xref: /netbsd-src/sys/netinet/tcp_input.c (revision 27578b9aac214cc7796ead81dcc5427e79d5f2a0)
1 /*	$NetBSD: tcp_input.c,v 1.131 2001/09/17 17:27:00 thorpej Exp $	*/
2 
3 /*
4 %%% portions-copyright-nrl-95
5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
7 Reserved. All rights under this copyright have been assigned to the US
8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
10 software.
11 You should have received a copy of the license with this software. If you
12 didn't get a copy, you may request one from <license@ipv6.nrl.navy.mil>.
13 
14 */
15 
16 /*
17  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
18  * All rights reserved.
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  * 1. Redistributions of source code must retain the above copyright
24  *    notice, this list of conditions and the following disclaimer.
25  * 2. Redistributions in binary form must reproduce the above copyright
26  *    notice, this list of conditions and the following disclaimer in the
27  *    documentation and/or other materials provided with the distribution.
28  * 3. Neither the name of the project nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  */
44 
45 /*-
46  * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
47  * All rights reserved.
48  *
49  * This code is derived from software contributed to The NetBSD Foundation
50  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
51  * Facility, NASA Ames Research Center.
52  *
53  * Redistribution and use in source and binary forms, with or without
54  * modification, are permitted provided that the following conditions
55  * are met:
56  * 1. Redistributions of source code must retain the above copyright
57  *    notice, this list of conditions and the following disclaimer.
58  * 2. Redistributions in binary form must reproduce the above copyright
59  *    notice, this list of conditions and the following disclaimer in the
60  *    documentation and/or other materials provided with the distribution.
61  * 3. All advertising materials mentioning features or use of this software
62  *    must display the following acknowledgement:
63  *	This product includes software developed by the NetBSD
64  *	Foundation, Inc. and its contributors.
65  * 4. Neither the name of The NetBSD Foundation nor the names of its
66  *    contributors may be used to endorse or promote products derived
67  *    from this software without specific prior written permission.
68  *
69  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
70  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
71  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
72  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
73  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
79  * POSSIBILITY OF SUCH DAMAGE.
80  */
81 
82 /*
83  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
84  *	The Regents of the University of California.  All rights reserved.
85  *
86  * Redistribution and use in source and binary forms, with or without
87  * modification, are permitted provided that the following conditions
88  * are met:
89  * 1. Redistributions of source code must retain the above copyright
90  *    notice, this list of conditions and the following disclaimer.
91  * 2. Redistributions in binary form must reproduce the above copyright
92  *    notice, this list of conditions and the following disclaimer in the
93  *    documentation and/or other materials provided with the distribution.
94  * 3. All advertising materials mentioning features or use of this software
95  *    must display the following acknowledgement:
96  *	This product includes software developed by the University of
97  *	California, Berkeley and its contributors.
98  * 4. Neither the name of the University nor the names of its contributors
99  *    may be used to endorse or promote products derived from this software
100  *    without specific prior written permission.
101  *
102  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
103  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
104  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
105  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
106  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
107  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
108  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
109  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
110  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
111  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
112  * SUCH DAMAGE.
113  *
114  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
115  */
116 
117 /*
118  *	TODO list for SYN cache stuff:
119  *
120  *	Find room for a "state" field, which is needed to keep a
121  *	compressed state for TIME_WAIT TCBs.  It's been noted already
122  *	that this is fairly important for very high-volume web and
123  *	mail servers, which use a large number of short-lived
124  *	connections.
125  */
126 
127 #include "opt_inet.h"
128 #include "opt_ipsec.h"
129 #include "opt_inet_csum.h"
130 #include "opt_tcp_debug.h"
131 
132 #include <sys/param.h>
133 #include <sys/systm.h>
134 #include <sys/malloc.h>
135 #include <sys/mbuf.h>
136 #include <sys/protosw.h>
137 #include <sys/socket.h>
138 #include <sys/socketvar.h>
139 #include <sys/errno.h>
140 #include <sys/syslog.h>
141 #include <sys/pool.h>
142 #include <sys/domain.h>
143 #include <sys/kernel.h>
144 
145 #include <net/if.h>
146 #include <net/route.h>
147 #include <net/if_types.h>
148 
149 #include <netinet/in.h>
150 #include <netinet/in_systm.h>
151 #include <netinet/ip.h>
152 #include <netinet/in_pcb.h>
153 #include <netinet/ip_var.h>
154 
155 #ifdef INET6
156 #ifndef INET
157 #include <netinet/in.h>
158 #endif
159 #include <netinet/ip6.h>
160 #include <netinet6/ip6_var.h>
161 #include <netinet6/in6_pcb.h>
162 #include <netinet6/ip6_var.h>
163 #include <netinet6/in6_var.h>
164 #include <netinet/icmp6.h>
165 #include <netinet6/nd6.h>
166 #endif
167 
168 #ifdef PULLDOWN_TEST
169 #ifndef INET6
170 /* always need ip6.h for IP6_EXTHDR_GET */
171 #include <netinet/ip6.h>
172 #endif
173 #endif
174 
175 #include <netinet/tcp.h>
176 #include <netinet/tcp_fsm.h>
177 #include <netinet/tcp_seq.h>
178 #include <netinet/tcp_timer.h>
179 #include <netinet/tcp_var.h>
180 #include <netinet/tcpip.h>
181 #include <netinet/tcp_debug.h>
182 
183 #include <machine/stdarg.h>
184 
185 #ifdef IPSEC
186 #include <netinet6/ipsec.h>
187 #include <netkey/key.h>
188 #endif /*IPSEC*/
189 #ifdef INET6
190 #include "faith.h"
191 #if defined(NFAITH) && NFAITH > 0
192 #include <net/if_faith.h>
193 #endif
194 #endif
195 
196 int	tcprexmtthresh = 3;
197 int	tcp_log_refused;
198 
199 static int tcp_rst_ppslim_count = 0;
200 static struct timeval tcp_rst_ppslim_last;
201 
202 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
203 
204 /* for modulo comparisons of timestamps */
205 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
206 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
207 
208 /*
209  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
210  */
211 #ifdef INET6
212 #define ND6_HINT(tp) \
213 do { \
214 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
215 	 && tp->t_in6pcb->in6p_route.ro_rt) { \
216 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
217 	} \
218 } while (0)
219 #else
220 #define ND6_HINT(tp)
221 #endif
222 
223 /*
224  * Macro to compute ACK transmission behavior.  Delay the ACK unless
225  * we have already delayed an ACK (must send an ACK every two segments).
226  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
227  * option is enabled.
228  */
229 #define	TCP_SETUP_ACK(tp, th) \
230 do { \
231 	if ((tp)->t_flags & TF_DELACK || \
232 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
233 		tp->t_flags |= TF_ACKNOW; \
234 	else \
235 		TCP_SET_DELACK(tp); \
236 } while (0)
237 
238 /*
239  * Convert TCP protocol fields to host order for easier processing.
240  */
241 #define	TCP_FIELDS_TO_HOST(th)						\
242 do {									\
243 	NTOHL((th)->th_seq);						\
244 	NTOHL((th)->th_ack);						\
245 	NTOHS((th)->th_win);						\
246 	NTOHS((th)->th_urp);						\
247 } while (0)
248 
249 #ifdef TCP_CSUM_COUNTERS
250 #include <sys/device.h>
251 
252 extern struct evcnt tcp_hwcsum_ok;
253 extern struct evcnt tcp_hwcsum_bad;
254 extern struct evcnt tcp_hwcsum_data;
255 extern struct evcnt tcp_swcsum;
256 
257 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
258 
259 #else
260 
261 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
262 
263 #endif /* TCP_CSUM_COUNTERS */
264 
265 int
266 tcp_reass(tp, th, m, tlen)
267 	struct tcpcb *tp;
268 	struct tcphdr *th;
269 	struct mbuf *m;
270 	int *tlen;
271 {
272 	struct ipqent *p, *q, *nq, *tiqe = NULL;
273 	struct socket *so = NULL;
274 	int pkt_flags;
275 	tcp_seq pkt_seq;
276 	unsigned pkt_len;
277 	u_long rcvpartdupbyte = 0;
278 	u_long rcvoobyte;
279 
280 	if (tp->t_inpcb)
281 		so = tp->t_inpcb->inp_socket;
282 #ifdef INET6
283 	else if (tp->t_in6pcb)
284 		so = tp->t_in6pcb->in6p_socket;
285 #endif
286 
287 	TCP_REASS_LOCK_CHECK(tp);
288 
289 	/*
290 	 * Call with th==0 after become established to
291 	 * force pre-ESTABLISHED data up to user socket.
292 	 */
293 	if (th == 0)
294 		goto present;
295 
296 	rcvoobyte = *tlen;
297 	/*
298 	 * Copy these to local variables because the tcpiphdr
299 	 * gets munged while we are collapsing mbufs.
300 	 */
301 	pkt_seq = th->th_seq;
302 	pkt_len = *tlen;
303 	pkt_flags = th->th_flags;
304 	/*
305 	 * Find a segment which begins after this one does.
306 	 */
307 	for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
308 		nq = q->ipqe_q.le_next;
309 		/*
310 		 * If the received segment is just right after this
311 		 * fragment, merge the two together and then check
312 		 * for further overlaps.
313 		 */
314 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
315 #ifdef TCPREASS_DEBUG
316 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
317 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
318 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
319 #endif
320 			pkt_len += q->ipqe_len;
321 			pkt_flags |= q->ipqe_flags;
322 			pkt_seq = q->ipqe_seq;
323 			m_cat(q->ipqe_m, m);
324 			m = q->ipqe_m;
325 			goto free_ipqe;
326 		}
327 		/*
328 		 * If the received segment is completely past this
329 		 * fragment, we need to go the next fragment.
330 		 */
331 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
332 			p = q;
333 			continue;
334 		}
335 		/*
336 		 * If the fragment is past the received segment,
337 		 * it (or any following) can't be concatenated.
338 		 */
339 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
340 			break;
341 		/*
342 		 * We've received all the data in this segment before.
343 		 * mark it as a duplicate and return.
344 		 */
345 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
346 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
347 			tcpstat.tcps_rcvduppack++;
348 			tcpstat.tcps_rcvdupbyte += pkt_len;
349 			m_freem(m);
350 			if (tiqe != NULL)
351 				pool_put(&ipqent_pool, tiqe);
352 			return (0);
353 		}
354 		/*
355 		 * Received segment completely overlaps this fragment
356 		 * so we drop the fragment (this keeps the temporal
357 		 * ordering of segments correct).
358 		 */
359 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
360 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
361 			rcvpartdupbyte += q->ipqe_len;
362 			m_freem(q->ipqe_m);
363 			goto free_ipqe;
364 		}
365 		/*
366 		 * RX'ed segment extends past the end of the
367 		 * fragment.  Drop the overlapping bytes.  Then
368 		 * merge the fragment and segment then treat as
369 		 * a longer received packet.
370 		 */
371 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
372 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
373 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
374 #ifdef TCPREASS_DEBUG
375 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
376 			       tp, overlap,
377 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
378 #endif
379 			m_adj(m, overlap);
380 			rcvpartdupbyte += overlap;
381 			m_cat(q->ipqe_m, m);
382 			m = q->ipqe_m;
383 			pkt_seq = q->ipqe_seq;
384 			pkt_len += q->ipqe_len - overlap;
385 			rcvoobyte -= overlap;
386 			goto free_ipqe;
387 		}
388 		/*
389 		 * RX'ed segment extends past the front of the
390 		 * fragment.  Drop the overlapping bytes on the
391 		 * received packet.  The packet will then be
392 		 * contatentated with this fragment a bit later.
393 		 */
394 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
395 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
396 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
397 #ifdef TCPREASS_DEBUG
398 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
399 			       tp, overlap,
400 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
401 #endif
402 			m_adj(m, -overlap);
403 			pkt_len -= overlap;
404 			rcvpartdupbyte += overlap;
405 			rcvoobyte -= overlap;
406 		}
407 		/*
408 		 * If the received segment immediates precedes this
409 		 * fragment then tack the fragment onto this segment
410 		 * and reinsert the data.
411 		 */
412 		if (q->ipqe_seq == pkt_seq + pkt_len) {
413 #ifdef TCPREASS_DEBUG
414 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
415 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
416 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
417 #endif
418 			pkt_len += q->ipqe_len;
419 			pkt_flags |= q->ipqe_flags;
420 			m_cat(m, q->ipqe_m);
421 			LIST_REMOVE(q, ipqe_q);
422 			LIST_REMOVE(q, ipqe_timeq);
423 			if (tiqe == NULL) {
424 			    tiqe = q;
425 			} else {
426 			    pool_put(&ipqent_pool, q);
427 			}
428 			break;
429 		}
430 		/*
431 		 * If the fragment is before the segment, remember it.
432 		 * When this loop is terminated, p will contain the
433 		 * pointer to fragment that is right before the received
434 		 * segment.
435 		 */
436 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
437 			p = q;
438 
439 		continue;
440 
441 		/*
442 		 * This is a common operation.  It also will allow
443 		 * to save doing a malloc/free in most instances.
444 		 */
445 	  free_ipqe:
446 		LIST_REMOVE(q, ipqe_q);
447 		LIST_REMOVE(q, ipqe_timeq);
448 		if (tiqe == NULL) {
449 		    tiqe = q;
450 		} else {
451 		    pool_put(&ipqent_pool, q);
452 		}
453 	}
454 
455 	/*
456 	 * Allocate a new queue entry since the received segment did not
457 	 * collapse onto any other out-of-order block; thus we are allocating
458 	 * a new block.  If it had collapsed, tiqe would not be NULL and
459 	 * we would be reusing it.
460 	 * XXX If we can't, just drop the packet.  XXX
461 	 */
462 	if (tiqe == NULL) {
463 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
464 		if (tiqe == NULL) {
465 			tcpstat.tcps_rcvmemdrop++;
466 			m_freem(m);
467 			return (0);
468 		}
469 	}
470 
471 	/*
472 	 * Update the counters.
473 	 */
474 	tcpstat.tcps_rcvoopack++;
475 	tcpstat.tcps_rcvoobyte += rcvoobyte;
476 	if (rcvpartdupbyte) {
477 	    tcpstat.tcps_rcvpartduppack++;
478 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
479 	}
480 
481 	/*
482 	 * Insert the new fragment queue entry into both queues.
483 	 */
484 	tiqe->ipqe_m = m;
485 	tiqe->ipqe_seq = pkt_seq;
486 	tiqe->ipqe_len = pkt_len;
487 	tiqe->ipqe_flags = pkt_flags;
488 	if (p == NULL) {
489 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
490 #ifdef TCPREASS_DEBUG
491 		if (tiqe->ipqe_seq != tp->rcv_nxt)
492 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
493 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
494 #endif
495 	} else {
496 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
497 #ifdef TCPREASS_DEBUG
498 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
499 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
500 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
501 #endif
502 	}
503 
504 	LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
505 
506 present:
507 	/*
508 	 * Present data to user, advancing rcv_nxt through
509 	 * completed sequence space.
