_RST|TH_ACK);
1369 	}
1370 	return;
1371 
1372 drop:
1373 	/*
1374 	 * Drop space held by incoming segment and return.
1375 	 */
1376 	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1377 		tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1378 	m_freem(m);
1379 	return;
1380 #ifndef TUBA_INCLUDE
1381 }
1382 
1383 void
1384 tcp_dooptions(tp, cp, cnt, ti, oi)
1385 	struct tcpcb *tp;
1386 	u_char *cp;
1387 	int cnt;
1388 	struct tcpiphdr *ti;
1389 	struct tcp_opt_info *oi;
1390 {
1391 	u_int16_t mss;
1392 	int opt, optlen;
1393 
1394 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1395 		opt = cp[0];
1396 		if (opt == TCPOPT_EOL)
1397 			break;
1398 		if (opt == TCPOPT_NOP)
1399 			optlen = 1;
1400 		else {
1401 			optlen = cp[1];
1402 			if (optlen <= 0)
1403 				break;
1404 		}
1405 		switch (opt) {
1406 
1407 		default:
1408 			continue;
1409 
1410 		case TCPOPT_MAXSEG:
1411 			if (optlen != TCPOLEN_MAXSEG)
1412 				continue;
1413 			if (!(ti->ti_flags & TH_SYN))
1414 				continue;
1415 			bcopy(cp + 2, &mss, sizeof(mss));
1416 			oi->maxseg = ntohs(mss);
1417 			break;
1418 
1419 		case TCPOPT_WINDOW:
1420 			if (optlen != TCPOLEN_WINDOW)
1421 				continue;
1422 			if (!(ti->ti_flags & TH_SYN))
1423 				continue;
1424 			tp->t_flags |= TF_RCVD_SCALE;
1425 			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
1426 			break;
1427 
1428 		case TCPOPT_TIMESTAMP:
1429 			if (optlen != TCPOLEN_TIMESTAMP)
1430 				continue;
1431 			oi->ts_present = 1;
1432 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
1433 			NTOHL(oi->ts_val);
1434 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
1435 			NTOHL(oi->ts_ecr);
1436 
1437 			/*
1438 			 * A timestamp received in a SYN makes
1439 			 * it ok to send timestamp requests and replies.
1440 			 */
1441 			if (ti->ti_flags & TH_SYN) {
1442 				tp->t_flags |= TF_RCVD_TSTMP;
1443 				tp->ts_recent = oi->ts_val;
1444 				tp->ts_recent_age = tcp_now;
1445 			}
1446 			break;
1447 		}
1448 	}
1449 }
1450 
1451 /*
1452  * Pull out of band byte out of a segment so
1453  * it doesn't appear in the user's data queue.
1454  * It is still reflected in the segment length for
1455  * sequencing purposes.
1456  */
1457 void
1458 tcp_pulloutofband(so, ti, m)
1459 	struct socket *so;
1460 	struct tcpiphdr *ti;
1461 	register struct mbuf *m;
1462 {
1463 	int cnt = ti->ti_urp - 1;
1464 
1465 	while (cnt >= 0) {
1466 		if (m->m_len > cnt) {
1467 			char *cp = mtod(m, caddr_t) + cnt;
1468 			struct tcpcb *tp = sototcpcb(so);
1469 
1470 			tp->t_iobc = *cp;
1471 			tp->t_oobflags |= TCPOOB_HAVEDATA;
1472 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1473 			m->m_len--;
1474 			return;
1475 		}
1476 		cnt -= m->m_len;
1477 		m = m->m_next;
1478 		if (m == 0)
1479 			break;
1480 	}
1481 	panic("tcp_pulloutofband");
1482 }
1483 
1484 /*
1485  * Collect new round-trip time estimate
1486  * and update averages and current timeout.
1487  */
1488 void
1489 tcp_xmit_timer(tp, rtt)
1490 	register struct tcpcb *tp;
1491 	short rtt;
1492 {
1493 	register short delta;
1494 
1495 	tcpstat.tcps_rttupdated++;
1496 	--rtt;
1497 	if (tp->t_srtt != 0) {
1498 		/*
1499 		 * srtt is stored as fixed point with 3 bits after the
1500 		 * binary point (i.e., scaled by 8).  The following magic
1501 		 * is equivalent to the smoothing algorithm in rfc793 with
1502 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1503 		 * point).  Adjust rtt to origin 0.
1504 		 */
1505 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
1506 		if ((tp->t_srtt += delta) <= 0)
1507 			tp->t_srtt = 1 << 2;
1508 		/*
1509 		 * We accumulate a smoothed rtt variance (actually, a
1510 		 * smoothed mean difference), then set the retransmit
1511 		 * timer to smoothed rtt + 4 times the smoothed variance.
1512 		 * rttvar is stored as fixed point with 2 bits after the
1513 		 * binary point (scaled by 4).  The following is
1514 		 * equivalent to rfc793 smoothing with an alpha of .75
1515 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
1516 		 * rfc793's wired-in beta.
1517 		 */
1518 		if (delta < 0)
1519 			delta = -delta;
1520 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1521 		if ((tp->t_rttvar += delta) <= 0)
1522 			tp->t_rttvar = 1 << 2;
1523 	} else {
1524 		/*
1525 		 * No rtt measurement yet - use the unsmoothed rtt.
1526 		 * Set the variance to half the rtt (so our first
1527 		 * retransmit happens at 3*rtt).
1528 		 */
1529 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
1530 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
1531 	}
1532 	tp->t_rtt = 0;
1533 	tp->t_rxtshift = 0;
1534 
1535 	/*
1536 	 * the retransmit should happen at rtt + 4 * rttvar.
1537 	 * Because of the way we do the smoothing, srtt and rttvar
1538 	 * will each average +1/2 tick of bias.  When we compute
1539 	 * the retransmit timer, we want 1/2 tick of rounding and
1540 	 * 1 extra tick because of +-1/2 tick uncertainty in the
1541 	 * firing of the timer.  The bias will give us exactly the
1542 	 * 1.5 tick we need.  But, because the bias is
1543 	 * statistical, we have to test that we don't drop below
1544 	 * the minimum feasible timer (which is 2 ticks).
1545 	 */
1546 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1547 	    rtt + 2, TCPTV_REXMTMAX);
1548 
1549 	/*
1550 	 * We received an ack for a packet that wasn't retransmitted;
1551 	 * it is probably safe to discard any error indications we've
1552 	 * received recently.  This isn't quite right, but close enough
1553 	 * for now (a route might have failed after we sent a segment,
1554 	 * and the return path might not be symmetrical).
1555 	 */
1556 	tp->t_softerror = 0;
1557 }
1558 
1559 /*
1560  * TCP compressed state engine.  Currently used to hold compressed
1561  * state for SYN_RECEIVED.
1562  */
1563 
1564 u_long	syn_cache_count;
1565 u_int32_t syn_hash1, syn_hash2;
1566 
1567 #define SYN_HASH(sa, sp, dp) \
1568 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
1569 				     ((u_int32_t)(sp)))^syn_hash2)) \