510 	 */
511 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
512 		return (0);
513 	q = tp->segq.lh_first;
514 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
515 		return (0);
516 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
517 		return (0);
518 
519 	tp->rcv_nxt += q->ipqe_len;
520 	pkt_flags = q->ipqe_flags & TH_FIN;
521 	ND6_HINT(tp);
522 
523 	LIST_REMOVE(q, ipqe_q);
524 	LIST_REMOVE(q, ipqe_timeq);
525 	if (so->so_state & SS_CANTRCVMORE)
526 		m_freem(q->ipqe_m);
527 	else
528 		sbappend(&so->so_rcv, q->ipqe_m);
529 	pool_put(&ipqent_pool, q);
530 	sorwakeup(so);
531 	return (pkt_flags);
532 }
533 
534 #ifdef INET6
535 int
536 tcp6_input(mp, offp, proto)
537 	struct mbuf **mp;
538 	int *offp, proto;
539 {
540 	struct mbuf *m = *mp;
541 
542 	/*
543 	 * draft-itojun-ipv6-tcp-to-anycast
544 	 * better place to put this in?
545 	 */
546 	if (m->m_flags & M_ANYCAST6) {
547 		struct ip6_hdr *ip6;
548 		if (m->m_len < sizeof(struct ip6_hdr)) {
549 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
550 				tcpstat.tcps_rcvshort++;
551 				return IPPROTO_DONE;
552 			}
553 		}
554 		ip6 = mtod(m, struct ip6_hdr *);
555 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
556 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
557 		return IPPROTO_DONE;
558 	}
559 
560 	tcp_input(m, *offp, proto);
561 	return IPPROTO_DONE;
562 }
563 #endif
564 
565 /*
566  * TCP input routine, follows pages 65-76 of the
567  * protocol specification dated September, 1981 very closely.
568  */
569 void
570 #if __STDC__
571 tcp_input(struct mbuf *m, ...)
572 #else
573 tcp_input(m, va_alist)
574 	struct mbuf *m;
575 #endif
576 {
577 	int proto;
578 	struct tcphdr *th;
579 	struct ip *ip;
580 	struct inpcb *inp;
581 #ifdef INET6
582 	struct ip6_hdr *ip6;
583 	struct in6pcb *in6p;
584 #endif
585 	caddr_t optp = NULL;
586 	int optlen = 0;
587 	int len, tlen, toff, hdroptlen = 0;
588 	struct tcpcb *tp = 0;
589 	int tiflags;
590 	struct socket *so = NULL;
591 	int todrop, acked, ourfinisacked, needoutput = 0;
592 	short ostate = 0;
593 	int iss = 0;
594 	u_long tiwin;
595 	struct tcp_opt_info opti;
596 	int off, iphlen;
597 	va_list ap;
598 	int af;		/* af on the wire */
599 	struct mbuf *tcp_saveti = NULL;
600 
601 	va_start(ap, m);
602 	toff = va_arg(ap, int);
603 	proto = va_arg(ap, int);
604 	va_end(ap);
605 
606 	tcpstat.tcps_rcvtotal++;
607 
608 	bzero(&opti, sizeof(opti));
609 	opti.ts_present = 0;
610 	opti.maxseg = 0;
611 
612 	/*
613 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
614 	 *
615 	 * TCP is, by definition, unicast, so we reject all
616 	 * multicast outright.
617 	 *
618 	 * Note, there are additional src/dst address checks in
619 	 * the AF-specific code below.
620 	 */
621 	if (m->m_flags & (M_BCAST|M_MCAST)) {
622 		/* XXX stat */
623 		goto drop;
624 	}
625 #ifdef INET6
626 	if (m->m_flags & M_ANYCAST6) {
627 		/* XXX stat */
628 		goto drop;
629 	}
630 #endif
631 
632 	/*
633 	 * Get IP and TCP header together in first mbuf.
634 	 * Note: IP leaves IP header in first mbuf.
635 	 */
636 	ip = mtod(m, struct ip *);
637 #ifdef INET6
638 	ip6 = NULL;
639 #endif
640 	switch (ip->ip_v) {
641 #ifdef INET
642 	case 4:
643 		af = AF_INET;
644 		iphlen = sizeof(struct ip);
645 #ifndef PULLDOWN_TEST
646 		/* would like to get rid of this... */
647 		if (toff > sizeof (struct ip)) {
648 			ip_stripoptions(m, (struct mbuf *)0);
649 			toff = sizeof(struct ip);
650 		}
651 		if (m->m_len < toff + sizeof (struct tcphdr)) {
652 			if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
653 				tcpstat.tcps_rcvshort++;
654 				return;
655 			}
656 		}
657 		ip = mtod(m, struct ip *);
658 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
659 #else
660 		ip = mtod(m, struct ip *);
661 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
662 			sizeof(struct tcphdr));
663 		if (th == NULL) {
664 			tcpstat.tcps_rcvshort++;
665 			return;
666 		}
667 #endif
668 
669 		/*
670 		 * Make sure destination address is not multicast.
671 		 * Source address checked in ip_input().
672 		 */
673 		if (IN_MULTICAST(ip->ip_dst.s_addr)) {
674 			/* XXX stat */
675 			goto drop;
676 		}
677 
678 		/* We do the checksum after PCB lookup... */
679 		len = ip->ip_len;
680 		tlen = len - toff;
681 		break;
682 #endif
683 #ifdef INET6
684 	case 6:
685 		ip = NULL;
686 		iphlen = sizeof(struct ip6_hdr);
687 		af = AF_INET6;
688 #ifndef PULLDOWN_TEST
689 		if (m->m_len < toff + sizeof(struct tcphdr)) {
690 			m = m_pullup(m, toff + sizeof(struct tcphdr));	/*XXX*/
691 			if (m == NULL) {
692 				tcpstat.tcps_rcvshort++;
693 				return;
694 			}
695 		}
696 		ip6 = mtod(m, struct ip6_hdr *);
697 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
698 #else
699 		ip6 = mtod(m, struct ip6_hdr *);
700 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
701 			sizeof(struct tcphdr));
702 		if (th == NULL) {
703 			tcpstat.tcps_rcvshort++;
704 			return;
705 		}
706 #endif
707 
708 		/* Be proactive about malicious use of IPv4 mapped address */
709 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
710 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
711 			/* XXX stat */
712 			goto drop;
713 		}
714 
715 		/*
716 		 * Be proactive about unspecified IPv6 address in source.
717 		 * As we use all-zero to indicate unbounded/unconnected pcb,
718 		 * unspecified IPv6 address can be used to confuse us.
719 		 *
720 		 * Note that packets with unspecified IPv6 destination is
721 		 * already dropped in ip6_input.
722 		 */
723 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
724 			/* XXX stat */
725 			goto drop;
726 		}
727 
728 		/*
729 		 * Make sure destination address is not multicast.
730 		 * Source address checked in ip6_input().
731 		 */
732 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
733 			/* XXX stat */
734 			goto drop;
735 		}
736 
737 		/* We do the checksum after PCB lookup... */
738 		len = m->m_pkthdr.len;
739 		tlen = len - toff;
740 		break;
741 #endif
742 	default:
743 		m_freem(m);
744 		return;
745 	}
746 
747 	/*
748 	 * Check that TCP offset makes sense,
749 	 * pull out TCP options and adjust length.		XXX
750 	 */
751 	off = th->th_off << 2;
752 	if (off < sizeof (struct tcphdr) || off > tlen) {
753 		tcpstat.tcps_rcvbadoff++;
754 		goto drop;
755 	}
756 	tlen -= off;
757 
758 	/*
759 	 * tcp_input() has been modified to use tlen to mean the TCP data
760 	 * length throughout the function.  Other functions can use
761 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
762 	 * rja
763 	 */
764 
765 	if (off > sizeof (struct tcphdr)) {
766 #ifndef PULLDOWN_TEST
767 		if (m->m_len < toff + off) {
768 			if ((m = m_pullup(m, toff + off)) == 0) {
769 				tcpstat.tcps_rcvshort++;
770 				return;
771 			}
772 			switch (af) {
773 #ifdef INET
774 			case AF_INET:
775 				ip = mtod(m, struct ip *);
776 				break;
777 #endif
778 #ifdef INET6
779 			case AF_INET6:
780 				ip6 = mtod(m, struct ip6_hdr *);
781 				break;
782 #endif
783 			}
784 			th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
785 		}
786 #else
787 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
788 		if (th == NULL) {
789 			tcpstat.tcps_rcvshort++;
790 			return;
791 		}
792 		/*
793 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
794 		 * (as they're before toff) and we don't need to update those.
795 		 */
796 #endif
797 		optlen = off - sizeof (struct tcphdr);
798 		optp = ((caddr_t)th) + sizeof(struct tcphdr);
799 		/*
800 		 * Do quick retrieval of timestamp options ("options
801 		 * prediction?").  If timestamp is the only option and it's
802 		 * formatted as recommended in RFC 1323 appendix A, we
803 		 * quickly get the values now and not bother calling
804 		 * tcp_dooptions(), etc.
805 		 */
806 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
807 		     (optlen > TCPOLEN_TSTAMP_APPA &&
808 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
809 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
810 		     (th->th_flags & TH_SYN) == 0) {
811 			opti.ts_present = 1;
812 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
813 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
814 			optp = NULL;	/* we've parsed the options */
815 		}
816 	}
817 	tiflags = th->th_flags;
818 
819 	/*
820 	 * Locate pcb for segment.
821 	 */
822 findpcb:
823 	inp = NULL;
824 #ifdef INET6
825 	in6p = NULL;
826 #endif
827 	switch (af) {
828 #ifdef INET
829 	case AF_INET:
830 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
831 		    ip->ip_dst, th->th_dport);
832 		if (inp == 0) {
833 			++tcpstat.tcps_pcbhashmiss;
834 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
835 		}
836 #ifdef INET6
837 		if (inp == 0) {
838 			struct in6_addr s, d;
839 
840 			/* mapped addr case */
841 			bzero(&s, sizeof(s));
842 			s.s6_addr16[5] = htons(0xffff);
843 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
844 			bzero(&d, sizeof(d));
845 			d.s6_addr16[5] = htons(0xffff);
846 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
847 			in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
848 				&d, th->th_dport, 0);
849 			if (in6p == 0) {
850 				++tcpstat.tcps_pcbhashmiss;
851 				in6p = in6_pcblookup_bind(&tcb6, &d,
852 					th->th_dport, 0);
853 			}
854 		}
855 #endif
856 #ifndef INET6
857 		if (inp == 0)
858 #else
859 		if (inp == 0 && in6p == 0)
860 #endif
861 		{
862 			++tcpstat.tcps_noport;
863 			if (tcp_log_refused && (tiflags & TH_SYN)) {
864 #ifndef INET6
865 				char src[4*sizeof "123"];
866 				char dst[4*sizeof "123"];
867 #else
868 				char src[INET6_ADDRSTRLEN];
869 				char dst[INET6_ADDRSTRLEN];
870 #endif
871 				if (ip) {
872 					strcpy(src, inet_ntoa(ip->ip_src));
873 					strcpy(dst, inet_ntoa(ip->ip_dst));
874 				}
875 #ifdef INET6
876 				else if (ip6) {
877 					strcpy(src, ip6_sprintf(&ip6->ip6_src));
878 					strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
879 				}
880 #endif
881 				else {
882 					strcpy(src, "(unknown)");
883 					strcpy(dst, "(unknown)");
884 				}
885 				log(LOG_INFO,
886 				    "Connection attempt to TCP %s:%d from %s:%d\n",
887 				    dst, ntohs(th->th_dport),
888 				    src, ntohs(th->th_sport));
889 			}
890 			TCP_FIELDS_TO_HOST(th);
891 			goto dropwithreset_ratelim;
892 		}
893 #ifdef IPSEC
894 		if (inp && ipsec4_in_reject(m, inp)) {
895 			ipsecstat.in_polvio++;
896 			goto drop;
897 		}
898 #ifdef INET6
899 		else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
900 			ipsecstat.in_polvio++;
901 			goto drop;
902 		}
903 #endif
904 #endif /*IPSEC*/
905 		break;
906 #endif /*INET*/
907 #ifdef INET6
908 	case AF_INET6:
909 	    {
910 		int faith;
911 
912 #if defined(NFAITH) && NFAITH > 0
913 		faith = faithprefix(&ip6->ip6_dst);
914 #else
915 		faith = 0;
916 #endif
917 		in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
918 			&ip6->ip6_dst, th->th_dport, faith);
919 		if (in6p == NULL) {
920 			++tcpstat.tcps_pcbhashmiss;
921 			in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
922 				th->th_dport, faith);
923 		}
924 		if (in6p == NULL) {
925 			++tcpstat.tcps_noport;
926 			TCP_FIELDS_TO_HOST(th);
927 			goto dropwithreset_ratelim;
928 		}
929 #ifdef IPSEC
930 		if (ipsec6_in_reject(m, in6p)) {
931 			ipsec6stat.in_polvio++;
932 			goto drop;
933 		}
934 #endif /*IPSEC*/
935 		break;
936 	    }
937 #endif
938 	}
939 
940 	/*
941 	 * If the state is CLOSED (i.e., TCB does not exist) then
942 	 * all data in the incoming segment is discarded.
943 	 * If the TCB exists but is in CLOSED state, it is embryonic,
944 	 * but should either do a listen or a connect soon.
945 	 */
946 	tp = NULL;
947 	so = NULL;
948 	if (inp) {
949 		tp = intotcpcb(inp);
950 		so = inp->inp_socket;
951 	}
952 #ifdef INET6
953 	else if (in6p) {
954 		tp = in6totcpcb(in6p);
955 		so = in6p->in6p_socket;
956 	}
957 #endif
958 	if (tp == 0) {
959 		TCP_FIELDS_TO_HOST(th);
960 		goto dropwithreset_ratelim;
961 	}
962 	if (tp->t_state == TCPS_CLOSED)
963 		goto drop;
964 
965 	/*
966 	 * Checksum extended TCP header and data.
967 	 */
968 	switch (af) {
969 #ifdef INET
970 	case AF_INET:
971 		switch (m->m_pkthdr.csum_flags &
972 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
973 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
974 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
975 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
976 			goto badcsum;
977 
978 		case M_CSUM_TCPv4|M_CSUM_DATA:
979 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
980 			if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
981 				goto badcsum;
982 			break;
983 
984 		case M_CSUM_TCPv4:
985 			/* Checksum was okay. */
986 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
987 			break;
988 
989 		default:
990 			/* Must compute it ourselves. */
991 			TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
992 #ifndef PULLDOWN_TEST
993 		    {
994 			struct ipovly *ipov;
995 			ipov = (struct ipovly *)ip;
996 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
997 			ipov->ih_len = htons(tlen + off);
998 
999 			if (in_cksum(m, len) != 0)
1000 				goto badcsum;
1001 		    }
1002 #else
1003 			if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1004 				goto badcsum;
1005 #endif /* ! PULLDOWN_TEST */
1006 			break;
1007 		}
1008 		break;
1009 #endif /* INET4 */
1010 
1011 #ifdef INET6
1012 	case AF_INET6:
1013 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1014 			goto badcsum;
1015 		break;
1016 #endif /* INET6 */
1017 	}
1018 
1019 	TCP_FIELDS_TO_HOST(th);
1020 
1021 	/* Unscale the window into a 32-bit value. */
1022 	if ((tiflags & TH_SYN) == 0)
1023 		tiwin = th->th_win << tp->snd_scale;
1024 	else
1025 		tiwin = th->th_win;
1026 
1027 #ifdef INET6
1028 	/* save packet options if user wanted */
1029 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1030 		if (in6p->in6p_options) {
1031 			m_freem(in6p->in6p_options);
1032 			in6p->in6p_options = 0;
1033 		}
1034 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1035 	}
1036 #endif
1037 
1038 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1039 		union syn_cache_sa src;
1040 		union syn_cache_sa dst;
1041 
1042 		bzero(&src, sizeof(src));
1043 		bzero(&dst, sizeof(dst));
1044 		switch (af) {
1045 #ifdef INET
1046 		case AF_INET:
1047 			src.sin.sin_len = sizeof(struct sockaddr_in);
1048 			src.sin.sin_family = AF_INET;
1049 			src.sin.sin_addr = ip->ip_src;
1050 			src.sin.sin_port = th->th_sport;
1051 
1052 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1053 			dst.sin.sin_family = AF_INET;
1054 			dst.sin.sin_addr = ip->ip_dst;
1055 			dst.sin.sin_port = th->th_dport;
1056 			break;
1057 #endif
1058 #ifdef INET6
1059 		case AF_INET6:
1060 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1061 			src.sin6.sin6_family = AF_INET6;
1062 			src.sin6.sin6_addr = ip6->ip6_src;
1063 			src.sin6.sin6_port = th->th_sport;
1064 
1065 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1066 			dst.sin6.sin6_family = AF_INET6;
1067 			dst.sin6.sin6_addr = ip6->ip6_dst;
1068 			dst.sin6.sin6_port = th->th_dport;
1069 			break;
1070 #endif /* INET6 */
1071 		default:
1072 			goto badsyn;	/*sanity*/
1073 		}
1074 
1075 		if (so->so_options & SO_DEBUG) {
1076 			ostate = tp->t_state;
1077 
1078 			tcp_saveti = NULL;
1079 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1080 				goto nosave;
1081 
1082 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1083 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1084 				if (!tcp_saveti)
1085 					goto nosave;
1086 			} else {
1087 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1088 				if (!tcp_saveti)
1089 					goto nosave;
1090 				tcp_saveti->m_len = iphlen;
1091 				m_copydata(m, 0, iphlen,
1092 				    mtod(tcp_saveti, caddr_t));
1093 			}
1094 
1095 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1096 				m_freem(tcp_saveti);
1097 				tcp_saveti = NULL;
1098 			} else {
1099 				tcp_saveti->m_len += sizeof(struct tcphdr);
1100 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1101 				    sizeof(struct tcphdr));
1102 			}
1103 			if (tcp_saveti) {
1104 				/*
1105 				 * need to recover version # field, which was
1106 				 * overwritten on ip_cksum computation.
1107 				 */
1108 				struct ip *sip;
1109 				sip = mtod(tcp_saveti, struct ip *);
1110 				switch (af) {
1111 #ifdef INET
1112 				case AF_INET:
1113 					sip->ip_v = 4;
1114 					break;
1115 #endif
1116 #ifdef INET6
1117 				case AF_INET6:
1118 					sip->ip_v = 6;
1119 					break;
1120 #endif
1121 				}
1122 			}
1123 	nosave:;
1124 		}
1125 		if (so->so_options & SO_ACCEPTCONN) {
1126   			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1127 				if (tiflags & TH_RST) {
1128 					syn_cache_reset(&src.sa, &dst.sa, th);
1129 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1130 				    (TH_ACK|TH_SYN)) {
1131 					/*
1132 					 * Received a SYN,ACK.  This should
1133 					 * never happen while we are in
1134 					 * LISTEN.  Send an RST.
1135 					 */
1136 					goto badsyn;
1137 				} else if (tiflags & TH_ACK) {
1138 					so = syn_cache_get(&src.sa, &dst.sa,
1139 						th, toff, tlen, so, m);
1140 					if (so == NULL) {
1141 						/*
1142 						 * We don't have a SYN for
1143 						 * this ACK; send an RST.
1144 						 */
1145 						goto badsyn;
1146 					} else if (so ==
1147 					    (struct socket *)(-1)) {
1148 						/*
1149 						 * We were unable to create
1150 						 * the connection.  If the
1151 						 * 3-way handshake was
1152 						 * completed, and RST has
1153 						 * been sent to the peer.
1154 						 * Since the mbuf might be
1155 						 * in use for the reply,
1156 						 * do not free it.
1157 						 */
1158 						m = NULL;
1159 					} else {
1160 						/*
1161 						 * We have created a
1162 						 * full-blown connection.
1163 						 */
1164 						tp = NULL;
1165 						inp = NULL;
1166 #ifdef INET6
1167 						in6p = NULL;
1168 #endif
1169 						switch (so->so_proto->pr_domain->dom_family) {
1170 #ifdef INET
1171 						case AF_INET:
1172 							inp = sotoinpcb(so);
1173 							tp = intotcpcb(inp);
1174 							break;
1175 #endif
1176 #ifdef INET6
1177 						case AF_INET6:
1178 							in6p = sotoin6pcb(so);
1179 							tp = in6totcpcb(in6p);
1180 							break;
1181 #endif
1182 						}
1183 						if (tp == NULL)
1184 							goto badsyn;	/*XXX*/
1185 						tiwin <<= tp->snd_scale;
1186 						goto after_listen;
1187 					}
1188   				} else {
1189 					/*
1190 					 * None of RST, SYN or ACK was set.
1191 					 * This is an invalid packet for a
1192 					 * TCB in LISTEN state.  Send a RST.
1193 					 */
1194 					goto badsyn;
1195 				}
1196   			} else {
1197 				/*
1198 				 * Received a SYN.
1199 				 */
1200 
1201 				/*
1202 				 * LISTEN socket received a SYN
1203 				 * from itself?  This can't possibly
1204 				 * be valid; drop the packet.
1205 				 */
1206 				if (th->th_sport == th->th_dport) {
1207 					int i;
1208 
1209 					switch (af) {
1210 #ifdef INET
1211 					case AF_INET:
1212 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1213 						break;
1214 #endif
1215 #ifdef INET6
1216 					case AF_INET6:
1217 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1218 						break;
1219 #endif
1220 					default:
1221 						i = 1;
1222 					}
1223 					if (i) {
1224 						tcpstat.tcps_badsyn++;
1225 						goto drop;
1226 					}
1227 				}
1228 
1229 				/*
1230 				 * SYN looks ok; create compressed TCP
1231 				 * state for it.
1232 				 */
1233 				if (so->so_qlen <= so->so_qlimit &&
1234 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1235 						so, m, optp, optlen, &opti))
1236 					m = NULL;
1237 			}
1238 			goto drop;
1239 		}
1240 	}
1241 
1242 after_listen:
1243 #ifdef DIAGNOSTIC
1244 	/*
1245 	 * Should not happen now that all embryonic connections
1246 	 * are handled with compressed state.
1247 	 */
1248 	if (tp->t_state == TCPS_LISTEN)
1249 		panic("tcp_input: TCPS_LISTEN");
1250 #endif
1251 
1252 	/*
1253 	 * Segment received on connection.
1254 	 * Reset idle time and keep-alive timer.
1255 	 */
1256 	tp->t_rcvtime = tcp_now;
1257 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1258 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1259 
1260 	/*
1261 	 * Process options.
1262 	 */
1263 	if (optp)
1264 		tcp_dooptions(tp, optp, optlen, th, &opti);
1265 
1266 	/*
1267 	 * Header prediction: check for the two common cases
1268 	 * of a uni-directional data xfer.  If the packet has
1269 	 * no control flags, is in-sequence, the window didn't
1270 	 * change and we're not retransmitting, it's a
1271 	 * candidate.  If the length is zero and the ack moved
1272 	 * forward, we're the sender side of the xfer.  Just
1273 	 * free the data acked & wake any higher level process
1274 	 * that was blocked waiting for space.  If the length
1275 	 * is non-zero and the ack didn't move, we're the
1276 	 * receiver side.  If we're getting packets in-order
1277 	 * (the reassembly queue is empty), add the data to
1278 	 * the socket buffer and note that we need a delayed ack.
1279 	 */
1280 	if (tp->t_state == TCPS_ESTABLISHED &&
1281 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1282 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1283 	    th->th_seq == tp->rcv_nxt &&
1284 	    tiwin && tiwin == tp->snd_wnd &&
1285 	    tp->snd_nxt == tp->snd_max) {
1286 
1287 		/*
1288 		 * If last ACK falls within this segment's sequence numbers,
1289 		 *  record the timestamp.
1290 		 */
1291 		if (opti.ts_present &&
1292 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1293 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1294 			tp->ts_recent_age = TCP_TIMESTAMP(tp);
1295 			tp->ts_recent = opti.ts_val;
1296 		}
1297 
1298 		if (tlen == 0) {
1299 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1300 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1301 			    tp->snd_cwnd >= tp->snd_wnd &&
1302 			    tp->t_dupacks < tcprexmtthresh) {
1303 				/*
1304 				 * this is a pure ack for outstanding data.
1305 				 */
1306 				++tcpstat.tcps_predack;
1307 				if (opti.ts_present && opti.ts_ecr)
1308 					tcp_xmit_timer(tp,
1309 					  TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1310 				else if (tp->t_rtttime &&
1311 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1312 					tcp_xmit_timer(tp,
1313 					tcp_now - tp->t_rtttime);
1314 				acked = th->th_ack - tp->snd_una;
1315 				tcpstat.tcps_rcvackpack++;
1316 				tcpstat.tcps_rcvackbyte += acked;
1317 				ND6_HINT(tp);
1318 				sbdrop(&so->so_snd, acked);
1319 				/*
1320 				 * We want snd_recover to track snd_una to
1321 				 * avoid sequence wraparound problems for
1322 				 * very large transfers.
1323 				 */
1324 				tp->snd_una = tp->snd_recover = th->th_ack;
1325 				m_freem(m);
1326 
1327 				/*
1328 				 * If all outstanding data are acked, stop
1329 				 * retransmit timer, otherwise restart timer
1330 				 * using current (possibly backed-off) value.
1331 				 * If process is waiting for space,
1332 				 * wakeup/selwakeup/signal.  If data
1333 				 * are ready to send, let tcp_output
1334 				 * decide between more output or persist.
1335 				 */
1336 				if (tp->snd_una == tp->snd_max)
1337 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1338 				else if (TCP_TIMER_ISARMED(tp,
1339 				    TCPT_PERSIST) == 0)
1340 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1341 					    tp->t_rxtcur);
1342 
1343 				sowwakeup(so);
1344 				if (so->so_snd.sb_cc)
1345 					(void) tcp_output(tp);
1346 				if (tcp_saveti)
1347 					m_freem(tcp_saveti);
1348 				return;
1349 			}
1350 		} else if (th->th_ack == tp->snd_una &&
1351 		    tp->segq.lh_first == NULL &&
1352 		    tlen <= sbspace(&so->so_rcv)) {
1353 			/*
1354 			 * this is a pure, in-sequence data packet
1355 			 * with nothing on the reassembly queue and
1356 			 * we have enough buffer space to take it.
1357 			 */
1358 			++tcpstat.tcps_preddat;
1359 			tp->rcv_nxt += tlen;
1360 			tcpstat.tcps_rcvpack++;
1361 			tcpstat.tcps_rcvbyte += tlen;
1362 			ND6_HINT(tp);
1363 			/*
1364 			 * Drop TCP, IP headers and TCP options then add data
1365 			 * to socket buffer.
1366 			 */
1367 			m_adj(m, toff + off);
1368 			sbappend(&so->so_rcv, m);
1369 			sorwakeup(so);
1370 			TCP_SETUP_ACK(tp, th);
1371 			if (tp->t_flags & TF_ACKNOW)
1372 				(void) tcp_output(tp);
1373 			if (tcp_saveti)
1374 				m_freem(tcp_saveti);
1375 			return;
1376 		}
1377 	}
1378 
1379 	/*
1380 	 * Compute mbuf offset to TCP data segment.
1381 	 */
1382 	hdroptlen = toff + off;
1383 
1384 	/*
1385 	 * Calculate amount of space in receive window,
1386 	 * and then do TCP input processing.
1387 	 * Receive window is amount of space in rcv queue,
1388 	 * but not less than advertised window.
1389 	 */
1390 	{ int win;
1391 
1392 	win = sbspace(&so->so_rcv);
1393 	if (win < 0)
1394 		win = 0;
1395 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1396 	}
1397 
1398 	switch (tp->t_state) {
1399 
1400 	/*
1401 	 * If the state is SYN_SENT:
1402 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1403 	 *	if seg contains a RST, then drop the connection.
1404 	 *	if seg does not contain SYN, then drop it.
1405 	 * Otherwise this is an acceptable SYN segment
1406 	 *	initialize tp->rcv_nxt and tp->irs
1407 	 *	if seg contains ack then advance tp->snd_una
1408 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1409 	 *	arrange for segment to be acked (eventually)
1410 	 *	continue processing rest of data/controls, beginning with URG
1411 	 */
1412 	case TCPS_SYN_SENT:
1413 		if ((tiflags & TH_ACK) &&
1414 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1415 		     SEQ_GT(th->th_ack, tp->snd_max)))
1416 			goto dropwithreset;
1417 		if (tiflags & TH_RST) {
1418 			if (tiflags & TH_ACK)
1419 				tp = tcp_drop(tp, ECONNREFUSED);
1420 			goto drop;
1421 		}
1422 		if ((tiflags & TH_SYN) == 0)
1423 			goto drop;
1424 		if (tiflags & TH_ACK) {
1425 			tp->snd_una = tp->snd_recover = th->th_ack;
1426 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1427 				tp->snd_nxt = tp->snd_una;
1428 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1429 		}
1430 		tp->irs = th->th_seq;
1431 		tcp_rcvseqinit(tp);
1432 		tp->t_flags |= TF_ACKNOW;
1433 		tcp_mss_from_peer(tp, opti.maxseg);
1434 
1435 		/*
1436 		 * Initialize the initial congestion window.  If we
1437 		 * had to retransmit the SYN, we must initialize cwnd
1438 		 * to 1 segment (i.e. the Loss Window).