1570 	 & 0x7fffffff)
1571 
1572 #define	eptosp(ep, e, s)	((struct s *)((char *)(ep) - \
1573 			    ((char *)(&((struct s *)0)->e) - (char *)0)))
1574 
1575 #define	SYN_CACHE_RM(sc, p, scp) {					\
1576 	*(p) = (sc)->sc_next;						\
1577 	if ((sc)->sc_next)						\
1578 		(sc)->sc_next->sc_timer += (sc)->sc_timer;		\
1579 	else {								\
1580 		(scp)->sch_timer_sum -= (sc)->sc_timer;			\
1581 		if ((scp)->sch_timer_sum <= 0)				\
1582 			(scp)->sch_timer_sum = -1;			\
1583 		/* If need be, fix up the last pointer */		\
1584 		if ((scp)->sch_first)					\
1585 			(scp)->sch_last = eptosp(p, sc_next, syn_cache); \
1586 	}								\
1587 	(scp)->sch_length--;						\
1588 	syn_cache_count--;						\
1589 }
1590 
1591 void
1592 syn_cache_insert(sc, prevp, headp)
1593 	struct syn_cache *sc;
1594 	struct syn_cache ***prevp;
1595 	struct syn_cache_head **headp;
1596 {
1597 	struct syn_cache_head *scp, *scp2, *sce;
1598 	struct syn_cache *sc2;
1599 	static u_int timeo_val;
1600 	int s;
1601 
1602 	/* Initialize the hash secrets when adding the first entry */
1603 	if (syn_cache_count == 0) {
1604 		struct timeval tv;
1605 		microtime(&tv);
1606 		syn_hash1 = random() ^ (u_long)&sc;
1607 		syn_hash2 = random() ^ tv.tv_usec;
1608 	}
1609 
1610 	sc->sc_hash = SYN_HASH(&sc->sc_src, sc->sc_sport, sc->sc_dport);
1611 	sc->sc_next = NULL;
1612 	scp = &tcp_syn_cache[sc->sc_hash % tcp_syn_cache_size];
1613 	*headp = scp;
1614 
1615 	/*
1616 	 * Make sure that we don't overflow the per-bucket
1617 	 * limit or the total cache size limit.
1618 	 */
1619 	s = splsoftnet();
1620 	if (scp->sch_length >= tcp_syn_bucket_limit) {
1621 		tcpstat.tcps_sc_bucketoverflow++;
1622 		sc2 = scp->sch_first;
1623 		scp->sch_first = sc2->sc_next;
1624 		FREE(sc2, M_PCB);
1625 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
1626 		tcpstat.tcps_sc_overflowed++;
1627 		/*
1628 		 * The cache is full.  Toss the first (i.e, oldest)
1629 		 * element in this bucket.
1630 		 */
1631 		scp2 = scp;
1632 		if (scp2->sch_first == NULL) {
1633 			sce = &tcp_syn_cache[tcp_syn_cache_size];
1634 			for (++scp2; scp2 != scp; scp2++) {
1635 				if (scp2 >= sce)
1636 					scp2 = &tcp_syn_cache[0];
1637 				if (scp2->sch_first)
1638 					break;
1639 			}
1640 		}
1641 		sc2 = scp2->sch_first;
1642 		if (sc2 == NULL) {
1643 			FREE(sc, M_PCB);
1644 			return;
1645 		}
1646 		if ((scp2->sch_first = sc2->sc_next) == NULL)
1647 			scp2->sch_last = NULL;
1648 		else
1649 			sc2->sc_next->sc_timer += sc2->sc_timer;
1650 		FREE(sc2, M_PCB);
1651 	} else {
1652 		scp->sch_length++;
1653 		syn_cache_count++;
1654 	}
1655 	tcpstat.tcps_sc_added++;
1656 
1657 	/*
1658 	 * Put it into the bucket.
1659 	 */
1660 	if (scp->sch_first == NULL)
1661 		*prevp = &scp->sch_first;
1662 	else {
1663 		*prevp = &scp->sch_last->sc_next;
1664 		tcpstat.tcps_sc_collisions++;
1665 	}
1666 	**prevp = sc;
1667 	scp->sch_last = sc;
1668 
1669 	/*
1670 	 * If the timeout value has changed
1671 	 *   1) force it to fit in a u_char
1672 	 *   2) Run the timer routine to truncate all
1673 	 *	existing entries to the new timeout value.