1439 		 */
1440 		if (tp->t_flags & TF_SYN_REXMT)
1441 			tp->snd_cwnd = tp->t_peermss;
1442 		else
1443 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1444 			    tp->t_peermss);
1445 
1446 		tcp_rmx_rtt(tp);
1447 		if (tiflags & TH_ACK) {
1448 			tcpstat.tcps_connects++;
1449 			soisconnected(so);
1450 			tcp_established(tp);
1451 			/* Do window scaling on this connection? */
1452 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1453 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1454 				tp->snd_scale = tp->requested_s_scale;
1455 				tp->rcv_scale = tp->request_r_scale;
1456 			}
1457 			TCP_REASS_LOCK(tp);
1458 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1459 			TCP_REASS_UNLOCK(tp);
1460 			/*
1461 			 * if we didn't have to retransmit the SYN,
1462 			 * use its rtt as our initial srtt & rtt var.
1463 			 */
1464 			if (tp->t_rtttime)
1465 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1466 		} else
1467 			tp->t_state = TCPS_SYN_RECEIVED;
1468 
1469 		/*
1470 		 * Advance th->th_seq to correspond to first data byte.
1471 		 * If data, trim to stay within window,
1472 		 * dropping FIN if necessary.
1473 		 */
1474 		th->th_seq++;
1475 		if (tlen > tp->rcv_wnd) {
1476 			todrop = tlen - tp->rcv_wnd;
1477 			m_adj(m, -todrop);
1478 			tlen = tp->rcv_wnd;
1479 			tiflags &= ~TH_FIN;
1480 			tcpstat.tcps_rcvpackafterwin++;
1481 			tcpstat.tcps_rcvbyteafterwin += todrop;
1482 		}
1483 		tp->snd_wl1 = th->th_seq - 1;
1484 		tp->rcv_up = th->th_seq;
1485 		goto step6;
1486 
1487 	/*
1488 	 * If the state is SYN_RECEIVED:
1489 	 *	If seg contains an ACK, but not for our SYN, drop the input
1490 	 *	and generate an RST.  See page 36, rfc793
1491 	 */
1492 	case TCPS_SYN_RECEIVED:
1493 		if ((tiflags & TH_ACK) &&
1494 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1495 		     SEQ_GT(th->th_ack, tp->snd_max)))
1496 			goto dropwithreset;
1497 		break;
1498 	}
1499 
1500 	/*
1501 	 * States other than LISTEN or SYN_SENT.
1502 	 * First check timestamp, if present.
1503 	 * Then check that at least some bytes of segment are within
1504 	 * receive window.  If segment begins before rcv_nxt,
1505 	 * drop leading data (and SYN); if nothing left, just ack.
1506 	 *
1507 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1508 	 * and it's less than ts_recent, drop it.
1509 	 */
1510 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1511 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1512 
1513 		/* Check to see if ts_recent is over 24 days old.  */
1514 		if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1515 		    TCP_PAWS_IDLE) {
1516 			/*
1517 			 * Invalidate ts_recent.  If this segment updates
1518 			 * ts_recent, the age will be reset later and ts_recent
1519 			 * will get a valid value.  If it does not, setting
1520 			 * ts_recent to zero will at least satisfy the
1521 			 * requirement that zero be placed in the timestamp
1522 			 * echo reply when ts_recent isn't valid.  The
1523 			 * age isn't reset until we get a valid ts_recent
1524 			 * because we don't want out-of-order segments to be
1525 			 * dropped when ts_recent is old.
1526 			 */
1527 			tp->ts_recent = 0;
1528 		} else {
1529 			tcpstat.tcps_rcvduppack++;
1530 			tcpstat.tcps_rcvdupbyte += tlen;
1531 			tcpstat.tcps_pawsdrop++;
1532 			goto dropafterack;
1533 		}
1534 	}
1535 
1536 	todrop = tp->rcv_nxt - th->th_seq;
1537 	if (todrop > 0) {
1538 		if (tiflags & TH_SYN) {
1539 			tiflags &= ~TH_SYN;
1540 			th->th_seq++;
1541 			if (th->th_urp > 1)
1542 				th->th_urp--;
1543 			else {
1544 				tiflags &= ~TH_URG;
1545 				th->th_urp = 0;
1546 			}
1547 			todrop--;
1548 		}
1549 		if (todrop > tlen ||
1550 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1551 			/*
1552 			 * Any valid FIN must be to the left of the window.
1553 			 * At this point the FIN must be a duplicate or
1554 			 * out of sequence; drop it.
1555 			 */
1556 			tiflags &= ~TH_FIN;
1557 			/*
1558 			 * Send an ACK to resynchronize and drop any data.
1559 			 * But keep on processing for RST or ACK.
1560 			 */
1561 			tp->t_flags |= TF_ACKNOW;
1562 			todrop = tlen;
1563 			tcpstat.tcps_rcvdupbyte += todrop;
1564 			tcpstat.tcps_rcvduppack++;
1565 		} else {
1566 			tcpstat.tcps_rcvpartduppack++;
1567 			tcpstat.tcps_rcvpartdupbyte += todrop;
1568 		}
1569 		hdroptlen += todrop;	/*drop from head afterwards*/
1570 		th->th_seq += todrop;
1571 		tlen -= todrop;
1572 		if (th->th_urp > todrop)
1573 			th->th_urp -= todrop;
1574 		else {
1575 			tiflags &= ~TH_URG;
1576 			th->th_urp = 0;
1577 		}
1578 	}
1579 
1580 	/*
1581 	 * If new data are received on a connection after the
1582 	 * user processes are gone, then RST the other end.
1583 	 */
1584 	if ((so->so_state & SS_NOFDREF) &&
1585 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1586 		tp = tcp_close(tp);
1587 		tcpstat.tcps_rcvafterclose++;
1588 		goto dropwithreset;
1589 	}
1590 
1591 	/*
1592 	 * If segment ends after window, drop trailing data
1593 	 * (and PUSH and FIN); if nothing left, just ACK.
1594 	 */
1595 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1596 	if (todrop > 0) {
1597 		tcpstat.tcps_rcvpackafterwin++;
1598 		if (todrop >= tlen) {
1599 			tcpstat.tcps_rcvbyteafterwin += tlen;
1600 			/*
1601 			 * If a new connection request is received
1602 			 * while in TIME_WAIT, drop the old connection
1603 			 * and start over if the sequence numbers
1604 			 * are above the previous ones.
1605 			 */
1606 			if (tiflags & TH_SYN &&
1607 			    tp->t_state == TCPS_TIME_WAIT &&
1608 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1609 				iss = tcp_new_iss(tp, tp->snd_nxt);
1610 				tp = tcp_close(tp);
1611 				goto findpcb;
1612 			}
1613 			/*
1614 			 * If window is closed can only take segments at
1615 			 * window edge, and have to drop data and PUSH from
1616 			 * incoming segments.  Continue processing, but
1617 			 * remember to ack.  Otherwise, drop segment
1618 			 * and ack.
1619 			 */
1620 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1621 				tp->t_flags |= TF_ACKNOW;
1622 				tcpstat.tcps_rcvwinprobe++;
1623 			} else
1624 				goto dropafterack;
1625 		} else
1626 			tcpstat.tcps_rcvbyteafterwin += todrop;
1627 		m_adj(m, -todrop);
1628 		tlen -= todrop;
1629 		tiflags &= ~(TH_PUSH|TH_FIN);
1630 	}
1631 
1632 	/*
1633 	 * If last ACK falls within this segment's sequence numbers,
1634 	 * and the timestamp is newer, record it.
1635 	 */
1636 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1637 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1638 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1639 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1640 		tp->ts_recent_age = TCP_TIMESTAMP(tp);
1641 		tp->ts_recent = opti.ts_val;
1642 	}
1643 
1644 	/*
1645 	 * If the RST bit is set examine the state:
1646 	 *    SYN_RECEIVED STATE:
1647 	 *	If passive open, return to LISTEN state.
1648 	 *	If active open, inform user that connection was refused.
1649 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1650 	 *	Inform user that connection was reset, and close tcb.
1651 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1652 	 *	Close the tcb.
1653 	 */
1654 	if (tiflags&TH_RST) switch (tp->t_state) {
1655 
1656 	case TCPS_SYN_RECEIVED:
1657 		so->so_error = ECONNREFUSED;
1658 		goto close;
1659 
1660 	case TCPS_ESTABLISHED:
1661 	case TCPS_FIN_WAIT_1:
1662 	case TCPS_FIN_WAIT_2:
1663 	case TCPS_CLOSE_WAIT:
1664 		so->so_error = ECONNRESET;
1665 	close:
1666 		tp->t_state = TCPS_CLOSED;
1667 		tcpstat.tcps_drops++;
1668 		tp = tcp_close(tp);
1669 		goto drop;
1670 
1671 	case TCPS_CLOSING:
1672 	case TCPS_LAST_ACK:
1673 	case TCPS_TIME_WAIT:
1674 		tp = tcp_close(tp);
1675 		goto drop;
1676 	}
1677 
1678 	/*
1679 	 * If a SYN is in the window, then this is an
1680 	 * error and we send an RST and drop the connection.
1681 	 */
1682 	if (tiflags & TH_SYN) {
1683 		tp = tcp_drop(tp, ECONNRESET);
1684 		goto dropwithreset;
1685 	}
1686 
1687 	/*
1688 	 * If the ACK bit is off we drop the segment and return.
1689 	 */
1690 	if ((tiflags & TH_ACK) == 0) {
1691 		if (tp->t_flags & TF_ACKNOW)
1692 			goto dropafterack;
1693 		else
1694 			goto drop;
1695 	}
1696 
1697 	/*
1698 	 * Ack processing.
1699 	 */
1700 	switch (tp->t_state) {
1701 
1702 	/*
1703 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1704 	 * ESTABLISHED state and continue processing, otherwise
1705 	 * send an RST.
1706 	 */
1707 	case TCPS_SYN_RECEIVED:
1708 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
1709 		    SEQ_GT(th->th_ack, tp->snd_max))
1710 			goto dropwithreset;
1711 		tcpstat.tcps_connects++;
1712 		soisconnected(so);
1713 		tcp_established(tp);
1714 		/* Do window scaling? */
1715 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1716 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1717 			tp->snd_scale = tp->requested_s_scale;
1718 			tp->rcv_scale = tp->request_r_scale;
1719 		}
1720 		TCP_REASS_LOCK(tp);
1721 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1722 		TCP_REASS_UNLOCK(tp);
1723 		tp->snd_wl1 = th->th_seq - 1;
1724 		/* fall into ... */
1725 
1726 	/*
1727 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1728 	 * ACKs.  If the ack is in the range
1729 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1730 	 * then advance tp->snd_una to th->th_ack and drop
1731 	 * data from the retransmission queue.  If this ACK reflects
1732 	 * more up to date window information we update our window information.
1733 	 */
1734 	case TCPS_ESTABLISHED:
1735 	case TCPS_FIN_WAIT_1:
1736 	case TCPS_FIN_WAIT_2:
1737 	case TCPS_CLOSE_WAIT:
1738 	case TCPS_CLOSING:
1739 	case TCPS_LAST_ACK:
1740 	case TCPS_TIME_WAIT:
1741 
1742 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1743 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1744 				tcpstat.tcps_rcvdupack++;
1745 				/*
1746 				 * If we have outstanding data (other than
1747 				 * a window probe), this is a completely
1748 				 * duplicate ack (ie, window info didn't
1749 				 * change), the ack is the biggest we've
1750 				 * seen and we've seen exactly our rexmt
1751 				 * threshhold of them, assume a packet
1752 				 * has been dropped and retransmit it.
1753 				 * Kludge snd_nxt & the congestion
1754 				 * window so we send only this one
1755 				 * packet.
1756 				 *
1757 				 * We know we're losing at the current
1758 				 * window size so do congestion avoidance
1759 				 * (set ssthresh to half the current window
1760 				 * and pull our congestion window back to
1761 				 * the new ssthresh).
1762 				 *
1763 				 * Dup acks mean that packets have left the
1764 				 * network (they're now cached at the receiver)
1765 				 * so bump cwnd by the amount in the receiver
1766 				 * to keep a constant cwnd packets in the
1767 				 * network.
1768 				 */
1769 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1770 				    th->th_ack != tp->snd_una)
1771 					tp->t_dupacks = 0;
1772 				else if (++tp->t_dupacks == tcprexmtthresh) {
1773 					tcp_seq onxt = tp->snd_nxt;
1774 					u_int win =
1775 					    min(tp->snd_wnd, tp->snd_cwnd) /
1776 					    2 /	tp->t_segsz;
1777 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
1778 					    tp->snd_recover)) {
1779 						/*
1780 						 * False fast retransmit after
1781 						 * timeout.  Do not cut window.
1782 						 */
1783 						tp->snd_cwnd += tp->t_segsz;
1784 						tp->t_dupacks = 0;
1785 						(void) tcp_output(tp);
1786 						goto drop;
1787 					}
1788 
1789 					if (win < 2)
1790 						win = 2;
1791 					tp->snd_ssthresh = win * tp->t_segsz;
1792 					tp->snd_recover = tp->snd_max;
1793 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1794 					tp->t_rtttime = 0;
1795 					tp->snd_nxt = th->th_ack;
1796 					tp->snd_cwnd = tp->t_segsz;
1797 					(void) tcp_output(tp);
1798 					tp->snd_cwnd = tp->snd_ssthresh +
1799 					       tp->t_segsz * tp->t_dupacks;
1800 					if (SEQ_GT(onxt, tp->snd_nxt))
1801 						tp->snd_nxt = onxt;
1802 					goto drop;
1803 				} else if (tp->t_dupacks > tcprexmtthresh) {
1804 					tp->snd_cwnd += tp->t_segsz;
1805 					(void) tcp_output(tp);
1806 					goto drop;
1807 				}
1808 			} else
1809 				tp->t_dupacks = 0;
1810 			break;
1811 		}
1812 		/*
1813 		 * If the congestion window was inflated to account
1814 		 * for the other side's cached packets, retract it.
1815 		 */
1816 		if (tcp_do_newreno == 0) {
1817 			if (tp->t_dupacks >= tcprexmtthresh &&
1818 			    tp->snd_cwnd > tp->snd_ssthresh)
1819 				tp->snd_cwnd = tp->snd_ssthresh;
1820 			tp->t_dupacks = 0;
1821 		} else if (tp->t_dupacks >= tcprexmtthresh &&
1822 			   tcp_newreno(tp, th) == 0) {
1823 			tp->snd_cwnd = tp->snd_ssthresh;
1824 			/*
1825 			 * Window inflation should have left us with approx.
1826 			 * snd_ssthresh outstanding data.  But in case we
1827 			 * would be inclined to send a burst, better to do
1828 			 * it via the slow start mechanism.
1829 			 */
1830 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1831 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1832 				    + tp->t_segsz;
1833 			tp->t_dupacks = 0;
1834 		}
1835 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1836 			tcpstat.tcps_rcvacktoomuch++;
1837 			goto dropafterack;
1838 		}
1839 		acked = th->th_ack - tp->snd_una;
1840 		tcpstat.tcps_rcvackpack++;
1841 		tcpstat.tcps_rcvackbyte += acked;
1842 
1843 		/*
1844 		 * If we have a timestamp reply, update smoothed
1845 		 * round trip time.  If no timestamp is present but
1846 		 * transmit timer is running and timed sequence
1847 		 * number was acked, update smoothed round trip time.
1848 		 * Since we now have an rtt measurement, cancel the
1849 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1850 		 * Recompute the initial retransmit timer.
1851 		 */
1852 		if (opti.ts_present && opti.ts_ecr)
1853 			tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1854 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1855 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1856 
1857 		/*
1858 		 * If all outstanding data is acked, stop retransmit
1859 		 * timer and remember to restart (more output or persist).
1860 		 * If there is more data to be acked, restart retransmit
1861 		 * timer, using current (possibly backed-off) value.
1862 		 */
1863 		if (th->th_ack == tp->snd_max) {
1864 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1865 			needoutput = 1;
1866 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1867 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1868 		/*
1869 		 * When new data is acked, open the congestion window.
1870 		 * If the window gives us less than ssthresh packets
1871 		 * in flight, open exponentially (segsz per packet).
1872 		 * Otherwise open linearly: segsz per window
1873 		 * (segsz^2 / cwnd per packet), plus a constant
1874 		 * fraction of a packet (segsz/8) to help larger windows
1875 		 * open quickly enough.
1876 		 */
1877 		{
1878 		u_int cw = tp->snd_cwnd;
1879 		u_int incr = tp->t_segsz;
1880 
1881 		if (cw > tp->snd_ssthresh)
1882 			incr = incr * incr / cw;
1883 		if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
1884 			tp->snd_cwnd = min(cw + incr,
1885 			    TCP_MAXWIN << tp->snd_scale);
1886 		}
1887 		ND6_HINT(tp);
1888 		if (acked > so->so_snd.sb_cc) {
1889 			tp->snd_wnd -= so->so_snd.sb_cc;
1890 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1891 			ourfinisacked = 1;
1892 		} else {
1893 			sbdrop(&so->so_snd, acked);
1894 			tp->snd_wnd -= acked;
1895 			ourfinisacked = 0;
1896 		}
1897 		sowwakeup(so);
1898 		/*
1899 		 * We want snd_recover to track snd_una to
1900 		 * avoid sequence wraparound problems for
1901 		 * very large transfers.
1902 		 */
1903 		tp->snd_una = tp->snd_recover = th->th_ack;
1904 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1905 			tp->snd_nxt = tp->snd_una;
1906 
1907 		switch (tp->t_state) {
1908 
1909 		/*
1910 		 * In FIN_WAIT_1 STATE in addition to the processing
1911 		 * for the ESTABLISHED state if our FIN is now acknowledged
1912 		 * then enter FIN_WAIT_2.
1913 		 */
1914 		case TCPS_FIN_WAIT_1:
1915 			if (ourfinisacked) {
1916 				/*
1917 				 * If we can't receive any more
1918 				 * data, then closing user can proceed.
1919 				 * Starting the timer is contrary to the
1920 				 * specification, but if we don't get a FIN
1921 				 * we'll hang forever.
1922 				 */
1923 				if (so->so_state & SS_CANTRCVMORE) {
1924 					soisdisconnected(so);
1925 					if (tcp_maxidle > 0)
1926 						TCP_TIMER_ARM(tp, TCPT_2MSL,
1927 						    tcp_maxidle);
1928 				}
1929 				tp->t_state = TCPS_FIN_WAIT_2;
1930 			}
1931 			break;
1932 
1933 	 	/*
1934 		 * In CLOSING STATE in addition to the processing for
1935 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1936 		 * then enter the TIME-WAIT state, otherwise ignore
1937 		 * the segment.
1938 		 */
1939 		case TCPS_CLOSING:
1940 			if (ourfinisacked) {
1941 				tp->t_state = TCPS_TIME_WAIT;
1942 				tcp_canceltimers(tp);
1943 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1944 				soisdisconnected(so);
1945 			}
1946 			break;
1947 
1948 		/*
1949 		 * In LAST_ACK, we may still be waiting for data to drain
1950 		 * and/or to be acked, as well as for the ack of our FIN.
1951 		 * If our FIN is now acknowledged, delete the TCB,
1952 		 * enter the closed state and return.
1953 		 */
1954 		case TCPS_LAST_ACK:
1955 			if (ourfinisacked) {
1956 				tp = tcp_close(tp);
1957 				goto drop;
1958 			}
1959 			break;
1960 
1961 		/*
1962 		 * In TIME_WAIT state the only thing that should arrive
1963 		 * is a retransmission of the remote FIN.  Acknowledge
1964 		 * it and restart the finack timer.
1965 		 */
1966 		case TCPS_TIME_WAIT:
1967 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1968 			goto dropafterack;
1969 		}
1970 	}
1971 
1972 step6:
1973 	/*
1974 	 * Update window information.
1975 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1976 	 */
1977 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1978 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
1979 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
1980 		/* keep track of pure window updates */
1981 		if (tlen == 0 &&
1982 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1983 			tcpstat.tcps_rcvwinupd++;
1984 		tp->snd_wnd = tiwin;
1985 		tp->snd_wl1 = th->th_seq;
1986 		tp->snd_wl2 = th->th_ack;
1987 		if (tp->snd_wnd > tp->max_sndwnd)
1988 			tp->max_sndwnd = tp->snd_wnd;
1989 		needoutput = 1;
1990 	}
1991 
1992 	/*
1993 	 * Process segments with URG.
1994 	 */
1995 	if ((tiflags & TH_URG) && th->th_urp &&
1996 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1997 		/*
1998 		 * This is a kludge, but if we receive and accept
1999 		 * random urgent pointers, we'll crash in
2000 		 * soreceive.  It's hard to imagine someone
2001 		 * actually wanting to send this much urgent data.
2002 		 */
2003 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2004 			th->th_urp = 0;			/* XXX */
2005 			tiflags &= ~TH_URG;		/* XXX */
2006 			goto dodata;			/* XXX */
2007 		}
2008 		/*
2009 		 * If this segment advances the known urgent pointer,
2010 		 * then mark the data stream.  This should not happen
2011 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2012 		 * a FIN has been received from the remote side.
2013 		 * In these states we ignore the URG.
2014 		 *
2015 		 * According to RFC961 (Assigned Protocols),
2016 		 * the urgent pointer points to the last octet
2017 		 * of urgent data.  We continue, however,
2018 		 * to consider it to indicate the first octet
2019 		 * of data past the urgent section as the original
2020 		 * spec states (in one of two places).
2021 		 */
2022 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2023 			tp->rcv_up = th->th_seq + th->th_urp;
2024 			so->so_oobmark = so->so_rcv.sb_cc +
2025 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2026 			if (so->so_oobmark == 0)
2027 				so->so_state |= SS_RCVATMARK;
2028 			sohasoutofband(so);
2029 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2030 		}
2031 		/*
2032 		 * Remove out of band data so doesn't get presented to user.
2033 		 * This can happen independent of advancing the URG pointer,
2034 		 * but if two URG's are pending at once, some out-of-band
2035 		 * data may creep in... ick.
2036 		 */
2037 		if (th->th_urp <= (u_int16_t) tlen
2038 #ifdef SO_OOBINLINE
2039 		     && (so->so_options & SO_OOBINLINE) == 0
2040 #endif
2041 		     )
2042 			tcp_pulloutofband(so, th, m, hdroptlen);
2043 	} else
2044 		/*
2045 		 * If no out of band data is expected,
2046 		 * pull receive urgent pointer along
2047 		 * with the receive window.
2048 		 */
2049 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2050 			tp->rcv_up = tp->rcv_nxt;
2051 dodata:							/* XXX */
2052 
2053 	/*
2054 	 * Process the segment text, merging it into the TCP sequencing queue,
2055 	 * and arranging for acknowledgement of receipt if necessary.
2056 	 * This process logically involves adjusting tp->rcv_wnd as data
2057 	 * is presented to the user (this happens in tcp_usrreq.c,
2058 	 * case PRU_RCVD).  If a FIN has already been received on this
2059 	 * connection then we just ignore the text.
2060 	 */
2061 	if ((tlen || (tiflags & TH_FIN)) &&
2062 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2063 		/*
2064 		 * Insert segment ti into reassembly queue of tcp with
2065 		 * control block tp.  Return TH_FIN if reassembly now includes
2066 		 * a segment with FIN.  The macro form does the common case
2067 		 * inline (segment is the next to be received on an
2068 		 * established connection, and the queue is empty),
2069 		 * avoiding linkage into and removal from the queue and
2070 		 * repetition of various conversions.
2071 		 * Set DELACK for segments received in order, but ack
2072 		 * immediately when segments are out of order
2073 		 * (so fast retransmit can work).
2074 		 */
2075 		/* NOTE: this was TCP_REASS() macro, but used only once */
2076 		TCP_REASS_LOCK(tp);
2077 		if (th->th_seq == tp->rcv_nxt &&
2078 		    tp->segq.lh_first == NULL &&
2079 		    tp->t_state == TCPS_ESTABLISHED) {
2080 			TCP_SETUP_ACK(tp, th);
2081 			tp->rcv_nxt += tlen;
2082 			tiflags = th->th_flags & TH_FIN;
2083 			tcpstat.tcps_rcvpack++;
2084 			tcpstat.tcps_rcvbyte += tlen;
2085 			ND6_HINT(tp);
2086 			m_adj(m, hdroptlen);
2087 			sbappend(&(so)->so_rcv, m);
2088 			sorwakeup(so);
2089 		} else {
2090 			m_adj(m, hdroptlen);
2091 			tiflags = tcp_reass(tp, th, m, &tlen);
2092 			tp->t_flags |= TF_ACKNOW;
2093 		}
2094 		TCP_REASS_UNLOCK(tp);
2095 
2096 		/*
2097 		 * Note the amount of data that peer has sent into
2098 		 * our window, in order to estimate the sender's
2099 		 * buffer size.
2100 		 */
2101 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2102 	} else {
2103 		m_freem(m);
2104 		m = NULL;
2105 		tiflags &= ~TH_FIN;
2106 	}
2107 
2108 	/*
2109 	 * If FIN is received ACK the FIN and let the user know
2110 	 * that the connection is closing.  Ignore a FIN received before
2111 	 * the connection is fully established.
2112 	 */
2113 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2114 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2115 			socantrcvmore(so);
2116 			tp->t_flags |= TF_ACKNOW;
2117 			tp->rcv_nxt++;
2118 		}
2119 		switch (tp->t_state) {
2120 
2121 	 	/*
2122 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2123 		 */
2124 		case TCPS_ESTABLISHED:
2125 			tp->t_state = TCPS_CLOSE_WAIT;
2126 			break;
2127 
2128 	 	/*
2129 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2130 		 * enter the CLOSING state.
2131 		 */
2132 		case TCPS_FIN_WAIT_1:
2133 			tp->t_state = TCPS_CLOSING;
2134 			break;
2135 
2136 	 	/*
2137 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2138 		 * starting the time-wait timer, turning off the other
2139 		 * standard timers.
2140 		 */
2141 		case TCPS_FIN_WAIT_2:
2142 			tp->t_state = TCPS_TIME_WAIT;
2143 			tcp_canceltimers(tp);
2144 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2145 			soisdisconnected(so);
2146 			break;
2147 
2148 		/*
2149 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2150 		 */
2151 		case TCPS_TIME_WAIT:
2152 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2153 			break;
2154 		}
2155 	}
2156 #ifdef TCP_DEBUG
2157 	if (so->so_options & SO_DEBUG)
2158 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2159 #endif
2160 
2161 	/*
2162 	 * Return any desired output.
2163 	 */
2164 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2165 		(void) tcp_output(tp);
2166 	if (tcp_saveti)
2167 		m_freem(tcp_saveti);
2168 	return;
2169 
2170 badsyn:
2171 	/*
2172 	 * Received a bad SYN.  Increment counters and dropwithreset.
2173 	 */
2174 	tcpstat.tcps_badsyn++;
2175 	tp = NULL;
2176 	goto dropwithreset;
2177 
2178 dropafterack:
2179 	/*
2180 	 * Generate an ACK dropping incoming segment if it occupies
2181 	 * sequence space, where the ACK reflects our state.
2182 	 */
2183 	if (tiflags & TH_RST)
2184 		goto drop;
2185 	m_freem(m);
2186 	tp->t_flags |= TF_ACKNOW;
2187 	(void) tcp_output(tp);
2188 	if (tcp_saveti)
2189 		m_freem(tcp_saveti);
2190 	return;
2191 
2192 dropwithreset_ratelim:
2193 	/*
2194 	 * We may want to rate-limit RSTs in certain situations,
2195 	 * particularly if we are sending an RST in response to
2196 	 * an attempt to connect to or otherwise communicate with
2197 	 * a port for which we have no socket.
2198 	 */
2199 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2200 	    tcp_rst_ppslim) == 0) {
2201 		/* XXX stat */
2202 		goto drop;
2203 	}
2204 	/* ...fall into dropwithreset... */
2205 
2206 dropwithreset:
2207 	/*
2208 	 * Generate a RST, dropping incoming segment.
2209 	 * Make ACK acceptable to originator of segment.
2210 	 */
2211 	if (tiflags & TH_RST)
2212 		goto drop;
2213     {
2214 	/*
2215 	 * need to recover version # field, which was overwritten on
2216 	 * ip_cksum computation.
2217 	 */
2218 	struct ip *sip;
2219 	sip = mtod(m, struct ip *);
2220 	switch (af) {
2221 #ifdef INET
2222 	case AF_INET:
2223 		sip->ip_v = 4;
2224 		break;
2225 #endif
2226 #ifdef INET6
2227 	case AF_INET6:
2228 		sip->ip_v = 6;
2229 		break;
2230 #endif
2231 	}
2232     }
2233 	if (tiflags & TH_ACK)
2234 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2235 	else {
2236 		if (tiflags & TH_SYN)
2237 			tlen++;
2238 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2239 		    TH_RST|TH_ACK);
2240 	}
2241 	if (tcp_saveti)
2242 		m_freem(tcp_saveti);
2243 	return;
2244 
2245 badcsum:
2246 	tcpstat.tcps_rcvbadsum++;
2247 drop:
2248 	/*
2249 	 * Drop space held by incoming segment and return.