1674 	 */
1675 	if (timeo_val != tcp_syn_cache_timeo) {
1676 		tcp_syn_cache_timeo = min(tcp_syn_cache_timeo, UCHAR_MAX);
1677 		if (timeo_val > tcp_syn_cache_timeo)
1678 			syn_cache_timer(timeo_val - tcp_syn_cache_timeo);
1679 		timeo_val = tcp_syn_cache_timeo;
1680 	}
1681 	if (scp->sch_timer_sum > 0)
1682 		sc->sc_timer = tcp_syn_cache_timeo - scp->sch_timer_sum;
1683 	else if (scp->sch_timer_sum == 0) {
1684 		/* When the bucket timer is 0, it is not in the cache queue.  */
1685 		scp->sch_headq = tcp_syn_cache_first;
1686 		tcp_syn_cache_first = scp;
1687 		sc->sc_timer = tcp_syn_cache_timeo;
1688 	}
1689 	scp->sch_timer_sum = tcp_syn_cache_timeo;
1690 	splx(s);
1691 }
1692 
1693 /*
1694  * Walk down the cache list, decrementing the timer of
1695  * the first element on each entry.  If the timer goes
1696  * to zero, remove it and all successive entries with
1697  * a zero timer.
1698  */
1699 void
1700 syn_cache_timer(interval)
1701 	int interval;
1702 {
1703 	struct syn_cache_head *scp, **pscp;
1704 	struct syn_cache *sc, *scn;
1705 	int n, s;
1706 
1707 	pscp = &tcp_syn_cache_first;
1708 	scp = tcp_syn_cache_first;
1709 	s = splsoftnet();
1710 	while (scp) {
1711 		/*
1712 		 * Remove any empty hash buckets
1713 		 * from the cache queue.
1714 		 */
1715 		if ((sc = scp->sch_first) == NULL) {
1716 			*pscp = scp->sch_headq;
1717 			scp->sch_headq = NULL;
1718 			scp->sch_timer_sum = 0;
1719 			scp->sch_first = scp->sch_last = NULL;
1720 			scp->sch_length = 0;
1721 			scp = *pscp;
1722 			continue;
1723 		}
1724 
1725 		scp->sch_timer_sum -= interval;
1726 		if (scp->sch_timer_sum <= 0)
1727 			scp->sch_timer_sum = -1;
1728 		n = interval;
1729 		while (sc->sc_timer <= n) {
1730 			n -= sc->sc_timer;
1731 			scn = sc->sc_next;
1732 			tcpstat.tcps_sc_timed_out++;
1733 			syn_cache_count--;
1734 			FREE(sc, M_PCB);
1735 			scp->sch_length--;
1736 			if ((sc = scn) == NULL)
1737 				break;
1738 		}
1739 		if ((scp->sch_first = sc) != NULL) {
1740 			sc->sc_timer -= n;
1741 			pscp = &scp->sch_headq;
1742 			scp = scp->sch_headq;
1743 		}
1744 	}
1745 	splx(s);
1746 }
1747 
1748 /*
1749  * Find an entry in the syn cache.
1750  */
1751 struct syn_cache *
1752 syn_cache_lookup(ti, prevp, headp)
1753 	struct tcpiphdr *ti;
1754 	struct syn_cache ***prevp;
1755 	struct syn_cache_head **headp;
1756 {
1757 	struct syn_cache *sc, **prev;
1758 	struct syn_cache_head *head;
1759 	u_int32_t hash;
1760 	int s;
1761 
1762 	hash = SYN_HASH(&ti->ti_src, ti->ti_sport, ti->ti_dport);
1763 
1764 	head = &tcp_syn_cache[hash % tcp_syn_cache_size];
1765 	*headp = head;
1766 	prev = &head->sch_first;
1767 	s = splsoftnet();
1768 	for (sc = head->sch_first; sc; prev = &sc->sc_next, sc = sc->sc_next) {
1769 		if (sc->sc_hash != hash)
1770 			continue;
1771 		if (sc->sc_src.s_addr == ti->ti_src.s_addr &&
1772 		    sc->sc_sport == ti->ti_sport &&
1773 		    sc->sc_dport == ti->ti_dport &&
1774 		    sc->sc_dst.s_addr == ti->ti_dst.s_addr) {
1775 			*prevp = prev;
1776 			splx(s);
1777 			return (sc);
1778 		}
1779 	}
1780 	splx(s);
1781 	return (NULL);
1782 }
1783 
1784 /*
1785  * This function gets called when we receive an ACK for a
1786  * socket in the LISTEN state.  We look up the connection
1787  * in the syn cache, and if its there, we pull it out of
1788  * the cache and turn it into a full-blown connection in
1789  * the SYN-RECEIVED state.