2250 	 */
2251 	if (tp) {
2252 		if (tp->t_inpcb)
2253 			so = tp->t_inpcb->inp_socket;
2254 #ifdef INET6
2255 		else if (tp->t_in6pcb)
2256 			so = tp->t_in6pcb->in6p_socket;
2257 #endif
2258 		else
2259 			so = NULL;
2260 #ifdef TCP_DEBUG
2261 		if (so && (so->so_options & SO_DEBUG) != 0)
2262 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2263 #endif
2264 	}
2265 	if (tcp_saveti)
2266 		m_freem(tcp_saveti);
2267 	m_freem(m);
2268 	return;
2269 }
2270 
2271 void
2272 tcp_dooptions(tp, cp, cnt, th, oi)
2273 	struct tcpcb *tp;
2274 	u_char *cp;
2275 	int cnt;
2276 	struct tcphdr *th;
2277 	struct tcp_opt_info *oi;
2278 {
2279 	u_int16_t mss;
2280 	int opt, optlen;
2281 
2282 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2283 		opt = cp[0];
2284 		if (opt == TCPOPT_EOL)
2285 			break;
2286 		if (opt == TCPOPT_NOP)
2287 			optlen = 1;
2288 		else {
2289 			if (cnt < 2)
2290 				break;
2291 			optlen = cp[1];
2292 			if (optlen < 2 || optlen > cnt)
2293 				break;
2294 		}
2295 		switch (opt) {
2296 
2297 		default:
2298 			continue;
2299 
2300 		case TCPOPT_MAXSEG:
2301 			if (optlen != TCPOLEN_MAXSEG)
2302 				continue;
2303 			if (!(th->th_flags & TH_SYN))
2304 				continue;
2305 			bcopy(cp + 2, &mss, sizeof(mss));
2306 			oi->maxseg = ntohs(mss);
2307 			break;
2308 
2309 		case TCPOPT_WINDOW:
2310 			if (optlen != TCPOLEN_WINDOW)
2311 				continue;
2312 			if (!(th->th_flags & TH_SYN))
2313 				continue;
2314 			tp->t_flags |= TF_RCVD_SCALE;
2315 			tp->requested_s_scale = cp[2];
2316 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2317 #if 0	/*XXX*/
2318 				char *p;
2319 
2320 				if (ip)
2321 					p = ntohl(ip->ip_src);
2322 #ifdef INET6
2323 				else if (ip6)
2324 					p = ip6_sprintf(&ip6->ip6_src);
2325 #endif
2326 				else
2327 					p = "(unknown)";
2328 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2329 				    "assuming %d\n",
2330 				    tp->requested_s_scale, p,
2331 				    TCP_MAX_WINSHIFT);
2332 #else
2333 				log(LOG_ERR, "TCP: invalid wscale %d, "
2334 				    "assuming %d\n",
2335 				    tp->requested_s_scale,
2336 				    TCP_MAX_WINSHIFT);
2337 #endif
2338 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
2339 			}
2340 			break;
2341 
2342 		case TCPOPT_TIMESTAMP:
2343 			if (optlen != TCPOLEN_TIMESTAMP)
2344 				continue;
2345 			oi->ts_present = 1;
2346 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2347 			NTOHL(oi->ts_val);
2348 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2349 			NTOHL(oi->ts_ecr);
2350 
2351 			/*
2352 			 * A timestamp received in a SYN makes
2353 			 * it ok to send timestamp requests and replies.
2354 			 */
2355 			if (th->th_flags & TH_SYN) {
2356 				tp->t_flags |= TF_RCVD_TSTMP;
2357 				tp->ts_recent = oi->ts_val;
2358 				tp->ts_recent_age = TCP_TIMESTAMP(tp);
2359 			}
2360 			break;
2361 		case TCPOPT_SACK_PERMITTED:
2362 			if (optlen != TCPOLEN_SACK_PERMITTED)
2363 				continue;
2364 			if (!(th->th_flags & TH_SYN))
2365 				continue;
2366 			tp->t_flags &= ~TF_CANT_TXSACK;
2367 			break;
2368 
2369 		case TCPOPT_SACK:
2370 			if (tp->t_flags & TF_IGNR_RXSACK)
2371 				continue;
2372 			if (optlen % 8 != 2 || optlen < 10)
2373 				continue;
2374 			cp += 2;
2375 			optlen -= 2;
2376 			for (; optlen > 0; cp -= 8, optlen -= 8) {
2377 				tcp_seq lwe, rwe;
2378 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2379 				NTOHL(lwe);
2380 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2381 				NTOHL(rwe);
2382 				/* tcp_mark_sacked(tp, lwe, rwe); */
2383 			}
2384 			break;
2385 		}
2386 	}
2387 }
2388 
2389 /*
2390  * Pull out of band byte out of a segment so
2391  * it doesn't appear in the user's data queue.
2392  * It is still reflected in the segment length for
2393  * sequencing purposes.
2394  */
2395 void
2396 tcp_pulloutofband(so, th, m, off)
2397 	struct socket *so;
2398 	struct tcphdr *th;
2399 	struct mbuf *m;
2400 	int off;
2401 {
2402 	int cnt = off + th->th_urp - 1;
2403 
2404 	while (cnt >= 0) {
2405 		if (m->m_len > cnt) {
2406 			char *cp = mtod(m, caddr_t) + cnt;
2407 			struct tcpcb *tp = sototcpcb(so);
2408 
2409 			tp->t_iobc = *cp;
2410 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2411 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2412 			m->m_len--;
2413 			return;
2414 		}
2415 		cnt -= m->m_len;
2416 		m = m->m_next;
2417 		if (m == 0)
2418 			break;
2419 	}
2420 	panic("tcp_pulloutofband");
2421 }
2422 
2423 /*
2424  * Collect new round-trip time estimate
2425  * and update averages and current timeout.
2426  */
2427 void
2428 tcp_xmit_timer(tp, rtt)
2429 	struct tcpcb *tp;
2430 	uint32_t rtt;
2431 {
2432 	int32_t delta;
2433 
2434 	tcpstat.tcps_rttupdated++;
2435 	if (tp->t_srtt != 0) {
2436 		/*
2437 		 * srtt is stored as fixed point with 3 bits after the
2438 		 * binary point (i.e., scaled by 8).  The following magic
2439 		 * is equivalent to the smoothing algorithm in rfc793 with
2440 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2441 		 * point).  Adjust rtt to origin 0.
2442 		 */
2443 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2444 		if ((tp->t_srtt += delta) <= 0)
2445 			tp->t_srtt = 1 << 2;
2446 		/*
2447 		 * We accumulate a smoothed rtt variance (actually, a
2448 		 * smoothed mean difference), then set the retransmit
2449 		 * timer to smoothed rtt + 4 times the smoothed variance.
2450 		 * rttvar is stored as fixed point with 2 bits after the
2451 		 * binary point (scaled by 4).  The following is
2452 		 * equivalent to rfc793 smoothing with an alpha of .75
2453 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2454 		 * rfc793's wired-in beta.
2455 		 */
2456 		if (delta < 0)
2457 			delta = -delta;
2458 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2459 		if ((tp->t_rttvar += delta) <= 0)
2460 			tp->t_rttvar = 1 << 2;
2461 	} else {
2462 		/*
2463 		 * No rtt measurement yet - use the unsmoothed rtt.
2464 		 * Set the variance to half the rtt (so our first
2465 		 * retransmit happens at 3*rtt).
2466 		 */
2467 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2468 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2469 	}
2470 	tp->t_rtttime = 0;
2471 	tp->t_rxtshift = 0;
2472 
2473 	/*
2474 	 * the retransmit should happen at rtt + 4 * rttvar.
2475 	 * Because of the way we do the smoothing, srtt and rttvar
2476 	 * will each average +1/2 tick of bias.  When we compute
2477 	 * the retransmit timer, we want 1/2 tick of rounding and
2478 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2479 	 * firing of the timer.  The bias will give us exactly the
2480 	 * 1.5 tick we need.  But, because the bias is
2481 	 * statistical, we have to test that we don't drop below
2482 	 * the minimum feasible timer (which is 2 ticks).
2483 	 */
2484 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2485 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2486 
2487 	/*
2488 	 * We received an ack for a packet that wasn't retransmitted;
2489 	 * it is probably safe to discard any error indications we've
2490 	 * received recently.  This isn't quite right, but close enough
2491 	 * for now (a route might have failed after we sent a segment,
2492 	 * and the return path might not be symmetrical).
2493 	 */
2494 	tp->t_softerror = 0;
2495 }
2496 
2497 /*
2498  * Checks for partial ack.  If partial ack arrives, force the retransmission
2499  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2500  * 1.  By setting snd_nxt to th_ack, this forces retransmission timer to
2501  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
2502  */
2503 int
2504 tcp_newreno(tp, th)
2505 	struct tcpcb *tp;
2506 	struct tcphdr *th;
2507 {
2508 	tcp_seq onxt = tp->snd_nxt;
2509 	u_long ocwnd = tp->snd_cwnd;
2510 
2511 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2512 		/*
2513 		 * snd_una has not yet been updated and the socket's send
2514 		 * buffer has not yet drained off the ACK'd data, so we
2515 		 * have to leave snd_una as it was to get the correct data
2516 		 * offset in tcp_output().
2517 		 */
2518 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
2519 	        tp->t_rtttime = 0;
2520 	        tp->snd_nxt = th->th_ack;
2521 		/*
2522 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
2523 		 * is not yet updated when we're called.
2524 		 */
2525 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2526 	        (void) tcp_output(tp);
2527 	        tp->snd_cwnd = ocwnd;
2528 	        if (SEQ_GT(onxt, tp->snd_nxt))
2529 	                tp->snd_nxt = onxt;
2530 	        /*
2531 	         * Partial window deflation.  Relies on fact that tp->snd_una
2532 	         * not updated yet.
2533 	         */
2534 	        tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2535 	        return 1;
2536 	}
2537 	return 0;
2538 }
2539 
2540 
2541 /*
2542  * TCP compressed state engine.  Currently used to hold compressed
2543  * state for SYN_RECEIVED.
2544  */
2545 
2546 u_long	syn_cache_count;
2547 u_int32_t syn_hash1, syn_hash2;
2548 
2549 #define SYN_HASH(sa, sp, dp) \
2550 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2551 				     ((u_int32_t)(sp)))^syn_hash2)))
2552 #ifndef INET6
2553 #define	SYN_HASHALL(hash, src, dst) \
2554 do {									\
2555 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
2556 		((struct sockaddr_in *)(src))->sin_port,		\
2557 		((struct sockaddr_in *)(dst))->sin_port);		\
2558 } while (0)
2559 #else
2560 #define SYN_HASH6(sa, sp, dp) \
2561 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2562 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2563 	 & 0x7fffffff)
2564 
2565 #define SYN_HASHALL(hash, src, dst) \
2566 do {									\
2567 	switch ((src)->sa_family) {					\
2568 	case AF_INET:							\
2569 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2570 			((struct sockaddr_in *)(src))->sin_port,	\
2571 			((struct sockaddr_in *)(dst))->sin_port);	\
2572 		break;							\
2573 	case AF_INET6:							\
2574 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2575 			((struct sockaddr_in6 *)(src))->sin6_port,	\
2576 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
2577 		break;							\
2578 	default:							\
2579 		hash = 0;						\
2580 	}								\
2581 } while (/*CONSTCOND*/0)
2582 #endif /* INET6 */
2583 
2584 #define	SYN_CACHE_RM(sc)						\
2585 do {									\
2586 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
2587 	    (sc), sc_bucketq);						\
2588 	(sc)->sc_tp = NULL;						\
2589 	LIST_REMOVE((sc), sc_tpq);					\
2590 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
2591 	callout_stop(&(sc)->sc_timer);					\
2592 	syn_cache_count--;						\
2593 } while (/*CONSTCOND*/0)
2594 
2595 #define	SYN_CACHE_PUT(sc)						\
2596 do {									\
2597 	if ((sc)->sc_ipopts)						\
2598 		(void) m_free((sc)->sc_ipopts);				\
2599 	if ((sc)->sc_route4.ro_rt != NULL)				\
2600 		RTFREE((sc)->sc_route4.ro_rt);				\
2601 	pool_put(&syn_cache_pool, (sc));				\
2602 } while (/*CONSTCOND*/0)
2603 
2604 struct pool syn_cache_pool;
2605 
2606 /*
2607  * We don't estimate RTT with SYNs, so each packet starts with the default
2608  * RTT and each timer step has a fixed timeout value.
2609  */
2610 #define	SYN_CACHE_TIMER_ARM(sc)						\
2611 do {									\
2612 	TCPT_RANGESET((sc)->sc_rxtcur,					\
2613 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
2614 	    TCPTV_REXMTMAX);						\
2615 	callout_reset(&(sc)->sc_timer,					\
2616 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
2617 } while (/*CONSTCOND*/0)
2618 
2619 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
2620 
2621 void
2622 syn_cache_init()
2623 {
2624 	int i;
2625 
2626 	/* Initialize the hash buckets. */
2627 	for (i = 0; i < tcp_syn_cache_size; i++)
2628 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
2629 
2630 	/* Initialize the syn cache pool. */
2631 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2632 	    "synpl", 0, NULL, NULL, M_PCB);
2633 }
2634 
2635 void
2636 syn_cache_insert(sc, tp)
2637 	struct syn_cache *sc;
2638 	struct tcpcb *tp;
2639 {
2640 	struct syn_cache_head *scp;
2641 	struct syn_cache *sc2;
2642 	int s;
2643 
2644 	/*
2645 	 * If there are no entries in the hash table, reinitialize
2646 	 * the hash secrets.
2647 	 */
2648 	if (syn_cache_count == 0) {
2649 		struct timeval tv;
2650 		microtime(&tv);
2651 		syn_hash1 = random() ^ (u_long)&sc;
2652 		syn_hash2 = random() ^ tv.tv_usec;
2653 	}
2654 
2655 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2656 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2657 	scp = &tcp_syn_cache[sc->sc_bucketidx];
2658 
2659 	/*
2660 	 * Make sure that we don't overflow the per-bucket
2661 	 * limit or the total cache size limit.
2662 	 */
2663 	s = splsoftnet();
2664 	if (scp->sch_length >= tcp_syn_bucket_limit) {
2665 		tcpstat.tcps_sc_bucketoverflow++;
2666 		/*
2667 		 * The bucket is full.  Toss the oldest element in the
2668 		 * bucket.  This will be the first entry in the bucket.
2669 		 */
2670 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
2671 #ifdef DIAGNOSTIC
2672 		/*
2673 		 * This should never happen; we should always find an
2674 		 * entry in our bucket.
2675 		 */
2676 		if (sc2 == NULL)
2677 			panic("syn_cache_insert: bucketoverflow: impossible");
2678 #endif
2679 		SYN_CACHE_RM(sc2);
2680 		SYN_CACHE_PUT(sc2);
2681 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
2682 		struct syn_cache_head *scp2, *sce;
2683 
2684 		tcpstat.tcps_sc_overflowed++;
2685 		/*
2686 		 * The cache is full.  Toss the oldest entry in the
2687 		 * first non-empty bucket we can find.
2688 		 *
2689 		 * XXX We would really like to toss the oldest
2690 		 * entry in the cache, but we hope that this
2691 		 * condition doesn't happen very often.