1790  *
1791  * The return values may not be immediately obvious, and their effects
1792  * can be subtle, so here they are:
1793  *
1794  *	NULL	SYN was not found in cache; caller should drop the
1795  *		packet and send an RST.
1796  *
1797  *	-1	We were unable to create the new connection, and are
1798  *		aborting it.  An ACK,RST is being sent to the peer
1799  *		(unless we got screwey sequence numbners; see below),
1800  *		because the 3-way handshake has been completed.  Caller
1801  *		should not free the mbuf, since we may be using it.  If
1802  *		we are not, we will free it.
1803  *
1804  *	Otherwise, the return value is a pointer to the new socket
1805  *	associated with the connection.
1806  */
1807 struct socket *
1808 syn_cache_get(so, m)
1809 	struct socket *so;
1810 	struct mbuf *m;
1811 {
1812 	struct syn_cache *sc, **sc_prev;
1813 	struct syn_cache_head *head;
1814 	register struct inpcb *inp;
1815 	register struct tcpcb *tp = 0;
1816 	register struct tcpiphdr *ti;
1817 	struct sockaddr_in *sin;
1818 	struct mbuf *am;
1819 	long win;
1820 	int s;
1821 
1822 	ti = mtod(m, struct tcpiphdr *);
1823 	s = splsoftnet();
1824 	if ((sc = syn_cache_lookup(ti, &sc_prev, &head)) == NULL) {
1825 		splx(s);
1826 		return (NULL);
1827 	}
1828 
1829 	win = sbspace(&so->so_rcv);
1830 	if (win > TCP_MAXWIN)
1831 		win = TCP_MAXWIN;
1832 
1833 	/*
1834 	 * Verify the sequence and ack numbers.
1835 	 */
1836 	if ((ti->ti_ack != sc->sc_iss + 1) ||
1837 	    SEQ_LEQ(ti->ti_seq, sc->sc_irs) ||
1838 	    SEQ_GT(ti->ti_seq, sc->sc_irs + 1 + win)) {
1839 		(void) syn_cache_respond(sc, m, ti, win, 0);
1840 		splx(s);
1841 		return ((struct socket *)(-1));
1842 	}
1843 
1844 	/* Remove this cache entry */
1845 	SYN_CACHE_RM(sc, sc_prev, head);
1846 	splx(s);
1847 
1848 	/*
1849 	 * Ok, create the full blown connection, and set things up
1850 	 * as they would have been set up if we had created the
1851 	 * connection when the SYN arrived.  If we can't create
1852 	 * the connection, abort it.
1853 	 */
1854 	so = sonewconn(so, SS_ISCONNECTED);
1855 	if (so == NULL)
1856 		goto resetandabort;
1857 
1858 	inp = sotoinpcb(so);
1859 	inp->inp_laddr = sc->sc_dst;
1860 	inp->inp_lport = sc->sc_dport;
1861 	in_pcbstate(inp, INP_BOUND);
1862 #if BSD>=43
1863 	inp->inp_options = ip_srcroute();
1864 #endif
1865 
1866 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
1867 	if (am == NULL) {
1868 		m_freem(m);
1869 		goto resetandabort;
1870 	}
1871 	am->m_len = sizeof(struct sockaddr_in);
1872 	sin = mtod(am, struct sockaddr_in *);
1873 	sin->sin_family = AF_INET;
1874 	sin->sin_len = sizeof(*sin);
1875 	sin->sin_addr = sc->sc_src;
1876 	sin->sin_port = sc->sc_sport;
1877 	bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
1878 	if (in_pcbconnect(inp, am)) {
1879 		(void) m_free(am);
1880 		m_freem(m);
1881 		goto resetandabort;
1882 	}
1883 	(void) m_free(am);
1884 
1885 	tp = intotcpcb(inp);
1886 	if (sc->sc_request_r_scale != 15) {
1887 		tp->requested_s_scale = sc->sc_requested_s_scale;
1888 		tp->request_r_scale = sc->sc_request_r_scale;
1889 		tp->snd_scale = sc->sc_requested_s_scale;
1890 		tp->rcv_scale = sc->sc_request_r_scale;
1891 		tp->t_flags |= TF_RCVD_SCALE;
1892 	}
1893 	if (sc->sc_tstmp)
1894 		tp->t_flags |= TF_RCVD_TSTMP;
1895 
1896 	tp->t_template = tcp_template(tp);
1897 	if (tp->t_template == 0) {
1898 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
1899 		so = NULL;
1900 		m_freem(m);
1901 		goto abort;
1902 	}
1903 
1904 	tp->iss = sc->sc_iss;
1905 	tp->irs = sc->sc_irs;
1906 	tcp_sendseqinit(tp);
1907 	tcp_rcvseqinit(tp);
1908 	tp->t_state = TCPS_SYN_RECEIVED;
1909 	tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
1910 	tcpstat.tcps_accepts++;
1911 
1912 	/* Initialize tp->t_ourmss before we deal with the peer's! */
1913 	tp->t_ourmss = sc->sc_ourmaxseg;
1914 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
1915 	tcp_rmx_rtt(tp);
1916 	tp->snd_wl1 = sc->sc_irs;
1917 	tp->rcv_up = sc->sc_irs + 1;
1918 
1919 	/*
1920 	 * This is what whould have happened in tcp_ouput() when
1921 	 * the SYN,ACK was sent.
1922 	 */
1923 	tp->snd_up = tp->snd_una;
1924 	tp->snd_max = tp->snd_nxt = tp->iss+1;
1925 	tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1926 	if (win > 0 && SEQ_GT(tp->rcv_nxt+win, tp->rcv_adv))
1927 		tp->rcv_adv = tp->rcv_nxt + win;
1928 	tp->last_ack_sent = tp->rcv_nxt;
1929 
1930 	tcpstat.tcps_sc_completed++;
1931 	FREE(sc, M_PCB);
1932 	return (so);
1933 
1934 resetandabort:
1935 	(void) tcp_respond(NULL, ti, m, ti->ti_seq+ti->ti_len,
1936 	    (tcp_seq)0, TH_RST|TH_ACK);
1937 abort:
1938 	if (so != NULL)
1939 		(void) soabort(so);
1940 	FREE(sc, M_PCB);
1941 	tcpstat.tcps_sc_aborted++;
1942 	return ((struct socket *)(-1));
1943 }
1944 
1945 /*
1946  * This function is called when we get a RST for a
1947  * non-existant connection, so that we can see if the
1948  * connection is in the syn cache.  If it is, zap it.
1949  */
1950 
1951 void
1952 syn_cache_reset(ti)
1953 	register struct tcpiphdr *ti;
1954 {
1955 	struct syn_cache *sc, **sc_prev;
1956 	struct syn_cache_head *head;
1957 	int s = splsoftnet();
1958 
1959 	if ((sc = syn_cache_lookup(ti, &sc_prev, &head)) == NULL) {
1960 		splx(s);
1961 		return;
1962 	}
1963 	if (SEQ_LT(ti->ti_seq,sc->sc_irs) ||
1964 	    SEQ_GT(ti->ti_seq, sc->sc_irs+1)) {
1965 		splx(s);
1966 		return;
1967 	}
1968 	SYN_CACHE_RM(sc, sc_prev, head);
1969 	splx(s);
1970 	tcpstat.tcps_sc_reset++;
1971 	FREE(sc, M_PCB);
1972 }
1973 
1974 void
1975 syn_cache_unreach(ip, th)
1976 	struct ip *ip;
1977 	struct tcphdr *th;
1978 {
1979 	struct syn_cache *sc, **sc_prev;
1980 	struct syn_cache_head *head;
1981 	struct tcpiphdr ti2;
1982 	int s;
1983 
1984 	ti2.ti_src.s_addr = ip->ip_dst.s_addr;
1985 	ti2.ti_dst.s_addr = ip->ip_src.s_addr;
1986 	ti2.ti_sport = th->th_dport;
1987 	ti2.ti_dport = th->th_sport;
1988 
1989 	s = splsoftnet();
1990 	if ((sc = syn_cache_lookup(&ti2, &sc_prev, &head)) == NULL) {
1991 		splx(s);
1992 		return;
1993 	}
1994 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
1995 	if (ntohl (th->th_seq) != sc->sc_iss) {
1996 		splx(s);
1997 		return;
1998 	}
1999 	SYN_CACHE_RM(sc, sc_prev, head);
2000 	splx(s);
2001 	tcpstat.tcps_sc_unreach++;
2002 	FREE(sc, M_PCB);
2003 }
2004 
2005 /*
2006  * Given a LISTEN socket and an inbound SYN request, add
2007  * this to the syn cache, and send back a segment:
2008  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
2009  * to the source.