2692 		 */
2693 		scp2 = scp;
2694 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
2695 			sce = &tcp_syn_cache[tcp_syn_cache_size];
2696 			for (++scp2; scp2 != scp; scp2++) {
2697 				if (scp2 >= sce)
2698 					scp2 = &tcp_syn_cache[0];
2699 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
2700 					break;
2701 			}
2702 #ifdef DIAGNOSTIC
2703 			/*
2704 			 * This should never happen; we should always find a
2705 			 * non-empty bucket.
2706 			 */
2707 			if (scp2 == scp)
2708 				panic("syn_cache_insert: cacheoverflow: "
2709 				    "impossible");
2710 #endif
2711 		}
2712 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
2713 		SYN_CACHE_RM(sc2);
2714 		SYN_CACHE_PUT(sc2);
2715 	}
2716 
2717 	/*
2718 	 * Initialize the entry's timer.
2719 	 */
2720 	sc->sc_rxttot = 0;
2721 	sc->sc_rxtshift = 0;
2722 	SYN_CACHE_TIMER_ARM(sc);
2723 
2724 	/* Link it from tcpcb entry */
2725 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2726 
2727 	/* Put it into the bucket. */
2728 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
2729 	scp->sch_length++;
2730 	syn_cache_count++;
2731 
2732 	tcpstat.tcps_sc_added++;
2733 	splx(s);
2734 }
2735 
2736 /*
2737  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2738  * If we have retransmitted an entry the maximum number of times, expire
2739  * that entry.
2740  */
2741 void
2742 syn_cache_timer(void *arg)
2743 {
2744 	struct syn_cache *sc = arg;
2745 	int s;
2746 
2747 	s = splsoftnet();
2748 
2749 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
2750 		/* Drop it -- too many retransmissions. */
2751 		goto dropit;
2752 	}
2753 
2754 	/*
2755 	 * Compute the total amount of time this entry has
2756 	 * been on a queue.  If this entry has been on longer
2757 	 * than the keep alive timer would allow, expire it.
2758 	 */
2759 	sc->sc_rxttot += sc->sc_rxtcur;
2760 	if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
2761 		goto dropit;
2762 
2763 	tcpstat.tcps_sc_retransmitted++;
2764 	(void) syn_cache_respond(sc, NULL);
2765 
2766 	/* Advance the timer back-off. */
2767 	sc->sc_rxtshift++;
2768 	SYN_CACHE_TIMER_ARM(sc);
2769 
2770 	splx(s);
2771 	return;
2772 
2773  dropit:
2774 	tcpstat.tcps_sc_timed_out++;
2775 	SYN_CACHE_RM(sc);
2776 	SYN_CACHE_PUT(sc);
2777 	splx(s);
2778 }
2779 
2780 /*
2781  * Remove syn cache created by the specified tcb entry,
2782  * because this does not make sense to keep them
2783  * (if there's no tcb entry, syn cache entry will never be used)
2784  */
2785 void
2786 syn_cache_cleanup(tp)
2787 	struct tcpcb *tp;
2788 {
2789 	struct syn_cache *sc, *nsc;
2790 	int s;
2791 
2792 	s = splsoftnet();
2793 
2794 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2795 		nsc = LIST_NEXT(sc, sc_tpq);
2796 
2797 #ifdef DIAGNOSTIC
2798 		if (sc->sc_tp != tp)
2799 			panic("invalid sc_tp in syn_cache_cleanup");
2800 #endif
2801 		SYN_CACHE_RM(sc);
2802 		SYN_CACHE_PUT(sc);
2803 	}
2804 	/* just for safety */
2805 	LIST_INIT(&tp->t_sc);
2806 
2807 	splx(s);
2808 }
2809 
2810 /*
2811  * Find an entry in the syn cache.
2812  */
2813 struct syn_cache *
2814 syn_cache_lookup(src, dst, headp)
2815 	struct sockaddr *src;
2816 	struct sockaddr *dst;
2817 	struct syn_cache_head **headp;
2818 {
2819 	struct syn_cache *sc;
2820 	struct syn_cache_head *scp;
2821 	u_int32_t hash;
2822 	int s;
2823 
2824 	SYN_HASHALL(hash, src, dst);
2825 
2826 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2827 	*headp = scp;
2828 	s = splsoftnet();
2829 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
2830 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
2831 		if (sc->sc_hash != hash)
2832 			continue;
2833 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2834 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2835 			splx(s);
2836 			return (sc);
2837 		}
2838 	}
2839 	splx(s);
2840 	return (NULL);
2841 }
2842 
2843 /*
2844  * This function gets called when we receive an ACK for a
2845  * socket in the LISTEN state.  We look up the connection
2846  * in the syn cache, and if its there, we pull it out of
2847  * the cache and turn it into a full-blown connection in
2848  * the SYN-RECEIVED state.
2849  *
2850  * The return values may not be immediately obvious, and their effects
2851  * can be subtle, so here they are:
2852  *
2853  *	NULL	SYN was not found in cache; caller should drop the
2854  *		packet and send an RST.
2855  *
2856  *	-1	We were unable to create the new connection, and are
2857  *		aborting it.  An ACK,RST is being sent to the peer
2858  *		(unless we got screwey sequence numbners; see below),
2859  *		because the 3-way handshake has been completed.  Caller
2860  *		should not free the mbuf, since we may be using it.  If
2861  *		we are not, we will free it.
2862  *
2863  *	Otherwise, the return value is a pointer to the new socket
2864  *	associated with the connection.
2865  */
2866 struct socket *
2867 syn_cache_get(src, dst, th, hlen, tlen, so, m)
2868 	struct sockaddr *src;
2869 	struct sockaddr *dst;
2870 	struct tcphdr *th;
2871 	unsigned int hlen, tlen;
2872 	struct socket *so;
2873 	struct mbuf *m;
2874 {
2875 	struct syn_cache *sc;
2876 	struct syn_cache_head *scp;
2877 	struct inpcb *inp = NULL;
2878 #ifdef INET6
2879 	struct in6pcb *in6p = NULL;
2880 #endif
2881 	struct tcpcb *tp = 0;
2882 	struct mbuf *am;
2883 	int s;
2884 	struct socket *oso;
2885 
2886 	s = splsoftnet();
2887 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
2888 		splx(s);
2889 		return (NULL);
2890 	}
2891 
2892 	/*
2893 	 * Verify the sequence and ack numbers.  Try getting the correct
2894 	 * response again.
2895 	 */
2896 	if ((th->th_ack != sc->sc_iss + 1) ||
2897 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
2898 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
2899 		(void) syn_cache_respond(sc, m);
2900 		splx(s);
2901 		return ((struct socket *)(-1));
2902 	}
2903 
2904 	/* Remove this cache entry */
2905 	SYN_CACHE_RM(sc);
2906 	splx(s);
2907 
2908 	/*
2909 	 * Ok, create the full blown connection, and set things up
2910 	 * as they would have been set up if we had created the
2911 	 * connection when the SYN arrived.  If we can't create
2912 	 * the connection, abort it.
2913 	 */
2914 	/*
2915 	 * inp still has the OLD in_pcb stuff, set the
2916 	 * v6-related flags on the new guy, too.   This is
2917 	 * done particularly for the case where an AF_INET6
2918 	 * socket is bound only to a port, and a v4 connection
2919 	 * comes in on that port.
2920 	 * we also copy the flowinfo from the original pcb
2921 	 * to the new one.
2922 	 */
2923     {
2924 	struct inpcb *parentinpcb;
2925 
2926 	parentinpcb = (struct inpcb *)so->so_pcb;
2927 
2928 	oso = so;
2929 	so = sonewconn(so, SS_ISCONNECTED);
2930 	if (so == NULL)
2931 		goto resetandabort;
2932 
2933 	switch (so->so_proto->pr_domain->dom_family) {
2934 #ifdef INET
2935 	case AF_INET:
2936 		inp = sotoinpcb(so);
2937 		break;
2938 #endif
2939 #ifdef INET6
2940 	case AF_INET6:
2941 		in6p = sotoin6pcb(so);
2942 		break;
2943 #endif
2944 	}
2945     }
2946 	switch (src->sa_family) {
2947 #ifdef INET
2948 	case AF_INET:
2949 		if (inp) {
2950 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
2951 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
2952 			inp->inp_options = ip_srcroute();
2953 			in_pcbstate(inp, INP_BOUND);
2954 			if (inp->inp_options == NULL) {
2955 				inp->inp_options = sc->sc_ipopts;
2956 				sc->sc_ipopts = NULL;
2957 			}
2958 		}
2959 #ifdef INET6
2960 		else if (in6p) {
2961 			/* IPv4 packet to AF_INET6 socket */
2962 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
2963 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
2964 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
2965 				&in6p->in6p_laddr.s6_addr32[3],
2966 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
2967 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
2968 			in6totcpcb(in6p)->t_family = AF_INET;
2969 		}
2970 #endif
2971 		break;
2972 #endif
2973 #ifdef INET6
2974 	case AF_INET6:
2975 		if (in6p) {
2976 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
2977 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
2978 #if 0
2979 			in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
2980 			/*inp->inp_options = ip6_srcroute();*/ /* soon. */
2981 #endif
2982 		}
2983 		break;
2984 #endif
2985 	}
2986 #ifdef INET6
2987 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
2988 		struct in6pcb *oin6p = sotoin6pcb(oso);
2989 		/* inherit socket options from the listening socket */
2990 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
2991 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
2992 			m_freem(in6p->in6p_options);
2993 			in6p->in6p_options = 0;
2994 		}
2995 		ip6_savecontrol(in6p, &in6p->in6p_options,
2996 			mtod(m, struct ip6_hdr *), m);
2997 	}
2998 #endif
2999 
3000 #ifdef IPSEC
3001 	/*
3002 	 * we make a copy of policy, instead of sharing the policy,
3003 	 * for better behavior in terms of SA lookup and dead SA removal.
3004 	 */
3005 	if (inp) {
3006 		/* copy old policy into new socket's */
3007 		if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3008 			printf("tcp_input: could not copy policy\n");
3009 	}
3010 #ifdef INET6
3011 	else if (in6p) {
3012 		/* copy old policy into new socket's */
3013 		if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
3014 			printf("tcp_input: could not copy policy\n");
3015 	}
3016 #endif
3017 #endif
3018 
3019 	/*
3020 	 * Give the new socket our cached route reference.
3021 	 */
3022 	if (inp)
3023 		inp->inp_route = sc->sc_route4;		/* struct assignment */
3024 #ifdef INET6
3025 	else
3026 		in6p->in6p_route = sc->sc_route6;
3027 #endif
3028 	sc->sc_route4.ro_rt = NULL;
3029 
3030 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3031 	if (am == NULL)
3032 		goto resetandabort;
3033 	am->m_len = src->sa_len;
3034 	bcopy(src, mtod(am, caddr_t), src->sa_len);
3035 	if (inp) {
3036 		if (in_pcbconnect(inp, am)) {
3037 			(void) m_free(am);
3038 			goto resetandabort;
3039 		}
3040 	}
3041 #ifdef INET6
3042 	else if (in6p) {
3043 		if (src->sa_family == AF_INET) {
3044 			/* IPv4 packet to AF_INET6 socket */
3045 			struct sockaddr_in6 *sin6;
3046 			sin6 = mtod(am, struct sockaddr_in6 *);
3047 			am->m_len = sizeof(*sin6);
3048 			bzero(sin6, sizeof(*sin6));
3049 			sin6->sin6_family = AF_INET6;
3050 			sin6->sin6_len = sizeof(*sin6);
3051 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3052 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3053 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
3054 				&sin6->sin6_addr.s6_addr32[3],
3055 				sizeof(sin6->sin6_addr.s6_addr32[3]));
3056 		}
3057 		if (in6_pcbconnect(in6p, am)) {
3058 			(void) m_free(am);
3059 			goto resetandabort;
3060 		}
3061 	}
3062 #endif
3063 	else {
3064 		(void) m_free(am);
3065 		goto resetandabort;
3066 	}
3067 	(void) m_free(am);
3068 
3069 	if (inp)
3070 		tp = intotcpcb(inp);
3071 #ifdef INET6
3072 	else if (in6p)
3073 		tp = in6totcpcb(in6p);
3074 #endif
3075 	else
3076 		tp = NULL;
3077 	if (sc->sc_request_r_scale != 15) {
3078 		tp->requested_s_scale = sc->sc_requested_s_scale;
3079 		tp->request_r_scale = sc->sc_request_r_scale;
3080 		tp->snd_scale = sc->sc_requested_s_scale;
3081 		tp->rcv_scale = sc->sc_request_r_scale;
3082 		tp->t_flags |= TF_RCVD_SCALE;
3083 	}
3084 	if (sc->sc_flags & SCF_TIMESTAMP)
3085 		tp->t_flags |= TF_RCVD_TSTMP;
3086 	tp->ts_timebase = sc->sc_timebase;
3087 
3088 	tp->t_template = tcp_template(tp);
3089 	if (tp->t_template == 0) {
3090 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3091 		so = NULL;
3092 		m_freem(m);
3093 		goto abort;
3094 	}
3095 
3096 	tp->iss = sc->sc_iss;
3097 	tp->irs = sc->sc_irs;
3098 	tcp_sendseqinit(tp);
3099 	tcp_rcvseqinit(tp);
3100 	tp->t_state = TCPS_SYN_RECEIVED;
3101 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3102 	tcpstat.tcps_accepts++;
3103 
3104 	/* Initialize tp->t_ourmss before we deal with the peer's! */
3105 	tp->t_ourmss = sc->sc_ourmaxseg;
3106 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3107 
3108 	/*
3109 	 * Initialize the initial congestion window.  If we
3110 	 * had to retransmit the SYN,ACK, we must initialize cwnd
3111 	 * to 1 segment (i.e. the Loss Window).
3112 	 */
3113 	if (sc->sc_rxtshift)
3114 		tp->snd_cwnd = tp->t_peermss;
3115 	else
3116 		tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3117 
3118 	tcp_rmx_rtt(tp);
3119 	tp->snd_wl1 = sc->sc_irs;
3120 	tp->rcv_up = sc->sc_irs + 1;
3121 
3122 	/*
3123 	 * This is what whould have happened in tcp_ouput() when
3124 	 * the SYN,ACK was sent.
3125 	 */
3126 	tp->snd_up = tp->snd_una;
3127 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3128 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3129 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3130 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3131 	tp->last_ack_sent = tp->rcv_nxt;
3132 
3133 	tcpstat.tcps_sc_completed++;
3134 	SYN_CACHE_PUT(sc);
3135 	return (so);
3136 
3137 resetandabort:
3138 	(void) tcp_respond(NULL, m, m, th,
3139 			   th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3140 abort:
3141 	if (so != NULL)
3142 		(void) soabort(so);
3143 	SYN_CACHE_PUT(sc);
3144 	tcpstat.tcps_sc_aborted++;
3145 	return ((struct socket *)(-1));
3146 }
3147 
3148 /*
3149  * This function is called when we get a RST for a
3150  * non-existent connection, so that we can see if the
3151  * connection is in the syn cache.  If it is, zap it.
3152  */
3153 
3154 void
3155 syn_cache_reset(src, dst, th)
3156 	struct sockaddr *src;
3157 	struct sockaddr *dst;
3158 	struct tcphdr *th;
3159 {
3160 	struct syn_cache *sc;
3161 	struct syn_cache_head *scp;
3162 	int s = splsoftnet();
3163 
3164 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3165 		splx(s);
3166 		return;
3167 	}
3168 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3169 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3170 		splx(s);
3171 		return;
3172 	}
3173 	SYN_CACHE_RM(sc);
3174 	splx(s);
3175 	tcpstat.tcps_sc_reset++;
3176 	SYN_CACHE_PUT(sc);
3177 }
3178 
3179 void
3180 syn_cache_unreach(src, dst, th)
3181 	struct sockaddr *src;
3182 	struct sockaddr *dst;
3183 	struct tcphdr *th;
3184 {
3185 	struct syn_cache *sc;
3186 	struct syn_cache_head *scp;
3187 	int s;
3188 
3189 	s = splsoftnet();
3190 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3191 		splx(s);
3192 		return;
3193 	}
3194 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3195 	if (ntohl (th->th_seq) != sc->sc_iss) {
3196 		splx(s);
3197 		return;
3198 	}
3199 
3200 	/*
3201 	 * If we've rertransmitted 3 times and this is our second error,
3202 	 * we remove the entry.  Otherwise, we allow it to continue on.
3203 	 * This prevents us from incorrectly nuking an entry during a
3204 	 * spurious network outage.
3205 	 *
3206 	 * See tcp_notify().
3207 	 */
3208 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3209 		sc->sc_flags |= SCF_UNREACH;
3210 		splx(s);
3211 		return;
3212 	}
3213 
3214 	SYN_CACHE_RM(sc);
3215 	splx(s);
3216 	tcpstat.tcps_sc_unreach++;
3217 	SYN_CACHE_PUT(sc);
3218 }
3219 
3220 /*
3221  * Given a LISTEN socket and an inbound SYN request, add
3222  * this to the syn cache, and send back a segment:
3223  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3224  * to the source.
3225  *
3226  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3227  * Doing so would require that we hold onto the data and deliver it
3228  * to the application.  However, if we are the target of a SYN-flood
3229  * DoS attack, an attacker could send data which would eventually
3230  * consume all available buffer space if it were ACKed.  By not ACKing
3231  * the data, we avoid this DoS scenario.
3232  */
3233 
3234 int
3235 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3236 	struct sockaddr *src;
3237 	struct sockaddr *dst;
3238 	struct tcphdr *th;
3239 	unsigned int hlen;
3240 	struct socket *so;
3241 	struct mbuf *m;
3242 	u_char *optp;
3243 	int optlen;
3244 	struct tcp_opt_info *oi;
3245 {
3246 	struct tcpcb tb, *tp;
3247 	long win;
3248 	struct syn_cache *sc;
3249 	struct syn_cache_head *scp;
3250 	struct mbuf *ipopts;
3251 
3252 	tp = sototcpcb(so);
3253 
3254 	/*
3255 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3256 	 *
3257 	 * Note this check is performed in tcp_input() very early on.
3258 	 */
3259 
3260 	/*
3261 	 * Initialize some local state.
3262 	 */
3263 	win = sbspace(&so->so_rcv);
3264 	if (win > TCP_MAXWIN)
3265 		win = TCP_MAXWIN;
3266 
3267 	switch (src->sa_family) {
3268 #ifdef INET
3269 	case AF_INET:
3270 		/*
3271 		 * Remember the IP options, if any.
3272 		 */
3273 		ipopts = ip_srcroute();
3274 		break;
3275 #endif
3276 	default:
3277 		ipopts = NULL;
3278 	}
3279 
3280 	if (optp) {
3281 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3282 		tcp_dooptions(&tb, optp, optlen, th, oi);
3283 	} else
3284 		tb.t_flags = 0;
3285 
3286 	/*
3287 	 * See if we already have an entry for this connection.
3288 	 * If we do, resend the SYN,ACK.  We do not count this
3289 	 * as a retransmission (XXX though maybe we should).
3290 	 */
3291 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3292 		tcpstat.tcps_sc_dupesyn++;
3293 		if (ipopts) {
3294 			/*
3295 			 * If we were remembering a previous source route,
3296 			 * forget it and use the new one we've been given.
3297 			 */
3298 			if (sc->sc_ipopts)
3299 				(void) m_free(sc->sc_ipopts);
3300 			sc->sc_ipopts = ipopts;
3301 		}
3302 		sc->sc_timestamp = tb.ts_recent;
3303 		if (syn_cache_respond(sc, m) == 0) {
3304 			tcpstat.tcps_sndacks++;
3305 			tcpstat.tcps_sndtotal++;
3306 		}
3307 		return (1);
3308 	}
3309 
3310 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3311 	if (sc == NULL) {
3312 		if (ipopts)
3313 			(void) m_free(ipopts);
3314 		return (0);
3315 	}
3316 
3317 	/*
3318 	 * Fill in the cache, and put the necessary IP and TCP
3319 	 * options into the reply.
3320 	 */
3321 	callout_init(&sc->sc_timer);
3322 	bzero(sc, sizeof(struct syn_cache));
3323 	bcopy(src, &sc->sc_src, src->sa_len);
3324 	bcopy(dst, &sc->sc_dst, dst->sa_len);
3325 	sc->sc_flags = 0;
3326 	sc->sc_ipopts = ipopts;
3327 	sc->sc_irs = th->th_seq;
3328 	switch (src->sa_family) {
3329 #ifdef INET
3330 	case AF_INET:
3331 	    {
3332 		struct sockaddr_in *srcin = (void *) src;
3333 		struct sockaddr_in *dstin = (void *) dst;
3334 
3335 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3336 		    &srcin->sin_addr, dstin->sin_port,
3337 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
3338 		break;
3339 	    }
3340 #endif /* INET */
3341 #ifdef INET6
3342 	case AF_INET6:
3343 	    {
3344 		struct sockaddr_in6 *srcin6 = (void *) src;
3345 		struct sockaddr_in6 *dstin6 = (void *) dst;
3346 
3347 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3348 		    &srcin6->sin6_addr, dstin6->sin6_port,
3349 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3350 		break;
3351 	    }
3352 #endif /* INET6 */
3353 	}
3354 	sc->sc_peermaxseg = oi->maxseg;
3355 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3356 						m->m_pkthdr.rcvif : NULL,
3357 						sc->sc_src.sa.sa_family);
3358 	sc->sc_win = win;
3359 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
3360 	sc->sc_timestamp = tb.ts_recent;
3361 	if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3362 		sc->sc_flags |= SCF_TIMESTAMP;
3363 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3364 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3365 		sc->sc_requested_s_scale = tb.requested_s_scale;
3366 		sc->sc_request_r_scale = 0;
3367 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3368 		    TCP_MAXWIN << sc->sc_request_r_scale <
3369 		    so->so_rcv.sb_hiwat)
3370 			sc->sc_request_r_scale++;
3371 	} else {
3372 		sc->sc_requested_s_scale = 15;
3373 		sc->sc_request_r_scale = 15;
3374 	}
3375 	sc->sc_tp = tp;
3376 	if (syn_cache_respond(sc, m) == 0) {
3377 		syn_cache_insert(sc, tp);
3378 		tcpstat.tcps_sndacks++;
3379 		tcpstat.tcps_sndtotal++;
3380 	} else {
3381 		SYN_CACHE_PUT(sc);
3382 		tcpstat.tcps_sc_dropped++;
3383 	}
3384 	return (1);
3385 }
3386 
3387 int
3388 syn_cache_respond(sc, m)
3389 	struct syn_cache *sc;
3390 	struct mbuf *m;
3391 {
3392 	struct route *ro;
3393 	u_int8_t *optp;
3394 	int optlen, error;
3395 	u_int16_t tlen;
3396 	struct ip *ip = NULL;
3397 #ifdef INET6
3398 	struct ip6_hdr *ip6 = NULL;
3399 #endif
3400 	struct tcphdr *th;
3401 	u_int hlen;
3402 
3403 	switch (sc->sc_src.sa.sa_family) {
3404 	case AF_INET:
3405 		hlen = sizeof(struct ip);
3406 		ro = &sc->sc_route4;
3407 		break;
3408 #ifdef INET6
3409 	case AF_INET6:
3410 		hlen = sizeof(struct ip6_hdr);
3411 		ro = (struct route *)&sc->sc_route6;
3412 		break;
3413 #endif
3414 	default:
3415 		if (m)
3416 			m_freem(m);
3417 		return EAFNOSUPPORT;
3418 	}
3419 
3420 	/* Compute the size of the TCP options. */
3421 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3422 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3423 
3424 	tlen = hlen + sizeof(struct tcphdr) + optlen;
3425 
3426 	/*
3427 	 * Create the IP+TCP header from scratch.
3428 	 */
3429 	if (m)
3430 		m_freem(m);
3431 #ifdef DIAGNOSTIC
3432 	if (max_linkhdr + tlen > MCLBYTES)
3433 		return (ENOBUFS);
3434 #endif
3435 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3436 	if (m && tlen > MHLEN) {
3437 		MCLGET(m, M_DONTWAIT);
3438 		if ((m->m_flags & M_EXT) == 0) {
3439 			m_freem(m);
3440 			m = NULL;
3441 		}
3442 	}
3443 	if (m == NULL)
3444 		return (ENOBUFS);
3445 
3446 	/* Fixup the mbuf. */
3447 	m->m_data += max_linkhdr;
3448 	m->m_len = m->m_pkthdr.len = tlen;
3449 #ifdef IPSEC
3450 	if (sc->sc_tp) {
3451 		struct tcpcb *tp;
3452 		struct socket *so;
3453 
3454 		tp = sc->sc_tp;
3455 		if (tp->t_inpcb)
3456 			so = tp->t_inpcb->inp_socket;
3457 #ifdef INET6
3458 		else if (tp->t_in6pcb)
3459 			so = tp->t_in6pcb->in6p_socket;
3460 #endif
3461 		else
3462 			so = NULL;
3463 		/* use IPsec policy on listening socket, on SYN ACK */
3464 		if (ipsec_setsocket(m, so) != 0) {
3465 			m_freem(m);
3466 			return ENOBUFS;
3467 		}
3468 	}
3469 #endif
3470 	m->m_pkthdr.rcvif = NULL;
3471 	memset(mtod(m, u_char *), 0, tlen);
3472 
3473 	switch (sc->sc_src.sa.sa_family) {
3474 	case AF_INET:
3475 		ip = mtod(m, struct ip *);
3476 		ip->ip_dst = sc->sc_src.sin.sin_addr;
3477 		ip->ip_src = sc->sc_dst.sin.sin_addr;
3478 		ip->ip_p = IPPROTO_TCP;
3479 		th = (struct tcphdr *)(ip + 1);
3480 		th->th_dport = sc->sc_src.sin.sin_port;
3481 		th->th_sport = sc->sc_dst.sin.sin_port;
3482 		break;
3483 #ifdef INET6
3484 	case AF_INET6:
3485 		ip6 = mtod(m, struct ip6_hdr *);
3486 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3487 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3488 		ip6->ip6_nxt = IPPROTO_TCP;
3489 		/* ip6_plen will be updated in ip6_output() */
3490 		th = (struct tcphdr *)(ip6 + 1);
3491 		th->th_dport = sc->sc_src.sin6.sin6_port;
3492 		th->th_sport = sc->sc_dst.sin6.sin6_port;
3493 		break;
3494 #endif
3495 	default:
3496 		th = NULL;
3497 	}
3498 
3499 	th->th_seq = htonl(sc->sc_iss);
3500 	th->th_ack = htonl(sc->sc_irs + 1);
3501 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3502 	th->th_flags = TH_SYN|TH_ACK;
3503 	th->th_win = htons(sc->sc_win);
3504 	/* th_sum already 0 */
3505 	/* th_urp already 0 */
3506 
3507 	/* Tack on the TCP options. */
3508 	optp = (u_int8_t *)(th + 1);
3509 	*optp++ = TCPOPT_MAXSEG;
3510 	*optp++ = 4;
3511 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3512 	*optp++ = sc->sc_ourmaxseg & 0xff;
3513 
3514 	if (sc->sc_request_r_scale != 15) {
3515 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3516 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3517 		    sc->sc_request_r_scale);
3518 		optp += 4;
3519 	}
3520 
3521 	if (sc->sc_flags & SCF_TIMESTAMP) {
3522 		u_int32_t *lp = (u_int32_t *)(optp);
3523 		/* Form timestamp option as shown in appendix A of RFC 1323. */
3524 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
3525 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3526 		*lp   = htonl(sc->sc_timestamp);
3527 		optp += TCPOLEN_TSTAMP_APPA;
3528 	}
3529 
3530 	/* Compute the packet's checksum. */
3531 	switch (sc->sc_src.sa.sa_family) {
3532 	case AF_INET:
3533 		ip->ip_len = htons(tlen - hlen);
3534 		th->th_sum = 0;
3535 		th->th_sum = in_cksum(m, tlen);
3536 		break;
3537 #ifdef INET6
3538 	case AF_INET6:
3539 		ip6->ip6_plen = htons(tlen - hlen);
3540 		th->th_sum = 0;
3541 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3542 		break;
3543 #endif
3544 	}
3545 
3546 	/*
3547 	 * Fill in some straggling IP bits.  Note the stack expects
3548 	 * ip_len to be in host order, for convenience.
3549 	 */
3550 	switch (sc->sc_src.sa.sa_family) {
3551 #ifdef INET
3552 	case AF_INET:
3553 		ip->ip_len = tlen;
3554 		ip->ip_ttl = ip_defttl;
3555 		/* XXX tos? */
3556 		break;
3557 #endif
3558 #ifdef INET6
3559 	case AF_INET6:
3560 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3561 		ip6->ip6_vfc |= IPV6_VERSION;
3562 		ip6->ip6_plen = htons(tlen - hlen);
3563 		/* ip6_hlim will be initialized afterwards */
3564 		/* XXX flowlabel? */
3565 		break;
3566 #endif
3567 	}
3568 
3569 	switch (sc->sc_src.sa.sa_family) {
3570 #ifdef INET
3571 	case AF_INET:
3572 		error = ip_output(m, sc->sc_ipopts, ro,
3573 		    (ip_mtudisc ? IP_MTUDISC : 0),
3574 		    NULL);
3575 		break;
3576 #endif
3577 #ifdef INET6
3578 	case AF_INET6:
3579 		ip6->ip6_hlim = in6_selecthlim(NULL,
3580 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3581 
3582 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3583 			0, NULL, NULL);
3584 		break;
3585 #endif
3586 	default:
3587 		error = EAFNOSUPPORT;
3588 		break;
3589 	}
3590 	return (error);
3591 }
3592