2010  *
2011  * XXX We don't properly handle SYN-with-data!
2012  */
2013 
2014 int
2015 syn_cache_add(so, m, optp, optlen, oi)
2016 	struct socket *so;
2017 	struct mbuf *m;
2018 	u_char *optp;
2019 	int optlen;
2020 	struct tcp_opt_info *oi;
2021 {
2022 	register struct tcpiphdr *ti;
2023 	struct tcpcb tb, *tp;
2024 	long win;
2025 	struct syn_cache *sc, **sc_prev;
2026 	struct syn_cache_head *scp;
2027 	extern int tcp_do_rfc1323;
2028 
2029 	tp = sototcpcb(so);
2030 	ti = mtod(m, struct tcpiphdr *);
2031 
2032 	/*
2033 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
2034 	 * in_broadcast() should never return true on a received
2035 	 * packet with M_BCAST not set.
2036 	 */
2037 	if (m->m_flags & (M_BCAST|M_MCAST) ||
2038 	    IN_MULTICAST(ti->ti_src.s_addr) ||
2039 	    IN_MULTICAST(ti->ti_dst.s_addr))
2040 		return (0);
2041 
2042 	/*
2043 	 * Initialize some local state.
2044 	 */
2045 	win = sbspace(&so->so_rcv);
2046 	if (win > TCP_MAXWIN)
2047 		win = TCP_MAXWIN;
2048 
2049 	if (optp) {
2050 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
2051 		tcp_dooptions(&tb, optp, optlen, ti, oi);
2052 	} else
2053 		tb.t_flags = 0;
2054 
2055 	/*
2056 	 * See if we already have an entry for this connection.
2057 	 */
2058 	if ((sc = syn_cache_lookup(ti, &sc_prev, &scp)) != NULL) {
2059 		tcpstat.tcps_sc_dupesyn++;
2060 		if (syn_cache_respond(sc, m, ti, win, tb.ts_recent) == 0) {
2061 			tcpstat.tcps_sndacks++;
2062 			tcpstat.tcps_sndtotal++;
2063 		}
2064 		return (1);
2065 	}
2066 
2067 	MALLOC(sc, struct syn_cache *, sizeof(*sc), M_PCB, M_NOWAIT);
2068 	if (sc == NULL)
2069 		return (0);
2070 	/*
2071 	 * Fill in the cache, and put the necessary TCP
2072 	 * options into the reply.
2073 	 */
2074 	sc->sc_src.s_addr = ti->ti_src.s_addr;
2075 	sc->sc_dst.s_addr = ti->ti_dst.s_addr;
2076 	sc->sc_sport = ti->ti_sport;
2077 	sc->sc_dport = ti->ti_dport;
2078 	sc->sc_irs = ti->ti_seq;
2079 	sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
2080 	sc->sc_peermaxseg = oi->maxseg;
2081 	sc->sc_ourmaxseg = tcp_mss_to_advertise(tp);
2082 	sc->sc_tstmp = (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP)) ? 1 : 0;
2083 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2084 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2085 		sc->sc_requested_s_scale = tb.requested_s_scale;
2086 		sc->sc_request_r_scale = 0;
2087 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
2088 		    TCP_MAXWIN << sc->sc_request_r_scale <
2089 		    so->so_rcv.sb_hiwat)
2090 			sc->sc_request_r_scale++;
2091 	} else {
2092 		sc->sc_requested_s_scale = 15;
2093 		sc->sc_request_r_scale = 15;
2094 	}
2095 	if (syn_cache_respond(sc, m, ti, win, tb.ts_recent) == 0) {
2096 		syn_cache_insert(sc, &sc_prev, &scp);
2097 		tcpstat.tcps_sndacks++;
2098 		tcpstat.tcps_sndtotal++;
2099 	} else {
2100 		FREE(sc, M_PCB);
2101 		tcpstat.tcps_sc_dropped++;
2102 	}
2103 	return (1);
2104 }
2105 
2106 int
2107 syn_cache_respond(sc, m, ti, win, ts)
2108 	struct syn_cache *sc;
2109 	struct mbuf *m;
2110 	register struct tcpiphdr *ti;
2111 	long win;
2112 	u_long ts;
2113 {
2114 	u_int8_t *optp;
2115 	int optlen;
2116 
2117 	/*
2118 	 * Tack on the TCP options.  If there isn't enough trailing
2119 	 * space for them, move up the fixed header to make space.
2120 	 */
2121 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
2122 	    (sc->sc_tstmp ? TCPOLEN_TSTAMP_APPA : 0);
2123 	if (optlen > M_TRAILINGSPACE(m)) {
2124 		if (M_LEADINGSPACE(m) >= optlen) {
2125 			m->m_data -= optlen;
2126 			m->m_len += optlen;
2127 		} else {
2128 			struct mbuf *m0 = m;
2129 			if ((m = m_gethdr(M_DONTWAIT, MT_HEADER)) == NULL) {
2130 				m_freem(m0);
2131 				return (ENOBUFS);
2132 			}
2133 			MH_ALIGN(m, sizeof(*ti) + optlen);
2134 			m->m_next = m0; /* this gets freed below */
2135 		}
2136 		ovbcopy((caddr_t)ti, mtod(m, caddr_t), sizeof(*ti));
2137 		ti = mtod(m, struct tcpiphdr *);
2138 	}
2139 
2140 	optp = (u_int8_t *)(ti + 1);
2141 	optp[0] = TCPOPT_MAXSEG;
2142 	optp[1] = 4;
2143 	optp[2] = (sc->sc_ourmaxseg >> 8) & 0xff;
2144 	optp[3] = sc->sc_ourmaxseg & 0xff;
2145 	optlen = 4;
2146 
2147 	if (sc->sc_request_r_scale != 15) {
2148 		*((u_int32_t *)(optp + optlen)) = htonl(TCPOPT_NOP << 24 |
2149 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
2150 		    sc->sc_request_r_scale);
2151 		optlen += 4;
2152 	}
2153 
2154 	if (sc->sc_tstmp) {
2155 		u_int32_t *lp = (u_int32_t *)(optp + optlen);
2156 		/* Form timestamp option as shown in appendix A of RFC 1323. */
2157 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
2158 		*lp++ = htonl(tcp_now);
2159 		*lp   = htonl(ts);
2160 		optlen += TCPOLEN_TSTAMP_APPA;
2161 	}
2162 
2163 	/*
2164 	 * Toss any trailing mbufs.  No need to worry about
2165 	 * m_len and m_pkthdr.len, since tcp_respond() will
2166 	 * unconditionally set them.
2167 	 */
2168 	if (m->m_next) {
2169 		m_freem(m->m_next);
2170 		m->m_next = NULL;
2171   	}
2172 
2173 	/*
2174 	 * Fill in the fields that tcp_respond() will not touch, and
2175 	 * then send the response.
2176 	 */
2177 	ti->ti_off = (sizeof(struct tcphdr) + optlen) >> 2;
2178 	ti->ti_win = htons(win);
2179 	return (tcp_respond(NULL, ti, m, sc->sc_irs + 1, sc->sc_iss,
2180 	    TH_SYN|TH_ACK));
2181 }
2182 #endif /* TUBA_INCLUDE */
2183